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Abstract: The paper presents the solution of the time optimal control with the help of Gröbner Bases 
theory. First the set of polynomial equations for the triple integrator system with unknowns 
corresponding to the switching times is constructed and later it is solved in the computer algebra 
system Maple using the Groebner library. In dependence of resulting switching times the control action 
is designed. Finally the time optimal switching surface is compared with the variety resulted from the 
Gröbner Bases solution. 
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1 INTRODUCTION 

The time optimal control belongs to one of the most important control strategies. It was heavily 
studied in 50-ties and 60-ties of the previous century but due to its high sensitivity to 
unmodelled dynamics, parametric variations, disturbances and noise it was later suppressed by 
the pole assignment control.  Nowadays there exist several approaches how to cope with this 
problem and so the time optimal control plays an important role in the modern control theory. 

Generally, the time optimal problem can be solved by computation of switching surfaces. 
These can be derived by using the Pontryagin’s maximum principle. A different approach is 
offered by dynamic programming based on the Bellman’s optimality principle. Another way 
was represented by Pavlov who solved switching surfaces from phase trajectories (Pavlov, 
1966). But switching surfaces can be also expressed by the set of algebraic equations (Walther 
et al., 2001) that result from time solutions in the phase space. For higher order systems these 
can be rather complicated to find the exact solution. In this paper we will apply the Gröbner 
bases theory to help us to solve such a set of polynomial equations.  

Gröbner bases generalize the usual Gauss reduction from linear algebra, the Euclidean 
algorithm for computation of univariate greatest common divisors and the simplex algorithm 
from linear programming. Using them it is possible to transform one set of equations to another 
one that can be solved more easily. We will apply this technique for the triple integrator system 
where it is possible to get symbolic solutions but it can be also applied for higher order systems 
when solving the resulted sets of equations numerically. 

The paper is organized in six chapters. After introduction and problem statement chapters there 
is the chapter introducing the set of polynomial equations for time optimal problem. The 
following chapter describes the Gröbner bases theory. The fifth chapter offers the solution and 
comparison of switching surfaces. The paper is finished with short conclusions. 

2 PROBLEM STATEMENT 

Let us consider the linear system given in the state space 
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that represents the triple integrator. The control input signal is saturated and can reach two 
values 1U  or 2U  (relay or bang-bang control) 
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U

u r =           (2) 

The task is to design the time optimal controller what means to drive the system from an initial 
state [ ]tzyx=x  to the desired state wx  in a minimum time mint . Using coordinate 

transformation it is always possible to set the desired state equal to the origin 0x =w .  

It is well known that minimum time optimal control with saturated input leads to the control 
action with at most n intervals switching between limit values where n represents the order of 
the system. Usually the control algorithm results in deriving switching surfaces as functions of 
states which signs determine the switching times. It can be very hard task to express these 
functions exactly and there is no general solution for higher order systems ( 3>n ). Bang-bang 
control in practice is not desirable because of chattering and noise effects but there are 
techniques have to cope with them (Pao and Franklin, 1993, Bistak et al. 2005).  

3 SET OF EQUATIONS WITH SWITCHING TIMES 

Let us denote the length of each time interval of optimal control as it . In the case of triple 

integrator ( 3=n ) we assign variables 1t , 2t , 3t  to these switching times. From the time 
solution in the state space one can derive the corresponding set of equations. 

Starting from the vector state differential equation 

( ) ( ) ( ) ( ) τττ dueeutt r

t tt
r bxxΦx AA ∫ −+==

000 ,,       (3) 

by substituting ttw −== ,0 xx  we can get the initial states from the final states (backward 
integration in time). Then the points of the optimal braking trajectory called also Reference 
Braking Curve (RBC) that are determined by the parameter 1t  can be expressed 
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Continuing the backward integration we can derive the Reference Braking Surface (RBS) that 
represents the switching surface. In this case the initial value 0x  in (3) is substituted by the 

RBC points )( 11 tx  and the action value ru reaches the opposite value jU −3 . 
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Figure 1:  A part of the switching surface  

An arbitrary starting point in the space can be again expressed using (3) but this time it is 
necessary to substitute points of RBC ),( 2112 ttx  into the initial points of (3) and the control 
action ru  is opposite to the control action in the previous time interval, so again jU .
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After assignment tzyx ],,[123 =x  and elimination of 12x  and 1x  from (6) using (5) and (4) we 

get the set of equations with three unknowns 321 ,, ttt  that represent the switching times.  
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This set of equations can be simplified when using substitution 

 21132233 ,, tttttttt −=−==   (8) 

Then (7) can be rewritten to the more readable form 
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Continuing this procedure one can easily derive the set of equations corresponding to the chain 
of n integrators.  

Generally, the evaluation of unknowns 321 ,, ttt  results from the solution of a 6th-order 
polynomial with one unknown and backward substitution to the quadratic equation of two 
unknowns and the linear equation with three unknowns. In this paper we will use Gröbner 
bases to solve the set of polynomial equations (9). 

4 GRÖBNER BASES 

The Gröbner bases theory was developed in 60-ties of the previous century. Thanks to it the 
algebraic geometry has practical importance. Modern computer algebra systems are based on 
this theory. F. Macaulay was the first who used it. B. Buchberger defined Gröbner bases and 
developed an algorithm for computing them.  

