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Abstract— This paper is concerned with the assignment of a 

desired eigenstructure to linear parameter-varying (LPV) 

systems as an extended version of the corresponding 

eigenstructure assignment problem for linear time-invariant 

systems. Based on a complete parametric solution of parametric 

generalized Sylvester matrix equation, a controller design 

method is proposed to guarantee a low sensitivity of the closed-

loop eigenvalues. The observer state feedback structure is 

considered for output feedback control design. An example of 

control for a satellite attitude system is used to demonstrate the 

usefulness of the proposed approach. 
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I. INTRODUCTION 

Gain scheduling control has been widely used in practical 
applications [1, 2] to handle the nonlinearity of real systems. 
The classic gain scheduling approach consists in designing 
linear controllers for several operating points and then applying 
an interpolation strategy to obtain a global controller. 
Consequently, powerful tools for linear systems can be applied 
to nonlinear plants. In spite of the numerous applications, there 
has been no formal framework for gain scheduling until the 
early 1990s [3]. This framework gives heuristic rules to ensure 
global stability, but it does not provide a systematic design 
procedure. The linear parameter varying (LPV) approach to 
system modeling, estimation and control followed on from 
gain-scheduling as a strategy for attempting to model non-
linear parametric variations using a time-varying linear systems 
approach [4, 5]  

Eigenstructure assignment has been used in many 
applications and has been proven to be a useful tool both for 
analysis and design of linear time invariant (LTI) systems [6-
8]. This method allows the designer to satisfy directly 
damping, settling time, and mode decoupling specifications by 
choosing the eigenvalues and eigenvectors. That is because the 
transient response of an LTI system is completely specified by 
the system eigenstructure. Generally, the eigenvalues 
determine the decay (or growth) rate of the response and the 
left and right eigenvectors fix the shape of the response [8]. 
Also, minimum eigenvalue sensitivity to model parameter 
variation and other performance requirements such as 
minimum gain control can be accommodated using explicit 
choices of the free controller parameters [8]. For years, many 
researchers have attempted to generalize the conventional 

notions of eigenvalues and eigenvectors for linear time-
invariant systems to linear time-varying (LTV) systems [9-12]. 
Although existing eigenstructure assignment techniques and 
algorithms for LTV systems confirm the value of using this 
approach, eigenstructure assignment of LTV systems remains a 
difficult problem that is still in a state of development. 

However, there are very few examples in the literature 
where eigenstructure assignment is applied within an LPV 
framework [13, 14]. In [13, 15], polynomial eigenstructure 
assignment of LTI systems was extended to solve the 
corresponding eigenstructure assignment problem for LPV 
systems using output feedback. In [14], a parametric approach 
for eigenstructure assignment, appropriate for LTI systems, 
was extended to LPV plants using state feedback. However, 
with the conditions given in [13], the choice of controller 
structure, the matching conditions and the solution of the 
controller are not unique and  require much more additional 
criteria to constrain the order of controller gains. As discussed 
in [16], the method used in [14] to calculate the controller 
parameters is complex. 

In this paper, a low eigenvalue sensitivity eigenstructure 
assignment method for LPV systems is proposed. A general 
complete parametric solution of the corresponding parametric 
generalized Sylvester matrix equation [14] is introduced. A 
parametric eigenstructure assignment is presented based on the 
proposed solution approach. Using the eigenstructure 
assignment design freedom, low eigenvalue sensitivity is 
achieved by projecting the desired eigenstructure into an 
allowable subspace. An observer-based state estimate feedback 
controller structure is chosen within an output feedback 
framework. An algorithm is proposed to calculate a state 
feedback controller with state observer. The remainder of this 
paper is organized as follows. Section II briefly introduces a 
parametric solution of the parametric generalized Sylvester 
matrix equation, and the eigenstructure assignment to LPV 
system is presented. In Section III, the definition of the overall 
eigenvalue sensitivity of matrix to LTI systems is reviewed and 
extended to LPV systems. The main results and an algorithm 
are also presented in Section III. Section IV gives an example 
of a satellite system to illustrate the application of the theory.  
Finally, conclusions are drawn up in Section V. 
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II. PARAMETRIC EIGENSTRUCTURE ASSIGNMENT FOR LPV 

SYSTEMS 

A. LPV systems 

Reference [5] considers that LPV Systems are linear time-
varying plants whose state-space matrices are fixed functions 
of some vector of varying parameters     . LPV systems can 
be described by state-space equations of the form: 

   
                           

                             
  (1) 

where                           are the state 
vectors, the input vectors and measured output vector, 
respectively.                    , with corresponding 
dimensions, are known continuous function of a time-varying 
parameters vector      which satisfies: 

                 
    

 
           

where   is a compact set. The subscript    is omitted through 
the remainder of the paper without causing confusion. 

From a practical point of view, LPV systems have at least 
two interesting interpretations. They can be viewed as LTI 
plants subject to time-varying parametric uncertainty     . On 
the other hand, they can be models of linear time-varying 
plants or result from the linearization of nonlinear plants along 
the trajectories of the parameter θ. From the second view, the 
parameter      can be measured in real time during system 
operation. Consequently, the control strategy can exploit the 
available measurements of θ to increase performance. The LPV 
controller design approach proposed in this paper is based on 
the second view point. 

