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Abstract: The general problem of assigning the system matrix eigenstructure using the state feedback 
control combining with the static decoupling is considered in this paper. With pole assignment 
algorithms the exposition of the problem is generalized here for the closed-loop state variables mode 
decoupling and the system interaction static decoupling. This handles the optimized structure of the 
right eigenvectors set for desired eigenvalues spectrum and the decoupling conditions to make use of 
freedom in the state feedback control design for MIMO systems.  
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1 INTRODUCTION 

The static and the dynamic pole placement problem belongs to the prominent design problems 
of modern control theory, and, although its practical usefulness has been continuously in 
dispute, it is one of the most intensively investigated in control system design. It sems that the 
state-feedback pole assignment in control system design is one from the preferred techniques. 
In the single-input case the solution to this problem, when it exists, is unique. In the multi-
input multi output (MIMO) case various solutions may exist, and, to determine a specific 
solution, additional conditions have to be supplied in order to eliminate the extra degrees of 
freedom in design strategy. 

In recent years significant progress has been achieved in this field, coming in its formulation 
closest to the algebraic geometric nature of the pole placement problem. The reason for the 
discrepancy in opinions about the conditioning of the pole assignment problem is that one has 
to distinguish amoung three aspects of the pole placement problem, the computation of the 
memoryless feedback control law matrix gain, the computation of the closed loop system 
matrix eigenvalues spectrum and the supressing of the cross-coupling effect, where one 
manipulated input variable cause change in more outputs variables. Since a desirable property 
of any system design is that pole should be insensitive to perturbations in the coefficient 
matrices, this criterion may be used in adition to restrict the degrees of freedom in design.  

Using algorithms for the pole assignment based on the Singular Value Decomposition (SVD), 
the exposition of the problem is generalized here to handle the specified structure of the right 
eigenvector set in state feedback control design for linear systems and the static decoupling 
techniques to obtain cross-decoupling [Wang, 2003]. Extra freedom, which makes dependent 
the closed-loop eigenvalues spectrum, is used only for closed-loop state variables mode 
decoupling. The integrated procedure provides methodology usable in the linear control system 
design techniques when designing state controller for the state-space control structures is 
defined by [Sobel and Lallman, 1989]. 
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2 PROBLEM STATEMENT 

Any linear time-invariant dynamic system with n degree-of-freedom can be modeled by the 
continuous-time state-space equations  

   (1) ( ) ( ) ( )t t= +q Aq Bu� t

t   (2) ( ) ( ) ( )t t= +y Cq Du

where and are vectors of the state, input, and output variables, 
respectively, matrices

( ) ,ntq \∈ ( ) ,rt \∈u ( ) mt ∈y \
,n n\ ×∈A ,n r×∈B \ ,m n×∈C \ m r×∈D \ are real matrices. Generally, for 

controllable time-invariant linear MIMO system (1), (2), the linear state feedback regulator 
control law is defined as 

   (3) ( ) ( ) ( )t t= − +u Kq Lw t

where  is a constant matrix and r n×∈K \ r m×∈L \  is a gain matrix of the desired control signal 
. This control gives rise to the closed-loop system ( ) mt ∈\w

   (4) ( ) ( ) ( ) ( ) ( ) ( )ct t t t= − + = +q A BK q BLu A q BLu� t

It obvious, the closed loop poles are the eigenvalues of the matrix ,= −cA A BK n n
c

×∈A \ . 

3 BASIC PRELIMINARIES 

3.1. The static decoupling problem  

If q(0) = 0 and m = r the state space description is related by the matrix transfer function 

   (5) 1( ) (( )( ) ) ,c n cs s −= − − + = −cG C DK I A B D L A A BK

�

m= I

This function is said to be coupled if any individual input influences more than one output. 
Since m = r  the matrix trunsfer function is a square matrix function. 

Considering 

    (6) 
0 0

lim ( ) lim ( ) lim ( ) lim ( ) ( )ct t s s
s s s s s

→∞ →∞ → →
= ⇒ =y t w t y G w�

it is evident that 

   (7) 1

0
lim ( ) [( - )(- ) ]c cs

s −

→
= +G C DK A B D L

and if is non-singular and(0)cG cA is stable then 

 1(( - )(- ) )c
−= 1−+L C DK A B D   (8) 

and (8) results static system decoupling. 

