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Abstract— This paper presents a new strategy for wind turbine 
fault tolerant control (FTC) to optimise the wind energy captured 
by a wind turbine operating at low wind speeds. The FTC 
strategy uses Takagi-Sugeno (T-S) fuzzy observers with state 
feedback control to maintain nominal wind turbine control 
without changes in both the fault and fault-free cases. The 
proposed strategy obviates the need for sensor fault residual 
evaluation and observer switching by using a fuzzy proportional 
multiple integral observer (PMIO) to mask i.e. ‘implicitly 
compensate’ the sensor fault(s) from the controller input and 
provide good estimation over a wide range of sensor fault 
scenarios. The proposed FTC method is applied to a 5 MW 
offshore wind turbine (OWT) benchmark model. 1 

I. INTRODUCTION 
Recently, FTC methods have stimulated research in a wide 
range of industrial control communities and academia, 
particularly for the systems that demand a high degree of 
reliability and availability (sustainability) and at the same time 
are characterised by expensive and/or safety critical 
maintenance work. The recently developed OWTs are 
foremost example for these systems having highly non-linear 
aerodynamics and with a stochastic and uncontrollable driving 
force as input in the form of wind speed. Moreover, the OWT 
site accessibility and system availability is not always ensured 
during or soon after malfunctions, primarily due to changing 
weather conditions. Indeed, maintenance work for OWTs is 
more expensive than the maintenance of onshore wind 
turbines by a factor of 5-10 times [1]. Hence, to be competitive 
with other energy sources, the main challenges for the 
deployment of wind turbine systems are to maximise the 
amount of good quality electrical power extracted from wind 
energy over a significantly wide range of weather conditions 
and minimise both manufacturing and maintenance costs. 
In the literature, FTC and fault detection and diagnosis (FDD) 
systems have been recognised as the proper solution of 
ensuring the above mentioned requirements [2-6]. 
Specifically, in [5] the authors proposed linear parameter-
varying (LPV) FTC systems for pitch actuator faults occurring 
in the full load operation with more emphasis on controller 
design rather than on fault estimation. In [6] fuzzy T-S 
observer based sensor FTC design is proposed to be capable of 
achieve maximization of wind power extraction. Their 
proposed FTC method is based on evaluation of two residual 
signals generated using the generalised observer idea of [7] to 
switch the estimation from faulty to healthy observers with the 
assumption that no simultaneous sensors faults are occur. It is 
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clear that switching between two different observers produces 
unavoidable spikes that specifically affect the drive train 
torsion of low inertia wind turbines. Also the performance of 
the proposed FTC strategy is highly affected by the robustness 
and the computation time of the residual evaluation unit. 
Moreover, there is a significant probability of simultaneous 
occurrence of generator and rotor speed sensor faults [2]. 
This paper describes a new T-S fuzzy observer-based sensor 
FTC scheme designed to optimise the wind energy captured in 
the low wind speed range of operation. To cover a wider than 
usual range of sensor fault scenarios, the FTC strategy uses a 
fuzzy extension to the well-known PMIO [8] to provide 
simultaneous estimation of states and sensor faults. The 
nominal fuzzy controller remains unchanged during faulty and 
fault-free cases. 
The main contributions of the paper are: (1) the use of the 
PMIO to mask or implicitly compensate the effect of drive 
train sensor faults, hence obviating the need for residual 
evaluation and observer switching. The PMIO simultaneously 
estimates the states and the sensor fault signals. Moreover, 
information about the fault severity can also be provided 
through the fault estimation signals; (2) the new fuzzy PMIO 
scheme is shown to cover a wide range of sensor fault 
scenarios [8]. 
The paper is organised as follows, Section 2 presents the 
flexible two mass OWT drive train model Section 3 describes 
the proposed FTC strategy. In Section 4 simulation results are 
presented showing the application of the FTC scheme to a 
5MW wind turbine benchmark model. Section 5 gives a 
concluding statement. 

