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Preface 

This book contains papers presented at the 14th International Symposium on Process Systems 
Engineering (PSE 2021+), held at Kyoto University in Kyoto, Japan, June 19-23, 2022. The PSE 
series is a triennial conference which has been held since 1982, organized on behalf of the 
international PSE Executive Committee with representation from countries in Asia-Pacific, 
Europe, and the Americas. The goal is to create an academic and industrial dialogue, a critical 
assessment of existing enabling technologies, a discussion on research, education, and industrial 
needs, and an international forum for new directions, challenges, and opportunities in process 
systems engineering. 

 

The PSE symposium bring together researchers, educators, and practitioners to discuss the latest 
developments in the field of Process Systems Engineering (PSE), including applications of 
methods, algorithms, and tools to solve a wide range of problems as well as provide the venue for 
discussion of new scientific challenges in our field. This symposium will feature more than 371 
presentations including invited plenary and keynote lectures, as well as contributed papers (both 
oral and poster) encompassing a large number of core and cross-cutting PSE themes. 

 

Among the PSE series, PSE 2021+ is special, because the first PSE symposium was held in Kyoto, 
Japan, in 1982. For this reason, and in light of the challenges facing our society, we chose the 
main theme of PSE 2021+ as "PSE for Smart & Sustainable Society: perspectives from the 
origin."  

 

The PSE themes include: 

 Process and Product Design/Synthesis 

 Process Dynamics and Control 

 Scheduling and Planning 

 Supply Chain Management and Logistics 

 Process Intensification 

 Integration of Process Operations and Design/Synthesis 

 Modeling, Analysis, and Simulation 

 Optimization Methods and Computational Tools 

 Process Monitoring and Safety 

 Cyber-Physical Systems and Security 

 Machine Learning and Big Data 

 Energy, Food and Environmental Systems 

 Pharma and Healthcare Systems 



and Ms. Anita Koch for their support on this project, which provides an archival and fully indexed 
record of the conference. 

 

The 14th Symposium on Process Systems Engineering (PSE 2021) was originally planned for 
July 2021. In view of the situation associated with the COVID-19 pandemic, the National 
Organizing Committee has approved the recommendation of the Executive Committee to 
postpone the symposium to June 2022. To clarify the postponement, the symposium is written as 
"PSE 2021+". 

 

We hope PSE 2021+ will foster constructive interaction among thought leaders from academia, 
industry, and government and that this book will serve as a useful reference for the latest research 
in all areas of process systems engineering. 

 

Yoshiyuki Yamashita and Manabu Kano 

PSE 2021+ General Chairs   

 

This book includes 10 invited papers and extended abstracts as well as 361 contributed papers. 
All papers have been reviewed by the International Programming Committee (IPC). We are very 
grateful to the IPC members for their assistance and constructive feedback during the review 
process. We would also like to thank the Elsevier editorial team, particularly Ms. Lena Sparks 
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Actions toward carbon-neutral society 
 with fuel cell technology 

Yoshihiko Hamamura 
Fuel Cell Business Field., Toyota Motor Corporation, Aichi 471-8571, JAPAN 

yoshihiko_hamamura@mail.toyota.co.jp 

Abstract 
In recent years, many countries have announced the declarations and policies toward a 
carbon-neutral society in response to global warming. The entire industries must tackle 
with the issues and it is necessary not only to develop zero CO2 emission vehicle, but also 
to reduce CO2 emission during the process of vehicle manufacturing, disposal, and fuel 
production in case of the automotive industry. Hydrogen is considered to be an important 
energy toward carbon-neutral society because of portability, storability, and producibility 
from various renewable energies such as solar and wind. Toyota is challenging toward 
the wide expansion of fuel cell applications by communicating with the customers and 
utilizing the fuel cell system for the various applications around the world as well as the 
2nd-generation MIRAI, the fuel cell electric vehicle (FCEV). Toyota is also proposing 
the fuel cell system modules for the efficient packaging so that every customer can deploy 
them to their system products without a large effort and time. Further collaboration and 
communication from a wide range of perspectives will be essential with every stakeholder 
in the fuel cell industry and research field because there are many technical hurdles 
toward the promotion of the application of the fuel cell systems. The strength of PSE, 
which specializes in system integration and optimization, is strongly demanded to solve 
such interdisciplinary and complex issues surrounding the fuel cell technologies. 

 Keywords: Carbon neutrality; Hydrogen; Fuel cell; System application    

1. The world trend of carbon neutrality and hydrogen energy  
Carbon neutrality and decarbonization are gathering attention, especially after the Kyoto 
Protocol (United Nation, 1997) and the Paris Agreement (United Nation, 2015), for the 
prevention of global warming. Table 1 shows the recent world trend surrounding carbon 
neutrality and hydrogen energy.  In 2018, 1st. International Conference on Hydrogen was 
held in Japan and the roadmaps for the promotion of hydrogen utilization were announced. 
In 2019, many countries declared high numerical targets toward carbon neutrality and 
decarbonization as follows: deployment of 8 million fuel cell electric vehicles (FCEVs) 
and 400 - 1000 hydrogen fueling stations by 2050 in E.U.; 10 million FCEVs and 
hydrogen fueling stations in every 10 km on the roads within next 10 years in Japan; 1.2 
million FCEVs and hydrogen fueling stations by 2030 in U.S.A. In 2020, large scale 
investments were announced from many countries all over the world as follows: 
Investment of 750 billion Euro in total for a ‘Green Deal’ was announced by the E.U. 
targeting the recovery from the COVID-19 crisis, in which 30 % is shared to climate 
control related purposes; U.K. set the target of decarbonization by 2050 and the 
prohibition of sales of gasoline and diesel internal combustion engine vehicles after 2030; 
and Japan declared the achievement of carbon neutrality by 2050. In 2021, The U.S.A 
government announced the recovery to the Paris Agreement, the investment of 2 trillion 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50001-4 
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U.S. Dollars for the environmental and infrastructural industries, and the target of carbon 
neutrality by 2050. The features of hydrogen in storability and portability of energy allow 
it to function well with a variety of renewable energy sources such as solar and wind, thus 
making hydrogen an essential energy source for achieving carbon neutrality (Daud et al., 
2017).    

