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Abstract—This paper proposes a systematic adaptive sliding 

mode controller design for the decentralized system with 

nonlinear interactions and unmatched uncertainties. An adaptive 

tuning approach is developed to deal with unknown but bounded 

uncertainties/interactions. The sliding surface is designed which 

obviates the use of regular transformation, by solving a simple 

LMI-based optimization problem. The feasibility of the LMIs is 

also discussed in this paper. Finally, a numerical example is used 
to illustrate this method. 
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I.  INTRODUCTION 

Decentralized control has gained considerable attention in 
the literature for two decades. [1]-[9]. The main idea of 
decentralized control is to use only local information at the 
level of each subsystem in the controller for large-scale 
interconnected systems. This feature can overcome the 
limitations of the traditional centralized control or partial 
decentralized control [10] that requires large communication 
bandwidth to exchange information between subsystems and 
controller. The decentralized control has much simpler control 
structure and more practical approach than centralized 
controller.  

On the other hand, sliding mode control (SMC), as a 
powerful robust control method, has been widely 
researched,[11], [12]. When using sliding mode, there are two 
steps i). sliding surface design and ii). control law design. The 
system states will be driven to the sliding surface and be 
maintained on it. Once the system is running in the sliding 
surface, the system is insensitive to the matched perturbations 
(perturbations coming from input channels). Edwards and 
Spurgeon [11] develop their approach to the classical sliding 
mode control design algorithm by introducing a so called 
“regular form” to set up a decomposition comprising 
matched/unmatched state space components. This approach 
can be considered too complex for a single SMC system and 
this motivates the use of an alternative approach obviating a 
need for transformations, whilst still satisfying matching 
condition properties. 

Choi [12],[13] proposed another SMC approach in which 
the sliding surface can be designed by solving a simple LMI 
problem. Although no transformations are used Choi’s work is 

focused on SMC of single rather than decentralized control 
systems. The proposal here is to further develop Choi’s 
approach with application to uncertain decentralized systems. 

When applying sliding mode in the decentralized system, 
researchers consider the interactions as perturbations and try to 
eliminate or at least attenuate these perturbations. [9], [14]-
[15]. However, the sliding mode can only deal with matched 
perturbations and the upper bound of perturbations should also 
be known. In this case, researchers start trying to combine the 
sliding mode with other robust control methods to overcome 
the unmatched problem limitation [9]. Šiljak [3] proposes a 
feedback control using an LMI approach that can deal with the 
interactions no matter whether or not they are matched. Also 
the assumption of unknown interactions in [3] is more general 
which includes both linear and non-linear types of interactions. 
Kalsi [5], [6] uses the control method of [3] to develop a 
sliding approach to observer-based control. Although a lot of 
research has been done in this area [9], [14]-[16], the main 
contribution of this paper is to use the LMI-based work of Choi 
[12], [13] to construct a simpler and more general approach to 
decentralized control. This will also provide an efficient 
strategy for accounting for modeling uncertainty and 
subsystem interactions. Also the known upper bound limitation 
is removed by an adaptive mechanism in our work. Although 
this paper focuses on the state feedback strategy, output 
feedback control can be easily formulated as an extension 
based on the proposed method. Moreover, other robust 
improvements can be extended based on this approach. 

This paper is organized as follows. The basic assumptions 
are given and the design objective is proposed in Section II. 
Then the main results are given in Section III, where both the 
sliding surface and control law designs are represented. Also in 
Section III, the feasibility of LMIs is discussed and more 
constraints are proposed to improve the methods. A numerical 
example is given in Section V which demonstrates the efficacy 
of the techniques developed in this paper. Finally, the 
concluding remarks and further work are given in Section V. 

II. SYSTEM DESCRIPTION AND PROBLEM FORMATION 

Consider a class of perturbed large-scale systems which are 
comprise N-linked subsystems with uncertainties in the 
interactions. The dynamic equation of each subsystem is 
represented as: 
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                                                

                                                                

where           is the state variable of the i-th subsystem, 
             is the control input vector of the i-th 

subsystem, the matrix         is the system characteristic 

matrix, and the matrix         is the input matrix with full 
rank    . And         is any uncertainty or disturbance in 

the input channel. The term         reflects the interaction of 
the i-th subsystem with other subsystems and the uncertainty 
dynamics associated with the i-th subsystem itself.  

We also assume the followings to be valid: 

1) All the pair                   are controllable. 

2) All the state variables              are locally 

available for measurement for all time.  

3) The subsystem interactions are globally bounded, that 

is,                for some unknown constant     . 

The interactions satisfy the same quadratic constraint as, for 

example [3],[5]-[7] , that is: 

   
                

    
     

4) The external disturbance       is bounded by a known 

constant   , i.e.              
The overall interconnected system can be rewritten in a 

compact form as: 

                                   (3

where                ,                ,      

   
         

       and           
           

       
 
, and 

with the third assumption, the interconnections        are 
bounded as follows: 

                   
   

   

 

   

         

where    is a bounding constant.  

Because all of the subsystems are stabilizable, it is easy to 
verify that the overall system is controllable.  