II. WIND TURBINE MODELLING 

Normally, wind turbine models are obtained by combining the 
constituent subsystem models that make up the overall wind 
turbine dynamics. In this section a flexible low speed shaft, 
two mass wind turbine models are presented. The aerodynamic 
torque ( ܶ) representing the source of nonlinearity of the wind 
turbine. ܶ	,	depending on the rotor speed ߱, the blade pitch 
angle ߚ and the wind speed v is given by:  

ܶ = ,ߣ)ܥଶܴߨߩ0.5 (ߚ
ଷߥ

߱
   (1) 

where ߩ is the air density, R is the radius of the rotor,	and ܥ is 
the power coefficient that depends on the blade pitch angle (ߚ) 
and the tip-speed-ratio (ߣ) (TSR)  defined as: 
ߣ = ܴ߱ ⁄ߥ    (2) 
The drive train is responsible for gearing up the rotor speed to 
a higher generator rotational speed. The drive train model 
includes low and high speed shafts linked together by a 
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gearbox modelled as a gear ratio. The state space model of the 
wind turbine drive train has the form: 


߱̇
߱̇
∆ߠ̇
 = 

ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൩ 
߱
߱
∆ߠ
൩ + 

ܾଵଵ 0
0 ܾଶଶ
0 0

൩  ܶ

ܶ
൨   (3) 

where: 

ܽଵଵ = −
ௗ௧ܤ) + (ܤ

ܬ
 ܽଵଶ =

ௗ௧ܤ
݊ܬ

 ܽଵଷ = −
ௗ௧ܭ
ܬ

 

ܽଶଵ =
ௗ௧ܤ
݊ܬ

 ܽଶଶ = −
൫ܤௗ௧ + ݊ܤ൯

݊ଶܬ
 ܽଶଵ =

ௗ௧ܭ
݊ܬ

 

ܽଷଵ = 1 ܽଷଶ = −
1
݊

 ܽଷଷ = 0 

ܾଵଵ =
1
ܬ

 ܾଶଶ = −
1
ܬ

  

where ܬ is the rotor inertia, ܤ is the rotor external damping, 
  is the generator inertia, ߱ and ܶ are the generator speedܬ
and torque, ܤ is the generator external damping, ݊ is the 
gearbox ratio, ܭௗ௧ is the torsion stiffness, ܤௗ௧ is the torsion 
damping coefficient, and ߠ∆ is the torsion angle. 
It should be noted that the blade pitch subsystem model is not 
considered here as the pitch angle is held at the optimal pitch 
angle	ߚ = 0 value during low wind speed range to achieve 
maximum power extraction. The converter and generator 
subsystem is not considered here as the proposed controller 
presented here is designed as an outer controller to provide the 
inner generator controller with the required reference torque 
command. This approach to controller design separation is 
acceptable since the converter-generator subsystem is faster 
than the aerodynamic subsystem. 

III. THE PROPOSED STRATEGY 

The nonlinear behaviour of the aerodynamic subsystem and its 
dependence on wind speed, it is decided to use the T-S fuzzy 
model based control strategy to design active sensor FTC. 
This Section focuses on the description of the proposed active 
sensor FTC strategy for wind turbine power maximisation. 
Fig.1 schematically illustrates the proposed strategy. 

 
Figure 1: wind turbine sensor FTC scheme 

The aim is to tolerate the effects of the drive train sensor fault. 
An estimator is used to estimate the fault signal and implicitly 
tolerate its effect on the state estimate signals delivered to the 
controller input. This strategy can be considered as a fault-
hiding approach to FTC where the main objective of fault 
hiding is to maintain the same controller in both faulty and 
fault-free system cases.  
The T-S fuzzy extension to the model given in (3) is: 

� ݔ̇ = (ݐ)ݔ()ܣ + ݑܤ	 + ݒ()ܧ
ݕ = (ݐ)ݔܥ	 + ܦ ௦݂																						

ൠ (4) 

The system matrices	()ܣ ∈ ℛ∗(= ∑ ℎ	()ܣ
ୀଵ ܤ	,( ∈

ℛ∗, ()ܧ ∈ ℛ∗ೡ(= ∑ ℎ	()ܧ
ୀଵ ܦ	,( ∈ ℛ∗and	ܥ ∈

ℛ∗are known, ݎ is the number of fuzzy rules and the term 
ℎ	() is the weighting function satisfying ∑ ℎ	() = 1

ୀଵ , 
and 1 ≥ ℎ	() ≥ 0, for all i. 
Remark1: The system given in Eq.(4) can be obtained from 
Eq.(3) by linearising the rotor aerodynamic torque equation. 
The central point to note in the T-S model given in Eq.(4) is 
that the system has common ܤ and ܥ matrices which will be 
utilized throughout the derivation of the proposed observer 
based controller. Details of linearization are given in [6, 9]. 
An augmented system consisting of the system (4) and the 
integral of the tracking error ݁௧ = ݕ)∫ −  :is defined as	(ݕܵ