Table 1. The world trend surrounding carbon neutrality and hydrogen energy 

Year Country Policy / Event 
2018 Netherlands Hydrogen Roadmap 
 U.S.A DOE Hydrogen and fuel cell Program Overview 
 E.U. Hydrogen initiative 
 Japan International Conference on Hydrogen  
 Australia National Hydrogen Roadmap 
2019 Republic of Korea Hydrogen Economy Promotion Roadmap 
 E.U. FCH-JU Hydrogen Roadmap 
 Japan Hydrogen and Fuel Cell Roadmap 

International Conference on Hydrogen 
 France Hydrogen Roadmap 
 Australia Renewable Hydrogen Strategy 
 U.S.A FCHEA Roadmap 
  California FC-Bus Roadmap 
 Saudi Arabia Renewable Energy Strategy 
2020 E.U. European Green Deal 
 Republic of Korea Green New Deal 
 Japan Carbon Neutrality in 2050 
 U.K. Green Industrial Revolution 
2021 U.S.A Green revolution  
 Japan Decarbonization Supply-Chain among Japan, Australia, and India 

2. Fuel cell development for various applications and usages 

The 1st-generation MIRAI was launched in 2014 as the world’s first mass-production 
fuel cell electric vehicle (FCEV). In addition to the improvement in many aspects of the 
system performance, the 2nd-generation MIRAI was designed to achieve a significant 
improvements in fundamental vehicle features. It has not only high environmental 
performance, but also responsive acceleration, superior handling and vehicle control, 
reliable cruising range, an increased number of passengers, and a stylish exterior design 
as shown in Fig.1. It is expected that the role of the 1st-generation MIRAI is the ‘starting 
point for popularization’ and the 2nd-generation MIRAI is ‘accelerating to 
popularization’. 
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Fig. 1.  MIRAI, fuel cell electric vehicle (FCEV) from TOYOTA  

MIRAI's fuel cell system was not developed exclusively for MIRAI. The implementation 
of the 1st-generation fuel cell system to a variety of applications in addition to passenger 
vehicles, such as commercial vehicles of buses and tracks, stationary power generators, 
forklifts, and ships, has been investigated since 2014. In the process of developing these 
applications, it became obvious that significant time and effort were required until the 
completion of system integration for each application. 
 

 

Fig. 2. The lineup of the different geometries of the fuel cell system modules 

To overcome the problem described above, the system-modularization concept was 
adopted for 2nd-generation fuel cell system development. Vertical, horizontal and 
compact fuel cell system modules have been developed, where the same 2nd-generation 
system components such as fuel cell stack, air compressor, hydrogen pump, water pump, 
intercooler, engine control units (ECUs), and power control units (PCU) are efficiently 
repackaged. In addition, the interfaces between the fuel cell system and the applied system 
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are gathered in one mounting surface in a rectangular package for ease of integration. 
Customers can choose suitable fuel cell system modules from the lineup according to 
their application requirements. It is expected that these products reduce the barrier to entry 
into the fuel cell industry with benefits for the customers and users. Actually, our partners 
are accelerating the development of the fuel cell powered trucks, buses, stationary power 
generators, ships, and construction machinery by utilizing these fuel cell system modules 
as shown in Fig. 3. 

 
Fig. 3. The implementation of the fuel cell system to a variety of purposes 

3. Collaboration for developing fuel cells and expectations for PSE 
Though hydrogen and fuel cell technologies are steadily spreading around the world,  
many technical issues are still remaining. It is important for every stakeholder in the fuel 
cell industry to communicate with each other, move in the same direction in addition to a 
proper competition, and make the fuel cell technology easier to use.  
 
Fig. 4 is a conceptual drawing of the ‘FC-Platform’ project supported by NEDO, New 
Energy and Industrial Technology Development Organization of Japan, as an example of 
the recent research consortium (FC-Cubic, 2021). This consortium is acting as a role of 
platform where the fuel cell researchers with various important and detailed knowledge 
can gather from universities and technical colleges across Japan. They are investigating 
the complex fuel cell reactions and mass transport with the high resolution analysis 
instruments for the physicochemical phenomena in atomic scale. The government and 
fuel cell manufacturers can share their specific issues, discuss the research and 
development roadmap with them, and collaborate and communicate with each other in 
the consortium.  
 
PSE is the academic field which specializes in the system modeling, process 
synthesis/aggregation, and decomposition/analysis (Klatt et al., 2009). Since the fuel cell 
technology is highly interdisciplinary technical fields where the wide range of physics in 
various scale from nano to meter must be considered, the role of PSE will be more 
important as an interface of the variety of technical fields. The author encourages PSE 
engineers and researchers to join the fuel cell industry and research activities. 
 



