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Abstract— Polymer extrusion is one of the final forming
stages in the production of many polymeric products in a
variety of applications. It is also an intermediate processing
step in injection moulded, blown film, thermo-formed, and blow
moulded products. However, polymer extrusion is a complex
process which is difficult to set up, monitor, and control. As a
consequence, high levels of off- specification products and long
down-times are the problems facing the plastics industry. This
paper proposes a new method for fault detection of the polymer
extrusion processes, where the nonlinear finite impulse response
(NFIR) model and principal component analysis (PCA) are
integrated to form a nonlinear dynamic model-based PCA
monitoring scheme. Here the NFIR model is used to capture
the nonlinearity and dynamics of the extrusion process. The
residuals resulting from the difference between the model
predicted outputs and process outputs are then analyzed by
PCA to detect process faults. The experimental results confirm
the efficacy of the proposed model-based PCA approach for
fault detection of polymer extrusion processes.
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I. INTRODUCTION

Extrusion has been used widely as a major method of
processing polymer materials for a few decades. However,
polymer extrusion is a complex process which is difficult to
set up, monitor, and control. As a consequence, high levels
of off- specification products and long down-times are the
problems facing the plastics industry. Thus the close moni-
toring of the system performance to provide early detection
of significant process changes or disturbances, is recognized
by the industry to be of increasing strategic importance.
Various fault detection methods have been developed based
on the first principles, the identified causal models [1] or
the multivariate statistical process control including principal
component analysis (PCA) [2] and independent component
analysis [3].

It was reported that PCA had been successfully applied to
a continuous polymer film production line [4], [5]. However,
the conventional PCA is a linear method, it may not be
able to describe the nonlinear and dynamic characteristics
of the extrusion processes properly as they are complex in
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nature and nonlinear relationship exists between the process
variables. To cope with this problem, extended versions of
PCA for describing system nonlinear or dynamic behavior
have been developed. For nonlinear process monitoring,
nonlinear extensions of PCA have been investigated which
include principal curves [6], [7], multi-layer auto-associative
neural networks (ANNs) [8], [9], and the kernel function
approach [10], [11]. For dynamic process monitoring, linear
dynamic PCA (DPCA) was first proposed by augmenting
matrix with time-lagged variables [12]. More recently, sub-
space identification for a state space model was proposed
[13] which mainly deals with the linear dynamic system.
Again, an attempt has been made to apply the time-lagged
data extension with Kernel PCA for handling nonlinearity
and dynamics. However, this combination could be compu-
tationally expensive due to the augmented data matrix [14].
Recently, Rotem et. al [15] presented a model-based PCA
approach, where the system nonlinear and dynamic behavior
are described by first-principle models. Unfortunately, it is
often difficult to obtain such models to describe the complex
thermodynamic behavior in the polymer extrusion process.
To overcome this problem, this paper proposes a new method
for monitoring of the nonlinear dynamic polymer extru-
sion processes, where the nonlinear finite impulse response
(NFIR) model based on the Fast Recursive Algorithm (FRA)
and the PCA are integrated to form a nonlinear dynamic
model-based PCA monitoring scheme. Different from the
DPCA, which makes use of all the potential time-lagged
variables, the FRA determines and selects the most important
and relevant nonlinear dynamic terms from the potential
ones to construct the NFIR model. Here the NFIR model,
which is a nonlinear extension of FIR [16], is employed to
capture the nonlinear and dynamic behavior of the extrusion
process. The residuals resulting from the difference between
the model predicted outputs and process outputs are analyzed
by PCA to detect process faults. The effectiveness of the
proposed model-based PCA approach was demonstrated by
the monitoring results for data recorded from a polymer
extrusion process.

The paper is organized as follows. The PCA and the dy-
namic PCA methods are briefly described in Section II. This
is followed by the proposed nonlinear dynamic model-based
PCA for process monitoring in Section III. The experimental
polymer extrusion process and data generation are described
in Section IV. Section V then presents the monitoring results
of an application study to a polymer extrusion process. A
concluding summary is given in Section VI.
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II. PCA AND DYNAMIC PCA

This section provides the description of the PCA and the
dynamic PCA for process monitoring.

