
International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

1

MICROKERNEL SYSTEM AS BASIS FOR SYSTEM LIBRARY BASED

ON GENERIC COMPONENTS

Adam Hlavatovič and Tibor Krajčovič

Slovak University of Technology, Faculty of Informatics and Information Technologies

Ilkovičova 3, 812 19 Bratislava, Slovak Republic

Tel.: +421 2 60291111 Fax: +421 2 654 20 587

e-mail: {hlavatovic, tkraj}@fiit.stuba.sk

Abstract: In this paper we present an idea of system library, based on generic components within

microkernel system in the area of embedded systems. The paper describes basic Exokernel structure

and functionality with focus on Exokernel ability to separate high level abstraction from kernel itself.

Equally class hierarchy based Choices framework is briefly described. A Choices divides parts of

operating system into class hierarchies. We meditate on weaknesses of both approaches, with respect to

performance, configuration at the level of design and reimplementation in a case of hardware

architecture changing that is common in embedded systems. Our system library is based on techniques

of generic programming in combination with policy based design and design patterns. Generic

component library allows one to combine advantages and suppress disadvantages for both Exokernel

and Choices. Using library it's possible to build fully specialized operating system in embedded

systems.

Keywords: Generic components, system library, embedded systems, Exokernel, Choices, specialized

systems

1 INTRODUCTION

An increasing number of functions and complexity of applications has increasing requirements

on embedded systems. Past two decades operating systems has become an integral part of still

growing number of devices based on some available type of microprocessor.

Performance changing in the last decade allows us use general purpose operating systems, even

in the area of embedded systems. Using such kind of systems have some advantages, relatively

stable, well known and working code decrease efforts and develop time. Using general purpose

operating systems in comparing with specialized ones impose a significant performance

penalty. This performance penalty may be tens of percent big (Ron Brightwell & Hudson,

2003).

On the other hand reusability issues with specialized systems are well known. They're caused

by a direct using of hardware dependent parts of system.

In the area of embedded systems, there are used a lot of different hardware architectures with

different properties and level of performance. Changing from one hardware architecture to

another is not rare, commonly because a new generation of product. An old hardware is

replaced with new ones, more powerful, which allows add some new functions to the product.

New functions require new applications in operating system or at least update the old ones.

Adding a new functionality also means change requirements on system itself.

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

2

Requirements on operating system for certain hardware are broadly defined by applications

running on it. In product design, especially in embedded systems, often these applications are

already known in advance. They're depending on product functionality. Requirements on

operating system for certain product are therefore also already known in advance. An ideal

operating system meets only these requirements and nothing more.

Due to a large number of possible combinations of requirements on operating system it's clear

that one operating system can't meet the each possible requirements combination. Instead of a

one operating system, we need many, in ideal case for each possible combination one. What is

in fact unworkable. Through it all, there is a way, how such kind of systems can be generated

with the least effort.

Policy based, generic component library give as an opportunity to generate type safe design

fragments. By changing implementation of each policy to meet our requirements, we're able to

adapt these design fragments. Using design fragments created by this way it's possible to create

desired operating system specialized by applications running on it.

Adopting some basic ideas from exokernel systems Aegis and Xok, we can enrich the system,

by system configuration at the level of user applications. In light of two different types of user

applications it looks like, as if each application ran in its own operating system specialized for

its needs.

2 RELATED WORK

A lot of effort has already been devoted to operating system research. The direct result of this

effort is a number of different architectures and approaches to operating system design.

MACH (Accetta, et al., 1986) the first generation of microkernel systems known for its

performance lack in compared with then monolithic kernels. These issues were resolved in the

next microkernel generation. L4 (Liedtke, 1995), represents the second microkernel generation

and due to its implementation in assembly language it achieves excellent performance. Later,

high level language implementation L4Ka::Pistachio (Liedtke, et al., 2001) was created.

Exokenel (Engler D. R., 1998), separating high level abstraction from kernel itself or SPIN

(Bershad, et al., 1995) operating system blurs the distinction between kernel and application.

VINO (Seltzer, et al., 1996) an extensible operating system largely derived from NetBSD. Or

portal based microkernel system Pebble (Gabber, 1999).

Except all mentioned operating systems, frameworks were also created. They're trying to

provide methodology for developing operating systems easily. Like class hierarchy based

framework Choices (Campbell, Islam, Raila, & Madany, 1993) or component based framework

OSKit (Ford, 1997) providing common components already separated out. Or another

component based framework Think (Fassino, 2002) implemented in Java.

