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Abstract: This paper presents a concept of control of laboratory model of pendubot, which is a two-

link under actuated robotic mechanism. Method of obtaining a mathematical model for pendubot is 

presented. Further this mathematical model is used for synthesis of LQ control. The inverted pendulum 

problem is well suited for education in control theory as well as for research in control of nonlinear 

mechatronic systems with quick dynamics. 
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1 INTRODUCTION AND PRELIMINARIES 

The pendulum is mechatronical system which is one of the most important examples in 

dynamics and control and has been studied. Many important engineering systems can be 

approximately modelled as pendulum in order to gain insight into their dynamic behaviour and 

for control systems design e.g. trajectory of rocket or segway. Pendubot (Fig.1) is a two-link 

planar robot with an actuator at the first shoulder and no actuator at the elbow. The second arm 

moves freely around the first link which is driven by a motor (Mates, 2009). The control 

objective is to bring the mechanism to one of the unstable equilibrium positions. This paper 

deals with deriving of a mathematical model of the pendubot. Further the gain matrix of LQ 

control is obtained and the results are verified on a physical model. 

 

 

Figure 1:  Pendubot construction  

 



International Conference   February 10 - 13, 2010 

CYBERNETICS AND INFORMATICS  VYŠNÁ BOCA, Slovak Republic 

  

2 

2 MATHEMATICAL MODEL 

At first we will derive the nonlinear dynamic equations of the system using the Lagrange 

method of the second kind, which depends on the balance of system energy. The resulting 

equations can be written in closed form to allow an appropriate system analysis. After that 

the state space representation is created using linearization in chosen operating point (Aurelie 

2006, Block 1996, Mates 2008). The following table (Table 1) lists physical parameters of our 

laboratory pendubot physical model, the symbols and corresponding values. The general 

notations are shown in figure 2. 

 

Table 1: Parameter values 

Description Symbol Value 

Weight of arm mr 0,63 kg 

Length of arm l1 0,44 m 

Distance from centre of gravity of the arm to the 

axis of rotation 

lg1 0 m 

Friction coefficient in arm joint k1 0,08 kg.m
2
s

-1
 

Mass moment of inertia of the arm Ir 0,021 kg.m
2 

Weight of pendulum mk 0,062 kg 

Distance from centre of gravity of the pendulum 

to the axis of rotation 

lg2 0,2 m 

Mass moment of inertia of the pendulum Ik 0,0012 kg.m
2 

Friction coefficient in pendulum joint k2 0,0001 kg.m
2
s

-1
 

 

 

Figure 2:  Measured angles 
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The basic form of Lagrange equations is: 
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Where L is the Lagrange function, qi is the i-th generalized coordinates and Qi is a generalized 

force in the direction of i-th coordinates: 
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and τ  is the input torque of the system: 
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The Lagrange function is expressed as the difference between kinetic and potential energy of 

system. For the pendubot system this is: 
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In the next few steps partial derivations of the Lagrangian are obtained in order to get two 

nonlinear motion equations for the system: 

( ) ( ) ( )

( ) ( )

2

1 1 2 1 2

1 1

cos sin

cos

r k k g k g

r g k

I m l m l l m l l

m l m l g

τ ϕ θ ϕ θ θ ϕ θ

ϕ

2= + + − + −

+ +

&& &&&

 (5) 

( ) ( ) ( )

( )

2 2

1 2 2 1 2

2

0 cos sin

cos

k g k k g k g

k g

m l l I m l m l l

m gl

ϕ ϕ θ θ ϕ ϕ θ

θ

= − + + − −

+

&&&& &

 (6) 

 

For simplification of these equations following substitutions in equation (5) and equation (6) 

are introduced: 
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The derivation of the ϕ&&  and θ&&  are expressed from the motion equations as functions of all 

other variables plus friction coefficients ( k1 and k2 ). Then we can obtain final nonlinear 

motion equations as: 
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Although the dynamic behaviour of most physical systems is nonlinear, many of these systems 

behave “almost linearly” at and near nominal operating points or along nominal trajectories. In 

our case we have done the linearization in the upper position of both arms. Defining the space-

state vector as [ ]Tx θϕθϕ &&= , then the linearized state space model can be written in the 

following common matrix form: 

BuAxx +=&  (10) 

 

Due to the complexity of the functions equation (8) and equation (9) all necessary calculations 

have been done in Matlab/Simulink using the Symbolic Math toolbox. Consequently the 

resulting state-space matrices are in the form: 
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3 LQ CONTROL 

 

The linear quadratic controller can be synthesised from the state space model (10), with 

matrices (11). The state feedback gains K is calculated by minimizing the criterion equation 

(12): 

dtRuuQxxJ )''( += ∫  (12) 

 

This is done by solving the Algebraic Riccati Equation (13): 

PBPBRQPAPA TT 1−=++  (13) 

 

Where K is given by equation (14): 

PBRK T1−=  (14) 

 

In Matlab environment this is solved using function lqrd. For real time experiments the sample 

time was set to 0,01s. The weight matrix Q and R have been determined using brute force 

search method in a limited range of values in the matrices. The search criterion was to obtain 

the controller eigenvalues without the complex part. The final settings used for simulation was 

following: 
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with the corresponding LQ control gain as: 

[ ]22,169,011,754,1 −−−−=K  (17) 
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4 RESULTS 

This section presents some results with the LQ control of our physical pendubot model in real 

time, using the Matlab/Simulink xPC Target configuration. The target PC is equipped with a 

I/O board, Humusoft MF-624, that is connected to a control unit Mitsubishi MR-J2S-40A. The 

control unit directly controls the motor in torque control mode and also reads the position the 

motor shaft (pendubot arm). The position of pendulum is measured by IRC sensor that is 

connected directly to the PC I/O board. This configuration is shown on figure 3. 

 

 

Figure 3:  Pendubot hardware connection 
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The obtained behaviour of pendubot is illustrated on figure 4. From the figure can be seen that 

the system is slightly oscillating around the chosen equilibrium position. Approximately at the 

time instants 23 s and 24,5 s there have been introduced two disturbances, which were 

successfully handled by the controller. 

 

Figure 4:  Experimental results 

(in the figure Phid and Thetad are derivations of the angles Phi and Theta) 
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5 CONCLUSION 

The reported outcomes are only results of the initial research done on this physical pendubot 

system. Further research will be directed on more precise non-linear pendubot model and MPC 

strategies. 
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