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Abstract: In this paper the comparison of using simple genetic algorithm and parallel genetic algorithm 
is presented. As the optimization problems the parameter setting of the heat transfer model of a building 
and the building’s model calibration were chosen. The model simulation requires huge computing 
capacity and it is time consuming. Therefore the pressure of simulation evaluations number is 
concerned and the use of parallelism is desirable. Genetic algorithms and parallelization were 
implemented in Matlab and the simulation of heat transfer model, which is the part of the fitness 
function, is performed in Comsol Multiphysics. 
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1 INTRODUCTION 
Genetic algorithms (GA) are effective stochastic optimization approaches imitating natural 
evolution process (Sekaj, 2005). Despite the fact, that there has been progress in the area of 
GA, the premature convergence sometimes occurred and large computing capacity is needed. 
Especially when more complicated system is to be optimized or a model simulation takes a lot 
of time. In such cases it’s necessary to reduce the number of the cost function (fitness) 
evaluations (simulations). 

There are many options to improve GA’s. Most common is to tune GA setting to reach the best 
algorithm performance. However, it is sometimes not possible to tune the algorithm to be able 
to achieve a sufficient convergence rate to the global optimum. Therefore another option is to 
use parallelism. Parallel genetic algorithms (PGA) are able to improve the performance of 
simple genetic algorithms with a single population (Cantú-Paz, 1995). 

This paper presents practical comparison of using simple genetic algorithm (SGA) with a 
single population and parallel genetic algorithm with population distributed into several 
interconnected subpopulations. 

2 PARALLEL GENETIC ALGORITHM  
In parallel genetic algorithms (PGA) the evolution is distributed into many more or less 
isolated subpopulations, where the transfer of genetic information among these subpopulations 
has an important influence on the evolution process.  In this case we don’t consider 
parallelisation into more processors or more computers respectively, which can extend the 
computational power of the computer system. Let us consider such parallelisation, wich is 
realised on a single processor or PC. 
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In our comparison a single GA with 50 individuals in the population and PGA with 5 
subpopulations (nodes) with 10 individuals in each subpopulation are experimentally 
compared. The migrations are performed by replacing a randomly selected individual  in the 
target node (except of the best one) by a copy of the best individual from the source node (best-
random policy). The migration in the PGA according to the defined architecture is realized 
periodically after 5 generations. 

The architecture of the considered PGA is depicted in Fig.1 (Cantú-Paz, 2001).  
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Figure 1:  Considered PGA architecture 

 

The genetic algorithm which is used in each node of the PGA and in the SGA is as follows:   

1. Random population initialization and fitness calculation.  
2. Selection of individuals :  

a. Best individuals which are copied into the new population without any change – 
Pop1 (2 in PGA and 5 in SGA) 

b. Random selection of a group of individuals which are copied without any change 
into the new population – Pop2 (4 in PGA and 30 in SGA).  

c. Tournament selection of parents – Pop3 (4 in PGA and 15 in SGA).   
3. Mutation and crossover of parents (Pop3) with global mutation rate 0.02, local mutation 

rate 0.02 and probability of one-point crossover 0.75 – Pop3* 
4. Completion of the new population by unification of the groups Pop1, Pop2 and Pop3*.  
5. New population fitness calculation.   
6. Test of terminating condition, if not fulfilled, then jump to the Step 2. 

3 CASE STUDY 

In the first experiment the heater proportions (height, width, depth) were optimized. Simulation 
of heat transfer model of the room was implemented in Comsol Multiphysics using FEM 
structure (Števo, 2009). The model of the room is shown in Fig.2. SGA and PGA were 
implemented in Matlab.  

The aim of the experiments was to compare the SGA and PGA performance. Each individual 
in population is represented by a string which contains 3 parameters (height, width, depth) and 
the fitness function is represented as difference between the mean simulated temperature and 
the required temperature in the room (294K or 21°C) (Števo, 2009a).  

The performance has been measured in a standard way using the convergence rate of the 
fitness function, which is the graph of the fitness function values of the currently best 
individual in the SGA population or entire PGA population respectively ("best so far" from all 
subpopulations). 
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Figure 2:  Model of the room in Comsol.          Figure 3: Simulation of the best solution for heater proportion. 

  

In Fig.4 the convergence rate depending on the number of generation and in Fig.5 depending 
on the number of fitness evaluations is depicted. Number of evaluations is used to show the 
exact computing effort of the specific algorithm. Each graph represents the mean value of 5 
algorithm runs. In Table 1 the number of evaluations required to reach the best solution 
(approximately the same in SGA and PGA) are presented. Fig. 3 represents the simulation of 
the solution for heater proportion optimization. 

In this case, only 3 parameters were optimized. Therefore using parallelism is not so effective 
and the number of evaluations required to reach the best solution (in meaning of required 
computation time) are approximately the same in PGA and SGA.  

 
Table 1: Nr. of evaluations required to reach the best solution in heater proportion optimization 

 SGA  PGA  PGA/SGA [%] 
run 1 480 476 99.2 
run 2 510 532 104.3 
run 3 450 448 99.5 
run 4 420 448 106.7 
run 5 540 504 93.4 

average 480 481.6 100.4 
 
 

In the second experiment a building’s model calibration is proposed. The aim is to adjust 14 
model parameters. That means the string has 14 genes. Each gene represents thickness of an 
independent element. The solution properties (fitness function) are considered as the 
correspondence between measured and simulated data (Števo, 2009b). With a calibrated mode 
we are able to reduce the maximum error from cca. 2.5°C to 0.3°C (Števo, 2009b). 

In Fig.6 the convergence rate depending on the number of generation and in Fig.7 depending 
on the number of evaluations is depicted. Each graph represents the mean value of 5 algorithm 
runs. The numbers of evaluations required are presented in Table 2. Fig. 8 shows the well 
calibrated model of the building. 

In this more complex model optimization (14 parameters), the PGA’s convergence is much 
faster than SGA’s with saving approximately 50% of computation time (number of fitness 
evaluations needed), which in our case can save tenth hours of computation time . 
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Table 2: Nr. of evaluations required to reach the best solution in building’s model calibration 

 SGA  PGA  PGA/SGA [%] 
run 1 1980 1036 52.3 
run 2 2250 1288 57.2 
run 3 2430 1176 48.4 
run 4 2160 1232 57.0 
run 5 1710 952 55.7 

average 2106 1140.8 54.2 
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Figure 4:  Heater proportion optimization (generations) 
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Figure 5:  Heater proportion optimization (nr. of evaluations) 
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Figure 6:  Building’s model calibration (generations) 

270

280

290

300

310

320

330

340  
PGA
SGA

 

fit
ne
ss

F
i 
t
n
e
s

0 500 1000 1500 2000 2500 3000 3500
240

250

260

nr. of evaluations

 

s 

 
Figure 7:  Building’s model calibration (nr. of evaluations) 
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Figure 8: Well calibrated model of the building 

4 CONCLUSION 
In the paper the use of PGA and SGA for selected heat transfer optimisation problems are 
compared.  Due to migration and information exchange between nodes, the proper PGA 
configuration brings decrease of computation time in comparison with using simple GA with a 
single population. This is true mailny in complex and time consuming optimisation/design 
applications. Next, PGA is able to decrease the measure of premature convergence (local 
optimum) and to find better solutions (better sub-optimal or global optimum).  
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