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Abstract: Reformulated principle for designing the observer-based regonfiguration control in the 
continuos-time linear MIMO systems is treated in this paper. Based on the linear matrix inequalities the 
problem addressed can be indicated as the approach giving the sufficient conditions to design the stable 
estimator and controller with the on-line based fault estimation and accommodation support. The 
system model based numerical example is presented in the paper to illustrate properties of the proposed 
design method. 
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1 INTRODUCTION 

The complexity of control systems requires the fault tolerance schemes to provide control of 
the faulty system. The fault tolerant systems are that one of the more fruitful applications with 
potential significance for those domains in which control must proceed while the controlled 
system is operative and testing opportunities are limited by given operational considerations. 
The real problem is usually to fix the system with faults so that it can continue its mission for 
some time with some limitations of functionality. These large problems are known as the fault 
detection, identification and reconfiguration (FDIR) systems. The practical benefits of the 
integrated approach to FDIR seem to be considerable, especially when knowledge of the 
available fault isolations and the system reconfigurations is used to reduce the cost and to 
increase the control reliability and utility. Reconfiguration can be viewed as the task to select 
these elements whose reconfiguration is sufficient to do the acceptable behavior of the system. 
If an FDIR system is designed properly, it will be able to deal with the specified faults and 
maintain the system stability and acceptable level of performance in the presence of faults. 

The main contribution of the paper is present the reformulated design method for the state 
estimator based reconfiguration control in the continuous-time linear MIMO systems. In 
contradiction to the adaptive systems there don’t exist much structures to solve this problem 
[Blanke at all 2003], [Krokavec, Filasová 2008], especially using the linear matrix inequality 
(LMI) approach. To make formalism simpler, Lyapunov inequality is used as the design 
starting point to demonstrate the application suitability of the unified algebraic approach in 
these design tasks. Two LMIs are outlined to posse the sufficient conditions for a solution and 
the others LMI can be possibly introduced to adapt these for the control constrain parameters 
in the given estimator and controller structure. An additional control law with the fault 
estimation is used in this structure to compensate the fault effect. The used structure is 
motivated by the standard structure [Dong at all 2009], and in this presented form enables to 
design systems with the modified controller structure. 
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2 PROBLEM DESCRIPTION  

Through this paper the task is concerned with the computation of the adaptive state feedback 
, which control the faulty linear dynamic system given by the set of equations  ( )tu

   (1) ( ) ( ) ( ) ( )u ft t t= + +q Aq B u B f t

t   (2) ( ) ( ) ( ) ( )u ft t t= + +y Cq D u D f

where and are vectors of the state, input, output and fault 
variables, respectively, matrices

( ) ,ntq ∈ ( ) ,rt ∈u ( ) ,mt ∈y ( ) lt ∈f
,n n×∈A ,n r

u
×∈B ,m n×∈C ,m r

u
×∈D ,n l

f f
×∈B m l×∈D

t

are 
real matrices. Problem of the interest is to design the asymptotically stable closed-loop system 
with the linear memoryless state feedback controller of the form 

 ( ) ( ) ( )e et t− −u = Kq Lf   (3) 

Here  is the nominal controller gain matrix, r n×∈K r l×∈L  is the compensate controller gain 
matrix,  is the system state estimation vector, and  is the fault estimation 
vector. This method can be applied for such systems, where 

( ) n
e t ∈q ( ) l

e t ∈f

 f u

f u

=
B B

L
D D
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
  (4) 

and the additive term  is compensated by the term ( )f tB f

 ( ) ( )f e u etB f tB Lf− = −   (5) 

which implies (3). The estimators are then given by the set of the state equations 

   (6) ( ) ( ) ( ) ( ) ( ( ) ( ))e e u f e et t t t t= + + + −q Aq B u B f J y y t

t

t

   (7) ( ) ( ) ( ( ) ( ))e e et t t= + −f Mf N y y

   (8) ( ) ( ) ( ) ( )e e u f et t ty Cq D u D f= + +

where is the state estimator gain matrix, and n mJ ×∈R l lM ×∈ , l mN ×∈R  are the system and 
input matrices of the fault estimator, respectively.  

