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Abstract: For tuning of PID controllers, modern engineering methods use frequently design-oriented 
identification of the controlled plant (Visoli, 2006). The main idea of the design oriented-identification 
consists in a purposeful formulation of the identification method supporting the fulfillment of control 
objectives (Ingimundarson, 2004). The proposed paper shows that a reliable choice of the sine wave 
signal frequency used for identification of the uncertain plant and application of the proposed 
frequency-domain engineering method guarantee achieving required performance in terms of specified 
settling time and maximum overshoot. The paper deals with setting up and implementation of the 
proposed modern engineering method to control benchmark examples (Åsröm, 2000) with prespecified 
performance. Robustness properties are studied on a physical DC motor model. 
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1 INTRODUCTION 

Engineering methods are two-step procedures consisting of identification of certain 
characteristic data of the plant followed by tuning PID controller coefficients depending 
directly on aquired information about the plant (Yu, 2006). These popular tools combine the 
field experience with analytical control engineering approaches into attractive design methods. 
Their widespread use and lot of variations are due to the possibility to specify performance 
requirements in advance and build directly into design algorithms. The widespread practical 
use of these methods is due to both simplicity of their algorithtms and quick controller 
synthesis (Veselý, 2003).  

2 ALGORITHM OF THE PROPOSED ENGINEERING METHOD  

This section briefly describes the design-oriented identification algorithm based on sine wave 
excitation and the presentation of the PID controller tuning approach including verification on 
benchmark examples. A generalization of the experience from the PID controller synthesis is 
provided yielding emprical expressions and plots to be used to achieve required closed-loop 
performance.  

2.1 Formulation of engineering performance requirements  

It is obvious that effective closed loop operation depends both on suitable PID controller 
adjustment and reasonably performed identification. The proposed engineering method 
guarantees performance specified in terms of the following measures: 

• maximum overshoot ηmax, 

• settling time treg.  
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However, we ask the question: what is the reliable way for transforming the above-mentioned 
engineering requirements into frequency domain specifications applicable to PID controller 
coefficients tuning?  

2.2 Transformation of the the engineering performance requirements to control objectives 

It is a well-known fact in the frequency-domain control theory that maximum overshoot ηmax 
can be estimated from the desired phase margin φM and similarly, the settling time can be 
estimated from the open-loop gain crossover frequency ωa. Analytical dependences ηmax=f(φM) 
and treg=f(ωa) derived for the 2nd order closed-loop transfer functions are according to Reinisch 
(Hudzovič, 1989)  

 5564910 .. Mmax +−= φη    for °°∈ 7138 ,Mφ ,  (1) 

 4688531 .. Mmax +−= φη    for °°∈ 3812 ,Mφ ,  (2) 
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Hitherto, the Reinisch´s formulae are useful tolls to express the desired closed-loop behavior in 
classical analytical design procedures. However, with increasing order of the closed-loop 
transfer function, validity of expressions (1)-(3) fails. Moreover, in case of engineering 
methods, it is impossible to employ the considered expressions without the knowledge the 
mathematical model of the plant.  
 

Design-oriented identificiation used in the proposed engineering method allows determining the 

frequency ωn of the sinusoidal excitation signal from the settling time treg given by the process 
technologist. The control objective is to guarantee the fulfillment of required phase margin φM 
under frequency ωn, according to expected engineering requirements on treg and ηmax as 

performance. To prescribe the phase margin φM for the design stage and excitation frequency ωn 
for the identification and design stage, respectively, empirical dependences ηmax=f(φM) and 
treg=(φM) were constructed. These dependences obtained experimentally by observing 
performance on a batch of benchmark examples under PID controller for various phase margins 
and excitation frequencies provide a helpful tool for the operator in choosing suitable control 
objectives to achieve his engineering requirements. The above-considered empirical dependences 
are mentioned in Section 3, after deriving the identification and design procedures, respectively.  

2.3 Performance requirements and control objectives  

Control objective of the proposed engineering method including design-oriented sine wave 
identification of the controlled plant with unknown mathematical model (further only 
engineering method) is to guarantee the desired phase margin φM under the frequency ωn. 
Parameters ωn and φM adjusted in advance conform to engineering requirements express in 
terms of treg and ηmax. Thus, design objectives are expressed as the couple {ωn, φM}. 

2.4 Design-oriented identification of the controlled plant using the sine wave excitation   

The relay feedback is a wide-spread technique used for identification of the controlled plant in 
classical engineering PID tuning methods (Yu, 2006). This chapter presents advantages of the 
sine wave identification of the plant with unknown mathematical model.  
 