B. Parametric Eigenstructure Assignment using state 

feedback 

Consider an LPV system given in form of (1). A linear 

parameterised  state feedback law: 

                  

is applied, such that the closed-loop system is in the following 

form:  

                   

Following [9, 14], the closed-loop self-conjugate eigenvalue 

set can be described as                              
       , for which the algebraic and geometric 

multiplicities of the eigenvalue      are denoted by    and    , 
respectively. Then in the Jordan form of the matrix 

                    , there are     Jordan blocks, 

associated with the i
-th

 eigenvalue   , of orders       

            ,                 satisfy the relations: 

    

   

   

         

  

   

  

Denoting the left and right eigenvectors and generalized 

eigenvectors of matrix        associated with     by       and 

     , respectively, it follows that: 

                                     

          

               
                       

          

for                                     

and 

           

Hence, the problem to assign a desired closed-loop 
eigenstructure to a system using a state feedback controller is 
to find a solution of the parametric equation:  

                          

where           are the state space matrices,      is the 
desired right eigenvector matrix,      is the desired 
eigenvalues diagnosis matrix and      is an auxiliary matrix. 

Theorem 1 is introduced to show how the eigenvectors and 
generalized eigenvectors can be parameterised.  

Theorem 1 [14] 

Let             be controllable, and matrix      be of 
full-column rank, then all the solutions of matrix equation: 

                          

are given by: 

 
   

 

   
     

 
           

 

      

    

               

           
 

      

    

               
  

   
    

 
   

    
 

                                    

where    
    are arbitrarily chosen parameter vectors; N(θ, 

λ) and D(θ, λ) are right co-prime matrix polynomials 

satisfying: 

                                        

From Theorem 1, it can be seen that the desired 
eigenvectors and generalized eigenvectors can be 
parameterised by (2) [14]. 
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Remark 1: 

 Theorem 1 concerns an extension of the eigenstructure 
assignment of LTI systems to an LPV modeling 
framework by introducing a solution of the parametric 
Sylvester matrix equation.  

 Theorem 1 gives a clear analytical, complete, and 
explicit parametric solution expressed by the 
eigenvalues of the matrix        and a group of free 
parameters, namely     . By specially choosing the free 

parameters given in (2), solutions with desired 
properties can be obtained.  

III. MAIN RESULT 

It is known in [8, 17] that if a system has low sensitivity to 
perturbations and parameter variations in the system matrices 
then there may be a low chance of the closed-loop system 
becoming unstable compared with the case when controllers 
are used that are not based on sensitivity minimization. Hence, 
the eigenvalue sensitivity of a closed-loop system to modeling 
errors should be given suitable consideration. For the sake of 
simplicity, only the overall eigenvalue (i.e. Wilkinson) 
sensitivity is considered here [8, 17]. 

A. Overall Eigenvalue Sensitivity 

The overall eigenvalue sensitivity of the matrix   is defined 
[8, 17] as:  

           
    

where   is the right eigenvector matrix of the matrix  . 

Similarly, in this study the overall eigenvalue sensitivity of 
the parameter varying matrix      is defined as:  

           
   

                

where      is the right eigenvector matrix of the matrix     . 
Suppose that the right eigenvector matrix   is unitary, i.e., 

      then        . This indicates that if   is a unitary 
matrix the corresponding eigenvalues are perfectly conditioned 
and hence minimally sensitive to perturbations or parameter 
variations. 

These observations provide the basis for the algorithms to 
be described in this paper. The objective of the paper is to show 
how to assign a set of closed-loop eigenvectors which match 
the columns of a unitary matrix as closely as possible. If this 
process is successful, a perfectly conditioned set of closed-loop 
eigenvalues results [8, 17]. 

B. Performance function  

The desired eigenvectors must be projected into the 
allowable subspace which is optimal according to some 
performance function while the desired eigenvectors are not in 
the allowable subspace. As argued previously, to achieve 
overall low eigenvalue sensitivity, an LPV system performance 
function can be defined as: 

                  
 

                  

where θ is the varying parameter and other symbols have the 
same meaning as in LTI system case. 

If the right eigenvectors are parameterized as:  

                  

The solution that minimises the LPV performance function 
   is obtained by setting:  

             
               

  

    
              

The least-squares best-fit LPV right eigenvectors can be 

computed by: 

                      

Now set            the low eigenvalue sensitivity 

performance function of LPV system is: 

                   
 
                  

C.  Results and Algorithms 

Consider an LPV system described by (1), and the 

performance function is described as (4). The solution that 

minimises the performance function     is obtained by setting:  

 

    
    

 
    

    
         

                 
  

      
             

where: 

                      
 

      

    

                 

                                    

The least-squares best-fit LPV right eigenvector can be 
computed by 

    
            

    
    

 
    

    
  

            
 

      

    

                 

    
    

 
    

    
   

The corresponding auxiliary matrix can be computed as: 

    
    

             
 

      

    

     
            

    
    

 
    

    
 
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The following introduces a non-iterative method which 
involves the direct projection of a unitary matrix into the 
allowable eigenvector subspace. 

