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Abstract - This paper presents a method for actively controlling 
torsional vibrations in rotating machines caused by angle-
dependent parameters. The work is motivated by rotating 
machines with crank or cam gear mechanisms that cause 
fluctuations in the angular speed when the machine is driven by 
a constant load torque or when the speed is controlled with 
conventional controllers. A very general model for such a system 
is introduced and used to derive a control law by feedback 
linearization. With this control law, the speed fluctuations are 
completely eliminated and desired linear dynamics can be 
prescribed for the system. The method is tested in a simulation 
study with a model of a real industrial machine. Although the 
proposed method works well, the study is preliminary in the 
sense that the method has not been applied experimentally and 
its robustness has not been assessed. 

Active vibration control; Feedback linearization; Nonlinear 
control; Speed control; Torsional vibrations 

I. MOTIVATION 

There are different causes for torsional vibrations in drives. 
These vibrations can be the result of eccentric masses [1] or 
be excited by the propulsion itself, e.g. a combustion engine 
[2, 3, 4] or an electric drive [5, 6]. Another commonly 
occurring cause is the transformation of the rotational motion 
of the propulsion into a translational motion. This typically 
happens in a cam gear or a crank assembly and causes a 
periodically varying load torque. 

As an example, a simple crank assembly, which only 
includes a single oscillating mass, is shown in Fig. 1. The 
torque equilibrium for this example leads to the equation of 
motion given as 
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where T is the driving torque and all the other variables are as 
shown in Fig. 1. The displacement s  depends on the rotation 
angles α and φ and is given as 
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The introduction of  2
d / dm s   as an angle depended 

parameter ( )J   (which could be seen as an apparent, angle-
dependent, moment of inertia) leads to 
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Even if a constant driving torque is applied to the system, 
the internal dynamics lead to nonlinear vibrations. This is due 
to the dependency of the parameters in the model describing 
the system on the rotational angle. 

 

 
Fig. 1  Schematic diagram of the crankshaft 

 
Such torsional vibrations are a well-known problem in 

industrial drives like rolling mill systems [7, 8], paper 
machines [9, 10] or turbo generators [11] and also in vehicles 
[2]. They lead to product quality problems like damage of 
machinery and a shorter lifecycle of the plant. 

Possible approaches for the attenuation of these vibrations 
are to change the inertia or to use damping elements, but this 
often has a negative effect on the dynamics of the machines. 
Because of these disadvantages several active control 
approaches to attenuate torsional vibrations have been 
proposed. In [12], a damping filter is implemented and in [13] 
a digital PI/PID controller is used to achieve active damping 
of the vibrations. In [14], an adaptive sliding neuro-fuzzy 
approach is suggested and in [15] sliding mode and force 
dynamics are considered. Active damping based on learning 
control is presented in [16]. In [4] the main target is to reduce 
the torsional vibrations of a crankshaft by adjusting the fuel 
injection duration by minimizing a cost function. 

Another way to control the dynamic system and attenuate 
the nonlinear behavior and prescribe linear system dynamics 
is to use the method of feedback linearization. In [17] and 
[18], feedback linearization control is used for improved fuel 
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consumption in combustion engines by using feedback 
linearization, but the afore-mentioned dynamical connections 
are only regarded marginally. In other fields, vibration control 
is the main aspect as in [19] where feedback linearization is 
used for active vehicle suspension control to reduce the 
vibrations. To the best of the authors' knowledge, however, 
no applications of feedback linearization to the problem 
considered in this paper have been reported in the literature to 
date. 

As mentioned above, the torsional vibrations can result 
from angle-dependent parameters in the system dynamics. 
The angle itself is also a state of the system. In order to make 
the method presented in this paper applicable to a wide range 
of systems, a very universal system description is introduced 
for systems with state-dependent parameters. The resulting 
description is very compact. With this description, it is very 
easy to derive a control law (which is given here only for 
systems with a relative degree of two, but can easily be 
extended). 

The remainder of this paper is organized as follows. The 
system description is introduced in Sec. II. The control law is 
derived in Sec. III. The control approach has been tested in 
simulation studies for a model that corresponds to an 
industrial machine that is operated by an industrial partner 
with whom this study has been conducted. The obtained 
results are shown in Sec. IV. Some conclusions are given in 
Sec. V. 

II. SYSTEM DESCRIPTION 

Real industrial drives are more complex systems than the 
simple example discussed in the introduction. Often, they are 
composed of more than one crank assembly or cam gear or 
even combine both types. Furthermore, elasticity, damping 
and gear ratios have to be taken into account. 

Nevertheless, the final system description of such systems 
will still contain constant and angle-dependent parameters. 
Due to the rotational mode of operation, the angle-dependent 
parameters are periodic in the rotational angle (see for 
example, the parameter J  for the example considered in 
Sec. IV shown in Fig. 2).  