3 BASIC PRELIMINARIES 

Proposition 1. (Schur Complement) Let Q > , are real matrices of appropriate 
dimensions, then the next inequalities are equivalent 

0 R > 0, S

0 0
-1 T

-1 T
T

Q S Q + SR S 0< < Q + SR
S -R 0 -R
⎡ ⎤ ⎡ ⎤⇔ ⇔⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0S < , R >   (9) 

Proof. Let the linear matrix inequality takes form 

0T
Q S

<
S -R
⎡ ⎤
⎢ ⎥⎣ ⎦

          (10) 

then using Gauss elimination it yields 

        (11) , det 1
-1 -1 T -1

T -1 T
Q S I 0I SR Q + SR S 0 I SR=

0 I S -R R S I 0 -R 0 I
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and it is evident that this transform doesn‘t changed negativity of (10), and so (11) implies (9). 
This concludes the proof.  
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Proposition 2. (Bounded real lemma) For givenγ∈  and the linear system (1), (2) with 
 if there exists the symmetric positive definite matrix such that ( ) 0t =f 0>P

0
u

r

m

T T

2 T
A P + PA PB C

* -γ I D
* * -I

⎡ ⎤
⎢ <⎢
⎢ ⎥⎣ ⎦

⎥
⎥

>

<

t ⎤⎦

<

⎤
<⎥

≥⎥

≥

        (12) 

then the given autonomous system is asymptotically stable. In (12) ,  are the 
identity matrices, respectively,   

r r
rI ×∈ m m

mI ×∈

Hereafter, *  denotes the symmetric item in a symmetric matrix. 

Proof. Defining Lyapunov function candidate as follows 

2

0

( ( )) ( ) ( ) ( ( ) ( ) ( ) ( )) 0
t

v t t t r r r r drγ= + −∫T T Tq q Pq y y u u  `   (13) 

where  and evaluating derivative of  with respect to t then it 
yields 

0, ,n n γ×= > ∈ ∈TP P P ( ( ))v tq

2 2( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( (0) (0) (0) (0)) 0v t t t t t t t t tγ γ= + + − − −T T T T T Tq q Pq q Pq y y u u y y u u
            (14) 

Thus, substituting (1), (2) for  it can be written ( ) 0t =f

       (15) 2 2

( ( )) ( ( ) ( )) ( ) ( ) ( ( ) ( ))
( ( ) ( )) ( ( ) ( )) ( ) ( ) ( (0) (0) (0) (0)) 0

T
u u

T
u u

v t t t t t t t
t t t t t tγ γ

T

T T T

q Aq B u Pq q P Aq B u
Cq D u Cq D u u u y y u u

= + + + +
+ + + − − − <

and with notation 

( ) ( ) ( )T T T
c t tq q u⎡= ⎣          (16) 

it is obtained 
2( ( )) ( ) ( ) ( (0) (0) (0) (0)) 0c c cv t t t γ= − −T T Tq q P q y y u u      (17) 

where 

0u
c

r

⎡ ⎤ ⎡
= +⎢ ⎥ ⎢

⎣ ⎦⎣ ⎦

T T T

T2
A P + PA PB C C C DP

* D D* -γ I
      (18) 

Since 

[ ] 0
T T T

T T
C C C D C C D

* D D D
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

       (19) 

Schur complement property implies 

0
m

T

T
0 0 C
* 0 D
* * -I

⎡ ⎤
⎢ ⎥ ≥⎢ ⎥
⎢ ⎥⎣ ⎦

          (20) 

Supposing and using (20) the LMI condition (18) can be written 
compactly as (12). This concludes the proof. 

2(0) (0) (0) (0) 0γ−T Ty y u u
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4 DESIGN CONDITIONS 

4.1. System compact description form  

Using equality ( ) ( )t = tf f  and assembling this equality with (1)-(3) and (6)-(8) gives 

( ) ( ) ( )t tα α α α= +q A q f t

0

         (21) 

( )tα αy C q=           (22) 

where 
( ) ( ) ( ) ( ) ( ) , ( ) ( )T T T T T T T

e et t t t t t tα αq q q f f f 0 0 f⎡ ⎤⎡ ⎤= ⎣ ⎦ = ⎣ ⎦    (23) 

- -
-

, - -

u f u

u f f f u
u f u

f f

α α

A B K B B L
JC A - B K - JC JD B - JD B L

A C C D K D D L
0 0 0 0

NC -NC ND M - ND

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

Since (4) implies 

 - , -f u f uB B L 0 D D L 0= =         (25) 

it is possible to verify using the state transform 

( )
( )

( ) ( ) ,( )
( )

q

f

t
t

t t t
t

β α

q I 0 0 0
e I -I 0 0q Tq Tf 0 0 I 0
e 0 0

⎡ ⎤

I -I

⎡ ⎤
⎢ ⎥ ⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

     (26) 

where is the identity matrix, that n nI ×∈

( ) ( ) ( ), ( ) ( ) ( )q e ft t t t te q q e f f= − = − e t

T t

       (27) 

( ) ( ( )) ( ) ( )T T Tt t tβ αf Tf 0 0 f f⎡ ⎤= = ⎣ ⎦        (28) 

