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Preface

This book contains papers presented at the 14" International Symposium on Process Systems
Engineering (PSE 2021+), held at Kyoto University in Kyoto, Japan, June 19-23, 2022. The PSE
series is a triennial conference which has been held since 1982, organized on behalf of the
international PSE Executive Committee with representation from countries in Asia-Pacific,
Europe, and the Americas. The goal is to create an academic and industrial dialogue, a critical
assessment of existing enabling technologies, a discussion on research, education, and industrial
needs, and an international forum for new directions, challenges, and opportunities in process
systems engineering.

The PSE symposium bring together researchers, educators, and practitioners to discuss the latest
developments in the field of Process Systems Engineering (PSE), including applications of
methods, algorithms, and tools to solve a wide range of problems as well as provide the venue for
discussion of new scientific challenges in our field. This symposium will feature more than 371
presentations including invited plenary and keynote lectures, as well as contributed papers (both
oral and poster) encompassing a large number of core and cross-cutting PSE themes.

Among the PSE series, PSE 2021+ is special, because the first PSE symposium was held in Kyoto,
Japan, in 1982. For this reason, and in light of the challenges facing our society, we chose the
main theme of PSE 2021+ as "PSE for Smart & Sustainable Society: perspectives from the
origin."

The PSE themes include:

e Process and Product Design/Synthesis

e Process Dynamics and Control

e Scheduling and Planning

e Supply Chain Management and Logistics

e Process Intensification

e Integration of Process Operations and Design/Synthesis
e Modeling, Analysis, and Simulation

e  Optimization Methods and Computational Tools
e Process Monitoring and Safety

e Cyber-Physical Systems and Security

e Machine Learning and Big Data

e Energy, Food and Environmental Systems

e Pharma and Healthcare Systems
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This book includes 10 invited papers and extended abstracts as well as 361 contributed papers.
All papers have been reviewed by the International Programming Committee (IPC). We are very
grateful to the IPC members for their assistance and constructive feedback during the review
process. We would also like to thank the Elsevier editorial team, particularly Ms. Lena Sparks
and Ms. Anita Koch for their support on this project, which provides an archival and fully indexed
record of the conference.

The 14th Symposium on Process Systems Engineering (PSE 2021) was originally planned for
July 2021. In view of the situation associated with the COVID-19 pandemic, the National
Organizing Committee has approved the recommendation of the Executive Committee to
postpone the symposium to June 2022. To clarify the postponement, the symposium is written as
"PSE 2021+".

We hope PSE 2021+ will foster constructive interaction among thought leaders from academia,
industry, and government and that this book will serve as a useful reference for the latest research
in all areas of process systems engineering.

Yoshiyuki Yamashita and Manabu Kano
PSE 2021+ General Chairs
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Actions toward carbon-neutral society
with fuel cell technology

Yoshihiko Hamamura

Fuel Cell Business Field., Toyota Motor Corporation, Aichi 471-8571, JAPAN
yoshihiko _hamamura@mail.toyota.co.jp

Abstract

In recent years, many countries have announced the declarations and policies toward a
carbon-neutral society in response to global warming. The entire industries must tackle
with the issues and it is necessary not only to develop zero CO; emission vehicle, but also
to reduce CO; emission during the process of vehicle manufacturing, disposal, and fuel
production in case of the automotive industry. Hydrogen is considered to be an important
energy toward carbon-neutral society because of portability, storability, and producibility
from various renewable energies such as solar and wind. Toyota is challenging toward
the wide expansion of fuel cell applications by communicating with the customers and
utilizing the fuel cell system for the various applications around the world as well as the
2nd-generation MIRALI the fuel cell electric vehicle (FCEV). Toyota is also proposing
the fuel cell system modules for the efficient packaging so that every customer can deploy
them to their system products without a large effort and time. Further collaboration and
communication from a wide range of perspectives will be essential with every stakeholder
in the fuel cell industry and research field because there are many technical hurdles
toward the promotion of the application of the fuel cell systems. The strength of PSE,
which specializes in system integration and optimization, is strongly demanded to solve
such interdisciplinary and complex issues surrounding the fuel cell technologies.

Keywords: Carbon neutrality; Hydrogen; Fuel cell; System application

1. The world trend of carbon neutrality and hydrogen energy

Carbon neutrality and decarbonization are gathering attention, especially after the Kyoto
Protocol (United Nation, 1997) and the Paris Agreement (United Nation, 2015), for the
prevention of global warming. Table 1 shows the recent world trend surrounding carbon
neutrality and hydrogen energy. In 2018, 1st. International Conference on Hydrogen was
held in Japan and the roadmaps for the promotion of hydrogen utilization were announced.
In 2019, many countries declared high numerical targets toward carbon neutrality and
decarbonization as follows: deployment of 8 million fuel cell electric vehicles (FCEVs)
and 400 - 1000 hydrogen fueling stations by 2050 in E.U.; 10 million FCEVs and
hydrogen fueling stations in every 10 km on the roads within next 10 years in Japan; 1.2
million FCEVs and hydrogen fueling stations by 2030 in U.S.A. In 2020, large scale
investments were announced from many countries all over the world as follows:
Investment of 750 billion Euro in total for a ‘Green Deal’ was announced by the E.U.
targeting the recovery from the COVID-19 crisis, in which 30 % is shared to climate
control related purposes; U.K. set the target of decarbonization by 2050 and the
prohibition of sales of gasoline and diesel internal combustion engine vehicles after 2030;
and Japan declared the achievement of carbon neutrality by 2050. In 2021, The U.S.A
government announced the recovery to the Paris Agreement, the investment of 2 trillion
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U.S. Dollars for the environmental and infrastructural industries, and the target of carbon
neutrality by 2050. The features of hydrogen in storability and portability of energy allow
it to function well with a variety of renewable energy sources such as solar and wind, thus
making hydrogen an essential energy source for achieving carbon neutrality (Daud et al.,
2017).

Table 1. The world trend surrounding carbon neutrality and hydrogen energy

Year Country Policy / Event
2018 Netherlands Hydrogen Roadmap
US.A DOE Hydrogen and fuel cell Program Overview
E.U. Hydrogen initiative
Japan International Conference on Hydrogen
Australia National Hydrogen Roadmap
2019 Republic of Korea  Hydrogen Economy Promotion Roadmap
E.U. FCH-JU Hydrogen Roadmap
Japan Hydrogen and Fuel Cell Roadmap
International Conference on Hydrogen
France Hydrogen Roadmap
Australia Renewable Hydrogen Strategy
U.S.A FCHEA Roadmap
California FC-Bus Roadmap
Saudi Arabia Renewable Energy Strategy
2020 E.U. European Green Deal
Republic of Korea ~ Green New Deal
Japan Carbon Neutrality in 2050
UK. Green Industrial Revolution
2021 US.A Green revolution
Japan Decarbonization Supply-Chain among Japan, Australia, and India

2. Fuel cell development for various applications and usages

The Ist-generation MIRAI was launched in 2014 as the world’s first mass-production
fuel cell electric vehicle (FCEV). In addition to the improvement in many aspects of the
system performance, the 2nd-generation MIRAI was designed to achieve a significant
improvements in fundamental vehicle features. It has not only high environmental
performance, but also responsive acceleration, superior handling and vehicle control,
reliable cruising range, an increased number of passengers, and a stylish exterior design
as shown in Fig.1. It is expected that the role of the 1st-generation MIRAI is the ‘starting
point for popularization’ and the 2nd-generation MIRAI is ‘accelerating to
popularization’.
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M 1st-generation(2014) W2nd-generation(2020)

Acceleration Stylish

Cruising range 5-seater

Maximum power Cruising range Maximum power | Cruising range
114 kw 650 km 134 kw 850 km
. (WLTC mode)

Fig. 1. MIRALI fuel cell electric vehicle (FCEV) from TOYOTA

MIRAI's fuel cell system was not developed exclusively for MIRAI. The implementation
of the 1st-generation fuel cell system to a variety of applications in addition to passenger
vehicles, such as commercial vehicles of buses and tracks, stationary power generators,
forklifts, and ships, has been investigated since 2014. In the process of developing these
applications, it became obvious that significant time and effort were required until the
completion of system integration for each application.

1st-generation MIRAI

e Fo
eliiSTa '

— / —-n oY
e
= / l \ \

Fig. 2. The lineup of the different geometries of the fuel cell system modules

To overcome the problem described above, the system-modularization concept was
adopted for 2nd-generation fuel cell system development. Vertical, horizontal and
compact fuel cell system modules have been developed, where the same 2nd-generation
system components such as fuel cell stack, air compressor, hydrogen pump, water pump,
intercooler, engine control units (ECUs), and power control units (PCU) are efficiently
repackaged. In addition, the interfaces between the fuel cell system and the applied system
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are gathered in one mounting surface in a rectangular package for ease of integration.
Customers can choose suitable fuel cell system modules from the lineup according to
their application requirements. It is expected that these products reduce the barrier to entry
into the fuel cell industry with benefits for the customers and users. Actually, our partners
are accelerating the development of the fuel cell powered trucks, buses, stationary power
generators, ships, and construction machinery by utilizing these fuel cell system modules
as shown in Fig. 3.

2nd- genera’uon MIRAI

Fig. 3. The implementation of the fuel cell system to a variety of purposes

3. Collaboration for developing fuel cells and expectations for PSE

Though hydrogen and fuel cell technologies are steadily spreading around the world,
many technical issues are still remaining. It is important for every stakeholder in the fuel
cell industry to communicate with each other, move in the same direction in addition to a
proper competition, and make the fuel cell technology easier to use.

Fig. 4 is a conceptual drawing of the ‘FC-Platform’ project supported by NEDO, New
Energy and Industrial Technology Development Organization of Japan, as an example of
the recent research consortium (FC-Cubic, 2021). This consortium is acting as a role of
platform where the fuel cell researchers with various important and detailed knowledge
can gather from universities and technical colleges across Japan. They are investigating
the complex fuel cell reactions and mass transport with the high resolution analysis
instruments for the physicochemical phenomena in atomic scale. The government and
fuel cell manufacturers can share their specific issues, discuss the research and
development roadmap with them, and collaborate and communicate with each other in
the consortium.

PSE is the academic field which specializes in the system modeling, process
synthesis/aggregation, and decomposition/analysis (Klatt et al., 2009). Since the fuel cell
technology is highly interdisciplinary technical fields where the wide range of physics in
various scale from nano to meter must be considered, the role of PSE will be more
important as an interface of the variety of technical fields. The author encourages PSE
engineers and researchers to join the fuel cell industry and research activities.
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Fig. 4. The conceptual drawing of the ‘FC-Platform’ project in Japan
as an example of the recent fuel cell research consortium

Conclusions

The role of hydrogen energy and fuel cells were discussed by describing the world trend
surrounding carbon neutrality. The 2nd-generation fuel cell electric vehicle MIRAI and a
fuel cell system module comprised of the MIRAI fuel cell components were shown. The
fuel cell system module facilitates the development of fuel cell applications such as
commercial vehicles of buses, tracks, and marine. Finally, the expectation for PSE
researchers and engineers from the fuel cell industry were discussed. The author
encourages PSE engineers and researchers to join the fuel cell industry and research
activities.
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Abstract

Changes have always been taking place on earth. However, the latest changes related to
the climate, the COVID-19 pandemic, natural resources, pollution, to name a few, have
changed our world and a new normal is emerging. The energy-water-environment-food-
health nexus is becoming more complex. These challenges, however, also provide
opportunities to tackle them and make scientific and engineering advances. PSE is well-
placed through its core and expanding domain as well as its ability to apply a systems
approach to meet current and future challenges. Many opportunities exist for the PSE
community to take the lead in managing this complexity. This paper will provide an
overview on some of the key challenges and opportunities where PSE could make
immediate as well as long lasting impacts by developing sustainable and innovative
solutions. Focus will be placed on the choice of problems to solve and the solution
approaches that could make an impact and help to define the new normal for future
generations.

Keywords: Process Systems Engineering; Climate; COVID-19; Resources; Pollution;
Opportunities
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1. Introduction

The effects of climate change, COVID-19 infections, inefficient resources utilization and
uncontrolled pollution, to name a few, have changed the world and now urgent actions
are needed to not only minimize their impact but also to find novel and innovative
solutions that are environmentally-friendly and allow the sustainable development of
society. These problems are global and their solutions no doubt need a multi-disciplinary
approach. As defined by Pistikopoulos et al. (2020), Process Systems Engineering (PSE)
is the scientific discipline of integrating scales and components describing the behaviour
of a physicochemical system, via mathematical modelling, data analysis, design,
optimization and control. PSE provides the ‘glue’ within scientific chemical engineering
(and other related engineering domains), and offers a scientific basis and computational
tools towards addressing contemporary and future challenges such as in energy,
environment, the ‘industry of tomorrow’ and sustainability. As Sargent (2004) pointed
out, “PSE is all about the development of systematic techniques for process modelling,
design and control - some formulate their synthesis, design and/or control problem, or
some useful simplification of it, in precise mathematical terms, and then seek to exploit
the mathematical structure to obtain an effective algorithm, while others seek insight on
the problem structure from physical intuition”. Therefore, to address the challenges
currently faced by society, the PSE community has the opportunity to play an important
role (Grossmann and Harjunkoski, 2019) by helping to find novel and innovative
solutions that can not only arrest the undesired trends but also guide us towards achieving
the well-established goals of sustainable development (UN, 2021).

Figure 1 shows plots of effect X under business as usual and controlled actions as a
function of time, where X could be any one of the challenges with respect to climate,
COVID-19, resources utilization, pollution, sustainability and many more. Figure 1 also
points out Earth’s capacity to absorb the negative results of effect X, which means the
business as usual curve needs to be flattened with controlled actions before it is too late.
Note that although one plot is shown to highlight the concept, the actual curves and earth’s
capacity are different for different effects. The energy-water-environment-health-food
nexus (Al-Ansari et al., 2015; Mujtaba et al., 2018; Slorach et al., 2020) indicate however,
that the individual items cannot be considered in isolation from each other because they
have intrinsic interactions. The biocapacity of earth, which is a measure of its natural
resources against its activities has reduced to 1.7 (Global Footprint Network, 2016) and
must not become negative.

Business as usual

Earth’s capacity to endure effect X
Ry

Effect X

./—/"// e
— Controlled action :

= against effect X R

Time

Figure 1: Business as usual versus control action against effect X (climate change,
COVID-19 infections, resources utilization, pollution, sustainability, and many more)
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Earth’s natural resources for energy, water, biomass, minerals, etc., are not uniformly
distributed but they are needed everywhere in different forms. According to Gani et al.
(2020), a core activity of chemical and biochemical engineering is to convert these
resources to products (various energy products, food products, health-care products, efc.),
devices (car, television, phone, etc.) and/or services (electricity, fuels, fresh water, etc.)
that society needs for its sustainability. The recent pandemic due to COVID-19 has shown
that while the problem is global, their severity is different at different regions on earth.
The same is true for global warming, resources utilization, pollution and major issues that
impact society.

The objectives of this paper are to highlight selected focus areas representing current and
future challenges on earth, the choices of problems to solve within them, and the systems
approach-based solution methods that may be used to tackle them. The paper is organized
as follows: a brief overview of the current status of PSE methods and associated
computer-aided tools are given following the introduction; that is followed by a
discussion on focus areas where PSE methods and tools can be applied together with a
selected set of examples; and, ending with perspectives and concluding statements. The
contents of the paper are the result of a discussion between the corresponding author and
the co-authors on the following issues:

o In which of the problems can the PSE community make a significant contribution?
e What role should the PSE community play in tackling these problems?
e Which PSE methods and tools are best suited to tackle the problems?

This paper will also form the basis for the plenary lecture to be given by the corresponding
author at the PSE2021 with material to be added.

2. PSE methods and tools

In the multi-layered view of PSE, Pistikopoulos ef al. (2022) classified the PSE methods
and associated tools in terms of the inner fundamental layer that involves process-product
related activities where application of the fundamental concepts of PSE help to design,
build and operate manufacturing processes that convert specific raw materials to desired
products; the middle expanding layer that involves resources-efficiency related activities
leading to the development of new technologies and more sustainable engineering
solutions; the outer unifying layer that involves activities related to tackling of societal
challenges leading to a more sustainable society. In this paper, some of the PSE methods
and associated tools from all three layers are highlighted. See also Stephanopoulos and
Reklaitis (2011) for a historic review of PSE activities and Grossmann and Harjunkoski
(2019) for academic and industrial perspectives on PSE.

2.1. Methods

Three topics under methods are highlighted: modelling (because it is at the core of almost
all PSE methods); numerical methods (which is necessary to solve the equations
representing any model and are continuously updated to satisfy the demands from the
expanding and unifying layers of PSE) and algorithms (since the schemes for integration
and/or combination of models and numerical methods are needed to tackle the societal
challenges from the unifying layer of PSE).

2.1.1. Modelling

A model (Hangos and Cameron, 2001) is a pattern, plan, representation, or description
designed to show the structure or workings of an object, system, or concept; it could also
be a study of a miniature of the actual; the model objectives need to be clearly defined.
Modelling is the process of generating abstract or conceptual representation of a physical
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system, i.e., representing reality in a virtual environment for a purpose. In systems
approaches to problem solution, modelling is a core activity in the development of any
model-based problem solution tool and requires a very good understanding of the system
being investigated. As our understanding of the sub-systems whose problems we would
like to solve, is incomplete, models based only on first principles cannot usually be
obtained (or it is very time-consuming and resource demanding to obtain them).
Therefore, knowledge related to the core fundamental layer of PSE is not sufficient,
modelling options from the middle expanding layer of PSE, for example, systems
identification or artificial intelligence (including machine learning, deep data learning,
nature-inspired, efc.) need to be utilized (Lee ef al., 2018; Venkatasubramanian, 2019).
Note that the modelling objectives are related to specific problems that need to be solved,
giving rise to models of different complexities and forms. Therefore, to match and/or
improve the numerical solver efficiency and reliability, local models (Chimowitz et al.,
1983), hybrid models (Chaffart and Ricardez-Sandoval, 2018), or surrogate models
(Bhosekar and Ierapetritou, 2018) are being used. A few modelling related issues are
highlighted below (not ordered in terms of priority):

e Development of predictive property models — more than 10 million chemicals have
been identified but measured data are available for less than 50 thousand chemicals;
properties such as toxicity, color, smell, etc., need to be modelled.

e How to obtain new process (operation) models from generic models when new
processes and/or operations do not have all required sub-system details; new process
models such as intensified operations, fuel cells, medicine delivering devices.

e How to create plug and play options for links to external databases, solvers, models
and/or new theory, data, computational resources in currently available computer-
aided tools to expand their application range.

2.1.2. Numerical solvers
Models representing a system of interest, consisting of different combinations of
equations (algebraic, ordinary differential, partial differential, symbolic, etc.) involving
different types of variables (real, integer, Boolean, symbolic, efc.) require appropriate
numerical solvers. According to Pistikopoulos et al. (2021), the two key tasks that PSE
have focused on are i) optimization methods, comprising a variety of formulations, most
notably mixed-integer linear and nonlinear programs, dynamic optimization (including
optimal control) and hierarchical optimization (semi-infinite, bilevel, trilevel) and ii)
simulation/optimization of dynamic systems with hybrid discrete-continuous (or in some
case equivalently non-smooth) nature. Kronqvist ez al. (2019) and more recently Nolasco
et al. (2021) have reviewed optimization solvers. For a list of selected numerical solvers
commonly used by the PSE community, see also Pistikopoulos et al. (2021). To improve
the convergence and reliability of numerical solvers, symbolic computation methods,
which directly use mathematical expressions for operations and derivations to identify
the solution have been recently proposed by Zhang et al. (2021a, 2021b). Below, a few
numerical solver related issues are highlighted (not ordered in terms of priority):

e Which criteria (e.g., efficiency, reliability, and/or flexibility) should be used for
numerical solver selection, when for similar problems more than one solver could be
available.

e How to adapt currently available solvers to emerging modes of computation such as,
quantum computing.

e Options to incorporate features such as machine learning, data analytics, etc. into the
solver algorithm to make them intelligent.
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2.1.3. Algorithms
Although algorithms also refer to the work-flow of numerical solvers, in this section, the
term is used to refer to only synthesis, design and/or analysis of a wide range of process
(chemical, petrochemical, biochemical, pharmaceutical, food, efc.) and/or chemicals-
based products (solvents, refrigerants, fuel blends, paints, detergents, efc.), including
devices (medicine delivery, power-supply, air-purifier, efc.). They are further classified
in terms of available options (sustainable design, design under uncertainty, reverse
design, flexibility and/or controllability analysis, efc.); type of approach (rule-based,
process groups based, superstructure-based, efc.); and, application areas (process
technology, product technology, analyser technology, etc.). The following selected
articles provide an overview on the challenges and opportunities related to specific topics:
Chen and Grossmann (2017) on process synthesis; Schilling e al. (2017) and
Papathanasiou and Kontoravdi (2020) on product and process synthesis-design;
Skiborowski et al. (2014) and Tula et al. (2017) on sustainable process design; Morari
and Lee (1999), and, Yu and Biegler (2019) on process control, Diangelakis ez al. (2017)
and Rafiei and Ricardez-Sandoval (2020) on integrated process design and control
optimization; Garcia and You (2015) on supply chain design and optimization, and,
Maravelias and Sung (2009) on production planning and scheduling. Some algorithm
related issues are briefly highlighted below (not ordered in terms of priority):
e Application range versus reliability versus flexibility.
e Detailed activity diagram (model) needed for software implementation.
e Adoption of hybrid approaches (interfacing of algorithms with computational
resources).

2.2. Computer-aided tools
The PSE community continue to develop problem specific computer-aided tools for a
wide range of applications. The most well-known PSE computer-aided tool is the process
simulator, available in different versions, that is widely used for education as well as
industrial practice. However, are the current versions of the various simulators able to
solve the problems related to the energy-water-environment-food-health nexus? Also, as
pointed out by Tula et al. (2019), process simulation is just one out of many tasks that
needs to be performed for sustainable and innovative design. For example, tools for
modelling are needed if the required model is not available in the simulator model library;
or, a product design tool is needed to design-select an appropriate chemical for solvent-
based separation; or, a process synthesis tool is needed to generate a flowsheet if a
reference flowsheet is not available; or, analysis tools (sustainability, safety and hazards,
LCA, economics, etc.) are needed to verify the feasibility of the chemical process.
Pistikopoulos et al. (2021) provides a list of the above-mentioned tools developed by the
PSE community. Some issues related to computer-aided tools are briefly highlighted
below (not ordered in terms of priority):
e Application range of the available models in the model libraries — are they problem
specific according to application area?
e Can the models, data, algorithms be adopted from one sector to another?
o Are simulation and design (including synthesis and analysis) options available in the
same tool?
o Can they serve as virtual reality simulators to provide users with real experience?
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3. Challenges and roles of PSE

Table 1 lists selected data to highlight the challenges and issues. The energy-water-
environment-food-health nexus is getting more complex in the changing world and an
integrated solution approach is necessary to tackle better the interactions among the
individual effects. For example, energy in the form of fuels and electricity is needed by
industry, transportation and housing sectors, but the type of fuel and the electricity
generation defines the amounts of green-house gas (GHG) emissions, which in turn is
related to climate change. Supply chain factors as well as waste disposal and therefore,
resource utilization and pollution are also related, particularly for the chemical,
petrochemical and pharmaceutical sectors. With respect to COVID-19, the pandemic is
still not under control (December 31, 2021) even though the rates of hospitalizations and
deaths appear to be slowing down (see Table 1). However, based on data on consumption
of energy (see Table 1), the non-renewable resources that emit CO> still dominate energy
supplies. Capture, utilization, and/or sequestration of CO; is a challenge where adopted
PSE methods and tools can play an important role. Society’s daily needs such as plastics
for packaging; chemicals for drugs, cosmetics, detergents, efc.; rare earth metals for
construction, equipment, cars, etc., are causing pollution of land, water and/or air upon
disposal and through their end-of-life properties.

Table 1: Current status of selected effects

Effect Data Reference
Global warming  New estimates of the chances of crossing the global IPCC (2021)
warming level of 1.5°C in the next decades indicate
that unless there are immediate, rapid and large-
scale reductions in greenhouse gas emissions,
limiting warming to close to 1.5°C or even 2°C will
be beyond reach
COVID-19 Worldwide total infections have reached Worldometers (2021)
285,231,011 with 5,442,088 deaths as of 31
December 2021
Resources COz emitting non-renewable resources still Vooradi et al. (2017);
(energy) contribute nearly 85% of the energy (not IEA (2021)
electricity) and around 65% for generation of
electricity
Resources (water) 97% of water on earth is salt water and only 3% is  WHO (2019); Greenlee
fresh water, out of which, 68.1% is ice-caps and et al. (2009)
glaciers, 30.1% is ground water, 0.3% is surface
water and 0.9% is other); Globally, at least 2 billion
people use contaminated drinking water source
Resources Currently biomass contributes 3.4% of the total Energy (2021); WBA
(biomass) transportation energy demand. It would require 2.4 (2020); IRENA (2014);
times the amount currently devoted to all energy IEA (2016)
demands (or, more than 1.3 times earth’s current
biomass resources) to satisfy only the total energy
demand for the transportation sector in 2030.
Pollution (plastic Projected plastic waste generation of the EU-27 is  Fan et al. (2022)
waste, water) estimated to reach 17 Mt/y in 2030
Pollution (GHG  The GWP of CH4 and N2O are around 27~29 and  IPCC (2021)
release) 273 (100-year time period), respectively.
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Where should the focus to tackle these challenges be, what should be the choice of
problems to solve, and, which solution approaches should be applied that could make an
impact and help to define the new normal for future generations are still open questions
that need to be addressed. Guillén-Gosalbez et al. (2019) recently highlighted process
systems engineering thinking and listed tools that could be applied to solve sustainability
related problems. Bakshi (2019) reviewed the role of process systems engineering toward
sustainable chemical engineering. Burre er al. (2020) discussed how process systems
engineering can help address common challenges for Power-to-X technologies. Martin et
al. (2022) the challenges and opportunities related to sustainable process synthesis, design
and analysis. Avraamidou et al. (2020) highlighted the challenges and opportunities for
PSE related to achieving circular economy.

3.1. Sustainable process networks

The production of clean energy is directly linked to avoiding the depletion of natural
resources, even if this goal has a more general aim, as well as limiting the production of
waste and avoiding polluting the environment. According to the carbon-neutral roadmap
presented by each government, chemical and petrochemical industries must reduce their
greenhouse gas emissions to achieve zero net emissions by 2050. In order to significantly
reduce carbon emissions in such industries while maintaining the current business
portfolio, adoption of new technologies that can directly utilize electricity originating
from renewable energy resources such as solar and/or wind energy to produce chemical
products is necessary (Rangel-Martinez et al., 2021). Process integration at the different
manufacturing and production levels will play a critical role to ensure efficient and
sustainable operation of existing and emerging systems, and their corresponding
integration (Burnak et al., 2019; Rafiei and Ricardez-Sandoval, 2020). Figure 2 highlights
the concept of integration of sub-networks of utilities (energy and water), process for
conversion of optimal product(s), integrated with capture and utilization of captured CO,.
Decisions related to individual sub-networks need to be made such that the overall
objectives of sustainable design are satisfied. The objective for sustainable design of
networks could be, for example, to find a design with zero or negative CO> (preferably
all GHG) that is economically feasible, operationally safe and environmentally
acceptable. Choices of raw materials and products can represent any industrial sector
while choices of resources for utilities need to be made such that net zero emission
requirement can be satisfied. Note that in Figure 2, the processing of waste utilities
(energy, water), waste material, by-products for recycle, re-insertion and/or utilization in
the process thus promoting circular economy is not shown.

Using core PSE methods and associated tools Li ef al. (2022) have developed a conceptual
application example of such a superstructure based sustainable network synthesis. Roh et
al. (2018) have developed a computer-aided tool (called ArKaTAC?) that allows to
perform both superstructure-based process synthesis and multi-dimensional analyses
(including techno-economic analysis and life cycle assessment) of carbon capture and
utilization systems. Filippini et al. (2019) reported design and economic evaluation of
solar-powered hybrid multi effect and reverse osmosis system for seawater desalination.
Also, Sanchez et al. (2019) have shown the utilization of captured CO, hydrogenation
with green hydrogen for methanol, ammonia and urea productions, while, Guerras et al.
(2021) proposes that biomass as a renewable resource should be devoted for the
production of added value products (for example, in the pharma, food additives, health
sectors) and only wastes should be used for energy production. Evaluation of these new
technologies should also consider operational flexibility (Mitsos et al., 2018) as well as
safety (Eini et al., 2016).
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Figure 2: Superstructure for optimal integrated net zero emission network to achieve
circular economy (note: * indicates they will need additional processing for recycle, re-
insertion and/or utilization).

3.2. Chemical process safety

Even though the chemical industry has achieved a very impressive improvement in
occupational safety, the reduction in major process accidents (on a global basis) has been
less impressive and the insured losses due to major accidents in the chemical industry
have not reduced in the last 30 years. It is estimated that 70% of the chemical accidents
were caused by human errors. These incidents also point to inefficient resource
utilization. PSE should be able to play a key role in developing and deploying advanced
artificial intelligence-based technologies that assist operators in estimating and/or
identifying all potential risks in the complex and dynamic chemical industrial operations
and to make correct and consistent decisions. Interesting developments that could be
evaluated for potential deployment are method for fault detection and diagnosis (see Fig.
3) based on transfer learning (Wu and Zhao, 2020), automatic frequency estimation of
contributory factors for confined space accidents, natural language processing (Wang and
Zhao, 2022), and, inherent safety and cognitive engineering as well as operator training
(Srinivasan et al., 2019).

CHEMICAL PROCESS

Historical data

ilt data

Data preprocessing Data preprocessing

Time-lagged sample Time-lagged sample
- . Fault type
DCNN design network

Figure 3: Framework for fault detection and diagnosis (Wu and Zhao, 2020).
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3.3. Health and pharma sector

In the pharma sector, a principal challenge is to develop model (including data) based
computer aided systems for synthesis, design, monitoring, control, as in chemical and
petrochemical industries. Nevertheless, systems approach coupled with PSE methods and
associated tools have made important contributions during the last decade, for example,
in conversion from batch to continuous manufacturing (lerapetritou et al., 2016),
development of process analytical technologies, and data-driven approaches for active
pharmaceutical ingredients (API) syntheses and design of powder-/bio- processes (e.g.,
Kim et al., 2021). Advances in development of health-care products (Fuentes-Gari et al.,
2015) and their manufacturing processes such as monoclonal antibody drugs and stem
cells have been reported (e.g., Hayashi ef al. 2021). In sustainability and healthcare,
COVID-19 has revealed the need for a systematic approach for vaccine/medicine
development and supply chain. The urgent supply was mandated on top of maintaining
the existing treatment capability. Besides COVID-19, R&D of innovative therapies, e.g.,
regenerative medicine, is ongoing. These therapies tend to be expensive while the
economic aspect is becoming critical in many countries. Analyses and discussions
towards sustainable healthcare society (e.g., Sugiyama et al., 2021) can be further
expanded as a topic of the PSE community. Figure 4 highlights the challenges and
opportunities for adoption of PSE methods and tools to prepare for future pandemics.
Four potential problems to solve are highlighted together with the issues and needs that
need to be addressed.

Planet Earth System Characteristics defined by NR, NP, NS, NG, NV, ND
T NR: Number of regions within the system
p ’\ f . NP: Population within the system; NPi: within region i
' . / ! NS: Susceptible population within the system; NSi: within the region i
| NG: Number of groups of people within the system; NGi: within the region i
« ./ D NV: Number of vaccines available within the system; NVi: within the region i
S >

ND: Number of people deceased within the system; NDi: within the region i

Lines indicate boundaries for different  Bgyndary of the system may represent Earth, Continent, Country, State, City, ....
systems or regions on earth

Discover Manufacture Distribute & Plan & implementation
(drug, vaccine, ... (sustainably) deliver (vaccine, drug allocation)

Problems to solve

Issues & needs

(model-based) Knowledge (data); models; mathematical representation; solution strategy, solvers; ....

Figure 4: Visual plan to prepare for the next pandemic through PSE methods and tools

3.4. Chemicals based products and their substitution

In our changed world, we are living with chemicals that are in our food products, clothes,
furniture, appliances, toys, cosmetics, medicines and many more. Society, for its
existence anywhere on earth, needs to use a variety of products and/or means that are
directly or indirectly connected to chemicals. Currently, more than one million chemicals
can be found on planet earth and thousands of new chemicals-based products are entering
the global market every year. Over 95 percent of all manufactured goods rely on some
form of industrial chemical process (ICCA, 2019). As the number of chemicals grows
rapidly, understanding their implications on human health and environment is
increasingly becoming an issue. An important and urgent challenge is not only to identify
the chemicals, which may have harmful effects, but also to substitute or control their use
(Syeda et al., 2022). As demand for safer alternatives in products is increasing, regulatory
authorities, such as EU REACH (EU, 2021), US EPA (EPA, 2021) and Occupational
Safety and Health Administration (OSHA, 2021) have taken up substitution of chemicals
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harmful to human health and environment as one of the central elements of their policies.
As the pioneers of techniques such as computer-aided molecular design (CAMD) for
chemical product design, the PSE community is well placed to assist and actively
collaborate with the authorities to tackle this urgent problem. CAMD and different
variations of it (Zhang et al., 2020, Adjiman et al., 2021), can easily be adopted for
analysis of chemicals-based products and substitution of chemicals if hazardous
chemicals are identified in the product. The chemical substitution problem and the
possible solution steps are highlighted in Figure 5.

-y
Q\& ' %/ Automobile ’ 2 4,
T & K J o 4")% ¥
& & p&. 7 - %, %
& SRR b, Gy
S %2,
Cosmetics
Agro- and 2
chemicals Personal 1 . ‘l
Care .

Chemical-based
Products with a Liquid
Delivery System

Leul b &
L ’ FE
% &L & ST
£ Paints and J & Qb&

®)
o, Process Suface &L
(o) SO Coatings &

1. Identify contaminant; 2. Analyze function of contaminant; 3. Find alternative chemicals that offer similar (or improved) performance
properties but without properties that promote pollution; 4. Verify the functions; 5. Confirm improved sustainability

Figure 5: Chemical substitution problem and suggested solution steps.

4. Perspectives (Opportunities)

A “systems thinking” or “systems integration” approach is required, where PSE provides
the glue (architecture for consistent, efficient, and smooth data transfer from one tool to
another) for integration of energy supply, water management, control of greenhouse gas
emissions, process safety and economics and many other major issues that impact society
and earth. PSE methods and associated tools can be adopted for sustainable and secure
access to food, water and energy, leading to achievement of sustainable development
goals, to develop and evaluate new technologies for carbon capture, utilization and
sequestration (CCUS), and to close circular production systems with near-zero or
minimum waste. Simultaneously, computer-aided molecular design (CAMD) techniques
could be adopted for pollution control of water caused by plastics, including disposable
personal protective equipment (PPE), efc.; pollution of air caused by GHGs, efc.; and
pollution of land caused by disposed chemicals-based products.

In order to tackle the challenges of our changed world, the opportunity exists to not only
adopt but also to develop new methods and tools as and when necessary. As models,
modelling and data are at the core of all systems-based problem solution approaches,
more effort is needed to understand systems that are outside our domain knowledge. It is
important to use correct and consistent models and associated decision support tools for
analysing the involved complex phenomena (e.g., powder processing, biological
reactions, cell behaviour, solid solubility, toxicity, efc.) in such a way that the decisions
related to process and products (e.g., production scale and mode, design space
determination, process-operation specification, efc.) can be made.

Recognizing that resources in earth are not uniformly distributed, nevertheless, the
concept of integrated networks could be applied for desalination to obtain fresh water
using solar and/or wind energy sources where these can be harnessed. In regions where
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there is fresh water in abundance, technologies already available to combine hydrogen
obtained through electrolysis of water with captured CO; to produce methanol (as an
intermediate chemical from which other high-value chemicals could be synthesized), with
N> from air to produce ammonia (as a hydrogen carrier), and, methanol and ammonia to
produce urea (as a fertilizer). The analysis of competing interests as well as the
presentation of feasible/optimal solutions under uncertainty (i.e., societal design) would
be another important contribution from PSE.

Stable and sustainable coupling of chemical industry and power generation sectors by
exploiting operational flexibility, optimal integration of design, operation, and control of
power-intensive chemical plants that already exist and also should be newly developed.
Implementation of new technologies, such as intensified equipment and/or hybrid
combination of distillation and membrane, for targeted reduction of energy consumption
as a short-term solution need to be promoted through bench-mark problem solutions.

Lessons learnt from the pandemic with respect to the challenges posed to the supply chain
and development of novel schemes and policies that can potentially reduce the impact of
current and future pandemics should be considered as a global supply chain system. With
the expertise and experience of the PSE community in the supply chain sector, an optimal
vaccine allocation system that is region specific to immunize the population at the fastest
rate could be developed and distributed to the appropriate agencies. Recognition of
healthcare as an element of the energy-water-environment-food-health nexus will help
re-designing the manufacturing processes and beyond. PSE can contribute to help prepare
for the next pandemic with, for example, vaccine allocation software (to be made
available globally to all countries) to reach herd immunity at the shortest time and with
the minimum loss of life.

5. Conclusions

Process systems engineering as a multi-disciplinary field of research has many
opportunities to tackle some of the greatest challenges faced by today’s society. This
opportunity is provided by the rich literature and many ongoing current and future
activities to provide integrated solutions within water-energy-food-waste-health nexus.
However, more efforts are needed to understand and develop models, tools and solutions
strategies to address those major challenges. This can result in developing new
technologies and process systems by means of predictive models. These predictive
models should be able to address short-term necessities while laying the foundations for
long-term solutions over a time horizon to help alleviate the current and future challenges
to address different global objectives, such as the UN sustainable development goals.
However, all the efforts would be wasted if the demands (due to increased growth and
promising economy) cannot be limited; circular economy with zero waste and ability to
sustain changes will be impossible if resources disappear because of increased demand.
Thereby, a systems thinking approach is essential to not lose the opportunities within
rather narrow windows to address global issues, such as global warming and the COVID-
19 pandemic.
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Abstract

Following the Industry 4.0 revolution, pharmaceutical industry is progressing towards
embracing its principles for smart manufacturing. Industry 4.0 encourages the application
of a robust, integrated data framework to connect physical components to virtual
environment. It enables an accurate representation of the physical parts in digitized space,
leading to the realization of Digital Twins (DTs). In this work, our effort on developing
process systems engineering (PSE) tools towards the development of a DT for advanced
pharmaceutical manufacturing are presented. These tools are demonstrated through
applications in the areas of solid-based drug manufacturing and biologics production.

Keywords: Industry 4.0; Digital twin; System analysis; Pharmaceutical manufacturing;
Biologics production.

1. Introduction

Driven by the Industry 4.0 revolution and the vision to develop agile, robust, and flexible
manufacturing process to produce high quality drugs, the pharmaceutical industry is
adopting this digitalization move (O'Connor et al., 2016, Chen et al., 2020). Efficient
process monitoring, prediction, and analysis are realized using process analytical
technologies (PAT), data collection and processing, Internet of Things (IoT), and big data
analytics. The framework allows for the establishment of a virtual representation of the
physical process with information communications, resulting in a DT capable to enhance
process robustness and facilitate process design and operations (Chen et al., 2020). For
DTs, maintaining precise virtual representations of processes and conducting detailed
analyses are two crucial tasks. These tasks are challenging for pharmaceutical
manufacturing as multi-scale information, ranging from powder and cell properties to
bulk flow of materials, needs to be integrated with complex reaction networks and
transport phenomena. These components lead to complex model development and high
computational costs, limiting the implementation of DT in advanced pharmaceutical
manufacturing.

To address these challenges, we propose the use of PSE tools focusing on modeling and
analysis approaches. From a modeling perspective, mechanistic models for particle and
cell level modeling, surrogate and hybrid modeling for model reduction, adaptive
modeling for model updates, and flowsheet models for process integration are developed.
For process analyses, efficient tools in sensitivity and feasibility analysis, techno-
economic analysis (TEA), life cycle assessment (LCA), and optimization are applied. The
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development and application of these methods will be illustrated for solid-based drug
manufacturing and biological production.

2. Application in solid-based drug and biologics manufacturing

The in-silico design, analysis, and optimization methods provide a basis for digital
manufacturing, which support resolving the bottleneck of the pharmaceutical industry in
improving productivity and quality. Mechanistic models enable the incorporation of
process details and material properties, providing a comprehensive digital replication of
the unit. These models include discrete element modelling (DEM) to simulate dynamic
powder flow in solid-based drug manufacturing (Bhalode and Ierapetritou 2020), and
computational fluid dynamics (CFD) with kinetic models to capture cellular activities for
biologics manufacturing (Yang and Ierapetritou, 2021). However, these models can be
computationally intensive. To address such challenge, surrogate and hybrid models that
combine data and process knowledge in different scales are utilized (Bhalode and
Ierapetritou, 2021, Chen and Ierapetritou, 2020, Metta and Ierapetritou, 2019). Dynamic
algorithms and adaptive strategies based on moving windows are used to capture time-
variant process behaviours, supporting the development of DTs (Bhalode et al., 2022).
Models in solid-based drug manufacturing and monoclonal antibody (mAb) production
will be presented as case studies (Ding and lerapetritou, 2021, Yang and lerapetritou,
2021, Chopda et al., 2021).

Along with unit operation models, flowsheet models are constructed with appropriate
information transfer, which facilitate early-stage design, evaluation, and decision making.
To improve process understanding, PSE tools such as regression and variance-based
sensitivity analysis, feasibility analysis with adaptive sampling, and deterministic
optimization are performed for identification of critical process parameters, design space,
and optimal operating conditions, respectively. Cases in direct compaction of solid-based
drugs (Wang et al., 2017a, Metta et al., 2020, Bhalode et al., 2020) and continuous
chromatography of biologics (Ding and Ierapetritou, 2021) will be demonstrated.

TEA tools are integrated with flowsheet models to analyse the cost and energy
effectiveness of the process and to identify the benefits of continuous operations over
traditional batch or semi-batch operation alternatives. Applications in both wet
granulation for the production of solid-based drugs (Sampat et al., 2022), and mAb
production will be discussed (Yang et al., 2019). To assess the sustainability potential of
advanced pharmaceutical manufacturing processes, LCA tools (Luo and Ierapetritou,
2020) are utilized to obtain important environmental indicators including the global
warming potential of the product. With information on sustainability and process
economics, multi-objective optimization is performed to strive for a balance between the
two and guide process design and operations. To reduce sampling cost, maintain process
feasibility, and find accurate Pareto solutions, a two-stage optimization framework based
on Wang et al. (2017b) is proposed. The feasibility stage identifies the feasible regions
with promising values for all objectives, followed by the optimization stage to find the
Pareto within the feasible regions. The surrogate-based feasibility-driven multi-objective
optimization algorithm will be shown for wet granulation route of solid-based drug
manufacturing.
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Abstract

The enormity of mankind’s decarbonization challenge precludes a simple monolithic
solution. Its unprecedented scale and complexity affect every nation without exceptions.
Ideally, our mission should be to fully replace the fossil fuels with zero-carbon renewable
alternatives, but the path to that end is long and challenging. In this talk, we discuss our
experience and perspectives on some decarbonization pathways with concrete examples
(efficiency improvements, novel processes for CO2 utilization, non-polluting energy
sources, ...), where successful translational outcomes can be accelerated by continuous
guidance from process systems engineering tools and techniques.

Keywords: carbon emissions, decarbonization, hydrogen, carbon utilization, carbon
capture, supply chain.