Gröbner bases help to solve a set of polynomial equations. Using Buchberger’s algorithm an 
original set of equations is transformed to the new one called Gröbner base. It is important that 
the new set has nice properties and can be solved more easily in comparison with the original 
one. The solutions of the new set are identical with the original one.  

The elimination property of Buchberger’s algorithm assures that variables will be consequently 
eliminated and the resulted Gröbner base will include just one univariate polynomial. The 
variable of this univariate polynomial is given by specified ordering of variables when 
computing the Gröbner base. The ordering determines the sequence in which the variables will 
be eliminated and the variable with lowest degree (the last one) will be included in the 
univariate polynomial. The univariate polynomial is then solved for this variable.  

Another important property of Gröbner bases is the extension. This guarantees that the variable 
resulted from the univariate polynomial can be consequently substituted to the other 
polynomials (according to the ordering) and thus these become also univariate polynomials, i.e. 
solvable for one variable. The extension property gives a systematic way to find all solutions. 

Gröbner bases allow us to find also the system of polynomial equations representing the variety 
V if this has been originally given by the set of parametric equations 

nittgx mii ,...,1,),...,( 1 == . It is necessary to choose the lexicographic ordering of variables 

nm xxxttt >>>>>>> ...... 2121  and from the resulted base to select only those polynomials 

that do not include variables it . 

Gröbner bases have been widely used in robotics (motion planning), optimization, coding, 
control theory, statistics, molecular biology and many other fields.  

Gröbner bases are implemented in almost each modern computer algebra system (Mathematica, 
Maple, Mathcad, Symbolic Math Toolbox,...). There are also noncommercial products as 
Macaulay2 – the system for computation in algebraic geometry and commutative algebra.  
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5 SOLUTION USING GRÖBNER BASES 

We used the Maple computer algebra system to solve the set of polynomial equations (9). The 
screenshot below shows the procedure. First we simplified the set of equations by choosing 

1−=jU  and 13 =− jU . Then we applied the Solve command with elimination ordering 321 ,, ttt . 

The resulted set of polynomials (10) denoted GB consists of one univariate ( 3t ) polynomial of 

4th-order and two polynomials of 1st order with respect to the variable 2t  or 1t  that include also 
the variable 3t . 

 
  (10) 

Thus using Gröbner bases the original set of equations (9) has been converted to the other one 
(10). The main advantage of the new set is given by the fact that there exists one univariate 
polynomial (11) that can be solved and this solution can be later supplied to the other two 
polynomials and so the system (10) can be solved easily.  

 
  (11) 

The quartic (11) can be solved analytically or numerically. We are looking for nonnegative real 
solutions of time variables and because of substitution (8) the solution of (10) must fulfill the 
condition 0321 ≥≥≥ ttt . We have chosen 1−=jU  and 13 =− jU . If 03 >t  then the right control 

action is 1−== jr Uu . If 03 =t  then the control action depends on 2t . If 02 >t  then 

13 == − jr Uu  otherwise 1−== jr Uu .  If the solution of (10) is not real or the condition 

0321 ≥≥≥ ttt  is not fulfilled we have to choose opposite values for jU  and jU −3 , i.e. 1=jU  

and 13 −=− jU  and construct and solve the system (10) with these values and apply the decision 

procedure about the right control action similarly.  
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The different solution of (10) is shown in (Walther et al., 2001) that is based on the calculation 
of the number of positive roots using Sturm sequences.  

After substitution 03 =t  the quartic (11) can also be used for calculation of the variety V

 yzxzyzxzzyxyV 4362223 648144367272 −−+++−−=  (12) 

that is in a certain part of the phase space identical with the switching surface derived in 

(Pavlov, 1966). ξ  represents the Pavlov’s switching surface for 1
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and after some manipulations as shown in the following screenshot it gives the same 
expression as the variety V. 

 
The difference can be seen in the Fig. 2. In addition to the ξ  the variety V includes also the 
“mirror part” that appeared due to quadratic operations. Because of this V could not be used as 
the switching surface globally. For the sectors given by inequalities 0,0,0 ><> zyx  or 

0,0,0 <>< zyx  it is necessary to derive an additional switching condition. 

           
Figure 2:  Pavlov’s switching surface and variety V  

6 CONCLUSIONS 

The paper shows how it is possible to apply Gröbner Bases to the time optimal control 
problem. The resulted solutions of the set of polynomial equations are better than classical 
approach when comparing the order of the univariate polynomial. Gröbner Bases are not only 
suitable for analytical solutions but they are also used in many numerical procedures to find 
solutions of higher order systems. There exists an automatic generator of Gröbner Bases solvers 
(see the link in the References) that can solve a set of polynomial equations even in the real 
time.  

There exist also limitations of using Gröbner Bases for the time optimal control as it was 
demonstrated on the derivation of the switching surface. The Gröbner Bases have an algebraic 
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nature and working with polynomials they could not reach for specific problems such effective 
results as were presented by Pavlov.  

But the use of Gröbner Bases is general because many scientific problems can be formulated by 
the set of polynomial equations. In the future we plan to use them also for problems of the time 
suboptimal control.  
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