After assemblying the multifunction control loop shown in Fig. 1a and turning the swith SB to 
position ”2“, the excitation variable injected into the unknown plant G(s) is a sine wave signal 
(Fig. 1b) 
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 ( )tsinU)t(u nn ω= ,  (4) 

where Un is magnitude of the excitation signal u(t) and ωn is excitation frequency of the sine 
wave generator.  
 

The principal advantage of using the sine wave method is that the output signal of the process 
y(t) is also of sine wave type with the same frequency ωn as the frequency of the excitation 
signal u(t). The ouput signal y(t) can be described as  

 ( )ϕω += tsinY)t(y nn ,  (5) 

where Yn is magnitude of the output signal and ϕ is the phase lag with respect to the excitation 
signal u(t). After reading off the values Yn a ϕ from the recorded signals u(t) and y(t), the 
particular point of the plant frequency characteristics 
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corresponding to the excitation frequency ωn output is plotted in the compex plane (Fig. 1b). 
Another advantage of the sine wave identification is that the sine wave signal magnitude Yn of 
the output y(t) can be affected by the magnitude Un of the excitation sine signal generated by 
the sine wave generator. Characteristic data of the controlled plant obtained by performing the 
sine wave identification test are represented by the triple {ωn, A(jωn), φ(ωn)}. 

2.5 Control law of the sine wave engineering method for tuning PID controllers  

The block diagram of the control loop for application of the proposed engineering method is in 
Fig. 1a. The control law is easy to derive from the closed-loop characteristic equation (7) when 

the swith SB is turned into „1“ and the controller is adjusted to manual regime.  
 
 

 

 

 
 
 
 
 
 

Fig. 1: a./ Feedback loop for the sine wave experimental method, b./ Identification procedure using the sine wave 
method, c./ grafical representation of the PID controller synthesis in the complex plane 

 

In Fig. 1a, G(s) is the plant transfer function with unknown mathematical model and GR(s) the 
PID controller transfer function. The closed-loop characteristic equation  

  011 =+=+ )j(G)j(G)j(L nRnn ωωω ,       (7) 

can be easily broken down into the magnitude and phase conditions  

1=)j(G)j(G nRn ωω , MnRn )(Garg)(Garg φωω +°−=+ 180 ,   (8) 

where φM is the required phase margin, L(jω) is the open-loop transfer function. Graphical 
interpretation of the conditions (8) is depicted in Fig. 1c.  
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Introduce the following substitutions 

 )(Garg nωϕ = , )(Garg nR ωΘ = .  (9) 

Consider the interacting form of ideal PID controller  
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where K is proportional gain, and Ti and Td are integral and derivative time constants, 
respectively. A frequency-domain comparison of the right-hand side of equation (10)  
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with the right-hand side of the PID controller in polar form 
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yields a complex equality 
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from which it is possible to obtain PID controller parameters using the substitution 
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resulting from the magnitude condition (8a). The controller gain K can be expressed directly 
from the complex equation (14)  
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and the derivative time constant Td can be specified from the quadratic equation with respect to 
Tdωn 
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The ratio of integral and derivative time constants is set by an appropriate choice of coefficient β 

 di TT β=            (17) 

according to the most frequently used empirical methods β=4. Substituting (15) into (16) yields 
the following modificated quadratic equation with respect to Tdωn  
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that can simply be modified as follows 

  0
122 =−−
β

Θωω tgTT ndnd .        (19) 

The expression for calculation of the derivative time constant Td results directly from the 
solution of (19)  
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Hence, PID controller parameters are calculated according to the following expressions  
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where the angle Θ is obtained from the phase condition (8b) 

 ϕφωφΘ −+°−=−+°−= MnM )(Garg 180180 .     (22) 

The identified point G of the plant frequency response G(jω) with co-ordinates according to (6) 
is moved into the point L of the open-loop frequency response lying on the unit circle M1 by 
the designed PID controller. Thus, the identified point G of the plant frequency response G(jω) 
determines the gain crossover point L of the open-loop L(jω)  

 [ ] [ ]
Mnnnn ,)j(L)(Larg,)j(L)j(LL φωωωω ==≡ ,     (23) 

in which the designed PID controller guarantees the required phase margin φM. Therefore under 
the excitation frequency ωn holds |L(jωn)|=1. Mutual position of the points G(jωn) and L(jωn) is 
shown in Fig.1c. 
 

