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Abstract: The paper addresses the problem of output feedback guaranteed cost controller design for
NCSs with time-delay and polytopic uncertainties. By constructing a new parameter-dependent
Lyapunov functional and applying the free-weighting matrices technique, the parameter-dependent,
delay-dependent design method will be obtained to synthesize a PID controllers achieving a guaranteed
cost such that the NCSs can be stabilized for all admissible uncertainties and time-delays. Finally,
numerical examples are given to illustrate the effectiveness of the proposed method.
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1 INTRODUCTION

Feedback control systems wherein the loops are closed through real-time networks are called
Networked Control Systems (NCSs) (Ray and Halevi, 1988; Nilson, 1998; Walsh, Ye,
Bushnell, 1999; Zhang, Branicky and Philips, 2001). Advantages of using NCSs in the control
area include simplicity, cost-effectiveness, ease of system diagnosis and maintenance, increased
system agility and testability. However, integration of communication real-time networks into
feedback control loops inevitable leads to some problems. As a result, it leads to a network-
induced delay in networked control closed-loop system. The existence of such kind of delay in
a network-based control loop can induce instability or poor performance of control systems
(Jiang and Han, 2008).

In the recent years, the stability analysis and controller synthesis for systems with time-delay
are important in theory and practice (Basin, Perez and Martinez-Zuniga, 2006; Boukaz and Al-
Muthairi, 2006). In the time domain, there are two approaches for controller design and
studying of stability of closed-loop systems: Razumikhin theorem and Lyapunov-Krasovskii
functional (LKF) approach. It is well know that the LKF approach can provide less
conservative results than Razumikhin theorem (Friedman and Niculescu, 2008; Richard, 2003;
Kharintonov and Melchor-Aquilar, 2000) and references therein. Existing criteria for
asymptotic stability of time-delay systems can be classified into categories: delay-independent
criteria and delay-dependent. And it is also know that the delay-dependent criteria make use of
information on the length of delays, they are less conservative than the delay-independent ones,
even if the time delays are very small. On the other hand, a wide class of uncertainty types
studied in the system and control literature fall into the polytopic perturbations. For the time-
delay system with polytopic-type uncertainties, the parameter-dependent stability condition is
of less conservativeness than quadratic stability condition. Recently, free-weighting matrices
method or slack-variable method and cross term bounding method was developed to obtain less
conservative condition (Mondie, Kharitonov, Santos, 2005; Y. He, Q. G. Wang, L. Xie and C.
Lin, 2007) and reference therein.
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The guaranteed cost control approach has been extended to the uncertain time-delay systems,
for the state feedback case, see (Yu and Chu, 1999; Lee and GyuLee, 1999; Zhang, Boukas and
Haidar, 2008) and for output feedback (Chen, Guan, and Lu, 2004). In the paper Chen, Guan
and Lu, 2004 the authors consider the full order strictly proper dynamic output feedback
controller. However, it seems that there is no previous result on delay-dependent guaranteed
cost control via PID output feedback.

Motivated by the above observation, in this article, the parameter-dependent, delay-dependent
design method will be studied to design arobust output feedback PID controller achieving
a guaranteed cost such that the NCSs can be stabilized for all admissible polytopic-type
uncertainties and time-delays. Sufficient condition for existence of a guaranteed cost output
feedback controller is established in term of matrix inequalities.

This paper is organized as follows. Section 2 gives the problem formulation. Section 3 explains
main results of the paper. And in section 4 numerical examples are presented to show the
effectiveness of the proposed method.

Notation: Throughout this paper, for real matrix M, the notation M >0 (respectivelyM >0)
means that matrix M is symmetric and positive semi-definite (respectively positive definite);
“* “denotes a block that is readily inferred by symmetry; Matrices, if not explicitly stated, are
assumed to have compatible dimensions.