The objective is to design a totally decentralized sliding 
mode controller that robustly regulates the state of the overall 
system without any information exchange between the 
subsystems. And with this type of controllers, the overall 
system is robust to all the uncertainties and matched 
perturbations.  

III. MAIN RESULT 

It is well known that in SMC design, there are two steps: a). 
Sliding surface design and b) control law design. In this 
Section, the sliding surface is designed by an LMI and an 
adaptive control law is realised.  

A. Sliding surface design 

Define   as any basis of the null space of   , i.e.   is an 
orthogonal complement of  .  

Consider the following LMIs: 

Minimize 
i , subject to    , 
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(4) 

Assume that the sliding surface   is given by  

                  

where   is a solution to the LMIs (4). This sliding surface is 
proposed in [12] 

Remark 1: we should note that                 
because that the LMIs (4) is based on the overall system (3). 
Also the sliding surface           

            
        

 . 
The          represents the sliding surface for the i-th 
subsystem.  

Theorem 1: Suppose the LMIs (4) have a solution   and 
the sliding surface is given by Eq. (5). Then once the sliding 
surface (5) is reached and maintained thereafter, i.e.        
  and           and hence the overall system is stable.  

Proof: Define a transformation matrix and its inverse 
matrix as described in [12] as 

     
 

 
                          

And the associated vector z is given as 

       
     

     
   

     

    
        (7

where         and      . And with the transformation 
(6), we can obtain a new state equation as: 

                                         (8

where, 

       
                       

                    
  

     
  

  

And note that once the system is on the sliding surface and 
maintained there,       ,        . In this case, the system 
is insensitive to all the matched uncertainties or disturbances 
      . The state equation (8) then becomes: 
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                                    (9

Now define a Lyapunov function for the system (9): 

         
     

where P is a symmetric and positive definite (s.p.d) matrix.  

The time derivative of       along the trajectories of Eq. (9) is 
given by: 

         
                                      

   
                                                                 (11) 

To obtain a quadratic form of (11), we use the following result 
in [16]: 

                

for any matrices (or vectors) X and Y with appropriate 

dimension. 

It follows that: 

   
               

             

Also, from the Assumption 3), the interactions satisfy the 
quadratic form: 

                                     

Because the system is in the sliding surface,       . We 
can simplify the above inequality of interactions (13) as 

                
                            

Substitute the inequalities (12) and (14) into (11), we have a 
quadratic form of the derivative of the Lyapunov function as 

         
                                   

                                  

The stabilization of system (9) requires that: 

          

for all     .  

The development of (16) leads to  

                                       
                           

In this case, the problem is to find an s.p.d matrix P such that 
the inequality (17) is satisfied. By pre-multiplying and post-
multiplying the inverse matrix of P, we can simplify the 
inequality (17).  

Define      , we have: 

                                    
                             

We can easily find a matrix        which satisfies the s.p.d 
condition so that the above inequality becomes: 

                       

With Assumption 3), we rewrite the inequality (18) as: 

                
    

     

 

   

     

By defining    
 

  
  and using the Schur complement, the 

above inequality can be rewritten as the form of LMIs (4).      □ 

After solving the LMIs (4), we have the s.p.d matrix X 
which has the structure of                . In this case, 
for each subsystem, the local sliding surface could be given by  

                    
   

        

B. Adaptive Control law design 

It has proved above that once the system reaches the 

sliding surface and is maintained on it thereafter, the control 

objective is achieved. In the following a sliding control law is 

designed to drive the system to the sliding surface. 

Introducing the control strategy for each subsystem: 

           
       

            
  

    
            

       
                                     

 

where,  

                          
 
          

where,       is a positive constant.     is the estimation of the 
upper bound of the interaction of i-th subsystem. 

Theorem 2: For each subsystem of the form (1) and the 

sliding surface (19), by applying the control law (20) and (21) 

to each subsystem, the overall system trajectory converges to 

the sliding surface            in finite time and is 

maintained on the surface, i.e.            . Meanwhile, the 

system is insensitive to all the matched disturbances.  

Proof: To prove the reachability, we define the Lyapunov 
function with respect to the sliding surface as: 

    
 

 
   

       
            

       
 
  

    

The matrix       
   satisfies the s.p.d condition since that 

  
  is a s.p.d matrix and       

      
   

     
    .  

Moreover, we define the estimation error                . 

Since    is a constant,                     . 

Differentiating (19) with respect to time yields: 
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                                                  

Then taking the derivative of the Lyapunov function (22) we 

have: 

       
    

  
    

             
           

 

   

        
         

 
   

     
    

  
    

          
           

 

   

        
            

(23) 

We can easily verify that   
   

  

    
       , and on 

substituting (21) into (23), we have: 

                              
      

 

   
        

                    

                    
                 

 

   
        

      
        

                    

                

 

   

   



which implies that the overall system will reach the sliding 

surface in finite time [11] and be maintained on it.  

Remark 2: Following [15], with the adaptive mechanism, 

we do not need to know the upper bound of the interaction. It 

is worthwhile noting that for the purpose of reducing the 

“chattering” around the switching surface, a commonly used 

approach is to substitute 
  

       
 in the SMC for 

  

    
, where    

is a small positive constant (the so called boundary layer) [11]. 