It is advantageous to derive the frequency of the sine wave generator from the plant ultimate 

frequency ωc that can be determined by the well-known relay experiment according Rotač 
(Rotač, 1984). The experiment is carried out by switching the switch in the block diagram in 
Fig. 1a to „3“. It is useful to choose the sine wave generator frequency from the interval  

 ccn .,. ωωω 95020∈ ,         (24) 

obtained from observing results of the proposed engineering method applied to control a batch 
of benchmark examples. As the choice of the frequency ωn influences the closed-loop 
dynamics, the interval (24) enables to shape the closed-loop step response.  

3 EXPERIMENTAL RESULTS OBTAINED ON BENCHMARK EXAMPLES  

Proposed engineering method based on design-oriented sine wave identification was used to 
identify and tune PID controllers on the following benchmark examples (Åström, 2000) 
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Control objectives for benchmark systems with transfer functions (25), (26) are to guarantee 
achieving the following phase margins  

 { }°°°°°°°°= 9080706050403020 ,,,,,,,Mjφ ,   j=1... 8.     (27) 

It can be expected that lower phase margin values φM will cause increase of the maximum 

overshoot ηmax of the closed-loop step response. 
 
 

The main objective of engineering method is to guarantee fulfillment of magnitude and phase 
conditions (8) at the same frequency ωn.  
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Notice that according to the proposed PID design technique the gain crossover frequency ωa 
and sine wave frequency are identical (e.g. ωa≡ωn). 
 

It can be expected that changes in identification frequency will affect considerably the settling 

time treg. 
 

Let us split the interval (24) into five linear segments with the segment width ∆ωn=0.15ωc. The 
described segmentation yields a set of excitation frequencies given by 

{ } { }ckccccccnk .,.,.,.,.,. ωσωωωωωωω == 950806505035020 ,  k=1...6.   (28) 

Either element from this set represents a different identification level ωnk. Synthesis of PID 
controllers on benchmark examples GA(s) … GD(s) with performance requirements expressed 
by a carthesian product ωnk×φMj of sets (27) and (28) for j=1...8 and k=1...6, followed by the 
analysis of acquired settling times treg and maximum overshoots ηmax of closed-loop step 
responses yielded empirical dependences ηmax=f(φM); treg=(φM) obtained for individual 
identification levels ωnk (Fig. 2). 

 

 

 

 

 

 

 

 

 

Fig. 2: Dependences: a./ τreg=ωctregf(φM), b./ ηmax=f(φM) for individual identification levels ωnk, k=1,2,3,4,5,6 

Considering the identity of frequencies ωa≡ωn yielded from moving the identified plant 
frequency response point G(jωn) into the open-loop gain crossover point L(jωn) in Fig. 2c, it is 
straightforward to define the settling time treg as 

 
n

regt
ω

γπ
= ,          (29) 

which is similar to (3) from the Reinisch´s formulae (Hudzovič, 1982); γ represents the shape 
factor of the closed loop step response. Its value in Reinisch´s relation for a 2nd order closed- 
loop system usually ranges within the values from 1 to 4, according to damping coefficient 
specifications (Hudzovič, 1982).  
 

Unlike this, when using the proposed engineering method, γ changes more significantly within 
the empirical interval (0.5;16) strongly depending on the phase margin φM. i.e. γ=f(φM) under 
the given excitation frequency ωn. To explore settling times of closed-loops with different 
dynamics it is useful to define a new performance measure, a so-called relative settling time 

 )(t Mnreg φπγω = .         (30) 

Substituting ωn=σωc into (30) we can define the relative settling time τreg=tregωc as follows 
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π
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relating the settling time treg to the ultimate frequency ωc of the plant. Advantage of using the 
plant ultimate frequency ωc consists in that the left-hand side of (31) is independent from the 
excitation frequency ωn. This empirical dependence for different identification levels ωnk is 
plotted in Fig. 2a showing that when increasing the desired phase margin φM, the relative 
settling time first drops and after achieving its optimal value τreg_opt grows again quadratically. 
 

For example for ωc=1rad.s-1, the same settling time treg=10s is achieved for both φM1=38° and 
φM2=66° with corresponding maximum overshoots ηmax1=40% and ηmax2=7%, respectively, at the 
identification level ωn5=0.8rad.s-1 according to green plots in Fig. 2b. The maximum overshoot 
ηmax=10% can be obtained either on the identification level ωn2=0.35rad.s-1 for the phase margin 
φM1=70° with settling time treg1=7s (blue plots), or on the identification level ωn1=0.2rad.s-1 for 

the phase margin φM2=62° with more than double settling time treg2=16s (yellow plots). 
 