-1

u u u

f f

f

β α

A - B K B K 0 B L
0 A - JC 0 B - JD

A TA T 0 0 0 0
0 -NC -M M - ND

⎡ ⎤
⎢ ⎥

= = ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

⎤⎦

t

t

     (29) 

1
u u uβ αC C T C - D K D K 0 D L−= = ⎡⎣        (30) 

and it obvious that it can be written 

( ) ( ) ( )t tβ β β βq A q f= +          (31) 

( )tβ βy C q=           (32) 

Eliminating out ( ) ( )t =f f  it can be written 

( ) ( ) ( )t tδ δ δ δ δq A q B w= + t

t

        (33) 

( ) ( )tδ δ δ δy C q D w= +          (34) 

where 
( ) ( ) ( ) ( ) , ( ) ( ) ( )T T T T T T T

q ft t t t t t tδ δq q e e w f f⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦      (35) 
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,
u u u

f f

f

δ

A - B K B K B L 0 0
δA 0 A - JC B - JD B 0 0

-M I0 -NC M - ND

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ =

⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

     (36) 

[ ],u u uδC C - D K D K D L D 0 0= ⎡ ⎤⎣ ⎦ δ =

]S

      (37) 

To apply the separability principle a block diagonal symmetric matrix is chosen, i.e. 0δP >

[diagδP Q R=          (38) 

where , . Thus , n nQ R ×∈ l lS ×∈

11

22 23

33

,
u u

T
δ δ δ δ δ δ

Φ QB K QB L 0 0
P A A P * Φ Φ P B 0 0

-SM S* * Φ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = =
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
    (39) 

where  

11 22( ) ( ) , ( ) ( )T
u uΦ Q A - B K + A - B K Q Φ R A - JC A - JC R= = T+

T T

    (40) 

33 23( ) ( ) , ( )T
f f f fΦ S M - ND + M - ND S Φ R B - JD - C N S= =    (41) 

Inserting (36),  (37), and (39)  into (12) gives 

22 23

33
2

2

( )
( )
( ) 0

T
u

T
u

l

l

m

T
11 u u uΦ QB K QB L 0 0 C - D K

* Φ Φ 0 0 D K
* * Φ -SM S D L
* * * -γ I 0 0
* * * * -γ I 0
* * * * * -I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ <⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     (42) 

It is evident that there are the cross parameter interactions in the structure of (42). To apply the 
separability principle (this determines the estimator structure - the estimation error vector is 
independent on the state as well as on the input variables) it is possible at the first step to 
compute only the controller feedback gain matrix K, and at the next step to design the 
estimator gain matrices J, M, N if the obtained K is included. 

4.2. Controller Feedback Gain Matrix Design 

Theorem 1. For the fault-free system (1), (2) the sufficient condition for the stable nominal 
control (3) is that there exist for given γ a positive definite symmetric matrix X >0, n nX ×∈  
and a matrix such that the following LMIs are satisfied r nY ×∈

0TX X= >           (43) 

2 0

T T T T T T
u u u u

T
l u

m

T
AX XA -Y B - B Y B L XC -Y D

* -γ I L D
* * -I

⎡ ⎤+
⎢ ⎥ <⎢
⎢ ⎥⎣ ⎦

⎥      (44) 

The control law gain matrix is then given as 
1K YX −=            (45) 

Proof. To apply separability principle eq(t) = 0 is considering. Separating q(t) from (37) gives 
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   (46) ( ) ( ) ( )t tq A q B w= + t

t

t

u

   (47) ( ) ( ) ( )t ty C q D w= +

where 
   (48) ( ) ( )ftw e=

 , , ,u u uA A - B K B B L C C - D K D D L= = = =

T

  (49) 

and with (49) inequality (12) can be written as 

2 0

T T T T T
u u u u

T
l u

m

T
QA A Q - QB K - K B Q QB L C K D

* -γ I L D
* * -I

⎡ ⎤+ −
⎢ ⎥ <⎢ ⎥
⎢ ⎥⎣ ⎦

    (50) 

Introducing the congruence transform matrix 
1diag l mH Q I I−⎡= ⎣ ⎤⎦

T
u

         (51) 

then multiplying (50) from the left and right side by (51) gives 
1 1 1 1 1 1

2 0

T T T T T
u u u

T
l u

m

T
AQ Q A - B KQ - Q K B B L Q C Q K D

* -γ I L D
* * -I

− − − − − −⎡ ⎤+ −
⎢ ⎥ <⎢ ⎥
⎢ ⎥⎣ ⎦

   (52) 

With notation 
1 0Q = X , KQ = Y− > -1          (53) 

(52) implies (44). This concludes the proof. 