Proposition 1. The static decoupling problem by state beedback is solvable if len only if 

(i) (A,B) is stabilizable; and 

(ii) rank n m⎡ ⎤ = +⎢ ⎥⎣ ⎦
A B
C D  

Proof. (e.g. see [Wang, 2003]) If  (A,B) is stabilizable, it is possible to find K such that A  is 
stable. Assuming that for such K is  

c
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-

rank rank rank
- -

n

m

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

I 0 ⎤
⎥
⎦

A B A B A BK
K IC D C D C DK D

B

⎥

  (9) 

 1

- -
rank rank

-( - )( - )- -
n

m
−

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦⎣ ⎦

I 0A BK B A BK B
C DK A BK IC DK D C DK D

  (10) 

   (11) 1

-
rank rank

-( - )( - )
n m−

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

A B A BK B
C D 0 C DK A BK B D

+

respectively, since rank cA = n and the preposition (ii) implies 

   (12) 1rank(( - )(- ) )c m− + =C DK A B D

Thus, chosing L as in (8) then  is obtained, i.e. static decoupling is possible. (0)c =G mI

+ =

Converselly, 

   (13) 1 1rank( ) rank(( - )(- ) )c m− −=L C DK A B D

requires that both L and 1( - )(- )c
− +C DK A B D  are non-singular. This gives again (11) which 

implies the necessity from. This concludes the proof. 

3.2. Controlability and observability of modes 

Proposition 2. Given system eigenstructure with distinct eigenvalues and D = 0, then 

(i) the k-th mode (s – sk) is unobserved from the l-th output if the l-th row of the output 
matrix C is orthogonal to the k-th eigenvector of the closed-loop system system, i.e. 

[ ]10, , , {1,2, }, {1,2, },T T T
l k j k mj k j k n l m= = ≠ ∈ ∈ =c n n n C c c… … "  (14) 

(ii) the k-th mode (s – sk) is uncontrolled from the l-th input if the l-th column of the 
input matrix B is orthogonal to the k-th eigenvector transposition of the closed-loop 
system, i.e. 

[ ]10, , , {1,2, }, {1,2, },T T
k l k j rj k j k n l r= = ≠ ∈ ∈ =n b n n B b b… … "  (15) 

Proof. (e.g. see [Krokavec and Filasová, 2007]) Let nh is the k-th right eigenvector correspon-
ding to the eigenvalue sh, i.e. 

   (16) ( ) , 1, 2,h =c h h h hA n = A - BK n = s n …, n

)

n ⎤⎦

By definition, the closed-loop system resolvent kernel is 

   (17) 1( n cs −ϒ = −I A

If all eigenvalues of the closed-loop system are distinct, (16) can be written in the compact 
form 

   (18) 1 1 1diagc n n s s=⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣A n n n n" " "

 1
1 1, diag , , T

c n ns s −= = = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦A N NS S N n n N N" "   (19) 

respectively. Using the property of orthogonality given in (19), the resolvent kernel of the 
system takes form 

   (20) 1 1 1 1 1 1( ) ( ( ) ) ( T
cs s− − − − − −ϒ = − = − = −NN NA N N I S N N I S N)s
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 1 1
1 1 1

1

diag ( ) ( )
TnT h h

nn n
h h

s s s s
s s

− −

=

⎡ ⎤ϒ = − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ −∑ n nn n n n" " "   (21) 

respectively, and  the closed loop matrix transfer function of the system (1), (2) takes form 

 1

1

( - )( ) (( - )( - ) )
Tn

h h
c

h h

s s
s s

−

=

= + =
−∑ C DK n n BLG C DK I A B D L D+ L

t

t

]C 0

  (22) 

It is obvious if D = 0 that (22) implies this preposition. This concludes the proof. 