 
Fig. 4. The conceptual drawing of the ‘FC-Platform’ project in Japan 

as an example of the recent fuel cell research consortium  

Conclusions  

The role of hydrogen energy and fuel cells were discussed by describing the world trend 
surrounding carbon neutrality. The 2nd-generation fuel cell electric vehicle MIRAI and a 
fuel cell system module comprised of the MIRAI fuel cell components were shown. The 
fuel cell system module facilitates the development of fuel cell applications such as 
commercial vehicles of buses, tracks, and marine. Finally, the expectation for PSE 
researchers and engineers from the fuel cell industry were discussed. The author 
encourages PSE engineers and researchers to join the fuel cell industry and research 
activities. 
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Abstract 

Changes have always been taking place on earth. However, the latest changes related to 

the climate, the COVID-19 pandemic, natural resources, pollution, to name a few, have 

changed our world and a new normal is emerging. The energy-water-environment-food-

health nexus is becoming more complex. These challenges, however, also provide 

opportunities to tackle them and make scientific and engineering advances. PSE is well-

placed through its core and expanding domain as well as its ability to apply a systems 

approach to meet current and future challenges. Many opportunities exist for the PSE 

community to take the lead in managing this complexity. This paper will provide an 

overview on some of the key challenges and opportunities where PSE could make 

immediate as well as long lasting impacts by developing sustainable and innovative 

solutions. Focus will be placed on the choice of problems to solve and the solution 

approaches that could make an impact and help to define the new normal for future 

generations.  

Keywords: Process Systems Engineering; Climate; COVID-19; Resources; Pollution; 

Opportunities 
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1. Introduction 

The effects of climate change, COVID-19 infections, inefficient resources utilization and 

uncontrolled pollution, to name a few, have changed the world and now urgent actions 

are needed to not only minimize their impact but also to find novel and innovative 

solutions that are environmentally-friendly and allow the sustainable development of 

society. These problems are global and their solutions no doubt need a multi-disciplinary 

approach. As defined by Pistikopoulos et al. (2020), Process Systems Engineering (PSE) 

is the scientific discipline of integrating scales and components describing the behaviour 

of a physicochemical system, via mathematical modelling, data analysis, design, 

optimization and control. PSE provides the ‘glue’ within scientific chemical engineering 

(and other related engineering domains), and offers a scientific basis and computational 

tools towards addressing contemporary and future challenges such as in energy, 

environment, the ‘industry of tomorrow’ and sustainability. As Sargent (2004) pointed 

out, “PSE is all about the development of systematic techniques for process modelling, 

design and control - some formulate their synthesis, design and/or control problem, or 

some useful simplification of it, in precise mathematical terms, and then seek to exploit 

the mathematical structure to obtain an effective algorithm, while others seek insight on 

the problem structure from physical intuition”. Therefore, to address the challenges 

currently faced by society, the PSE community has the opportunity to play an important 

role (Grossmann and Harjunkoski, 2019) by helping to find novel and innovative 

solutions that can not only arrest the undesired trends but also guide us towards achieving 

the well-established goals of sustainable development (UN, 2021).  

Figure 1 shows plots of effect X under business as usual and controlled actions as a 

function of time, where X could be any one of the challenges with respect to climate, 

COVID-19, resources utilization, pollution, sustainability and many more. Figure 1 also 

points out Earth’s capacity to absorb the negative results of effect X, which means the 

business as usual curve needs to be flattened with controlled actions before it is too late. 

Note that although one plot is shown to highlight the concept, the actual curves and earth’s 

capacity are different for different effects. The energy-water-environment-health-food 

nexus (Al-Ansari et al., 2015; Mujtaba et al., 2018; Slorach et al., 2020) indicate however, 

that the individual items cannot be considered in isolation from each other because they 

have intrinsic interactions. The biocapacity of earth, which is a measure of its natural 

resources against its activities has reduced to 1.7 (Global Footprint Network, 2016) and 

must not become negative. 

 

Figure 1: Business as usual versus control action against effect X (climate change, 

COVID-19 infections, resources utilization, pollution, sustainability, and many more) 
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Earth’s natural resources for energy, water, biomass, minerals, etc., are not uniformly 

distributed but they are needed everywhere in different forms. According to Gani et al. 

(2020), a core activity of chemical and biochemical engineering is to convert these 

resources to products (various energy products, food products, health-care products, etc.), 

devices (car, television, phone, etc.) and/or services (electricity, fuels, fresh water, etc.) 

that society needs for its sustainability. The recent pandemic due to COVID-19 has shown 

that while the problem is global, their severity is different at different regions on earth. 

The same is true for global warming, resources utilization, pollution and major issues that 

impact society.  

The objectives of this paper are to highlight selected focus areas representing current and 

future challenges on earth, the choices of problems to solve within them, and the systems 

approach-based solution methods that may be used to tackle them. The paper is organized 

as follows: a brief overview of the current status of PSE methods and associated 

computer-aided tools are given following the introduction; that is followed by a 

discussion on focus areas where PSE methods and tools can be applied together with a 

selected set of examples; and, ending with perspectives and concluding statements. The 

contents of the paper are the result of a discussion between the corresponding author and 

the co-authors on the following issues:  

• In which of the problems can the PSE community make a significant contribution?  

• What role should the PSE community play in tackling these problems? 

• Which PSE methods and tools are best suited to tackle the problems? 

This paper will also form the basis for the plenary lecture to be given by the corresponding 

author at the PSE2021 with material to be added. 

2. PSE methods and tools 

In the multi-layered view of PSE, Pistikopoulos et al. (2022) classified the PSE methods 

and associated tools in terms of the inner fundamental layer that involves process-product 

related activities where application of the fundamental concepts of PSE help to design, 

build and operate manufacturing processes that convert specific raw materials to desired 

products;  the middle expanding layer that involves resources-efficiency related activities 

leading to the development of new technologies and more sustainable engineering 

solutions; the outer unifying layer that involves activities related to tackling of societal 

challenges leading to a more sustainable society. In this paper, some of the PSE methods 

and associated tools from all three layers are highlighted. See also Stephanopoulos and 

Reklaitis (2011) for a historic review of PSE activities and Grossmann and Harjunkoski 

(2019) for academic and industrial perspectives on PSE.  

