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Introduction; Context

A Context

- The goal is to achieve a reduced model which has low
computational load.

- There are various perspectives for the model reduction;

Linear system theory

Projection based

a
b. Time scale based
c
d

. [ Using structured modelsJ (example: Hammerstein)
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Introduction; Methodology -I

1. Prerequisites

i. A NL model available in DAE/ODE format in an environment (gPROMS,
MATLAB, Simulink) with access to states (x) and Jacobians (J).

ii.  Input-Design: Supply inputs which are expected to occur in online
applications.

iii. The model is “smooth”, given

It implies that  and g are differentiable, in other words the Jacobians exist!
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Introduction; Methodology -II
2. Approach

i.  To approximate the NL model by certain ODE structure (Hammerstein).

ii.  Structure is important for reduction, because it gives insight with respect to
calculations and manipulations. It provides “handles” for reduction.

3. Reduction in computational effort

i.  DAE is replaced by ODE, so the algebraic computations are “removed”.

ii.  Exploitation of the structure:
Order reduction.
Efficient approximation of the steady state behavior.
Efficient approximation of the dynamic behavior.

iii. Efficient implementation, for example: Matlab - C — executable.
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Theory; Taylor expansion for linearization

Given the ODE X = f(X,Y) A first order Taylor expansion around the point
(x*,u*) is given by:
(u-u) — A

Foou) = Feu)+ 21 (xmx)+ 28

X*,U* X*,U*

This can also be represented as a block diagram...
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Theory; Taylor expansion to Hammerstein structure

We now choose the point ( x*,u*):
a.  Suppose u” leads (finally) to a steady state x_, it is assumed that x =
g(u). We set x*=x, and as a result the output of block / becomes zero.
b. Wesetu=u" sothe input to block J, becomes zero and as a result the
output of this block zero as well.
Rearrangement of the blocks reveals an input to state Hammerstein structure.

*U*

X
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Theory; Accuracy improvement by higher order approximation

The accuracy of the approximation can be improved by extending Taylor series
to higher order.

Taylor series around the point (x*, u*) is given by:

f(X,u)=f(X*,U*)+Z—f (Xx=x)+0(x-x)*> = 1

X*,Uu=*

Taylor series around the point (x, u) is given by:

f(X*,U*):f(x,u)+(2—f (x+=X)+O(x*=x)* — 2

x,u
Adding equation 1 and 2 and rearranging leads to:

1( of of
f(x,u)==| —| +—

2\ OX OX|, 4
Equation 3 gives as second order approximation for function f(x,u) by
evaluating the Jacobian at the steady-state and the current state.
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Theory; Input-state Hammerstein structure-1

The block diagram for input to state Hammerstein structure is (the
Jacobian is already approximated)...

u

»
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Theory; Input-state Hammerstein structure (reduced)-11

The block diagram for reduced order input to state Hammerstein structure
is...

u

] est

] est (reduced)
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Results; Distillation column
* Implementation on a benchmark distillation (High purity 2-cut splitter, 74 trays)

Model of the system:
Assumptions : a) On each tray liquid and vapor phases are well mixed & in
thermodynamic equilibrium (alpha 1.33)
b) Liquid molar hold up is constant, Vapor hold ups are negligible
¢) Pressure is constant and uniform;
d) Equimolal overflow (L, =L _ ,&V_,=V)

Over all mass balance :

F=D+B

Mass Balance on trays:

dx,
—L=(L x +V -L.X% -V +F*z. )/IM
in in out out ut
dt ( in L in yl- out 1 1 yl0 f ) 1
Equilibrium equation: a*x
= 1+ (a-1)*x,)
October 31, 2008 12
oRifo DCSC 5
PR(;KJL;CH Delft Ceinter fdr Systerﬁs andLCzntrol T U D e Ift

Results; Input design

The operating domain of the application is shown. The operating domain is chosen by
keeping in view the input and/or output constraints (input design).
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; Separation index

Results
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Results

Change in Vapour boilup V (in)

Change in Reflux flowrate (Lin)
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; Separati

Results
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Results; Effective cut point- I (reduced model)

Change in Reflux flowrate {Lin) Change in Vapour hoilup V (in)
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Conclusions;

1. Input to state Hammerstein structure can be derived from a Taylor
expansion under certain assumptions.

2. It has been shown that the input to state Hammerstein structure can achieve
second order accuracy.

3. The input to state Hammerstein structure approximates the high purity
distillation column very well.

4. The reduced order input to state Hammerstein structure also approximates
the high purity distillation column very well. A reduction to 30% of the
original states was achieved with sufficient output accuracy.
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Future work;

Further work will focus on:
1. Is further state reduction possible?

2. The reduction in computational effort so:
Efficient approximation of the steady state map.
Efficient approximation of Jacobian.
Others ways to increase computational efficiency.
Efficient implementations so Matlab — C — executable.

3. Comparison with original model in gPROMS and other reduction
techniques.

4. Application to other test cases.
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Discussion/Questions
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