3.2. System model canonical form 

Let the original state description of the system is 

   (23) 0 0 0 0( ) ( ) ( )t t= +q A q B u�

   (24) 0 0( ) ( )t =y C q

and r = m. 

Proposition 3. If rank( ) = m then there exists a coordinates change in which (A, B, C) 
takes structure 

0 0C B

   (25) [11 12 1
1

21 22
, ,⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A A BA B CA A 0

where  is regular and 11 ,m m×∈A \ 1
m m×∈B \ 1

m m×∈C \  is orthogonal. 

Proof.  Defining the transform matrix such that 1T

   (26) [ ] 1 0
1 0 1 1,m

n m

−

−

⎡= = = ⎢⎣ ⎦
CC C T I 0 T I 0

⎤
⎥

then using (1), (2) yields 

 01 0 0111 1 1
1 1 0 1 1 1 0 1

02 0212

,− − − ⎡ ⎤ ⎡⎡ ⎤
= = = = =

⎤
⎢ ⎥ ⎢⎢ ⎥

⎣ ⎦
⎥

⎣ ⎦ ⎣ ⎦

B C BB
A T A T B T B T

B BB
  (27) 

If is a regular matrix then the second transform matrix can be defined as follows 0 0 11=C B B 2T

 1
2 21

12 11 12 11

,
-

m m

n m n m

−
−

− −

⎡ ⎤ ⎡
= =⎢ ⎥ ⎢
⎣ ⎦ ⎣

1−

⎤
⎥
⎦

I 0 I
T T

B B I B B I
0

  (28) 

This results in 

 11 11 0 11
2 1 1

12 11 12-
m

n m

−
−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
0I 0 B B C B B

B T B
B B I B 0 0 0

⎥

  (29) 

and with 

 0 01 1 1
2 1 1 1

12 11 02 0 0- - ( )
m m

c
n m n m n m n m

− − −
− −

− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I 0 C I 0 C
T T T

B B I I 0 B C B I I 0
  (30) 

it yields 

   (31) [ ] [10 1 2
12 11

m
c m

n m
−

−

⎡ ⎤= = = =⎢ ⎥⎣ ⎦

I 0
C C T C T I 0 I 0

B B I ]m
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as well as 

 1 1 1 1 1 111 12
2 1 0 1 2 0 2 1 0 0 0 1 2

21 22
, ,c c c

− − − − − −⎡ ⎤= = = = = =⎢ ⎥⎣ ⎦
A A

0 c=A T T A TT T A T B T T B T B C C TT C TA A  (32) 

Thus, (29), (31), (32) implies (23). This concludes the proof. 

Note, the structure of  is not unique and the others can be obtained by permutations of n-m 
rows in the structure defined in (25). 

1
1
−T

4 EIGENSTRUCTURE ASSIGNMENT  

4.1. Eigenvalues spectrum 

In the pole assignment problem, a feedback gain matrix K is sought so that the closed-loop 
system has a prescribed eigenvalues spectrum Ω(Ac) ={sh : Re(sh)  < 0, h = 1,2, ..., n}. Note 
that spectrum Ω(Ac) is closed under complex conjugation and the observability and 
controlability of modes is determined by the closed-loop eigenstructure. 

Noting the same assumption as above (16) can be rewritten as 

   (33) [ ]- ,h h
h h

h h
s ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

n nI A B L 0Kn Kn …1, 2, ,h n

+

Subsequently, singular value decomposition (SVD) of Lh gives 

 
11

1 , 1 , 1

T
h

h h hn h n h n r n n r
T

hnn

σ

σ
+ + +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ =⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

u
L v v v v 0 0

u
# " " % "   (34) 

where {uhl, l = 1,2,…,n}, {vhl, l = 1,2,…,n+r} are sets of the left and the right singular vectors, 
respectively and {σhl, l = 1,2,…,n} is a set of the singular values of Lh. 

It is evident that all column vectors {vhl, l = n+1,n+2,…,n+r} satisfy (33), i.e. 