2.1. Methods 

Three topics under methods are highlighted: modelling (because it is at the core of almost 

all PSE methods); numerical methods (which is necessary to solve the equations 

representing any model and are continuously updated to satisfy the demands from the 

expanding and unifying layers of PSE) and algorithms (since the schemes for integration 

and/or combination of models and numerical methods are needed to tackle the societal 

challenges from the unifying layer of PSE).   

2.1.1. Modelling 

A model (Hangos and Cameron, 2001) is a pattern, plan, representation, or description 

designed to show the structure or workings of an object, system, or concept; it could also 

be a study of a miniature of the actual; the model objectives need to be clearly defined. 

Modelling is the process of generating abstract or conceptual representation of a physical 

Challenges and Opportunities for Process Systems Engineering
in a Changed World
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system, i.e., representing reality in a virtual environment for a purpose. In systems 

approaches to problem solution, modelling is a core activity in the development of any 

model-based problem solution tool and requires a very good understanding of the system 

being investigated.  As our understanding of the sub-systems whose problems we would 

like to solve, is incomplete, models based only on first principles cannot usually be 

obtained (or it is very time-consuming and resource demanding to obtain them). 

Therefore, knowledge related to the core fundamental layer of PSE is not sufficient, 

modelling options from the middle expanding layer of PSE, for example, systems 

identification or artificial intelligence (including machine learning, deep data learning, 

nature-inspired, etc.) need to be utilized (Lee et al., 2018; Venkatasubramanian, 2019). 

Note that the modelling objectives are related to specific problems that need to be solved, 

giving rise to models of different complexities and forms. Therefore, to match and/or 

improve the numerical solver efficiency and reliability, local models (Chimowitz et al., 

1983), hybrid models (Chaffart and Ricardez-Sandoval, 2018), or surrogate models 

(Bhosekar and Ierapetritou, 2018) are being used. A few modelling related issues are 

highlighted below (not ordered in terms of priority): 

• Development of predictive property models – more than 10 million chemicals have 

been identified but measured data are available for less than 50 thousand chemicals; 

properties such as toxicity, color, smell, etc., need to be modelled. 

• How to obtain new process (operation) models from generic models when new 

processes and/or operations do not have all required sub-system details; new process 

models such as intensified operations, fuel cells, medicine delivering devices.  

• How to create plug and play options for links to external databases, solvers, models 

and/or new theory, data, computational resources in currently available computer-

aided tools to expand their application range.  

2.1.2. Numerical solvers  

Models representing a system of interest, consisting of different combinations of 

equations (algebraic, ordinary differential, partial differential, symbolic, etc.) involving 

different types of variables (real, integer, Boolean, symbolic, etc.) require appropriate 

numerical solvers. According to Pistikopoulos et al. (2021), the two key tasks that PSE 

have focused on are i) optimization methods, comprising a variety of formulations, most 

notably mixed-integer linear and nonlinear programs, dynamic optimization (including 

optimal control) and hierarchical optimization (semi-infinite, bilevel, trilevel) and ii) 

simulation/optimization of dynamic systems with hybrid discrete-continuous (or in some 

case equivalently non-smooth) nature. Kronqvist et al. (2019) and more recently Nolasco 

et al. (2021) have reviewed optimization solvers. For a list of selected numerical solvers 

commonly used by the PSE community, see also Pistikopoulos et al. (2021). To improve 

the convergence and reliability of numerical solvers, symbolic computation methods, 

which directly use mathematical expressions for operations and derivations to identify 

the solution have been recently proposed by Zhang et al. (2021a, 2021b). Below, a few 

numerical solver related issues are highlighted (not ordered in terms of priority): 

• Which criteria (e.g., efficiency, reliability, and/or flexibility) should be used for 

numerical solver selection, when for similar problems more than one solver could be 

available. 

• How to adapt currently available solvers to emerging modes of computation such as, 

quantum computing. 

• Options to incorporate features such as machine learning, data analytics, etc. into the 

solver algorithm to make them intelligent.  
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2.1.3. Algorithms 

Although algorithms also refer to the work-flow of numerical solvers, in this section, the 

term is used to refer to only synthesis, design and/or analysis of a wide range of process 

(chemical, petrochemical, biochemical, pharmaceutical, food, etc.) and/or chemicals-

based products (solvents, refrigerants, fuel blends, paints, detergents, etc.), including 

devices (medicine delivery, power-supply, air-purifier, etc.). They are further classified 

in terms of available options (sustainable design, design under uncertainty, reverse 

design, flexibility and/or controllability analysis, etc.); type of approach (rule-based, 

process groups based, superstructure-based, etc.); and, application areas (process 

technology, product technology, analyser technology, etc.). The following selected 

articles provide an overview on the challenges and opportunities related to specific topics:  

Chen and Grossmann (2017) on process synthesis; Schilling et al. (2017) and 

Papathanasiou and Kontoravdi (2020) on product and process synthesis-design; 

Skiborowski et al. (2014) and Tula et al. (2017) on sustainable process design; Morari 

and Lee (1999), and, Yu and Biegler (2019) on process control, Diangelakis et al. (2017) 

and Rafiei and Ricardez-Sandoval (2020) on integrated process design and control 

optimization; Garcia and You (2015) on supply chain design and optimization, and, 

Maravelias and Sung (2009) on production planning and scheduling. Some algorithm 

related issues are briefly highlighted below (not ordered in terms of priority): 

• Application range versus reliability versus flexibility. 

• Detailed activity diagram (model) needed for software implementation. 

• Adoption of hybrid approaches (interfacing of algorithms with computational 

resources). 