4.3. Estimator System Matrix Design 

Theorem 2. For given γ, K, and L, the observers associated with the system (1), (2) exist if 
there exist symmetric positive definite matrices R > 0, S > 0, a negative definite matrix V < 0, 

, and matrices , l lV ×∈ n lW ×∈ n mZ ×∈  such that the following LMIs are satisfied 

0, 0, 0> >T TR = R S = S V <

⎥

T T

T T

1−

        (54) 

22 23

33
2

2

( )
( )

T
u

T
u

l

l

m

Φ Φ 0 0 D K
Φ -V S D L

-γ I 0 0
-γ I 0

-I

⎡ ⎤
⎢ ⎥∗⎢ ⎥
∗ ∗⎢

⎢ ⎥∗ ∗ ∗
⎢ ⎥∗ ∗ ∗ ∗⎣ ⎦

       (55) 

where 

22 23,T T
f fΦ RA A R - ZC - Z R Φ RB - ZD - C W= + =     (56) 

33
T

f fΦ V V WD D W= + − −         (57) 

The estimator matrix parameters are then given as 
1 1, ,M S V N S W J R Z− −= = =        (58) 

Proof.  Supposing that q(t) = 0 then (42) is reduced as follows 
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22 23

33
2

2

( )
( )

T
u

T
u

l

l

m

Φ Φ 0 0 D K
Φ -SM S D L

-γ I 0 0
-γ I 0

-I

⎡ ⎤
⎢ ⎥∗⎢ ⎥
∗ ∗⎢

⎢ ⎥∗ ∗ ∗
⎢ ⎥∗ ∗ ∗ ∗⎣ ⎦

⎥        (59) 

It is obvious that M has to be a stable matrix, i.e. M < 0. Thus, with notation  

, ,SM V SN W Z RJ= = =         (60) 

(40), (41) can be rewritten as (56), (57) and (59) implies (55). This concludes the proof. 

5 ILLUSTRATIVE EXAMPLE  

To demonstrate algorithm properties it was assumed that the system is given by (1), (2) where 

0 1 0 1 3 1 10 0 1 , 2 1 , 2 , 05 9 5 1 5 1
fA B B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
L −⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

1 2 1 0 0 0, ,1 1 0 0 0 0u fC D D⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

       

Solving (43), (44) for the  LMI matrix variables γ, X, Y using Self-Dual-Minimization 
(SeDuMi) package for Matlab [Peaucelle at all. 2002], the feedback gain matrix design 
problem was solved as feasible with the result 

1.7454 0.8739 0.0393 0.9591 1.2907 0.10490.8739 1.3075 0.5109 , , 1.85090.1950 0.5166 0.44800.0393 0.5109 2.0436
γ

−⎡ ⎤ −⎡ ⎤⎢ ⎥= − − = =⎢ ⎥− − −⎢ ⎥ ⎣ ⎦−⎣ ⎦
X Y  

1.2524 1.7652 0.0436
0.0488 0.2624 0.3428

⎡ ⎤= ⎢ ⎥− − −⎣ ⎦
K   

In the next step the solution to (54), (55) using design parameters γ = 1.8509 was also feasible 
with the LMI variables        

[ ]1.3690,  1.1307, 0.9831 0.7989= − = =V S W   

1.7475 0.0013 0.0128 0.0320 1.0384
0.0013 1.4330 0.0709 , 0.1972 0.1420
0.0128 0.0709 0.6918 2.0509 1.1577

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢− −⎣ ⎦ ⎣

R Z
⎤
⎥
⎥
⎦

= −M

   

which gives 

[ ]
0.0035 0.6066
0.2857 0.1828 , 0.8694 0.7066 , 1.2108
2.9938 1.7033

⎡ ⎤
⎢ ⎥= =
⎢ ⎥− −⎣ ⎦

J N   

Verifying the obtain results the system matrices were constructed as 

1.1062 0.0282 0.9847
2.4561 3.2659 1.2555 , eig( ) { 0.7110 3.4954 i 4.3387}
6.0087 9.4430 3.3297

−⎡ ⎤
⎢ ⎥= = − − = − − ±
⎢ ⎥− − −⎣ ⎦

c cA A - BK A  
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0.6101 0.3864 0.0035
0.4684 0.7541 0.7143 , eig( ) { 1.0000 1.1852 i0.7328}
0.3029 1.3092 2.0062

e e

− −⎡ ⎤
⎢ ⎥= = − − = − − ±
⎢ ⎥− − −⎣ ⎦

A A - JC A  

and it is evident that the designed observer-based control structure results the stable system. 

6 CONCLUSION 

An active fault tolerant control is proposed in the modified structure. Sufient conditions on the 
existence of such an FDIR system and a solution to both controller and fault estimator matrix 
parameters are derived in term of LMIs. Finally, a numerical example is given to show the 
effectiveness of the method. 
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