 
Fig. 2  Parameter Jα over the rotation angle φ2 

These angle-dependent parameters can then be expanded 
into a Fourier series. Here, the exponential Fourier series is 
used for an easier handling of the derivatives. Expanding 
system parameters into Fourier systems is quite common for 
describing rotational systems (see, for example, [2], [4] and 
[20]). 

The system dynamics are described by the nonlinear state-
space model 

 ( ) u x A x x B , (4) 

where x is the state vector, u the input of the system and y the 
output. The “system matrix” ( )A x  is assumed to depend on 
linear combinations of the state vectors according to 

    T T T T
0 1 1( ) ,..., ,...,N N  A x A A v x v x A v x v x . (5) 

The matrix 0A  is constant (and therefore, corresponds to the 
“linear part” of the system dynamics), the matrix A  depends 
periodically on linear combinations of the state vector and the 
matrix A  depends periodically and linearly on the linear 
combinations of the state vector. 

The matrices ( )A x  and ( )A x  in the model are expressed 
as 
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and 
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Here,   stands for the Kronecker product [21], L is the 
order of the Fourier series and N the number of the linear 
combinations of the state vector that the matrices depend 
upon. The linear combinations are expressed as T

pv x  with 
1, ,p N  . 

The matrices ,l M  and , ,h l M  result from expanding the 
periodic system parameters into Fourier series. Since the 
exponential Fourier series representation is used, it holds that 

 , , , , , ,Re Re , Re Rel l h l h l     M M M M   (8) 

 , , , , , ,Im Im , Im Iml l h l h l       M M M M  (9) 

and 
 ,0 , ,0Im , Im .l h l 0 0M M  (10) 
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III.  DERIVATION OF THE CONTROL LAW 

Consider a completely controllable SISO system of the 
form already introduced above, namely 

 ( ) u x A x x B  (11) 

with the output equation 
 y Cx . (12) 

The first step in the derivation of the control law in 
feedback linearization consists of differentiating the output y 
until the input signal u shows up in the derivative. The 
amount of times the output has to be differentiated is known 
as the relative degree. In the following, it is assumed that the 
relative degree is two. 
The first derivative of y with respect to the time t is 

 ( )y u  C x CA x x CB . (13) 

Since the relative degree is two, it holds that 
 0CB . (14) 

The second derivative is then given by 
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To obtain the second derivative of y, the derivative of A with 
respect to the time t is needed. Using standard rules from 
matrix differential calculus [21], the time derivative of A 
follows as  
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From the system description (5), the derivative of A with 
respect to the transposed state vector x follows as 
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Since 0A  is constant, it follows that 
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Using the matrix chain rule and the matrix product rule 
[21], the second and the third term on the right hand side of 
(13) become 

 

T

T T T
1

T
T

1

d( ) ( )

d

( )
( )

N
p

p p

N

p n
p p





 


 


 







v xA x A x

x v x x

A x
v

v x
I

 (19) 

 

T

T T T
1

T
T

1

d( ) ( )

d

( )
( ) .

N
p

p p

N

p n
p p





 


 


 







v xA x A x

x v x x

A x
v

v x

 


I

 (20) 

To calculate these derivatives, the derivatives of the 
matrices ( )A x  and ( )A x  with respect to T

pv x  are required. 
These derivatives can be easily calculated from (6) and (7) 
and are given as 
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and 
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From (21) and (22) the advantage of the description in the 
introduced matrix notation becomes obvious because the 
matrices remain unchanged since their elements are constant. 
Only the vectors including the exponential functions of the 
Fourier series and the second factor of the Kronecker product 
change due to the differentiation. 

With (16) to (22) all necessary expressions are given to 
compute the control law 
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which can be calculated from (15). Applying the control law 
(23) leads to the resulting closed loop dynamics described by 

 1 0y y y w        (24) 

and 
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As mentioned above, the derivation shown here is for 
systems with a relative degree of two. An extension to 
systems with a higher relative degree is fairly straightforward. 

 

IV.  SIMULATION STUDIES 

The control design described in the previous section is 
applied to an industrial machine in a simulation study. A 
schematic diagram of the model is shown in Fig. 3. 

Fig. 3  Schematic diagram of the industrial machine (belt not shown) 

 
The dynamics of this model are described by 

 1 1 1 ,J T T    (25) 

     2
2 2 2 2 2J J T        (26) 

with 

    1 1 1 2 1 1 2 ,T k i d i         (27) 

and 

 2 1T iT . (28) 

In this model, T is the driving torque generated from an 
electrical machine (not included in the model) and T1 and T2 
are inner torques that are transmitted through a belt drive (not 
shown in the diagram) with gear ratio i; φ1 and φ2 are the 
rotation angles of the drive side and the load side; J1 is the 
moment of inertia at the driving end, k1 is the stiffness and d1 
the damping of the system; Jα and Jω are angle-dependent 
parameters that can be calculated from the construction data 
of the machine and were provided by an industrial partner 
that manufactures this type of machine. The variations of the 
parameters Jα over the angle φ2 and Jω over the angle φ2 are 
shown in Fig. 2 and Fig. 4, respectively. 