2.2. Computer-aided tools 

The PSE community continue to develop problem specific computer-aided tools for a 

wide range of applications. The most well-known PSE computer-aided tool is the process 

simulator, available in different versions, that is widely used for education as well as 

industrial practice. However, are the current versions of the various simulators able to 

solve the problems related to the energy-water-environment-food-health nexus? Also, as 

pointed out by Tula et al. (2019), process simulation is just one out of many tasks that 

needs to be performed for sustainable and innovative design. For example, tools for 

modelling are needed if the required model is not available in the simulator model library; 

or, a product design tool is needed to design-select an appropriate chemical for solvent-

based separation; or, a process synthesis tool is needed to generate a flowsheet if a 

reference flowsheet is not available; or, analysis tools (sustainability, safety and hazards, 

LCA, economics, etc.) are needed to verify the feasibility of the chemical process. 

Pistikopoulos et al. (2021) provides a list of the above-mentioned tools developed by the 

PSE community. Some issues related to computer-aided tools are briefly highlighted 

below (not ordered in terms of priority): 

• Application range of the available models in the model libraries – are they problem 

specific according to application area? 

• Can the models, data, algorithms be adopted from one sector to another? 

• Are simulation and design (including synthesis and analysis) options available in the 

same tool?  

• Can they serve as virtual reality simulators to provide users with real experience? 

Challenges and Opportunities for Process Systems Engineering
in a Changed World
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3. Challenges and roles of PSE 

Table 1 lists selected data to highlight the challenges and issues. The energy-water-

environment-food-health nexus is getting more complex in the changing world and an 

integrated solution approach is necessary to tackle better the interactions among the 

individual effects. For example, energy in the form of fuels and electricity is needed by 

industry, transportation and housing sectors, but the type of fuel and the electricity 

generation defines the amounts of green-house gas (GHG) emissions, which in turn is 

related to climate change. Supply chain factors as well as waste disposal and therefore, 

resource utilization and pollution are also related, particularly for the chemical, 

petrochemical and pharmaceutical sectors. With respect to COVID-19, the pandemic is 

still not under control (December 31st, 2021) even though the rates of hospitalizations and 

deaths appear to be slowing down (see Table 1). However, based on data on consumption 

of energy (see Table 1), the non-renewable resources that emit CO2 still dominate energy 

supplies. Capture, utilization, and/or sequestration of CO2 is a challenge where adopted 

PSE methods and tools can play an important role. Society’s daily needs such as plastics 

for packaging; chemicals for drugs, cosmetics, detergents, etc.; rare earth metals for 

construction, equipment, cars, etc., are causing pollution of land, water and/or air upon 

disposal and through their end-of-life properties.  

 

Table 1: Current status of selected effects  

Effect Data  Reference 

Global warming New estimates of the chances of crossing the global 

warming level of 1.5°C in the next decades indicate 

that unless there are immediate, rapid and large-

scale reductions in greenhouse gas emissions, 

limiting warming to close to 1.5°C or even 2°C will 

be beyond reach 

 IPCC (2021) 

COVID-19 Worldwide total infections have reached 

285,231,011 with 5,442,088 deaths as of 31 

December 2021 

Worldometers (2021)  

Resources 

(energy) 

CO2 emitting non-renewable resources still 

contribute nearly 85% of the energy (not 

electricity) and around 65% for generation of 

electricity 

Vooradi et al. (2017); 

IEA (2021) 

Resources (water) 97% of water on earth is salt water and only 3% is 

fresh water, out of which, 68.1% is ice-caps and 

glaciers, 30.1% is ground water, 0.3% is surface 

water and 0.9% is other); Globally, at least 2 billion 

people use contaminated drinking water source 

WHO (2019); Greenlee 

et al. (2009)   

 

Resources 

(biomass) 

Currently biomass contributes 3.4% of the total 

transportation energy demand. It would require 2.4 

times the amount currently devoted to all energy 

demands (or, more than 1.3 times earth’s current 

biomass resources) to satisfy only the total energy 

demand for the transportation sector in 2030. 

Energy (2021); WBA 

(2020); IRENA (2014); 

IEA (2016) 

Pollution (plastic 

waste, water) 

Projected plastic waste generation of the EU-27 is 

estimated to reach 17 Mt/y in 2030 

Fan et al. (2022) 

Pollution (GHG 

release) 

The GWP of CH4 and N2O are around 27~29 and 

273 (100-year time period), respectively. 

IPCC (2021) 
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Where should the focus to tackle these challenges be, what should be the choice of 

problems to solve, and, which solution approaches should be applied that could make an 

impact and help to define the new normal for future generations are still open questions 

that need to be addressed. Guillén-Gosálbez et al. (2019) recently highlighted process 

systems engineering thinking and listed tools that could be applied to solve sustainability 

related problems. Bakshi (2019) reviewed the role of process systems engineering toward 

sustainable chemical engineering. Burre et al. (2020) discussed how process systems 

engineering can help address common challenges for Power-to-X technologies. Martin et 

al. (2022) the challenges and opportunities related to sustainable process synthesis, design 

and analysis. Avraamidou et al. (2020) highlighted the challenges and opportunities for 

PSE related to achieving circular economy.  

3.1. Sustainable process networks 

The production of clean energy is directly linked to avoiding the depletion of natural 

resources, even if this goal has a more general aim, as well as limiting the production of 

waste and avoiding polluting the environment. According to the carbon-neutral roadmap 

presented by each government, chemical and petrochemical industries must reduce their 

greenhouse gas emissions to achieve zero net emissions by 2050. In order to significantly 

reduce carbon emissions in such industries while maintaining the current business 

portfolio, adoption of new technologies that can directly utilize electricity originating 

from renewable energy resources such as solar and/or wind energy to produce chemical 

products is necessary (Rangel-Martinez et al., 2021). Process integration at the different 

manufacturing and production levels will play a critical role to ensure efficient and 

sustainable operation of existing and emerging systems, and their corresponding 

integration (Burnak et al., 2019; Rafiei and Ricardez-Sandoval, 2020). Figure 2 highlights 

the concept of integration of sub-networks of utilities (energy and water), process for 

conversion of optimal product(s), integrated with capture and utilization of captured CO2.  