1. Introduction

Economic development and per capita energy consumption of a nation are strongly
correlated. Rising world population with a desire for better living has increased energy
demand exponentially, which is mostly met with easy-to-use hydrocarbon fuels with little
concern for a backlash from abusing the nature and despite warnings flagged by many
scientific studies. The consequence is an unprecedented rise in the atmospheric CO2
levels. In the meantime, global warming is already showing early signs of catastrophic
consequences all around the world. From Kyoto Protocol in 1997 through Paris
Agreement in 2015 to Glasgow COP26 in 2021, it took 23 years for the world to fully
wake up to the urgency of the situation and take decarbonization seriously. Fortunately,
the scientific community was fully committed well ahead of the political consensus on
this matter, and has compiled a significant body of work on decarbonization. These
contributions, spanning a broad spectrum of issues, can be classified into three themes:
reduce, recycle/reuse, and replace carbon; which are widely known as 3Rs. In most
countries, the journey towards decarbonization has involved the 3Rs in the same
sequence.

Decarbonizing existing systems require addressing inherently large-scale problems.
Consequently, our collective 3R-driven decarbonization journey has witnessed a
resurgence of the need to apply the classical Chemical and Process Systems Engineering
(PSE) concepts and methods. Parallelly, low carbon technology innovations are required
for capturing carbon emissions and producing power, chemicals, and fuels. We believe
that their industrial success requires mission oriented translational work, and constant
guidance from PSE right from the beginning can benefit them greatly.
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In this talk, we present our perspectives on the 3Rs for our journey from high-carbon
present to no-carbon future with examples from our work at the National University of
Singapore that illustrate the central role of PSE in this urgent and critical mission.

2. Reduce

Reducing CO2 emissions from the power and industry sectors by increasing energy
efficiency is a low hanging fruit, hence the obvious first target for many countries and
research. Our work has yielded several observations.

Much literature has used energy or exergy as a KPI (Key Performance Index) for many
problems. In our opinion, annualized total cost (TAC) should be the preferred KPI, as
minimum-TAC solutions can be significantly different from minimum-energy/exergy
solutions (Rao et al., 2016; Rao & Karimi, 2018). Furthermore, no doubt a sound
theoretical concept, exergy is inadequate for economic industrial decisions in practice.

Rigorous simulation-based optimization has been quite useful for us. Our work (Dutta et
al.,, 2018; Rao & Karimi, 2017) required detailed rigorous simulations of industrial
facilities with realistic thermodynamic properties. It proved easier and more accurate to
use them directly versus deriving analytical correlations for the conventional algebraic
optimization. Hamedi et al. (2020) have identified several pitfalls of the latter.

Saleem et al. (2018) developed a computational fluid dynamics (CFD) model for an
industry-scale LNG storage tank and showed that surface evaporation predominates, and
nucleate boiling is unlikely. Furthermore, the static pressure delays internal circulation
and complete mixing. Sundaram & Karimi (2021) were able to predicts pressure
transients using a simpler model and their results matched both the CFD model real tank
data. LNG recirculation is a major cause of BOG losses (hence power use in
reliquefaction) from these tanks. Using a validated dynamic simulator, we (Karimi et al,
2019) proposed a modified recirculation scheme, a new operations schedule for BOG
compressors, and a lower recondenser pressure to reduce power use by nearly 40%.

Heat integration has hugely benefitted the process industry. We addressed several key
areas. First, Nair et al. (2019) developed a novel stageless superstructure that offers
complete flexibility in network configuration and is seamless for both grassroots and
retrofit synthesis. Second, Nair et al. (2016) showed that inter-plant (versus intra-plant)
heat integration can offer substantial energy savings, but at the cost of several significant
complexity, safety, control, logistics, ownership, and collaboration challenges. Capital
costs become much more crucial. Third, integrating work along with heat (Hamdi et al.,
2020) offers additional carbon reduction. Fourth, Rao & Karimi (2017) and Rao et al.
(2019) addressed the flowsheet and operation optimizations of processes with multi-
stream exchangers. Fifth, Christopher et al. (2017) used vapor recompression and self-
heat recuperation to decrease energy use by 45% for propane/propylene separation.

LNG regasification terminals worldwide waste LNG’s cold energy. Dutta et al. (2018a)
showed that a well-configured organic Rankine cycle (ORC) can recover this energy and
produce 0.5—12.9 kW/t-LNG of power with an NPV of $2.45-6.87 million at an operating
regasification terminal. Furthermore, Dutta et al. (2018b) proposed an integrated
regasification-production process to produce valuable heavy hydrocarbons (ethane, LPG)
from rich/medium LNG by exploiting the cold energy. In fact, such a process can generate
7-10% profit for the terminal.
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We have implemented process data-based pump and insulation health monitoring at the
same terminal. While estimating the remaining useful life (RUL) to schedule timely
preventive maintenance, the user interface also tracks increasing CO2 emission from
deteriorating health. Thus, it is possible to account for environmental impact (carbon tax)
to schedule maintenance.

Our above discussion illustrates how PSE methodologies for design, simulation,
integration, and optimization can reduce carbon emissions in real industrial processes.

3. Recycle / Reuse

While renewable energy sources are a priority, hydrocarbons will remain in use during
the transition to a zero-carbon economy. Hence, carbon capture and concentration (CCC)
from various stationary emission sources for sequestration and utilization (CSU) will be
important and unavoidable during the transition. CO2 recycle/ utilization can be achieved
in two ways. The conventional way is to capture it from the existing processes and
produce useful chemicals via green hydrogen. The alternative is to radically change the
way we produce power and chemicals today by integrating their productions to achieve
zero net CO2 emissions.

Our studies (Khurana & Farooq, 2017, 2019) on CCC have led to the following
perspectives. First, the scale and footprint of a CCC plant, irrespective of the technology,
are far larger than the largest chemical plant known today. Second, adsorption-based CCC
processes (VSA, TSA, etc) do not show any significant cost advantage compared to the
established industrial amine processes. Third, the cost reduction from designing both
adsorbent and process simultaneously (process inversion) by considering adsorbent
attributes also as optimization variables was minimal. This implies that process rather
than material innovation is more promising. The idea of process inversion can help other
R&DD efforts such as catalysts for CO2 utilization (CU).

In order to gain a broader understanding of the prospects and challenges of CO2 reuse,
we (Dutta et al., 2017) conceptualized a zero-emissions scheme (Figure 1) to integrate
both power and chemicals production. All CO2 produced was recycled internally and
reused to produce useful fuels and chemicals. All reaction and separation operations along
with heat and power integration were also built within the scheme. Using the scheme as
a surrogate to achieve zero net carbon emissions made us quickly realize that an abundant
supply of green renewable hydrogen is a prerequisite. If the scheme was used to meet the
current global demands of all chemicals, CO2 avoidance would be at most 59% of 2013
emissions. This implies that CU must produce fuels to increase CO2 avoidance.
Furthermore, CU products must be cost-competitive and profitable.

Our recent study (Vo et al., 2021) on the feasibility of producing transportation fuels,
methanol and 1-propanol from CU shows that only 1-propanol is competitive at the
present levels of carbon tax, CO2 cost, and green hydrogen price. Our proposed scheme
for producing 1-propanol from CO2 utilization is a three-step process. Even though this
process is economically profitable and emits less CO2 than the current commercial
process, a novel catalyst allowing a single step process may seem more attractive
intuitively. However, our technoeconomic study based on preliminary data from a single-
step catalyst shows contrary results. The first problem is low selectivity towards propanol
versus non-alcoholic by-products. The second problem is the high H2 burden arising from
the oxygen molecules introduced with each mole of CO2. This is an excellent illustration
of how a complete process study at an early stage of catalyst development can guide
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further materials research. In view of the current high green H2 cost, its higher
consumption in CO2 utilization compared to the conventional routes deserves further
study.
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Figure 1: Scheme for the integrated production of power and chemicals with zero net
carbon emissions.

4. Replace

The grand vision for deep decarbonisation foresees the emergence of an energy landscape
based on global hydrogen supply chains (HSCs, Figure 2). While much effort is underway
on technologies (e.g. water electrolysis) to produce green hydrogen via renewable
electricity, it will take time before such green H2 is cost competitive with the blue
hydrogen produced from NG with CCS. Other material and equipment hurdles along with
the lack of infrastructure will keep both NG and CCSU critically relevant for the
foreseeable future. In other words, HSCs will be inseparable from NG/LNG and CO2
supply chains. Several countries (e.g. EU, USA, Korea, Australia, Japan) have developed
roadmaps for how H2 could develop in specific regions. Since some countries (e.g.
Singapore) with high energy needs have few renewable energy resources, export/import
of H2 via global transport routes will be a key aspect of HSCs with low density of H2 as
a significant hurdle. Hence, countries are asking three main questions: what are the
technoeconomic and environmental costs of producing, importing, and transporting H2?

Fully funded by and in collaboration with ExxonMobil USA, we are working on a
hydrogen roadmap for ASEAN (Association of South East Asian Nations) under the
umbrella of Singapore Energy Center. We conducted a holistic study of various options
for producing and transporting hydrogen from both technoeconomic and environmental
perspectives, and are analysing various scenarios for the planning of HSCs in ASEAN
from now to 2050. For this, we (Hong et al., 2021) have developed a multiperiod mixed-
integer nonlinear programming model for geographically distributed SC capacity
planning, and a tool called HEART (Hydrogen Economy Assessment & Resource Tool).
HEART enables the long-term design and planning of H2 production and import, and
computes the cost of producing and transporting H2. In the near future, we will also be
collaborating with Chiyoda and Mitsubishi Japan to plan and optimize the local
distribution of H2 in Singapore, when MCH (Methyl CycloHexane) is used as a carrier
for importing H2.

Using data from various H2 reports, we developed simplified analytical correlations for
the cost of producing H2 from NG, coal, biomass, and water electrolysis at various
locations in ASEAN. We (Hong et al., 2021) then analysed four options for transporting
hydrogen, namely methyl cyclohexane (MCH), liquid hydrogen (LH2), compressed
hydrogen (CH2), and liquid ammonia (LNH3) and computed the landed cost of H2 as a
function of various technoeconomic and geographic parameters. Our study showed that
HSC costs are comparable to production costs, hence both require careful attention for
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H2 economy. H2 produced via steam reforming with CCS and supplied via pipelines is
the cheapest option for distances within 2000 km. The next best option is the direct use
of NH3 instead of H2 for power generation. MCH and liquid NH3 showed comparable
landed costs for H2, and using green H2 is essential for achieving >80% carbon
avoidance. Liquid H2 has the highest energy penalty. Contrary to the misgiving that direct
NH3 burning will increase NOx emissions, our recent comparative study (Saleem et al.,
2022) of literature data on burning hydrogen, ammonia, and natural gas shows that NOx
generation from H2 combustion is more than that from an equivalent amount of NH3.
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Figure 2: Schematic of hydrogen supply chain and its key elements. (Hong et al., 2021)

5. Conclusions

Various branches of chemical engineering and related sciences have sufficiently
progressed where we can have high confidence in simulation-based prediction of a
process performance obtained via PSE tools and techniques. In this paper, we have
demonstrated with examples drawn from our work how that can play important roles in
all three Rs to arrest our existential threat from global warming.

We strongly advocate a paradigm shift where PSE would be the guiding vector for
materials research from the beginning in order to provide timely feedback necessary to
ensure that what looks exciting at a small scale meets the requirements of a successful
commercial translation. This new paradigm has the potential to maximize resource
utilization and shorten development times.
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Abstract

In recent years, high-fidelity simulation models have become widespread to study, design,
and optimize engineering systems. However, the complexity of the models often requires
computational power beyond what is feasible. One common way to reduce computational
cost is to use surrogate/meta models, simplified approximations of more complex, higher-
order models, and map input data to output data. Many techniques have been developed
for surrogate modeling; however, there remains a need for a systematic method for
selecting suitable techniques. In addition, surrogate models built using traditional
methods do not accurately represent the outputs of high-fidelity stochastic simulations,
e.g., simulations with uncertain parameters. This work describes a new framework that
combines PRESTO (Predictive REcommendations of Surrogate models To Optimize), a
surrogate model selection tool, with a novel technique, PARIN (PARameter as INput-
variable), for building accurate surrogate models of stochastic simulations. We applied
the framework to two stochastic test functions with one uncertain parameter. The results
reveal that the framework yielded lower normalized root mean square errors than
stochastic kriging in predicting the mean and standard deviation of the test function
outputs.

Keywords: surrogate model, stochastic simulation, surface approximation, process
design/optimization

1. Introduction

In recent years, high-fidelity simulation models have become widespread to study, design,
and optimize engineering systems (e.g., (Burnak et al., 2019; Al et al., 2020; Marvi-
Mashhadi et al., 2020; Wang et al., 2020)). However, in many cases, the complexity of
the models requires computational power beyond what is available for applications like
sensitivity analysis or optimization studies. One common way to reduce computational
costs is to use surrogate/meta models. Surrogate models, also known as response surfaces,
black-box models, metamodels, or emulators, are simplified approximations of more
complex, higher-order models and map input data to output data (Jiang et al., 2020).

With all the surrogate modeling techniques currently available, there is a need for a
systematic procedure for selecting the appropriate technique. Recent works (Cui et al.,
2016; Garud et al., 2018; Jia et al., 2020) have made progress in generalizing the selection
of a surrogate model to approximate a design space by using meta-learning approaches
avoiding expensive trial-and-error methods. However, selecting surrogate models for
surrogate-based optimization remains an open challenge. Furthermore, surrogate models
built using traditional techniques do not accurately represent the outputs of high-fidelity
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stochastic simulations, e.g., simulations with uncertain parameters (Staum, 2009). High-
fidelity simulations may contain different sources of uncertainty, including uncertain
inputs, parameters, and model form (Ankenman et al., 2008). The existing machine
learning (ML) methods are mainly built for deterministic problems, and they usually fail
in representing the stochastic simulation outputs properly (Staum, 2009). The current ML
techniques can be used to model outputs of stochastic simulation only when the source of
uncertainty is the inputs. A surrogate model is built using an appropriate ML technique
with the input/output data generated using the deterministic simulation. Then, the input
uncertainty may be propagated to the ML model outputs using uncertainty propagation
methods (Kim, 2016).

Three current approaches to model the stochastic simulations with uncertain parameter(s)
are 1) fixing the value of the uncertain parameters (Hiillen et al., 2019), 2) using a subset
of realizations of the uncertain parameters (Hiillen et al., 2019), and 3) stochastic kriging
(Ankenman et al., 2008). Using the first method leads to a deterministic output and the
loss of uncertainty. The second method requires training several surrogate models to
estimate the output and its uncertainty. Applying stochastic kriging limits the ML
technique to kriging; however, it has been shown that the best ML technique for building
a surrogate model depends on the data characteristics, which is a function of the
underlying phenomena the model represents (Williams and Cremaschi, 2021).

In this paper, we propose a new framework to address the shortcomings of the previous
methods and build surrogate models of simulations with uncertain parameter(s). The
approach combines our recently developed surrogate model recommendation tool
(PRESTO - Predictive REcommendations of Surrogate models To Optimize) with a novel
approach, PARIN (PARameter as INput-variable), for building accurate surrogate models
of stochastic simulations with uncertain parameters (Section 2). Computational studies
use two test functions with different dimensions to evaluate the new framework (Section
3). The training data set is generated using Sobol sampling methods, and then the output
for each given input point is calculated. The resultant training data set is fed to the
PRESTO to obtain a set of recommended ML techniques for the data set. The
recommended models are trained for each of the test functions. The performance of the
new framework is compared to stochastic kriging (Section 3). Normalized root mean
square error is used as the metric to compare the accuracy of the mean and standard
deviation estimations of the test function outputs (Section 3). The comparisons reveal that
the mean and standard deviation estimates obtained by the new framework are closer to
their true values than the ones obtained using stochastic kriging. These results are
presented and discussed in Section 4, followed by conclusions in Section 5.

2. Framework for Training Surrogate Models for Stochastic Simulations

The framework (Figure 1) starts by collecting input/output data, i.e., the training data set,
from the stochastic simulation using a space-filling design. PARIN, PARameter as INput-
variable, converts the stochastic simulation into a deterministic one by extracting its
uncertain parameters and considering these parameters as additional inputs to the
simulation (Section 2.2). Therefore, the input data set also includes the uncertain
parameters. PRESTO (Section 2.1) selects the best surrogate modeling technique given
the training data set, and a surrogate model is trained using the selected technique. The
parameter uncertainty is incorporated into the surrogate model outputs utilizing an
appropriate uncertainty propagation method (Section 2.2).
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Figure 1 — Workflow of the new framework

2.1. PRESTO - Predictive REcommendations of Surrogate models To approximate and
Optimize

PRESTO is a random forest-based framework for selecting appropriate surrogate
modeling techniques (Williams et al., 2021). Given a dataset of input-output values, it
provides a list of surrogate models predicted to give the most accurate surface
approximation of the underlying model of the given input-output pairs. In order to collect
the data required to construct PRESTO, data sets were generated using test functions from
the optimization test suite of the Virtual Library of Simulation experiments (Surjanovic
and Bingham, 2013) at various input dimensions and sample sizes. Surrogate models were
trained for each generated data set using a set of candidate surrogate modeling techniques.
The calculated performance of each model was used to determine if a surrogate model
was appropriate (“recommended”) or not (“not recommended”) for modeling a particular
data set. This information was used to train random forest classifiers using data set
characteristics as inputs and the assigned recommendation class as outputs (Williams et
al., 2021).

PRESTO recommends models based on the prediction of their performance for adjusted-
R2. The formula for calculating adjusted-R? (R?) is shown in Eq. (1).

52 _ 4 R? n—1
RP=1-(1- )[ — G+ D (1
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In Eq. (1), R? is the R-squared regression coefficient, n is the number of data points in
the training set, and k is the number of model parameters (or hyperparameters). The
adjusted-R? takes into account both the surrogate model accuracy and complexity. Taking
complexity into account is important in preventing overfitting of the model as overfit
models do not generalize well to data outside of the training set. R? values typically fall
between zero and one, with an R? of one indicating an exact fit to the original, more
complex model data. However, with the adjustment for model size, adjusted-R? values
can become negative.

PRESTO calculates characteristics, or attributes, of the underlying model using only the
available input-output information. These attributes include calculations related to the
location and distribution of the data points and estimations of the gradients of the surface.
Based on the values of the data set attributes, PRESTO classifies each of a set of candidate
surrogate model forms as being either “recommended” or “not recommended” for that
data set (Williams et al., 2021).

2.2. PARIN - PARameter as INput-variable: A novel approach for surrogate modeling of
stochastic simulations

PARIN builds surrogate models of stochastic simulations by considering the uncertain
parameter(s) as additional inputs to the system. Suppose we are given a stochastic
simulation, Y = g(X; K), where X is the input vector, K is the uncertain parameter, and
Y is the stochastic output (Figure 2). PARIN converts the stochastic simulation to a
deterministic one, Y’ = g(X*), where the vector X* now also includes the uncertain
parameter K (Figure 2), and the output of the deterministic model is denoted Y'. A
surrogate model, Y’ = F'(X*), is trained to predict the deterministic simulation output,
Y’, with data generated from the deterministic simulation, Y' = §(X™). Different
surrogate modeling techniques can be employed to train F'(X*). We select the surrogate
modeling technique using PRESTO (Section 2.1). Then, the stochastic output of the
original simulation model is estimated by propagating the uncertainty of the parameter K
to the surrogate model output. Here, again, a number of uncertainty propagation methods
can be employed.

PARIN

Stochastic simulati
ochasticsimuiation (PARameter as INput-variable)

— X, X,
~
/ X X ' .
[ \% = = y-gu) PV
o —_— -
- Xd
L\ %,
K

Figure 2 — PARIN (PARameter as INput-variable) - A novel approach for building surrogate
models of stochastic simulations

3. Computational Experiments

We evaluate the performance of the framework via computational experiments using two
test functions, Griewank and Rastrigin functions given in Eqs. (2) and (3), from the
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Virtual Library of Simulation Experiments optimization test suite (Surjanovic and
Bingham, 2013). Each test function includes one uncertain parameter and one, two, or
four inputs. A normal distribution is assumed for the uncertain parameter (p) of each
function. Variable d in both functions denotes the input dimension, which can be
changed. The dimension is increased from one to four geometrically to investigate the
impact of the input dimension on the performance of the proposed framework.

f(x)=i%2—ﬁcos(%>+1 )

where,
p ~ Normal(4000, 400)
d
f(x) = pd+ Z:[xl2 — p(cos(2mx;))] 3)
i=1
where,

p ~ Normal(10,1)

The training data set for each test function included the inputs, the uncertain parameter,
and the corresponding function values for 1000 evaluations generated using Sobol
sampling (Sobol’, 1967). We used Sobol sampling because it has been shown to yield
robust results in comparative studies of uncertainty propagation methods (Mohammadi
and Cremaschi, 2019). PRESTO is used to select the best surrogate modeling technique
for each training data set. A surrogate model is trained using the selected technique.
During training, the hyperparameters of the models are optimized using 5-fold cross-
validation (Wong, 2015).

The performance is evaluated using 10,000 test points sampled using Halton method
(Halton, 1960). The parameter uncertainty is propagated to the output of each of these
test points using a simulation-based method using Halton sampling. With m = 1000
points sampled from the uncertain parameter distribution, the mean (y;) and standard
deviation (a;) of the [*" test point is calculated using Eq. (4) and Eq. (5), respectively.

w, = E[F'(X)] Z h(x;) “4)

1 m
of = EIF' ()1~ EIF DD ~ — > h)” i )
j=1

3.1. Metric for evaluating framework’s performance

The metric used to evaluate the performance of the new framework is the normalized
Root Mean Squared Error (nRMSE), shown in Eq. (6). The metric is calculated using
10,000 test points generated by the Halton sampling method (Halton, 1960). The
framework’s ability to estimate the mean and standard deviation of the stochastic
simulation output is assessed using nRMSE for each test function.
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T (Y; — V)2
nRMSE = N v
max

In Eq. (6), ¥; and Y; are the true and predicted values of the desired moments
(mean/standard deviation), respectively, for i**test point. N is the total number of test
points. Yynax and Yoi, are the maximum and minimum values of the true moment values
within the test set, respectively.

(6)

Ymin

3.2. Stochastic kriging

Among three existing approaches for building surrogate models of stochastic simulations,
fixing the value of the uncertain parameter does not provide information about the output
uncertainty. The second approach, building multiple surrogate models, each built using a
value from a select subset of parameter values, requires training multiple models, which
introduces additional uncertainty, and may become computationally expensive as the
number of surrogate models increases. Hence, here, the accuracy of the proposed
framework is only compared to that of stochastic kriging, described briefly below. The
performance metric, nRMSE, is also used to assess the stochastic kriging model’s ability
to estimate the mean and standard deviation of the stochastic simulation output.

Stochastic kriging (SK) (Ankenman et al., 2008), which extends classic kriging
(Rasmussen and Williams, 2005), was initially proposed to account for the intrinsic
variance in addition to the extrinsic one. The prediction of an SK model, ¥, can be
represented by Eq. (7), where Y., is the covariance matrix across all sample points,
Y (x,.) is the covariance vector consisting of the covariance of the point x and other
points, and Y. is the diagonal covariance matrix of the intrinsic uncertainty. 8 is the
unknown parameter estimated by the maximum likelihood.

Y= Bo+Iu @) [Eu+Tl (T —Boli) @)

The training data set for SK included 1000 input/output pairs for each test function at
each input dimension. The set is constructed by evaluating the test functions for 100 input
values at ten samples from the uncertain parameter distribution. Both input values and the
samples from the distribution were determined using Sobol sampling.

4. Results and Discussion

4.1. Selected Surrogate Modeling Techniques by PRESTO

The candidate surrogate model techniques considered in this study included single hidden
layer artificial neural network (ANN) models (Haykin, 2009), extreme learning machines
(ELM) (Huang et al., 2006), Gaussian process regression (GPR) (Rasmussen and
Nickisch, 2010), multivariate adaptive regression splines (MARS) (Friedman, 1991),
random forests (Breiman, 2001), and support vector regression (Smola and Scholkopf,
2004). The models selected for the test functions at each studied input dimension are
listed in Table 1.

Figures 3 and 4 show the average adjusted-R? value for the trained surrogate models that
PRESTO recommended compared to the average adjusted-R? value of the models that
PRESTO did not recommend for the Griewank and Rastrigin functions. The models
trained using the recommended techniques for both functions have higher adjusted R?
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values and thus better predictive capability than the not recommended ones. The
difference is more pronounced for higher dimensions and the Rastrigin function than the
Griewank function.

Table 1 — PRESTO selected models for Griewank and Rastrigin functions

Recommended Surrogate Models
1D 2D 4D
ANN ANN
Griewank ELM ELM GPR
ewa GPR GPR MARS
MARS MARS
. GPR GPR
Rastrigin MARS MARS MARS

1.00-

0.95-

Adjusted R-Squared
o
@
&

o
®
S
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Hmm Recommended Models

2D
Input Dimensions

mmm Not Recommended Models

Figure 3 — Average Adjusted R? values for Griewank Function. Error bars represent +/- one

standard deviation.
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Figure 4 — Average Adjusted R? values for Rastrigin Function. Error bars represent +/- one

standard deviation.
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4.2. Surrogate modeling of stochastic simulations using PARIN

We selected GPR and MARS techniques (both recommended by PRESTO, bold in Table
1) for training surrogate models for deterministic Griewank and Rastrigin functions at
each input dimension. The deterministic functions are obtained by including the uncertain
parameter as an additional input for each function. We also trained SK models for the test
functions. The mean and standard deviation of the test points are estimated using the GPR
and MARS surrogate models with Halton-sampling-based uncertainty propagation
(Section 3) and the SK models (Section 3.1). Then, the nRMSEs of the mean and standard
deviation are calculated via Eq. (6). The results are summarized in Figures 5 and 6.

Figure 5 includes bar plots of the nRMSE obtained using the new framework and SK
models for estimating the mean of the two test function outputs. For the Grienwank
function, the nRMSE obtained by the new framework for estimating the mean is lower
than the nRMSE obtained by SK models for all dimensions (Figure 5). However, the
nRMSE yielded for the mean estimates by the SK models for one and two inputs are
lower than the nRMSE yielded by the new framework for the Rastrigin function though
the difference is relatively small (Figure 5). As shown in Figure 5, the trend is reversed
for the Rastrigin function with four inputs with the new framework yielding a
significantly lower nRMSE value for estimating the mean of the output.

0.012
0.16{ HEE PARIN
014 =3 5K 0.010
0.12 0.008
§0.10
 0.08 0.006
c
0.06 0.004
0.04
0.002
wil SN =
0.00 0.000
1D 2D 4D 1D 2D 4D
Dimension Dimension

Figure 5 - Bar plots of nRMSE for predicting mean of the two test function outputs using the new
framework and stochastic kriging (SK)
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Figure 6 - Bar plots of nRMSE for predicting standard deviation of the two test function outputs
using the new framework and stochastic kriging (SK)
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Figure 6 presents similarly-formatted bar plots of the nRMSE for estimating the standard
deviation of the test function outputs. As shown in Figure 6, for both functions and input
dimensions, the nRMSEs of the standard deviation estimates obtained by the new method
are lower than those obtained by the SK models. Figure 6 reveals that the difference is
larger for the Grienwank function and at higher dimensions for both functions.

Overall, these results suggest that the new framework generates closer mean and standard
deviation estimates of the output to the true values (i.e., the stochastic simulation outputs)
compared to the same obtained by SK. Furthermore, it is better than SK in capturing the
uncertainty of the output due to parameter uncertainty.

5. Conclusions

High-fidelity simulations are complicated and expensive to run. Surrogate models are
used to represent these simulations with cheaper to evaluate functions. However, most of
the existing surrogate modeling techniques cannot model the stochastic simulation
outputs with high accuracy, and the current methods do not capture the uncertainty of the
output. This study introduces a new framework to build surrogate models of stochastic
simulations where the source of stochasticity is the uncertain model parameters. The
framework converts the stochastic simulation to a deterministic one by incorporating
uncertain parameters as model inputs (PARIN - PARameter as INput-variable) and uses
PRESTO, Predictive REcommendations of Surrogate models To Optimize, to select the
best modeling technique for training surrogate models. Comparing the new framework to
stochastic kriging, the most popular method to train surrogate models for stochastic
simulations, revealed that the framework yielded output mean and standard deviation
estimates closer to the true values than those obtained by SK.
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Abstract

Towards the goal of zero fossil-based greenhouse gas emissions, a trend is growing to
change the raw materials for energy and materials to those derived from renewable
sources. When considering the introduction of any technology, the basics of PSE, i.c.,
mathematical modelling and simulation of changes to understand the impact on mass and
heat balances, are essential for appropriate technology and system assessments including
life cycle assessment (LCA). In this study, the role of PSE is discussed through case
studies in the assessment of several technologies and systems under consideration, such
as cellulose nanofibers reinforced plastics (CNFRP), recycling of lithium-ion batteries
(LIB), and regional material and energy systems design in Tanegashima. Although the
technology options for those issues are under development, the performances of systems
applying them are necessitated for current decision making. The data for LCA, however,
is not sufficiently collected due to their low technology readiness levels. Prospective LCA
for such emerging technologies is employed in the filling of data gaps and interpretation
of assessment results with uncertainties. PSE can be applied into such assessments and
have an important role of design of systems.

Keywords: life cycle assessment, technology readiness level, sociotechnical analysis,
socioeconomical analysis, technoeconomic analysis.

1. Introduction

Towards the goal of zero fossil-based greenhouse gas emissions, a trend is growing to
change the raw materials for energy and materials to those derived from renewable
sources. When considering the introduction of any technology, the basics of PSE, i.e.,
mathematical modelling and simulation of changes to understand the impact on mass and
heat balances, are essential for appropriate technology and system assessments including
life cycle assessment (LCA).

In this study, the role of PSE is discussed through case studies in the assessment of several
technologies and systems under consideration, such as cellulose nanofibers reinforced
plastics (CNFRP), recycling of lithium-ion batteries (LIB), and regional material and
energy systems design in Tanegashima. The related previous literatures are briefly
reviewed. The applicability of PSE basics is discussed considering the requirements for
the technology and systems design and assessments towards social changes. Although the
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technology options for those issues are under development, the performances of systems
applying them are necessitated for current decision making. The data for LCA, however,
is not sufficiently collected due to their low technology readiness levels (TRLs).

2. Reviews on application of PSE
2.1. CNFRP production from lignocellulosic biomass (Kanematsu et al., 2021)

Cellulose nanofibers (CNF) can be produced from plant-derived renewable resources and
have advantage of mechanical properties in lightness and strength when it was applied as
the filler of the composites. Acetylated cellulose nanofiber-reinforced plastics (AcCNF-
RP) have been developed as substitutes for conventional structural materials (Eichhorn et
al., 2010). CAPE tools enabled simulation-based life cycle inventory analysis to reveal
the environmental and economic performance of AcCNF-RP considering the future scale-
up of production processes. CAPE tools have huge potentials for systems design and
assessment adopting emerging technologies, which are necessitated towards carbon
neutral society. Especially in chemical production, biomass-derived production can
become one of the production routes with sustainable feedstocks. Not only conversion
routes, but also the acquisitions of feedstocks from agriculture or forestry are now under
development and construction. Before their huge installation, CAPE tools should be
combined with prospective LCA to visualize the performances of such low TRL emerging
technologies.

2.2. LiB recycling systems (Kikuchi et al., 2021)

When designing the target recycling systems, best mixture of physical segregation and
chemical treatment should be pursued considering the specific characteristics of
respective components. The recycling of cathode particles and aluminum (Al) foil from
positive electrode sheet (PE sheet) dismantled from spent LiBs was experimentally
demonstrated by applying a high-voltage pulsed discharge (Tokoro et al., 2021). This
separation of LIB components by pulsed discharge was examined by means of
prospective LCA (Kikuchi et al.,, 2021). The indicators selected were life cycle
greenhouse gas (LC-GHG) emissions and life cycle resource consumption potential (LC-
RCP). CAPE tools can become methods applicable for acquiring data for prospective
assessments. Prospective LCA should be applied into the technology assessment that
employs modelling tools which focus on potential environmental impacts arising from
various technologies even still at the R&D stage, i.e., low technology readiness level.
With CAPE tools, the inventory data for prospective LCA can be connected with the
design methods for optimizing the throughputs of unit operations, analyzing the upscaled
process systems, and conducting the quantification of environmental loads with plausible
process systems design.

2.3. Regional systems design in Tanegashima (Kikuchi et al., 2020)

Well-coordinated, multifaceted actions, including a shift from imported fossil to locally
available renewable resources and empowering of rural areas are vital in tackling the
social challenges such as resource security, sustainable food production, and forest
management. Co-learning approach to practice the multifaceted actions with a case study
on Tanegashima, an isolated Japanese island, was applied to move the society towards
sustainability. In these actions, thorough understandings in the feasible technologies, the
locally available resources and the socioeconomic aspects of the local community should
be shared among the stakeholders to acquire the momentum for a change. In addition to



Application of PSE into social changes: biomass-based production, 43

recycling systems, and regional systems design and assessment

the technoeconomic analysis, several other analyses were conducted to reveal the
concerns of respective stakeholders, share the understandings on the possibilities of
technology options, and their socioeconomic implications on local sustainability. Tools
such as the life-cycle assessment, input—output analysis, and choice experiments based
on questionnaire surveys on the residents' preferences are used for the analyses. The
stakeholders were provided with the results. These opportunities gradually converted the
concerns of the local stakeholders on their future regional energy systems into
expectations and yielded constructive alternatives in technology implementation that can
use the locally available resources. PSE basics were employed in the simulation and
visualization of the possible future visions achieved by feasible technologies and
available resources.

3. Application of PSE into social changes
3.1. Arguments for social changes

3.1.1. Design and assessment considering TRL

Novel technologies, including processes, systems, and ways of thinking, are expected to
play a critical role in transforming regional societies to become revitalized and sustainable.
However, technology development has the “valley of death” in the transfer to society, as
is often seen for various energy technologies (e.g., Weyant 2011). Although many types
of subsidies are designed to bridge the valley by accelerating technology development
based on the TRL (e.g., Debois et al. 2015), the public may perceive that an insufficiently
mature technology, or the new installation of existing technology even if it has previous
implementation examples in other regions, could have unpredicted consequences
associated with its implementation in their regional societies, resulting in the creation of
a difficult obstacle to overcome for innovative change in social systems (Weyant 2011).

MOE-TRL Phases RISTEX-phase Phases of implementation into society

Applied research

Specification of

concept, model, and :

Requirement definition on technology

N
Reuse for other purpose I >
8. Industrialization” | e o deployment Reuse for other sites g
11 e
Deployment Building networks =
3 7 [
Implementation analysis . )
7. Field test Implementation Specification of owners [1 1
(Implementation) Fund raising for implementation <
Social experiment . X 2
6. Field test P Field demonstration test g
ey
5. Practical use Test Demonstration test of T&S [ F | Ei
4. Practical use . H . . a
demonstration Test demonstration : Systematic analysis on T&S
3. Applied research
(Experiment) Development of T&S u

(Report, analysis) technology and systems (T&S)
1. Fundamental study : Procure _requwe_:d elements
Preparation Structuring rationales of problems A

Ministry of Environment,
Japan: Technology
Readiness Level

Kaya, Okuwada, Shakai
Gijutsu Ronbunshu, 12,
(2015) 12-22

Death valley 1: Owners of business
Death valley 2: Reuse for other purpose

Figure 1 Phases of social implementation considering the TRLs adopted in government
subsidized projects towards decarbonization in Japan (Ministry of Environment Japan, 2014) and
surveyed on the projects funded by RISTEX (Research Institute of Science and Technology for
Society, Japan Science and Technology Agency) (Kaya and Okuwada, 2015).
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Figure 1 shows the phases of social implementation considering various types of TRLs.
Especially in energy-related technologies that mitigate fossil resource consumption,
decentralized and multiple-generation technologies are often seen as promising, but the
barriers in progressing to demonstration tests are often too high, hindering the
implementation of such technologies. Although technology road-mapping has become a
method to address such obstacles by making the effects of technology implementation
qualitatively or quantitatively transparent, technology road-mapping has limited roles in
practical technology implementation. Appropriate technology and systems design and
assessments could support the progressing phases of social implementation.

3.1.2. Prospective LCA for emerging technology

Conventional LCA does not take into account changes in technology level, because it
refers to information on the current technology level and specifically estimates the
environmental impacts of each process related to the provision of products and services.
The significance of conducting a strategic LCA of emerging technologies for the 30-year
time horizon up to the target year of 2050 arose regarding the issues on the climate change.
Emerging technologies, as defined by Rotolo et al. (2015), are characterized as
“innovative”, “rapid growth”, “consistent”, “significant impact” and “uncertain”, which
makes technology assessment difficult due to lack of existing data and knowledge. Four
main issues were identified as needing to be addressed in conducting prospective LCAs
of emerging technologies (Thonemann et al., 2020; Moni et al., 2020). (1) comparability
of technologies; (2) availability and quality of data; (3) scale-up challenges; and (4)
uncertainty of assessment results. Process modeling and simulation are effective in
estimating the missing process inventories in industrial scale production, because these
technologies are under development in lab or pilot scale.

3.1.3. Technoeconomic, socioeconomic, and sociotechnical analyses

Elements of technology assessment that have been proposed for implementation include
the shift in social systems such as the relationships between the socio-, econo-, and
techno- spheres through transformation in aviation systems (Kikuchi et al., 2020b).
Economic aspects of technology implementation have been examined in technoeconomic
(TE) analyses to clarify the relationships between the characteristics of technologies and
various economic indicators, such as direct and indirect costs, fixed capital investment,
and product price. Socioeconomic (SE) analysis has also become an essential method for
analyzing the impacts of technology implementation on SE systems. The benefits should
be analyzed within a sociotechnical (ST) approach to ensure that society benefits from
the technology implementation.

3.1.4. Social changes with process systems design and assessments

Geels and Schot (2007) argue that transitions occur through interactions among niche
innovations, sociotechnical regimes, and the sociotechnical landscape. The seeds of niche
innovations were generated by university researchers, e.g., AcCNF-RP for structural
materials, a high-voltage pulsed discharge as physical separation methods for products,
and energy systems applying regionally available renewables. The windows of
opportunity for such seeds of niche innovation are created by the destabilization of
regimes such as the policy/regulation, market, infrastructure, industrial network and
ecosystem as the specific conditions for technologies and systems. The landscape, such
as the public movements towards carbon neutral society, may have placed pressure on the
regimes. To grow the seeds of niche innovation, niche actors should be involved and
motivated by technology assessments by university researchers, triggering adjustments in
existing systems (Geels et al. 2017).
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The social embeddedness of emerging technology options should be addressed through
the holistic application of scientific technology assessments into co-learning. The main
questions are whether systematic technology assessments could contribute to the bridging
of the valley of death between research development and actual implementation, how the
settings of assessment, i.e., boundary, indicators, and raw data, could be defined through
co-learning for mitigating concerns of stakeholders, and how the assessment results could
become informative for the stakeholders to understand the necessity of the
implementation of the technology options. The TRLs of potential technologies may be
lab-scale demonstration, where the process inventory data required for LCA was not
sufficiently obtained from the experimental demonstration considering their upscaling.
For such technology, modeling and simulation can be employed to fill the gap of
foreground data (Tsoy et al., 2020), which can take into account the future potential of
the technology and aim to predict the environmental impacts on the technology under
development (Arvidsson et al., 2018; Moni et al., 2020; Thonemann et al., 2020).

4. Conclusions

Prospective assessments for novel technology options are employed in the filling of data
gaps and interpretation of assessment results with uncertainties. PSE can be applied into
such assessments and have an important role of design of systems. The basics of PSE, i.e.,
mathematical modelling and simulation of changes to understand the impact on mass and
heat balances, are essential for appropriate technology and system assessments. The
obtained information applying PSE can become the essential information for the social
changes which involve various stakeholders. The elaborated interpretation for those who
are not experts in PSE is needed to accurately convey the quantitative and qualitative
essences clarified by PSE.

Acknowledgement

This work was supported by MEXT/JSPS KAKENHI Grant Number JP21H03660, JST-
Mirai Program Grant Number JPMIMII9C7, and JST COI-NEXT JPMJPF2003.
Activities of the Presidential Endowed Chair for “Platinum Society” at the University of
Tokyo are supported by the KAITEKI Institute Incorporated, Mitsui Fudosan Corporation,
Shin-Etsu Chemical Co., ORIX Corporation, Sekisui House, Ltd., the East Japan Railway
Company, and Toyota Tsusho Corporation.

References

R. Arvidsson, A.M. Tillman, B.A. Sandén, M. Janssen, A. Nordel6f, D. Kushnir, S. Molander.
2018, Environmental assessment of emerging technologies: recommendations for prospective
LCA. J Ind Ecol, 22(6), 1286-1294.

S. Debois, T. Hildebrandt, M. Marquard, T. Slaats, 2015. Bridging the valley of death: a success
story on Danish funding schemes paving a path from technology readiness level 1 to 9.
Software Engineering Research and Industrial Practice (SER&IP), 2015 IEEE/ACM 2nd
International Workshop 54-57.

S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C.
Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K.
Abe, M. Nogi, A.N.. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A..
Berglund, T. Peijs. 2010. Review: Current International Research into Cellulose Nanofibres
and Nanocomposites. J. Mater. Sci., 45, 1-33.



46 Y. Kikuchi

F.W. Geels, J. Schot, 2007. Typology of sociotechnical transition pathways. Res. Policy, 36, 399—
417.

F.W. Geels, B.K. Sovacool, S. Sorrell, 2017. Sociotechnical transitions for deep decarbonization.
Science, 357, 1242-1244.

Y. Kanematsu, Y. Kikuchi, H. Yano. 2021. Life Cycle Greenhouse Gas Emissions of Acetylated
Cellulose Nanofiber-reinforced Polylactic Acid Based on Scale-up from Lab-scale
Experiments, ACS Sustainable Chem. Eng., 9(31), 10444-10452

A. Kaya, K. Okuwada, 2015. Investigating the courses of implementation by describing resarch
perfomance, Shakai Gijutsu Ronbunshu, 12, 12-22.

Y. Kikuchi, M. Nakai, Y. Kanematsu, K. Oosawa, T. Okubo, Y. Oshita, Y. Fukushima, 2020a.
Application of technology assessments into co-learning for regional transformation: A case
study of biomass energy systems in Tanegashima, Sustain. Sci., 15, 1473-1494.

Y. Kikuchi, A. Heiho, Y. Dou, 1. Suwa, I.C. Chen, Y. Fukushima, C. Tokoto, 2020b. Defining
Requirements on Technology Systems Assessment from Life Cycle Perspectives: Cases on
Recycling of Photovoltaic and Secondary Battery, Int. J. Autom. Technol., 14(6), 890-908.

Y. Kikuchi, I. Suwa, A. Heiho, Y. Dou, S. Lim, T. Namihira, K. Mochidzuki, T. Koita, C.
Tokoro, 2021, Separation of cathode particles and aluminum current foil in lithium-ion battery
by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on
experimental data, Waste Manage., 132, 86-95.

Ministry of Environment Japan, 2014. User manual of TRL setting tool, https://www.env.go.jp/ea
rth/ondanka/biz_local/26_01/trl manual.pdf

S.M. Moni, R. Mahmud, K. High, M. Carbajales-Dale. 2020. Life cycle assessment of emerging
technologies: A review. J Ind Ecol, 24, 52-63.

D. Rotolo, D. Hicks, B.R. Martin. 2015. What is an emerging technology? Res. Policy, 44(10),
1827-1843.

N. Thonemann, A. Schulte, D. Maga. 2020. How to Conduct Prospective Life Cycle Assessment
for Emerging Technologies? A Systematic Review and Methodological Guidance.
Sustainability, 12(3), 1192.

