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Abstract— In this paper, we address the issue of the state 

tracking control for model reference adaptive control 

systems. For a given plant with a known structure and 

unknown parameters, this problem can be solved by 

designing an adaptive law for traditional model 

reference adaptive control designs. In this paper, for a 

plant with finite fixed adaptive laws where none of them 

guarantees the states of plant track those of the reference 

model, there are not allowed to design other adaptive 

law. In this case, we formulate a switching mechanism 

between these adaptive laws to track the reference model. 

A sufficient condition is given for the problem to be 

solvable via the convex combination technique, and a 

switching law is designed. The theoretical derivations are 

illustrated by means of an example. 

 
Keywords- MRAC; adaptive control; switching law; state 

tracking; convex combination 

I. INTRODUCTION   

Model reference adaptive control (MRAC) is one of the 
main approaches in adaptive control. For MRAC, an 
adaptive controller, which has adjustable parameters and the 
same structure as the ideal controller, is usually given first. 
Then, an adaptive law is designed to adjust the parameters 
of the controller such that it can approach the ideal one to 
realize the state tracking. Differing from conventional non-
adaptive controllers, the adaptive mechanism can improve 
steady accuracy and transient performance when the 
parameters of the system are unknown[1]. Several adaptive 
law design methods, including Lyapunov theory[2, 3], 
hyperstability theory[4, 5] and dissipative theory[6, 7], 
ensure that the boundedness of all the signals and state error 
asymptotically approaching zero  

In general, the adaptive law need to be redesigned once 
the system changes. However, in practice, owing to the 
restrictions of hardwires and environment, it is difficult to 
redesign or modify the adaptive law when it is in use in the 

system. On the other hand, a single adaptive law, though 
works theoretically, is sometimes too complicated to 
implement in reality. In both cases, it is necessary to use 
multiple pre-given fixed adaptive laws to achieve state 
tracking. 

The switched control strategy is very important. This is 
mainly due to the following reasons. Firstly, in some cases, 
a single controller (continuous or discrete) in a conventional 
control system is usually too complicated for sensors and 
actuators to realize. Secondly, a switched controller may 
stabilize the system when none of the controllers can 
stabilize the system alone [8-10]. At present, as a kind of 
hybrid control, the switched control strategy has been 
applied to automatic vehicles [11, 12], robot manipulators 
[13] and traffic system[14, 15], etc. 

For adaptive control systems, the problem of stability 
with rapid variation of parameters can be solved by a 
switching strategy. At present, switched adaptive control is 
mainly focused on the multiple models adaptive control in 
which the transient performance is enhanced by a switching 
strategy of multiple adaptive controllers with different initial 
values. Though the system is non-switched, the closed-loop 
system of multiple model adaptive control is a switched 
system[16-19] . Another newly-arisen issue in switching 
adaptive control is the adaptive control problem of a 
switched system in which individual adaptive controllers are 
designed for the subsystems[20-23]. In these issues, a single 
adaptive controller is effective if the switching signal is 
fixed. How to design a switching law for given ineffective 
adaptive controllers to stabilize the error system, to the best 
of the authors’ knowledge, has not been addressed in the 
existing literatures, which partly motivates our present work. 

 This paper studies the state asymptotically tracking 
problem of MRAC. For a system with finite fixed adaptive 
laws, none of which can guarantee state tracking, a 
sufficient condition is given to design a switching law 
between these adaptive laws via the convex combination 
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technique. State tracking is achieved for the closed-loop 
system.  

 The result of this paper has two features. First, unlike 
conventional MRAC adaptive law design, we design a 
switching law that orchestrates finite fixed adaptive laws to 
solve the state tracking problem. Additionally, the proposed 
method can deal with the case where the adaptive law must 
be designed with new system, which enlarges the 
applicability of adaptive control theory. 

The rest of this paper is organized as follows. The state 
tracking MRAC problem is formulated in section II. In 
Section III, a switching strategy is proposed for the adaptive 
laws to solve the state tracking problem. Section IV gives a 
simulation to show the effectiveness of the proposed 
approach and Section V concludes the paper.  

II. PROBLEM STATEMENT  

Consider a system   

                 
( ) ( ) ( ) ( ) ( ),x t A t x t B t u t 

                          
 (1) 

where ( ) n nA t R  and ( ) n mB t R  are the system matrix and 

input matrix, respectively, both of which have known 

structure and unknown parameters; ( ) nx t R  is the system 

state; and ( ) mu t R  is the control input.  

The control objective  is that the state ( )x t  of the system 

(1) tracks the state ( ) n

mx t R of a reference model specified 

by the LTI system 

( ) ( ) ( ),m m m mx t A x t B r t                             (2) 

where n n

mA R 
 
is a constant Hurwitz matrix, 

( ) n m

mB t R   is a constant input matrix, ( )mx t  is the system 

state of the reference model, and ( ) mr t R  is the bounded 

reference input. The reference model and the input r are 

chosen so that ( )mx t  represents a desired trajectory that 

( )x t  has to follow. 