ቊ
ݔ̇̅ = ݔ̅()ܣ̅ ݑതܤ	+ + ݒ()തܧ + ݕܴ
തݕ = ݔ̅	ܥ̅ + ഥܦ ௦݂																																			

� (5) 

()ܣ̅ = 0 ܥܵ−
0 ൨()ܣ , ݔ̅ = ቂ݁௧ݔ ቃ , ܤ

ത = ቂ0ܤቃ 

()തܧ =  0
൨()ܧ , ܴ = ቂ0ܫቃ 

ܥ̅ = ܫ 0
0 ܥ

൨ , ഥܦ = 
0
ܦ
൨ 

 

where	ܵ ∈ ℛ௪∗ is used to define which output variable is 
considered to track the reference signal. 
Hence, the tracking problem is transferred to a fuzzy state 
feedback control, for which the proposed control signal is as: 

ݑ =   (6)ݔ̅()ܭ
where ()ܭ ∈ ℛ∗(ା௪)(= ∑ ℎ	()ܭ

ୀଵ ) is the controller 
gain and ̅ݔ 	 ∈ ℛ(ା௪)is the estimated augmented state vector. 
If it is assumed that the qth derivative of the sensor fault signal 
is bounded, then an augmented state system consisting from 
the original local linear systems state and the qth derivative of 
the	 ௦݂, can be constructed. 
Now let:  
߮ = ௦݂

ି						(݅ = 1,2, … ,  (ݍ
߮̇ଵ = ௦݂

; ߮̇ଶ = ߮ଵ; 	߮̇ଷ = ߮ଶ; … ; ߮̇ = ߮ିଵ 
 

Then the system (2) with augmented fault derivatives will 
become: 

� ݔ̇ = ݔ()ܣ + ݑܤ + ݒ()ܧ + ܴݕ + ܩ ௦݂


ݕ = 																																																																					ݔܥ
ൠ (7) 

where  
ݔ = ்ݔ̅ൣ ߮ଵ் ߮ଶ் ߮ଷ் … . ்߮൧

் ∈ ℛത  

ܣ =

⎣
⎢
⎢
⎢
ܣ̅⎡ 0 … 0 0
0 0 … 0 0
0 ܫ … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … ܫ 0⎦

⎥
⎥
⎥
⎤
∈ ℛത×ത 

ܤ = ்[…0	0	ത்0ܤ] 		 ∈ ℛത× 
	ܩ = 	0		ܫ	0] … 0]் 		 ∈ ℛത× 
ܥ = 	0		0	ܥ̅ൣ ഥ൧ܦ… 					 ∈ ℛ∗ത  
ത݊ = (݊ + (ݓ +  ݍ݃

࢚࣓ =
ࣇ࢚ࣅ
ࡾ

 

 ࢚ࢋ

 ࣓࢘

 ࢍࢀ

 ࢍ࣓

 ࢍࡼ

 ࢍ࢙ࢌ ࢙࢘ࢌ

 ࢙࢘ࢌ
 ࢍ࢙ࢌ
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Hence, the following T-S fuzzy PMI observer is proposed to 
simultaneously estimate the system states and sensor faults: 

ො̇ݔ� = ොݔ()ܣ + ݑܤ + ݒ()ܧ + ܴݕ + ݕ)()ܮ − (ොݕ
ොݕ = 																																																																																								ݔܥ

ൠ 

 (8) 
The state estimation error dynamics are obtained by 
subtracting Eq. (8) from Eq. (7) to yield: 

݁̇௫ = ()ܣ) − )݁௫ܥ()ܮ + ܩ ௦݂
 (9) 

The augmented system combining the augmented state space 
system (5), the controller (6), and the state estimation error (9) 
is given by: 

(ݐ)̇ݔ =ℎ	()൛ܣሚݔ +	 ෩ܰ ሚ݀ൟ


ୀଵ

 (10) 

where: 

ሚܣ = ቈ
()ܣ̅ + ()ܭതܤ [0×	()ܭ]തܤ−

0 ()ܣ − ܥ()ܮ
	 

ݔ = ቈ
ݔ̅

݁௫
	,				 ෩ܰ = ቈ

()തܧ ܴ 0

0 0 ܩ
	, ሚ݀ = ൦

݀

ݕ

௦݂


൪	 

The objective here is to compute the gains 
		such that the effect of the input	()ܭ	݀݊ܽ	()ܮ ሚ݀ in Eq.(10) 
is attenuated below the desired level	ߛ, to ensure robust 
stabilisation performance. 