C. Tokoro, S. Lim, K. Teruya, M. Kondo, K. Mochizuki, T. Namihira, Y. Kikuchi, 2021,
Separation of cathode particles and aluminum current foil in Lithium-ion battery by high-
voltage pulsed discharge part I: Experimental investigation, Waste Management, 125, 58-66.

N. Tsoy, B. Steubing, C. van der Giesen, J. Guinée. 2020. Upscaling methods used in ex ante life
cycle assessment of emerging technologies: a review. Int. J. Life Cycle Assess. 25, 1680-1692.

J.P. Weyant, 2011. Accelerating the development and diffusion of new energy technologies:
beyond the “valley of death”. Energ. Econ. 33, 674-682.



Proceedings of the 14" International Symposium on Process Systems Engineering — PSE 2021+
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-85159-6.50007-5

Q-MPC: Integration of Reinforcement Learning
and Model Predictive Control for Safe Learning

Tae Hoon Oh? Jong Min Lee™

4School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul
National University, Seoul, 08826, Republic of Korea
jongmin@snu.ac.kr

Abstract

Model-free reinforcement learning (RL) learns an optimal control policy by using the
process data only. However, simple application of model-free RL to a practical process
has a high risk of failure because the available amount of data and the number of trial
runs are limited. Moreover, it is likely that state constraints are violated during the
learning period. In this work, we propose Q-MPC framework, an integrated algorithm of
RL and model predictive control (MPC) for safe learning. The Q-MPC learns the action-
value function in an off-policy fashion and solves a model-based optimal control problem
where the trained action-value function is assigned as the terminal cost. Because the Q-
MPC utilizes a model, the state constraints can be respected during the learning period.
For simulation study, Q-MPC, MPC, and double deep Q-network (DDQN) were applied
with varying prediction horizons. The results show the advantages of Q-MPC that
outperforms MPC by reducing the model-plant mismatch and shows much fewer
constraint violations than DDQN.

Keywords: Reinforcement Learning; Model Predictive Control; Optimal Control; Safe
Learning

1. Introduction

As the digitalization of manufacturing processes progresses, an unprecedented amount of
operational data are measured and stored. Accordingly, there is a growing interest in
developing data-based methods that can improve the existing process performance.
Model-free reinforcement learning (RL) is a data-based optimal control method that aims
to learn an optimal control policy in the absence of a process model. Model-free RL can
be applied to any discrete-time system as long as the system has the Markov property.
Therefore, optimal control policies for a wide range of complex systems characterized by
nonlinearity, discrete events, and stochasticity can be obtained if one can secure a
sufficient amount of data. In addition, the online computation of trained control policy is
much less than that of the model-based control such as model predictive control (MPC).
In line with these advantages, several studies conduct apply model-free RL methods to
chemical processes, such as simulated moving bed (Oh et al. 2021), microfluid (Dressler
et al. 2018), polymerization (Ma et al. 2019), polishing, and photo-product bioprocesses
(Petsagkourakis et al. 2020).

However, using model-free RL to obtain an optimal control policy of the manufacturing
process may pose several practical challenges. First, the amount of data required to learn
an optimal control policy may not be practical to obtain even for a digitalized process.
Also, the data should be generated with a certain degree of explorations that may do harm
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to the process performance. Finally, the model-free RL does not have any model for the
state transition, which cannot guarantee the satisfaction of state constraints. More
specifically, model-free RL cannot explicitly ensure the state constraints, but it can
consider the constraints implicitly by modifying either the optimality criterion such as
adding penalty terms or the exploration procedure with the guidance of a risk metric
(Garcia and Fernandez 2015). Therefore, the model-free RL can learn the state constraint
only after it experiences the constraint violation. This is a major drawback as the state
constraints are typically imposed for safety reasons.

In most cases, a model built on a priori knowledge of system dynamics is available. This
model may not be precise, but it can provide the information of correlation between the
state and input and can be used to ensure the safety constraints with a sufficient margin.
Therefore, using data to improve the existing model-based control can be a more practical
approach instead of completely ruling out the model like model-free RL. We propose an
algorithm that integrates RL and MPC, referred to as Q-MPC. Q-MPC improves the
performance of existing MPC by incorporating the advantage of data-based learning of
RL. We first formulate a double deep Q-network (DDQN) optimization problem on the
continuous action space, which uses gradient-based numerical optimization. This method
is an off-policy algorithm where only the critic is approximated by a deep neural network.
Then, the actor, originally represented as the optimizer of the trained action-value
function, is extended to an open-loop model-based optimal control problem. This model-
based optimal control problem predicts the states and costs up to the prediction horizon
with a model and assigns the action-value function as a terminal cost. Therefore, the Q-
MPC is a generalization method of MPC as the actor implements the control input by
solving the optimization problem in a receding horizon fashion. Furthermore, Q-MPC
becomes equivalent to DDQN in continuous action space by setting the prediction horizon
length to 0. The Q-MPC can explicitly impose the state constraints and explicitly schedule
the exploration. In addition, it can improve the control policy with a much less amount of
data than the model-free RL methods. For the simulation study, MPC, Q-MPC, and
DDQN are applied, where the length of the prediction horizon is scheduled. The
simulation results show that Q-MPC outperforms MPC by learning and can guarantee the
satisfaction of state constraints even during the learning period. DDQN also outperforms
MPC after sufficient learning, but it violates the state constraints much more frequently
than Q-MPC during the learning period.

2. Q-model predictive control

Suppose that the dynamic model and constraints are represented as x = f(x,u) and
g(x,u) < 0. In addition, let the path-wise and terminal cost of the system be L(x, 1) and
¢ (x,u), respectively. Even though the system dynamics is given as continuous time, the
control input is assumed to be implemented on the system in a discrete-time manner with
zero-order hold. The time interval between control inputs is denoted as At and is fixed as
a constant value. Let the system be terminated at a finite time step Nr. Then, the total cost
is given by

Nt-1

](xO:NT'uO:NT) = ¢(XNT:uNT) + Z L(xp, ug). (1)
k=0
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Suppose that the system is controlled by a control policy u(:). The value function,
Vé(_) (x) associated with this control policy u(+) is defined as

Nt-1

V,i(,)(xo) =E ¢(xNT:u(xNT)) + Z L(xp,u(xy)) | %, = xo], 2
k=1

where the integer [ € [0, ..., N;| denotes the time step. Similarly, the action-value
function (Q-function) is defined as

Nr-1
Qll;(-)(xo'uo) =E ¢(xNT'u(xNT)) + Z LQxp, u(xy)) | x; = xo,u; = U @
k=1

)

The optimal control policy u*(-) is defined as a control policy that gives the minimal
return, V};*(-) x) < VLIL(,) (x), for all feasible x and l. Suppose that an optimal control
policy exists, then the value function with [ = 0 is equal to the optimal value. In addition,
once the optimal action-value function is given, then the optimal control policy can be
obtained without the information of system dynamics by

u*(x) € argLEnin Qe (). (4)

Therefore, learning the action-value function implies learning an optimal control policy,
and the Q-learning based RL aims to approximate the optimal action-value function
without any knowledge of state dynamics.

The Q-learning based RL is classified as an off-policy algorithm, that is the action-value
function can be learned from any data obtained from the system. Therefore, all the data
obtained from the system can be stored in a single data set, and learning can proceed with
the data randomly sampled from this set (Van Hasselt et al, 2016). This random sampling
helps to break the correlations in the measured sequence and smooth over changes in the
data distribution. The Bellman equation states that the optimal action-value function
satisfies the following recursive equation (Sutton and Barto 2018)

Qi*(‘) (xpw) =E [L(xz'uz) + muin Qll;(l.) (xl+1,u)]. (5

The Bellman equation (5) breaks the sequence of costs into a single time step by using
the principle of optimality. Then, the input choice made from the behaviour policy for the
next time step is replaced by the target policy which enables to update the actor in an off-
policy fashion.

To prevent the selection of the under-estimated value (over-estimated for maximization)
in (5), two function approximators can be used to approximate the action-value function.
This algorithm is called Double Deep Q-Network (DDQN). The target deep neural
networks is denoted as Qp,(x,u) and the online deep neural networks is denoted as
Qp,, (x,u), respectively. The target network is only utilized to evaluate the minimal value
of action-value function in (5) to learn the online network. In this case, the squared error
for a single list tuple D = [x;, u;, L(x;, w;), x;41] is given as
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Error(0ypn, 0, D) = E [Qéon (e u) — L(x,uwy) — min Qé:'l(xlﬂ,u)]. 6)

Let B = {Dy,D,, ..., D,,} be the batch data set which is the set of several data lists
randomly sampled from the data set. Then, the online network is updated by applying the
one-step gradient descent with the appropriate learning rate a as

1
Oon < Oon + aVg_, mz Error(6,y,,0;, D). @)

DeEB

The target network can be updated by
0; « (1 —1)0; + 10,,. ®)

where T € [0, 1] is the update rate. Then, DDQN selects the control input u; associated
with the state x; by solving the following simple optimization problem:

u; = argmin Qéon (xp, ). )
u

The input of DDQN is totally determined by the learned action-value function Q,,. This
implies that the control performance of DDQN can be degraded, and the constraints can
be violated with inaccurate action-value function. This is a common but crucial problem
for all model-free RL that the constraints can be learned only after they are violated.

Instead of using (4) to calculate control input, the Q-MPC solves the following open-loop
optimal control problem:

l+Np-1

muin Qo,,, (xl+Np: uz+1vp) + Z L(xy, uy)
k=1

(10)

subject to

x; is given, xp.1 = f(x, wy) and g(xg, uy) < 0

where N,, denotes the prediction horizon and the continuous system is converted into its
discrete-time counterpart. If the prediction reaches the terminal time, then the exact
terminal cost ¢ is assigned to (10) instead of action-value function. Note that, solving the
optimization problem (10) gives the open-loop control trajectory uy, ..., U4 Ny but only u;

is implemented to the system.
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Figure 1: The scheme of Q-MPC.
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The scheme of Q-MPC is presented in Figure 1. Compared with nominal MPC, the
terminal cost of Q-MPC is replaced by the trained action-value function. Because the
action-value function Q learns the value from the data, Q-MPC can adapt the system
dynamics. Compared with DDQN, the actor of Q-MPC is also presented as an
optimization problem formulated as a mathematical program such as the quadratic
program (10). However, the model is used to predict the state transition and associated
cost for N, time step. The use of the model helps to satisfy the constraints and
dramatically reduces the required amount of data to improve the control policy. The
receding horizon control makes it easy to satisfy the constraints even with a short
prediction horizon.

The prediction horizon of Q-MPC determines how long model is involved in prediction.
For example, if the length of prediction horizon is 0, then the Q-MPC is equivalent to
DDQN in the continuous domain. In this case, the model is completely excluded in
determining control policy. On the other hand, if the prediction reaches the terminal time,
the action-value function is excluded in calculating control inputs, and Q-MPC becomes
equivalent to nominal MPC. Therefore, the performance of Q-MPC is directly affected
by the length of prediction horizon which is another tuning parameter. We suggest setting
the prediction horizon much smaller than the whole batch operation because even for the
short prediction horizon length, the input is highly affected by the model. In addition, we
suggest setting relatively long prediction horizon at the early stage of learning where the
accuracy of action-value function is low.

3. Simulation studies

A simple photo-production system having 3 states (xq,x,,and x3) and 2 inputs
(u, and u,) is considered where the system dynamics are given as (Petsagkourakis et al.
2020)

dxq
/1 11
It 1, (11)
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W (g + 05uB)xy + o 12
dr | T MR T e T R 01 (12)
dx

d_t3 = ule - 0.2u2x2, (13)

where the first state denotes the time. The time interval is selected as 0.05 and system is
assumed to be terminated at 1. Therefore, the system contains 20 horizons. Note that
because the system terminates in finite steps, the time should be included in the state.

The lower and upper bounds for all states are 0 and 1, respectively, and the bounds for
inputs are 0 and 5, respectively. In addition, the second state has additional lower bound
presented as

x, = 0.45. (14)

The path-wise cost and terminal cost is given as

L(x,u) = 0.01 (;—;)Z,and (15)
¢)(x'u) = 3(1 - x3)! (16)

and the penalty max(0, 0.45 — x,) for violating constraint (*) is added to the cost.

The surrogate model that Q-MPC used is given as

dx;
1 _1 17
% =L a7
dx, 0.5u,
—_—=— 0.55u? U E—— 18
T L Vi R e > (18)
dx
d—: = ulxz - O.luzxz. (19)
The Q-MPC solves the following optimization problem
Np—1
nLinV (pr) + Z L(x, uy)
k=0
(20)

subject to

4, (5),(6),and x, = 0.45 fork=0, ..., Ny,.

The action-value function is approximated by deep neural networks that is consisted of
three layers. The number of nodes for each layer are 16, 4, and 1, respectively. The
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following smooth activation function is utilized to optimize the deep neural network by
IPOPT method

A(x) = log(1 + x?). (21)

The online network was trained for every episode, and the target network was updated
for every 5 episodes. The learning and updating rates were selected as 0.02 and 0.01,
respectively. The batch size |B| was selected as 64. Each method was applied to the system
for 1,000 episodes, but the first 10 episodes were simulated with random control inputs
for comparison. The prediction horizon of Q-MPC was set to 20 for episodes 10 to 30, 5
for episodes 30 to 200, and 1 for episodes 500 to 1,000.

The simulation results are presented in Figures 2 and 3. Figure 2 shows the optimal total
cost and total cost obtained by Q-MPC, MPC, and DDQN. Because the model in MPC
does not change throughout the simulations, the total cost of MPC is kept constant. The
Q-MPC cannot outperform MPC with a prediction horizon of 5, as the mismatch between
the model and action-value function can worsen the performance. In addition, the total
cost increases around 200 episodes because the prediction horizon of Q-MPC is changed
from 5 to 3. Then, the total cost gradually decreases to that of MPC by learning. The first
episode that Q-MPC outperforms MPC is the 297" episode. DDQN also successfully
learns the system dynamics and eventually outperforms MPC, but the first episode that
outperforms MPC is the 718" episode. Figure 2 clearly shows that Q-MPC improves the
control policy much faster than DDQN. Figure 3 shows the number of constraint
violations. Because the number of horizons for a single episode is 20, the maximum
possible number of violations is 20. Q-MPC never violates the constraint throughout
learning, whereas DDQN violates the constraint even if the learning is nearly finished.
Note that the violations in the early stage are made by randomly implemented input and
not by Q-MPC. Figure 3 shows the advantages of Q-MPC that it can safely learn the
system dynamics and improve the existing control policy.

4. Conclusions

We proposed a novel Q-MPC algorithm to learn the system safely. Q-MPC is a
generalization method of both DDQN and MPC, where each method can be recovered by
adjusting the length of the prediction horizon. The simulation results showed that Q-MPC
could improve the control policy by satisfying the state constraint. In addition, Q-MPC
requires much less amount of data to improve the control policy than DDQN.
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Abstract

In many process systems engineering applications, we seek to integrate surrogate models,
e.g. already-trained neural network and gradient-boosted tree models, into larger
decision-making problems. This presentation explores different ways to automatically
take the machine learning surrogate model and produce an optimization formulation. Our
goal is to automate the entire workflow of decision-making with surrogate models from
input data to optimization formulation. This presentation discusses our progress towards
this goal, gives examples of previous successes, and elicits a conversation with colleagues
about the path forward.

Keywords: neural networks, gradient-boosted trees, Pyomo, optimization formulations

1. Main Text

The optimization and machine learning toolkit (https://github.com/cog-imperia/lOMLT,
OMLT 1.0) is an open source software package enabling optimization over high-level
representations of neural networks (NNs) and gradient-boosted trees (GBTs). Optimizing
over trained surrogate models allows integration of NNs or GBTs into larger decision-
making problems. Computer science applications include maximizing a neural
acquisition function (Volpp et al., 2019) or verifying neural networks (Botoeva et al.,
2020). Engineering applications of grey-box optimization (Boukouvala et al., 2016)
hybridize mechanistic, model-based optimization with surrogate models learned from
data. OMLT 1.0 supports GBTs through an ONNX (https://github.com/onnx/onnx)
interface and NNs through both ONNX and Keras interfaces. OMLT transforms these
pre-trained machine learning models into the algebraic modeling language Pyomo
(Bynum et al., 2021) to encode optimization formulations.

OMLT is a general tool incorporating both NNs and GBTs, many input models via ONNX
interoperability, both fully-dense and convolutional layers, several activation functions,
and various optimization formulations. The literature often presents these different
optimization formulations as competitors, e.g. our partition-based formulation competes
with the big-M formulation for ReLU NNs (Kronqvist et al., 2021; Tsay et al., 2021). In
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OMLT, competing optimization formulations become alternatives: users can switch
between the formulations and find the best for a specific application.
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Abstract

Confronted with the global challenges including COVID-19, pharmaceutical
manufacturing needs to simultaneously achieve long-term efficiency and short-term
resilience. Process systems engineering (PSE) can provide scientific basis here, and in
fact, PSE researchers have made significant contributions to pharma in the last decade.
The author, after having worked for a global pharmaceutical company, initiated research
on pharmaceutical process systems engineering: Pharma PSE. The research tackles
different challenges in small molecules, biopharmaceuticals, and regenerative medicine,
at the scales of molecules/cells, processes, and the society. This paper first introduces the
viewpoint of Pharma PSE, followed by showcasing a research example that involved a
range of computer-aided analyses at different scales. The multiscale approach of Pharma
PSE can provide a new horizon to “reimagine” pharmaceutical manufacturing processes
and beyond, towards establishment of a sustainable healthcare society.

Keywords: Pharmaceuticals, Regenerative medicine, Process modelling, Process design,
Sustainable healthcare society.

1. Introduction

The relevance of pharmaceuticals is more apparent than ever before. The Sustainable
Development Goals (SDGs; United Nations Development Programme, 2021) defined the
achievement of the “access to safe, effective, quality and affordable essential medicines
and vaccines for all” as a part of Goal No. 3. Long-term efficiency is critical for
manufacturing while the development pipeline of new drugs needs to be enhanced further.
Another mandate for manufacturing is to cope with pandemics, especially COVID-19, by
dealing with the short-term surges in demand and disruptions in the supply chain. The
pharmaceutical industry needs to establish a system where long-term efficiency and short-
term resiliency are achieved at the same time.

In the last decade, the community of process systems engineering (PSE) have
been introducing and practicing systems approaches in the design, operation, and control
of pharmaceutical production processes. The previous studies have covered various topics
in the manufacture of active pharmaceutical ingredients (APIs) as well as dosage forms
(e.g., tablets and injectables). Continuous manufacturing and process analytical
technologies (PATs) have been intensively researched (e.g., Badr and Sugiyama, 2020;
Bhalode et al., 2021; Diab et al., 2021, Ghijs et al., 2021; Hong et al., 2021). Furthermore,
advanced model-based approaches for quality assurance (e.g., Ochoa et al., 2021) and the
subjects related to personalized healthcare (e.g., Igten et al., 2015; Wang et al., 2018;
Papathanasiou et al., 2020) have been investigated.
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Table 1. Characteristics and research opportunities in the pharmaceutical domain

Small molecules

Biopharmaceuticals

Regenerative medicine

* Large quantity in supply
* Most conventional form of
medicine (e.g., tables)

* Intensive research performed on
“flow chemistry” & “continuous
manufacturing”

* Rigorous modeling needed for the
G/L/S interfaces in flow chemistry

« Difficulty in modeling
heterogeneity in powder processing

* Market rapidly growing

* Monoclonal antibodies (mAbs) and
vaccines attracting recent attentions

* Intensive research performed on
host cells, media, manufacturing
technologies and equipment, and
measurement devices

* Challenges in modeling biological
behavior (e.g., heterogeneity,
dynamics, and impurities)

 Future therapy based on stem cells
* Clinical trials intensively performed

* Need to establish manufacturing
processes as well as supply chain

* High cost of R&D and
manufacturing raising social
attentions

* Models required for describing cell

behavior, process performance,
supply chain, and cost-effectiveness

In a world of ever-increasing demand for advanced pharmaceuticals, there is a
need for increasing efficiency, flexibility, and production capacity. At the same time,
there are innovations that span all categories of pharmaceutical products. Table 1 shows
the characteristics of different product categories, and the associated modeling challenges.
Innovations here include the introduction of novel therapeutics, materials, and shifts in
production scales especially for personalized medicine. Such innovations create a need
and an opportunity to “reimagine” pharmaceutical manufacturing to better accommodate
the changes and developments in the industry and in society.

The author, after having worked for a global pharmaceutical company, launched
a research group on pharmaceutical process systems engineering: Pharma PSE. The
research tackles challenges in small molecules, biopharmaceuticals, and regenerative
medicine from a multiscale viewpoint. The research aims to expand PSE into a critical
domain in society by incorporating the systems approach into the development of new
products and processes. This paper first introduces the multiscale viewpoint of Pharma
PSE, followed by a case study on regenerative medicine. This paper serves as the basis
for the keynote lecture at PSE2021+ with more materials to be added.

2. Multiscale research viewpoint

Figure 1 describes the multiscale viewpoint of Pharma PSE. At the molecule/cell level,
elements of a manufacturing process are investigated such as the choice of host cells,
nutrition media, or protective agents are considered. At the process level, alternatives
regarding manufacturing technologies, equipment specification, and operation strategy in
manufacturing processes are investigated. Higher level assessments are conducted up to
the level of the healthcare society.

MALARIA AROUND THE WORLD

1

Molecule/Cell:
Host cell, nutrition media,
protective agent, etc

Healthcare society:
Technology, equipment,  Cost, access, etc

operation, etc

Figure 1 The multiscale viewpoint in Pharma PSE research.
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Recognizing the entire system as in Figure 1 would facilitate bottom-up analyses
that allow for the comprehensive assessment of impacts of lower-level modifications on
higher-level targets. For example, the performance of novel host cells (cell level) could
be assessed regarding lead time (process level), and supply agility (society level). Top-
down analyses could also be enabled for determining promising alternatives at lower
levels given higher levels goals. In conducting Pharma PSE research, such “zoom-in and
zoom-out” is supported by the appropriate consideration/use of modeling strategy (first-
principle, data-driven, or hybrid), simulation methods, objective function(s), design and
operational alternatives, and physical- and cyber-space information.

3. Research example on cryopreservation of hiPS cells

This paper introduces design of cryopreservation processes for hiPS cells as an example.

3.1. Molecule/cell level: computational screening of cryoprotective agents

As a study at the molecule/cell level, this work (Hayashi et al., 2021a) investigated
cryoprotective agents (CPAs) that are used in the cryopreservation of cells including hiPS
cells. A computational screening was performed for candidate compounds using quantum
chemistry and molecular dynamics (MD) simulations. The motivation was to search for
an alternative CPA to dimethyl sulfoxide (DMSO), which is currently widely used but is
known to be toxic to cells. Figure 2 shows the overview of the work. For forty compounds,
the solvation free energy and partition coefficient, and the root mean square deviation
(RMSD) of a phospholipid bilayer which composes a cell membrane, were calculated by
quantum chemistry simulation and by MD simulation, respectively. These three
indicators were used to assess osmoregulatory ability, affinity with a cell membrane, and
ability to stretch a cell membrane, respectively. The quantum chemistry simulation
revealed that trimethylglycine, formamide, urea, thiourea, diethylene glycol, and dulcitol
were better than DMSO, regarding either or both of the indicators considered. Further
analysis with the MD simulation suggested formamide, thiourea, and urea as promising
candidates within the simulated conditions.

CPA candidates Quantum chemistry simulation Suggested candidates
T <
Acetamide Glycine = 11
Alanine Isoleucine %
Aminobutyric acid  Lactose 5 08 r R 1 Better osmo'-'
Aspartic acid Maliose 2 o6 | N regulatory ability Both
Diethylene glycol Mannitol :l_’ : o o et
Dimethyl acetamide Methanol 5 2o tey % . 292 ’Q}J
. N Methylacetamide S 04§ * LIXY 2% ] 9 : v . -
Dimethyl formamide  _y ethyipyrrolidone s o " %e e J”&?” Urea  Formamide ﬁ;/;'
Dimethyl sulfoxide  propyiene glycol o 02 o 0 N . b 2
Dulcitol Proline “E’ Thiourea Trimethylglycine
Ectoine Raffinose 5 0 i .
EDTA Sorbitol =z 0 02 04 06 08 1 )
Ethylene glycol Succinimide Norm. partition coefficient [-] "?’i\v"\g’%
Ethanol Suerose ° Diethylene glycol
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Saietoee Triethylene glycol MD simulation Y —
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Figure 2 Computational screening of CPA candidates using quantum chemistry and MD
simulations (Hayashi et al., 2021a)
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3.2. Process level: model-based assessment of temperature profiles in slow freezing

As a study at the process level, this work (Hayashi et al., 2021b) presented a model-based
assessment of temperature profiles in slow freezing for hiPS cells. Figure 3 shows the
summary. The basis here was our previously developed single-cell model (Hayashi et al.,
2020) that consists of heat transfer, mass transfer, and crystallization models. The three
models can quantify temperature distribution in a vial, cell volume change through
transmembrane water transport, and intracellular ice formation during freezing,
respectively. These first-principle models was then extended to cover the cell survival
rate through data-driven modeling. Experiments using hiPS cells provided the necessary
parameter values of the multivariate regression model. The newly developed hybrid
single-cell model can, given a temperature profile of freezing, estimate the cell survival
rate and required freezing time as the quality and productivity indicators, respectively. As
a case study, the model was used to assess ca. 16,000 temperature profiles. The simulation
results suggested that fast-slow-fast (i.e., non-linear) cooling in the dehydration,
nucleation-promoting, and further cooling zones, respectively, as a promising profile.

Hybrid single cell model for slow freezing Suggested temperature profiles
Heat transfer or _ (9’1 10T w88 oy _, (T
model a = “\or trar) Peta e o) "0 \ar),,, 283 ‘ ;
Weor 4 g duien [_E_w(l_ 1)] < 273 a=Rank 1 (Optimal) -
Mass transfer 4 PR TRATTT $ 263 | —Rank 2-10
&
model an = RT "’f<l,l> i ; Vi ” . 253
vy |[R\Ty T Vw+vw(usns+ncpa) % o4z |
@
¢
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5 L 223
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Figure 3 Model-based assessment of freezing temperature profiles (Hayashi et al., 2021b)
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Figure 4 Agent-based model for analyzing cost-effectiveness in the manufacture of
allogeneic hiPS cells in Japan (Hayashi et al., 2022)
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3.3. Society level: cost-effectiveness analysis in the manufacture of allogeneic hiPS cells
in Japan

Finally as a study at the society level, this work (Hayashi et al., 2022) proposed an agent-
based model (ABM) for cost-effectiveness analyses in the manufacture of allogeneic hiPS
cells in Japan. The ABM (see Figure 4) was set up for estimating the disability-adjusted
life years (DALYs) of each patient and the total required cost for manufacturing
allogeneic hiPS cells. The DALYs and the total required cost for manufacturing were
used as the indicators of effectiveness and cost, respectively. Cryopreservation was
considered as a part of the manufacturing processes. The developed ABM can calculate
these two indicators, given the disease, the annual number of treated patients, and the
treatment mode. The developed model was then applied to analyze therapy for two
diseases using allogeneic hiPS cells, which are currently undergoing clinical studies in
Japan. A case study suggested that the treatment mode (i.c., treating patients from the
youngest to the oldest) would affect the cost-effectiveness significantly.

4. Lessons learnt towards future research

The interconnections between each of the above studies across different scales are visible
by taking the multiscale view shown in Figure 1. For example, the choice of CPA can
influence the extracellular condition during freezing, which can affect the process
duration, and thus the supply performance. Taking a multiscale approach requires the use
of flexible modelling strategies, e.g., in this case the use of models spanning quantum
chemistry and agent-based modelling with different degrees of detail. The approach also
requires taking the position of multiple stakeholders, such as varying the research
viewpoint form experimental investigator (for CPA) to process practitioner (for freezing
unit), and further to manufacturers and the government (for cell supply). Similar
characteristics could be observed in other workpieces in small molecule (e.g., Matsunami
et al.,, 2020) and biopharmaceuticals (e.g., Badr et al., 2021). Recognition of these
characteristics can provide new research opportunities such as multiscale scenario
analyses and optimization, investigation of appropriate model resolution considering
cross-scale interconnections, and multiobjective decision-making. The multiscale
approach can provide a richer insight for “reimagining” the manufacturing processes and
the associated systems of pharmaceuticals.

5. Conclusions

This paper presented the research viewpoint of Pharma PSE, which aims to cover topics
in different drug categories at various scales in one frame. As an example, a study on
cryopreservation of hiPS cells was showcased, which involved various simulation-based
analyses. The observation indicated that the multiscale approach of Pharma PSE can
provide a new horizon to “reimagine” the manufacturing processes and beyond, towards
establishment of a sustainable healthcare society.
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Abstract

Process systems engineering is a thriving field within chemical engineering. PSE deals
with several design and operational tasks that allow process systems to work efficiently
and safely. There is a large intersection between PSE tools and Artificial Intelligence (Al)
algorithms, recognized for decades now. With unprecedented availability of various
forms of data and significant improvement in computational prowess, Al techniques have
started to  address large and  meaningful  engineering  problems.
In this talk, we will explore the relevance and importance of Al techniques in the next
generation process systems engineering applications. Various aspects of PSE and the
impact of Al cross-cutting these aspects will be described as outlined below. The focus
of this talk will be on the most recent developments and industrial applications that the
author has been involved in.

PSE as an area has implications in process modelling, process design, process
optimization and process operations. Computer-aided tools are at the centre of all
modelling activities. With the advent of Al, automated model building tools are being
increasingly researched. Assembling first principles models in a purely data-driven
manner is a promising area. Of course, process design is a key aspect of PSE. Design is
an inverse problem, where a set of requirements are provided and designs that can satisfy
the requirements are desired. As a result, any data-driven modelling tool can also be used
in design if there are many exemplar designs that are available for training. As the result,
the strength of Al in modelling can be leveraged for this inverse modelling problem.
Natural evolution inspired techniques such as genetic algorithms also continue to play an
important part in addressing complicated inverse design problems. Recently,
reinforcement learning has also been used in solving design problems.

The use of Al techniques in optimization is another exciting area of research. Many core
Al algorithms themselves use optimization techniques in their development; use of
learning approaches in optimization is an interesting synergy between the two fields.
Convex representations using neural networks that allow convex optimization approaches
to be used in optimization is an emerging area of research. Other convenient
representations from an optimization viewpoint are likely to pursued. An example of such
a representation is the difference of convex representation.

The biggest impact of Al in PSE is in the area of process operations. With the ability of
systems to collect data at an unprecedented level and the possibility of collecting
variegated datatypes, Al algorithms can now be comprehensively explored for various
process operations tasks. In process monitoring and operator training, natural language
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processing ideas have a large role to play. Further, data from different types of sensors
such as vision, noise and so on, over and above the standard sensor data, is likely to
revolutionize the way process monitoring and fault detection and diagnosis tasks are
performed. This is particularly powerful when data from different plants are centralized
allowing for the possibility of transfer learning to occur.

Standard data rectification and gross error detection techniques that used to rely on
process models are now being addressed by purely data driven approaches. This brings
in several important questions that need to be satisfactorily addressed by the machine
learning techniques. Interestingly, sensor placement for data reconciliation, fault
detection and diagnosis algorithms that used to rely on process models are also being
reimagined as data driven problems.

Work on the use of neural networks and knowledge-based systems in control has been
around for more than three decades. However, with renewed interest in Al, these
approaches are being explored again with better architectures and larger computational
power. Reinforcement learning is a natural approach to address several learning-based
control problems. There has been a flurry of activity in this area, and one would expect
this area to progress quite rapidly. There are several challenges related to inclusion of
constraints, robustness and so on that need to be addressed comprehensively.

Looking forward, two important streams of work can be identified. One of those is the
hybridization of existing knowledge with the data driven Al systems. This will be a very
profitable area of research and will bring in systems that are explainable, robust and more
deployable in engineering problems. Another avenue that will assume significance is
moving towards purely unsupervised learning. Many successful applications use
supervised and/or semi-supervised learning approaches. However, in the future, several
concepts for unsupervised learning will be explored. This, we believe, will lead to truly
intelligent process systems that are safe, efficient and robust to inherent variations that
cannot be controlled.

Keywords: PSE, Al, ML.
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Abstract

Decarbonization of the Chemicals/Materials Industry (CMI) is feasible, even though tech-
nical and economic hurdles exist. However, given the prevailing constraints (economics,
green electricity, available biomass), and weak decoupling of GDP from resource utiliza-
tion, it is clear that the industry cannot achieve the Paris Agreement targets without trans-
forming itself to a Sustainable Circular Enterprise. Such transformation will have deep
and broadly-based ramifications on the economy, the structure of CMI and the character
of CMI-companies, which need to reinvent themselves. In this paper we will offer data
and arguments to substantiate the above statements, and will outline the questions that
need to be answered by academic research.

Keywords: Climate change; Circular economy; Sustainability; Process/product redesign;
Energy, Environmental systems.

1. The Chemicals and Materials Industry (CMI)

Industrial activities create all the physical products (e.g., cars, agricultural equipment,
fertilizers, building construction materials, transportation vehicles, electronic devices,
textiles, household items, food, health and security related products, etc.), whose use de-
livers the services that satisfy specific human needs. In this paper we consider industrial
activities over the whole supply chain, from extraction of primary materials (e.g., ores,
coal, petroleum, natural gas) or recycling of waste materials, through chemicals-materi-
als-products manufacturing, to the services these products offer and the demand that such
services satisfy. For the purposes of this paper, the Chemicals and Materials Industry
(CM]) includes the classical chemical/petrochemical industry (organic, inorganic), the
cement industry, the iron and steel industry, the non-ferrous materials industries (alumin-
ium, magnesium, copper, and others), and a variety of industrial activities producing
smaller amounts of a broad array of chemicals and materials.

Figure 1 shows the complete supply chain of what we consider as the CMI’s position in
the economy. The supply chain is composed of the following components: (a) Raw Ma-
terials: Earth stock of ores, minerals, petroleum, coal, natural gas, raw biomass. (b) Ex-
tractive Industry: Extracts the Raw Materials from the earth stock of raw materials and
generates the Feedstocks. For example, natural deposits of petroleum contain gases and
solids, which are separated, before the petroleum satisfies the specs to be a feed in a pe-
troleum refinery. Similar extractive processing is required for the preparation of mined
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coal, minerals, and natural gas. (c) Feedstocks: The form and state of Raw Materials,
which satisfy the required specs for feeds to the Processing Industry, in order to pro-
duce the Materials that the Manufacturing Industry needs. (d) Processing Industry:
The set of activities that converts the Feedstocks to Materials. Examples include the
conversion of coal, petroleum, or natural gas to fuels and chemicals; iron ore to var-
ious grades of iron and steel; conversion of clay, marl, lime, sand, into cement; raw
biomass into grades of lignin, sugars, proteins. (¢) Materials: All chemicals and ma-
terials generated by the Processing Industry, which are used for the manufacturing of
the various Products the market needs. Examples include: all polymers; various
grades of iron and steel; various grades of cement; various types of pulp and paper;
etc. (f) Products: Buildings, roads, general infrastructure, automobiles, airplanes,
electronic devices, pharmaceuticals, household items, etc. (g) Services: The satisfac-
tion of the specific need that a product satisfies, such as: housing, clothing, transpor-
tation, food, therapeutics, entertainment, security, etc.

In all activities of the supply chain in Figure 1, scrap/wastes are generated and are pro-
cessed by the “Waste Industry”. The corresponding wastes can be reused, repaired, re-
manufactured, recycled, discarded (landfilled), or destroyed (incinerated).

RAW
MATERIALS FEEDSTOCKS CHEMICALS and MATERIALS PRODUCTS SERVICES DEMAND
p o~ 2~ i~ A
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Figure 1. Complete supply chain of the Chemicals and Materials Industry (enclosed by the
dashed and dotted envelops) from Raw Materials to Services that satisfy human needs.

2. GHG and Materials Emissions from CMI

Nearly 3/4 of Green House Gas (GHG) emissions (i.e. 73.2%) come from energy use, and
1/3 of it (24.2%) is attributed to industrial use of energy. Adding 5.2% of process-related
GHG emissions (primarily from chemicals and cement), we take 30% of total emissions
stemming from CMI. When compared with the emissions from transportation (16%), build-
ings (17.5%, heating, cooling, lighting), and agriculture, forestry and land use (18.4%), we
realize that industry is the largest contributor of GHG emissions. The largest contributors
of industrial GHG emissions are: iron and steel (24%), cement (19%), chemicals (18%),
aluminium (6%), pulp and paper (3%). For the chemicals industry, the largest contributors
are; ammonia, olefins (ethylene, propylene), methanol, and aromatics (benzene, toluene,
xylenes).
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As indicated above, from a strict accounting point of view (i.e. see dashed envelop in Figure
1), the CMI accounts for 30% of global GHG emissions; CO,, CHs, N>O, and F-gases. How-
ever, within the scope of CMI’s complete supply chain of production and consumption activ-
ities, as shown in Figure 1 (i.e. append the activities in the dotted envelop), the GHG emissions
corresponding to “chemicals/materials handling and use” are much higher, and account for
about 70% of the total GHG emissions. In the extreme case, these emissions include all emis-
sions, except passenger mobility and energy use for residential purposes (space, water heating,
and lighting). For example, GHG emissions related to freight transport are not “energy re-
lated”, because they serve material needs, i.e. move consumer goods around.

In addition, CMI produces large amounts of materials emissions with possible adverse
effects on the environment; e.g. 0.5 Gt/yr of plastics with ~40% going to landfills (where
carbon is sequestered for hundreds of years) and ~ 20% leaking to the environment with
disastrous health effects.

During the period 1990-2016, the global GHG emissions from industry increased by
175%, while the global GDP increased by 110%. Emissions from other sectors were far
lower: transport 70%, manufacturing 50%, agriculture 20%, buildings 5%. Furthermore,
we note that over the 20-year period of 1998-2018 despite the fact that the share of industry in
global GDP has declined, and the annual per cent growth of manufacturing’s value added has
remained roughly constant, around 2%, the rate of growth of emissions from industry has far
outpaced the emissions from any other sector of the world economy
(https://data.worldbank.org/indicator/NV.IND.MANF.KD.ZG). The conclusion is clear and
inescapable: Industry’s emissions are closely related to the rates of GDP growth.

The relationship between GDP and GHG emissions has been the subject of many studies
and is characterized by the absolute and relative decoupling between GDP and resource
utilization or emissions, which are defined as follows:

A(Resource Utilization)

Absolute Decoupling = <0
A(GDP) O
Relative Decoupling = A(Resource Utilization) <1
A(GDP)

Analysis of nearly 900 studies, based on empirical data on levels of emissions versus
levels of consumption and production per capita, have led to important observations,
which frame the scope of analysis for the transition of the Chemicals and Materials In-
dustry to a net-zero fossil carbon industry, and can be summarized as follows (Haber, et
al., 2020; Mir and Storm, 2016): (i) There is econometric evidence which supports the
Carbon-Kuznets-Curve (CKC) hypothesized pattern (see Figure 2), between CO»-eq
emissions production or consumption, and GDP per capita. Such pattern would lead to
absolute decoupling after the turning point. (ii) The turning point, for a production-based
CKC curve, has been estimated to lie in the range of 50 to 100 GtCO»-eq, which is far
beyond the COP21 emissions reduction goals. (iii)) Examples of consumption-based ab-
solute decoupling are very rare. (iv) Relative decoupling is frequent for material use as
well as GHG and CO; emissions, but not for useful exergy. From the above observations
we reach two important conclusions: (i) Absolute decoupling, i.e. reduction of resource
(energy, materials) utilization and GHG emissions per unit of GDP growth, cannot be
achieved through observed decoupling rates. (ii) To reach the Paris Agreement goals by
2050, efforts to decouple resource utilization from GDP growth are necessary conditions
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but not sufficient. Sufficiency-oriented strategies must include strict enforcement of ab-
solute targets.

Emissions Turning point

per Capita /—.\

N

Region of acceptable COP21 goals

Real Income per Capita

Figure 2. The Carbon-Kuznets-Curve (CKC) relationship between CO2-eq emissions and real income.

3. Towards the Circularization of CMI

The following formula offers a simple way for computing GHG emissions. It also identi-
fies the points where major interventions would lead to emissions reductions.

G:—x—x—x?xS (2)

G, GHG emissions. G/E, Emissions Intensity; GHG emissions per unit of energy used. E/M,
Energy Intensity; energy used per unit of material. M/Pr, Materials Intensity; materials used
per unit of product to create the product and maintain stock of the product. It depends both
on the design of the product and on the scrap discarded during its production. P#/S, Product-
Service Intensity; it determines the level of service provided by a product, and depends on
whether the product is consumable or durable. S=Total Service Demand=(Popula-
tion)x(GDP/capita); the total global demand for service. Traditional programs of Continu-
ous Improvement (KAIZEN) and process optimization can reduce the values of the first
three factors, G/E, E/M, and M/Pr, with potential reduction of emissions by 25% - 40%.
The remaining must come from the following sources: (i) Renewable energy supplies and
major technological breakthroughs, such as: carbon capture sequestration and/or use. (ii)
Major reductions in Materials Intensity (M/Pr), Product-Service Intensity (Pr/S), and To-
tal Service Demand (S). S is directly related to GDP/capita and we discussed earlier. (iii)
Introduction of Circular practices: reuse, repair, remanufacturing, recycle products,
wastes or scraps. The conclusion is inescapable: To meet the Paris Agreement goals we
must do the following: (1) Change the focus from the energy sector to the chemicals/ma-
terials sector. (2) Enhance circularization of all supply chain activities (processing, man-
ufacturing, distributions, sales, recovery, reuse, reprocessing, remanufacturing). (3) Re-
duce virgin material demand by extending the percent utilization of all material products
(housing, mobility, nutrition, communications, consumables).

A series of obstacles prevents the full and idealized circularization of the CMI. These obstacles
are: (a) Products may be too complex to recycle, reuse, or remanufacture. The large-scale use
of synthetic materials makes the closing of the cycle nearly impossible. Furthermore, the re-
cycling of synthetic materials (e.g. polymers) invariably produces inferior materials. Redesign
of products with easily assembled and disassembled material components, as well as extensive
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use of biomass-based, degradable materials, could address these concerns to a large degree.
(b) How do you recycle fossil fuels? A large part of fossil materials is used to provide energy
for heating and electricity, leading to exhaust streams, whose useful energy has diminished
and is unusable. Two options are open: Shift to progressively larger amounts of renewable
energy, and optimize the process of capturing and sequestering or/and using COs. (¢) Growing
human needs. Continuous growth of material human needs leads to the extraction of continu-
ously larger amounts of natural resources. By increasing the amount of materials recycled, we
may be able to establish steady state. However, in order to achieve this, we ned to have a
holistic approach to the circular economy that involves the complete life cycle of materials;
something that many advocates of the circular economy fail to account for, by focusing on
limited segments of the whole. (d) Accumulation of natural resources. A significant portion
(about 30-35%) of processed natural resources remains in the economy and accumulates in
the form of buildings, infrastructure, and consumer products; it is not recycled, destroyed, or
disposed in a landfill. Therefore, the circular economy is not truly a steady state situation, but
one which continues to be extractive economy, with increasing inventory of materials over
various time horizons. (¢) Recycling and reuse are not enough. The economy needs to adjust
to the above limitations, by increasing the percent utilization of all material goods. For exam-
ple, we cannot have a sustainable circular economy with cars unused more than 90% of the

time, office buildings used only 60% of the time, or more than 30% of food wasted.