2 PRELIMINARIES AND PROBLEM FORMULATION

Consider the following linear time-delay system described
x(t) = AS)x(®)+ A, (S)x(t—7)+ B(S)u(t)
y(t) = Cx(1) @®
x(1)=@(1),t€ [-7,,,0]

where x(t)e R” is the state vector, u(t)e R™ is the control input, y(t)e R' is the controlled

output (measured output). The matrices A($), A, (£), B()e S belong to convex hull, and S is

a polytope with N vertices S,,S,, ..,§, which can formally defined as:

A), A, (e R, B(Oe R 1A =D EA L A(E) =D A,
S = - " @

B(é):Z§iBi ’Zé =1, 20

where A,,A,,B, are constant matrices with appropriate dimensions and ¢, is time-invariant

uncertainty; 7,, is the upper bound of time delay and ¢(f) is a continuously differentiable
initial function. Note § is a convex and bounded domain.

We assume that a real-time communication network is integrated into feedback control loops of
system (1), and the network induced delay in NCS is givenby 0< 7 <7, and?< <1 .

For system (1), we consider the following PID control algorithm

u(t)=K,y(t-1)+K, [yt —1)di + K, %y(t—r) 3)
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Consider z(¢) = Iy(t —7)dt, di y(t—17)=C,x(t—7) where C, is output matrix for derivative
t

t

output feedback, and then by using Newton-Leibniz formulas x(t—7)= x(r)— J-)'c(s)ds

and x(t —7) = x(t) — jjé(s)ds , the PID control algorithm (3) can be written as
u(t) = FC,X (1) + F,C, X (1)~ F,C, [ X (s)ds = F,C,, [ X (5)ds @)

-7 -7

where X(t)=[xT(t) zT(t)]T
F:[KP KI]’FP:[KP O]’FD:[KD O]

C 0 C 0 c, 0
C, = , Cp = , Cp =
0 I 0 0 0 0

Consider z(t) =C,x(t—7)=C.x(t)—C, J.J'c(s)ds where C, is output matrix for integral

output feedback, the system (1) can be expanded in the following form

X(1)= A, (XD +B,(Eu®) - A, &) [ X(s)ds )
where
N A+A, 0
An(f):Z§iAm‘ s A, :|: l ' O}

4_
C

N B.
Bn(f):Z§iBm' . B, = |: l:|

AE=DEA,, | A —{A‘” O}
dn p= i“dni 0 dni C O

1

Applying the PID control algorithm (4) to system (5) will result in the closed-loop system

M (X )+ A XD+ AL (&) [X()ds+ A, () [ X (s)ds =0 (©)
where Md(é):ifiMdi s Mdi:I_Bm'FDCD

N
Ac (é) = ZéiAci 4 Aci = _(Am + BmFCn)
i=1
N
Ay (&)= Zf;Adci s Ay = Ay +BFCy
i=1

N
Ay (5) = Zf;Addi . Ay =B, F,C)
i=1
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Given positive definite symmetric matrices Q, R and S, we will consider the cost function
J = j J(t)dt (7)
0

where J(t)=X" (00X @) +u” )Ru@)+ X"t —17)SX (1 —7)

Consider 7(H)=| X"(t) X"(t) [X"(s)ds [XT(s)ds [X'(s)ds| and by substituting

t-7 =Ty -7

u(t) from (4) to u’" (t)Ru(t) we obtain
u" (ORu(t)=n" ()K" RKn(t)
where K =[F,C, FC, —-F,C, 0 -F,C,]

Usingn(t), J(t) can be rewritten as follows

Iy =n"OMy(E)nw) ®)
where
C'F'RF,C,+S C'FIRFC, —C!F'RF,C, 0 —CLFIRF,C,-S5]
* C/'F'RFC,+Q -C!F'RF,C, 0 -C!F'RF,C,
M, (&)= * * CIF/RF,C, 0 CLF/RF,C,
I - S s * CpF,RF,C,+S |

Associated with the cost, the guaranteed cost controller is defined as follows:

Definition 1.