Suppose a data matrix X ∈ RN×m consists of N samples
and m variables, the PCA decomposition allows the construc-
tion of two statistics for a sample vector x∈Rm, a Hotelling’s
T2 statistic and a Q statistic:

T 2 = xT PΛ
−1PT x = tT

Λ
−1t,Q = xT [I−PPT ]x (1)

for which confidence limits can be calculated based on [2], Λ

is a diagonal matrix consisting of r eigenvalue of covariance
matrix of scaled X. t = xT P is a score vector, and P ∈Rm×r

(r ≤ m is the number of retained PCs) is a loading matrix.
Dynamic PCA proposed by [12] arranges the process

variables to form an autogressive (AR) structure:

X = [X0,X−1, · · ·X−d ] ∈ R(N−d)×(d+1)m (2)

where X is an augmented set of variables, representing an
AR model structure of order d and the subscript 0,1,d refer
to the backshifts. The PCA is then applied to X and the
corresponding T 2 and Q statistics can be constructed. The
above method could be computationally expensive due to the
augmented variables. Moreover, the dynamic PCA model is
obtained under the assumption that the recorded variables
are linear, therefore, it may not be suitable to model the
nonlinear dynamics efficiently. To tackle this problem, a new
model-based PCA method is proposed to account for both the
nonlinear and dynamic behaviors of the extrusion process. If
the model is accurate, the residual between the measured
values and the model predicted values will be relatively
insensitive to the variations caused by the nonlinearity or
dynamics of the normal operating conditions [15], [16].
Consequently, PCA is more sensitive to process variation
caused by the process faults, such as the disturbance of the
material variations. In the following section, a new model-
based PCA monitoring scheme will be introduced in more
detail.

III. NONLINEAR DYNAMIC MODEL-BASED PCA FOR
PROCESS MONITORING

The proposed model-based PCA involves a nonlinear
dynamic modelling approach to identify a non-linear finite
impulse response model to capture the underlying relation-
ship between the process input and output variables. The
residuals resulting from the difference between the model
predicted outputs and process outputs are analyzed by PCA
to detect process faults.

A. Nonlinear Dynamic Model Based On Fast Recursive
Algorithm

Assuming a general nonlinear dynamic MISO system can
be formulated as

y(t)= f (u1(t−1), · · · ,u1(t−du1), · · · ,up(t−1), · · · ,up(t−dup)
(3)

where y and ui (i = 1, · · · , p, p ≤ m) are the system output
and input variables respectively. p is the number of input

variables. dui is the time delay for the process inputs ui. By
using a polynomial function, Eq. (3) can be approximated
by a linear-in-the-parameter model:

y =
M

∑
i=1

θiφi(u)+ e (4)

where φi(.), (i = 1, · · · ,M) are all candidate model terms,
u = [u1, · · · ,up]T , uT

i = [ui(t−1), · · · ,ui(t−dui)] is the model
input vector, and e is the model residual.

If N data samples {y,u}N are used for model training, then
Eq. (4) can be written in the form

y = ΦΘ+ e (5)

where Φ = [φ 1, . . . ,φ M]∈R(N−d)×M is the regression matrix,
φ i = [φi(u(d − dui + 1)), · · · ,φi(u(N − dui))]

T ; y = [y(d +
1), . . . ,y(N)]T ∈ RN−d , d is the maximum delay among
dui . Θ = [θ 1, · · · ,θ M] ∈ RM , and e = [e(d +1), · · · ,e(N)]T ∈
RN−d .

In Eq.(5), Θ can be estimated using least-squares by
minimizing the loss function

J(Θ) = eT e (6)

The corresponding solution is given by Θ̂ = (ΦT Φ)−1ΦT y.
Due to the noise and correlation between regressors, the

matrix (ΦT Φ)−1ΦT is always ill-conditioned, which may
lead to inaccurate calculation of the model coefficients.
Therefore, a subset selection technique such as the Fast
Recursive Algrithm [17] is applied in order to determine the
most important and relevant terms of all potential ones with
respect to the available data [18].

Fast Recursive Algorithm

The FRA employs a residual matrix Rk defined as:

Rk , I−Φk(ΦT
k Φk)−1

Φ
T
k R0 , I (7)

where Φk = [φ 1, · · · ,φ k], and k = 1, · · · ,M. According to [17]
and [19], Rk can be updated recursively:

Rk+1 = Rk −
Rkφ k+1φ

T
k+1RT

k

φ
T
k+1Rkφ k+1

, k = 0,1, · · · ,M−1 (8)

Now, the cost function in (6) can be rewritten as: J(Θ,Φk) =
tr(yT Rky).