Dependences shown is Fig. 2 provide the tool for choosing the excitation signal frequency ωn 
and phase margin φM such that the settling time treg and maximum overshoot ηmax requirements 
are met. 
 

Closed-loop time responses under PID controllers tuned for both phase margins φM1=50° and 

φM2=70° on different identification levels ωn1=0.2ωc, ωn3=0.5ωc, ωn5=0.8ωc a ωn6=0.95ωc are 
shown in Fig. 3. Significant differences between dynamics of individual control loops can be 
observed. Designs were performed for the benchmark plant GB(s) and the parameter α=0.5.  
 
 
 
 
 
 
 

Fig. 3: Closed-loop step responses for both φM1=50° and φM2=70° on several identification levels ωnk 

4 ROBUSTIFICATION OF THE PROPOSED ENGINEERING METHOD  

The main idea of the design-oriented identification of the uncertain plant consists in repeating 
the sine wave identification for individual uncertainty changes using the excitation signal 
frequency ωn yielding a set of identified points Gi, i=1,2,...,N of the uncertain plant frequency 
responses  
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Plant parameter changes are reflected in magnitude and phase changes |Gi(jωn)| and argGi(ωn), 
respectively, of identified points Gi(jωn) plotted in the complex plane. If the multiple 
identification of individual points Gi of the uncertain plant frequency characteristics is 
performed using sine wave excitation signals with the same frequency ωn in each identification 
experiment, then each identified point Gi in the complex plane corresponds to a different 
frequency characteristics from the set of plant models and simultaneously, each identified point 
Gi in the complex plane corresponds to the same angular frequency ωn for i=1,2,...,N; where 
N=p+1 is the number of identification experiments and p is the number of varying technological 
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quantities of the plant (Veselý, 2008). Location of identified points Gi(jωn) of the unknown 
uncertain plant in the complex plane can be expressed in the standard form complex number 

 iini jba)j(G +=ω ,  i=1,2,...,N.       (33) 

The real and imaginary parts of the nominal plant model G0(jωn) are obtained as mean values of 
real and imaginary parts of identified points according to 

∑∑ +=+=
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where the magnitude |G0(jωn)| and the phase ϕ0(ωn)=argG0(ωn) are calculated as follows 
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The points Gi representing plant uncertainties can be enclosed in the circle MG centered in 
G0(jωn) with the radius RG≡RG(ωn) obtained as a maximum distance between the i-th identified 
point Gi(jωn) and the nominal point G0(jωn)  

( ) ( ){ }2
0

2
0 bbaamaxR ii

i
G −+−= ,  i=1,2,...,N.       (36) 

The dispersion circle MG centered in the nominal point G0 with the radius RG encircles all 
identified points Gi of the uncertain plant; Fig. 4 illustrates the situation for N=3 identifications. 

 

 

 

 

 

 

Fig. 4: a./ Dispersion circles MG, ML and the prohibited area delimited by the circle Ms,  b./ Feedback loop of the 
DC motor 

The proposed control law generated by the robust controller GRrob(s) designed for the nominal 
point G0(jωn) actually carries out the following transformation of the set of identified points 
Gi(jωn) encircled by MG with the radius RG into the set of points Li(jωn) delimited by ML 
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and also calculates the radius RL≡RL(ωn) of the dispersion circle ML corresponding to the points 
Li(jωn) of the Nyquist plot so as to guarantee fulfillment of the robust stability condition.  
 

The robust PID controller is designed using the proposed sine wave method described in 
section 2; the input data for the nominal model G0(jωn) are its following coordinates 
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Substituting coordinates of the nominal model G0(jωn) into (21) following expressions for 
calculating robust PID controller parameters are obtained 
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For the parameter Θ0 and the excitation frequency ωn the modified phase condition holds 

000 180 ϕδΘ −+°−= .       (40) 

Thus, δ0 is a modified phase margin and at the same time a robust PID controller tuning 
parameter appearing in (39) and (40) for calculation of its parameters that guarantee the phase 
margin required for guaranteeing robust stability; δ0 does not influence the radius of the 
dispersion circle ML, just the distance between L0 and the critical point (-1,0). This enables to 
draw the circle ML apart from the critical point (-1,0) thus improving robust closed-loop 
performance. If the nominal open-loop 

)s(G)s(G)s(L R 00 =        (41) 

is stable, then according to the Nyquist stability criterion the closed-loop with the uncertain plant 
will be stable if the distance between L0 and the point (-1,j0), i.e. |1+L0(jωn)| is greater than the 
radius RL(ωn) of the dispersion circle ML centered in L0 (Veselý, 2008) 