Decisions related to individual sub-networks need to be made such that the overall 

objectives of sustainable design are satisfied. The objective for sustainable design of 

networks could be, for example, to find a design with zero or negative CO2 (preferably 

all GHG) that is economically feasible, operationally safe and environmentally 

acceptable.  Choices of raw materials and products can represent any industrial sector 

while choices of resources for utilities need to be made such that net zero emission 

requirement can be satisfied. Note that in Figure 2, the processing of waste utilities 

(energy, water), waste material, by-products for recycle, re-insertion and/or utilization in 

the process thus promoting circular economy is not shown.  

Using core PSE methods and associated tools Li et al. (2022) have developed a conceptual 

application example of such a superstructure based sustainable network synthesis. Roh et 

al. (2018) have developed a computer-aided tool (called ArKaTAC3) that allows to 

perform both superstructure-based process synthesis and multi-dimensional analyses 

(including techno-economic analysis and life cycle assessment) of carbon capture and 

utilization systems. Filippini et al. (2019) reported design and economic evaluation of 

solar-powered hybrid multi effect and reverse osmosis system for seawater desalination. 

Also, Sanchez et al. (2019) have shown the utilization of captured CO2 hydrogenation 

with green hydrogen for methanol, ammonia and urea productions, while, Guerras et al. 

(2021) proposes that biomass as a renewable resource should be devoted for the 

production of added value products (for example, in the pharma, food additives, health 

sectors) and only wastes should be used for energy production. Evaluation of these new 

technologies should also consider operational flexibility (Mitsos et al., 2018) as well as 

safety (Eini et al., 2016). 

Challenges and Opportunities for Process Systems Engineering
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Figure 2: Superstructure for optimal integrated net zero emission network to achieve 

circular economy (note: * indicates they will need additional processing for recycle, re-

insertion and/or utilization). 
 

3.2. Chemical process safety 

Even though the chemical industry has achieved a very impressive improvement in 

occupational safety, the reduction in major process accidents (on a global basis) has been 

less impressive and the insured losses due to major accidents in the chemical industry 

have not reduced in the last 30 years. It is estimated that 70% of the chemical accidents 

were caused by human errors. These incidents also point to inefficient resource 

utilization. PSE should be able to play a key role in developing and deploying advanced 

artificial intelligence-based technologies that assist operators in estimating and/or 

identifying all potential risks in the complex and dynamic chemical industrial operations 

and to make correct and consistent decisions. Interesting developments that could be 

evaluated for potential deployment are method for fault detection and diagnosis (see Fig. 

3) based on transfer learning (Wu and Zhao, 2020), automatic frequency estimation of 

contributory factors for confined space accidents, natural language processing (Wang and 

Zhao, 2022), and, inherent safety and cognitive engineering as well as operator training 

(Srinivasan et al., 2019).  
 

 
Figure 3: Framework for fault detection and diagnosis (Wu and Zhao, 2020). 
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3.3. Health and pharma sector 

In the pharma sector, a principal challenge is to develop model (including data) based 

computer aided systems for synthesis, design, monitoring, control, as in chemical and 

petrochemical industries. Nevertheless, systems approach coupled with PSE methods and 

associated tools have made important contributions during the last decade, for example, 

in conversion from batch to continuous manufacturing (Ierapetritou et al., 2016), 

development of process analytical technologies, and data-driven approaches for active 

pharmaceutical ingredients (API) syntheses and design of powder-/bio- processes (e.g., 

Kim et al., 2021). Advances in development of health-care products (Fuentes-Garí et al., 

2015) and their manufacturing processes such as monoclonal antibody drugs and stem 

cells have been reported (e.g., Hayashi et al. 2021). In sustainability and healthcare, 

COVID-19 has revealed the need for a systematic approach for vaccine/medicine 

development and supply chain. The urgent supply was mandated on top of maintaining 

the existing treatment capability. Besides COVID-19, R&D of innovative therapies, e.g., 

regenerative medicine, is ongoing. These therapies tend to be expensive while the 

economic aspect is becoming critical in many countries. Analyses and discussions 

towards sustainable healthcare society (e.g., Sugiyama et al., 2021) can be further 

expanded as a topic of the PSE community. Figure 4 highlights the challenges and 

opportunities for adoption of PSE methods and tools to prepare for future pandemics. 

Four potential problems to solve are highlighted together with the issues and needs that 

need to be addressed.  
  

 
Figure 4: Visual plan to prepare for the next pandemic through PSE methods and tools 

 

3.4. Chemicals based products and their substitution 

In our changed world, we are living with chemicals that are in our food products, clothes, 

furniture, appliances, toys, cosmetics, medicines and many more. Society, for its 

existence anywhere on earth, needs to use a variety of products and/or means that are 

directly or indirectly connected to chemicals. Currently, more than one million chemicals 

can be found on planet earth and thousands of new chemicals-based products are entering 

the global market every year. Over 95 percent of all manufactured goods rely on some 

form of industrial chemical process (ICCA, 2019). As the number of chemicals grows 

rapidly, understanding their implications on human health and environment is 

increasingly becoming an issue. An important and urgent challenge is not only to identify 

the chemicals, which may have harmful effects, but also to substitute or control their use 

(Syeda et al., 2022). As demand for safer alternatives in products is increasing, regulatory 

authorities, such as EU REACH (EU, 2021), US EPA (EPA, 2021) and Occupational 

Safety and Health Administration (OSHA, 2021) have taken up substitution of chemicals 

Challenges and Opportunities for Process Systems Engineering
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harmful to human health and environment as one of the central elements of their policies. 