In a forward stepwise stage, the nonlinear model terms
are selected one at a time. Thus, suppose at the kth step,
one more term φ j, k +1 6 j 6 M from the candidate term
pool is to be selected. The net contribution of φ j to the cost
function can be calculated as

∆Jk+1(Θ,Φk,φ j) =
‖ (y(k))T φ

(k)
j ‖2

‖ φ
(k)
j ‖2

(9)

where φ
(k)
j , Rkφ j, y(k) , Rky.
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Fig. 1: Nonlinear dynamic model-based PCA

By defining an auxiliary matrix A∈Rk×M and au ∈RM×q

with elements

ai, j ,

{
0, 1 ≤ j < i
(φ (i−1)

i )T φ
(i−1)
j , i ≤ j ≤ M

(10)

ai,u ,

{
(φ (i−1)

i )T y(k), 1 ≤ i ≤ k
(φ (k)

i )T y(k), k < i ≤ M
(11)

the cost function can be updated recursively:

∆Jk+1(Θ,Φk,φ j) =
‖ a j,u ‖2

a j, j
(12)

The model term that provides the largest contribution to
(12) is then selected, and this procedure continues until
some criterion (e.g., Akaike’s information criterion [20]) is
met or until a pre-set maximum number of model terms
are selected. After a satisfactory model with M terms has
been constructed, the model coefficients are then computed
recursively from

θ̂ j =

(
aT

j,u−
M

∑
i= j+1

θ̂ ia j,i

)
/a j, j, j = k,k−1, · · · ,1. (13)

B. Nonlinear Dynamic Model-Based PCA Monitoring
Scheme

Having discussed the nonlinear dynamic modelling ap-
proach based on the FRA, the model-based PCA moni-
toring scheme, as shown in Fig. 1, will be introduced in
detail, where the nonlinear models are employed to predict
process outputs. The residuals between the system outputs
and predicted outputs are used to construct the PCA model.
The following summarizes the construction procedure of the
proposed model-based PCA and its application to the process
monitoring:

1) Process dynamic data including the input and output
variables are recorded for nonlinear dynamic mod-
elling;

2) The nonlinear modelling approach based on the FRA
is applied to obtain the NFIR models to describe the
nonlinear dynamic relationship between the system
input and output variables;

3) The residual resulting from the difference between the
model outputs and process outputs is calculated as
ei = yi − ŷi (i = 1, · · · ,q, q is the number of output
variables).

4) The residual matrix E = [e1, · · · ,eq] is constructed and
scaled;

5) Compute the PCA model for the scaled residual matrix
E;

6) Construct the T 2 and the Q statistics, and calculate the
confidence limit as discussed in [21].

7) For a centered new data sample z during the on-line
monitoring procedure, the scaled residual ez between
the actual process output and the model predicted
ouput is calculated;

8) Calculate the constructed T 2 and Q statistics by:

T 2 = eT
z PΛPT ez Q = eT

z
[
I−PPT ]ez, (14)

9) Check whether T 2 or Q exceeds the corresponding
control limit; if so, the hypothesis that the soft sensor
is violated is accepted, otherwise the soft sensor is
reliable.

It is clear that the effectiveness of the proposed model-
based PCA method relies on the sensitivity of the system
model to the different types of process faults. For instance,
if process fault only affects the process output, then it is
important that the model-based PCA should be insensitive
to the process outputs. Therefore, if the NARX (nonlinear
autoregressive with exogenous input) structure is employed,
which relies on the past values of the process outputs, then
the generated residuals couldn’t reflect the influence of the
process fault on the the process output. Consequently its
monitoring ability can be compromised. However, with the
NFIR structure, which only makes use of the past values
of the process inputs, the predicted outputs are not affected
by the process faults. As a result, the model residuals are
capable of reflecting the deviation of process outputs from
those obtained without process faults. Based on the above
discussion, the NFIR model is preferred over the NARX
model to be incorporated by PCA.

IV. EXPERIMENTAL POLYMER EXTRUSION PROCESS

There are two types of extrusion processes in the polymer
industry: continuous and discontinuous. According to the
number of screws used in the extruder, there are single-
screw, twin-screw and multi-screw extruders. Of these single
screw continuous extruders are the most commonly used in
polymer industry. The conventional single screw extrusion
process has a standard setup including a barrel which is
heated by a number of electrical heaters, a rotating screw,
and an extrusion die for the final product [22]. Typical
temperature and pressure sensors are installed along the
barrel and the die to provide continuous data for the process.
For process operation, the polymer materials are fed into
the barrel through the hopper by gravity, and then they are
conveyed and melted along the flights of the screw and finally
pushed out through the die to achieve a desired form.