4. The Research Scope of Sustainable Circular CMI (S-CCMI)

So far, the prevailing discussion on circular economy has been driven by the following simple
definition of the sustainable circular CMI (S-CCMI): It is an economic model, focused on
designing and manufacturing products, components and chemicals/materials for reuse, reman-
ufacturing and recycling. However, the S-CCMI must sustain economic growth, and this def-
inition is not sufficient to delineate its actionable scope. While the specific characteristics of
S-CCMI can differ for different sectors of CMI, they must be driven by a simple principle:
The resource inputs and recycled materials should maintain dynamic material balances of
“wastes” at the sustainably highest allowable materials-accumulation levels. Pure “steady
state” requirements are impossible; materials accumulate in the economy continuously. For
example, carbon extracted from earth is equal to the amount of carbon returned to the earth,
while the amount of carbon accumulated in the system remains below the sustainably highest
level. The “sustainably highest level” allowance is determined by climate change (GHG emis-
sions) and environmental impact (materials emissions) constraints.

Design elements of the S-CCMI. The above simple principle has a broad range of impli-
cations for all activities in the “materials handling and use” network of Figure 1. At The
Global KAITEKI Center (TGKC) of Arizona State University, we have undertaken an
extensive research program, which addresses all questions related to the transition of CMI
to S-CCMI, such as: (i) Reduction in the input and use of non-renewable material re-
sources. (ii) Reduction in the generation of wastes and emissions (GHG and materials).
(iii) Increase in inner materials use and recycle up to the sustainably highest level of
materials use. (iv) Redesign of products and associated components, materials, and chem-
icals to facilitate recycle, and reuse. (v) Development of new technologies for the capture,
sequestration and use of carbon.

Transformation of CMI companies to S-CCMI companies. Aspects of the research program
evaluate the following implications on the structure and operations of the CMI companies, as
they transform to S-CCMI companies: (1) Transition from centralized and vertically inte-
grated, open-chain large-scale processing and manufacturing systems, to smaller-size,
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decentralized, distributed and locally managed processing and manufacturing activities. (2)
Economies of scale, which have dominated the large-scale processing in CMI will no longer
be the drivers for large-scale investments. Materials, transportation, logistical services, and
financial costs will drive the structure of S-CCMI. (3) Redefinition of the scope of the business
activities, with the CMI companies transforming themselves from producers of virgin chemi-
cals and materials, to producers of integrated components and products, and suppliers of tech-
nical services to support the life-cycle of their products.

The economics of transition from CMI to S-CCMI. The economic benefits of such trans-
formation S-CCMI companies have been estimated to be very attractive: (1) Significantly
higher returns on investment. (2) Reduction in volatility between supply and demand, due
to effective recycling and self-regulating system, leading to resilient economic growth.
(3) Stronger market position and competitive differentiation for the companies, which
espouse the future of S-CCMI. This will be particularly true for the companies, which are
presently strong and have strong R&D, engineering, and supply-chain market positions.

Societal and human adjustments during the transition from CMI to S-CCMI. The con-
sumers will need to adjust their behavior away from “owning physical products” towards
“using services of physical products”, but the benefits are many and attractive: (i) The
transition from “owning, using and disposing” to “using and returning” will force im-
provement of service quality, durability and reliability of products. (ii) This transition
will foster the appearance of new emerging trends of sharing, lending, swapping etc. that
will benefit the consumers. (iii) The companies of present CMI employ very few people
per dollar of asset values. The S-CCMI will increase these numbers significantly and fuel
more predictable and sustainable demand of products and services at higher levels. (iv)
The demands of S-CCMI can only be met by human resources of significantly higher
education and skills. This will be in-line with historical expectations.

5. Conclusions

The transition of the CMI to a Sustainable Circular CMI is a necessary (and possibly
sufficient) condition for industry to maintain under control the growing mountains of en-
vironmental “wastes”; GHG emissions and discarded materials. The implications are
broad and deep and require restructuring of CMI, reinvention of the CMI companies and
realignment of human behavioural traits in the new market place. The question is not
whether to transition to S-CCMI or not, but how; the scope of research at TGKC.
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Abstract

The presented work focuses on the value chain optimization of a conceptually designed
biorefinery, considering the plant capacity and other logistic and design constraints. An
existing framework is used to create surrogate models, which are then used to
reformulate the underlying optimization problem for performing value chain
optimization. The used Delaunay triangulation regression surrogate model performs
well and is a suitable candidate for value chain optimization. The results indicate an
apparent effect of the economics of scale, and the market conditions mainly constrain
the designed value chain.

Keywords: Biorefinery, Surrogate Modelling, Delaunay Triangulation, Mixed-Integer
Linear Program, Value Chain Optimization

1. Introduction

A key approach in expediting the transition towards a bio-based economy is the
conceptual design and implementation of value chains based on integrated second-
generation biorefineries. Although these biorefineries have been investigated for several
decades, and despite their vast potential regarding a sustainable production of fuels and
chemicals, the major challenge remaining concerns their economic viability (Ubando et
al., 2020). Among other factors that influence the economic viability, the capacity and
location of the plant and the design of suitable feedstock and product supply chains are
essential considerations to take (Gargalo et al., 2017). What is classically referred to as
economies of scale can improve the economic key performance indicators (KPIs) of a
plant up to a certain point, as the capital expenditures do not increase proportionally
with the plant capacity. In contrast, additional necessary equipment, as well as increased
operational costs for logistics, can thwart this effect.

Hence, it is crucial to conceptually design both the biorefinery process and the entire
value chain in which the biorefinery will be embedded. Vollmer et al. (2021) have
recently developed a framework (S30) that allows for the conceptual design of
biorefinery processes based on mechanistic modeling for all unit operations in the
process. The framework utilizes flowsheet simulations and different types of surrogate
models to perform a superstructure optimization to determine candidate process
topologies. This procedure is applied to eliminate nonlinearities, which are inherent to
all unit operation models and constitute the superstructure optimization as a mixed-
integer nonlinear optimization problem (MINLP) (Vollmer et al., 2021b). The surrogate
models aim either at linearizing the original model or eliminating the integer variables.
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Similarly, in value chain optimization, nonlinear models are commonly linearized with
piecewise linear approaches (Krdmer et al., 2021).

In the scope of this work, the S30 framework is extended by using the already present
Delaunay Triangulation Regression (DTR) surrogate model to perform value chain
optimization based on a conceptually designed process through the framework. By
flowsheet sampling with the process flowsheet with relevant input and output variables
for the value chain optimization, piecewise linear DTR surrogate models are created.
The value chain optimization is set up and constituted as a mixed-integer linear program
(MILP), using the DTR surrogate model and solved with a suitable solver. This solution
is benchmarked with a Gaussian Process Regression (GPR) surrogate model, which is
equally incorporated in the S30 framework. The solution is analyzed and compared to
the initial base case process design to conclude how to design an optimal value chain.

2. Methodology
2.1. Mechanistic Process Models

The basis of the work in this manuscript is a running flowsheet simulation model
created in the first step of the S30 framework. Each flowsheet model consists of various
unit operation models. All unit operation models are mechanistic models, consisting of
mass and energy balances and a kinetic description of the respective reaction or transfer
process. Based on the mass and energy balance calculations, the fixed capital
investment for each unit operation is calculated by a plant capacity ratio based on a
report by the National Renewable Energy Laboratory (NREL) regarding a similar
biorefinery setup. Based on the fixed capital investment and other report data, capital
expenditures and operational expenses (CAPEX and OPEX) and different KPIs, e.g.,
the net present value (NPV) of the plant, are calculated. Input parameters for the
flowsheet simulation can be operational variables and the feedstock mass, and other
setup parameters. Output variables can be all mass and energy flows, as well as design
parameters, e.g., vessel sizes, or economic variables referring to CAPEX or OPEX, or
ultimately the KPIs of the plant. All flowsheet simulations are performed through the
S30 framework as it is implemented in MATLAB.

2.2. Delaunay Triangulation Regression

DTR is based on a triangulation of points as a logical extension of piecewise linear
regression in any dimension (Vollmer et al., 2021b). In a two-dimensional case, a
triangulation consists of triangles or 2-simplices. For any dimension n, the triangulation
hence consists of n-simplices. Each n-simplex itself is constituted by n+1 vertices.
Within each simplex, each point can be described as a linear affine combination of the
vertices. In this manuscript, the vertices are assigned to be the sampling points of the
flowsheet simulations. The DTR utilizes Delaunay triangulation, which imposes the
criterion to each simplex not to contain any other vertex of another simplex within the
circumcircle — or its pendant in other dimensions — of the simplex. For a more detailed
description, the reader is referred to Vollmer et al. (2021b). The results show an
excellent functionality of the DTR surrogate for superstructure optimization
applications within the S30 framework, despite impaired validation metrics.
Furthermore, DTR has been used in other research works for performing operations
optimization (Obermeier et al., 2021). In this work, the DTR surrogate model is created
with functions provided through the scipy library for Python.
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2.3. Gaussian Process Regression

Another very popular type of surrogate model is a GPR model, a machine learning
model with a broad variety of possible applications (McBride and Sundmacher, 2019).
The model itself harvests its potential through a stochastic process — the eponymous
Gaussian Process — which correlates the given input and output data, in this case, the
flowsheet samples (Vollmer et al., 2021b). Also, using GPR surrogate models for
process design applications within the S30 frameworks shows good functionality with
good validation metrics (Vollmer et al., 2021a). In this work, the GPR functionalities of
the Statistics & Machine Learning Toolbox in MATLAB are used.

2.4. Value Chain Optimization

The original value chain optimization in this manuscript is an MINLP of the form given
in Eq. (1).

maxz = f(x,y)
s.t. glx,y) <0
h(x,y) =0
x€X, ye[0,1]

MINLP: (D

The functional relation f(x,y) denotes the flowsheet simulation, including continuous
input variables x and binary input variables y. The objective z is equally one of the
model outputs. Inequality constraints are represented by g(x, y) and equality constraints
are represented by h(x,y) = 0. Both inequality and equality constraints can describe
conditions regarding logistics, markets, plant capacity, location, and supply and demand
for the biorefinery. When utilizing the DTR surrogate model, the MINLP converts into
a MILP due to eliminating the nonlinearities by the piecewise linear approach. When
using the GPR surrogate model, the MINLP converts into a set of nonlinear programs
(NLP), with each element of the set representing one realization of the combinations of
all binary variables that need to be solved separately. The MILP can be solved with the
GUROBI solver, whereas each NLP is solved with the fmincon solver in MATLAB
while employing a multi-start procedure to guarantee global optimality.

3. Application
3.1. Case Study

The biorefinery in this case study is a multi-product biorefinery that converts wheat
straw into xylitol, succinic acid, and heat. The latter is used for process integration
purposes in the downstream processing of the former two products. It consists of a
biomass pretreatment unit, a unit for enzymatic hydrolysis, two evaporation units in the
upstream process, two fermentation units for the production of xylitol and succinic acid,
two evaporation units, four crystallization units, and one combustion unit for the lignin.

3.2. Optimization Problem

The original biorefinery is designed for an annual feedstock mass of m = 150.000 ¢t
designed for being located in Denmark, corresponding to approximately 3% of the
nationally harvested amount of wheat straw (Danish Agriculture & Food Council,
2015). In order to see a significant effect of the economies of scale, the capacity of the
biorefinery could be potentially increased up to m = 600.000 t, as practiced in the
mentioned report of the NREL (Humbird et al., 2011). However, as wheat straw is
harvested and centrally collected, a higher amount of feedstock correlates with a longer



76 N. I. Vollmer et al.

transportation distance. Per each full additional 150.000 t of feedstock, it is considered
to increase the transportation distance stepwise by 100km, with a transportation price of
0.05 $/(t - km). As this increases the costs for transportation, a potential option is to
not install one plant with a capacity of bigger than m = 300.000 ¢, but to install two
plants with the ability to be able to process m = 600.000 t in a decentralized manner
which alleviates the economic impact (Galanopoulos et al., 2020). This is expressed by
a binary variable y, as part of the optimization problem. Lastly, as fermentation
processes need equipment for inoculation, a higher capacity than the original one
requires an additional fermentation tank, which increases the CAPEX of the plant. The
costs of the additional tank scale linearly with the feedstock mass. The capacity itself,
however, is calculated through the capacity ratio. For the flowsheet simulations, the
operational variables, as well as the feedstock mass and the plant number y, are used.
The effects of all three mentioned aspects are calculated in the flowsheet simulation. As
output, the NPV of the plant and the mass of produced xylitol and succinic acid are
calculated. The objective in the optimization is set to be the NPV of the plant, and the
mass of xylitol and succinic acid are constrained to be g; = my,,, € [5,33]% and g, =
My, € [20,50]% of the global production of the respective substance. The lower
limits are imposed to assure a minimal production, whereas the upper limits are
imposed to avoid decreasing market prices, which would negatively influence the plant
profitability due to the comparatively small market size of both products.

3.3. Results

For illustrative purposes, the NPV as the objective function of the feedstock mass with
fixed operational conditions is displayed in Figure 1.

3e+08 -
&= Legend
> 2e+08 —_— yn=0
o yp
e yp:1
1e+08 -

2e+05 3e+05 4e+05 5e+05 6e+05
Feedstock mass [t]

Figure 1: Plot of the objective function with the feedstock mass as a variable for y, = 0 and y,, =
1

The effect of the economies of scale, the constraining effects of increased costs for
logistics and equipment, and the reduction of the expenses through decentralized
production are visible. For the value chain optimization, the process flowsheet model is
sampled with N=1000 simulation samples for all five operational variables, the
feedstock mass, and the binary variable y, with two sets of the sample size sampled by
Latin Hypercube sampling for each realization of y,,. The DTR and the GPR surrogate
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models are fitted to the sampling data and cross-validated. The results of the cross-
validation for both models are presented in Table 1.

Table 1: Results of the surrogate model validation for the NPV as output variable

DTR GPR
Yp =0 »p=1 yp=0 =1
Rt?ram 1 1 1 1
R 0.552 0.408 0.957 0.937
RMSE trqin 0 0 3.19-10° 1.04-10°
RMSE ;s 3.07 - 108 2.97-108 9.48-10° 1.57-10°

It becomes evident that the DTR surrogate metrics are impaired compared to the ones of
the GPR. Particularly for the case of y, = 1, the DTR surrogate model does fail to
predict accurately, while the GPR shows improved metrics compared to the case of
¥p = 0. The optimization problem for the value chain optimization is set up as
described in section 2.4 with all variables, the objective function, and the constraints as
described in section 3.2. The results are presented in Table 2.

Table 2: Results of the value chain optimization with the optimization result (left) and the
validation simulation result (right) for each binary decision and surrogate model

DTR GPR
Yp =0 Yp =1 Yp =0 Yp =1

Mpeeq [103 - 302 293 292 292

t]
NPV[10%-$] 1.96 2.47 293 329 71 356 58  2.60
Myyo [103 t] 198 204 221 222 291 224 218 202
Mg [103-¢] 359 380 359 351 359 359 359 359

Primarily, the result from both the optimization with the DTR and the GPR surrogate
shows that the effect of the economics of scale is visible, and the feedstock capacity is
increased to a maximally feasible limit, which is imposed by the market saturation
bounds. The effects of increased transportation costs and additional equipment do not
influence the objective to the same degree. In other studies investigating products as
bioethanol with higher market volumes, these effects become more significant
(Galanopoulos et al., 2020). Furthermore, the operational conditions were not
significantly influenced. Also, the results of both optimization problems with the
different surrogate models agree, indicating that the DTR model is a suitable candidate
for value chain optimization despite insufficient validation metrics, since it performs
better in predicting the objective function and the constraints. The differences in
prediction with the GPR surrogate model for the case of y, =1 and y, = 0 can be
explained by the different fit of each model, which is reflected by the validation metrics.
The differences in prediction for the DTR surrogate model can be equally attributed to
the different fit expressed by the validation metrics. This indicates a potential increase
in prediction quality for both models by using larger sampling sizes. It is noted that the
economic metrics are calculated with fixed price considerations for feedstock and
products. Hence the emphasis is on the trend of NPV rather than its absolute value.
Further studies of uncertainties that will yield a distribution of NPV are needed as the
volatility in the market prices for feedstock and products, as well as the market demand
uncertainty, will affect the nominal values presented here.
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4. Conclusion

Based on a conceptually designed process for an integrated second-generation
biorefinery, this study aimed to design an optimal value chain with the given process
design by taking into account a varying feedstock mass and other logistic and design
constraints for the plant. The value chain optimization was performed using two
surrogate models to transform the underlying MINLP into either a MILP or a set of
NLPs. The results from solving the optimization problems show results in agreement
with each other. This proves the suitability of DTR surrogate models for the use in
value chain optimization problems, and this despite impaired validation metrics of the
surrogate model, which has been addressed before (Vollmer et al., 2021a; Vollmer et
al., 2021b) With regards to the actual value chain, it becomes evident that the
economics of scale positively influence the KPIs of the biorefinery. The limitations for
economic resilience are found in the actual market sizes of the products rather than in
the additional costs for increased CAPEX and OPEX of a larger biorefinery. These
results are essential and contribute to facilitating the further design and implementation
of biobased value chains to create more sustainable production patterns in the future.
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Abstract

Optimization-based process design can be an efficient tool for finding synergies between
process units, but it strongly relies on accurate process models. Hence, experiments for
model refinement may be necessary. We present an optimization-based methodology to
enhance the process development by integrating superstructure optimization under
uncertainties and optimal design of experiments. In this manner, experiments for model
refinement can be focussed on the parameters which are critical for discrete design
decisions. These parameters are identified by a local discrimination analysis followed by
a computation of the partial dependence or the permutation feature importance. The
methodology is applied to the hydroaminomethylation of 1-decene. It is shown that it
reduces the number of experiments needed for the decision between alternative process
structures.

Keywords: Superstructure Optimization, Process Design, Optimal Design of
Experiments, Linear Discrimination Analysis.

1. Introduction

Superstructure optimization has been developed as a tool to support design decisions in
process development by the optimization of discrete and continuous parameters of a
superstructure that describes a range of process alternatives. The formulation of the
superstructure and the solution of the resulting large mixed-integer optimization problems
have been widely studied ((Chen & Grossmann, 2017), (Skiborowski et al., 2014)).
However, the prerequisite of the application of the approach is the availability of models
that describe the chemical and physical phenomena in the different pieces of equipment
as well as the necessary investments and the costs of operation accurately. Since the
models that are available for process design are usually uncertain in the early process
design phases, where nonetheless often important structural decisions are taken, these
uncertainties should be considered in the optimization. Steimel and Engell (2016)
proposed a two-stage formulation for superstructure optimization under uncertainty
where the uncertainty is modelled by discrete scenarios and the design degrees of freedom
are identical for all scenarios but the operational degrees of freedom are adapted to the
realization of the uncertainties, i.e. the real behavior of the plant. However, often there
will be several process structures that are optimal for different scenarios, and the
uncertainty should be reduced by experimental work to obtain a unique solution. In order
to identify the optimal design with the smallest experimental effort, the authors proposed
an integrated methodology that combines superstructure optimization under uncertainty,
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Figure 1: Schematic representation of the integrated methodology.

sensitivity analysis, and optimal design of experiments ((Kaiser & Engell, 2020), (Kaiser
et al., 2021)). The parameters with the highest impact on the process cost for the most
promising design are identified using a sensitivity analysis. A modified optimal design of
experiment is used to plan experiments that focus on determining these parameters.

Our earlier work showed that the process design could be accelerated, but it did not yet
take the impact of the uncertain parameters on the structural decisions into account. We
improve the methodology by evaluating the impact of the model parameters on the
discrete design decisions and planning experiments that are targeting to determine the
parameters that influence the discrete design decisions the most. In the following, we will
describe the methodology and apply it to the hydroaminomethylation of 1-decene.

2. Methodology

The idea is to integrate superstructure optimization under uncertainty, the identification
of relevant parameters, the design of focused experiments, and parameter estimation as
can be seen in Figure 1. By this, efficient experiments can be planned for model
refinement that are focused on determining the parameters that have the highest impact
one the discrete design decisions. The single steps are explained in the next section.

2.1. Superstructure optimization under uncertainty

For superstructure optimization under uncertainty Steimel and Engell (2016) proposed to
formulate a two-stage mixed integer optimization problem.
Q

min G(yd,yc) + Z nwa(yd, Vo xw,zw)
YarYeXw ~

s.t. h(yd,yc, Xy zw) =0
9V VX0 2,) <0

(M

The objective function (1) consists of two terms. The first term accounts for the cost when
fixing the discrete (y,;) and continuous (y.) design degrees of freedom, which cannot be
adapted to the realization of the uncertainties. The second term is the weighted sum of the
scenario dependent costs for the () discrete scenarios of the uncertain parameters. The
operational degrees of freedom x,, are assumed to be adapted to the realization of the
uncertainty and are therefore optimized separately for each scenario.
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2.2. Linear discrimination analysis

To identify the effect that the uncertainties have on the design decision, the outputs are
divided into g classes K;— here the best design decisions — depending on the values of the
uncertain parameters. By a linear discrimination analysis, the features that separate the
classes can be identified. A realization x; of a feature carrier e is assigned to the class K;
for which the value of the discrimination function is maximum (Rinne, 2008):

dl*(xl-) = ;{Isllas)é dl(xl-) = Xx; € Kl*' (2)

Supposing that a number or realizations (samples) x; have been classified, arbitrary
values of e can be assigned to the classes under the assumption that the features are
independent, Gaussian distributed, and have an equal feature-independent variance

L, =0%IVL 3)
A realization with vector x is assigned to the class with the minimum Euclidean distance
between the class center g; and x. The linear discrimination function is defined as:

1 1
d(x) = — 27214#1 + ;uix 4

H; is computed as the average of the classified samples that belong to class /.

The relationship between the features and the predicted class can be represented by the
partial dependence (PD) as described by (Greenwell, 2017). It is computed as the average
probability of the output belonging to the different classes when the value of this feature
is varied, averaged over the values of all other features. The assignment of the class for a
value of the feature is based on (4) and the averaging is done over the set of the classified
realizations of the parameter vector (samples). This gives the fractions of the predictions
of each design decision being the optimum one depending on the values of the individual
features (parameters in our case). If x° is the feature of interest and X¢ is its complement
(i.e. all other features), the partial dependence of the output f at x is defined as:

£ = Bolf O, X9 = [ £ Xpe(xedaxe 5)

The results of the PD are compared to the permutation feature importance (PFI) that also
capture interaction effects (Fisher et al., 2019). For each feature, the values are exchanged
with values from a different sample to generate a new feature matrix XP¢"™. The
classification of the discrimination model of XP¢™™ is then compared to the true optimal
discrete design as indicated in the training data and the number of wrong classifications
is compared for all features. If permuting one feature leads to a wrong classification, it
implies that this feature as a large influence on the model output.

2.3. Optimal design of experiments

To design an experiment to determine the parameters that influence the design decision,
an optimal design of experiment (ODoE) is used. In ODoE a metric of the inverse of the
Fisher information matrix (FIM) is minimized (Franceschini & Macchietto, 2008).

N
FIM =) Q"(u,)diag™(o7, ., 53,)Q(u) ©
T=Tq
with Q(u,) being the matrix of the derivatives of the model outputs with respect to the
parameters of the experiment with the input u,. As only some of the parameters will have
an impact on the design decision, as identified by PD and PFI, only these are included in
the ODoE. Here an A-optimal design of experiments is used which minimizes the trace
of the inverse of the FIM.
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3. Case study

The presented methodology is applied to the homogeneously catalysed hydroamino-
methylation of 1-decene in a thermomorphic solvent system of methanol and dodecane.
In this process, long-chain amines are produced and water is formed as a by-product.
Thermomorphic solvent systems are single phase at reaction temperature and separate
into two phases when cooled down which enables a recycling of the expensive catalysts.
The reaction can either be performed as a tandem reaction (HAM) in one reactor or in
two subsequent steps, thus performing the two subsequent reactions hydroformylation
(HYFO) and reductive amination (RA) in different reactors. The superstructure is
depicted in Figure 2. The process consists of three steps: reaction, separation and removal
of water. Kinetic models for the two reactions steps can be found in (Hentschel et al.,
2015) and (Kirschtowski et al., 2021). The HAM was modelled by combining both model
structures and fitting the parameters to twelve experiments. The gas solubilities as well
as the phase separation are predicted using the equation of state PC-SAFT. As the iterative
solution of the PC-SAFT equations is not feasible in the optimization, surrogate models
were trained as proposed in (Nentwich & Engell, 2019). The membrane separation is
modelled using a solution-diffusion model. The uncertainties considered in this case study
are the pre-exponential factors and the activation energies of all reaction rates resulting
in 31 uncertain parameters. The binary design degrees of freedom are the choices whether
the tandem reaction or the subsequent reactions are used and whether the nonpolar solvent
dodecane is fed before or after the reaction, and the continuous design decisions are the
volumes of the reactors and the area of the membrane. As recourse variables, the
temperatures in the reactors and the decanter, the partial pressures of syngas, the solvent
ratio and the catalyst concentration are optimized. The cost function is the production cost
per kg of product for a constant capacity of 10.000 t/a.

3.1. Application of the integrated methodology

The superstructure optimization was performed for the four structurally different process
alternatives. For each alternative, the predicted costs for the best designs are shown in
Figure 3 (left). Each line in the figure represents one scenario of uncertain parameters.
Initially, design 1 is optimal for most but not for all scenarios. As one cannot make a
design decision based on this result, a further model refinement is necessary. As a next
step, we analyzed which parameters influence the design decision. Therefore, a linear
discrimination analysis was performed. Designs 2 and 4 are not optimal for any scenario
and therefore, only designs 1 and 3 are considered. The influence of the parameters on
the class allocation was analysed via PD and PFI. The partial dependence plots are shown
in Figure 4, where the scores of all 31 parameters are presented. One can see that
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Figure 3: Predicted costs for the four best structurally different designs for 50 scenarios of the
uncertain parameters after the initial superstructure optimization (left) and after 7 iterations. The
design IDs indicate the structurally different designs. Design 1 and design 2 correspond to the
tandem reaction with a dodecane feed after and before the reaction respectively and design 3
and 4 to the two subsequent reactions with a dodecane feed after and before the reaction.
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Figure 4: Partial dependence plots for the two discrete designs that were identified as optimal
for at least one of the different scenarios considered.
parameter P27 (the activation energy of the side reaction to from n-decene to iso-decene)
determines the decision the most. The same result was obtained by PFI where only
changing this parameter shows an effect on the predicted class.

Hence, the optimal design of experiments was restricted to determining this parameter.
The reaction temperature, the total pressure, the syngas ratio, the catalyst concentration
and the sampling times were optimized for one batch experiment. The experiment was
replaced by a simulation of the reaction with the nominal values of the parameters
corrupted with added white noise with a standard deviation of 5 %. After one simulation
experiment, the parameters were updated and the procedure was repeated. After seven
iterations, one design could be identified as optimal for all scenarios as it can be seen in
Figure 3 (right). In contrast, by a full factorial design with 32 additional experiments one
cannot identify one design as optimal for all scenarios. Therefore, the proposed
methodology shows an advantage over established techniques for model refinement.
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4. Conclusion and Outlook

We presented an integrated methodology that accelerates the process development
process by reducing the number of required experiments to find the optimum discrete
design decisions. Using a superstructure optimization under uncertainties followed by a
discrimination analysis, the parameters that influence the design decision the most can be
identified. Hence, efficient experiments can be planned by optimal design of experiments
that focus only on determining these parameters until the model is accurate enough to
make a design decision. In the case study, we could identify one parameter as strongly
influencing the design decision. Simulation studies showed that designing experiments
for this parameter can reduce the number of experiments compared to a full-factorial
design. In the future, we plan to expand the methodology to uncertain parameters in
different process units.
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Abstract

Organic synthesis plays an essential role in the pharmaceutical industry. Traditionally,
knowledge-based methods are used for the design of synthesis route, which is expensive
and time-consuming and thus hinders the high-throughput design of the synthesis route.
In this article, a retrosynthetic analysis framework is established using hybrid reaction
templates and Group Contribution (GC)-based thermodynamic models. First, a hybrid
database consisting of partial atom-mapping and full atom-mapping reaction templates
is constructed utilizing well-studied organic reactions from literature. Second, numerous
virtual reactions are generated from reaction templates with respect to target molecule,
and reaction thermodynamic models based on the GC method are developed to validate
the effectiveness of virtual reactions in a timely fashion. Finally, Breadth-First Search
(BFS) algorithm is employed to search candidate retrosynthesis pathways which are
thermodynamically feasible. In this procedure, five quantitative criteria are used to
identify the top-ranked routes, including Fathead Minnow 96-hr LCso (LCseFM), flash
point (Fp), Natural Product-likeness Score (NPScore), Synthesis Accessibility Score
(SAScore), and Synthesis Complexity Score (SCScore). With the help of the developed
framework, synthesis routes considering thermodynamic feasibility can be obtained.
Two case studies involving Aspirin and Ibuprofen are presented to highlight the
feasibility and reliability of the proposed framework.

Keywords: Retrosynthesis pathway design; Reaction template; Reaction equilibrium
constant; Group contribution method; Breadth-First Search algorithm

1. Introduction

Organic synthesis is one of the most crucial components of the modern pharmaceutical
industry. Traditionally, knowledge-based methods are applied to design synthesis routes
for different pharmaceutical products. Nowdays, Computer-Aided Synthesis Design
(CASD) techniques have enabled in-silico retrosynthesis and thus received considerable
attention from chemists (Law et al., 2008; Szymkuc et al., 2016; Schwaller et al., 2020).
Various searching algorithms have been successfully applied to optimize different
objectives of synthesis route design. A crucial step in retrosynthetic analysis is to find a
method that constructs explicit or implicit relations between reactants and products.
Corey and Wipke are forerunners in retrosynthesis for their efforts in introducing the
Logic and Heuristics Applied to Synthetic Analysis (LHASA) in the 1960s (Corey &
Wipke, 1969). In their work, reaction templates (a certain type of sub-molecular pattern
that maps atom connectivity) were used as a bridge linking up reactants with products.
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Route Designer (Law et al., 2008) employed extended reaction templates to ensure the
validity of synthesis routes. Syntaurus (Szymkuc et al., 2016) used more than 20,000
explicitly defined reaction rules to avoid obtaining absurd synthesis routes. The
developers of Chematica (Szymkuc et al., 2016) have manually encoded more than
10,000,000 molecules and reactions to form synthesis networks. Among these methods,
the reaction template is more favorable for its concise form in representing chemical
reactions. Reaction templates are manually encoded by chemists who are experienced in
organic synthesis. Gradually, chemists pay more and more attention to algorithms that
automatically extract features as well as generate templates from the known reactions in
commercial databases owned by pharmaceutical companies and non-commercial
databases like USPTO (Lowe, 2014) and Reaxys (Goodman, 2009). So far, extraction
algorithms have made significant progress in theory and practice. Law et al. (2008)
focusing on extending the reaction cores to necessary chemical environments. Coley et
al. (2017) used a heuristics-driven algorithm to extract reaction templates from the
USPTO database. Reaction templates cannot work alone in retrosynthesis. Specialized
algorithms written by expert chemists are used to cooperate with reaction templates. As
the Artificial Intelligence (Al) develops, many researchers have found that Machine
Learning (ML) can solve retrosynthesis when reaction templates are applied. Segler and
Waller (2017) proposed a model for retrosynthesis using neural-symbolic ML and 103
hand-coded reaction templates, while Coley et al. (2017) applied ML and rigid reaction
templates for the reversed problem. Template-free method is developing rapidly thanks
to the new advancement in NLP (Natural Language Process) technology. Reactions
written in SMILES (Simplified Molecular-Input Line-Entry System) (Weininger, 1998)
notations are used to train RNN (Recurrent Neural Network) or Transformer model. The
well-known template-free architecture is Molecular Transformer (Schwaller et al.,
2019), which reads the mixed (or separated) strings of reactants, solvents, catalysts, and
reagents as the inputs to predict possible product strings.

Although retrosynthesis analysis has been studied for several decades, there are
remaining problems unsolved. Increasing the depth of a neural network or applying
newly raised neural network architecture may allow us to get more satisfying results for
prediction, but the relation between input and output becomes hard to be understood.
Other aspects, such as process safety, environmental friendliness of reagents, and the
price of raw materials, should also be considered during the process of synthesis route
design. This paper presents a retrosynthetic analysis framework using hybrid reaction
templates and GC-based thermodynamic models. The curated reaction templates are
manually encoded according to available literature (Smith & March, 2001) to ensure the
validity. In Section 2, the proposed three-steps framework is discussed in detail. In
Section 3, two case studies are presented to highlight the feasibility and reliability of the
proposed framework.

2. Retrosynthetic analysis framework using hybrid reaction templates and
GC-based thermodynamic models

The proposed retrosynthetic analysis framework is divided into three parts: (1) Generate
virtual routes; (2) Verify virtual routes; (3) Rank valid routes, as shown in Figure 1.

2.1. Step 1: Generate virtual routes

Reaction template is a sub-molecular pattern that maps atom connectivity. SMARTS
strings are used to encode reaction templates in this framework since they are fully
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supported in RDKit (Landrum, 2016). Chemical reactions written in SMARTS strings
are reversible by simply switching reactants and products. SMARTS strings are
classified into two categories according to the completeness, called partial atom-
mapping and full atom-mapping. Partial atom-mapping SMARTS strings have
asymmetric numbers labeling, while full atom-mapping SMARTS strings have
symmetric numbers labeling. The most of the SMARTS strings in the well-known
USPTO 1976-2016 database (Lowe, 2014) are partial atom mapping and thus hardly
useful for our framework. As a result, the reaction template database is established
manually according to available literature (Smith & March, 2001). In our reaction
template database, 347 different reaction templates covering the most used reactions are
established. These reaction templates are classified into nine categories. Some partial
atom-mapping reaction templates (9.7% of total reaction templates) in our reaction
template database are kept maintaining the diversity of the reaction template database.

Thermodynamic Objective function and
constraint optimization

A
" :— 5

2
ey A P SCORE 040 = Z(scareg — scoref )

Generate reactions

&)

= N e
Target molecule \ W SCOREpqen = min(max(SCOREpqe))
Reaction template N
R V ) > Ranked routes
Virtual routes Valid routes
Route filter

Figure 1. A three-step retrosynthesis analysis framework using hybrid reaction
templates and GC-based thermodynamic models

2.2. Step 2: Verify virtual routes

Chemical equilibrium theory provides a convenient way to evaluate whether a reaction
is able to occur or not under a given temperature. For isothermal and isobaric reaction,
the reaction equilibrium constant is correlated with the change of standard molar Gibbs
free energy of the reaction A,G2, ideal gas constant R and reaction temperature 7, as
shown in Eq.(1).

K = exp (—A,G%/RT) (1)

A more flexible formula for calculating reaction equilibrium constant using standard
molar Gibbs free energy is expressed as Eq.(2), which is derived under a rational
assumption as per the textbook “Principles of Modern Chemistry (7th Ed)” (Oxtoby et
al., 2011).

AGH(T) = X;vAHY, ;(298.15K) — T X155 ;(298.15 K) )

Here, AfH,‘?n_ ; and Sren_ ; represent the standard molar enthalpy of formation and the
standard molar entropy for compound j, respectively; v; is the stoichiometric coefficient
of compound ;. Existing databases such as Lange’s Handbook of Chemistry (Speight,
2005) contain thermodynamic parameters at 298.15 K for most common molecules.
However, molecules involved in retrosynthesis pathway design are usually
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intermediates whose thermodynamic parameters are not readily available from the
databases. Therefore, GC methods are introduced here as an alternative way to calculate
relevant thermodynamic parameters and other properties that are involved in
retrosynthesis pathway design. The relevant data used in GC methods come from our
previous work in solvent design (Liu et al., 2019). BFS algorithm is widely used in
solving problems like shortest path problems and minimum steps problems. Pre-set
reaction equilibrium constant K, is used as a criterion to keep the BFS algorithm
focusing on the most promising reaction routes. An online database of market-buyable
molecule is introduced to improve computational effectiveness and accelerate
convergence.

Step 3: Rank valid routes

In this step, a quantitative evaluation system is developed to rank routes that pass the
thermodynamic verification objectively. The following criteria are considered: (1)
Fathead Minnow 96-hr LCso (LCsoF'M); (2) flash point (Fp); (3) Natural Product-
likeness Score (NPScore) (Ertl et al., 2008); (4) Synthesis Accessibility Score
(SAScore) (Ertl et al., 2009); (5) Synthesis Complexity Score (SCScore) (Coley et al.,
2018). A normalization is applied for each criterion to ensure they are normalized to a
fixed range between 0 to 1. Euclidean distance is used as a quantitative method to
calculate the distance between a specific molecule and the target (optimal) molecule in
chemical space as shown in Eq.(3).

SCORE, ;4. = \/Ziszl(scorei’ - scorei’_opt)2 3)

In a multi-step synthetic problem, the node with the highest value of SCOREode is
deemed to be the synthesis-determining step. After finding all the synthesis-determining
steps of corresponding routes, their scores are ranked in ascending order to find out the
optimal synthesis route as shown in Eq.(4).

SCORE, gy, = min(max(SCORE,,q,)) “4)

The SCOREpan in Eq.(4) is defined as the score of a full synthesis route, representing
the synthetic features of the synthesis route. If any additional criterion needs to be
considered in the future, Eq.(3) is extensible while Eq.(4) remains valid.

3. Case studies

3.1. Synthesis route design for Aspirin

0, OH 0. OH

I 0 0
top-I % KL ]+ ”“\jj (0.7377,0.6906)
O
(o}
0. OH 0. OH
(-
fop-2 - K=2.351e109 )‘L . (0.7901, 0.6906)
(8]

Figure 2. The results of synthesis route design for Aspirin

The SMILES of Aspirin is required, which is CC(=0)OC1=CC=CC=C1C(=0)0. Here,
K, was set to 100 and search depth was set to 2. The reaction temperature was set to
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298.15 K in order to search reactions that are feasible at room temperature. The results
of synthesis route design for Aspirin are shown in Fig. 2.

According to Eq. (4), the optimal synthesis route for Aspirin is to use acetic anhydride
reacting with salicylic acid, which is consistent with the industry practice. Acetyl
chloride gets a higher overall score for its low flash point and thus ranked second.

3.2. Synthesis route design for Ibuprofen

The SMILES of Ibuprofen is required, which is
CC(C)CC1=CC=C(C=C1)C(C)C(=0)O. All synthesis constraints were the same as
Aspirin except for the search depth which was set to 3. The design results for Ibuprofen
are shown in Fig. 3.

0
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Figure 3. The results of synthesis route design for Ibuprofen

The top-1 route is Friedel-Crafts alkylation which tends to produce multi-substituted
products. The catalysts with high shape-selectivity are needed to make this route
practical. The well-known olefin carbonylation method is found and ranked 4 while a
method alike to BHC method is found and ranked 13.

4. Conclusions

In this paper, a retrosynthetic analysis framework using hybrid reaction templates and
GC-based thermodynamic models is proposed. First, a hybrid reaction template
database is used to generate various possible routes. Then, reaction equilibrium constant
is used to verify the thermodynamic tendency of virtual routes while BFS algorithm is
applied to the searching process. Finally, model criteria are proposed as a quantitative
and efficient method to evaluate different synthesis routes. The constructed hybrid
reaction templates database is reliable and can be updated manually. During the process
of ranking synthesis routes, the concept of “synthesis-determining step” is introduced
and integrated with the ranking system, and more attentions ought to be paid to the
synthesis-determining steps. The synthesis route design results for Aspirin and
Ibuprofen are satisfactory and thus highlight the feasibility and effectiveness of the
proposed framework. The limitations are clear due to the using of thermodynamic
models which only provide the tendency of reaction. Reaction kinetics should also be
considered and work together with the thermodynamics. Considering reaction kinetics
requires the knowledge of precise kinetic equations which could be a major obstacle for
developing reaction kinetics-based models in retrosynthesis. In conclusion, the proposed
framework provides a new solution for a rational retrosynthesis by utilizing reaction
thermodynamics.
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Abstract

For many industries addressing varied customer needs means producing a family of prod-
ucts that satisfy a range of design requirements. Manufacturers seek to design this family
of products while exploiting opportunities for shared components to reduce manufactur-
ing cost and complexity. We present a mixed-integer programming formulation that deter-
mines the optimal design for each product, the number and design of shared components,
and the allocation of those shared components across the products in the family. This for-
mulation and workflow for product family design has created significant business impact
on the industrial design of product families for large-scale commercial HVAC chillers in
Carrier Global Corporation. We demonstrate the approach on an open case study based on
a transcritical CO refrigeration cycle. This case study and our industrial experience show
that the formulation is computationally tractable and can significantly reduce engineering
time by replacing the manual design process with an automated approach.

Keywords: product family design, discrete optimization, product manufacturing

1. Introduction

For many industries, addressing global markets and varied customer needs means pro-
ducing a family of products that are able to satisfy a range of design requirements. For
example, commercial chiller systems for HVAC sold in different regions of the world are
subject to different operating and boundary conditions, customer cost and performance
expectations, and efficiency regulations. This requires the design and manufacturing of a
family of products to meet requirements of different geographical regions and customer
needs. Optimizing each of the products independently results in significantly increased
manufacturing cost and complexity since each design will include unique sizing for all of
the sub-components, ignoring the potential for sharing these components across multiple
products within the family. Therefore, manufacturers seek to design the entire family of
products simultaneously, determining the optimal design for each product, the designs of
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common components, and the assignment of these components to each of the products
in the family. This is a highly-combinatorial problem, that is typically performed with
heuristics and ad-hoc approaches, takes significant engineering time, and results in sub-
optimal designs. Many industries need effective design of product families that can exploit
shared components, and this is an active area of research in manufacturing where various
heuristics and optimization strategies have been applied (Simpson et al. 2014). Some ex-
amples of optimization-based approaches have focused on definition and optimization of
a commonality index or degree of commonality (Thonemann & Brandeau 2000) and ap-
plication of genetic algorithms (Liu et al. 2011). Integer programming techniques have
also been used in, for example, the integration of the supply chain with the product family
design (Baud-Lavigne et al. 2016). These concepts have applicability to chemical process
design. In particular, for decentralized applications where many instances of similar pro-
cesses with different performance specifications are required, the benefits of well-designed
product families allow for significant reduction in engineering and construction costs.

In this paper, we present an mixed-integer programming formulation for product family de-
sign with common sub-components developed in collaboration with researchers at Carrier
Global Corporation. Instead of manufacturing uniquely specified (e.g., sized) components
for each product, we seek to manufacture a small number of component designs and share
these across multiple products. The formulation determines the cost optimal designs for
each of the products, the optimal sizing for the shared components, and the allocation of
these components for each of the products. This formulation and workflow for product
family design has created significant business impact on the industrial design of prod-
uct families for large-scale commercial HVAC chillers in Carrier Global Corporation. In
one application, the product family design workflow selected common compressors for a
global family of over 200 products, leading to significant direct cost savings (material and
labor), indirect cost savings (prototype design, build, and test), and an order of magnitude
reduction in R&D time associated with this task. This process is being used and extended
within Carrier across several product lines.

We demonstrate the product family design formulation on an open case study considering
a family of HVAC products based on a CO refrigeration cycle described in Li & Groll
(2005). The model for the system is built using the IDAES process modeling platform (Lee
et al. 2021) and the product family design problem is implemented in Pyomo (Bynum et al.
2021). The approach is shown to be computationally tractable for real-world systems,
with significantly reduced engineering time, replacing the manual design process with an
automated, optimization-based approach.