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

3

3 CHOICES AS A CLASS HIERARCHY BASED FRAMEWORK

Choices is written as an object oriented framework for operating systems. Using Choices a

various number of operating systems with different complexity can be build. It's not only an

operating system or framework itself, but a complex methodology how object oriented

operating systems can be designed. Except framework itself, this methodology consists of

relationship between parts of the framework, data diagrams and control flow diagrams and by

interfaces and class hierarchies (Campbell & Islam, A technique for documenting the

framework of an object-oriented system, 1993). Choices framework is based on a class

hierarchy. This hierarchy defines fundamental concepts of whole operating system. These

concepts are further defined by Choices sub-frameworks. Sub-frameworks are implemented by

class hierarchy. Replacing certain parts of hierarchy or even whole hierarchy, system policies

can be easily customized. So system itself can be build by a large number of pre-implemented

class hierarchies.

Entire Choices framework is implemented in C++ language. Fundamental language feature

used by a framework is single inheritance with dynamic binding. Every class within choices

framework is inherited from a super-class and predefines inherited methods if they're required.

There are three basic abstractions, on the top of Choices design. Memory object, process and

domain (Madany, Campbell, & Kougiouris, 1991) are those abstractions. Below, at the level of

sub-frameworks Choices consist of sub-frameworks for persistent storage, device management,

message passing or virtual memory (Kougiouris, 1991).

Considerable amount of Choices is focused on lack true run time object oriented programming

support for C++ language (Interrante & Linton, 1990). The support can be divided into four

basic parts a) automatic memory management, b) type representation, gives run time

information about user defined types, c) dynamic code loading, allows one to load binary

modules at run time, COFF (Gircys, 1988) a ELF (Press, 1993) formats are currently

supported and d) class level debugging support.

Choices disadvantages

Generally, frameworks tend to cumulate code redundancy across layers of system abstractions.

Such kind of redundancy is one of the factors that decrease overall system performance. Class

hierarchy based frameworks tends to lock an application into a specific design, loss of static

type safety and combinatorial explosion of the various design choices (Alexandrescu, 2001).

Dynamic binding structures are always less efficient in compared with static binding structures.

Single inheritance with dynamic binding impose significant performance penalty that can be

14% to 49% big (Driesen & Holzle, 1996) in compared with static binding. Performance

penalty is caused mainly due to a worse code optimization and not only by dispatch mechanism

itself. Moreover, Choices implements some new structures with dynamic binding into the

system kernel, automatic memory management, run time class information and dynamic code

loading. All mentioned have negative impact on overall system performance.

Especially unpleasant is that, using those new structures is enforced by the kernel itself and it's

not possible to customize them easily if it's required.

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

4

4 EXOKERNEL XOK/AEGIS

Exokernel is a type of microkernel system. The main idea is to make kernel as small and simple

as possible. Moreover, exokernel brings an idea that kernel itself shouldn't create any high level

of abstraction, but only export low-level primitives. Low-level primitives exported by kernel

are focused on (a) how to give applications control over the resource and (b) how to protect it.

Exokernel is a system based on a few basic rules (a) separate protection and management (b)

expose hardware, allocation and resource revocation (c) protect fine-grained units.

Applying these basic rules on a system design, we get operating system kernel, Exokernel,

consisting only of parts responsible for safety and safe resource sharing. High level

management and abstractions are implemented by applications themselves.

There must still be some minimal abstraction inside the exokernel. For example the CPU is

represented as a linear vector, where each element corresponds to a time slice. Time slices can

be then allocated by environments (base abstraction of process). Based on this minimalist CPU

abstraction it’s possible to create a wide range of system schedulers with different level of

complexity. Each application can implement its own scheduling policy.

Exokernel implementations

Same as microkernel system, also exokernel systems are highly dependent on certain hardware

architecture. Xok and Aegis (Engler, Kaashoek, & Jr., Exokernel: an operating system

architecture for application-level resource management, 1995) are both exokernel system

implementations. System Aegis is the older one for MIPS architecture and Xok is the newer

one for x86 architecture. Xok is based on Aegis and therefore they both have a lot of common.

They both provide the same primitives for CPU and memory sharing and protection, base

environment abstraction, exceptions distribution and primitives for inter process

communication. Aegis was initially designed for network devices and therefore lacks disk

support. Disk support is already integrated in Xok system. Support allows applications to

access disk blocks rather than a files (don't forget lack of high level abstraction) and guarantees

their protection against unauthorized access.

Exokernel advantages

Exokernel is unique by allowing the simultaneous running of different, same type resource

managers, e.g. system schedulers mentioned above. This, in compared with ordinary operating

systems even microkernel where 'standard' resource manager is enforced by system kernel,

allows us specialize a resource manager by each application itself. Positive effect on overall

system performance can be tens percent big (Brightwell, 2003), thanks to such kind of

specializations. Kernel - running in privileged mode, to user application - running in

unprivileged mode, division also means system reliability increase. In the case of an error in

library only applications using its services are affected. Neither kernel itself nor others user

applications aren't affected by this error.