Algorithm 1 
Step 1: Chose a set of desired closed-loop eigenvalues 
                                     

Step 2: Get             and             satisfying (3) by 
applying right co-prime factorization 

Step 3: Project each column of the unitary matrix   
          into each of the allowable eigenvector 
subspaces corresponding to each closed-loop eigenvalue 
using (6) and (7). For each column    of  , this produces a 
total of   achievable right eigenvectors               ; 

Step 4: Calculate the    misalignment angles given by: 

          
   

      
   

        

     
         

 

Step 5: Choose the assignment from the    possibilities 
which have the smallest sum of misalignment angles    . 

Step 6: Calculate the controller                 

Remark 2 

 The algorithm is an LPV-extended version of the 
existing right eigenstructure assignment scheme via the 
Sylvester matrix equation for LTI systems. 

 The above algorithm will assign the closed-loop 
eigenvectors as close to a unitary matrix as possible to 
achieve optimum sensitivity. 

 In the algorithm, if the rank of the control input matrix 
     is equal to the rank of the system matrix     the 
desired right eigenvectors (a unitary matrix) as well as 
the desired eigenvalues can be achieved exactly. 

 For a special case, if the desired eigenvalue is 
constant                                 , 
and if the achieved eigenvectors are parameter- 
independent, then the closed-loop system could be time 
invariant. 

 As suggested in [8]    could be very large when    is 
large. Hence,        is suggested to use in the 
proposed approach. 

 For the Step 4, grid method [18, 19] is proposed to 
tackle the high dimensionality and nonlinear nature of 
the optimization problem. 

IV. AN EXAMPLE  

Now, an example is given of a satellite attitude control 
problem to show how to calculate the controller for a given 
LPV system to achieve low eigenvalue sensitivity. The 
example is given in [14]. Consider an LPV system: 

                
                    

   

where 

     

 
 
 
 
 
 

          
      
        
      

          
       

 
 
 
 
 

 

     

 
 
 
 
 
 
     
   
     
   
     
    

 
 
 
 
 

     
      
      
      

  

     

The coefficients of               are defined as: 

            
  

 

  
                

  

  
 

                
  

  
            

  
 

  
   

            
  

 

  
     

 

  
     

 

  
     

 

  
 

                                         

               

  is defined as                    where           are the 

moment of inertia parameters. 

A. Controller design 

The desired eigenvalues are set to be the same as in [18]: 

                                               

Using elementary transformations and the rational matrix 
factorization method [20, 21], it follows that: 
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The desired eigenvector matrix is set to be the identity 
matrix     to force the closed-loop system to have low 
eigenvalue sensitivity to parameter uncertainty. 

Using the above algorithm, the desired eigenvector Identity 
Matrix (    is projected to the allowable subspace. The 
calculated controller is:  

  

 
 
 
 
 
     

   
     

   

   
 

  
      

   
     

   

   
   

 

   
    

 
 
 
 

   

    
          

   
     

         

   
     

          

   


When the designed state feedback controller (9) is applied 
to the original model (8); the closed-loop matrix is obtained as 
in (10). 

     

 
 
 
 
 
 
             

      
                  
      
             
       

 
 
 
 
 

   (10) 

                

B. Observer design  

Based on the Separation Principle, an observer state 
estimate feedback is used to achieve a form of output feedback 
control. The observer design can be achieved by recognizing 
the duality between the state feedback control and state 
estimation problems. A full order observer for the LPV system 
is considered with the following structure: 

                              

                                                    
 

where       is the estimated state and      is the designed 

observer gain. 
To make the estimated states converge to real system states 

fast enough, the real part of the observer eigenvalues should be 
large enough. So, the desired eigenvalues for the observer 
system are chosen as:  

                     

Using the proposed procedure, the obtained observer gain is: 

  

 
 
 
 
 
             

   

   
 

  
     

   

         

   
  

   

   
   

 

   

         

    
 
 
 
 
 



C. Simulation Result 

In the simulation model, the initial conditions are set to 
be                                      . The simulation 
results are shown in Fig. 1. From the time responses it can be 
seen that their steady-state errors converge to zero 
asymptotically. And from the result of the closed-loop system 
matrix, it can be seen that the modes are decoupled from each 
other. This is because the system eigenstructure is also 
considered which would make the system more insensitive to 
parameter perturbations. 

V. CONCLUSION 

In this paper, a low eigenvalue sensitivity eigenstructure 
assignment approach is presented for LPV systems via 
observer/state feedback, based on the complete parametric 
solution of a parametric generalized Sylvester matrix equation. 
Furthermore, for the sake of practical applications, an example 
is used to demonstrate the usefulness and advantage of the 
proposed LPV control scheme. The results show that the 
closed-loop system transient response performance 
requirements are satisfied and low eigenvalue sensitivity to 
perturbation and parameter variation is achieved. The dynamic 
output feedback controller should be considered in the case 
where the Separation Principle breaks down. 

 
Figure 1.  Observer/state feedback closed-loop time response 
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