2. Product Family Design Formulation

We assume that the set of products P and their performance requirements have already
been specified (e.g., from market analysis). Product requirements may be captured as
boundary conditions that must be matched exactly or as inequalities that provide bounds
on the product performance. The set of components where there is opportunity for utilizing
shared designs across multiple products is given by C, and the set of candidate designs for
each component c is given by S.. Our goal is to optimally design all of the products p € P
while reducing the overall manufacturing costs by utilizing a (hopefully small) subset of
the candidate component designs in these products.
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For each product p we consider a set of design alternatives. For each alternative, we
specify which candidate component designs are to be utilized in the product. For the initial
set of design alternatives, we typically consider all combinations of candidate designs for
each of the components (i.e., the Cartesian product of all S, for all ¢ € C). Then, for
each of these alternatives, we can perform simulations (or optimizations) and identify the
alternatives that meet the required performance specifications. We define this set of all
feasible alternatives for product p as A,. The set ), is a tuple set that captures the specific
candidate component designs used within each alternative a.

The proposed formulation for optimal design of product families with common compo-
nents is shown in Equations (1-6). The binary variables z.; identify which candidate
designs s are selected for each component ¢, and x,, captures which alternative is se-
lected for product p. Equation (1) is the objective function, and the first term captures the
expected cost associated with the family design where w,, is the expected sales (or sales
fraction) for each product, and «,, is the annualized cost if alternative a is selected for
product p. The second term captures the cost required to develop the manufacturing pro-
cess for each unique component selected. In many industrial examples, the cost of this
manufacturing complexity is difficult to capture, and we can also constrain the number of
candidate component designs selected with Equation (2).

Iglgl Z Wy Z ApaLpa + Z Z ﬁcszcs (1)

pEP €A, c€C s€S,
S.t
D>z <N, VeeC )
sES.
Z Tpe =1 VpeP ©)]
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Tpa < Zes VpePac A (cs) €Qq 4)
0<zy, <1 Vpe PacA, (®)]
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Equation (3) ensures that only one alternative is selected for each product, and Equation (4)
allows alternative a for product p only if the required components have been selected.

3. Process Case Study

For our case study, we consider the design of a family of products for commercial HVAC
applications based on the transcritical CO5 refrigeration cycle described in Li & Groll
(2005). The process flow diagram is shown in Figure 1. We developed an IDAES model
for this process using the standard unit model library with the exception of the ejector
which required a custom model. The compressor model includes an efficiency curve to
capture the drop in efficiency when it is operating away from the design flowrate. IDAES
also includes a costing framework that was used to capture the equipment capital costs.

We consider two performance criteria when specifying the products P. The cooling ca-
pacity is the primary criterion determining the size of the components in the refrigeration
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Figure 1: Process flowsheet for CO2 refrigeration cycle. This model was based on Li &
Groll (2005)

cycle and can vary significantly based on customer needs. The outside air temperature
varies significantly by region, and different units are designed for different conditions.

Here, we consider capacities of CAP={80, 100, 120, 140, 160, 180, 200} tons of refrig-
eration and outside air temperature specifications of OAT={28, 29, 30, 31, 32, 33, 34, 35}
degrees Celsius. With these specifications, we have a total of 56 different products to
consider, identified as the Cartesian product of all values in CAP and OAT.

The opportunities we consider for shared components across the products include the evap-
orator, the condenser, and the compressor, defining C={Evap, Cond, Compr}. We con-
sider five sizes of evaporator labeled A through E in order of increasing size, seven sizes of
condenser labeled A through G in order of increasing size, and four sizes for the compres-
sor, labeled A through D, also in order of increasing size. This gives us a total of 140 alter-
natives to consider for each product defined by the Cartesian product of the different candi-
date components specified as, SEvap = {A,B,C,D,E}, Scong = {A,B,C,D,E,F, G},
and SCornpr = {A,B,C,D}.

We performed simulations for each of these alternatives across all the products (with CAP
and OAT specified as boundary conditions) for a total of 7840 simulations. Of these,
3708 were infeasible and not able to meet the desired performance specifications. The
feasible alternatives were used to define the remaining data required in the optimization
formulation along with recorded capital and operating costs from the IDAES model.

The product family design problem (1-6) was formulated in Pyomo (Bynum et al. 2021)
and solved using Gurobi (Gurobi Optimization, LLC 2021). We set the maximum num-
ber of candidate components to 2 for each of the evaporator, condenser, and compressor.
Gurobi was able to solve this problem in under one second. Results showing the optimal
designs are illustrated in Figure 2. The figure on the left shows the solution consider-
ing capital cost only (materials and construction). In this case, the optimization selected
evaporators C and D, condensers A and B, and compressors A and B for manufacturing.
The colors on the figure show unique designs, and the legend on the right indicates which
selected components were matched with each design. The optimization selected a larger



Optimization-based Design of Product Families with Common Components 95
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Figure 2: Optimal design of the product family with capital costs only on the left and
capital plus operating costs on the right.

compressor when moving from 120 to 140 tons of capacity, and a larger evaporator when
moving from 160 to 180 tons. As well, we see a change to a larger condenser for the higher
outside air temperatures at the largest capacity. In this case, since we considered capital
costs only, the optimization has selected the smallest compressors that are able to guaran-
tee feasibility across the products. However, for most of these products, these compressors
are operating off of their design flowrates and not achieving peak efficiency.

The figure on the right shows the optimal product family design considering both capital
and operating costs. Here, we notice that the optimization did not select the smallest
compressors, but has selected larger compressors so that they are operating closer to their
design flowrate for improved operating efficiency.

4. Conclusion

In this paper, we have presented a formulation for optimal product family design. This
formulation determines optimal designs across a set of products from a number of defined
alternatives while reducing manufacturing costs by exploiting the opportunity for shared
components across multiple products. This approach has been used industrially at Carrier
Global Corporation with significant reduction in both costs and engineering time. The
approach is also easily extended to support optimization of non-shared components by re-
placing the simulations with optimization problems for each of the alternatives considered.

This formulation can be efficiently solved for large data sets with commercial mixed-
integer linear programming solvers. The computational bottleneck is the large number of
simulations or optimizations that are required to gather the input data. It can be beneficial
to use engineering knowledge to reduce the set of alternatives, and consequently, the total
number of simulations that need to be performed.

It is important to note that there are a number of chemical process applications that can
benefit from distributed operation of smaller, intensified, modular processes (Baldea et al.
2017). Any application that requires a large number of similar processes with variation
in specific process requirements is an excellent candidate for the approaches outlined in
this paper. This includes, for example, applications in water treatment, carbon capture
from smaller localized sources, direct air capture, and other environmental processes. The
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concepts of product family design can be utilized to shift from one-off unique designs for
each application to the definition of a suite of products that span the design space while
reducing manufacturing costs with shared components.
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Abstract

Techno-economic analysis (TEA) was performed for the production of electricity or
nano-porous silica (NPS) from 50 t/d of rice husk (RH). The process for electricity
generation from RH had a net electricity efficiency of 15%. Using the same amount of
RH (approximately 2 t/h), 278 kg/h of NPS was produced. The electricity production
process was not profitable because of negative return on investment (ROI). In the case of
producing NPS from RH, the total investment cost (TCI) and total production cost (TPC)
were 13.7 M$ and 1.5 M$/y, respectively. The ROI and payback period (PBP) were
predicted to be 3.7%/y and 17.5 y, respectively.

Keywords: Rice husk; Rice husk ash (RHA); Nano-porous silica (NPS); Electricity
production; Techno-economic analysis (TEA)

1. Introduction

About 782 million tonnes of paddy rice were produced in the world in 2020. Asia
accounts for 90% (705 million tonnes) of global production (FAO, 2020). During the
milling process of paddy rice, rice husk is produced as an agricultural by-product
(Peerapong and Limmeechokchai, 2009). 1,000 kg of paddy rice produces 220 kg of rice
husk (Mor et al., 2017). 1,000 kg of rice husk (RH) produces 480~1,000 kW. of electricity
(Steven et al., 2021). Along with electricity generation, about 18~20 % of rice husk
remains ash (Subbukrishna et al., 2007). The ash is mainly composed of silica (>90%)
(Liu et al., 2011; Nayak et al., 2019). Silica with the purity of 95 wt% is used in industrial
fields such as reinforced rubber additives (tire), materials (zeolite and polymer), concrete,
and semi-conductor (Prasara-A and Gheewala, 2017; Steven et al., 2021). In general,
Silica is produced from sand and sodium carbonate at 1400-1500 °C (Munasir and
Triwikantoro, 2013). Sodium silicate (SS) is produced from RH ash burned at 650~850 °C
(Kim and Kim, 2020). The nano-porous silica (NPS) is finally synthesized from a
polymerization of SS in H>SO4 solution (Pode, 2016). Therefore, eco-friendly electricity
and nano-porous silica (NPS) can be produced using rice husk, which is considered as a
carbon-neutral biomass (Bergqvist et al., 2008; Pode, 2016).

In this study, two process flow diagrams (PFDs) were constructed for electricity and
nano-porous silica (NPS) productions from rice husk using a commercial process
simulator (ASPEN Plus, ASPEN Tech, USA). Based on the PFDs, the economic
feasibility of the electricity and NPS production processes was compared using an equal
amount of rice husk.
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2. Process description

The rice husk (RH) used in this study is a by-product of paddy rice produced in Vietnam.
Table 1 shows the proximate and ultimate analyses of RH containing 41.0 wt% carbon,
5.5 wt% hydrogen, 34.9 wt% oxygen, 0.7 wt% nitrogen, 0.1 wt% sulfur, and 17.8 wt%
ash. The ash includes 94.20 wt% SiO,, 0.75 wt% P,0s, 2.88 wt% K,0, 0.97 wt% CaO,
and 1.20 wt% others.

Table 1. Proximate and ultimate analyses of rice husk (RH) in this study.

Proximate analysis Ultimate analysis Ash
(Wt%) (wt%, dry basis)
Moisture 10.00 C 41.0 SiO, 94.20
Volatile matter 68.30 H 5.5 P05 0.75
Fixed carbon 13.68 o 349 K,O 2.88
Ash 16.02 N 0.7 CaO 0.97
S 0.1 others 1.20
Ash 17.8
Total 100.00 100.0 100.00
HHV (MJ/kg) 14.80

To compare the economic values of the electricity or NPS production process, the same
amount of RH (50 t/d) was used as a raw material. Two processes using RH were
considered: Case 1 (electricity), and Case 2 (NPS).

Case 1 is the electricity production power plant from RH, as shown in Figure 1. The RH
is burned with 50% excess air at 750 °C (see Eq. (1)).

Rice husk + 0, —» H,0 + CO, + SiO, + others €8

The steam turbine generates electricity at 400 °C and 25 bar using the heat of combustion.
The cyclone to remove fly-ash, bag-filter and bird blue scrubber to remove fine dust were
used.

In Case 2, the NPS is produced using RHA (see Figure 2). RHA reacts with sodium
carbonate to produce sodium silica (SS) in the hydrothermal synthesis reactor as shown
in Eq. (2).

Na,C0; + Si0, — Na,0 -3.4Si0, + CO, 2)

The activated carbon (AC), which is an unconverted carbon, is separated in the
ultrafiltration. SS reacts with sulfuric acid to produce NPS (see Eq. (3)). Finally, NPS
containing 6% moisture is produced through filtering and drying.

Na,0 - 3.45i0, + H,S0, — Na,S0, + Si0, + H,0 3)
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3. Methodology of techno-economic analysis

99

The techno-economic analysis (TEA) is a method for determining the economic
feasibility of a process (Do et al., 2014; Lim et al., 2016). The TEA used in this study
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investigates the technical feasibility of the process by calculating mass and energy
balance using thermodynamic models and equations of state. In addition, the economic
values such as the total investment cost (TCI), total production cost (TPC), return on
investment (ROI), and payback period (PBP) are examined in the TEA (Kim and Lim,
2021; Kim et al., 2021).

Table 2 shows the assumptions used in economic evaluation. The prices of raw electricity
and cooling water are the same as Vu et al. (Vu et al., 2020). For the raw material price,
the 2019 market price was applied. The prices of RH, AC and NPS were assumed to be
10, 1,000, and 1,500 $/t, respectively.

Table 2. Economic assumptions for electricity or NPS plants from rice husk.

Parameter Assumption Unit
Debt ratio (1) 0.7
Plant availability 8000 hfy
Startup time (50% plant performance) 4 month
Plant lifetime (L,) 20 y
Inflation rate (a) 2 %ly
Corporation tax rate (f) 20 %ly
Interest rate (y) 6 %ly
Raw material and Rice husk 10 $/t
product price Na,CO; 200 $/t
H>SOq4 143 $/t
Activated carbon 1,000 $/t
Nano-porous silica 1,500 $/t
Utility price Electricity 0.098 $/kWh
Liquefied natural gas 0.5 $/kg
Cooling water 0.273  $/m?
4. Results

The performance and economic feasibility of the electricity or NPS production process
from RH were compared.

4.1. Process performance

The process simulation was performed for the two processes to produce electricity and
NPS, respectively. Table 3 shows the process performance for the two processes. In Case
1, electricity was 1,343 kW, from 2,083 kg/h (50 t/d) rice husk. The 90 kW. was
consumed for steam turbine, flue gas treatment, and air compression. The net electricity
was 1,254 kW., which was a net electricity efficiency of 15% . Case 2 produced 278 kg/hr
NPS and 40 kg/hr AC with the same amount of rice husk as Case 1. An electricity of 90.5
kW, was consumed in NPS production.
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Table 3. Process performance for electricity or NPS plants from rice husk.

Case 1 Case 2 Unit

Feed (Rice husk) flow rate 2,083.3 2,083.3 kgh
Product

Nano-porous silica - 278.1 kg/h

Activated carbon - 39.5 kg/h

Electricity 1,343.2 - kW,
Electricity consumption 88.9 90.5 kW,
Net electricity 1,254.3 - kW,
Net electricity efficiency 14.9 - %

4.2. Economic values (TCI, TPC, POI, and PBP)

Table 4 shows the economic values of the processes for electricity or NPS production
from rice husk. The TCI for electricity generation (Case 1) including combustion, flue
gas treatment, and steam turbines was 13,447 k$. In Case 2 including hydrothermal
synthesis reactor, filter, and dryer for NPS production, TCI was 13,705 k$. The TPCs of
Case 1 and Case 2 were 998 and 1,476 k$/y.

Case 1 was not economically feasible because of negative ROIL. The ROI and PBP of Case
2 were 3.7 %/y and 17.5 y, respectively.

Table 4. Economic values for electricity or NPS plants from rice husk.

Economic values Case 1 Case 2 Unit
Total capital investment (TCI) 13,446.9 13,705.1 k$
Total production cost (TPC) 997.9 1,476.1 k$/y
Return on investment (ROI) - 3.7 %ly
Payback period (PBP) - 175 vy

5. Conclusions

The agricultural by-products are produced from crop production, and an eco-friendly
process is required to treat the by-products. In this study, the economic feasibility of
electricity or NPS production process was compared using the same amount of rice husk
(50 t/d). The electricity production plant included a combustor and steam turbine. The
NPS plant included a combustor, reactor, filter, and dryer. An electricity of 1,254 kW,
were produced with a net electrical efficiency of 14.9%. The 278 kg/h NPS was produced
using the same amount of RH. The TCI and TPC of the electricity production plant
werel3,447 k$ and 998 k$/y, respectively, which was not profitable. Those of the NPS
production plant werel13,705 k$ and 1,476 k$/y, respectively. The ROI was 3.7%/y,
which may be attractive as a carbon-neutral technology.
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Abstract

In this work, we present a process systems engineering framework that allows the
integration of catalysis, process synthesis, and fuel property modelling enabling the
systematic design of fuels with tailored properties and the biorefineries able to produce
them. Methodologically, the proposed framework relies on a superstructure-based
formulation in which three hierarchical decisions are made: what chemical products will
undergo chemical transformations? what chemistries will be used to transform these
chemical products? and which specific catalyst and processes will be used? This
optimization framework is coupled with a fuel property model such that the decisions
made at the process synthesis level are constrained by the desired fuel properties. We
apply this framework to the problem of ethanol upgrading with an emphasis on three
specific problems: First, we show how we can design biorefineries for the production of
fuels (gasoline, diesel, or jet fuel) with specific properties. Second, we study the
interplay between fuel properties and profit, and we show how the constraints imposed
on the fuel properties impact both the optimal biorefinery designed and its economics.
Finally, we show how the studied framework can be used to find the optimal biorefinery
associated with a specific chemistry or catalyst. The results presented constitute the first
systematic and comprehensive study of ethanol upgrading in which the simultaneous
process and product design are considered.

Keywords: Biorefineries; superstructure; process synthesis; biofuels; product design.

1. Introduction

In the last twenty years, ethanol has been established as the dominant biofuel. However,
ethanol has significant limitations: first, it can only be blended at a maximum 10% level
with gasoline; and second, it is a poor replacement for middle distillates (Eagan et al.,
2019a). These limitations are becoming increasingly problematic. At the same time, it is
likely that in the near future there will be a surplus of ethanol, provided that the demand
for blending at 10% is satisfied, and the consumption of gasoline will decrease as
electric and fuel cell vehicles penetrate the market (Eagan et al., 2019a, 2019b; Fasahati
and Maravelias, 2018). These challenges have prompted the search for technologies
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enabling the chemical transformation of ethanol into more fungible components. With
this goal in mind numerous chemistries, catalysts, and processes have been developed
(Eagan et al., 2019a; Sun and Wang, 2014). At first, research was focused on designing
ethanol upgrading strategies yielding fuel products with properties similar to those of
currently used fossil fuels. In recent years, however, we have come to realize that this
vision is short-sighted (Konig et al., 2020). The diversity of chemistries associated with
ethanol, which is known for been a platform chemical, can be exploited to design fuel
products with properties not only equal but better than currently used fossil fuels. The
realization of this vision requires the integration of such diverse areas as catalysis,
process synthesis, and fuel property modelling (Restrepo-Florez and Maravelias, 2021).

In this work we develop a superstructure-based framework for the automated design of
biorefineries for ethanol upgrading. This framework is conceived such that we can
simultaneously consider the design of processes (biorefineries) and fuels. Thus,
enabling the design of biofuels with tailored properties. We apply this framework three
problems (1) the identification of the optimal refinery to produce gasoline, diesel, and
jet fuel (2) the characterization of the relation between fuel properties and profit, and (3)
the identification of the optimal technology associated with a specific chemistry.

2. Superstructure description

An upgrading strategy can be defined as a sequence of chemical transformations leading
to the production of products with desired properties. There are at least three decisions
associated with the design of an upgrading strategy (1) which molecules will undergo
transformation (2) which chemistries will be used to transform these molecules, and (3)
which processes (reaction-separation system) will be used such that these chemical
transformations can be accomplished. To represent this sequence of nested decisions we
propose a hierarchical superstructure (Figure 1) containing three levels, each of which is
associated with one of the aforementioned decisions (1) technology group, (2)
technology and (3) module.

(a)

Technology (b)

Fiodule R}—

Technology group (c)
Technology 1
—[Module 1.1
——i—»
—[Module 1.N]
Technology 2
|—[Module 2.1]
—[Module 2.2]

p—[Fodule Z.N—
Technc;logy M

l—[Module M.1
|—-|i—-— Module M.2

M—[Module M.N

Technology| Module

Technology group
A

Figure 1. Superstructure architecture proposed and the three decision levels represented
(a) Module (b) Technology (c) Technology group
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Figure 2. Ethanol upgrading superstructure containing the chemistries that can be used
as well as feedstocks and final products. D: Diesel, JF: Jet fuel, G: Gasoline, E:
Electricity, W: Waste.

In the case of ethanol, we use the architecture inf Figure 1 to build a comprehensive
superstructure capturing the multiple chemistries available for ethanol upgrading
(Figure 2). This superstructure is designed to consider three ethanol sources with
different purity (50%, 93%, and 99.9%), and five products: gasoline, jet fuel, diesel,
electricity, and waste. The superstructure is comprehensive because (1) it contains a
representative set of the chemical reactions available for ethanol upgrading, and (2) it is
richly connected, allowing to capture all feasible sequences of upgrading steps.

3. Mathematical model

The problem of finding the optimal sequence of upgrading steps to produce a given fuel
can be represented as a mixed inter non-linear program (MINLP) model. The simplified
mathematical representation is shown in Eq. (1). To write the model, we define three
types of binary variables to account for the discrete decisions made at each of the
superstructure levels (1) Y76 (vi € 179) (2) Y;T (Vi € IT) and (3) YM (Vi € IM), where
I17C is the set of technology groups considered, IT the set of technologies, and IM the set
of modules. The equations in the mathematical model can be grouped in (1) Process
equations, used to model the selection of technology groups, technologies, and catalyst;
represent mass balances for the different superstructure units; calculate capital and
operating costs associated with the selected units; and enforce the superstructure
connectivity (2) A fuel property model, used to estimate the values of the most relevant
fuel properties.

Max(Profit) (@Y)
. {Process equations
St 1 Fuel property model

The fuel property model consists of: Linear blending rules used to estimate the value of
viscosity (v), density (p), cetane number (CN), and octane number (RON) as a function
of the fuel composition; a model of the distillation profile constructed based on the true
boiling point approximation, according to which the components of a blend boil
sequentially based on their boiling points; and a set of constraints limiting the amount of
certain components (olefins, aromatics, and ethanol) in the final fuel blend.



106 J.M. Restrepo-Florez et al.

4. Results

Optimal refineries to produce gasoline, jet fuel and diesel

The framework that we developed can be used to find the optimal sequence of
upgrading operations required to produce a fuel with similar properties to gasoline, jet
fuel, or diesel. We show these results by means of a Sankey diagram in Figure 3 (a-c).
Additionally, we show the breakdown of capital and operating costs for each of these
refineries in Figure 3(d-f). The simplest refinery also yielding the higher economic
benefit is the one used to produce gasoline (Figure 3(a)). In this case, a Guerbet
coupling module, followed by a hexanol dehydration module is enough to produce a
blend satisfying the imposed constraints. In the case of jet fuel, the optimal biorefinery
consists of an ethanol Guerbet coupling module followed by a butanol dehydration
module and a sequence of oligomerization reactions. Additionally, the refinery also
contains a small etherification module, and a hydrogenation module aimed at reducing
the olefin content in the final fuel. Finally, in the case of diesel, the optimal biorefinery
consists of a Guerbet coupling module, followed by a butanol dehydration module and a
sequence of oligomerizations. This biorefinery also contains a hydrogenation unit. We
note that in all cases the most important economic driver is the cost of the feedstock.
This implies that to improve the biorefinery economics it is important to find strategies
to reduce the cost of ethanol, or alternatively to increase the biorefinery’s yield.
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The role of complexity

In Figure 4, we show the relation that exist between the biorefinery complexity,
measured as the number of modules, and the profit and fuel composition in a diesel
production biorefinery. Increasing complexity leads to a higher profit, but at the same
time increases the operational challenges of the system. Understanding this relation is
fundamental in the design stage of upgrading refineries.

(a)® | / (b)

100 4

~

o
oo
(=]

[

o
@
(=]

Profit (SMM/year)
& g
Mol fraction (%)
s
(=]

w

o
n
(=]

3 4 5 6 7 T 4 5 7
Maximum number of modules Maximum number of modules

Figure 4. Effect of complexity on (a) profit and (b) fuel composition
The role of properties on the biorefinery economics

The production of high-quality fuels from ethanol is an exciting opportunity that opens
the door to a new paradigm in biofuel research. In Figure 5, we study the role of fuel
properties on the biorefinery economics (Figure 5(a)) and fuel composition (Figure
5(b)). Particularly, we study the effect cetane number on a diesel production biorefinery.
Cetane number (CN) has been identified as a key property to mitigate NOx emissions.
Having a biofuel with high CN can serve two purposes: first, such a fuel burns cleaner;
second, it can be used in blends with fossil diesel to raise the overall quality of the fuel.
From Figure 5(a), we see that producing fuels with higher CN impacts the refinery
economics, the higher the CN the lower the profit. In terms of fuel composition (Figure
5(b)), we note that as the CN increases so does the fraction of ethers (known for having
a high CN) in the fuel. It is important to highlight that finding strategies to produce
these fuels while simultaneously considering their properties was only possible because
we used a framework able to capture the complexity of the problem.
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Figure 5. Effect of cetane number on (a) process economics and (b) fuel composition.
Components are labelled using a character to identity of the functional group (P:
paraffin, O: olefin, E: ether, A: alcohol), and a number to denote the number of carbons
in the molecule.
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Identification of optimal technologies

Another capability of the developed framework consists in providing insights as to the
optimal strategy that can be used to produce a specific fuel by using a specific
chemistry. For example, in Figure 6, we show the optimal biorefinery for diesel
production obtained when we force the system to use ethanol dehydration. The strategy
selected consist in dehydrating ethanol to ethylene, and then use a sequence of
oligomerization reactions to increase the molecular weight. A final hydrogenation unit
to reduce the olefin content is also employed. This kind of approach is useful to
researchers working in the development of a specific chemistry to identify how their
work fits into a broader context.

(a)

Figure 6. Sankey diagram showing the optimal refinery compatible with ethanol
dehydration to produce diesel fuel

4. Conclusions

In this work, we developed a superstructure optimization approach to study the problem
of ethanol upgrading toward fuels with tailored properties. We showed optimal ethanol
upgrading strategies for the production of gasoline, jet fuel, and diesel. The most
important cost driver in all cases was the cost of feedstock. We studied the relation
between profit and biorefinery complexity and showed that increasing complexity may
lead to improvements in the process economics. Additionally, we explored the relation
between fuel properties and profit in the context of a diesel production biorefinery. We
proved that it is possible to upgrade ethanol toward diesel fuel with high cetane number,
with a superior quality than its fossil counterpart. This contrasts with typical approaches
for biofuel production, focused on finding fuels with the same quality than fossil fuels.
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Abstract

This work presents a superstructure model with the objective to maximize the total
profit of biodiesel production by reducing the production cost and increasing the value
of the by-product glycerol. The heat integration of the superstructure model is a novel
feature which allows further reduction of utility costs and energy consumption of the
biodiesel separation. The superstructure model is used to optimize two biodiesel
production scenarios from a conventional continuous stirred tank reactor (CSTR) and a
membrane reactor (MR). The superstructure optimization is solved with Advanced
Interactive Multidimensional Modeling System (AIMMS) software. The annual profit
of the new optimized production pathway for the conventional reactor is 840,606 $. The
biodiesel production pathway with the membrane reactor consumed 70% less energy
than the conventional reactor. However, the production cost of the MR is nearly two
times higher than the CSTR due to the low biodiesel yield of the membrane reactor. The
results show the potential to improve traditional biodiesel production and make
intensified production methods more viable with the superstructure optimization.

Keywords: Biodiesel, Superstructure, Optimization, AIMMS, Process, Design.

1. Introduction

Biodiesel is a biofuel which is mainly obtained from chemical reactions between
vegetable oil or animal fat with alcohol in the presence of a catalyst (Knothe et al.,
2010). Biodiesel has become a potential solution for reducing greenhouse gas (GHG)
because it has a lower net carbon dioxide (CO,) emission than fossil fuels. CO; released
from biodiesel engines is absorbed by plants which will be the feedstock for biofuel
production making this a circular process (Hanaki and Portugal-Pereira, 2018).
However, biodiesel is more expensive than fossil fuels, which poses a significant
challenge for integrating the biofuel into GHG reduction strategies.

The cost of biodiesel can be reduced by optimizing its production which consists of
reaction and purification processes. Intensified reactor designs which combine reaction
and separation into one operation unit have been developed to improve biodiesel
conversion and purity. A membrane reactor is a process intensification option which
integrates a membrane separation into a cross-flow reactor to produce higher quality
biodiesel than conventional reactors (Cao et al., 2008). Besides the reaction, the
purification process plays an important role in biodiesel production as it accounts for
60-80% of the total production cost (Atadashi et al., 2011). Therefore, the optimization
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of a biodiesel purification process has become an important research topic. For example,
several biodiesel purification scenarios have been simulated and analysed to identify the
optimal biodiesel production process from soybean oil (Myint and El-Halwagi, 2009).

To design an optimal biodiesel production process, two methods are commonly used:
the heuristic approach and the superstructure-based approach. The heuristic approach is
based on rules derived from experience and understanding of unit operations while the
superstructure approach is based on optimization algorithms and mathematical models
to identify the optimal process from all possible alternatives (Tula et al., 2017).
However, a disadvantage of the heuristic approach is that the interaction between
different process stages and levels of detail are difficult to capture. The superstructure
approach solves design problems simultaneously as a mathematical programming
problem and therefore does not have this disadvantage (Mencarelli et al., 2020).

Superstructure optimization has become more popular in recent researches of
biochemical process design. AlNouss et al. (2019) used superstructure optimization to
develop an economic and environmentally friendly gasification process, which produces
fuels, fertilizers, and power from multiple biomass sources. Galanopoulos et al. (2019)
developed a superstructure framework for optimizing the design of an integrated algae
biorefinery which can reduce the cost of biodiesel production up to 80%. However,
superstructures for biodiesel production are usually generalized with a minimum
numbers of operating units and a simplified glycerol purification process.

Therefore, this work proposes a superstructure model for biodiesel production that
includes a wide range of operating units, a detailed glycerol purification section and
heat integration functions. The model is used to optimize two biodiesel production
processes from: a) continuous stirred tank reactor and b) membrane reactor. The results
are compared with a conventional biodiesel production process (Zhang et al., 2003a,b).

2. Superstructure development
2.1. Problem statement

Given are the composition of feedstock and products from the transesterification reactor
and options of processing equipment which are grouped into tasks and stages, and the
technical and economic specifications of processing options. Under conditions that: 1)
The possible processing routes are represented by logical constraints where each
processing option is associated with a logical decision variable. 2) The flow rates in and
out of an option complies with mass balance constraints. 3) The energy requirements are
calculated based on the flowrates. 4) A heat integration function which is capable of
matching hot and cold streams is integrated for further reduction of heating and cooling
requirements. 5) The investment and operating costs are calculated according to
according to the flowrates and energy requirement. The superstructure optimization
problem decides the optimal biodiesel processing route while complying with logical,
mass and energy constraints, and ASTM standards of biodiesel product (Zhang et al.,
2003a), while maximizing the total profit of the biodiesel refinery.

2.2. Superstructure topology

The superstructure of the biodiesel purification section has 28 technical options which
are relating to 28 binary decision variables and grouped into different tasks including
phase separation, methanol removal, neutralization, washing and purification. By
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grouping similar options into tasks, the superstructure can be defined easier. The
possible processing routes which are combinations of different options over 5
consecutive stages are presented in Figure 1. The input stream of the superstructure is
the product stream of the transesterification reactor which converts vegetable oil into
biodiesel. The main output is the biodiesel stream with purity of 99.65% according to
ASTM standards. The glycerol output of phase separation tasks becomes the input of
glycerol treatment superstructure.

In Figure 2, the glycerol superstructure is useful in deciding the numbers of treatment
stages depending on the initial purity of glycerol input and the final grade of glycerol
output. The final glycerol grades are waste glycerol (~ 50% - 85% wt. glycerol), crude
glycerol (~85% - 98%) and technical glycerol (~98% - 99.5%) (Bart et al., 2010).

2.3. Mathematical model

The mathematical model includes mass balances of component k in each option j as
shown in Eq.(1) and Eq.(2).

miy =mfy - SFiy -y )
mfl =mfy - (1= SF) - y; (2)

where m®;x, m’; and m"”; are mass flow rates of feed (kg/h), product and waste streams
of component £ in and out option j, respectively. SFj is the split factor which indicates
how much of component k going to product stream from the feed stream. y; is the binary
decision variable which is 1 if the option is selected and 0 if the option is not selected.
The product stream of an option will be the feed stream of the next option on the same
process route. The equipment cost (USD) of a technical option, EC;, is presented in
Eq.(3) (Seider et al., 2016).

mF

E
_ Ref,year j | [CE*020\
56, = 56/ (k) - (E5) ®

where ECRe/vear, mFRef and CE’**" are the reference cost of the equipment, the reference
capacity and the Chemical Engineering Index of the reference year, respectively. The
total capital investment (7C/) is shown in Eq.(4) (Seider et al., 2016).

TCI = 1.05 - f, r¢; - 2;(EC;) 4)

where 1.05 is the delivery cost of equipment to the plant location and f;, r¢; is the Lang
factor with value of 5.93 (Seider et al., 2016). The total annualized capital investment
(TACI) is calculated with interest rate (/R) (0.1) and total project lifetime (L7) (20
years) as shown in Eq.(5).

IR-(IR+1)LT
(R+1)LT—1

TACI = TCI - 5)

The objective function is to maximize the total annualized profit (74P) as follows.

max TAP = BDS + GLS — TACI — TAOP (6)
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where the total annual operating costs (TAOP), the annual biodiesel sales (BDS) and
glycerol sales (GLS) are defined from the mass flow rate of the superstructure.

Heat integration of the superstructure optimization model is a function based on Pinch
Technology to minimize the heating and cooling requirements of the biodiesel
production. First, a series of heat intervals defined from the temperature differences of
the product streams which are designated as hot streams or cold streams depending on
their heating or cooling requirements. Second, the function selects hot and cold streams
based on the decision variable in each product stream. Third, the hot and cold streams
are matched with each other according to their temperature to calculate the total heat
load of heat intervals and set up the heat cascade. Finally, the minimum hot and cold
utility requirements can be predicted by balancing the negative heat interval of the
infeasible heat cascade. To reduce the complexity of the model, the heat exchanger
network and investment costs are not considered in the heat integration function.

The mathematical model is implemented in the software AIMMS, version 4.82.3.29 64-
bit. The AIMMS solver is the Outer Approximation Algorithm, which is an algorithm
using CPLEX 20.1 as MIP solver and CONOPT 4.1 as NLP solver. The model includes
1,602 constraints and 1,629 variables with 43 binary variables. The optimization
problem is solved in an average of 1.83 s with a CPU Intel(R) Core(TM) i5-8265U CPU
@ 1.80 GHz and 8.00 RAM.

3. Results and discussion

The superstructure model is applied for two base cases of biodiesel produced from
CSTR and MR. The feedstock is rapeseed oil, infeed flowrate 1000 kg/h. The costs are
calculated based on the price of biodiesel, feedstock, chemical and equipment in 2020.
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Figure 1: Superstructure of biodiesel purification from the transesterification of
vegetable oil. The optimal processing route is the arrow line.

For the case of biodiesel produced in a CSTR, the optimal processing route is presented
by the arrow line in Figure 1 and 2. The separation of methanol and glycerol at the first
and second stages increases methanol recycle and reduces downstream equipment costs.
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The third stage is neutralization of the base catalyst with H,SOj, then dry washing the
product stream with magnesol. Finally, water, methanol and unreacted oil are removed
from the biodiesel stream with vacuum flash evaporators to achieve the purity standard.
The glycerol stream from second stage goes through neutralization and decanter to
increase the glycerol content to 95%. The glycerol is sold as crude glycerol.

ghvcerol sales |

Technical
glveerol sales
43

Figure 2: Superstructure of treatment routes for the glycerol separated from biodiesel
production process. The arrows show the optimized glycerol processing route.

Options 1, 10, 22 and 36 are centrifuges; 2, 11 and 37 are decanters; 3, 8 and 31 are
flash evaporators; 4, 9, 27, 32, 40 and 42 are vacuum distillation columns; 5, 12, 18 and
33 are neutralization with H3POy; 6, 13, 19 and 34 are neutralization with H,SOu; 7, 14,
20 and 35 are neutralization with HCI; 15, 21 are 23 are water washing; 16 and 24 are
dry washing with magnesol; 17 and 25 are dry washing with ion exchange resins; 26,
27, 39 and 41 are vacuum flash evaporators. Option 30 is treatment of waste glycerol
with counting as expense of the process. Options 29, 38 and 43 are selling biodiesel,
crude and technical glycerol, respectively.

The total annualized profit of the optimal process is 840,606 $ which is higher than the
process proposed by Zhang (2003b). The explanation for finding different profits is that
the optimal process has lower production costs by using magnesol dry washing instead
of water washing, a system of flash evaporators instead of distillation columns and heat
integration to reduce energy consumption.

For the case of MR, the superstructure model gives the same optimal processing route
as the case of the CSTR. The difference is within the final purification stage where the
MR case uses only one vacuum flash evaporator to remove methanol and water, because
the membrane reactor removes the unreacted oil. Therefore, the energy requirement is
70% lower than the case of CSTR. However, the membrane reactor has only 56%
biodiesel yield of the conventional reactor making the annualized profit of the process
of membrane reactor negative, -2,126,584 $.

4. Conclusions

A superstructure model for optimizing the biodiesel production has been developed. The
superstructure can be developed faster and expanded easier by grouping similar options
into processing tasks. With a novel heat integration function, the proposed model can be
used to identify the best processing route which minimizes the production cost and the
energy requirement. The optimization results show the potential for improvement of
biodiesel production in terms of economic and environment indicators. The optimized
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process of the CSTR shows a good profit and the case of MR has better energy
consumption. However, the superstructure only considers one feedstock and two types
of reactor. The superstructure will be extended to cover a large range of feedstock and
different reaction technologies to further reduce the cost of biodiesel production.
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Abstract

Iron- and steel-making companies throughout the globe have been aiming to reduce
emissions. One method to do so is to replace pulverized coal used in blast furnaces with
biochar, but biochar is currently far more expensive than coal. To increase the value of
biochar, by-products of pyrolysis can be combusted to generate heat and offset fossil fuel
usage. In this study, pyrolysis by-product combustion was studied using Aspen Plus and
process cost models to offset fuels in both Ontario, Canada, and Aichi, Japan. It was found
that each tonne of biochar made produces by-products which save 130 USD and 1.47 t
CO;-¢ of emissions in Ontario, while in Aichi 96 USD and 2.44 t CO;-¢ are saved.

Keywords: Biochar, Pyrolysis, Pulverized Coal Injection, Iron, Steel

1. Introduction

Steel production currently accounts for about 8% of annual anthropogenic
carbon emissions (Worldsteel Association, 2021a). One method of reducing emissions is
replacing coal used in pulverized coal injection in blast furnaces with biocarbon produced
from the pyrolysis of biomass (Ye et al., 2019). However, widespread biochar usage has
several hurdles, one of which is that it is prohibitively expensive at present. There is
currently little published information on wholesale biochar prices, and the few data points
available are not particularly recent. For example, in values of USDag21, wholesale prices
were 2400 USD/t (metric tonne) in 2015 (Campbell et al., 2018). Research has suggested
production costs may drop to 870 USD/t with small scale production (Keske et al., 2020)
or 240 USD/t in a large-scale production facility designed for an economy that uses
biochar heavily (Project Drawdown, n.d.). In comparison, steam coal is typically only 70
USD/t(U.S. Energy Information Administration, 2021). Therefore, there is incentive to
reduce the net cost of using biochar to match or even go below that of coal.

Another issue with biomass pyrolysis is that it also produces by-products, which
are often considered to be waste and are difficult to handle due to toxicity (Bridgwater et
al., 1999). The by-products of biomass pyrolysis are separated into two phases, including
bio-oil, also known as tar, and light gases (Dunnigan, Ashman, et al., 2018). The light
gases generally consist of CO, CO,, CH4, H,, and low carbon fuel gases, while the tar
phase consists of water and volatile organic compounds (VOCs) (Amini et al., 2019).

To tackle both of these issues, it is worthwhile to investigate the value of
utilization of the by-products of biomass pyrolysis. Although there are studies which
looked at tire pyrolysis by-product value (Czajczynska et al., 2017), usage of by-products
for self-sustaining pyrolysis (Xu et al., 2011), the economic value of bio-oil specifically
(Badger et al., 2011), and the heating value of biomass pyrolysis by-products (Dunnigan,
Morton, et al., 2018), there have not been any comprehensive techno-economic analyses
which cover environmental and economic benefits of the utilization of biomass pyrolysis
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by-products. Given that the products mostly consist of combustible hydrocarbons, one of
the simplest potential methods to use these by-products is heat generation through
combustion. This heat can be used for processes such as steam generation, iron
production, or even biomass drying and pyrolysis. This allows for fossil fuel usage to be
offset, thereby reducing purchase and emission costs, which increases the value of
biochar. This value can be used to close the gap between biochar and coal prices.

For this analysis, Aspen Plus chemical process simulation software was used to
calculate the thermodynamics and products of combustion of pyrolysis by-products based
on experimental compositions and conditions. These results were then compared to fuel
and carbon prices used in iron- and steel-making facilities in two locations. The locations
investigated were Aichi Prefecture in Japan, which is in the third largest steel producing
country in the world (Worldsteel Association, 2021b), and the province of Ontario in
Canada. These locations were chosen because Aichi and Ontario both produce a similar
amount of steel, at about 10,000,000 t annually (Aichi Prefectural Government, 2017),
(Cheminfo Services Inc., 2019), but use different fuels for heat generation. Relevant data
were readily available for the most commonly used heating fuels both locations, allowing
for a complete cost comparison.

Collaboration with and data sharing from ArcelorMittal Dofasco, Natural
Resources Canada (NRCan), and CHAR Technologies has allowed for a realistic
determination of the value and feasibility of pyrolysis by-product usage. ArcelorMittal
Dofasco is aiming to replace up to 40,000 t of pulverized coal with biochar per year, so
this value was used for design calculations.

2. Methods

To determine the financial and environmental value of pyrolysis by-product
combustion, the heat generated from combustion was considered to be used to offset the
currently most-used non-renewable fuels in local iron- and steel-making facilities.
According to data from ArcelorMittal Dofasco, natural gas is generally the only fuel that
is purchased for heat generation in their plant. Therefore, by-product value was
determined based on offsetting natural gas in the Ontario case. However, in Japan, iron-
and steel-making companies tend to use both natural gas and steam coal, but
approximately four times more heat is generated with steam coal than natural gas (Japan
Iron and Steel Federation, 2020). Therefore, in the Aichi case, steam coal will be assumed
to be the main fuel that is offset with by-product combustion. Since the pyrolysis was
done with biomass, emissions from by-product combustion are carbon neutral if it is
assumed that the biomass would not otherwise be used for carbon sequestration.
Therefore, emissions reductions from offsetting fossil fuels with pyrolysis by-product
combustion were considered to be direct reductions.

Data on the composition of by-products were received from NRCan’s lab-based
experiments from the pyrolysis of construction and demolition wood at 600 °C. These
data include the ratio of biochar, bio-oil, and light gas produced from pyrolysis, as well
as bio-oil and light gas compositions. The distribution of products from wood pyrolysis
is shown in Table 1. These ratios are similar to others in literature (Amini et al., 2019).

Table 1: Product distribution of pyrolysis of wood on a dry, ash-free basis

Pyrolysis Product Mass % of Initial Feedstock
Light Gas 27.6
Bio-oil 44.8

Biochar 27.6
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In regards to data used for simulation, the composition of the light gas is given
in Table 2, while the composition and ultimate analysis of the bio-oil are given in Table
3 and Table 4, respectively. Although the bio-oil composition given in this paper includes
only general categories of compounds, the actual data set used for simulation includes
approximately 30 specific compounds. Also, it is common for pyrolysis to be done in a
nitrogen-rich atmosphere, but the method used by CHAR Technologies creates positive
pressure in the chamber shortly after pyrolysis begins, preventing combustion. This
means that the by-products do not contain any nitrogen gas. CHAR Technologies also
noted that the pyrolysis process can be considered to be steady state.