On the other hand, disadvantage of Exokernel is that applications and libraries directly using

kernel primitives are hardware dependent. This hardware dependency seems essential for

achieving maximum system performance (Liedtke, 1995).

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

5

Generally, whole kernel and user applications directly using its primitives must be

reimplemented, when switching to new hardware architecture. In fact most of used

architectures are similar to each other, except formal changes in instruction set, so only some

parts of system must be really redesigned and reimplemented. In embedded systems hardware

change is very common and therefore reimplementation is a double pain. The problem could be

partially coped with a generic component library design.

5 GENERIC COMPONENT LIBRARY

Generic component library (Alexandrescu, 2001) is based on policy based design. This method

is trying to assemble a class with complex behavior out of many little classes, called policies.

Each policy takes care of only one behavioral or structural aspect. Policy based design is

similar to Strategy design pattern (Gamma, Helm, Johnson, & Vlissides, 1995), but differ in

that policies are compile time bound.

There is a sub-framework for system schedulers in the Choices framework. This sub-

framework is defined by an abstract class ProcessContainer to keep processes.

ProcessContainer class defines three member functions add() - inserts a new process, remove()

- removes and returns process reference, and isEmpty() - checks if container is empty. All

system schedulers must inherit from ProcessContainer.

FIFOScheduler is one of the ProcessContainer abstract class implementation. Class

NonLockedFIFOScheduler is another ProcessContainer abstract class implementation. They

both differ only in container access control policy, otherwise they are the same. The structure of

system scheduler sub-framework doesn't allow this to be sufficiently reflected to the

implementation of both classes. Both classes FIFOSchedulr and NonLockedFIFOScheduler are

therefore implemented independently each other.

If we require a different structure of stored processes e.g. LIFO or some kind of tree structure,

we must create a new ProcessContainer class implementation for each new structure we

require. If we involve requirement for container access control policy or requirement for ability

to store not only processes but also its proxy, whole situation becomes intractable due to

a combinatorial explosion of the various design choices.

One of the nice features of policy based generic library is that combinatorial explosion issue

can be elegantly solved. Simple policy based implementation of ProcessContainer class could

look like:

template <
 typename T,
 template <class> class container_type,
 template <class> class locking_policy
>
class process_container
 : public locking_policy<T> {
private:
 container_type<T *> _procs; //!< processes
public:
 void add(T * proc) {
 lock lck(*this);
 ...
 }
 ...
};

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

6

Where, template parameter locking_policy is implementation of container access control

policy. Function remove() can be implemented by the same way as function add(). At the

beginning, locking_policy<T>::lock object is created to take care of container access control.

Access control policy implementation at the level of object for process_container class could

looks like:

// object level locking
template <typename T>
class object_lockable {
public:
 class lock {
 public:
 lock(T & obj) {
 ...
 }
 };
};

Implementations of process_container class with required functionality can be created by using

typedef keyword, this way:

typedef process_container<process, object_lockable>
 fifo_scheduler;

or

typedef process_container<process, non_lockable>
 non_locked_fifo_scheduler;

Where, both new types are fully equivalent to both original classes FIFOSCheduler and

NonLockedFIFOScheduler.

Each policy can be seen as a generated type behavioral requirement. Implementations such kind

of policies are then implementations of generated type requirements. Policy based generic

component library allow us to generate type that can be any combination of our requirements.

Moreover, there isn't any performance penalty due to static binding.

In general, using this method of design we can generate systems that meet our specific

requirements.

6 CONCLUSION

In this paper we briefly describe the structure and functioning exokernel system, class hierarchy

based Choices framework and policy based generic component library. In order to create a

system able to reflect already known in advance information about application types, running

on the system. This type of information is really common in embedded systems, because is

already known in advance what sort of applications will be running on system. Policy based

generic component system library over microkernel system exokernel allow us to obtain system

configuration ability at the level of user applications.

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

7

Exokernel system has been chosen due to his ability to run several different resource policy

implementations in the same time. What can be understood as system configuration at the level

of user application. In light of two different types of user applications it looks like, as if each

application ran in its own operating system specialized for its needs. Disadvantage of this

approach is high level of certain hardware dependency at the level of libraries and user

applications. When switching to a new hardware is therefore necessary to reimplement

hardware dependent parts of the system. Negative effect of reimplementation can be partially

suppressed by using frameworks, such as Choices.

Generally, frameworks give us a higher degree of system abstraction. This abstraction contains

hidden information in the form of framework structure and interactions between its parts.

Information hidden in abstraction are portable through a wide range of hardware architectures.

