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Abstract: This paper deals with the adaptive control of the nonlinear process represented by the 
continuous stirred tank reactor (CSTR). This chemical equipment is widely used in the chemical 
industry for production of various chemicals and drugs. Computer simulation which is used in this 
work has several advantages over the experint on the real model – it saves costs, reduces dangerousity 
and speed up experiments. The paper presents one approach to the control of the chemical reactor 
based on the choice of the external linear model (ELM) of the originally nonlinear process parameters 
of which are identified recursively and parameters of the controller are then adopt to these estimated 
ones. The polynomial approach together linear quadratic (LQ) approach used for the controller 
synthesis show good control results although the system has negative control properties.  
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1 INTRODUCTION 

Most of the processes in the technical praxis have nonlinear properties and usage of the 
classical control strategies, where parameters of the controller are fixed, results in very limited 
results or non-optimal control for the nonlinear processes. This paper shows the simulation 
results of adaptive control of nonlinear lumped-parameters model represented by the 
Continuous Stirred Tank Reactor (CSTR) with so called van der Vusse reaction inside the 
reactor (Chen, et al., 1995). The mathematical model of this reactor is described by the 
nonlinear set of ordinary differential equations.  

The adaptive approach used here is based on the recursive identification of the External Linear 
Model (ELM) of the originally nonlinear process and the parameters of the controller are 
recomputed in each step according to identified ones too (Bobal, et al., 2005).  

A polynomial approach used for the controller synthesis has satisfied control requirements and 
moreover, it could be used for systems with negative properties such as non-minimum phase 
behaviour or for processes with time delays. Connected with LQ control technique, it fulfills 
the requirements of stability, asymptotic tracking of the reference signal and compensation of 
disturbances (Kucera, 1993). Resulting controller is strictly proper. 

The external delta models (Middleton and Goodwin, 1990) were used for parameter estimation 
of the nonlinear system. Although delta models belong to the range of discrete models, 
parameters of these models are equal to parameters of their continuous-time counterparts up to 
some assumptions (Stericker and Sinha, 1993). The recursive least-squares method with the 
exponential forgetting was used in the estimation part. Recursive Least Squares (RLS) methods 
without the forgetting, with the exponential forgetting and the directional forgetting (Fikar and 
Mikles, 1999) respectively were used in this case. 

All proposed control strategies were verified by computations and simulations in mathematical 
software MATLAB, version 6.5.  
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2 CHEMICAL REACTOR 

The chemical reactor under the consideration is Continuous Stirred Tank Reactor (CSTR). The 
reaction inside the reactor is called van der Vusse reaction can be described by the following 
reaction scheme (Chen, et al., 1995): 
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The graphical scheme of this reactor can be seen in Figure 1. 

 

Figure 1: Continuous Stirred Tank Reactor (CSTR) 
 

The mathematical model of this reactor is described by the following set of ordinary differential 
equations (ODE): 
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Table 1: Fixed parameters of the reactor 

k01 = 2.145·1010 min-1 
E1/R  = 9758.3 K 
h1 =-4200 kJ.kmol-1 

Vr  = 0.01 m3 
cpr = 3.01 kJ.kg-1.K-1 

cA0 = 5.1 kmol.m-3 

Ar = 0.215 m2 

k02 = 2.145·1010 min-1 

E2/R = 9758.3 K 
h2 = 11000 kJ.kmol-1 

mc = 5 kg 
cpc = 2.0 kJ.kg-1.K-1 

cB0 = 0 kmol.m-3 

U  = 67.2 kJ.min-1m-2K-1 

k03 = 1.5072·108min-1.mol-1 

E3/R = 8560 K 
h3 = 41850 kJ.kmol-1 

ρr = 934.2 kg.m-3 

qr = 2.365·10-3 m3min-1 

Tr0 = 387.05 K 
Qc = -18.5583 kJ.min-1 
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This set of ODE together with simplifications then mathematically represents examined CSTR 
reactor. The model of the reactor belongs to the class of lumped-parameter nonlinear systems. 
Fixed parameters of the system are shown in Table 1. 

The reaction heat (hr) in eq. (2) is expressed as: 

 2
1 1 2 2 3 3r A B Ah h k c h k c h k c= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅  (3) 

where hi means reaction enthalpies. 