 [ ]- , 1,2, , , 1, 2, ,h hl h hls h n l n n= = = = + +L v I A B v 0 … n r+…

,n

1

  (35) 

The set of  column vectors {vhl, l = n+1,n+2,…,n+r}  is a non-trivial solution of (33), and 
results the null space of  Lh

   (36) [ ]- , 1, 2,h
h

h
s h⎡ ⎤∈ =⎢ ⎥⎣ ⎦

n I A BKn …N

The null space (36) consists of the orthonormal vector set. Any combination of these vectors 
(the span of given null space) will provide a vector nh which used as an eigenvector produces 
the desired eigenvalue sh in the closed-loop system. 

Theorem 1. Canonical form eigenstructure optimization provides optimal eigenstructure for 
that model it was derived. 

Proof. Since (20) implies 

 1
0 0 0( )s − −ϒ = −N I S N   (37) 

and it yields 
 1 1 1

0 0 0 0 0 0 0 0( ) ( ) ( )c c c
− − − =h c c c h c h h hA - B K n = T AT - T BK T T n = T A - BK T n s n   (38) 
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   (39) 1 1
0 0( ) ( )c c

− −= =h h h h hs T n A - BK T n A - BK n s= hn

1
c

respectively,  then it yields  

 1 1 1
0 0 0 0, , , T

c
− − − −= = = = =c h c h cK K T n T n N T N N N T N T   (40) 

Subsequently 

 (41) 1 1 1 1 1
0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( )T T

cs s s s− − − − −= − = − = −cG C N I S N B L C T N I S N T B L CN I S N BL

   (42) 1
0 0 0( ) ( ) ( )s s s−= − = −G C I A B C I A B1−

respectively. Thus, it is evident that L = L0 and for D = 0 (22) and (41) gives 

 0 0 0 0 0

1 1

( )
T Tn n

h h h h

h hh h

s
s s s s= =

= =
− −∑ ∑C n n B L Cn n BLG   (43) 

It is obvious that optimizing ,  it is optimized , , respectively, too. This 
concludes the proof. 

hCn T
hn B 0 0hC n 0 0

T
hn B

Of course, optimizing one position in a vector is very simple comparing with a full structure 
vector optimization, and this strategy is supported by the structure of C in the canonical form. 
Since rank(C) = m, it is evident that only m modes can be decoupled (one for one single 
output). 

4.2. Controller gain matrix design 

Set of eigenvectors of desired structure {ndh, h = 1,2, …, p, p ≤ m} can be specified to reflect 
potential possibility to choose in the closed-loop structure the dynamic modes to be decoupled. 
This specification employs this freedom to choose a closed-loop eigenvalue such that its 
associated eigenvector has aproximatly equal zero value on prescribed position in given row of 
C. This freedom is so limited by the structure of the output matrix C in the canonical model 
form. Computing iterative p ≤ m column vectors with desired structure for decouple modes, 
and n – p column vectors for rest modes (solving ever singular equalitys (33), (34) using SVD 
procedures), it is possible to construct a matrix M such that (see [Krokavec and Filasová, 
2008]) 

 1 1
1 1

1 1

p p n
p p n

p p n

+
+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎣ ⎦ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

n n n n P PM v v v v w w w w W KP
" "" " " "   (44) 

Therefore, using partition (44) the gain matrix K is given by 

   (45)  1 x x, , ,n n r n r n−= ∈ ∈ ∈K WP P W K\ \ x\

5 ILLUSTRATIVE EXAMPLE  

The system under consideration was described by (1), (2), where 

 0 0 0

0 1 0 1 3 1 2 10 0 1 , 2 1 , 1 1 05 9 5 2 5

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦− − −⎣ ⎦ ⎣ ⎦

A B C     

Design task was given as decopling of one mode to be as unobserved as possible from the 
second output of the system. This mode couldn’t be the dominamt closed-loop system mode. 
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At first, given system description was transformed to the canonical form, where 