Table 2: Composition of light gas by-product of pyrolysis on a dry basis

Light Gas Component Composition (Volume %)

H, 9.4

CO 26.2
CO, 43.0

CH4 17.2

CaHe 1.3

CyHy 0.6

Other Light Hydrocarbons 2.3

Table 3: Composition of the bio-oil by-product of pyrolysis
Bio-o0il Component Composition (Mass %)

Water 56.6

Acids 9.6

Other Oxygenates 8.9
Methanol 7.6

Phenols 3.6

Furans 1.6

Other Condensable Compounds 12.1

Table 4: Ultimate analysis of the bio-oil on a wet basis
Ultimate Analysis Element Mass %

Carbon 26.6

Hydrogen 9.5

Oxygen 63.9

The pyrolysis by-products contain many VOCs, which are gaseous at the 600 °C
pyrolysis process outlet temperature but can begin to condense at temperatures below 450
°C, as per data from CHAR Technologies. Therefore, it was imperative that the process
was designed so that the by-products can be combusted without condensation. Although
it is typical to use thermal oxidizers to destroy gaseous VOCs while recovering a portion
of the heat of combustion, thermal oxidizers are used for flue gases which contain up to
only 10,000 ppmv organic compounds, with the rest being air (Wang et al., 2020). For
destruction of streams without oxygen and that contain VOCs in higher concentrations, a
vapour combustor, also known by other names such as enclosed flare (Anguil, n.d.),
should be used instead (Gulf Coast Environmental Systems, n.d.). A vapour combustor is
essentially a small flue gas stack with the option to recover the heat of combustion, and
related operating and capital costs were found for annual usage of 40 kt of biochar using
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published correlations (United States Environmental Protection Agency, 1980). A
diagram of the process design is shown in Figure 1.

Light Gas
and Bio-oil Va pour Heat
> -_———
Combustor
Wood Biochar

Blast Furnace

Y

— Pyrolysis

Figure 1: A system based on pyrolysis by-products which generates heat with a vapour combustor

The products of by-product combustion were predicted using an RGIBBS block
in Aspen Plus, which calculates the products and enthalpy change of a reaction through
minimizing Gibbs free energy based on the parameters and composition of the reactants
used. In the model, pyrolysis by-products at 600 °C and 1.01325 bar in a gaseous phase
were mixed with air at 25 °C and 1.01325 bar so that the products contained 2 % oxygen
by volume after combustion, as per guidelines from ArcelorMittal Dofasco. The property
method used was the Peng-Robinson-Boston-Mathias (PR-BM) model, which has been
shown in literature to work well for mixtures of CO, and hydrocarbons (Li et al., 2019).
Peng-Robinson-based methods have also been shown to predict CO,-H,O well (Zhao &
Lvov, 2016). This simulation model was also used to determine that the by-products are
within the flammability envelope when mixed with up to 30 % excess air, as per the
calculated adiabatic flame temperature method (Hansel et al., 1992). Aspen Plus was also
used to calculate higher and lower heating values of the by-product stream. This was done
by adding the known lower heating values of the reactants for the LHV and then adding
to this heat of vaporization of product water to determine the HHV.

Cost savings gained from by-product combustion in each location were
calculated based on local fuel costs and carbon prices. Specific values used for each
situation as well as the equation used for cost calculation are available in the supporting
document (Rose & Adams, 2021).

3. Results

Results for the calculated HHV and LHV of the light gas, bio-oil, and weighted
by-product mixture are given in Table 5.

Table 5: Calculated heating values for the pyrolysis by-products

By-Product Stream LHV (MJ/kg) HHV (MJ/kg)
Light Gases 10.0 10.9
Bio-0il 10.7 11.4
Mix 10.5 11.2

Given the pyrolysis product ratios in Table 1 and these heating values, it was
found that each tonne of biochar made also creates enough by-products to produce 29.4
GJ HHV or 27.4 GJ LHV of heat through combustion. Also, for a vapour combustor
system that uses 40 kt of biochar per year, capital and operating costs were found to be
912,000 USDy2; total and 271,000 USDyy; per year, respectively. Assuming a 20-year
project lifetime, these values were then used to calculate specific future value cost savings
and carbon emissions reductions from offsetting fossil fuels through vapour combustion,
as shown in Table 6. At a rate of 1 tonne of pulverized coal used per 10 tonnes of metal
produced (U.S. Department of Energy, 2000), if all pulverized coal for 10 Mt of metal
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production were to be replaced with biochar, there would be an annual emissions
reduction of 1.50 Mt CO»-e in Ontario or 2.44 Mt CO»-e in Aichi, equivalent to taking
625 thousand or one million cars off the road, respectively (Wynes & Nicholas, 2017).

Table 6: Cost savings per tonne of biochar produced from offsetting fossil fuels with by-product
combustion in a vapour combustor

Location Cost Savings/t Cost Savings/t Emissions
Biochar Biochar Reductions
2022 Case 2030 Case (t CO»-¢/t Char)
Ontario 135 USD2p21 280 USD2o21 1.50
Aichi 96 USD7021 350 USDap2; 2.44

4. Conclusions

Combustion of pyrolysis by-products has been shown to be a viable method for
increasing the value of biochar as a replacement for pulverized coal in blast furnaces.
Even with the purchase and operation of new equipment, by-product combustion can
increase the value of one tonne of biochar by anywhere from 96 to 350 USD»g;; in Aichi,
Japan, and 135 to 280 USD32; in Ontario, Canada. The greater difference in Aichi is due
a greater reduction in carbon emissions with a similar increase in carbon taxes. These
reductions are up to 1.50 tCO2-e/t char used in Ontario and 2.44 tCO2-e/t char used in
Aichi, applicable for up to one million tonnes of biochar used per year in each location.
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Abstract

In this work, a machine-learning based optimisation framework is proposed for optimal
design of solar steam methane reforming using molten salt (SSMR-MS) with CO: capture
and utilisation. The computational results demonstrate that significant profit in TAC can
be made compared with the existing SSMR-MS. With ethylene glycol (EG) production,
the optimal Levelised cost of Hydrogen Production (LCHP) is 0.00 $ kg™ which is largely
reduced compared to the existing process with LCHP of 2.40 $ kg™!. The captured CO>
using the amine-based solution is utilized to produce around 33.59 kt y™' EG.

Keywords: Hydrogen; Solar energy; CO: utilization; Machine learning

1. Introduction

Hydrogen is an important energy carrier in the transportation sector and essential
industrial feedstock for petroleum refineries, methanol, and ammonia production. The
global demand for hydrogen is expected to increase 10-fold by 2050, clearly indicating
its significant role in the future (Wang et al., 2021). Conventional hydrogen production
primarily utilises natural gas and oil-based feedstock for steam reforming, which results
in considerable greenhouse gas emissions mainly CO», thus contributing to global
warming (Voldsund et al., 2016). The damaging consequences of global warming deem
further investigation into clean and affordable hydrogen production process using
renewable energy sources to be crucial. Meanwhile, research is also ongoing into COz
capture and utilisation technology which considers CO: as a viable alternative carbon
source for the chemical supply chain (Alper et al., 2017) to obtain value-added products
such as methanol, ethylene carbonate and ethylene glycol (Yang et al., 2021).

Solar energy for hydrogen production has received significant attention in recent years
due to its primary abundance as an energy source (Koumi Ngoh et al., 2012). To
effectively use solar energy for large-scale hydrogen production, an optimal design of
solar steam methane reforming using molten salt (SSMR-MS) which shows great
potential has been studied to reduce TAC and CO2 emission (Wang et al., 2021). However,
the optimal Levelised Cost of Hydrogen Production (LCHP) is still much higher than that
of the conventional methane steam reforming. Furthermore, in their work CO2 removal
model is represented using a simple separation block with a constant separation efficiency,
which could lead to inaccurate account of annualized cost of COz capture. To further
reduce LCHP and improve the model accuracy, an integrated rate-based CO» removal
model in SSMR-MS along with CO» utilization for ethylene glycol (EG) production is
investigated in this work. This is the main novelty of this work.
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In this work, an optimization framework from (Wang et al., 2021) is extended for such
optimal design of SSMR-MS with integration of CO» capture and utilization. The
artificial neural network (ANN) is employed to establish relationships of total annualised
cost (TAC), hydrogen production rate, molten salt duty and gas flowrates from CO-
capture unit with thirteen independent input variables in SSMR-MS. A hybrid global
optimisation algorithm is employed to solve the developed optimisation problem and
generate the optimal design, which is then validated in Aspen Plus V8.8 and SAM. The
computational results demonstrate that TAC of the SSMR-MS process can be
compensated by the profit of selling EG and CO> emissions reduction by 68.92 % can be
achieved compared to the existing SSMR-MS process in Wang et al. (2021). Captured
COz can produce around 33.59 kt yr! EG.

2. Problem description

Figure 1 illustrates a schematic diagram of integrated system including SSMR-MS for
large-scale hydrogen production, CO: capture, and EG production. A detailed description
of the SSMR-MS process has been made in Wang et al. (2021). The pre-reformer is non-
adiabatic and molten salt transfers concentrated solar energy in heat to pre-reformer. The
flow scheme in the pre-reformer is in co-current. The process is to produce Fy, hydrogen
with 0y, purity to satisfy hydrogen demand in an oil refinery. A rate-based COz removal
model using methyl diethanolamine (MDEA) as the solution is built in Aspen Plus V8.8.
The reaction for COz absorption and MDEA regeneration process using MDEA are listed
in Moioli et al. (2016). The capture CO2 with coke oven gas is used to produce EG.

The objective is to minimize total annualized cost (TAC) of the integrated system, which
includes total annualized capital cost and operating cost.
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Figure 1: Block diagram of the SSMR-MS process (Adapted from Wang et al., 2021)
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3. Mathematical formulation

The integrated process can be modelled using rigorous models in Aspen Plus V8.8. The
optimisation problem using these rigorous models is often highly complex. To reduce the
complexity of the problem, surrogate model is developed based on machine learning
techniques. ANN is used to create surrogate models of the rate-based CO» removal
process and the entire process. A major advantage of ANN over other statistical
techniques is the ability to correlate multiple inputs to multiple outputs, leading to
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compact models that can be implemented in an optimisation environment with ease
(Ibrahim et al., 2018).

In this work, a surrogated model for the CO2 capture process is firstly developed and
integrated within SSMR-MS process in Aspen Plus V8.8. This is because when the
rigorous rate-based CO2 removal model for CO» capture is integrated with the SSMR-MS
process in Aspen Plus V8.8, the simulation of the integrated system is extremely difficult
to converge. The input variables for the CO> capture process include the inlet stream
component flowrate of CH4, H2O, CO, CO2, H> which are denoted as Fi, cy, mpea>
Finn,0mpEa > Fincompeas Finco,mpea a0d Fiy g, vpea» tespectively and temperature
(TinmpEa) obtained from hydrogen production process. In other words,

_ T
z = [F in,CHq,MDEA) F in,H,0,MDEA» Fin.compEar Fin,COZ,MDEA! Fin,HZ,MDEAt Tin,MDEA] .

The outlet stream flowrates of CHa, H2O, CO, CO: and H> in the CO2 removal process
are predicted using ANN surrogate models respectively, as shown in Egs.1-5.

Foutcnampea = ANNy (2) )]
Foutn20mpEa = ANN(2) (2
Fout.compea = ANN3(2) 3)
Foutcozmpea = ANN,(2) “)
Foutn2mpea = ANNs(2) (%)

These surrogate models are then integrated with the rigorous models of SSMR-MS by
using user model within Aspen Plus interface with Excel Link (Fontalvo, 2014) for
sample generation. Then a new surrogate model representing the entire integrated process
is constructed through extending the optimisation framework of Wang et al. (2021). There
are usually three steps for the development of a surrogate model, including data
generation (i.e., sampling), construction of the surrogate model and construction of
feasibility constraints using a support vector machine (Wang et al., 2021). Samples
generated using the Latin hypercube sampling method are used as input in Aspen Plus
V8.8 to get values for the corresponding output variables.

In the integrated process, the independent input variables including molar flowrate of
natural gas into pre-reformer Fy, steam to methane ratio yg¢, operating temperature of
reformer Ty, high-temperature water gas shift (HWGS) reactor Ty s, low-temperature
water gas shift (LWGS) reactor T}y4s, tube length of pre-reformer Lpg, reformer Lg,
HWGS reactor Lyyqs and LWGS reactor L5, tube number in pre-reformer Npg,
reformer N, HWGS reactor Ny, s and LWGS reactor N, ;¢ vary between lower and
upper bounds. A vector X is used to denote all these variables. In other words,

x = [Fye,¥s/c) To» Tuwes) Tuwess Lers Lrs Luwes: Liwes) Ner» Ne» Nuwes) Nuwas]™-
xl<x<xV 6)
The objective function TAC can be calculated as follows,
TAC = Ccapital - ACCR + Cproduction @)

where Ccapital is total capital investment. ACCR is annual capital charge ratio.
Cproduction is the total production cost per year.
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The optimisation problem using the surrogate models is stated as follows,
(PS)  Min TAC = TAC, + TACsp14r
s.t. TAC, = ANNg¢(x) + ANN,(x)

TACso10r = f(Qus)
Qums = ANNg(x)
FHz = ANNy(x) = FZ;;‘

Eq. (6)

where TAC, is non-solar related cost, TAC,,,,, is the solar related cost. ANN,(x) is CO2
removal process related cost. ANN; is the non-solar related cost excluding MDEA unit.
x is the set of independent variables in hydrogen production process, Qs is molten salt
duty. The relationship of solar-related equipment cost, and molten salt duty is described
using an algebraic linear function f(Q,;). The surrogate model comprises 4 artificial
neural networks as indicated above in the optimization problem PS and a linear
regression model f(Qys). Fy, denotes the predicated flowrate of hydrogen.

4. Solution algorithm

A hybrid optimisation algorithm similar to that of (Wang et al., 2021) is employed to
solve the optimisation problem PS, as shown in Figure 2. This hybrid algorithm combines
the advantages of the stochastic optimisation algorithm and the deterministic optimisation
method. We employ different platforms and data are transferred between them to exploit
their strength and reduce the computational complexity. In sample generation process,
Matlab is used as the core platform to interact with other programs. Sample points are
imported to Aspen Plus. Within Aspen Plus, the process contains a user model which calls
Visual Basic Application (VBA) in Excel (Fontalvo, 2014) as a bridge to transfer data
between Aspen Plus user model and Matlab (ANN model for composition prediction in
COz removal process). The hybrid algorithm is implemented in MatLab R2019a.

Variables boundaries

Sample Surrogate model generation

generstion ——— =
ample generation
(Latin Hypercube Astiicial neural
sampling) network training

v :
MATLAB-ASPEN
PLUS interface

Process simulation
in ASPEN PLUS

....... >
x Validated results
T from ASPEN PLUS

Figure 2: Flowchart of the extended design methodology
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5. Computational studies

The extended optimisation framework is used to generate the optimal design of the
SSMR-MS process with integration of CO> capture and utilisation. The hydrogen
production rate is 2,577 kmol h™'. The desired hydrogen purity is 99.9 vol%. Other data
can be referred to Wang et al. (2021). The results are given in Table 1. It can be seen that
the optimal TAC is 166.50 M$ y~!. The optimal steam to carbon ratio is 2.7.

Table 1: Optimisation results for SSMR-MS from surrogate models

Item Optimal value
Vs/c 2.7

T (°C) 962.3
Thwes (°C) 421.1
Tiwes (°C) 200.7
Lpg (m) 11.2
Lg (m) 12.0
Lywes (m) 4.8
Lywes (m) 43
Npg 4,031
Ng 55
Nuwes 1367
Niwes 2624
Fyg (kmol h1) 781.9
Qus MW) 14.54
Fy, (kmol ™) 2,577
TAC MS$y ") 166.50

The optimal values of independent variables in Table 1 are used as input in Aspen Plus
V8.8 to generate values of all dependent variables. The validated results for Qys, Fy, and
TAC are 14.31 MW, 2577.2 kmol h™!, 165.22 M$ y ™! respectively. The largest difference
between actual results and predicted results from the ANN surrogate models is within
1 %, indicating the ANN model has high prediction accuracy.

Then heat integration is conducted to further reduce energy consumption. The final results
are provided in Table 2. It can be observed after heat integration, TAC is 155.05 M$ y~!,
which is reduced by 6.2 % compared to that before heat integration (165.22 M$ y!). What
is striking is that, with the integration of EG production, the whole hydrogen production
process cost can be compensated with a large profit.

We also compare our optimal results with the best results from Wang et al. (2021) and
the conventional steam methane reforming (denoted as CSMR), as shown in Table 2. It
can be observed that without EG production, TAC in this work is higher than that from
Wang et al. (2021) due to CO: capture cost increased using the rate-based CO2 removal
model. With an annual production of 33.59 kt EG, LCHP decreases from 2.40 $ kg™! to 0
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$ kg! due to high profit from EG. CO2 emission reduces by 68.92 %. What is more
important is that LCHP (0.00 $ kg™") is extremely economic attractive and CO> emission
is reduced by 73.80 % compared to that of CSMR. The economic and environmental
benefit obtained by using solar energy and applying CO> utilization process show the
optimal case in this work is very promising for industrial hydrogen production.

Table 2: Comparative optimization results

Item Optimal Case ~ Wang et al. (2021) CSMR
Qus MW) 14.31 10.20 20.00
Fy, (kmol ") 2,577.2 2577.3 2,577.0
TAC without EG production (M$ y')  155.05 122.30 90.90
TAC with EG production (M$ y ) -21142.24 - -
LCHP ($ kg 0.00 2.40 2.00
CO, emission (kt y') 131.74 423.90 502.90
EG (kty™) 33.59 0.00 0.00

6. Conclusion

In this paper, the existing optimisation-based framework using machine learning
techniques is extended for optimal design of solar steam methane reforming using molten
salt (SSMR-MS) integrated with CO2 capture and utilization for large-scale H2 production.
The computational results show that TAC was reduced largely with significant profit
generated compared to the existing SSMR-MS. By considering CO2 conversion, around
33.59 kt EG is produced per year. In the future, more process options for different pre-
reformer operating conditions are expected to evaluate.
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Abstract

This work introduces a novel hybrid concept to produce H, from natural gas by using
the protonic membrane reformer (PMR) with liquefaction based CO; capture system.
For process intensification, recycling of the off-gas from the capture process and a water
gas shift reactor for the retentate gas from the PMR are applied to the hybrid
configuration. The suggested concept achieves around 99 % of system H, and CO»
recovery rates even when the PMR is operated at relatively low hydrogen recovery,
resulting in energy efficient H, production with a low carbon intensity.

Keywords: Low emission hydrogen production, proton conducting membrane,
membrane reactor, CO, capture, hybrid process.

1. Background

Hydrogen is a clean fuel and is thus expected to play an important role in a future
decarbonized energy scenario. Currently, 48 % of the world's hydrogen is produced by
steam reforming (Voldsund et al., 2016), where natural gas and steam react to form
hydrogen rich syngas. The focus on low-carbon hydrogen production from natural gas
has been predominantly on CO> separation technologies. However, CO, separation does
not contribute significantly to the energy penalty of the process (Voldsund et al., 2016).
The largest losses are in the reforming of natural gas to hydrogen and subsequent
separation to produce high purity hydrogen. The key focus area for cost-efficient low
emission hydrogen production is an intensified process for hydrogen production and
separation from natural gas with suitable CO, separation technology. Here we
investigate an innovative hybrid technology for H, production with CO, capture
combining H» production from natural gas by a protonic membrane reformer (PMR)
technology with subsequent CO, separation by liquefaction in a novel integrated
process. The technology enables a high carbon capture rate with high purity CO, and H,
and a hydrogen cost comparable to conventional technologies without CO; capture.

The PMR technology produces high-purity hydrogen from steam methane reforming
(SMR) in a single-stage electrochemical membrane reactor process with near-zero
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energy loss (Malered-Fjeld et al., 2017). The tubular membrane reformer comprises a
BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni
composite electrode with a dual function as a reforming catalyst. Methane is steam-
reformed to CO and H, over Ni particles inside the ceramic tube. Hydrogen is
electrochemically transported as protons to the outer side, and CO is thereby converted
to CO; as the water gas shift (WGS) equilibrium is shifted due to the extraction of Ho.
The hydrogen produced is of high purity and electrochemically compressed in situ. The
H; recovery in the PMR is proportional to the electricity input (Malered-Fjeld et al.,
2017). At high hydrogen recovery, the outlet composition is mainly CO, and steam. The
retentate gas from the PMR has a relatively high fraction of CO,, which makes CO,
separation by liquefaction the most competitive technology for this application (Berstad
et al., 2013). Liquefaction based CO; capture technologies have also been well tested
for a wide range of syngas compositions with hydrogen (Kim et al., 2020).

Thus, in this work, different process configurations are developed in an analytical
manner to combine the two technologies. One of the process concepts considers the
appropriate placement of recycle streams to improve overall H, and CO; recovery when
the PMR is operated at low H» recovery of around 90 % (for example reduced current
density) for less energy intensive unit operation. Such operating conditions are also
expected to lower stress on the material leading to prolonged life. Detailed process
models of the different unit operations including the protonic membrane reactor are
included in the hybrid system to analyse the different process options.

2. Hybrid process concepts

High recovery rates of H, and CO, are required on the plant level to achieve energy
efficient low carbon hydrogen production for the PMR based system. This requires the
development of optimal integration between the PMR and CO: liquefaction processes
where additional process steps are considered. Figure 1 shows one of the process
concepts for the PMR based hydrogen production with carbon capture. In this
configuration, natural gas and water are heated by the hot temperature H, product and
the retentate gas from the PMR. The mixture of natural gas and steam is then sent to a
pre-reformer to convert heavier hydrocarbons in natural gas to hydrogen, CO, and CO,
to supply a pre-reformed feed to the PMR. The pre-reformer outlet stream is set to have
a fixed steam carbon ratio.
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PMR HX-2

PMR HX-1

Pre-reformer
Retentate gas

HX-3
Water ]

C-MR  K-MR

Off-gas

MR cycle
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Hydrogen €02 «—

product

[ ] X
[

V-1

K-1 - X
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K-re V-2
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Figure 1. Process flow diagram of the simplified hybrid system for clean hydrogen production.
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The temperature of the PMR feed is further increased to the operating temperature of
the PMR by using the heat produced from the PMR, which is assumed to be operated
isothermally. Then, the compressed pure hydrogen and the retentate gas are produced
from the PMR. The SMR and WGS in the PMR result in a net endothermic reaction.
However, the heat requirement can be covered by the heat generated by electricity used
for the separation and compression of H, in the membrane, which is also enough to
increase the temperature of the feed streams via PMR HX-1 and 2. The remaining PMR
heat after the heat integration could be further used to produce steam.

The retentate gas from the heat recovery unit is fed to the CO, liquefaction process,
after dehydration, to capture high purity liquid CO, while removing impurities in the
liquid product through off-gas venting. In the CO, capture process (CCP), the
dehydrated retentate gas is compressed before being liquefied by a hydrocarbon based
mixed refrigerant (CHs, CoHg, C3Hs, and C4Ho). The cold energy of the incondensable
gas (off-gas) from the liquefier (MHE-2) is then used to pre-cool the compressed
retentate gas. The off-gas from the pre-cooler is further utilized to supply the cold duty
of heat exchanger MHE-1 by depressurizing it via a turbo expander. The liquid CO»
product from the liquefier is also sent to the pre-cooler to cover the cold duty after being
pressurized to the transport pressure. The off-gas leaving the CO; capture process could
be vented or used as fuel to produce steam in the system.

Hydrogen production of this configuration is, however, dependent on the performance
of the PMR as it is the only place where H, is extracted. If the hydrogen recovery rate
(HRR) of the PMR is low with reduced electric power input, a considerable amount of
H> left in the PMR is sent to the liquefaction process through the retentate gas. Since the
hydrogen is not condensed in the CCP, it is lost through the off-gas, resulting in a low
system HRR. Thus, when the PMR is operated at lower hydrogen recovery, the system
HRR is also reduced, showing limited flexibility of the process. Another issue of the
simplified concept with the PMR operating at low hydrogen recovery is the relatively
high CO fraction in the retentate gas that causes poor performance of the CO;
liquefaction system. The high fraction of CO in the feed to the CCP results in a deeper
purification of the liquid CO, to achieve high purity. For the purification of the liquid
CO,, a larger amount of off-gas is produced, containing traces of CO,, hence reducing
the system carbon capture rate (CCR). The large flow rate of the off-gas stream will also
require an extra facility to treat the CO and H, mixture. The high CO fraction, and thus
a lower CO; fraction in the retentate gas, also means larger power consumption for the
liquefaction process where the energy efficiency of the system is proportional to the
CO, purity of feed gas (Kim et al., 2020).

To maintain H, production performance high at a low HRR of the PMR, the off-gas
from the liquefaction system can be recycled (see Figure 2). This recycle allows
collecting the valuable H, in the off-gas through the PMR, achieving a high system
HRR. However, some off-gas venting will still be required to avoid N, accumulation in
the system, which is assumed to be 10 % in this work. The off-gas recycle, however,
will not reduce the CO fraction in the retentate gas, resulting in poor carbon capture
performance of the hybrid concept. The improvement of the CCP can be achieved by a
WGS reactor for the retentate gas as illustrated in Figure 2. The WGS reactor will
convert the CO in the retentate gas to CO;, and H», giving a low CO content and
simultaneously increasing CO; content in the feed to the liquefaction process. Thus, this
configuration can achieve high HRR and CCR while producing liquid CO, with
negligible impurities even when the PMR is operate at low hydrogen recovery.
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Figure 2. Process flow diagram of the modified hybrid system with off-gas recycle and a WGS
reactor for the PMR operating at a low Hz recovery (See text boxes for the modifications).

3. Modelling approach and design basis

In order to simulate the hybrid system, the PMR is modelled in C to represent the data
from Malered-Fjeld et al. (2017) and connected to Aspen HYSYS where all the other
process units are built. In this work, the two process concepts neither include a vent gas
utilization nor a steam cycle for the PMR surplus heat left after the heat integration. The
PMR operating conditions that give 91 % of HRR are selected for the comparison of the
two hybrid configurations assuming the membrane reformer is operated at relatively
low H, recovery. However, it is worth mentioning that the PMR operating conditions
such as temperature and current density will certainly impact process performance.
While this has been analysed as part of this work, is not included in the paper. The
hybrid system is assumed to have a natural gas feed rate of 3,000 kmol/h (lower heating
value of 50 MJ/kg) to produce about 500 t/d hydrogen. CO; is assumed to be delivered
at 150 bar with 99 mol% purity while allowing CO level lower than 0.5 vol%, assuming
pipeline transport (Harkin et al., 2017). Other design conditions are listed in Table 1.

Table 1. Design basis for the PMR and the COx capture process.

Parameters Unit Value
PMR feed steam to carbon ratio - 2.5
PMR operating pressure bar 26
PMR operating temperature °C 800
PMR current density A/m? 7000
PMR H; product and retentate pressure bar 26
PMR H; product and retentate temperature °C 800
Pre-reformer inlet temperature °C 450
WGS reactor inlet temperature °C 200
ATnin for gas/gas heat exchanger °C 30
ATnin for gas/liquid heat exchanger °C 20
ATnin for low temperature heat exchanger °C 3
Isentropic efficiency of compressor % 80
Isentropic efficiency of gas expander % 85

Isentropic efficiency of pump % 75
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4. Key performance indicators (KPIs)

Various key performance indicators are selected to evaluate the thermodynamic
performance of the hybrid systems, such as specific power consumption (SPC) of the
PMR, the CO; capture process, and the overall system. The SPC of the PMR is based on
the electricity input to the PMR per unit mass of hydrogen produced. The SPC of the
CCP is the net power consumption in the CCP per unit mass of CO, captured. The SPC
of the hybrid system is estimated by the total net power consumption per unit mass of
H, produced. The CCR of the CCP is the molar flow rate of the CO; captured per unit
molar flow rate of CO, in the retentate gas. The system CCR is defined as the molar
flow rate of CO, captured divided by the total molar flow rate of carbon in natural gas.
Other KPIs such as hydrogen recovery rate (HRR) are as follows (it is worth
mentioning that CH4 conversion of the PMR is always kept high in this work):

le ,product
HRRPMR = 2P

(1

nHz,PMR feed + nHZ,generated in PMR

HRR lez,product

2

Sys = = o o
nHz,produced in pre—ref + nHz,produced in PMR + nHz,produced in WGS

5. Results and discussion

The simulation results in Table 2 indicate that compared to the simplified hybrid
concept, the process with off-gas recycle and a WGS reactor has a larger H, production
capacity and a lower system SPC. Besides, the configuration with the off-gas recycle
gives very high system HRR and CCR at around 99 %, verifying that this concept can
produce H, with a low carbon intensity even when the PMR operating conditions are set
for a relatively low HRR (91 %). As presented in Table 2, due to the recycle of the H»
rich off-gas, the HRR and the hydrogen production rate of the PMR are improved
compared to the simplified hybrid system. The recycled stream also makes the PMR
feed richer in hydrogen, and it is advantageous to extract and compress H, in the
membrane reformer, reducing its SPC. Besides, the WGS reactor effectively shifts CO
to CO> in the retentate gas, increasing the CO, content of the feed to the liquefaction
process and the efficiency of the CO; capture system (higher CCR and lower SPC).

The simplified hybrid concept has a low system carbon capture rate although the
process has a similar CCR in the CCP compared to the hybrid process with off-gas
recycle. This is because only a part of the natural gas supplied to the system is shifted to
CO; in the PMR while the rest becomes CO, which is not captured through the
liquefaction process. Thus, significant amounts of carbon are lost through the CO rich
off-gas from the CO, capture process. However, the hybrid concept with off-gas recycle
has a WGS reactor where almost all CO in the retentate gas is shifted to CO,, thus
allowing the liquefaction system to reduce the carbon loss via the vented off-gas.

It is worth noting that the heat from the PMR is more effectively utilized in the hybrid
concept with off-gas recycle as it has a smaller amount of heat left from the PMR
compared to the simplified hybrid system. Although the remaining of the PMR surplus
heat is assumed to be used to produce electricity and supplied to the hybrid concepts
with a 50 % conversion rate, the configuration with off-gas recycle will still have a
lower system SPC (43.0 MJ/kg H») compared to the simplified scheme (45.6 MJ/kg H»).
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Table 2. Performance of the two hybrid concepts for clean hydrogen production with the PMR.

Parameter Unit Simplified hybrid Modified hybrid

PMR H; production t/d 475 560

PMR heat leftover MW 29.38 13.00
SPCpmr MJ/kg H, 46.39 42.19
HRRprmr % 91.06 93.99
XC02,CCP feed (dry basis) 0.53 0.65

XCO,CCP feed (dry basis) 0.22 0.01

Captured CO, t/d 1965 3374
SPCccp MlJ/kg CO, 0.45 0.30
CCRccp % 83.44 89.27
HRRys % 91.06 98.75
CCRyys % 57.80 99.30
SPCsys MJ/kg H, 48.26 43.99

6. Conclusions

In this work, a novel hybrid concept is developed to produce H, from natural gas using
an innovative proton membrane reformer followed by a liquefaction based CO, capture
system. The hybrid concept with off-gas recycle and a WGS reactor effectively recovers
H, produced in the PMR while capturing almost all CO, from the process even when
the PMR is operated at relatively low H, recovery with less energy input. Thus, this
hybrid scheme will be a promising option for H, production with a low carbon intensity.
This process design can be further improved by optimal heat integration with the PMR
surplus heat and the utilization of the vent stream as fuel.
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Abstract

CO; capture, utilization, and storage (CCUS) as well as renewable energy (RE)
technologies are key options for the decarbonization of economies. The high cost of
such pathways makes it important to develop a strategic screening approach that yields
the optimal implementation of CO, reduction pathways while ensuring the economic
viability of such projects. This work proposes a Process Systems Engineering approach
to develop minimum cost CO, reduction pathways. The approach implements a
systematic analysis methodology to understand key decisions of the optimal design.
After that, a detailed network portfolio can be obtained by solving a reduced
optimization problem. The method is demonstrated in a case study which shows how
the high-level analysis can be used to guide the detailed design of CO, reduction
networks, resulting in an efficient systematic planning.

Keywords: cost-optimal CO, reduction, marginal abatement cost, economic analysis,
optimization.

1. Introduction

Process Systems Engineering methods have been developed to optimize the planning of
CO; emissions mitigation (Manan et al., 2017). The general process engineering
approach consists of analysing the problem to develop high-level insights and targets
based on which the designs of integrated systems are assessed (Klemes, 2013). The
early applications of such approach were focused on developing pinch analysis
methodologies for optimizing heat integration (Linnhoff et al., 1979). The minimum
heating and cooling targets developed allowed the validation and the understanding of
optimal designs of heat exchanger networks (Linnhoff & Hindmarsh, 1983). The
problem of cost-optimal CO, reduction has been addressed through designing an
integrated system considering all available CCUS and RE options that achieve the
desired CO, emissions reduction at the lowest possible cost (Al-Mohannadi et al.,
2020). The solution is obtained through implementing an optimization model which
yields the integrated processing system with the minimum cost. However, such
solutions are not usually easily understood, and they require further analysis and
interpretation. Recently, a cost analysis methodology for CO; reduction pathways was
developed based on the Marginal Abatement Cost (MAC) of the different considered
options (Lameh et al., 2021). This methodology allows the development of low-cost
CO; reduction solutions using basic high-level information about the reduction
technologies, but it lacks the level of detail that the design optimization models have.
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To our knowledge, none of the exiting studies show a comprehensive Process Systems
Engineering approach with analysis and design methodologies that systematically
identify optimal pathways for CO, reduction. This work addresses the gap by presenting
a two-step approach to support the decisions of planners and policy makers to achieve
optimal CO; reduction. In the first step, the analysis method uses technical and
economic factors of the different possible CO, reduction pathways to develop quick
insights into the minimum cost solutions based on high level overview of the defined
problem. These insights would simplify the optimization so that a global optimal
solution is achieved. In the second step, the integrated CCUS-RE network optimization
is performed to design a detailed CO; reduction configuration through physical CO,
emissions processing and storage, and through applying renewable energy technologies.
The solution of the optimization problem can then be understood based on the high-
level insights obtained from the analysis tool applied in the first step. A case study is
presented to illustrate the application of the method.

2. Methods

The aim of the proposed approach is to identify cost-optimal transitions to achieve a set
target for CO; reduction. Different CO, emitting sources exist, among which are fossil-
based energy production plants that cover a defined demand. The set target for CO,
emissions reduction can be achieved by implementing a CO, abatement network which
consists of CCUS and RE pathways. In the CCUS pathways, the emissions from the
sources are captured and allocated to CO; sinks which can either store the CO, or utilize
the emissions to produce value-added products. The RE pathways involve the
implementation of renewable energy options to replace some of the existing fossil-based
energy sources to cover the demand. The problem is addressed at two stages: analysis
and design. At the first stage, CO, reduction analysis is conducted to determine the
expected cost of the optimal CO, abatement network which achieves a set level of
reduced emissions (Figure 1 (a)). This approach allows the identification of major
insights corresponding to the total cost of CO; reduction through a simple illustrative
procedure. The detailed design of the optimal network that achieves the CO; reduction
target is addressed in the second stage in which the exact layout of the network with the
flowrates and allocations is identified (Figure 1(b)). The analysis is conducted through
developing the marginal abatement cost (MAC) curve considering the different
available options (Lameh et al., 2021).

Cs; — Ry;
MACccysij = nd—_y’ (1)
5i N
Coi — Coi
MACg; = % 2)
€ei Eexj

Each CCUS option is characterized by the cost (Cs) of CO; supply from each source
(capture, compression, and transport), the profit (Rg) generated by each sink, the
secondary emissions associated with supplying CO; from the sources (ys), and CO,
fixation efficiency of each sink (n4;). The MAC for the CCUS options can be calculated
as shown in equation (1). The RE options are considered as energy-shifting pathways
which are characterized by the cost of the RE source (C.i), the cost of the existing
source that is phased out (Cei), and their corresponding emissions levels (g and €exi).
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The MAC for the RE options can be determined as shown in equation (2). The CO,
reduction potential for each option is determined based on prioritizing the cheapest
pathways. The different options in the CO, abatement network are demonstrated on a
minimum MAC (mini-MAC) profile from which the cost of a set level of CO, reduction
can be determined.
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Figure 1 The CO2 abatement network as considered through system analysis (a) and network
design (a)
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Figure 2 The framework applied in the analysis (a) and design (b) of the CO2 abatement network

The network optimization problem is decomposed in a two-step approach (Al-
Mohannadi et al., 2020) with the main network synthesis problem being formulated as a
mixed integer linear program (MILP). The MILP determines the overall design of the
CO; reduction portfolio which corresponds to the minimum cost for the set level of CO,
reduction. The model is formulated by setting the equations for the energy and mass
balances and the costs for the different components in the system (CO, capture,
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compression, piping, sinks, and RES). The optimization problem is defined by setting
an objective function (minimizing the total cost of the system), and the constraints that
ensure that the capacities of the CO, abatement technologies are not exceeded, and the
set CO, emissions reduction is achieved. Figure 2 describes the methodologies followed
in conducting the analysis and design of the CO, reduction network.

3. Case Study

The system studied in this work consists of four major CO, emitting sources which
emissions flowrates is estimated based on the energy and industrial sectors existing in
Qatar (Alfadala & El-Halwagi, 2017). Table 1 shows the data used to characterize each
of the considered sources. The capture costs and secondary emissions are estimated
based on Metz et al. (2005) and von der Assen et al. (2016). The cost of transportation
is based on linearized compression, pumping, and piping cost models (Al-Mohannadi et
al., 2020). Four potential CO, sinks are considered for implementation as CO;
utilization and storage technologies (Table 2). The data is estimated based on existing
technoeconomic studies (Hepburn et al., 2019) for enhanced oil recovery (EOR) , CO,
storage (GCCSI, 2011), chemicals (Pérez-Fortes et al., 2016), and fuels (Tremel et al.,
2015). For the renewable energy contribution, the demand for electric power can be
covered either by an existing natural gas power plant (NG PP) or by introducing solar
photovoltaic system (Solar PV). The solar PV can cover up to 13% of the electric power
demand without requiring energy storage. The levelized cost of electricity for the solar
PV is assumed to be 0.017 $/kWh (BELLINI, 2020). The cost of operating the NG PP
was neglected (assuming very low cost of natural gas).

Table 1 The data for the sources

Source CO:z Produced Capture Transportation Secondary emissions
(MtCOz/ly)  Cost ($/tC0O2)Cost ($/tCO2)  (tCO2/tCO2-captured)

High

Concentration 8.32 0.00 3.00 0.01

Combustion 48.65 31.12 3.48 0.24

Cement 1.99 56.85 3.15 0.24

NG PP 25.88 27.33 3.27 0.24

Table 2 The data for the sinks

Sink Capacity CO: Breakeven Cost CO: Fixation Efficiency
(MtCOz/y) ($/tCO2) (tCO2/tCO;-utilized)

EOR 1 45 1

Storage 15 -20 1

Chemicals 4 -280 0.92

Fuels 17 -440 0.6

The collected data was used to analyze the cost of economic CO, reduction by
generating the mini-MAC profile of the considered options (Figure 3 (a)). The mini-
MAC profile identifies the promising pathways for economic CO, reduction: these are
the pathways represented by the segments forming the MAC curve. The total cost of
CO; reduction can be determined by integrating the mini-MAC profile (area under the
curve) as shown in Figure 3 (b). This outcome can guide the network design by showing
the expected total cost for different levels of CO- reduction. Each single point on the
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total cost profile corresponds to an optimal network design that can achieve the CO,
reduction target with minimum cost. Instead of generating random designs through an
exhaustive procedure of running the optimization model multiple times, key targets
from the total cost profile can be determined. The high-level analysis shows that the
maximum CO, reduction potential that can be achieved is 26.2 MtCO,/y, which is
around 31% of the considered emissions (84.8 MtCO»/y). This is due to the limited
capacity of the considered options (the capacity of the sinks is 37 MtCO,/y), and to the
secondary emissions associated with CO, supply and COs sinks. The analysis identifies
a cost neutral CO, reduction with a flowrate of 2.8 MtCO/y (11% of the maximum
reduction potential). The mini-MAC profile shows a high cost for the options that
require CO; supply from NG PP and combustion for utilization in chemicals and fuels
production. Implementing a hybrid network consisting of renewable energy (shifting to
solar) and CO; integration (capturing from high concentration sources and NG PP and
allocating the emissions to EOR and storage) can reduce the emissions by 17.4 MtCO,/y
(66% of the maximum reduction potential) at a relatively low cost (35.6 $/tCO>).
Beyond that abatement level, the expensive pathways are required, and the average
MAC would rise to 374 $/tCO; at the maximum achievable level of CO; reduction.
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Figure 3 The mini-MAC profile (a) and the estimated cost of optimal CO2 reduction (b)
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To verify the results of the analysis, the design is performed for: a network that achieves
a cost-neutral CO; reduction, a network corresponding to the maximum CO; reduction
before the aggressive rise in the cost, and a network with the ultimate CO, reduction
that can be achieved with the considered options. The CO; reduction levels for the three
different targeted networks were determined from the total cost profile, and they were
used as the CO, reduction constraints in the described optimization model. The
optimization model minimizes the cost by determining the optimal CO, allocation
between sources and sinks and the energy contribution of each power option. The
design results for the three targeted systems are shown in Figure 4. The costs of the
detailed designs for the three cases validated the results obtained from the analysis, with
a slight marginal error (up to 2%). Hence, the proposed approach provides a systematic
methodology for identifying cost-optimal CO, reduction by implementing simple high-
level analysis to determine the expected costs, and to plan the designs of the optimal
networks, and validate their outcomes.

4. Conclusions

This work presented a comprehensive Process Systems Engineering approach for
planning and designing cost-optimal CO, abatement networks considering CCUS and
RE options through analysis and design. The application of the method to a case study
showed how the analysis of the system can be used to validate the results obtained from
the design procedure and to understand the optimization solutions in the context of
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achieving affordable CO, emissions reduction. Future work will analyze the errors and
deviations in both approaches and their impact under various uncertainties.
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Figure 4 Three designs for the CO2 abatement network with different levels of CO2 reduction
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Abstract

Considering the un-declining emissions of CO,, which is a major contributor to global
warming, carbon capture and utilisation (CCU) has been promoted as a potential CO,
reduction pathway, generating economic benefits and reduced environmental burdens.
The integration of CCU with power plants and chemical industries drives the potential of
adapting a CO; capture and utilisation scheme. Chemical synthesis such as gas-to-liquids
(GTL) process using the Fischer-Tropsch technology is a promising pathway in this
configuration. The objective of this study is to assess the techno-economic-environmental
viability of maximising the production of wax, diesel, gasoline and LPG in an FT-GTL
plant, while optimizing the utlisation of different variables such as steam, oxygen, CO»,
and the syngas recycle to purge ratio. The effect of reforming techniques and syngas
recycle ratio on the production capacity are analysed upon supplementing the process
with additional CO, at a range of 1000-2000 t/d. The methodology is based on the
maximum production of syngas in the reforming units, which include steam-based
methane reforming (SMR) and oxygen/steam-based auto-thermal reforming (ATR).
Aspen HYSYS is used to model the GTL production flowsheets. The results demonstrate
a significant improvement in the total refined products capacity for all scenarios based on
variable function of raw material flow rate of CO,, steam, oxygen and split ratio of syngas
to the purge. The sensitivity analyses demonstrate the feasibility of the ATR and SMR
options to provide significant enhancement when integrated with CO,. The total refined
product of hydrocarbons increase significantly when the decision variables are optimized.