In order to achieve state tracking, we introduce a state 
error vector  

                                      
.me x x                                       (3) 

 However, as well-understood, the parameters of the 
system (1) are difficult to be adjusted directly. In order to 
solve the state tracking problem, we introduce an adjustable 

feedback compensation matrix ( ) m nF t R   and an 

adjustable feedforward gain matrix ( ) m mK t R  . Thus we 

apply a control law as follows  

( ) ( ) .u K t r F t x                  (4) 

Combining (4) with (1), we get the closed-loop system   

[ ( ) ( ) ( )] ( ) ( ) .x A t B t F t x B t K t r             (5) 

Furthermore, from (3) and (5), we can get the dynamical 
equation of the state error for the closed-loop system  

         [ ] [ ] .m m me A e A A t B t F t x B B t K t r     
   

(6) 

When the dynamic response of system (6) is identical to 

that of the reference model (2) under the input ( )r t , the 

system (1) is matched with reference model (2), that is,   

   

 

,

,

m

m

A A t B t F

B B t K





 


                             (7) 

where ,F K 
 denote the ideal values of ( ), ( )F t K t

 
when 

the system matches with the reference model, and ( )F t ,
 

( )K t are the estimate of ( )F t , ( )K t , respectively. 

In conventional MRAC system, the adaptive law is 
expressed as [24] 

1 1

1 1

( ) ,

( ) ,

T T

F m

T T

K m

F R B K Pex

K R B K Per

 

 




 (8) 

where ,F KR R and P are the positive definite symmetric 

matrices. 

Then, for the closed-loop system, the dynamical equation 
of the state error is given by 

1 1 ,m m me A e B K Fx B K Kr     (9) 

where F F F  and K K K   are the parameter errors. 

The following problem is considered in this paper.  
Several fixed adaptive laws are offered and none of them 
satisfies the matching condition (7), meanwhile, it is not 
allowed to design any other adaptive law. How to design a 
switching law between these adaptive laws to achieve state 
tracking, that is, the adaptive laws are given by  

 

 

,
1,2,..., ,

,

T

i

T

i

F t ex
i N

K t er

 


 
 (10) 

where m n

i R  
 
and m n

i R   are the adaptive adjustable
 

matrices, but none of them satisfies the matching condition 

(7). Again, the parameter error are F F F  and 

K K K  with F and K  given by the i -th adaptive (10) . 

In order to make the state of the closed-loop system (5) track 

the state of the reference model (2), that is 0e  , t  ,we 

design the switching law for the error system (9) and (10). 

III. MAIN RESULT 

In this section, we will design a switching law for the 
adaptive laws by means of the convex combination 
technology. 
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Theorem 1. If there exist scalars (0,1),( 1, )i i N  
 

satisfying 
1

1
N

i

i




  and some positive definite symmetric 

matrices ,F KR R and P  satisfying  

1 1

1

1 1

1

( ) ,

( ) .

N
T

i i F m

i

N
T

i i K m

i

R B K P

R B K P





 



 



  

  



   

 (11) 

 

                

    Then, there exists a switching law such that the 

adaptive controllers (4) and (10) make the state ( )x t  of 

the closed-loop system (1) asymptotically track the state 

( )mx t  of a reference model (2). 

Proof. Based on the error system (9) and (10), we construct 
the combined error system 

1 1

1

1

,

( ),

( ),

m m m

N
T

i i

i

N
T

i i

i

e A e B K Fx B K Kr

F ex

K er





 





  

 

 





             (12) 

where (12) is the convex combination of the adaptive 
control law (10). 

Consider the following Lyapunov function candidate 

1
[ ( )].

2

T T T

F KV e Pe tr F R F K R K            (13) 

The time derivative of the Lyapunov function (13) along 
the trajectory of the combined error system  (12) is 



1 1

1 1

1 1

1 1

1

1

2

[ ( ) ( )

( ) ( )]

1
[ ( ) ]

2

1
[ ( ) ( )

2

(

T T

N N
T T T T

i i F F i i

i i

N N
T T T T

i i K K i i

i i

T T T T

m m m m

N N
T T T T

i i F F i i

i i

N

i

i

V e Pe e Pe

tr ex R F F R ex

er R K K R er

e PA A P e e PB K Fx e PB K Kr

tr ex R F F R ex

 

 

 



 

 

 

 



 

   


    



   

   



 

 

 

1

) ( )].
N

T T T T

i K K i i

i

er R K K R er


   

         

 (14) 

With the help of  

1 1

1 1

( ),

( ),

T T

m m

T T

m m

e PB K Fx tr xe PB K F

e PB K Kr tr re PB K K

 

 




                   

(15) 

(14) can be rewritten as 

1

1

1

1

1

1
[ ( ) ]

2

[ ( ) ]

[ ( ) ]

1
[ ( ) ]

2

T T

m m

N
T T T

i i F m

i

N
T T T

i i K m

i

N
T T

i m m

i

V e PA A P e

tr ex R F xe PB K F

tr er R K re PB K K

e PA A P e

















 

  

  

 







 

1

1

1

1

[ ( ) ]

[ ( ) ].