Different types of faults may occur in a polymer extrusion
process, such as (i) incoming material variations in terms
of size, physical properties and compositions; (ii) process
upsets; (iii) equipment faults; (iv) the operator errors.
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Fig. 2: The laboratory extruder with a in-line-rheometer die

TABLE I: Description Of The Recorded Process Variables
Number Description Variable Unit Note

1 Screw speed N rpm Input
2 Barrel zone 1 temperature T1

oC
3 Barrel zone 2 temperature T2

oC
4 Barrel zone 3 temperature T3

oC

5 Barrel pressure Pb MPa Output
6 Die pressure 2 P2 MPa
7 Viscosity η Pas

Figure 2 depicts the experimental single screw extruder
(Killion KTS-100) used in this paper. An in-line-rheometer
die is especially instrumented in the experiment for the
calculation of the melt viscosity. The analyzed variables
are given in Table I. For obtaining some information-rich
data sets of process inputs, the screw speed, N, and the
temperature settings at the three heating zones, T1, T2, T3,
were excited using a Pseudo-Random Signal applied in a
‘random walk’ algorithm respectively. That is the signal
excited by a Gaussian sequence and the period of input
change was also defined by a Gaussian sequence where
the mean and standard deviation were defined on the basis
of measured pressure and viscosity response time to step
changes in the inputs. Thus a wide operating range was
covered in the sequences while consecutive input changes
were within practical operating limits [23].

Two low-density polyethylene (LDPE) materials were
used in this work, one is LD159AC (LDPE(A)) and the
other is DOW352E (LDPE(B)). All signals were acquired at
1Hz using a 16-bit DAQ card through a SC-2345 connector
box. At first, 6000 process data samples of LDPE(A) were
collected under the above conditions and used as fault free
reference samples. These samples were divided into two
data sets where the first 2000 samples was used for model
identification using the FRA, and the remained 4000 samples
for test purpose. A third data set of 4000 samples was
collected under the same conditions as above with a different

material LDPE(B), which is used as a faulty data set. The
generated screw speed, barrel pressure and the viscosity
signals under normal conditions are illustrated in Fig. 3.
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Fig. 3: Generated signals under normal conditions

V. APPLICATION OF MODEL-BASED PCA TO
POLYMER EXTRUSION PROCESS

The description of the polymer extrusion line used in
this application study was explained in Section IV. This
section discusses the proposed monitoring approach involved
in the NFIR model identification for process outputs using
the FRA, followed by the PCA applied to the generated
residuals.

To build the system model, the screw speed N, and the
barrel set temperatures T1,T2,T3, are employed as the process
inputs to predict the three outputs, including the barrel
pressure Pb, the die pressure P2, and the viscosity η . As
mentioned above, the different model structure employed
by model-based PCA has distinct sensitivity to the process
faults. To illustrate this point, both NARX and NFIR models
are used to predict the process outputs. The three process
outputs are generated using the FRA based on the LDPE(A)
fault free data with a time series of system variables as below.
The NFIR model is given as:

Pb(t) =−2.7+10−4N(t−1)η(t−1) (15)
P2(t) = 2.2+10−4N(t−1)η(t−1)

η(t) = 202.5−0.06T3(t−1)−0.05N(t−1)T3(t−5)
+0.03N(t−1)T3(t−8)

The NARX model has the form of

Pb(t) =−0.2+0.6Pb(t−1)+3×10−5N(t−1)η(t−1) (16)
P2(t) = 0.3+0.4Pb(t−1)+3×10−5N(t−1)η(t−1)

η(t) = 364.8+10−4
η(t−1)−0.01η(t−1)2

+0.04N(t−1)T3(t−24)

The error residuals of the above NFIR model has zero mean
and variance of 0.04, which can be approximated by a normal
distribution. Its performance on the unseen validation data of
LDPE(A) including the measured barrel pressure, the melt
pressure in the die, and the viscosity is shown in Fig. 4. It
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shows that the predicted values of the unseen data based on
the NFIR model match the measured values very well. For
comparison, the NARX model performance on the same data
is also illustrated in Fig 4.
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Fig. 4: Modeling result of the NFIR and the NARX on
unseen LDPE(A) data under normal conditions. Solid black
line: actual output; red dashed line: NARX model output;
blue dashed line: NFIR model output.