Nonlinearity can be found in reaction rates (kj) which are described via Arrhenius law: 

 ( ) 0 exp , for 1,2,3j
j r j

r

E
k T k j

RT

 −  = ⋅ =   
 (4) 

where k0 represent pre-exponential factors and E are activation energies. 

3 ADAPTIVE CONTROL 

Adaptive control is one way to overcome problems with controlling of nonlinear systems. 
“Adaptivity” is derived from the living matters which adapts their behaviour and living to the 
behaviour of the neighbourhood. Each adaptation means loss of the energy and living matterms 
can minimize this loss with increasing number of continuous learning. This repetition is 
generally accumulation of the information. There are several types of adaptive systems 
described in (Bobal, et al., 2005). The adaptive approach used in our case is based on choosing 
of the External Linear Model (ELM) of the nonlinear process, parameters of which are 
estimated recursively and the parameters of the controller are then recomputed in every step 
according to estimated parameters of the ELM. The resulted controller works in continuous-
time and in our case its structure corresponds to the structure of the real PID controller. 

3.1 External Linear Model (ELM) 

ELM as a presentation of a real system is usually described by continuous-time transfer 
function 
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where the condition of the properness is: 

 deg degb a≤  (6) 

Polynomials a(s), b(s) can be generally expressed by 
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And their coefficients ai and bj are estimated recursively during the control.  

There can be used different types of ELM, e.g. continuous-time (CT) models (Vojtesek and 
Dostal, 2005), ordinary discrete models or δ-models. There was used δ-model as an ELM in 
this work. This model belongs to the class of discrete models but its properties are different 
according to the classical discrete model in Z-plain. If we want to convert  
Z-model to δ–model, we must introduce a new complex variable γ computed as 
(Mukhopadhyay, et al., 1992)  
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We can obtain infinitely many models for optional parameter α from interval 0 ≤ α ≤ 1, 
however forward δ-model were used in this work which has γ operator computed via 
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ELM should be then generally described by equation 

 ( ) ( ) ( ) ( )a y t b u tδ δ′ ′ ′ ′=  (10) 

Where t’  denotes discrete time and δ is the operator. With decreasing value of the sampling 
period Tv parameters of polynomials a’(δ) and b’(δ) approach to the parameters of the 
continuous-time model (5) (Stericker and Sinha, 1993). 

 

Substitution t’  = k – n for k ≥ n in the equation (10) transfer this equation to  
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And we can introduce simplification 
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ARX (Auto-Regressive eXogenous) was used for identification. This model should be 
described by the differential equation  

 ( ) ( ) ( ) ( )ˆ 1Ty k k k e kδ δ δ= ⋅ − +φθ  (13) 

Where e(k) denotes immeasurable disturbances and φδ is regression vector 

[ ]( 1) ( ), ( 1), ..., ( 1), ( ), ( 1),..., ( )T k y k n y k n y k u k n u k n u k n mδ δ δ δ δ δ δ− = − − − − + − − − − + − +φ (14) 

and θδ is vector of parameters 

 ( ) 0 1 1 0 1, , ..., , , ,...,T
n mk a a a b b bδ −

 ′ ′ ′ ′ ′ ′=  θ  (15) 

The most frequently used model is ARX model because it uses only directly measured 
quantities, predicted output ̂yδ  is only a function of measured data and simple linear 

regression should be used for parameter estimation.  

3.2 Parameter estimation 

As it is written above, adaptivity of the control process is fulfilled by the continuous parameter 
estimation during the control. Recursive Least Square (RLS) method was used for the 
parameter estimation. This method is well known and it does not need too much data storing 
during computation. 

The recursive method used here for estimation is RLS Method with Exponential Forgetting 
which is modification of well known Ordinary recursive least-squares method (Fikar and 
Mikleš, 1999):.  
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Modifications are used mainly in the cases where parameters of the identified system can vary 
during the control which is typical for nonlinear systems. Exponential Forgetting is based on 
the modification of the covariance matrix P by the equation 
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Several types of exponential forgetting can be used, e.g. like RLS with constant exp. forgetting, 
RLS with increasing exp. forgetting etc. RLS with the changing exp. forgetting is used for 
parameter estimation, where the changing forgetting factor λ1 is computed from the equation 

 ( ) ( ) ( )2
1 1k K k kλ γ ε= − ⋅ ⋅  (18) 

Where K is small number, e.g. K = 0.001. 