)j(L)j(R nnL ωω 01+< ,       (42) 

where ωn is the sine wave generator frequency. The distance between the point (-1,0) and the 
open-loop Nyquist plot with the nominal model L0 can be calculated according to Fig. 4a by 
applying the cosine rule to the triangle (-1,0,L0)  

 00

2

0

22

0 1211 δcosL..LL −+=+ ,       (43) 

where δ0 is the modified phase margin. According to the robust stability condition the distance 

00

2

00 211 δcosLLL −+=+ ,       (44) 

has to be greater than the radius RL of the dispersion circle centered in L0, i.e. the following 
inequality has to be satisfied 

 01 LR
!

L +< .          (45) 

Substituting the distance (44) into (45) yields the robust stability condition in the form 

 00

2

0 21 δcosLLR
!

L −+< .        (46) 

From the principles of the proposed empirical sine wave PID controller tuning method results, 
that the robust controller shifts the nominal point of the plant frequency response G0 to the 
point L0 of the unit circle at frequency ωn. Thus ωn becomes open loop gain crossover 
frequency. As the point L0 is lying on the circle M1, the magnitude |L0(jωn)| equals one, i.e. 
|L0|=|G0||GR|=1, yielding the transformation ratio |GR|=|G0|

-1 between the radii RG and RL of the 
circles MG and ML, respectively. The radius RL of the dispersion circle ML can be expressed as 

 
1

0

−
== GRGRR GRGL .         (47) 

Substituting (47) in (46) yields the robust stability condition in the following form  

 0

122 22 δcosGR
!

RG −<
−

.         (48) 

After minor manipulations, condition for calculating the angle δ0 is obtained  

 













−<

2
0

2

0 2
1

1
G

R
cos Gδ .         (49) 
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According to the robust stability condition the chosen value δ0 is substituted into the phase 
condition (40) and afterwards parameters of the robust PID controller are calculated from (39).  

5 VERIFICATION OF THE PROPOSED METHOD ON A REAL PLANT  

The empirical sine wave method was applied for robust control of a physical plant – the DC 
motor where the controlled output y(t) is the speed and the input variable u(t) is the armature 
voltage generated by the control system implemented in Matlab-Realtime Workshop. To sense 
the output y(t) a tachogenerator (TG) is used. The disturbance affecting the motor operation is 
the load torque z(t) as depicted in the feedback loop in Fig. 4b. Let the performance 
requirements for the nominal model of the motor formulated by the process technologist are 
given in terms of maximum overshoots ηmax1=25% and ηmax2=10%, respectively.  
 

According to empirical curves depicted in Fig. 2 the maximum overshoot ηmax1=25% can be 
obtained for φM1=50° and ηmax2=10% for φM2=70° both at identification level ωn2=0.35ωc (blue 
curves). Specified nominal ultimate frequency of the DC motor is ωc0=2.05 rad.s-1, hence it is 
recommended to carry out the design-oriented identification on the „blue level“ at frequency 
ωn0=0.72rad.s-1. Expected relative settling time values according to blue empirical curves are 
τreg1=16 and τreg2=4.5, respectively, from which treg1=τreg1/ωc0=7.8s and treg2=τreg2/ωc0=2.2s. 
Three identification experiments were carried out on the DC motor, for the minimum, medium 
and the maximum loads.  
 

For both cases, robust properties were verified by applying first the reference speed step change 
and after the transient response died out the load step change was applied. Corresponding time 
responses are shown in Fig. 5. 
  
 
 
 
 
 
 
 
 

 
 
 

Fig. 5: DC motor closed-loop time responses for different phase margin values φM 

6 CONCLUSION 

Closed-loop time responses in Fig. 5 and position of the dispersion circle ML in Fig. 6 prove 
robust stability and satisfaction of performance requirements under the designed PID controller. 
In addition, Fig. 6 shows that the design for φM2=70° determines a larger prohibited area in the 
complex plain delineated by the circle Ms than the design for φM1=50°. The proposed new 
engineering method based on sine wave type identification of the controlled plant allows 
successful tuning of PID controller coefficients. An important contribution is the construction 
of empirical curves to calculate frequency domain performance specification (in terms of phase 
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margin) from engineering time-domain requirements specified by a process technologist (in 
terms of maximum overshoot and settling time). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 6: Robust stability for different phase margins φM depicted in the complex plane 
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