A. Process Monitoring

An attempt to monitor an extrusion process using PCA
directly will lead to unavoidable difficulties because of the
nonlinear and dynamic nature of the process [7], [24],
[25]. In this subsection, the monitoring results of applying
the proposed model-based PCA on the residual matrix is
investigated. A PCA model was produced using the residual
matrix E, which is composed of the errors between the
model predicted outputs and the measured outputs. The
proposed NFIR-PCA approach for process monitoring is
further compared to both conventional linear DPCA and the
NARX-PCA in this section.

The number of principal components, r, was determined
according to its variance contribution. Thus, two principal
components which could capture 79.1% of the variance of
the of the total variance of the 3 error variables were chosen
for the NFIR-PCA model. Compared to NARX-PCA, two
linear principal components captured 86.2% of the total
variance. By contrast, one principal component was required
for the linear DPCA model and 96.4% of the total variance
was explained. After establishing the PCA model, on-line
monitoring of the extrusion process requires the T 2 statistic
to monitor system variations in the PCA model space, and a
second Q statistic to monitor system variations in the PCA
residual space. The 99% confidence limits for the T 2 and Q
statistics are determined respectively as discussed in [21].

For the recorded 2000 reference samples, Table II sum-
marizes the Type I error, or false alarm rate, for the T 2 and
the Q statistics of the linear DPCA, the NARX-PCA and the
NFIR-PCA methods for a confidence of 99%. These results
imply that the Type I errors for the T 2 statistic of linear
DPCA is far lower than expected, which is later shown to
result in its insensitivity of detecting process fault. This can
be attributed to that the principal component in linear DPCA

TABLE II: Number of Type I errors For Reference Data
From Linear DPCA, NFIR-PCA And NARX-PCA With 99%
Control Limits

Method #PC(s) Variance Contribution T 2 Q

Linear DPCA 1 96.4% 0 % 2.2%
NARX-PCA 2 86.2% 1.9% 0.9%
NFIR-PCA 2 79.1% 2.0% 0.7%

is unable to describe the nonlinear behavior in the extrusion
process and that the assumption of the monitored variables
follow a Gaussian distribution no longer holds.

Monitoring results of the proposed method for the testing
data set 1) the unseen LDPE(A) fault free data; 2) the
unseen LDPE(B) faulty data are shown in Fig. 5. The
straight lines represent the 99% control limits. Fig. 5c shows
all the unseen LDPE(A) data (the first 4000 samples) is
under the control limit, which implies the NFIR model
is capable to capture the nonlinear and dynamic behavior.
Moreover, for the second fault data set, both T 2 and Q
statistics of NFIR-PCA in Fig. 5c show the data samples
are beyond the control limit (50 samples after the new
material introduced) implying the NFIR model is no longer
validated for different material. In contrast, the T 2 of linear
DPCA and the Q of the NARX-PCA are not sensitive to this
disturbance. The application study therefore indicated that
using linear principal components and incorrect distribution
function to describe nonlinear dynamic behavior may render
the monitoring statistics insensitive or increase the false
alarms. It also demonstrated that the monitoring ability of
the NARX-model structure, which relies on the past values
of the process outputs, is compromised when the process
outputs are affected by process faults.

VI. CONCLUSIONS
This paper has studied the incorporation of NFIR model

into the multivariate statistical process control framework,
motivated by the fact that monitoring processes with linear
dynamic model may lead to insensitive statistics or false
alarms. The application of the NFIR model to remove
the nonlinear and dynamic information from the monitored
variables, together with the use of PCA to monitor the
resulting residuals can thus help to circumvent the above
problems. The benefit of applying the NFIR model instead
of the NARX is that the NFIR model requires no feedback
of the process output, and hence its model residual is able
to reflect the process faults more closely.

A further contribution of this paper has been to apply
the Fast Recursive Algorithm for model identification. In
comparison with the traditional subset selection method, such
as the orthogonal least square algorithm (OLS), the FRA
is able to select the most important and relevant model
terms more efficiently without compromising model accuracy
[17], [19], [26]. Unlike DPCA, which makes use of all
the potential time-lagged data variables, the FRA selects
only the most important ones for the NFIR model. The
effectiveness of the proposed model-based PCA approach
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Fig. 5: Process monitoring results on the unseen normal
data (the first 4000 samples) and the faulty data (after 4000
samples) using (a) DPCA; (b) NARX-PCA; (c) NFIR-PCA

has been demonstrated by the monitoring results for data
recorded from a polymer extrusion process.
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