As the pioneers of techniques such as computer-aided molecular design (CAMD) for 

chemical product design, the PSE community is well placed to assist and actively 

collaborate with the authorities to tackle this urgent problem. CAMD and different 

variations of it (Zhang et al., 2020, Adjiman et al., 2021), can easily be adopted for 

analysis of chemicals-based products and substitution of chemicals if hazardous 

chemicals are identified in the product. The chemical substitution problem and the 

possible solution steps are highlighted in Figure 5.  

 

Figure 5: Chemical substitution problem and suggested solution steps. 

4. Perspectives (Opportunities) 

A “systems thinking” or “systems integration” approach is required, where PSE provides 

the glue (architecture for consistent, efficient, and smooth data transfer from one tool to 

another) for integration of energy supply, water management, control of greenhouse gas 

emissions, process safety and economics and many other major issues that impact society 

and earth. PSE methods and associated tools can be adopted for sustainable and secure 

access to food, water and energy, leading to achievement of sustainable development 

goals, to develop and evaluate new technologies for carbon capture, utilization and 

sequestration (CCUS), and to close circular production systems with near-zero or 

minimum waste. Simultaneously, computer-aided molecular design (CAMD) techniques 

could be adopted for pollution control of water caused by plastics, including disposable 

personal protective equipment (PPE), etc.; pollution of air caused by GHGs, etc.; and 

pollution of land caused by disposed chemicals-based products. 

In order to tackle the challenges of our changed world, the opportunity exists to not only 

adopt but also to develop new methods and tools as and when necessary. As models, 

modelling and data are at the core of all systems-based problem solution approaches, 

more effort is needed to understand systems that are outside our domain knowledge. It is 

important to use correct and consistent models and associated decision support tools for 

analysing the involved complex phenomena (e.g., powder processing, biological 

reactions, cell behaviour, solid solubility, toxicity, etc.) in such a way that the decisions 

related to process and products (e.g., production scale and mode, design space 

determination, process-operation specification, etc.) can be made.  

Recognizing that resources in earth are not uniformly distributed, nevertheless, the 

concept of integrated networks could be applied for desalination to obtain fresh water 

using solar and/or wind energy sources where these can be harnessed. In regions where 
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there is fresh water in abundance, technologies already available to combine hydrogen 

obtained through electrolysis of water with captured CO2 to produce methanol (as an 

intermediate chemical from which other high-value chemicals could be synthesized), with 

N2 from air to produce ammonia (as a hydrogen carrier), and, methanol and ammonia to 

produce urea (as a fertilizer). The analysis of competing interests as well as the 

presentation of feasible/optimal solutions under uncertainty (i.e., societal design) would 

be another important contribution from PSE. 

Stable and sustainable coupling of chemical industry and power generation sectors by 

exploiting operational flexibility, optimal integration of design, operation, and control of 

power-intensive chemical plants that already exist and also should be newly developed. 

Implementation of new technologies, such as intensified equipment and/or hybrid 

combination of distillation and membrane, for targeted reduction of energy consumption 

as a short-term solution need to be promoted through bench-mark problem solutions.   

Lessons learnt from the pandemic with respect to the challenges posed to the supply chain 

and development of novel schemes and policies that can potentially reduce the impact of 

current and future pandemics should be considered as a global supply chain system. With 

the expertise and experience of the PSE community in the supply chain sector, an optimal 

vaccine allocation system that is region specific to immunize the population at the fastest 

rate could be developed and distributed to the appropriate agencies. Recognition of 

healthcare as an element of the energy-water-environment-food-health nexus will help 

re-designing the manufacturing processes and beyond. PSE can contribute to help prepare 

for the next pandemic with, for example, vaccine allocation software (to be made 

available globally to all countries) to reach herd immunity at the shortest time and with 

the minimum loss of life. 

5. Conclusions 

Process systems engineering as a multi-disciplinary field of research has many 

opportunities to tackle some of the greatest challenges faced by today’s society. This 

opportunity is provided by the rich literature and many ongoing current and future 

activities to provide integrated solutions within water-energy-food-waste-health nexus. 

However, more efforts are needed to understand and develop models, tools and solutions 

strategies to address those major challenges. This can result in developing new 

technologies and process systems by means of predictive models. These predictive 

models should be able to address short-term necessities while laying the foundations for 

long-term solutions over a time horizon to help alleviate the current and future challenges 

to address different global objectives, such as the UN sustainable development goals. 

However, all the efforts would be wasted if the demands (due to increased growth and 

promising economy) cannot be limited; circular economy with zero waste and ability to 

sustain changes will be impossible if resources disappear because of increased demand. 

Thereby, a systems thinking approach is essential to not lose the opportunities within 

rather narrow windows to address global issues, such as global warming and the COVID-

19 pandemic. 
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Abstract 
Following the Industry 4.0 revolution, pharmaceutical industry is progressing towards 
embracing its principles for smart manufacturing. Industry 4.0 encourages the application 
of a robust, integrated data framework to connect physical components to virtual 
environment. It enables an accurate representation of the physical parts in digitized space, 
leading to the realization of Digital Twins (DTs). In this work, our effort on developing 
process systems engineering (PSE) tools towards the development of a DT for advanced 
pharmaceutical manufacturing are presented. These tools are demonstrated through 
applications in the areas of solid-based drug manufacturing and biologics production.   