3.3 Control System Configuration 

There was used one degree-of-freedom configuration displayed in Figure 2 for designing of the 
controller.  

 
v 

- 

e u w y 
G Q 

 

Figure 2: 1DOF control configuration 
 

This control configuration has controller Q only in the feedback segment. G in Figure 2 denotes 
transfer function of controlled plant, w is the reference signal (wanted value), v is disturbance, e 
is used for control error, u is control variable and y is a controlled output. 

Transfer functions of the controller (Q) is generally: 

 ( )
( )
( )

q s
Q s

s p s
=
⋅

 (19) 

where parameters of the polynomials p(s) and q(s) are computed from diophantine equation 
(Kucera, 1993): 

 ( ) ( ) ( ) ( ) ( )a s s p s b s q s d s⋅ ⋅ + ⋅ =  (20) 

Parameters of the polynomials a(s) and b(s) are known from the recursive identification and 
polynomial d(s) is a stable polynomial. All these equations are valid for step changes of the 
reference and disturbance signals. 

The controller Q(s) ensures stability, load disturbance attenuation and asymptotic tracking for 
1DOF configuration. A demand for a stable controller is fulfilled if the polynomial p(s) in the 
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denominator of (19) is stable. Inner properness holds if all transfer functions are proper. 
Transfer function Q(s) in (19) is proper if 

 deg deg 1q p≤ +   (21) 

Degrees of the polynomials p and q are computed with respect to conditions (6), (21) and 
solvability of the diophantine equations (20) as follows 

 deg deg , deg deg 1q a p a= ≥ −  (22) 

Roots of the polynomial d(s) on the right side of the equations (20) are poles of the closed-loop 
and the control quality is determined by the placement of these poles. There are several ways 
for choosing of the polynomial d(s) on the right side of equations (20). One approach is to 
choose n different or multiple roots 

( ) ( ) ( ) ( ) ( )/2 /2

1 2;
m m m

d s s d s s sα α α= + = + ⋅ + … (23) 

where m is degree of the polynomial d(s). 

This method has one disadvantage, there is no rule how to choose roots α. One way how to 
overcome this problem is to connect the choosing of the polynomial d(s) with parameters of the 
controlled system. This can be done through spectral factorization (Vojtesek, et al., 2004).  

The third approach, which was used in our case combines spectral factorization and Linear 
Quadratic (LQ) tracking. The LQ approach is based on an optimal control theory and in 
addition to the basic control requirements it minimize the cost function in the complex domain 

 ( ) ( ) ( ) ( ){ }1
* *

2

j

w w

j

J E s E s U s U s ds
j

ω

ω

µ ϕ
π

−

= +∫ ɶ ɶ   (24) 

Where φw > 0 and µw ≥ 0 are weighting coefficients, E(s) and U(s) are transfer functions of the 
error and input variables respectively. The polynomial d(s) is in this case 

 ( ) ( ) ( )d s g s n s= ⋅  (25)  

where polynomials n(s) and g(s) are computed from the spectral factorization 

 
( )* * *

* *

w wa f a f b b g g

n n a a

ϕ µ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ = ⋅

⋅ = ⋅
 (26) 

where f(s) is for the control variable u(t) and disturbance v(t) from the ring of step functions  
f(s) = s. 

The resulted controller is strictly proper and the degree of the polynomial d(s) is computed via 

 ( )deg deg 2deg 1d g n a= ⋅ = +  (27) 

4 SIMULATION RESULTS 

4.1 Static and Dynamic Analyses 

The steady-state analysis was done for various values of the input volumetric flow rate of the 
rectant, qr, and various heat removal of the cooling liquid, Qc. 
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Figure 3: Steady-state values of the product’s concentration, cB
s, and the temperature of the reactant, 

Tr
s, for various heat removal, Qc, and volumetric flow rate, qr 

 

3D-plots of the steady-state value of concentration cB
s and temperature Tr

s presented in Figure 3 
show high nonlinearity of the process. Static analysis usually results in an optimal working 
point. The maximum of the product’s steady-state concentration, cB

s, was chosen as a criterion 
for choosing an optimal working point. Concentration cB

s has its maximum for the volumetric 
flow rate qr

s = 2.365·10-3 m3.min-1 and the heat removal Qc
s = -18.56 kJ.min-1. 