 
Fig. 4  Parameter Jω over the rotation angle φ2 

If the system is driven by a constant input torque, the 
resulting angular speed fluctuates around a mean value. This 
undesirable behavior is shown in Fig. 5. The potential of 
standard cascaded PID/PI speed control for reducing these 
oscillations is limited. The tuning of PID/PI control for such 
systems is difficult since certain settings of the controller 
parameters can even amplify the oscillations in certain 
operating conditions. 

The system equations can be written as the state space 
model given by (11) and (12) with 

  T
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10 1/ 0 0JB , (31) 

and 
  0 0 0 1 .C  (32) 

 
Fig. 5  Angular speed 

2  if the system is driven by constant torque 

 
From (30) it can be seen that the behavior of the considered 

system depends on the rotation angle 2  which corresponds 
to the state x3 and its derivative 2  which corresponds to the 
state x4. 

For this system the state space representation of the form 
introduced in Sec. II becomes 

  T T T T
0 1 2 1 2( , ) ( , ) u   x A A v x v x A v x v x x B  (33) 

 y C x , (34) 

with the vectors  

  T1 0 0 1 0v  (35) 

and 

  T2 0 0 0 1v  (36) 
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the relevant states x3 and x4 can be selected. Thus, 2N  . 
From the system matrix in (30) the linear part of the system 

matrix can be read off directly and gives 

 1 1 1 1 1 1 1 1
0

0 1 0 0

/ / / /

0 0 0 1
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k J d J ik J id J
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As introduced in (5), the nonlinear parts of (30) are divided 
into a part A  with a harmonic dependence on the states and 
A  with a harmonic and a linear dependence on the states. 

These nonlinear parts can be represented by a Fourier series. 
The matrix coefficients ,l M  for the matrix A  in (6) are 

obtained as 
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2, M 0 , (39) 

where the scalars m   are the coefficients of the Fourier 
expansion of 1J

 . Similarly, the matrix coefficients for A  in 
(7) are obtained as 
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1,1, 1, 2, 2, 2,  

  M M M   0 , (41) 

where the scalars m   are the coefficients of the Fourier 
expansion of /J J  . Fourier series of eight order are used, 
that is, 8L  .  

The simulated control result for the model of the industrial 
machine is shown in Fig. 6. The effects of the nonlinearities 
are attenuated by the calculated control law with feedback 
linearization. Also the desired linear behavior as a second 
order system is achieved. 

 
Fig. 6  Step response of the controlled nonlinear system 

 

In Fig. 7 it can be seen that the angular speed at the drive 
side is still fluctuating while the angular speed at the load side 
is constant. 

Fig. 7  Fluctuating angular speed 1  at the drive side (related to the load side 

by including the gear ratio i) and constant angular speed 2  at the load side 

 
The control signal for the considered system to achieve the 

desired behavior is shown in Fig. 8. No calculations are 
needed to obtain the derivatives and the control law since the 
matrix coefficients can be simply plugged into the 
corresponding equations and the control law is readily 
obtained.  

Fig. 8  Control signal to achieve the desired behavior on the output 

 

V. SUMMARY AND CONCLUSION 

In this paper, the active control of speed fluctuations in 
rotating machines has been considered. After a simple 
motivating example, a very general state-space description of 
the considered systems was introduced. With this system 
description, it is very easy to derive a control law that 
eliminates the speed fluctuations and results in a second-order 
linear dynamics for the controlled system. The proposed 
control law has been applied to a model that represents the 
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behavior of an industrial machine that shows undesired speed 
fluctuations. To the best of the authors knowledge, this is the 
first time that feedback linearization has been used for active 
vibration control for such systems. 

The steps that need to be carried out in the control design 
process consist of transforming the model equations into the 
general form. This involves reading off entries from the 
model equations and expanding periodic model parameters 
into Fourier series. This can be easily done using the standard 
discrete Fourier transform. 

Although the simulation results show that the approach 
works well (as predicted by theory), it is stressed that this is a 
preliminary study. The setup considered here corresponds to 
an ideal case (noise free measurements, no actuator and 
sensor dynamics included, all system parameters exactly 
known, all states available for feedback, continuous-time 
control possible). The applicability of this approach in more 
realistic cases will be investigated in future studies, where 
robustness issues (sensitivity to noise and model 
inaccuracies), implementation issues (discretization of the 
control algorithm) and extensions (including actuator and 
sensor dynamics, using an observer to reconstruct 
unmeasured state variables) will be investigated. The main 
contribution of this paper is the idea of using feedback 
linearization for the active control of torsional vibrations. 
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