Keywords: SMR, ATR, CO, Utilisation, GTL, CAPEX, OPEX, Optimisation

1. Introduction

Greenhouse gas (GHG) emissions are one of the most considerable environmental
concerns of the recent era and are a leading cause for global warming, where CO, is a
major contributor (IEA, 2018). The concentration of CO, in the atmosphere can be
reduced through applying carbon capture and utilisation (CCU) processes. The Gas-to-
Liquid (GTL) process is one example of an application that can accept CO; as a feedstock
to enhance its product output (Al-Yaeeshi et al., 2020). Incidentally, McGregor (2019)
stated that the CO; can replace the CO product in Fischer—Tropsch synthesis within the
GTL process. Although, there are challenges for the introduction of CO, as feedstock in
the FTS process, there are economic and environmental benefits in utilising the otherwise
waste COs.

The main function of the GTL process is the conversion of natural gas (NG) into liquid
refined products using the intermediate carbon monoxide (CO) and hydrogen (H>) rich
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syngas. The long chain hydrocarbon products from the FT reactor include wax, diesel,
gasoline and LPG at a reduced aromatic and sulphur content, thereby enhancing
environmental compliance. Therefore, the synthetic fuels are considered a relatively more
environmentally friendly array of products (Shell, 2019). The GTL production line
comprises of five major units: pre-reforming, reforming, FT synthesis, product upgrading
and fractionation. It begins by converting the natural gas into synthesis gas via various
possible reforming reactions. The long chain hydrocarbons are then synthesised in the FT
reactor, and subsequently treated in the upgrading section using H,. Finally, in the
fractionation column the refined products are separated. The economics of the GTL plant
is high due to the costs of the FTS, and the efficiency required to produce a high stability
ratio of Hy and CO (syngas) (Al-Sobhi et al., 2021).

The CO; can be introduced as a feedstock or as recycled stream to influence the chemical
equilibrium in the reforming unit and enhance syngas quality. Accordingly, the key
parameters required in an optimisation problem include; reactor model design, operating
conditions, and the total feed of CO, quantity, where by each component directly
contributes to the enhancement of the product and the syngas H,:CO ratio. Ekwueme et
al. (2019) assessed the economics of a GTL plant considering an autothermal reforming
model (ATR) and a steam/CO, reforming model, demonstrating positive economics of
GTL process relative to other gas conversion technologies. Moreover, the steam/CO»
reforming model is better performing from an economic perspective than the ATR in a
small scale plant. Marchese et al. (2021) assessed the economic performance of direct air
capture to the FT model, and maximised CO; conversion into synthetic chemicals, with a
focus on wax. Furthermore, the recirculation of the FT off-gas was studied to enhance the
performance, demonstrating a high system efficiency with a maximum carbon dioxide
conversion at approximately 68.3 %.

COx utilisation within GTL process has been studied by Al-Yaeeshi et al. (2019) and Al-
Yaeeshi et al. (2020) to evaluate the efficiency of integrating the CO, into the steam
methane reformer (SMR) and Auto-Thermal reformer (ATR). With the objective of
maximising the production of wax, diesel, gasoline and LPG, this study analyses from a
techno-economic-environmental perspective, the effect of reforming techniques, steam
and oxygen demands and syngas recycle to purge ratio on the production capacity upon
supplementing the FT-GTL process with CO, at the range of 1000-2000 t/d. A model is
developed to assess different ATR and SMR reforming techniques within the GTL
process. The CO» sink considered in this study is the Oryx GTL plant located in state of
Qatar, which is configured with an ATR reformer with a natural gas feed of 330,000 cubic
feet per day (QP, 2018). The feedstock consists of natural gas and steam with oxygen in
the case of ATR and steam only in the case of SMR. The oxygen enters a Gibbs reactor,
where natural gas is reformed to mainly CO and H». The purification process of syngas
occurs prior to the FT unit to ensure high production of hydrocarbon molecules. Further
purification is applied for the effluent from the FT unit to separate water and reprocess
the unreacted CO and H,. Subsequently, the hydrocarbon flow is sent to the upgrading
unit, in which hydrogen is used to crack the longer-chain carbon molecules into smaller-
chain hydrocarbons. Finally, the hydrocarbons are fractionated into wax, diesel, gasoline
and LPG while the remaining stream is recycled to hydrocracking section.
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2. Methodology

This study introduces a simulation flowsheet of the FT-GTL process integrated with CO,
as a feedstock to maximise the production of wax, diesel, gasoline and LPG. It assumes
the raw feed CO, is pure at the required operating parameters of GTL plant. The model
is developed based on the raw data and ranges listed in Table 1 by using Aspen HYSY'S-
Vo.

Table 1. Model raw data

Parameter NG Feed CO; 0, (ATR) Steam (ATR) Steam (SMR)

Flow (T/d) 1.54 x 10* 1-2 x 10° 1.5-2 x 10* 2-5x 10° 1-9 x 10*

T(C) 25 150 144 500 500

P (bar) 1 25 25 25 25
Hydrocracking FT Reformer Fractionator Split Ratio

T(O) 345 250 1050 Top P: 1 bar (0.7-1)%

P (bar) 80 25 23 Bottom P :1.5 bar

Various scenarios are studied depending on the GTL plant capacity, reformer type and
CO, feedstock rate. The plant capacity is designed to process 15372 ton/d of NG feedstock
to produce 34000 bbl/day of liquid hydrocarbons through dual trains. The molar oxygen
to carbon ratio (O2/C) is 0.6, and steam to carbon ratio (S/C) is 0.4 in the ATR reformer
base scenario. In the case of the SMR reformer, the steam to carbon ratio is 3. The feed
rate range of CO, for both reformers is varied between 1000-2000 ton/d to demonstrate
the enhancement profile in the production of liquid hydrocarbons. Aspen HYSYS is used
to assess the variations in each operating parameter. Results of the sensitivity analyses
are used to construct regression models relating total refined products and H»:CO ratio in
syngas to changes in each operating parameter. The functions of the total refined products
and H»:CO ratio in syngas for each operating parameter are employed, where the
weighted average of these functions is calculated to characterise the objective functions
of the proposed optimisation model. The singular objective function of total refined
products and H,:CO ratio in syngas is then maximised to produce the optimal decision
variables for each objective.

Variables:
Mroeqr: Total hydrocarbons production rate (t/d)
m; p;: LPG production rate (t/d)
Mg asotine: Gasoline production rate (t/d)
Mp;eser: Diesel production rate (t/d)
My, Wax production rate (t/d)
E—é: Molar ratio of hydrogen to carbon monoxide (°C)
Decision variables:
Mgteqm: Steam flowrate (t/d)
Mgy gen: OXygen flowrate (t/d)
M, : CO; flowrate (t/d)
SR: split ratio of syngas to the purge (%)

Objective function:
Maximise: Mropq; = Mype + Mgasotine + Mpieser + Mwax (D
. . H,
Maximise: —= 2
o 2)

Constraints: As illustrated in Table 1
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3. Results

The output of sensitivity analyses demonstrates a variation in the rates of refined products
with the changes in CO;, O», steam, and recycle ratio. Figure 1 illustrates the effect of
steam variation for ATR and SMR cases. The total refined products decreases with the
increase in steam rate indicating optimum values at 21,500 and 2500 t/d for SMR and
ATR, respectively while the H»:CO ratio increases.
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Figure 1: Effect of steam on total refined products and H2:CO ratio for (a) SMR and (b) ATR.

The effect of CO; injection rate illustrated in Figure 2, demonstrates that the total refined
products increases with the increase in CO; injection rate indicating an optimum value at
1900 t/d for ATR and continuous increasing trend for SMR, while the H,:CO ratio
decreases indicating more generation of CO through the equilibrium shift reaction.
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Figure 2: Effect of CO2 injection on total refined products and H2:CO ratio for SMR and ATR.

The variation of the split ratio of syngas recycle to FT reactor and purge stream illustrated
in Figure 3a indicates that the total refined products are maximised at around 0.95 ratio
with no pressure build up issues. The variation on oxygen rate (Figure 3b) applicable to
the ATR indicates an optimum value at 18,000 t/d.
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Figure 3: Trends of (a) split ratio variation for SMR and ATR and (b) oxygen flowrate for ATR.
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Figure 5: Results of the techno-economic-environmental assessment.

Plotting the two competing functions together as in Figure 4 indicates a high production
for gasoline at higher H»:CO ratio of approximately 3.9-4 compared to 3.8 for diesel and
wax in the ATR case. Whereas, the SMR case revealed different schemes where the wax
is maximised at a higher H,:CO ratio of approximately 3.9-4.5 compared to 3 for diesel
and gasoline. In summary, the optimization problem for the ATR case indicates an oxygen
requirement rate of 18000 t/d, steam rate of 2500 t/d, CO; injection rate of 1900 t/d, a 21
bar FT pressure and a 0.97 split ratio. Whereas, in the case of the SMR, the optimization
problem reveals a steam rate requirement of 20000 t/d, continuously increasing CO,
injection trend, a 25 bar FT pressure, and a 0.98 split ratio. Furthermore, in both the ATR
and SMR, the steam rate has a significant impact on the system. The techno-economic-
environmental assessment demonstrates an improvement in the net profit per products for
both ATR and SMR cases, and a reduction in the environmental emissions for the ATR
case as illustrated in Figure 5 compared to the study conducted by Al-Yaeeshi et al.
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(2020). This is associated with a slight increase in the capital cost due to the increased
capacity and a reduction in operating costs, thus indicating a reduction in the requirement
of utilities. This provides a substantial assessment to enhance the entire process efficiency
and optimise the total capacity of refined products.

4. Conclusions

The assessment in this study is applied to two different GTL reforming technologies,
which are the ATR and SMR. The integration of captured CO, with the FT-GTL process
demonstrates a significant enhancement in the production of refined products. The results
of the sensitivity analysis demonstrate that the wide range of variables impact the total
refined hydrocarbon products, namely LPG, Gasoline, Diesel, and Wax. The variables
applied in the assessment are steam, CO,, oxygen, and split ratio of syngas recycle to FT
reactor and purge stream for the ATR and SMR cases. The output in both cases detail
optimal operating values that result in the significant enhancement in the final
hydrocarbon production. The highest impact in both cases is with steam injection. Future
studies should include the computation of the energy output / input, impact of CO, price
on the techno-economic recycle of hydrogen and economic viability of hydrogen
integration from different sources.

References

S.A. Al-Sobhi, A. AlNouss, and M. Alhamad, 2021, Techno-economic and
environmental assessment of Gasoline produced from GTL and MTG processes,
Computer Aided Chemical Engineering, 50, 1827-32.

A.A. Al-Yaeeshi, A. AlNouss, G. McKay, and T. Al-Ansari, 2019, A Model based
analysis in applying Anderson—Schulz—Flory (ASF) equation with CO2
Utilisation on the Fischer Tropsch Gas-to-liquid Process, Computer Aided
Chemical Engineering, 46, 397-402.

A.A. Al-Yaeeshi, A. AlNouss, G. McKay, and T. Al-Ansari, 2020, A simulation study on
the effect of CO2 injection on the performance of the GTL process, Computers
& Chemical Engineering, 136, 106768.

S. Ekwueme, I. Nkemakolam Chinedu, U. Julian, A. Kerunwa, N. Ohia, J. Princewill, and
0. Emeka, 2019, Economics of Gas-to-Liquids (GTL) Plants, Petroleum Science
and Engineering, 3, 85-93.

IEA, 2018, Global Energy & CO2 Status Report 2018 - The latest trends in energy and
emissions in 2018, https://iea.blob.core.windows.net/assets/23f9e¢b39-7493-
4722-aced-61433cbffe10/Global Energy and CO2_Status_Report 2018.pdf

M. Marchese, G. Buffo, M. Santarelli, and A. Lanzini, 2021, CO2 from direct air capture
as carbon feedstock for Fischer-Tropsch chemicals and fuels: Energy and
economic analysis, Journal of CO2 Utilization, 46, 101487.

J. McGregor, 2019, 21. Fischer—Tropsch synthesis using CO2, Volume 2
Transformations, 413-32.

QP, 2018, Subsidiaries and join venture details Accessed 14/11/2018,
https://www.qp.com.qa/en/QP Activities/Pages/SubsidiariesAndJointVenturesD
etails.aspx?aid=3

Shell, 2019, Shell qatar project and sites, https://www.shell.com.qa/en_ga/about-
us/projects-and-sites.html




Proceedings of the 14" International Symposium on Process Systems Engineering — PSE 2021+
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-85159-6.50024-5

Machine Learning-based Hybrid Process Design
for the Recovery of Ionic Liquids

Yugiu Chen’, Xiaodong Liang, Georgios M. Kontogeorgis

Department of Chemical and Biochemical Engineering, Technical University of
Denmark, Lyngby, DK-2800, Denmark
yugch@kt.dtu.dk

Abstract

Recycling ionic liquids (ILs) from dilute aqueous solutions is essential for their
applications in both labs and industries. In this work, an efficient hybrid process scheme
that combines aqueous two-phase extraction (ATPE) and distillation operating at their
highest efficiencies is proposed for the recovery of ILs from dilute aqueous solutions.
To find high performance salting-out agents for ATPE, an optimal IL-based aqueous
biphasic systems (ABS) design method is employed. In this optimal design method, a
machine learning (ML)-based model, i.e., artificial neural network (ANN)-group
contribution (GC) model, is applied to predict the phase equilibrium behaviours of IL-
based ABS. As a proof of the concept, results of the recovery of two hydrophilic ILs
from their aqueous solutions are presented.

Keywords: IL recovery, Hybrid process scheme, ATPE, Machine learning, ABS.

1. Introduction

Ionic liquids (ILs) as innovative fluids have received wide attention in both academia
and industries due to their unique properties such as negligible vapor pressure, non-
flammability, wide electrochemical windows, excellent catalytic activities. Great efforts
have been made to facilitate their applications in industry. However, currently there are
little industrial processes employing ILs mostly because their relatively high costs in
comparison with conventional solvents and our limited understanding of their
environmental impacts. For example, large volumes of dilute aqueous IL solutions will
be produced during the dissolution and regeneration of cellulose when using ILs as
solvents. The disposal of these aqueous IL solutions will directly cause the loss of these
high value solvents and this may even result in severe environment issues due to the
toxicity and degradation of the disposed ILs. Both economic and environmental
concerns of using ILs can be offset to some extent if they are efficiently recycled.

To date, various technologies including distillation, extraction, adsorption, membrane
separation, aqueous two-phase extraction (ATPE), crystallization, electrodialysis and
external force field separation have been proposed for the recovery/recycling of ILs
after their application (Zhou et al., 2018). Each separation technology described above
has its own advantages and shortcomings. Currently, distillation and extraction are two
of the most widely studied separation approaches for the recovery/recycling of ILs. Due
to the fact that most ILs have very low volatility, distillation is usually used for the
recovery of ILs from volatile substances, while extraction is preferred in the case of
separating ILs from non-volatile or thermally sensitive components. When recovering
ILs from dilute aqueous solutions, however, distillation method has an extremely low
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thermal efficiency since large volumes of water need to be evaporated, while extraction
approach demands a large amount of solvent for achieving a high recovery yield. On the
other hand, ATPE that based on the formation of the aqueous biphasic systems (ABS),
provides an alternative pathway for recovering ILs from dilute aqueous solutions. This
is due to the fact that it allows the ILs to be efficiently concentrated or recovered in the
IL-rich phase with the addition of a small amount of salting-out agent (Ventura et al.,
2017). However, further purification process such as distillation is generally still
required after aqueous two-phase extraction due to the fact that the IL purity in the IL-
rich phase is not high enough. On the other hand, hybrid process schemes, which
combine processing units operating at their highest efficiencies to perform one or more
process tasks, are being considered as promising innovative and sustainable processing
options (Chen et al., 2018). With this concept, a hybrid process scheme combining
ATPE and distillation method is proposed for the recovery of ILs from their dilute
aqueous solutions. In this hybrid process scheme, salting-out agents with high ABS
forming ability are identified for ATPE through an optimal design method integrating a
machine learning (ML)-based model into the computer-aided design technique. Results
of two case studies are presented to highlight the hybrid process design method
proposed in this work.

2. Design method
2.1. ANN-GC model

The ability to predict phase equilibrium behaviours of IL-based ABS is essential for its
early design. However, thermodynamic models that can provide such predictions are
still not available for these aqueous systems due to their high complexity. Fortunately, a
machine learning-based nonlinear model proposed in our recent work provides the
possibility of describing IL-based ABS (Chen et al., 2021a). This model combines the
artificial neural network (ANN) algorithm and the group contribution (GC) method.
Together with the system’s’ temperature and the mass fraction of IL, 34 IL functional
groups and 37 salting-out agent functional groups are used as inputs (size of 73 x 1) in
this ANN-GC model. The input layer reads the structure information of IL-ABS and
then the hidden layer transfers and delivers this input information to the output layer
where the phase composition of IL-based ABS is quantified, as shown in Figure 1. A
combination of tansig transfer function (Eq. (1)) in the hidden layer and purelin transfer
function ((Eq. (2)) in the output layer was applied.
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Figure 1. Structure of the three-layer artificial neural network (ANN) with an input
vector size of 73 x 1.
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To train and test this ANN-GC model, 17,449 experimental data points covering 171
IL-based ABS at different temperatures (278.15K-343.15K) from numerous literatures
were collected. This ANN-GC model gives a mean absolute error (MAE) between the
experimental and model-calculated mass fraction of salting-out agent of 0.0175 and a
coefficient of determination (R?) of 0.9316 for the 13,789 training data points, and for
the 3,660 test data points they are 0.0177 and 0.9195, respectively. These results show
that this ANN-GC model can well describe the IL-based ABS.

2.2. Optimal salting-out agent design

The separation performance of an ATPE largely depend on the ABS forming ability of
the used salting-out agents. The formation and stability of IL-based ABS is not only
dependent on the structures of ILs such as cation types, lengths of alkyl chain and the
anions, they are also highly associated with the type of salting-out agents.36 ABS with
different ILs and salting-out agents at different temperature generally present different
phase behaviors, it is challenging to find optimal ABS for the recovery of various ILs.
Due to the number of potential IL-ABS being so large, it would be time consuming and
expensive to use the trial-and-error approach to search for the optimal ABS. On the
other hand, the optimal design of compounds/systems through manipulating properties
at the molecular level is often the key to considerable scientific advances and improved
process systems performance (Alshehri et al., 2020). For IL-based ABS , the optimal
design method that integrates the ANN-GC model into the computer-aided design
technique proposed in our most recent work is ideally suited as salting-out agents with
high ABS forming ability can be rapidly and reliably identified for different IL aqueous
solutions (Chen et al., 2021b).

When tailoring an ABS for the recovery of ILs from aqueous solutions, the IL should be
as much as possible to be concentrated in the IL-rich aqueous phase, while the salting-
out agent and water should be at the other phase. As we know, the closer to the axis
origin a binodal curve is, the greater is the ability of a salting-out agent to phase split,
the tie-line length (7LL) and slope of the tie-lines (Srz) are able to verify trends in the
partition coefficients or recovery efficiencies of ABS.

TLL=\/(x§—x§)2+(x,TL—x§)2 3)
T B
X —x
S — 7L IL 4
O e )

where the supercrits 7 and B designate the top phase (IL-rich phase) and the bottom
phase (salt-rich phase), respectively, while the subscripts S and /L denote the mass
fraction x of the salting-out agent and of the IL.
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With the use of an objective function combining 7LL and Sy, the optimal design of IL-
based ABS is formulated as a MINLP optimization problem mathematically descried by
Eq. (5). In IL-based ABS, the specific IL is denoted by a vector H* = [H/", H, ...
H;/"]. The first 5 elements H; 5" are integer variables describing the number of cation
substituents. and the rest elements Hy 3/ are binary variables denoting the existence of
cations and anions. On the other hand, each generated salting-out agent is represented
by a vector y = [y, y> ... y37/. The first 26 elements y;_»s are binary variables describing
the existence of salt anions, carbohydrates, amino acids. The other elements y»;.3; are
integer variables denoting the number of salt cations. The best performance salting-out
agent and its inputs can be determined for specific IL aqueous solutions (e.g., specific
temperature 7%, IL structure H” and IL mass fraction in IL-water mixture G*) by
maximizing f (z, y, T, H™, G*) that subjects to a series of constraints on salting-out
agent structure, mass balance and phase equilibria.

max_ TLL-(-S,) = f(z, y’TaS’HIL’Gas)

S.f. salting-out agent structural constraints (5)
mass balance constraints
phase equilibria constraints

where vector z represents a continuous variable describing the ratio of added salting-out
agent to the original IL-water mixture and r is an adjustable parameter describing the
degree of influence from TLL and Sz;.

2.3. Hybrid recovery process scheme

The novelty of a hybrid process scheme is that each involved processing unit can
operate at their highest efficiencies. The result is same task performed at much less
energy inputs and/or lower cost. As mentioned above, distillation method has an
extremely low thermal efficiency for recovering ILs from their dilute aqueous solutions,
while ATPE approach cannot meet the final product specification. In such a case, hybrid
process scheme combining ATPE and distillation is ideally suited as most water can be
easily removed by adding a certain amount of salting-out agents and the rest of water
can be distilled with a low energy input, as shown in Figure 2.

Salting-out agent
IL dilute aqueous solution H,O

IL concentrated
aqueous solution

Column

Salting-out agent IL
aqueous solution

Figure 3: Hybrid process scheme for the recovery of ILs from dilute aqueous solutions.

IL + H,0

Salting-out agent
+

H,O

ATPE
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3. Case studies

1-butyl-3-methylimidazolium chloride ([CsmIm][Cl]) is a highly efficient direct solvent
for the dissolution and regeneration of cellulose and large volumes of dilute IL aqueous
solutions are produced during the precipitation of the regenerated cellulose.12,13
Therefore, efficient recycling of [C4smIm][Cl] from these aqueous solutions is a critical
step for the commercialization of this IL-based pretreatment technology. n-
butylpyridinium trifluoromethanesulfonate ([C4Py][TfO]) is another well-known
hydrophilic IL that has potential industrial applications and it’s also important to
recover them from aqueous solutions during these applications. In this section, the
proposed hybrid process design method will be used to recover [CsmIm][Cl] and
[C4Py][TfO] from their aqueous solutions. First, two salting-out agents NH4),SO3 and
KH,PO, are, respectively, identified for [CsmIm][Cl]- and [C4Py][TfO]-based ABS
formation by solving the MINLP problems in the modelling system GAMS 24.4.6,
where a deterministic global optimization solver, Lindoglobal, is applied. As shown in
Figure 3a and 3b, both (NH4),SO3 and KH,PO, have better ABS forming ability than
their counterparts K,CO3 (Zafarani-Moattar et al., 2010) and (NH4),SO4 (Guo et al.,
2020) reported in the literature, indicating the availability of this optimal salting-out
agent design method.

0.35 . Exp. (K,CO3) 0.25 4 Exp.((NH,),S0O,)
0.304 \\.o v (XS (%) ."v v T (0 x)
9:2 \.\ *  (xuXs) Somd e * (XXs)
Zo25 N\ — Model Cal. (K,CO;) £ ——— Model Cal. (NH,),S0,)
E N\ Model Cal. ((NH,),SO,) 2 Model Cal. (KH,PO,)
©0.20 \ & 0.154
© [v]
=1 5
3 0.154 =
2 2010
= 0.104 ﬁ
0.05 4
0.05 4
0.00 - . . . r 0.00L ’ r T T
0.0 0.2 0.4 0.6 08 0.0 0.2 0.4 0.6 0.8
[CsmIm][CIY(wWi%) [C,PYITIO} (wWt%)
(a) (b)

Figure 3: Ternary phase diagrams for ABS composed of (a) [CsmIm][CI]-H,O-
KzCOz/(NH4)zSO3 and (b) [C4Py] [TfO]—HzO-(NH4)2SO4/KH2PO4.

For the recovery of 10 wt% [C4Py][TfO] from aqueous solutions, the ABS of
[CsmIm][Cl]-H,O-(NH4)2SO; gives an IL recovery efficiency of 95.0 wt% and a
salting-out agent input of 2.36 kg/kg IL recovery, and for the ABS of [C4Py][TfO]-H,O-
KH>POj, they are 95.6 and 1.81, respectively.

After removing most water by APTE, the IL concentrated aqueous solution is sent to the
distillation column, where purified IL can be obtained at the bottom and the rest of
water is distilled from the top. In this work, the detailed process simulations of
distillation column are performed in Aspen Plus. By far, ILs are still not included to the
component database in Aspen Plus and therefore they should be defined as pseudo-
components. To do this, properties of ILs such as molecular weights, physical properties
and critical properties need to be specified. Likewise, information of the thermodynamic
method for the IL containing system should also be specified. In this work, the physical
property models are taken directly from our previous work (Chen et al., 2019) and
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critical properties are calculated from the fragment contribution-corresponding states
method proposed by Huang et al. (2013). On the other hand, UNIFAC model is selected
as the thermodynamic method and model parameters including group volume
parameters, surface area parameters and interaction parameters are taken from the
published works (Song et al., 2020). Table 1 presents the process performance of both
hybrid process scheme (Scheme 1) and pure distillation process (Scheme 2). Clearly, the
hybrid process scheme demands much less energy input than that of the pure distillation
process. However, a certain amount of salting-out agent is needed for ATPE in the
hybrid process scheme. Nonetheless, the hybrid process scheme provides a good
alternative for recovering ILs from dilute aqueous solutions due to its excellent energy
performance.

Table 1: Energy performance of hybrid process scheme and pure distillation process.

IL aqueous solutions [CsmIm][CI] solution [C4Py][TfO] solution
Process scheme Scheme 1 Scheme 2  Scheme 1 Scheme 2
Salting-out agent input 2.36 0 1.18 0
(kg/kg IL recovery)
Energy input 0.16 6.86 0.082 6.62
(kW/kW IL recovery)

4. Conclusions

A hybrid process scheme that combines ATPE and distillation method has been
proposed for the recovery of hydrophilic ILs from their dilute aqueous solutions. In this
hybrid process scheme, salting-out agents with high ABS forming ability are identified
for ATPE through an optimal design method integrating the ANN-GC model into the
computer-aided design technique. Two case studies are performed to test this hybrid
design method. In both cases, the salting-out agents identified by the optimal design
method have better ABS forming ability than their counterparts reported in the literature,
and the hybrid process scheme present much better energy performance than the
recovery process only using distillation unit.
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Abstract

In the process industry, non-ideal mixtures are mainly separated by solvent-based
separation, such as extraction, extractive distillation, and azeotropic distillation. For these
separation methods, the separation barrier is overcome by adding an external component
(solvent/entrainer) to the system. Much effort has been devoted to optimally design/select
the solvent through screening different solvents’ physical properties. It is also necessary
to account for separation process properties such as energy consumption, number of
stages, etc., during solvent selection. In this work, a short-cut evaluation model that can
quickly assess the solvents’ physical/mixture properties and process properties has been
applied for designing an optimal separation-based process. Four case studies
(acetone/chloroform, acetone/methanol, benzene/cyclohexane, and methanol/methyl
acetate) have been considered. The results reveal that given a list of potential solvents,
the short-cut evaluation model can correctly predict the process performance.

Keywords: Solvent-based separation; optimization; solvent selection.

1. Introduction

Solvent-based separation is a class of processes where non-ideal mixtures are purified
based on their solubility difference (extraction) or vapor-liquid equilibrium difference
(extractive distillation and azeotropic distillation). Typically, a third component
(solvent/entrainer) is added to bypass the separation barrier and facilitate the separation.
The effectiveness of this separation is highly dependent on the solvent. Different solvents
lead to different process designs and eventually influence the overall capital/operating
cost. Many solvent selection methods have been proposed to select the optimal solvent.
Shen et al. (2015) proposed a solvent evaluation and ranking algorithm, which selects the
solvents based on the summation of five important physical properties, such as boiling
point, selectivity, molecular weight, etc. Cignitti e al. (2019) presented an optimization
model to design the solvent by maximizing the separation driving force. Kossack ef al.
(2008) pointed out that solvent screening based on physical properties alone may result
in unfavorable solvent choices. A more comprehensive solvent selection method,
rectification body method (RBM), was proposed by Kossack ef al. (2008), which can
accurately calculate the process properties, like minimum solvent flowrate and minimum
energy demand. However, this method is computationally demanding.

It is necessary to develop a fast and reliable solvent selection method so that a large
number of solvents can be evaluated efficiently. A short-cut solvent evaluation model is
presented in this paper, which takes both solvent physical properties and separation
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process properties such as minimum energy consumption, the minimum number of
stages, etc., into account during solvent selection. Given a list of potential solvents, the
model can quickly evaluate the performance of the different solvents and give
recommendations on the best option. The paper includes two parts: 1) solvent evaluation,
2) evaluation results validation. In the solvent evaluation, the model is applied to rank a
list of solvents. The ranking results are validated by rigorous process simulation models
where the operating/design variables are identified via derivative-free optimization.

2. Methodology
2.1. Solvent short-cut evaluation method

The solvent evaluation model aims to quickly and reliably assess different solvents based
on various performance indicators. This model considers both the process properties and
physical properties in the evaluation process. Firstly, a short-cut calculation model, which
is based on Underwood and Fenske equations, is applied to calculate the process
properties like minimum reflux ratio and the number of stages of a column. The
Underwood and Fenske equations assume that the system has constant relative volatility.
A typical extractive distillation system includes two columns, where the second column
is simply solvent recovery distillation. Therefore, for the second column, the Underwood
and Fenske equations can be applied to calculate the minimum number of stages and
reflux ratio. However, these two equations cannot be directly applied to the extractive
distillation column. Figure 1 shows the vapor-liquid equilibrium curve across the
extractive distillation column. The extractive distillation column is divided into three
sections: rectification, extraction, and stripping, and the relative volatility is different for
each section, which means this change in relative volatility across the sections has to be
accounted for. Here, we assume that the relative volatility is constant for each section, so
the Fenske equation can be used in each section separately to calculate the minimum
number of stages. The minimum reflux ratio is calculated when the operating line
intersects with the VLE curve. In this way, the column minimum reboiler duty can be
calculated by using the stage enthalpy balance. The extractive distillation column is
described by Equations (1) — (6), where Equation (1) is only applied for ternary systems
that do not have a separation boundary (Gerbaud and Rodriguez-Donis, 2014). For ternary
systems with a separation boundary, such as the acetone/chloroform/ethylene glycol
system, one can assume the distillate/bottom composition and calculate the minimum
solvent flowrate through mass balance.

(F_E) _ (RR+1)D x (xpa=Ypa) | D(Xp—%Xpa)
FaB/ min Fap (xg—xpa)  Fap(Xg—xpa) (1)
N Lg(xi, 1 /%0 )/ (Xiv 10 Xie10)] =012 @
ke lg(ain,i) ' Y
2
Npin = Z Nmin,i (3)
i=0
Fgxj, + D(xp — y51)
Riyini = - —,j=1,2 4
g D(yji—xj1) )
Rpin = max{Rmin,l; Rmin,z} (5)

Qreboiler,min = (Rmin + 1)DHD,V + WHy, — HgFg — HypFup — RminDHD,L (6)
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In the model, Fris the solvent/entrainer flowrate, Fapis the raw material flowrate, RR is
the predefined reflux ratio for solvent flowrate calculation. D and W are the distillate and
bottom flowrates. xp and xw are the distillate and bottom compositions. xz is the inlet
solvent composition. xr4 is the minimum solvent composition that breaks the azeotropes
after adding the solvent, and component A is the lightest component in the system. yps*
is the vapor composition in equilibrium with xp4. Nmimsis the minimum number of stages
in the /M section. x;sand x;sare the light and heavy component compositions in the /"
section. a is the geometric relative volatility of the /" section. xjsand yjsare the light
compound liquid and vapor compositions at the first (=1) and last (/=2) stage of the
extractive section. Rmin is the minimum reflux ratio. Hpvare Hp,are the vapor and liquid
enthalpies of the distillate product. Hrand Has are the enthalpies of entrainer and binary
raw materials. The inlet is assumed to be at boiling point (g= 1). After analyzing different
extractive distillations systems, xz£is usually between 60 % to 80%, xz£is close to xz,z,
and the difference is in the range of 5%.
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Figure 1. VLE plot of acetone/methanol/water extractive distillation. (Xo, X1, X2, X3 — boundary
composition in each section).

For each solvent, we calculate the minimum reboiler duty, number of stages, and reflux
ratio by applying the proposed calculation method. Eight properties, including six process
properties, e.g., the minimum number of stages, reboiler duty and reflux ratio, and two
physical properties, e.g., solvent flowrate and boiling point, are considered in the
evaluation model. These properties are selected because they directly influence the
process capital and/or utility cost. Given N number of potential solvents, for each
property, a value from one to N is assigned (where one is given to the best solvent with
that property). Finally, the solvents are ranked based on summation scores, and the best
solvent has the overall lowest score.

2.2. Validation model

To validate the rankings given by the solvent evaluation method, simulation-based
optimization is employed to optimally design the extractive distillation setups. The total
annualized cost, which considers both capital and utility costs, is the objective function.
The number of stages, inlet stage, and solvent flowrate are the decision variables. A
generalized form of the optimization problem solved by the simulation-based
optimization algorithms is given in Equations (7)-(15).
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min: TAC = ﬂx IC + AUC 7
i+1D"-1
st.IC = ZCOStj(qS,j) @)
j
AUC = 24 x 300 x Z Utility; (q,,) o)
j
q = O(Fs, Ny, Ny feeq, Nis), k = 1,2 (10)
X = purity (11)
Fop = Fs < Fgy (12)
Nifeed, . < Nifeea < Nifeed,u (13)
Nir, = N < Ny (14)
Nisy < Nis < Nisy (15)

Here, TAC is the total annualized cost, IC is the investment cost, AUC is the annualized
utility cost, 7is interest, z2is plant life (2=5 is used in this model), Cost; is the investment
cost of equipment j, Utility; is the utility cost of equipment j, gs;is the sizing variable for
equipment j, go; is the operating variable for equipment j, xm is the product purity of
component m, ©(Fs, Nk, Nireea, N1s) is the process simulation model, Fsis the solvent
flowrate rate, Nk is the number of stages of column &, Vi reeq is the materials feed stages
of column k, NV, sis the solvent feed stage of the first column, and Z and Urepresent the
lower and upper bounds.
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Figure 2. DFO solving algorithm for validation model.

To generate stable results that are not influenced by the initial lower and upper bounds,
an algorithm (Figure 2) is developed to solve the optimization problem. The algorithm
has two parts: 1) inner loop: given the initial upper and lower bounds of the decision
variables, the inner loop runs the process simulation, and using a derivative-free
optimization (DFO) solver, the best design parameters are identified. 2) outer loop:
according to the identified best design parameters from the inner loop, the lower and
upper bounds are updated and sent back to the inner loop. The process terminates after
reaching a stable objective value.

3. Results and Discussion

Four separation systems, acetone/chloroform, acetone/methanol, benzene/cyclohexane,
and methanol/methyl acetate, with their potential solvents, were selected from the review
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paper by Gerbaud et al. (2019). The short-cut evaluation model and DFO results are listed
in Table 1. The identified design parameters of the best solvent are listed in Table 2.

Table 1. Tested evaluation and DFO results.

Solvents Score  TAC, 10°%  Solvents Score  TAC, 10°$
Acetone/Chloroform Acetone/Methanol

EG 16 0.77 Water 20 3.32
DMSO 14 0.66 2-Proponal 35 7.6
o-Xylene 28 1.05 Ethanol 27 6.64
Benzene 33 1.29 DMSO 14 2.87
Chlorobenzene 29 0.94 EG 24 4.63
Benzene/Cyclohexane Methanol/Methyl Acetate

Dimethyl phthalate 22 0.95 DMSO 13 1.05
NMP 24 0.76 EG 18 1.11
Aniline 34 0.97 2-Methoxyethanol 17 0.98
Sulfolane 19 0.69 - - -
Furfural 21 0.72 - - -

For acetone/chloroform separation, the short-cut evaluation method ranks the five
solvents in the following order: DMSO (Dimethyl sulfoxide) > EG (ethylene glycol) >
chlorobenzene > o-xylene > benzene. The DFO gave a similar TAC order except for
chlorobenzene and o-xylene. This is because the system has a separation boundary, and
we have to approximate this separation boundary using calculated residue curves from
process simulation software. The solvent flowrate of o-xylene is 1.22 times larger than
chlorobenzene, but it is 1.61 times larger from the DFO results. So, the o-xylene system
has higher reboiler duty and higher TAC value. The short-cut and DFO results give the
same order: DMSO > water > EG > ethanol > 2-proponal for acetone/methanol
separation. For the benzene/cyclohexane case, the short-cut model predicts the following
order: sulfolane > furfural > dimethyl phthalate > N-Methyl-2-pyrrolidone (NMP) >
aniline, but the DFO results show that the NMP has better performance than dimethyl
phthalate. Although the evaluation model correctly represents that the dimethyl phthalate
system has a lower number of stages, but its high boiling point results in higher column
temperatures, which requires a furnace. Due to this, the capital cost of dimethyl phthalate
system is higher than the NMP system. For the methanol/methyl acetate case study, only
three solvents were selected because of the lack of experimental phase equilibrium data.
Among these three solvents, the short-cut evaluation method predicts that DMSO has the
best performance, but the DFO results show that 2-methoxyethanol has better
performance. The evaluation model shows that the 2-methoxyethanol has a smaller
number of stages for the extractive column and a higher number of stages for the second
column, which results in similar capital costs. However, the predicted minimum reboiler
duty does not correctly represent the utility cost. Two reasons may cause this deviation:
1) Boiling point, DMSO has higher boiling point than 2-methoxyethanol, so different
types of utilities have to be used. However, in this model, we rank the properties only
based on their relative heat duty, and the different types of utilities are not considered. 2)
Boundary composition (x;, x2). The boundary composition influences the sections’
relative volatility and thus influences the calculated reboiler duty. The same xz,z value is
used in all cases, but DFO proves that DMSO xzr is equal to 60%, while 2-
methoxyethanol, EG has similar xz,£ values around 70%.
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Table 2. Design parameters of the identified best solvent for the four separation systems.

Acetone/ Acetone/ Benzene/ Methanol/
chloroform  methanol  cyclohexane methyl acetate

Best identified solvent DMSO DMSO Sulfolane 2-methoxyethanol
Fas (equimolar), kmol/h 100 540 100 100

Ni 36 41 25 49
T1 Nt 13 27 13 37

Nis 3 3 2 6

N2 13 19 13 23
2 No ¢ 4 14 4 8
Fs, kmol/h 111 399.6 88 263

4. Conclusions

Solvents can alter the relative volatility of mixtures and therefore the selection of the
optimal solvent impacts extractive distillation design and operation. The best solvent has
to balance the process capital and utility cost so that the annualized cost is minimized.
This work presents a simple and reliable short-cut evaluation method to assist in solvent
selection for solvent-based distillation. The proposed method was applied to four different
extractive distillation systems. By including the process properties in the solvent ranking
algorithm, the solvent with the best process performance (lower capital/utility cost) is
identified. The evaluation results were validated by a rigorous design approach where the
key operating parameters are optimally designed. Both the solvent evaluation and the
optimized process results demonstrated that DMSO, DMSO, sulfolane, are the best
solvents for separating acetone/chloroform, acetone/methanol, and benzene/cyclohexane
azeotrope systems, respectively. The methanol/methyl acetate azeotrope system results
indicated that the solvent boiling point and the choice of boundary composition might
highly impact the ranking results, so the ranking algorithm will need to be further
improved by taking these factors into account. The proposed approach can be applied as
a first screening of potential solvents with low computational cost and decent screening
results.
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Abstract

Ionic liquids (ILs) have recently been considered as alternatives to conventional amine-
based absorbents in post-combustion CO, capture processes. However, solvent losses by
IL thermal degradation could be more significant than in the case of conventional amine
solvents. In this paper, we propose an advanced process design that uses a thin-film unit
under vacuum to minimize the thermal degradation of solvent during regeneration. We
employ rigorous thermodynamics and rate-based mass transfer models, with robust simu-
lation and optimization capabilities implemented using a pseudo-transient modeling tech-
nique. The impact of solvent thermal degradation on the economic performance of the
IL-based carbon capture process is studied. A comparison to a conventional process de-
sign is presented.

Keywords: carbon capture, flowsheet optimization, ionic liquids, process design,
thermal degradation kinetics

1. Introduction

Recently, ionic liquids (ILs) have gained attention as promising solvents for post-
combustion carbon capture due to desirable properties such as negligible volatility, high
CO, absorption capacity and low heat of regeneration (Aghaie et al., 2018).

In this work, we consider triethyl-(octyl)phosphonium 2-cyanopyrrolide ([P,;,5][2-
CNPyr]) as an IL chemical absorbent for CO, capture because of its high CO, absorption
capacity, moderate reaction enthalpy, superior reversibility, and relatively low viscosity
(Seo et al., 2014). Although it is a promising candidate IL for carbon capture in terms of
these properties, its thermal stability should also be considered because solvent (thermal)
degradation could result in economic losses as well as operational problems (Rao and Ru-
bin, 2002). Our experiments indicate that the thermal degradation rate of [P,,,5][2-CNPyr]
is comparable to or greater than that of monoethanolamine (MEA), a conventional amine-
based solvent. In addition, given that the bulk price of ILs is expected to be higher (esti-
mated $10/kg) than that of conventional amine solvents (e.g., MEA at $1.5-2/kg) (Ramdin
et al., 2012), the cost associated with solvent loss is particularly important.

Solvent thermal decomposition occurs mainly during solvent regeneration, where the sol-
vent is exposed to high temperatures. A conventional solvent regeneration system (strip-
per and reboiler) has a relatively long liquid residence time (5-10 minutes) (Walters et al.,
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2016; Jung et al., 2018), exposing the solvent to high temperatures for prolonged periods
of time. The thermal degradation of the solvent can be reduced by using a short residence
time with a small liquid hold-up (Alhusseini et al., 1998) at the regeneration temperature.
Thin-film technology can replace such a conventional regeneration system, diminishing
residence times and thus the thermal degradation issue. When thin film units are operated
under vacuum pressure, the regeneration temperature can be lowered even further.

Based on these considerations, we propose a novel flowsheet design for an IL-based carbon
capture process. We then perform economic optimization of the proposed process flow-
sheet using a pseudo-transient optimization framework (Pattison and Baldea, 2014) with a
focus on the economic impact of solvent thermal degradation. The regeneration tempera-
ture and associated liquid residence time are reduced using a thin-film column integrated
with a vacuum compressor. This can significantly reduce the thermal degradation of IL
absorbent and the associated make-up costs compared to the conventional regeneration
system using a reboiler.

2. Flowsheet description

Figure 1 shows the proposed process design for IL-based CO, capture. The conventional
regeneration system that consists of a stripper and reboiler is replaced with a thin-film unit.
A thin-film unit is composed of a bundle of tubes in a shell. A liquid film flows downward
on the interior vertical surface of each tube and the tube walls are heated by steam on the
shell side. This unit can provide high heat and mass transfer rates due to the large surface
area created by the liquid film. In the case of the proposed carbon capture plant, the liquid
is the rich (i.e., high CO, concentration) IL solvent. The CO, is desorbed from the liquid
and leaves at the top of the unit.

Multi-stage (vacuum)
compressor

Cleaned exhaust gas
_D—. €O, (150 bar)

Lean IL PSaintial
Cooler Solvent \
make-up 1 \
) T
l— Steam 1
! I
! I
Absorber 1
Thin-film unit |
! I
! I
Flue gas > Feed | Condensate| 1
- <
effluent heat 1 1
exchanger \ /
Rich IL
I
Lean IL

Figure 1: Proposed IL-based carbon capture process flowsheet. A conventional system
stripper and reboiler system is replaced with a thin-film unit (shown by the dashed line)
for solvent regeneration.
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The CO, absorption model and other physical properties for the IL solvent used in this
work ([Py,3][2-CNPyr]) are presented in our previous work (Seo et al., 2020). The exper-
imentally measured thermal degradation of this IL solvent can be described by apparent
zero-order kinetics, with an Arrhenius temperature dependence of the rate constant:

20 4 (s () .

where m/(0) is the initial mass of solvent and m(t) is the mass after time ¢. The pre-
exponential factor ky and activation energy F, are estimated from experimental data to be
ko =305.5h~! and E, = 41.8 kJ/mol.