  1
1 1 1 1

1 2 1 0 0 1 7 10 1 0 01 1 0 , 0 1 1 , 3 4 , 0 1 01 0 0 1 2 1 1 3

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
T T B C     

 1
2 2

1 0 0 1 0 0 7 10 1 0 00 1 0 , 0 1 0 , 3 4 , 0 1 02.5 5.5 1 2.5 5.5 1 0 0

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
T T B C     

     1
3 2 0 1 2 1 2.5 5.5 1

1 1 0 , 1 1 0 , 2.5 6.5 1
10.5 6 1 4 0.5 2.5 3.5 7.5 1

c
−

− − −⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= − = = − −
⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣

cA T T
⎤
⎥
⎥− ⎦

Chosing the dominant mode as s1 = - 0.7 then contructing iteratively matrices Lsd for sd < s1 
and subsequently solving (34), a possible mode solution was obtained such that 

 
3 2 0 7 10

6, 1 5 0 3 4
10.5 6 5 0 0

d sds
−⎡ ⎤

⎢ ⎥= − = − −
⎢ ⎥− − −⎣ ⎦

L     

  

0.6338 0.4457 0.4723 0.2344 0.3487 0.3487
0.3127 0.4349 0.8438 0.0321 0.0027 0.0027

,0.2262 0.2963 0.2187 0.5307 0.7291 0.
0.3879 0.4162 0.0986 0.6954 0.4278
0.5467 0.5927 0.0855 0.4228 0.4047

sd sd

−⎡ ⎤
⎢ ⎥− −
⎢ ⎥= =− − − −⎢ ⎥
− − −⎢ ⎥
− − −⎢ ⎥⎣ ⎦

V v
0.3487

, 0.00277291
0.72910.4278

0.4047

sd

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≈ −⎢ ⎥ ⎢ ⎥−− ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

n

It is evident that this vector structure minimizes product   

     [ ]2

0.3487
0 1 0 0.0027 0.0027

0.7291

T
⎡ ⎤
⎢ ⎥≈ − = −
⎢ ⎥−⎣ ⎦

sdc n

Analogously, by constructing L1, L2 for s1 = -0.7, s2 = -1.0, and computing associated null-
spaces as introduced in (36) by SVD, there was obtained 

     1 2

0.1372 0.0613
0.2676 0.1073

,0.5509 0.9818
0.6479 0.1226
0.4316 0.0766

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
−⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

v v ⎥
⎥

Thus, for M as in (44) used method gives results 

 

0.3487 0.0613 0.1372
0.3487 0.0613 0.13720.0027 0.1073 0.2676

, 0.0027 0.1073 0.26760.7291 0.9818 0.5509
0.7291 0.9818 0.55090.4278 0.1226 0.6479

0.4047 0.0766 0.4316

−⎡ ⎤
⎢ ⎥ −− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − −−⎢ ⎥ ⎢ ⎥−− − ⎣ ⎦⎢ ⎥

−⎢ ⎥⎣ ⎦

M P   

     10.4278 0.1226 0.6479 1.4721 2.9570 0.1063,0.4047 0.0766 0.4316 1.3300 2.1439 0.0732
−− − − − −⎡ ⎤ ⎡= = =⎢ ⎥ ⎢−⎣ ⎦ ⎣

W K WP ⎤
⎥⎦

⎤
⎥   1

0
4.8542 5.9543 1.2064
3.7665 4.8405 1.1471c

− − − −⎡= = ⎢⎣ ⎦
K KT
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Finally, there was obtained 

 0 0

6.4453 7.5671 2.2350 13.5881 2.59475.9419 7.0682 2.2657 , 10.0981 2.082814.1241 21.2978 8.3229
c

− − −⎡ ⎤ − −⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦− − −⎣ ⎦
A L     

6 CONCLUDING REMARKS 

The general problem of the eigenstructure assigning for the state variable mode decoupling in 
state feedback control design is considered in this paper. The method covers the standard SVD 
numerical optimization procedures to manipulate the system feedback gain matrix as a direct 
design variable, and to obtain the control signal gain matrix. The manipulation is accomplished 
in that manner to produce desired system global performance by the pole placement and to 
modify output variable dynamics by mode controllability optimization. With generalization of 
the known algorithms for pole assignment the modified exposition of the problem is presented 
here to handle optimized structure of the closed-loop eigenvectors. 
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