Consider the uncertain system (1). If there exist a controller of form (3) and a positive scalar
J, such that for all uncertainties (2), the closed-loop system (6) is asymptotically stable and
closed-loop value of the cost function (7) satisfies J <J, then J, is said to be a guaranteed
cost and the controller (2) is said to be guaranteed cost controller.

Finally we introduce the well known results from LQ theory.

Lemma 1.

Consider the continuous-time delay system (5) with control algorithm (3). The control
algorithm (3) is the guaranteed cost control for system (5) if and only if there exists LKF
V(&,1) such that the following condition holds:

%V(f,t)+ J() <0 )

The objective of this paper is to develop a procedure to design a robust PID controller of form
(4) which ensure parameter-dependent the closed-loop system stability and guaranteed cost.
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3 MAIN RESULTS

The following theorem provides robust parameter-dependent quadratic stability and robust
performance results for the closed-loop system (6).

Theorem 1.

Consider the uncertain linear time-delay system (1) with network-induced delay 7 satisfying
O0<7<7,,7<u<1 and the cost function (7). If there exist a PID controller of form (3),
scalar J,, and matrices P, >0, G, >0, G, >0, G,, >0, G, >0 (i=1...N), N,, N,, N,,

N,,and N, that satisfy the following matrix inequality

where
w!'=NM,+MIN +7,G,, +uG, +CJF)RF,C,+S
w;’>=NA,+M N, +P +C,F, RFC,
w’'=NA, +M N -C/F)RF,C,
wt=MIN]
wl=NA,+M N +0-wuG,, -C FRF,C, -S
w? =N,A, +AIN] +uG,+C/F'"RFC ,+Q
w2 =N,A,, +AN; +(1-u)G,+G,,—C!F"RF,C,
wt =AIN] +G,,
w?® =N,A,, + AN, —CF'"RF,C,
w? =N,A,, + AL, N —(1-u)G, —TLG“ -G, +C,F,RF,C,
M

i34 = Aajl;iNZ -G,

P=N,Ayu +ALN +CLF,RF,C,
wH =-G,, —LGU

TM

wP =N,A,

w ;11 i12 ;13 W i14 W i14
% wfz i23 ng4 W;ZS
W,o=| = = oy My (10)
* * * w 1‘44 w i45
* * * * w 155

w? = NAy +AyuNs —(1=u)Gy, + CLFyRF,C\, + S

Then the uncertain system (1) with controller (3) is parameter-dependent quadratically-
asymptotically stable and the cost function (7) satisfies the following bound

T< Ty =R+ B + By + Bon + Aoy * T, 1)
where

Ay = A_{aj@c(Max(Eigenvalue(P[ )y Aye = A_{aj@c(Max(Eigenvalue(Gi ),




International Conference February 10 - 13, 2010
CYBERNETICS AND INFORMATICS VYSNA BOCA, Slovak Republic

Ao = Afllalic(Max(Eigenvalue(Gli ) s Ayesr = Afllalic(Max(Eigenvalue(GZi )

Ay = A_{alic(Max(Eigenvalue(Gy )))

J, = \/||x0||4 +[ j ||¢(s)||2dsJ +( j de j ||(p(s)||2dsj +( j ||(p(s)||2ds] +( j ||(p(s)||2dsj

Ty

Proof.

Consider the Lyapunov-Krasovskii functional as follows

VD=2 V(D (12)

VED=X"PE X0V, 0= [XT()GE) X (s)ds V(&= [X(5)G,(£) X (s)ds

=Ty

V(&0 = [dO [ X" ()G () X (s)ds ; Vi(&,0) = [ XT(5)G,(£) X (s)ds

-7 t+6

Differentiating V(D) with  respect to t and using  Newton-Leibniz
t

formula x(f — 7) = x(f) — j %(s)ds , we obtain

=7

V(&0 =2X" () P(E) X (1)

uG(G)  (1-mG(S)

Vz(f,f)ﬁﬂf(t){ *  —(1- G(&)

}m(t) . (t){X "0 jX T(S)ds}

-7

7’-M -7

V<7, X (06 OX (1)~ [ X (9)dsG (). X (5)ds

V,EDST (0 * =G, (&) =G, (E) () , mi ()=
o —G(d)