Theorem1: For t>0 and ℎ	()ℎ	() ≠ 0, The closed-loop 
fuzzy system in (6) is asymptotically stable and the H∞ 
performance is guaranteed with an attenuation level		ߛ, 
provided that the signal ( ሚ݀) is bounded, if there exist 
symmetric positive definite matrices ଵܲ, ଶܲ, and matrices ܪ , ܻ , 
and scalar	ߛ satisfying the following LMI constraints 
(11&12): 
,ߛ		݁ݏ݅݉݅݊݅ܯ   :ݐℎܽݐ	ℎܿݑݏ

ଵܲ > 0, ଶܲ > 0 (11) 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ Ψଵଵ Ψଵଶ ()തܧ ܴ 0 0 0 0 0 ଵܺܥ்

∗ ߤ2− തܺଵ 0 0 0 ܫߤ 0 0 0 0
∗ ∗ ܫߤ2− 0 0 0 ܫߤ 0 0 0
∗ ∗ ∗ ܫߤ2− 0 0 0 ܫߤ 0 0
∗ ∗ ∗ ∗ ܫߤ2− 0 0 0 ܫߤ 0
∗ ∗ ∗ ∗ ∗ Ψହହ 0 0 ଶܲܩ 0
∗ ∗ ∗ ∗ ∗ ∗ ܫߛ− 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ܫߛ− 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ܫߛ− 0

ܥ ଵܺ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ܫߛ− ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

< 0 (12) 

where: 

ܭ = ܻXଵିଵ, ܮ = ଶܲ
ିଵܪ		, ଵܺ = ଵܲ

ିଵ, തܺଵ =  ଵܺ 0
0 ×ܫ

൨ 

Ψଵଵ = ܣ̅ ଵܺ + ܣ̅) ଵܺ)் + തܤ ܻ + തܤ) ܻ)்;  Ψଵଶ = തܤ−] ܻ 0]; 
Ψହହ = ଶܲܣ + ( ଶܲܣ)் − ܥܪ −  	.்(ܥܪ)

Proof:  From Theorem 1, to achieve the performance and 
required closed-loop stability of (10) the following 
inequality must hold [10]: 

(ݔ)̇߭ +
1
ߛ
ݔܥ்ܥ்ݔ − ߛ ሚ்݀ ሚ݀ < 0 (13) 

where ߭̇(ݔ) is the time derivative of the candidate 
Lyapunov function (߭(ݔ) = ்ݔ 	 തܲ	ݔ		, 	݁ݎℎ݁ݓ തܲ > 0) for 
the augmented system (10). Using Eq.(10), inequality (13) 
becomes: 

(ݔ)̇߭ =ℎ	൛ݔ்൫ܣሚ் തܲ 	+ തܲܣሚ൯ݔ ்ݔ	+ തܲ ෩ܰ ሚ݀


ୀଵ
+ ሚ்݀ ෩்ܰ തܲݔൟ 

(14) 

After simple manipulation, inequality (13) implies that the 
inequality (15) must hold: 


ሚ்ܣ തܲ 	+ തܲܣሚ +

1
ߛ
ܫ തܲ ෩ܰ

෩்ܰ തܲ ܫߛ−
 < 0 (15) 

To be consistent with (10) തܲ is structured as follows: 

തܲ = ቈ
ଵܲ 0

0 ଶܲ
 > 0 (16) 

Then after simple manipulation and using the variable 
change (ܪ = ଶܲܮ()) the inequality (15) can be re-
formulated as: 

ߎ =

⎣
⎢
⎢
⎢
ଵଵߗ⎡ − ଵܲ[ܤതܭ		0] ଵܲܧത() ଵܴܲ 0
∗ ଶଶߗ 0 0 ଶܲܩ
∗ ∗ ܫߛ− 0 0
∗ ∗ ∗ ܫߛ− 0
0 ( ଶܲܩ)் 0 0 ⎦ܫߛ−