N
T T T

i i F m

i

N
T T T

i i K m

i

tr ex R F xe PB K F

tr er R K re PB K K













  

  




           (16) 

According to (11), for the combined error system  (12), 

we get 0V  ,that is, 

1

1

1

1
{ [ ( ) ]

2

( )

[( ) ]}

0.

N
T T

i m m

i

T T T

i F m

T T T

i K m

V e PA A P e

tr ex R F xe PB K F

tr er R K re PB K K








 

    

  





 (17) 

Because 0i   and 
1

1,
N

i

i




  there exists l N  at least 

for (17) such that 

1

1

1
[ ( ) ]

2

( )

[( ) ]

0.

T T

m m

T T T

l F m

T T T

l K m

e PA A P e

tr ex R F xe PB K F

tr er R K re PB K K







    

  



 (18) 

Now, we turn to the error system (9) and (10). 

Consider the following Lyapunov function candidate   

1
[ ( )].

2

T T T

F KV e Pe tr F R F K R K    (19) 

When the j -th adaptive control law is active, the time 

derivative of the Lyapunov function (19) along the 

trajectory of the error system (9) and (10) is 

1

1

1
[ ( ) ]

2

( )

[( ) ].

T T

m m

T T T

j F m

T T T

j K m

V e PA A P e

tr ex R F xe PB K F

tr er R K re PB K K





 

    

  

 (20) 

   Therefore, for the error system (9) and (10), the switching 

law can be designed as  
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1

1

1
( , ) arg min{ [ ( ) ]

2

[( ) ]

[( ) ]}.

T T

m m
i

T T T

i F m

T T T

i K m

e t e PA A P e

tr ex R F xe PB K F

tr er R K re PB K K







 

  

  

 (21) 

Owing to (18) and (21), adaptive laws (10) is orchestrated 
so that V  decreases along the solutions of the error system 

(9) and (10). Then, the state ( )x t  of the system (1) 

asymptotically track the state  ( )mx t  of the reference model 

(2) with the given controller (4) and (10).  

Remark 1. For the given adaptive law (10), if there exists 

h N , such that the h -th adaptive control law satisfying 

(8), the state tracking problem can be solved by the h -th 

adaptive control law. In this case, we choose 1,h   

0,i  ,i h  therefore, Theorem 1 contains the result of 

[24] as a special case. 

Remark 2. In the case of 1N  , the issue is degenerated into 

the design of a single controller. 

Remark 3. The switching law is designed when F  and K  

are available. If F and K they are unavailable, an estimator 
can be used instead[25] . 

IV. EXAMPLE 

In order to show the effectiveness of the proposed 
switching adaptive controllers, we consider an example. 

Consider the following system 

0 1 0
.

6 7 8
x x u

   
    

      

The reference model is given by 

0 1 0
.

10 5 2
m mx x r

   
    

      

We compare the simulation results of the system under 
two given adaptive laws none of which satisfies the state 
tracking respectively to those under the designed switching 
law. 

For controller  (4), there are two adaptive laws as follows 

 

 

,
1,2,

,

T

i

T

i

F t ex
i

K t er

 


 
                    (22) 

where             

1 1[49.4 49.4], [4 4],     

2 2[0.15 0.15], [1.5 1.5].     

Simulations are performed for these adaptive laws, 
respectively. 

 

 

For   ,mB B t K we have  

  1
0

.
8

mB t B K   
   

 
 

Choose
3 1

2, .
1 1

N P
 

   
 

 

The parameter errors and the state error are shown in 
Figure 1 and Figure 2. 

Obviously, Figure 1 and Figure 2 show that none of these 
adaptive laws makes the parameter errors and the state error 
convergent. 
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Figure 1. The simulation result ( 1i  ).  

(a): The parameter errors. (b): The state error 
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Figure 2. The simulation result ( 2i  ).  

(a): The parameter errors. (b): The state error 

In order to achieve the objective, we will design a 
switching law by Theorem 1 

With the help of (4) and (22), we obtain switching 
adaptive laws 

 

 

,

,

T

T

F t ex

K t er





 

 
1,2,   

where the switching law  is chosen by (21) as Figure 3. 

Here, we choose 
1 0.2,  2 0.8,  1.25,FR  0.25,KR 

  such that (11) hold. From Figure 4, it is easy to see that the 

parameter errors and the state error are convergent under the 

switching law. Then, state tracking is achieved.  
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Figure 3.  The switching signal 
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Figure 4.  The simulation results under switching law.  
(a): The parameter errors. (b): The state error 
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V. CONCLUSIONS 

We have studied the state asymptotically tracking control 

problem for model reference adaptive control systems. For a 

system with several fixed adaptive laws, a sufficient 

condition has been developed to solve the state tracking 

problem via the convex combination technique by designing 

the controller switching strategy. A simulation example has 

been given to show the effectiveness of the proposed 

method.  
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