: r 4G (1-wGi(©&)
Vs 1) < 3
COSHO LT 4 ma6,@

[0 G,(&) G, (&) ; -
{XT(t) j X7 (s)ds j XT(s)ds}

-7 =Ty

}773 ORVHOE {X%r) | X'T(S)ds}

=7

Applying the free-weighting matrices technique, the equation (8) is represented in the
following equivalent form

i
a=27" N NI N ONT NITM,© A 4O 0 4,Ohn=0
After manipulation of the above equation, we obtain

am)=n"OM ,(En) =0 (13)
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'N.M (&) N,A (§) N,A,. (&) T (ENT N,A, ()
+MJ(EON] +MIEN] +MIEN] T (N, M (EN]
N2Ac (6) NZAdc (6) T T NZAdd (5)
T T T T Ac (§)N4 T T
* +A (N, +A (SN, +A, (N
Ma(g)z N3Adc(§) r - N3Ad¢-(§)
% % T T Adc (§)N4 T T
+ A, (5N, + A, (5N,
* * * 0 N4Add (é:)
* % % % NsAu &)
i + Ay (ENS |
Because of a(r) =0 , thus
. 5 .
VEN=YD V(& D+am<n 0M (&)+M, (Sl @) (14)
i=1
where
[7,G (&)  P(&) 0 0 (1= )G, (&) ]
+uG,(&) p
(1- )G (&)
G G 0
. UG (&) +GL(E) , ()
M, (&) = ) ) —(ll—mG(é)—Gz(cf) oo )
-—G, (&) :
TM
G, (&) - G,(©&)
%k %k %k TM 0
| * * * - (1-u)G,(¢)

Due to lemal, the closed-loop system (6) is robustly asymptotically stable and give an upper
bound (a guaranteed cost) for the cost function (7) if

where

VED+IO <" W (EM 1) <0 & W(E)<0 (15)

W(§)=ﬁé,wf=Ma<§)+Mv(§>+MQ<§>

If for each W,<0,i=1.N, thenw(£)= ﬁ EW, <0 - Therefore, V(é_‘,‘,t) <-J@®) <0
i=1

(J (1) = 0), respectively J(t) < —V(&,1) . By integrating J (1) < -V (&,1) we obtain

J< —TV(f,t)dt =V, = X P(E)X, + [XT()G(E) X (s)ds + [dO] X7 (5)G,(£) X (s)ds +

-7

+ [XT ()G, (&) X (5)ds + [ X7 ()G (£) X (s)ds

—Ty -7
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Because of X (t) = [(pT @) 0] ,Vte[-1,.0] then

0 0 0 0 0
Vo < Ay [0 + A [llo)]*ds + Ay, [dO[ @) ds + Ay [l ds + g [l ()] ds
-7 -7 4 -

—Ty

It is known, that for two arbitrary vectors X ,Y , the following inequality hold:
X" ¥ s|x]|r] (16

Consider X = [ﬂiﬂp M et A ﬂTMGz]T

f_!mx()”zy @”q,(s)”us]T (idazllqpmllzds]r UllcomllzdsT (illcb(s)llzdsJT

—Ty

Applying the inequality (16), to above equation the upper bound cost function (7) J, is
obtained as (11).

The theorem 1. is proved.

4 EXAMPLES

In this section we present the results of numerical calculations of two examples to design
a robust output feedback PID controller with guaranteed cost for NCSs with time-delay. Design
procedure based on BMI inequalities (10).