⎥
⎥
⎥
⎤

< 0 

(17) 
where: 
ଵଵߗ = ܣ̅ ଵܺ + ܣ̅) ଵܺ)் + തܤ ܻ + തܤ) ܻ)் +

ଵ
ఊܥ

 	ܥ்
ଶଶߗ = ଶܲܣ + ( ଶܲܣ)் ܥഥܪ− −   ்(ܥഥܪ)

 

A single step design formulation of the matrix inequality in 
(17) is proposed to avoid the complexity of separate design 
steps characterised by repeated iteration to determine the 
gains required. Hence, ߎ as shown in (17) becomes: 

ߎ = ߎଵଵ ଵଶߎ
∗ ଶଶߎ

൨ (18) 

where 
ଵଵߎ = ଵଶߎ  ;  ଵଵߗ =	 ൣ− ଵܲ[ܤതܭ 		0] ଵܲܧത() ଵܴܲ 0൧ 
ଶଶߎ =	lower right block 
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to do variable change, the following Lemma is required: 
Lemma 1. (Congruence) Consider two matrices ܲ and	ܳ, if 
ܲ is positive definite and if ܳ is a full column rank matrix, 
then the matrix ܳ ∗ ܲ ∗ ்ܳ is positive definite. 

Let ܳ = ቈ ଵܲ
ିଵ 0

0 ܺ
	, ܽ݊݀		ܺ = ൦

തܺଵ 0 0 0
0 ܫ 0 0
0 0 ܫ 0
0 0 0 ܫ

൪ 

Then ܳ ∗ Π୧୨ ∗ ்ܳ < 0	is also true and can be written as: 

ቈ ଵܲ
ିଵߎଵଵ ଵܲ

ିଵ
ଵܲ
ିଵߎଵଶܺ

∗ ଶଶܺߎܺ
 < 0 (19) 

Inequality (19) implies that Πଶଶ < 0 so that the following 
inequality holds true [11, 12]: 

(ܺ + ܺ)ଶଶߎ்(ଶଶିଵߎߤ + (ଶଶିଵߎߤ ≤ 0	 ⇔ ଶଶXߎܺ
≤ ܺߤ2− −   (20)	ଶଶିଵߎଶߤ

where ߤ is a scalar. 
By substituting (20) into (19) and using the Schur 
complement Theorem, then (19) holds if the following 
inequality holds: 


ଵܲ
ିଵߎଵଵ ଵܲ

ିଵ
ଵܲ
ିଵߎଵଶܺ 0

ଵଶߎܺ ଵܲ
ିଵ ܺߤ2− ܫߤ

0 ܫߤ ଶଶߎ
 < 0 (21) 

After substitution for ߎଵଵ, ,ଵଶߎ ,ଵଶߎ  from (18) and by	ଶଶߎ
simple manipulation, the LMI in (12) is obtained. This 
completes the proof. 

IV. SIMULATION RESULTS 
The simulation of the proposed T-S fuzzy observer based 
sensor FTC design is based on the wind turbine benchmark 
system described in [2]. The drive train subsystem is 
modelled by a two-mass system assuming a flexible low 
speed shaft. The model is implemented with band-limited 
measurements noise. The generator sensor faults are 
represented by two scale factor errors. The scale factors of 
1.1 & 0.9 are multiplied by the simulated real generator 
rotational speeds. The expected fault effects would be a 
deviation of the wind turbine from the optimal operation. 
Remark2: Without loss of generality, the output matrix 
parametric fault presented in wind turbine benchmark model 
[2] can be represented as an additive fault in which the fault 
signal depends on the measured state, as illustrated below: 
ݕ = ݔܥ = ቂ1 0

0 0.9ቃ ቂ
ଵݔ
ଶቃݔ = ݔܥ + ቂ01ቃ (−0.1 ∗  (ଶݔ	

(22) 

Hence, parameter changes in the output matrix ܥ	can be 
considered as a special case of additive faults in which the 
fault signal ( ௦݂) is a scaled version of the measured state. 
Remark3: The sensor fault considered has a direct effect on 
the wind energy conversion efficiency since the controller 
starts to drive the wind turbine away from its optimal 
operation. Noticeably, in spite that  this fault involves no 
damage risk, a study presented in [13] shows that a specific 
wind turbine operation in a 100 MW rated wind farm and 
operating with a realistic 35% capacity factor can generate 
about 307 GWh of energy in a given year. If the cost of the 
energy is $0.04 per kWh, each GWh is worth about $40,000, 

meaning that a 1% loss of energy on this wind farm 
corresponds to a loss of $123,000 per year. 
Fig. 2 shows the expected effects of the sensor bias fault on 
the power conversion efficiency. In fact, this sensor fault 
scenario simulates the effect of ܥ uncertainty encountered 
in the standard control law since in both cases the control 
signal drives the turbine away from the optimal trajectory. 