The dynamic analysis was done for various step changes of the input heat removal of the 
cooling liquid, Qc, and volumetric flow rate of the reactant, qr. Four step changes ±10% and 
±20% of both input variables – the heat removal Qc and the volumetric flow rate qr were done. 
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Figure 4: Dynamic analysis of outputs y1 (cB(t) – cB
s) and y2 (Tr(t) – Tr

s) for various step changes of 
the input heat removal, Qc 

 

The Figure 4 displays negative control properties of the system, especially for the first output y1 

which represents product’s concentration cB.  

4.2 Adaptive control 

The difference between actual and initial temperature of the reactant Tr was taken as controlled 
output and changes of the heat removal Qc was set as control input, i.e. 
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 (28) 

On the other hand, dynamic analysis results in ELM represented by a second order transfer 
function with relative order one, which is generally: 
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Equation (29) can be rewritten for the identification to the form of the differential equation   

 ( ) ( ) ( ) ( ) ( )1 0 1 01 2 1 2y k a y k a y k b u k b u kδ δ δ δ δ=− − − − + − + −  (30) 

where yδ is recomputed output to the δ-model: 
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where Tv is the sampling period, the data vector is 

 ( ) ( ) ( ) ( ) ( )1 1 , 2 , 1 , 2T k y k y k u k u kδ δ δ δδ
− =  − − − − − − φ  (32)  

and the vector of estimated parameters  

 ( ) 1 0 1 0
ˆ ˆˆ ˆ ˆ, , ,T k a a b bδ

 ′ ′ ′ ′=   θ  (33) 

could be computed from the ARX (Auto-Regressive eXogenous) model similar to(13): 

 ( ) ( ) ( )ˆ 1Ty k k kδ δ δ= −θ φ  (34) 

by the recursive least squares methods described in part 3.2.  

Degrees of the polynomials p(s), q(s) and d(s) are then computed via (22) and (27): 

 deg 2; deg 2; deg 5q p d= = =  (35) 

Polynomials g(s) and n(s) in the equation (25) are  
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and their coefficients are computed as 
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Transfer functions of the feedback and feedforward parts of the controller for 1DOF and 2DOF 
configurations are 

 ( )
( )

2
2 1 0

2
1 0

q s q s q
Q s

s s p s p

+ +
=

+ +
 (38) 

 

Where parameters of the polynomials q(s) and p(s) by the comparison of the coefficients of the 
s-powers a in diophantine equations (20). 
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All simulation experiments took 450 min and three changes were done during this interval. The 
first simulation study was done for various values of the weighting factor φw = 0.05, 0.5 and 1.5 
in (37).  
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Figure 5: Course of input and output variables u(t) and y(t) for various weighting factors φw, 1DOF configuration 
 

As you can see in Figure 5, simulation is quicker with the decreasing value of the factor φw. On 
the other hand, a low value of φw results in overshoots of the output response. There can be 
observed a few problems at the very beginning of the control. This is caused by the inaccurate 
parameter estimation which has a low amount of initial information about the system.   
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Figure 6: The course of identified parameters a’0, a’1, b’0 and b’1 during control, 1DOF, LQ method 
 

Figure 6 shows the course of the identified parameters during the control. As you can see, used 
identification method has no significant problems except the begging of the control with is 
mentioned above. 

5 CONCLUSION 

This paper shows simulation results for adaptive control of a nonlinear lumped-parameters 
system represented by the CSTR reactor. Used adaptive control is based on the choosing of the 
external linear model in the range of delta models parameters of which are estimated 
recursively during the control. Three different recursive least squares methods were used for 
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parameter estimation and two control system configurations with one degree-of-freedom 
(1DOF) and two degrees-of-freedom (2DOF). Presented results shows good control responses, 
the only problem is at the beginning of the control when we have less amount of information 
about the system. Course of the output temperature is quicker with the decreasing value of the 
weighting factor φw but there should be some small overshoots for low value of φw. Comparison 
of 1DOF and 2DOF configurations presents slower course of the output variable for 2DOF but 
changes of the action value are smoother. The last analysis compares responses for different 
identifications and as it can be seen, there is no need for using forgetting factors because results 
are nearly the same. 
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