Example 1 has been borrowed from Benton and Smith, 1999 to demonstrate the used for
algorithm (10) on the problem robustly stabilizing with a guaranteed cost a vertical take-off and
landing of ahelicopter. The system is control through NCS with time-varying time-
delay0 <7z <7, =200 [ms], 7 < u=0.99 . Let uncertain matrices A, B, C, Ad be defined as

-0.036  0.0270  0.0188 —0.4555 4.422  0.1761 0
_|0.0482  -1.010 0.0024 - 4.0208 _| a0 =752 1)
0.1002 ¢, (1) —0.707  q,(t) | -5.52 4.49 o]

0 0 1 0 0 0 0

with parameters bounds for all time

—0.6319<¢q,(t) <1.3681 , 1.22<q,(t)<1.420 , 2.7446<q,(t)<4.3446. The above
model has been recalculated to the form (1). The respective eight vertices are calculated. Note
that the matrix A is unstable with max(real(eigenvalue(A)))=1.2675. The results of calculation
for the case r =1, =0.1,5 =0.001,r, =10 as follows

—-0.2788 0.0927
F:[KP KI]: » Bp

0.5857  0.4086

The max(real(eigenvalue(Close-loop)))=-0.072209. And guaranteed cost J, =17,9128J,,
where A, = 4,5 = Ayg, =8.9794, 4,5, =8.8841, 4,,,; =0.2319.

Example 2 We consider the linear model of two cooperating DC motors. The problem is to
design two PI controllers for a laboratory MIMO system which guarantee robust stability with
a guaranteed cost. The system is control through NCS with time-varying time-
delay0 <7 <7, =100 [ms], 2 < u=0.2. The system model is given with atime invariant

matrix affine type uncertain structure, where
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[0 —.2148 0 0 0 0 0 0 [ .3148 0o

1 -1.014 0 0 0 0 0 0 .0478 0

0 0 0 —-.2605 0 0 0 0 0 —.1028
a - 0 0 1 -.9107 0 0 0 0 5 - 0 —.0091
o 0 0 0 0 —.1639 0 0 T~ 0841 0

0 0 0 0 1 -.8137 0 0 —.0287 0

0 0 0 0 0 0 0 —.2279 0 3676

K 0 0 0 0 0 1 —.8251 0 2448 |

(0 —-.025 0 0 0O 0 0 0 [0.0625 0 |

0 —0.1395 0 0 0 0 0 0 .0798 0

0 0 0 —-.0938 0 0 0 0 0 —.0462
A 0 0 0 —-02911 0 0 0O 0 B 0 —.0449
"o 0 0 0 0 .0188 0 0 “h].0016 0

0 0 0 0 0 .0208 0 0 .0072 0

0 0 0 0 0 0 0 -.0333 0 077

K 0 0 0 0 0 0 -.1173 ] | 0 —.00500 |

[0 0125 0O 0 0 0 0 0 [ 0.0094 0

0 0.0594 0 0 0 0 0 0 0151 0

0 0 0 0.0116 0 0 0 0 0 .0019
A 0 0 0 0.0308 0 0 0 0 5 _ 0 —.003
> o 0 0 0 0 -.018 0 0 T 1 -0.0121 0

0 0 0 0 0 —.01560 0 0 -.03 0

0 0 0 0 0 0 0 .0208 0 —.064

0 0 0 0 0 0 0 -.0333 | |0 0189 |

01010000
C= LA, =0
00000 T1 01

The above model has been recalculated to the form (1). The respective four vertices are
calculated. The results of calculation for the case r =1,4 =0.1,s = 0.001,r, = 20 as follows

-0.4310 -1.8916 0.8782 —1.4985

—-1.8916 0.1128 0.2026 -0.6964
F:[KP KI]:

The max(real(eigenvalue(Close-loop)))=-0.17726. And guaranteed cost J,=37,7659J,,
where A4, =18.916,4,,; =15.0011,4,,,, =18.916,4,,;,, =15.5723, 4,,,; =15.5918.

S CONCLUSION

The guaranteed cost control problem is studied in this paper for a class of linear time-delay
uncertain polytopic systems and a given quadratic cost function with three terms (QRS). On
base of Lyapunov-Krasovskii functional, new sufficient parameter-dependent quadratic
stability conditions are given for output feedback PID controller proposed design procedure in
terms of bilinear matrix inequality.

The examples show the effectiveness of the proposed method.
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