 
Figure 2: Effects of bias sensor fault on [3 ,0 ,2-=ࢼ]  

Fig. 3 shows how the wind turbine operation is affected by 
the two fault scenarios and helps to illustrate the success of 
the proposed strategy to tolerate the effects of the sensor 
faults, maintaining optimal wind turbine operation. 

 

 
Figure 3: Effect of 1.1 (upper) and 0.9 (lower) sensor bias faults 

with(out) fault compensation 

It is clear that the 1.1 bias sensor fault causes a deceleration 
of ߱ 	&	 ߱. Based on the faulty measurement the controller 
forces the turbine to reduce the rotational speed by 
increasing the reference generator torque which in turn 
increases the drive train load. This fault scenario is shown in 
Fig. 5 without sensor fault compensation. 
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Figure 4: 1.1 sensor bias fault decelerate ࣓࢘	&	ࢍ࣓ 

On the other hand Fig. 6, shows the time variations of 
߱ 	&	 ߱ in response to the proposed sensor FTC strategy. 

 

 
Figure 5: Actual and optimal ࣓࢘	&	ࢍ࣓ using the proposed sensor 

FTC strategy  

Conversely, the 0.9 bias sensor fault causes acceleration of 
߱ 	&	 ߱ since, based on faulty measurement; the controller 
releases the aerodynamic subsystem to rotate according to 
the available wind speed. Fig 7 shows the effect of the 0.9 
sensor fault without compensation. 

 
Figure 6: 0.9 sensor bias fault accelerate ࣓࢘	&	ࢍ࣓ 

The fault estimation signals for both sensor fault scenarios 
are shown in Fig.7. 

 

 
Figure 7: Estimation of 1.1 (upper) and 0.9 (lower) sensor bias 

faults 

The use of the PMIO can also help to produce information 
about the severity of each fault. This is achieved through 
taking the ratio between the measured generator speed and 
the estimated signal. Hence, if there are no faults the ratio 
should be 1 otherwise any deviation from unity indicates the 
occurence of the fault and the magnitude of the deviation 
represents the fault severity. Fig. 8 shows the fault 
evaluation signal for both fault scenarios. 
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Figure 8: Deviation of 1.1 (upper) and 0.9 (lower) sensor 

measurement from unity 

Remark4: Note that maintaining state estimation without 
changes during the whole range of operation is due to the 
fact that the PMIO perform implicit fault estimation and 
compensation of sensor fault from the input of PMIO. This 
fact is clearly interpreted from the error signal (ݕ −  (ොݔܥ
which can be rewritten as (̅ݔ̅ܥ + ഥܦ ௦݂ − ݔ̅ܥ̅ − ഥܦ መ݂௦), then as 
long as there are no sensor faults, መ݂௦ = 0. However, once a 
sensor fault occurs the fault estimation መ݂௦ compensates the 
effect of the fault signal ௦݂ and hence the observer always 
receives a fault-free error signal. 

V. CONCLUSION 

OWTs are complex and nonlinear systems that are driven by 
a stochastic and uncontrollable wind force and require a 
high degree of reliability and availability (sustainability). 
OWTs are also characterised by expensive and/or safety 
critical maintenance work. The main challenges for the 
deployment of wind turbine systems are to maximise the 
amount of good quality electrical power extracted from wind 
energy over a significantly wide range of weather conditions 
and minimise both manufacturing and maintenance costs. 
This paper has shown that active FTC can be of potential 
benefit as a very suitable solution for ensuring wind turbine 
reliability and sustainability requirements, particularly for 
offshore wind farms. This is illustrated through the use of 
the T-S extension to the well known PMIO fault estimation 
method in the observer based control strategy. However, 
OWTs are derived by uncontrollable signal in the form of 
effective wind speed which is not precisely measured due to 
the large vertical profile of blade swept area. Therefore, 
robustness of the FTC against this uncertain measurement is 
the direction of future work. Moreover, tolerate the effect of 
simultaneous actuator and sensor faults is the other direction 
of research in this field.  
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