However, if we use the boundary layer method here,        
may keep growing in magnitude during sliding and the 

chattering will not be reduced since          . In this case, we 
should modify our controller (20) to: 

          
       

            
  

       
             

       
                                           

 

C. Feasibility of LMIs and improvement 

A lot of literature only describe the LMIs and do not prove the 

feasibility of the LMIs. It is always reasonable to prove the 

feasibility when raising an LMI problem. To prove the LMIs 

(4), we should introduce a preliminary Lemma:  

Lemma 1 [13]: Given a symmetric matrix        and 

two matrices        and        where      . 

Consider the problem of finding some matrix K such that: 

               

Denote by    and    the orthogonal complements of   and  . 
Then the above inequality is solvable for K if and only if 

                  
And the feasibility of the LMIs (4) is given by the following 

Lemma 2. 

Lemma 2: The optimization problem given by LMIs (4) is 

feasible if the pairs         are controllable for all the 

subsystems. 

Proof: Because the LMIs (4) are based on the overall 

system equation (3), we first need to prove the controllability 
of the overall system (3) It then follows that the overall system 

is controllable as all of the overall system eigenvalues are 

changeable by the local inputs, i.e. there are no fixed modes in 

this decentralized system. [1] Assume there is no actuator 

disturbance or no interactions in the overall state equation (3). 

In this case, there exists a control law      if and only if 

there exist an s.p.d matrix X such that: 

                   

As a consequence of the system controllability, we can always 

find a gain matrix K and an s.p.d matrix X satisfying (25), 

Moreover, we can restrict (26) to: 

                     

There also still exists a K and an s.p.d matrix X satisfying (27). 

Then by using Lemma 1, the following inequality is feasible: 

                 

Using the Schur complement in the LMIs (4): 

                   
 

  
   

     
 
       

Therefore, from (28) and (29), the solution of the LMIs (4) are 

guaranteed by the existence of a set of large enough             □ 

The LMI optimization problem given by (4) does not pose any 

restriction on the size of the matrix X. Consequently, the 

results of these two optimization problems may yield 

inappropriate results. For example, very small    and X result 

in very large S values. In this case, we can restrict X by posing 

a further constraint on    as: 

    
 

   
        
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    are given constants for          . Or equivalently: 

     

where,                      ,              are 

given constants. The upper bound of the parameters could also 

be defined in the same way. 

Remark 3: We should note that if the constants      
      are known, the optimization problem (4) becomes 

feasibility problem. By substituting       
   into (4), the 

solution of the LMIs is equivalent to finding a feasible 

solution X. However, the use of an optimization algorithm 
could still be appropriate to find a solution capable of dealing 

with potentially stronger interactions.  

For the purpose of improving the performance, here we 

introduce a modification to the LMIs in (4). By adding a  -

stability constraint, the system satisfies        
           

for all solution trajectories x. Therefore, we can ensure a 

minimum positive decay rate   after arriving sliding surface. 

Moreover, the larger the rate is, the earlier the sliding surface 

could be reached. Hence, the Eq. (4) could be rewritten as: 

    Minimize 
i , subject to    , 
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(32) 

where,        . Other improvement of robust performance 

for the system (e.g.      , etc.) could also be constructed 

based on this LMI approach. 

IV. NUMERICAL EXAMPLE 

In this Section, we illustrate the performance of the 

proposed decentralized controller with an example similar to 

the one used in [7]. This non-linear interconnected system 

model consists of three subsystems. The first subsystem is a 

second-order system and the others are third-order systems. 
Disturbance signals are also added to each subsystem. 

The dynamic subsystems are given by: 
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Choosing             and solving the optimization 

problem (4) and (29) results in 
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with this solution, we have the sliding surface matrices for 

each of the subsystems: 

                
                        
                        

Using the control law (25) and choosing         and      

for      . The initial conditions                , 

               .                 
 

 
Figure 1.  State responses for subsystem 1 
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Figure 2.  State responses for subsystem 2 

 

Figure 3.  State responses for subsystem 3 

 
Figure 4.  Sliding surface function for both subsystems 

Figures 1-2 show the state responses for the system. From 

Figure 4, the sliding surface is reached in finite time. 

Moreover, combine with Figure 3, we note that after reaching 

the sliding surface, the system is stable and insensitive to the 

disturbances. However, in the reaching phase, the system is 

sensitive to the disturbances. This is also one of the main 

disadvantages of sliding mode theory. 

V. CONCLUSION 

This paper proposes a simple and easy way to design a 

decentralized sliding mode system. The difference between 

the proposed approach and other decentralized sliding mode 

methods is that, this method requires the solution of only one 

LMI optimization problem in the sliding surface design, 

without a requirement for any unmatched and matched 

separation analysis. The mismatched uncertainties and 

interactions are handled well by the LMI approach. 

Meanwhile, all of the matched uncertainties and external 

disturbances are rejected by the SMC. The upper bound 

limitation of the uncertainties/interaction in the classical 
sliding mode design is removed by the adaptive mechanism. 

Other robust control methods could be easily extended based 

on this LMI approach. 
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