Frameworks also give us an ability of high level of system configuration in the time of its

design and high level of reusability of source code at the level of classes. This features are

especially advantageous in embedded systems where is often necessary to implement similar

functionality for various hardware architectures. Disadvantages of class hierarchy based

frameworks are, that such kind of approach to application design tends to lock an application

into a specific design, loss of static type safety and leads to combinatorial explosion of the

various design choices. Another disadvantage is an increased performance penalty due to

dynamic binding of generated code.

Enumerated disadvantages of class hierarchy based frameworks can be partially suppressed by

using policy based generic component library. Generic component library also brings high

degree of system abstraction such as class hierarchy based frameworks. Moreover, thanks to

policies, it offers higher degree of configuration and also solves loss of static type safety. With

a small number of user defined types it's possible to handle out combinatorial explosion of the

various design choices. Due to a static binding of generated code by the mechanism of

templates in C++ language, there isn't any performance penalty such as in case of dynamic

binding.

We believe that with a combination of generic component library over microkernel system, it’s

possible to create a system able to reflect already known in advance information about

application types, running on the system. This will allow creating specialized systems with high

performance and reliability for various number of different hardware architectures.

ACKNOWLEDGMENTS

This work was supported by the Grant No. 1/0822/08 of the Slovak VEGA Grant Agency.

REFERENCES

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., a iní. (1986). Mach:

A New Kernel Foundation for UNIX Development., (s. 93-112).

Alexandrescu, A. (2001). Modern C++ design: generic programming and design patterns

applied. Addison-Wesley Longman Publishing Co., Inc.

Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E., Becker, D., a iní.

(1995). Extensibility safety and performance in the SPIN operating system. (s. 267-283). ACM.

Brightwell, R., Riesen, R., Underwood, K., Hudson, T. B., Bridges, P., & Maccabe, A. B.

(2003). A Performance Comparison of Linux and a Lightweight Kernel. Cluster Computing,

IEEE International Conference on , 0, 251.

International Conference February 10 - 13, 2010

CYBERNETICS AND INFORMATICS VYŠNÁ BOCA, Slovak Republic

8

Campbell, R. H., & Islam, N. (1993). A technique for documenting the framework of an object-

oriented system. University of Illinois at Urbana-Champaign.

Campbell, R. H., Islam, N., Raila, D., & Madany, P. (1993). Designing and implementing

Choices: an object-oriented system in C++. Communications of the ACM , 36, 117-126.

Driesen, K., & Holzle, U. (1996). The direct cost of virtual function calls in C++. SIGPLAN

Not. , 31, 306-323.

Engler, D. R. (1998). The exokernel operating system architecture. Massachusetts Institute of

Technology.

Engler, D. R., & Kaashoek, M. F. (1995). Exterminate all operating system abstractions. (s.

78). IEEE Computer Society.

Engler, D. R., Kaashoek, M. F., & Jr., J. O. (1995). Exokernel: an operating system architecture

for application-level resource management. (s. 251-266). ACM.

Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G., & R&d, F. T. (2002). THINK: A Software

Framework for Component-based Operating System Kernels., (s. 73-86).

Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., & Shivers, O. (1997). The Flux OSKit: a

substrate for kernel and language research. (s. 38-51). ACM.

Gabber, E., Small, C., Bruno, J., Brustoloni, J., & Silberschatz, A. (1999). The pebble

component-based operating system. (s. 20-20). USENIX Association.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Addisson-Wesley.

Gircys, G. R. (1988). Understanding and using COFF. O'Reilly & Associates, Inc.

Interrante, J. A., & Linton, M. A. (1990). Runtime Access to Type Information in C++.

Stanford University.

Kougiouris, P. (1991). A Device Management Framework for an Object-oriented Operating

System. The University of Illinois at Urbana-Champaign.

Liedtke, J. (1995). On micro-kernel construction. SIGOPS Oper. Syst. Rev. , 29, 237-250.

Liedtke, J., Dannowski, U., Elphinstone, K., Liefl\"ander, G., Skoglund, E., Uhlig, V. (2001).

The L4Ka Vision. The L4Ka Vision .

Madany, P. W., Campbell, R. H., & Kougiouris, P. (1991). Experiences building an object-

oriented system in C++. (s. 35-49). Prentice-Hall, Inc.

Panos, R. J., & Madany, P. (1991). Choices, Frameworks and Refinement. Object-Orientation

in Operating Systems , 9-15.

Press, C. U. (1993). System V application binary interface (3rd ed.). Prentice-Hall, Inc.

Seltzer, M., Seltzer, M. I., Endo, Y., Endo, Y., Small, C., Small, C. (1996). Dealing With

Disaster: Surviving Misbehaved Kernel Extensions., (s. 213-227).