We use a rate-based mass transfer model to describe kinetically limited transport phenom-
ena. A detailed description of the rate-based model for the absorber column and the related
material and energy balances can be found in our previous work (Seo et al., 2020). How-
ever, we modify the mass transfer coefficient and effective area correlations (Song et al.,
2018) to be more suitable for viscous IL solvent flow. For the thin-film unit, the same rate-
based model is used with some modifications. The liquid phase mass transfer coefficient is
estimated using the correlation of Yih and Chen (1982). The mass transfer resistance in the
vapor phase is assumed to be negligible. The mass transfer area per volume is calculated
by dividing the total tube surface area by the overall thin-film column volume. For the
heat transfer rate in the thin-film unit, an additional heat transfer term between the steam
and liquid film is introduced. The heat exchanger model is also based on Seo et al. (2020).
However, the overall heat transfer coefficient and the associated pressure drop models are
modified to use empirical correlations for viscous liquids (Talik et al., 1995). The flooding
point for the thin-film unit is determined using an empirical correlation from Mouza et al.
(2005). Finally, the liquid residence time for each unit (only residence times in the heat
exchanger and the regeneration unit where the solvent operates at high temperature are
considered) is estimated from the ratio of the total hold-up volume to the liquid flowrate.

3. Process economic optimization

The optimization problem is formulated as:
min - ¢(x, 7, §)

st fx,m&) =0 2)
c(x,m € <0

where the objective function, ¢, is the sum of the annualized capital cost (for the absorber,
heat exchanger, compressor, cooler, gas blower, solvent pump, and thin-film unit) and the
operating cost (for heating, cooling, electricity, and solvent make-up) of the IL-based CO,
capture process, f is the flowsheet model described above, and ¢ are process operating
constraints. 7 are process decision variables, x are process state variables, and £ are
process parameters. The decision variables and constraints are summarized in Table 1.
The resulting CO, capture process flowsheet model is difficult to solve because of its large
size and coupled nonlinear equations. We improve the initialization and convergence of
this complex flowsheet optimization problem using a pseudo-transient modeling technique
(Pattison and Baldea, 2014).
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Table 1: Decision variables and process constraints for process optimization
Component Relevant variables and equations

. . . P L
Decision variables? F' ) L, D7 LT: DT’ Tabsorber,ina T‘thin—ﬁlm,ins Tsteam, PT

. FV . 7FV
Process constraints® —S%2 % > () g
CO,.in

A,I‘appr, min Z 1°C

Ts < 150°C

0.08 bar < Pr < 1bar
Fry < 0.8Fry

a pL s TL solvent circulation flowrate, L and D are height and diameter
of the absorber, Lt and Dt are height and diameter of the thin-film unit,
Tbsorber.in A0d Tinin-fiim,in are inlet temperatures of the absorber and thin-film
unit, 7eqm 18 regeneration steam temperature, and Pr is pressure of the thin-
film unit.

® The CO, removal rate is constrained to be at least 90%, the minimum ap-
proach temperature of heat exchanger is constrained to be not lower than 1
°C, the suction pressure of the vacuum is limited to equal or greater than
0.08 bar, and the thin-film unit is restricted to operate below 80% of the
flooding point.

Figure 2 shows a comparison of optimal process costs between the proposed (thin-film
unit operated under vacuum pressure) and conventional (stripper with a reboiler system
operated under atmospheric pressure) regeneration systems. The flue gas conditions cor-
respond to a natural gas combined cycle power plant (case B31B in James et al. (2019)).
The same cost correlations are used for both systems. In the conventional process, the res-
idence times in the stripper and reboiler are assumed to be 0.1 and 5 minutes, respectively
(Walters et al., 2016).

The absorber cost of the conventional system ($74.4 M/year) is higher than that of the
thin-film system ($38.7 M/year). Also, the optimal absorption temperature is 15 °C for
the conventional system whereas it is 30 °C for the proposed system. This is because a
smaller mass transfer area for CO, absorption and higher absorption temperature would be
sufficient to capture the same level of CO, since the solvent regeneration is more effective
under reduced pressure. The optimal operating pressure for the proposed regeneration
system is found to be 0.41 bara. Therefore, the compressor equipment cost is much higher
for the thin-film case ($51.0 M/year) compared to the conventional case ($18.4 M/year)
because a larger compressor is required to accommodate increased CO, gas volume at the
reduced operating pressure. However, the CO, loading in the regenerated IL solvent can
be much lower for the proposed system (0.097 CO,/mol IL) compared to the conventional
system (0.161 mol CO,/mol IL).

A key comparison in the operating costs is the solvent replacement cost. The residence
time in the regeneration system is much smaller in the proposed configuration (thin-film:
1.2 min vs. conventional: 5.1 min). This can be attributed to a small liquid hold-up volume
in the thin-film unit. As a result, the solvent make-up cost related to thermal degradation is
significantly reduced (thin-film: $31.7 M/year vs. conventional: $90.2 M/year). Electric-
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Figure 2: Comparison of process economics between proposed and conventional systems.

ity cost for the compression would be higher for the thin-film system because of operating
under vacuum (thin-film: $16.9 M/year vs. conventional: $11.3 M/year). However, the
solvent cooling cost is higher for the conventional system because of lower absorption
temperature (thin-film: $3.2 M/year vs. conventional: $15.8 M/year). Overall, the process
economic cost is significantly reduced for the proposed system ($227.3 M/year) relative to
the cost for the conventional setup ($271.6 M/year).

4. Conclusions

Solvent thermal degradation can be a significant concern in an IL-based CO, capture pro-
cess. In this work, we propose a flowsheet configuration that utilizes a thin-film solvent
regeneration unit under vacuum for reducing the regeneration temperature and the associ-
ated liquid residence time. We determine the optimal annualized process cost of this ad-
vanced IL-based carbon capture process (for a a natural gas combined cycle power plant)
and find a significant reduction in process cost (in particular, the solvent make-up cost as-
sociated with thermal degradation is reduced by about a factor of three) compared to the
conventional case, in which a stripper and reboiler are used for the solvent regeneration.
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Abstract

Carbon dioxide conversion technologies have been extensively investigated as a viable pathway for lowering
greenhouse gas emissions. However, due to thermodynamic and product separation limitations, numerous routes
have been proposed. This work presents a techno-economic study of the production of formic acid and methanol
promoted by ionic liquid at a commercial scale. To that aim, Aspen Plus® V10 was employed to build a simulation
that included the solubilization of CO> in 1-ethyl-2,3-dimethylimidazolium nitrite ([Edmim][NO,]) ionic liquid
(IL), synthesis of the CO,-[Edmim][NO,] adduct with hydrogen, product separation, and recycling of the IL. The
CO; conversion (87 %) resulted in ~83 % and ~14 % yield of formic acid and methanol, respectively. This result
is an improvement in previous conducted findings. Furthermore, it was discovered that a discount rate between 4-
5% (@ 0.78 USD/kg of formic acid) or 0.93-1 USD/kg (@ 10% discount rate) would make the project profitable.

Keywords: Carbon dioxide Conversion; Formic acid; Ionic Liquid; Methanol.

1. Introduction

Carbon dioxide (CO,) utilization and conversion in the production of fuels, chemicals, and materials are potentially
promising CO; abatement alternatives by lowering CO, emissions, reducing fossil fuel usage (Pérez-Fortes and
Tzimas, 2016), and also providing a chemical storage alternative for intermittent renewable electricity (Schlogl,
2013). This approach can significantly contribute to the decarbonization of the energy system (Olah et al., 2009).
Formic acid (FA) and methanol (MeOH) are typical examples of chemicals and liquid energy carriers. However,
the hydrogenation of CO, to formic acid is endergonic in the gas phase (AG°xs = +33 kJ/mol), hence,
thermodynamically unfavorable (Wang & Himeda, 2012; Leitner, 1995). The thermodynamic limitation can be
overcome by perturbing the reacting system with a secondary reaction or molecular interaction. One of the
available strategies is the neutralization of the reaction with a weak base (tertiary amines or alkali/alkaline earth
bicarbonates) to yield formamides (Xu et al., 2011; Jessop et al., 1999). However, there are concerns about the
post-treatment of intermediates to get a pure formic acid. (Leitner, 1995; Su et al., 2015). Ionic liquids (ILs) play
an essential role in solving these two problems due to their solvating and low volatility property (Zeng et al., 2017).
In addition, ILs can fine-tune the properties of the solvent by altering the structure, catalyst immobilization (Ghavre
etal., 2011; Kokorin, 2012; MacFarlane et al., 2017), and CO- activation (Wang et al., 2015). Hence, in this work,
the economic implications of deploying a process plant for the hydrogenation of CO, to formic acid and methanol
using IL ([Edmim][NO;]) as the reaction media was examined. The evaluation to retrieve technical and process
significant parameters was carried out with the Aspen Plus V10 process simulation software.

2. Process Description.

The process flow diagram of the CO, hydrogenation to FA acid and MeOH was developed and shown in Figure 1.
The synthesis method is a two-step process comprising CO, solubilization and conversion in a column and reactor,
respectively. The plant capacity was set at 33,000 t/y of FA and MeOH with a purity of 97.7 % and 99.99 %,
respectively. The feedstocks for this process are CO; and hydrogen (H) and the ionic liquid, which serves as the
reaction media. CO, and H,) were assumed to be free from impurity. The [Edmim][NO>] was initially heated to a
temperature of 40 °C before entering the solubilization section together with compressed CO; at 80 bar. The CO,
dissolves in the IL forming a CO»-[Edmim][NO>] adduct. The resulting adduct leaves the solubilization unit and
enters the synthesis section together with a stream of compressed hydrogen gas. The reactor operates at 20 °C and
17 bar for CO; conversion. FA, MeOH, and water are the resulting products of the reaction, which, together with
unreacted CO, and H», are sent to a separator to remove and recycle the [Edmim][NO:], while the remaining
compounds leave the column as vapor products. The products are cooled, and unreacted H, and CO; are separated
using black-box separator units and recycled to the reactor and solubilization column, respectively. The stream of
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formic acid, methanol, and water are sent to the separation unit, where two distillation column units are employed.
Methanol is separated at the first distillation column. The bottom product from the first column, an azeotropic
mixture of FA and water, enters an extractive distillation using [Edmim][NO:] as solvent. FA with 97.7 % w/w is
recovered as the top product, while [Edmim][NO;] and water are separated by a simple flash separation process.
Table 1 presents the operating conditions for the main process equipment.

WASTEH2O

Figure 1: Proposed process flowsheet of CO2 hydrogenation with [Edmim][NO2] as reaction media

Table 1: Operating conditions for the main process equipment

Units Operating Conditions

Compression CMP-101 Pexit = 80 bar, Number of stages = 3
Solubilization F-100 T=20°C; P=280bar

Column

Separator F-101 T =150°C; P=0.1 bar

Reactor R-100 T=20°C;P=17bar

Distillation D-100 P =1 bar; Stages = 22; Feed stage = 11; Reflux
Column ratio = 4; Condenser: Full.

Extractive D-101 P =1 bar; Stages = 23; Feed stage = 2; Reflux
Distillation ratio = 0.01; Condenser: full; Distillate to feed
Column ratio = 0.69

3. Process Simulation.

The thermodynamic models for the CO, solubilization and synthesis sections are the conductor-like screening
model for segment activity coefficient (COSMO-SAC) with Peng Robinson-Wong Sandler equation of state
(ESPRWS). Due to the unavailability of experimental data of [Edmim][NO2], its thermodynamic properties were
estimated by Conductor Like Screening Model for real solvents (COSMO-RS) as described in previous works
(Bello etal., 2021a,2021b). The reactor was modeled using RYield with two independent reactions (FA and MeOH
formation) (Bello et al., 2021b). The solubilization column was modelled with a two-outlet flash using rigorous
vapor-liquid equilibrium.. The distillation columns (D-100 and D-101) were modelled with a rigorous RADFRAC
model in equilibrium mode. All the property methods were selected following the guidelines of Towler and Sinnott
(2013) and taking into account the reaction system's temperature, pressure, and volatility. Multistage compressors
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were selected and modelled as isentropic with a fixed discharge pressure from the last stage. Heat exchangers were
modelled by the shortcut method.

4. Techno-Economic Assessment

In any chemical project, estimating capital (CAPEX) and operational (OPEX) costs are critical components in
determining the long-term viability of any chemical process. The CAPEX comprises costs such as equipment, land,
and installation. Raw materials (CO, and H>), reaction media [Edmim][NO-], and utilities are all included in the
OPEX. The equipment purchase and utility costs were estimated using the inbuilt Aspen Process Economic
Evaluation (APEA). Aspen software's cost basis calculation is based on the first quarter of 2016. When compared
to other cost correlations, this method can provide reasonably accurate cost estimates during the conceptual phase
(Towler and Sinnott, 2012). The installation costs of the sized equipment were then calculated. After that, the total
capital investment was determined utilizing several factors linked to the total installation costs. Revenues were
calculated by multiplying each product's annual production by its market value. A discounted cash flow analysis
was performed assuming a 15-year plant lifespan. The projected interest rate was 10%, the income tax rate was
45%, and depreciation was calculated using the straight-line technique for project years. The impact of the product
price and discount rate on the project's Net Present Value (NPV) were evaluated.

5. Results and Discussion

5.1. Process Simulation Results

As seen in Table 2, the technical indicators presented are the per pass and overall CO; conversions, as defined by
Eq.(1) and Eq.(2), and utility requirements. As depicted in Table 1, per pass CO; conversion of 86% was achieved
in the presence of the [Edmim][NO>] as reaction media. The unreacted CO»-[Edmim][NO,] adduct was recycled
back to the reacting system, which allows nearly 100 % CO; conversion.

Table 2. Technical indicators of the CO2 hydrogenation to formic acid and methanol process.

Indicators Values Units
Overall CO: conversion 100 %
Per Pass Conversion 87.5 %
Conversion factor (FA) 1.17 tCO2/t FA
Conversion factor (MeOH) 6.87 tCO2/t MeOH
MeOH Produced 0.46 t/h
FA Produced 2.68 t/h
Hot utility 1.35 MWh/t MeOH +FA
Cold utility 3.63 MWh/t MeOH +FA
Electricity 1.97 MWh/t MeOH +FA
CO,ConvR = (—COZ n_— .Cozout) @
COyin Reactor
C0,ConvP = (—Cozmcgﬂioﬂ’“t) )

Process
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5.2. Economic Result

Table 3 summarizes the economic breakdown of plant investment and operation cost. The raw material and utility
constitute the larger shares of the OPEX. The utility cost is majorly influenced by the compression of H, and CO»,
which is required to fulfill the solubilization and synthesis requirements for CO, and H, respectively. The net
present values at different discount rates and formic acid prices are presented in Figures 2 and 3, respectively. At
a discount rate of 10%, the project is not economically viable. Hence, a sensitivity analysis of discount rate from
4% to 10% was carried out to determine the discounted cash-flow rate of return (DCFROR, when NPV =0). From
the result, a discount rate between 4-5% makes the project profitable. At this discount rate, a free cost of CO»
would improve the NPV as only H; is the major contributor to the raw material cost since the ionic liquid cost is
estimated on a biannual basis (low volatility). In figure 3, the price of formic acid was varied to observe the
behavior of the NPV at a 10% discount rate. At NPV =0, the selling cost of formic acid is 0.935 USD/kg, which
makes it the minimum selling point for the project to be viable at a 10 % discount rate.

Table 3: Estimated CAPEX, OPEX and revenues of simulated process

CAPEX USD OPEX USD Revenue USD/YR
Purchase Equipment Cost 11,775,700 Raw Material Cost 4,089,956 Formic 16,715,161
Acid @
0.78
ISBL 15,308,410  Utilities 4,157,864 Methanol @ 1,827,864
0.5
OSBL 1,837,009 Operating Labour Cost 1,483,442
Indirect costs (IC) 15,259,423 Other Manufacturing 3,051,827
Cost
Project Contingency 3,240,484
Process Contingency 1,620,242
Fixed Capital Investment 37,265,569
(FCI)
Working Capital (WC) 4,471,868
Cost of Land 2,000,000

Total Capital Investment 43,737,436
(TCI)
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Figure 2: Cash flow diagram at different discount rates
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Figure 3: Cash flow diagram at different selling prices of formic acid

6. Conclusions

The techno-economic study based on process simulation has proven the economic feasibility of the hydrogenation
of CO; promoted by [Edmim][NO;] at a commercial scale. The results showed that the CAPEX and OPEX required
are 43.9 MUSD and 12.7 MUSD, respectively. To ensure economic profitability, the calculated minimum selling
cost of formic acid was 0.935-1 USD/kg. In addition, at the current 10% discount rate, the project is profitable with
a carbon credit tax of 66 USD/tCO,. The project's minimum payback time was calculated to be four years.



168 T. O. Bello et al.

Acknowledgments

The authors gratefully acknowledge the support of the RCGI — Research Centre for Gas Innovation,
hosted by the University of Sdo Paulo (USP) and sponsored by FAPESP — Sado Paulo Research Foundation
(2014/50279-4) and Shell Brazil. This study was financed in part by the Personnel Coordination of Improvement
of Higher Level - Brazil (CAPES) - Finance Code 001

References

T.O. Bello, A.E. Bresciani, R.M.B. Alves, C.A.O. Nascimento, 2021a. Systematic Screening of Ionic Liquids for
Hydrogenation of Carbon dioxide to Formic Acid and Methanol. Ind. Eng. Chem. Res.

T.O. Bello, A.E. Bresciani, C.A.O. Nascimento, R.M.B. Alves, 2021b. Thermodynamic analysis of carbon dioxide
hydrogenation to formic acid and methanol. Chem. Eng. Sci. 242, 11673 1. https://doi.org/10.1016/j.ces.2021.116731

M. Ghavre, S. Morrissey, N. Gathergoo, 2011. Hydrogenation in Ionic Liquids. Ion. Liq. Appl. Perspect.
https://doi.org/10.5772/14315

P. G. Jessop, T. Ikariya, R. Noyori, 1999. Homogeneous catalysis in supercritical fluids. Chem. Rev. 99, 475-494.

Kokorin, A., 2012. Tonic Liquids: Applications and Perspectives, Ionic Liquids: Applications and Perspectives.
https://doi.org/10.5772/1782

W. Leitner, 1995. Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from
CO<inf>2</inf>. Angew. Chemie Int. Ed. English 34, 2207-2221. https://doi.org/10.1002/anie.199522071

P.D.R. MacFarlane, D.M. Kar, D.J.M. Pringle, 2017. Fundamentals of Ionic Liquids Ionic Liquids in Biotransformations and
Electrodeposition from Ionic Handbook of Green Chemistry — Green Solvents Electrochemical Aspects of Ionic Liquids ,
2nd edition Nanocatalysis in lonic Liquids.

G.A. Olah, A. Goeppert, G.K.S. Prakash, 2009. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether:
From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem.
74, 487-498. https://doi.org/10.1021/j0801260f

M. Pérez-Fortes, E. Tzimas, 2016. Techno-economic and environmental evaluation of CO2 utilisation for fuel production.
Synthesis of methanol and formic acid, Scientific and Technical Research Series. Luxembourg.
https://doi.org/10.2790/89238

R. Schlogl, 2013. The Solar Refinery. In Chemical Energy Storage. Walter de Gruyter GmbH: Berlin, Germany, Boston, MA,
USA.

J. Su, L.Yang, M. Lu, H. Lin, 2015. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate
redox equilibrium over palladium nanocatalysts. ChemSusChem 8, 813—-816. https://doi.org/10.1002/cssc.201403251

G. Towler, R. Sinnott, 2013. Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design,
Second Edi. ed. Elsevier, Oxford. https://doi.org/10.1016/B978-0-08-096659-5.00022-5

G. Towler, R.K. Sinnott, 2012. Chemical engineering design: principles, practice and economics of plant and process design.
Elsevier.

W. Wang, Y. Himeda, 2012. Recent Advances in Transition Metal-Catalysed Homogeneous Hydrogenation of Carbon
Dioxide in Aqueous Media. Sch. Enviromental Sci. 250-264. https://doi.org/10.5772/48658

Y. Wang, M. Hatakeyama, K. Ogata, M. Wakabayashi, F. Jin, S. Nakamura, 2015. Activation of CO2 by ionic liquid EMIM-
BF4 in the electrochemical system: a theoretical study. Phys. Chem. Chem. Phys. 17, 23521-23531.
https://doi.org/10.1039/c5¢p02008e

W. Xu, L. Ma, B. Huang, X. Cui, X. Niu, H. Zhang, 2011. Thermodynamic analysis of formic acid synthesis from
CO2hydrogenation. ICMREE 2011 - Proc. 2011 Int. Conf. Mater. Renew. Energy Environ. 2, 1473—1477.
https://doi.org/10.1109/ICMREE.2011.5930612

S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, 2017. lonic-Liquid-Based
CO<inf>2</inf> Capture Systems: Structure, Interaction and Process. Chem. Rev. 117, 9625-9673.
https://doi.org/10.1021/acs.chemrev.7b00072



Proceedings of the 14™ International Symposium on Process Systems Engineering — PSE 2021+
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/B978-0-323-85159-6.50028-2

Synthesis of Distillation Sequence with Thermally
Coupled Configurations Using Reinforcement
Learning

Jaehyun Shim® and Jong Min Lee®*

4School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
buzzinga@snu.ac.kr

*Corresponding Author’s E-mail: jongmin@snu.ac.kr

Abstract

Distillation column is a representative chemical process unit, which is the most popular
choice to separate a multicomponent mixture into pure substances. Since a typical
industrial process involves multiple distillation columns, it is important to obtain an
optimal sequence to optimize energy consumption and separation performance. For this
a large number of candidates have to be investigated in the optimization problem, while
the number of possible sequences becomes larger when thermally coupled configuration
is considered. In this study, reinforcement learning algorithm is applied to find an optimal
sequence to avoid the computational burden of exhaustive in solving such large scale
problems. Reinforcement learning searches for a solution in an evolutionary fashion via
value function approximation in a limited region of the solution space. Case studies
demonstrate the efficacy of reinforcement learning to find a nearly optimal solution for
distillation sequence synthesis problems. The objective of the case studies is to derive
distillation sequence which minimizes the total annual cost for separating five component
mixtures. The result is that total annual cost of the configurations of distillation sequence
designed using reinforcement learning were only about 2.5% larger than the optimal result
obtained from mixed-integer nonlinear programming. This shows that reinforcement
learning can find a nearly-optimal structure without exhaustive search.

Keywords: design, distillation column, thermally coupled, reinforcement learning,
optimization

1. Introduction

Distillation column is an essential unit operation for multicomponent separation and the
efficiency of separating multicomponent depends on the configuration of distillation
sequences. Therefore, it is important to design distillation sequences to obtain an optimal
sequence with high efficiency and a large number of candidates have to be investigated
to find an optimal distillation sequence. However, the size of the search space increases
rapidly with the number of components to be separated and grows exponentially when
thermally coupled (TC) configurations are considered (Shah, V. H. et al.,, 2010).
Moreover, continuous variables such as liquid and vapor flowrate for mass balance in the
distillation column should be determined while the configuration that is a discrete
decision is chosen simultaneously, which means synthesis of distillation column is a
mixed integer problem (Gooty, R. T. et al., 2019). Thus, the exhaustive search approach
is not effective for large size multicomponent separation problems and reinforcement
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learning (RL) is proposed as an alternative framework to find an optimal distillation
sequence in this study. RL approximates a value function of state via learning based on
trial and error. Value function indicates how optimal the decision is and RL optimizes the
objective function by outputs from value function. RL has two types of algorithm: value-
based method and policy gradient method. Q-learning, SARSA, and deep Q network are
well-known value-based methods and REINFORCE, actor critic, and deep deterministic
policy gradient are representative policy gradient methods (Nian, R. et al., 2020). In this
study, actor-critic algorithm is used to synthesize distillation sequences and case studies
are implemented for 5 components separation problem including thermally coupled
configurations. The objective of the problems is to minimize total annual cost of the
distillation sequence. Finally, the results from RL are compared with those from mixed-
integer nonlinear programming (MINLP) in order to analyze the ability of RL to optimize
the distillation sequence.

2. Distillation sequence

If there exists difference between relative volatilities, a mixture having more than three
components is separated through a train of several distillation columns. When it comes to
mixture separation, types of split in a distillation column can be categorized into sharp
and non-sharp splits. There are substances of which relative volatility is between that of
light key (LK) component and heavy key (HK) component in a case of non-sharp split,
whereas sharp split does not have such substances. For simplicity and clear presentation
of the proposed concept, this study considers the sharp split only. TC configuration is also
introduced to the optimization problem.

2.1. Thermally coupled configuration

Distillation process using conventional columns which includes heat exchangers such
as condenser and reboiler shows an inherent inefficiency due to remixing an intermediate
component which should be re-purified in the next column. Introducing TC
configurations by removing heat exchangers, the inefficiency of the conventional
columns can be improved with a side stream because it prevents remixing (Hernandez, S.
et al., 2003).

2.2. Fenske-Underwood-Gilliland method

Once a structure of distillation sequence is decided, the corresponding variables such as
reflux ratio, column diameter, and flow rate of distillate and bottom stream are calculated
via distillation system dynamics. In this study, Fenske-Underwood-Gilliland (FUG)
method was used for calculating the variables instead of the rigorous method such as
Aspen simulator. FUG method is based on the assumption that the relative volatility of
the component is constant along the column and the molar overflow of the component is
constant along the column. FUG method consists of Equations (1)-(4).

N
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where i indicates the component, «; is the relative volatility, f; is the feed flow rate, ¢ is
the root of Underwood equation, F is the total feed flow rate of the column, g is the quality
of the feed, &; is the recovery fraction, D is the total distillate flow rate, R,,;, is the
minimum reflux ratio, N, is the minimum number of theoretical stages, N; is the
number of theoretical stages, and R is the actual reflux ratio. Egs. (1) and (2) are
Underwood equations, Eq. (3) is Fenske equation, and Eq. (4) is Gilliland equation
(Fenske, 1932; Underwood, 1949; Gilliland, 1940).

2.3. Total annual cost

The objective of this study is to find the most economical distillation sequence and total
annual cost (TAC) is used as a criterion for evaluating the economics. Therefore, the
optimal distillation sequence has the minimum TAC. TAC consists of the capital cost and
sum of the operation cost of distillation sequences. Operation cost includes column
equipment investment, condenser equipment investment, and reboiler equipment
investment. Column equipment investment is a function of D, R, and N;, and condenser
and reboiler equipment investment is a function of R and &;. Therefore, TAC of a
distillation sequence can be estimated with these parameters obtained from FUG method
and its calculation formulas were referenced in Zhang, S. et al. (2018).

3. Reinforcement learning

RL refers to a family of algorithms that learns the optimal value function that satisfies
the optimality equation of dynamic program using either simulation or operational data.
A decision-making entity called an agent takes an action based on the current state, the
environment is changed by the action, and it gives the agent a reward as a feedback of the
action. As a result, the agent learns the value function and policy in the state space, and
its corresponding control policy maps the current state to a nearly-optimal action. Among
various RL algorithms, this study employs the actor-critic algorithm since it can make a
discrete decision and learn the policy directly with policy gradient method. Given a
current state, the actor calculates an action using the learned policy function and the critic
evaluates how beneficial the action is. The actor learns policy based on the evaluation
from the critic and critic updates evaluations by rewards from environment (Konda, V. R.
et al., 2000). The main challenge in this approach is to formulate the problem and define
state, action, and reward.

3.1. State

Separation matrix representation (SMR) (Shah, V. H. et al., 2010) was employed in
order to convert the topology of distillation sequence into a mathematical form which can
be used in the RL algorithm. SMR is an upper triangular matrix as shown in Figure.1 and
each element of the matrix means the stream in the sequence correspond to feed, distillate,
or bottom flow of each column. 1 is assigned to each element if there exists a reboiler or
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ABC AB A
0 BC B
0 0 C

Figure 1. Separation matrix representation for
separating 3 components mixture.

1 0 1

0 2 1

0 0 1
(a) (b)

Figure 2. an example of separation matrix representation for separating 3 components mixture.

condenser in the stream, while 2 is assigned if TC configuration exists. For instance, the
sequence shown in Figure.2 (a) is represented as the matrix in Figure.2 (b). Additionally,
temperature and flow rate of each component in the stream are converted into the matrix
form based on the SMR indicating the sequence. As a result, all matrices are stacked and
used in the current state.

3.2. Action

A distillation sequence is determined by the choice of which components are separated
at which column and where TC configurations are located. For each column, what
material is separated and whether there is a TC structure become actions in each column.
One of the actions is choosing a HK substance, and the other is deciding if there is a TC
structure. Accordingly, a stage is defined as deciding a HK substance and TC structure of
each column and a stage-wise reward is described in section.3.3.

3.3. Reward

Since the objective function is TAC of a distillation sequence, the return in RL
formulation is also TAC of a sequence, i.e. sum of TAC of all distillation columns.
Therefore, TAC of each distillation column in a sequence is set to a reward because sum
of the all rewards equals to the return as definition. In addition, negative value of TAC is
used as the reward in algorithm so as to minimize total TAC because RL algorithms
basically learn in the direction of maximizing the reward.

4. Results and discussion

A case study was implemented for confirming the ability of RL to design optimal
distillation sequence with an arbitrary multicomponent mixture. Through the case study,
the sequence was found to minimize TAC for separating 5 components mixture. For
simplifying explanation in the case study, the stream flowing through the distillation
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Table 1. Components and feed composition.

Case study 1
Component Mole fraction
ethanol (A) 0.25
n-propanol (B) 0.15
i-butanol (C) 0.35
n-butanol (D) 0.10
phenol (E) 0.15
The flowrate of the feed mixture is 500.4 kmol/h

Return

250000

245000

240000 A

235000

230000

225000

0 200 400 600 800 1000
episode

(a)
A 4

AB,C.D.E
—

A,B,C,D.E

B,C,D,E|

(b) (©)

Figure 3. Return of RL and distillation sequences synthesized by RL and MINLP in case studies.

sequence is denoted as ABCDE, where each letter means a component in the stream and
is assigned to a nature number to use in mathematical equations: A=1,B=2, ..., E=5.
The notation is arranged in order of relative volatility, for example, in a stream ABCDE,
A is the most volatile component and E is the least volatile component. RL algorithm was
carried out to find the distillation sequence minimizing TAC via trial and error as
mentioned above, followed by comparing the result from learned RL and that from
MINLP.

4.1. Case study

Components in the inlet mixture are ethanol, i-propanol, n-propanol, i-butanol, and n-
butanol, corresponds to A, B, C, D, and E orderly, and their feed composition are
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presented in Table.1. Figure.3 (a) shows return, i.e. TAC of a designed distillation
sequence, decreased as episode progresses and converged to a certain level after about a
thousand iteration. A distillation sequence was determined using the learned RL agent as
shown in Figure.3 (b) and its TAC is 222,258.15 $/y, whereas Figure.3 (c) is the optimal
sequence found by MINLP and has TAC of 216,747.68 $/y. The separation order of the
two structures is same, so the difference in TAC between the sequences comes from TC
configuration. TC configuration should be adopted for efficient separation of mixture
according to MINLP, but RL was learned in a direction that does not consider the TC
configuration. Nonetheless, TAC of the sequence from RL is only about 2.5% higher than
that from MINLP, which means RL found the near-optimal structure. Moreover, any
superstructure is not required when solving the problem of finding an optimal distillation
sequence using RL.

5. Conclusion

Through this study, it was demonstrated that a near-optimal structure can be determined
without a superstructure or any prior knowledge except for the material properties of the
desired mixture. This is more beneficial when solving a large-scale optimization problem
since full search becomes near impossible and time consuming as the scale increases. It
can be proved by applying RL algorithm to a larger design problem, for instance, a
separation problem for more than 5 components mixture.
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Abstract

A dividing wall column (DWC) is capable of saving capital costs and improving
energy efficiency for ternary liquid separations. Alternative DWC structures have been
proposed, termed Reduced Vapor Transfer DWC (RVT-DWC) in this work, which
involves less difficult-to-control vapor transfer streams. The most interesting RVT-
DWC structure, the LL structure, which has a dividing wall extending throughout the
column and has no interconnected vapor transfer streams, is studied in this work. Three
heat integrated designs of the LL structure, the LL structure with combined condenser
and reboiler (LL-CCR), vapor recompression assisted LL structure (VR-LL), and vapor
recompression assisted LL structure with combined condenser and reboiler (VR-LL-
CCR), are introduced and compared to the standard DWC, standard LL structure, and
vapor recompression assisted DWC (VR-DWC) designs, respectively. Although the
LL-CCR structure shows only minor improvement in total annualized costs (TAC)
when compared to the LL structure, its vapor recompression assisted design (VR-LL-
CCR) has the lowest TAC among all the structures studied (17 % lower than LL-CCR,
4 % lower than VR-DWC, and 10 % lower than VR-LL). Moreover, the vapor
recompression assisted structures have lower TAC than their corresponding base
structures.

Keywords: Distillation, Dividing Wall Column, Optimization, Heat integration, Vapor
recompression

1. Introduction

Process Intensification (PI) has received significant interest in recent years as a mean of
achieving more energy efficient chemical processes. A prime example of PI is a
dividing wall column (DWC) for the separation of ternary mixtures. Agrawal (2000)
proposed several alternatives to a standard DWC, denoted as Reduced Vapor Transfer
DWCs (RVT-DWCs) in this work, which involve less difficult-to-control vapor transfer
streams, thus reducing the complexity of the unit. These RVT-DWCs have been claimed
to be superior to a standard DWC in terms of controllability (Cui et al., 2020), and to
have a similar economic performance (Agrawal, 2000) and almost identical energy
demands (Waltermann et al., 2019), thus the RVT-DWCs can be considered as
competitive alternatives to the standard DWC. Out of all the RVT-DWC structures, the
LL structure (liquid-liquid structure, both thermal coupling streams replaced by liquid
sidedraw streams, the dividing wall extended throughout the column, utilizing two
condenser and two reboilers) has the most interesting structure, and is the structure that
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Figure 1: Flowsheets of (a) Vapor recompression assisted dividing wall column (VR-DWC),

(b) LL structure with combined condenser and reboiler (LL-CCR), (c) vapor recompression
assisted LL structure (VR-LL), and (d) vapor recompression assisted LL structure with combined
condenser and reboiler (VR-LL-CCR).

will potentially provide the most improvement with heat integration. Heat integration by
combining the condensers and reboilers in the LL structure may improve the economic
performance (Ramapriya et al., 2014). Moreover, heat integration by vapor
recompression can save both energy and cost, and its effectiveness for a standard DWC
was considered by Xu et al. (2017), but its potential effectiveness for a RVT-DWCs has
not yet been studied. This work therefore aims to investigate the economic performance
of the LL structure by considering heat integration based on vapor recompression.

2. Methodology

In this work, six different structures are designed, optimized, and compared, which are
the standard dividing wall column (DWC, not shown), vapor recompression assisted
dividing wall columns (VR-DWC, Figure la), LL structure (LL, not shown), LL
structure with combined condenser and reboiler (LL-CCR, Figure 1b), vapor
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recompression assisted LL structure (VR-LL, Figure 1c), and vapor recompression
assisted LL structure with combined condenser and reboiler (VR-LL-CCR, Figure 1d).
It should be noted that, unlike the structures proposed by Agrawal (2000), in all the LL
structures studied in this work, the product streams (distillate and bottom streams) are
combined into single product streams, which also reduces the number of product
constraints for optimization. For all vapor recompression assisted structures, the same
structure is utilized including a superheater installed just after the top vapor stream
from the column to improve the efficiency of the heat integration design (Yang et al.,
2019). The superheated vapor is compressed in an isentropic compressor with 85 %
efficiency. Then, a counter-current shell and tube heat exchanger (HEX) is used to
vaporize the boilup flow using the recompressed vapor stream. After that, a Joule-
Thompson valve (JT valve) and a trim cooler are used to lower the stream pressure
back to the column pressure and to condense the stream, respectively. Finally, a splitter
is used to control the product and reflux flowrates. For LL-CCR and VR-LL-CCR, two
additional splitters are used to control the flowrate (split ratio) of reflux and boilup
streams into the prefractionator (left)/main column (right).

All rigorous simulations (equilibrium based) are performed in gPROMS ProcessBuilder
version 1.4 (Process Systems Enterprise, 2020). As there is no built-in column libraries
for DWC and LL structures, their corresponding Petlyuk designs are used instead. All
designs are optimized using both stand-alone particle swarm optimization (PSO) and a
combined stochastic/deterministic optimization method similar to the one proposed by
Chia et al. (2021), but using PSO instead of Genetic Algorithm (GA). PSO is coded in
MATLAB (The MathWorks Inc., 2019) while OAERAP is built-in within gPROMS
ProcessBuilder, with gO:MATALAB (Process Systems Enterprise, 2019) used to
transfer data between MATLAB and gPROMS ProcessBuilder. The objective function
is the total annualized cost (TAC) based on the summation of annualized capital cost of
all equipment and of the operating cost. The operating hour is set as 8400 / y ' and the
payback period is 8 y. The sizing equations of the column are from Seider et al. (2016)
and cost equations and installation factors are from Sinnott and Towler (2020). High
pressure steam is used as the heating utility with a cost of 24 € £ ! and for electricity a
cost of 23.5x107° € kJ'. All prices are converted to US dollars at the end for
comparison. The design with the lowest TAC from both optimization methods is taken
as the final results to ensure a good optimal design and fair comparison. For all the
designs, the column pressure is maintained at 1 bar and not optimized. For the
optimization task, all design and operating variables are optimized simultaneously
including the number of stages, feed/sidedraw locations, reflux/boilup ratios,
distillate/bottom flowrate, splitter ratio (used in LL-CCR and VR-LL-CCR),
temperature in the superheater, and outlet pressure in the compressor. In terms of
optimization constraints, other than the three product specifications, the number of
stages on both sides of the wall is considered the same for the LL structures (although
does not have to be), the vapor fraction of the stream from the compressor should be
equal to one, and the heat exchanger inlet temperature difference should be greater or
equal to the minimum temperature approach.

3. Case Study

The comparison of the economic performance of the various structures are based on the
separation of an equi-molar benzene/toluene/o-xylene (0.33/0.34/0.33) mixture, with
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UNIQUAC as the thermodynamic model. The feed is supplied at 1000 kmol 4" as a
saturated liquid at 1 bar, which is the same as the operating pressure in the column with
no pressure drop. Calculations are performed using an AMD Ryzen 9 3900X CPU with
3.79 GHz and 64 GB memory. For PSO, the parallel computing function in MATLAB
was activated with 18 workers to speed up the optimization, and it takes about 1 to 3
hours to perform the optimization depending on the complexity of the model.

The key design and operating variables for all structures are shown in Table 1. In
general, all structures have similar total number of stages (48-52). For the main
column, the LL structures have lower reflux ratio compared with DWC structures as
the majority of the light and heavy components are removed from the system from the
prefractionator, which makes the separation in the main column easier. By comparing
the vapor recompression assisted structures with their corresponding base designs, no
significant changes of design and operating variables are found, which indicates that
the retrofit of the base designs can easily be achieved without changing the column
structures. Considering the energy usage of designs without vapor recompression, they
have similar total reboiler/superheater and condenser/cooler duties. The LL-CCR
structure does not improve the energy efficiency (LL duties similar to LL-CCR duties).
The vapor recompression assisted designs require about 60 % less total energy (steam
plus electricity), and there are significant savings in the reboiler/superheater and
condenser/cooler duties (about 80 % and 70 %, respectively) when compared to the
base designs. Out of the three vapor recompression assisted structures, VR-LL and VR-
LL-CCR have similar energy consumption, slightly lower than the energy required by
VR-DWC. It is worth noting that there are two vapor recompression systems in the
VR-LL structure (one at each side of the wall, Figure 1c), but the equipment duties in
VR-LL is very close to the VR-LL-CCR which has one vapor recompression system
(Figure 1d). Breaking down the equipment duties in VR-LL (not shown), the
equipment at the prefractionator side requires more energy (e.g., 1.75 MW for
compressor on the prefractionator side vs 0.94 MW on the main column side) due to the
removal of the majority of the light and heavy components in the prefractionator.

The cost information of all the designs is shown in Table 1. Compared to DWC and
VR-DWC, all variations of LL structures have lower capital costs (CAPEX) for
distillation columns (inclusive of column shell and trays) as the removal of products
(distillate and bottom streams) from the prefractionator leads to a smaller column
diameter. Considering the total CAPEX of each design, all vapor recompression
assisted designs have significantly larger cost (e.g., VR-LL CAPEX is 2.61 times of LL
CAPEX) due to the high compressor cost (e.g., in VR-LL structure, the compressors
contributes 66 % of total CAPEX). It should be noted that, although VR-LL and VR-
LL-CCR require similar total compressor duty, VR-LL uses two separate vapor
recompressor systems (i.e., two compressors), thus the compressor CAPEX is higher
(about 44 %). By considering the operating cost (OPEX) of each design, the OPEX for
the vapor recompression assisted structures are about 40 % lower than their
corresponding base structures. The comparison of the total annualized cost (TAC)
shows that the standard DWC and standard LL structure have similar TACs (DWC 1 %
more expensive). Compared with LL, LL-CCR (LL with combined condenser and
reboiler) shows only very minor improvement (1 % lower). More importantly, all vapor
recompression assisted structures achieved significant saving in TAC when compared
with their corresponding base structures (15 % savings in VR-DWC, 8 % savings in
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Table 1: Key design and operating parameters of all the structures

VR- VR- VR-
Items DWC LL LL-CCR

DWC LL LL-CCR
Prefractionator
Total stages 26 30 52 49 52 48
Feed stage 14 14 29 24 28 27
Liq. sidedraw stages - - 11/38 9/36 10/40 9/37
Liq. side (kmol h™") - - 283/283  266/311 275/313 266/304
Distillate (kmol h™") - - 211 - 204 -
Molar reflux ratio - - 2.78 - 2.72 -
Main Column
Total stages 48 48 52 49 52 48
Feed stages 8/35 7/38 9/40 8/36 8/38 8/35
Side prod. stage 21 18 25 20 21 19
Side prod. (kmol h™") 337 338 337 337 338 337
Liq. side (kmol h™") 231 239 - - - -
Vap. side (kmol h™") 690 692 - - - -
Distillate (kmol h™") 333 331 122 332 127 332
Molar reflux ratio 2.58 2.66 2.16 - 2.31 -
Mass Split Ratio to Main Column
Reflux flowrate - - - 0.36 - 0.35
Boilup flowrate - - - 0.35 - 0.34
Vapor Recompression System - Pre/Main
Superheater temp. (K) - -/409 - - 413/404 -/410
Compressor pres. (bar) - -/5.22 - - 5.21/5.12  -/5.16
Total Duty/Power (MW)
Reboiler/Superheater 10.93 2.02 10.84 10.86 1.87 1.98
Condenser/Cooler 10.28 3.73 10.19 10.2 3.61 3.64
Compressor - 2.78 - - 2.69 2.71
CAPEX (M $)
Column 5.155 5.2007 4.7378 4.4081 4.7484 4.3047
Reboiler/Heater 1.4325 0.3363 1.6428 1.4245 0.4379 0.3318
Condenser/Cooler 1.5797 0.5602 1.5273 1.5669 0.6244 0.5468
Compressor - 9.4839 - - 13.5107 9.3629
Heat Exchanger - 1.2427 - - 1.2968 1.324
Total CAPEX 8.1672 16.8238 7.9079 7.