Keywords: Industry 4.0; Digital twin; System analysis; Pharmaceutical manufacturing; 
Biologics production. 

1. Introduction  
Driven by the Industry 4.0 revolution and the vision to develop agile, robust, and flexible 
manufacturing process to produce high quality drugs, the pharmaceutical industry is 
adopting this digitalization move (O'Connor et al., 2016, Chen et al., 2020). Efficient 
process monitoring, prediction, and analysis are realized using process analytical 
technologies (PAT), data collection and processing, Internet of Things (IoT), and big data 
analytics. The framework allows for the establishment of a virtual representation of the 
physical process with information communications, resulting in a DT capable to enhance 
process robustness and facilitate process design and operations (Chen et al., 2020). For 
DTs, maintaining precise virtual representations of processes and conducting detailed 
analyses are two crucial tasks. These tasks are challenging for pharmaceutical 
manufacturing as multi-scale information, ranging from powder and cell properties to 
bulk flow of materials, needs to be integrated with complex reaction networks and 
transport phenomena. These components lead to complex model development and high 
computational costs, limiting the implementation of DT in advanced pharmaceutical 
manufacturing.  

To address these challenges, we propose the use of PSE tools focusing on modeling and 
analysis approaches. From a modeling perspective, mechanistic models for particle and 
cell level modeling, surrogate and hybrid modeling for model reduction, adaptive 
modeling for model updates, and flowsheet models for process integration are developed. 
For process analyses, efficient tools in sensitivity and feasibility analysis, techno-
economic analysis (TEA), life cycle assessment (LCA), and optimization are applied. The 
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development and application of these methods will be illustrated for solid-based drug 
manufacturing and biological production.  

2. Application in solid-based drug and biologics manufacturing  
The in-silico design, analysis, and optimization methods provide a basis for digital 
manufacturing, which support resolving the bottleneck of the pharmaceutical industry in 
improving productivity and quality. Mechanistic models enable the incorporation of 
process details and material properties, providing a comprehensive digital replication of 
the unit. These models include discrete element modelling (DEM) to simulate dynamic 
powder flow in solid-based drug manufacturing (Bhalode and Ierapetritou 2020), and 
computational fluid dynamics (CFD) with kinetic models to capture cellular activities for 
biologics manufacturing (Yang and Ierapetritou, 2021). However, these models can be 
computationally intensive. To address such challenge, surrogate and hybrid models that 
combine data and process knowledge in different scales are utilized (Bhalode and 
Ierapetritou, 2021, Chen and Ierapetritou, 2020, Metta and Ierapetritou, 2019). Dynamic 
algorithms and adaptive strategies based on moving windows are used to capture time-
variant process behaviours, supporting the development of DTs (Bhalode et al., 2022). 
Models in solid-based drug manufacturing and monoclonal antibody (mAb) production 
will be presented as case studies (Ding and Ierapetritou, 2021, Yang and Ierapetritou, 
2021, Chopda et al., 2021).  

Along with unit operation models, flowsheet models are constructed with appropriate 
information transfer, which facilitate early-stage design, evaluation, and decision making. 
To improve process understanding, PSE tools such as regression and variance-based 
sensitivity analysis, feasibility analysis with adaptive sampling, and deterministic 
optimization are performed for identification of critical process parameters, design space, 
and optimal operating conditions, respectively. Cases in direct compaction of solid-based 
drugs (Wang et al., 2017a, Metta et al., 2020, Bhalode et al., 2020) and continuous 
chromatography of biologics (Ding and Ierapetritou, 2021) will be demonstrated.  

TEA tools are integrated with flowsheet models to analyse the cost and energy 
effectiveness of the process and to identify the benefits of continuous operations over 
traditional batch or semi-batch operation alternatives. Applications in both wet 
granulation for the production of solid-based drugs (Sampat et al., 2022), and mAb 
production will be discussed (Yang et al., 2019). To assess the sustainability potential of 
advanced pharmaceutical manufacturing processes, LCA tools (Luo and Ierapetritou, 
2020) are utilized to obtain important environmental indicators including the global 
warming potential of the product. With information on sustainability and process 
economics, multi-objective optimization is performed to strive for a balance between the 
two and guide process design and operations. To reduce sampling cost, maintain process 
feasibility, and find accurate Pareto solutions, a two-stage optimization framework based 
on Wang et al. (2017b) is proposed. The feasibility stage identifies the feasible regions 
with promising values for all objectives, followed by the optimization stage to find the 
Pareto within the feasible regions. The surrogate-based feasibility-driven multi-objective 
optimization algorithm will be shown for wet granulation route of solid-based drug 
manufacturing.  
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Abstract 
The enormity of mankind’s decarbonization challenge precludes a simple monolithic 
solution. Its unprecedented scale and complexity affect every nation without exceptions. 
Ideally, our mission should be to fully replace the fossil fuels with zero-carbon renewable 
alternatives, but the path to that end is long and challenging. In this talk, we discuss our 
experience and perspectives on some decarbonization pathways with concrete examples 
(efficiency improvements, novel processes for CO2 utilization, non-polluting energy 
sources, …), where successful translational outcomes can be accelerated by continuous 
guidance from process systems engineering tools and techniques.  

Keywords: carbon emissions, decarbonization, hydrogen, carbon utilization, carbon 
capture, supply chain. 

1. Introduction 
Economic development and per capita energy consumption of a nation are strongly 
correlated. Rising world population with a desire for better living has increased energy 
demand exponentially, which is mostly met with easy-to-use hydrocarbon fuels with little 
concern for a backlash from abusing the nature and despite warnings flagged by many 
scientific studies. The consequence is an unprecedented rise in the atmospheric CO2 
levels. In the meantime, global warming is already showing early signs of catastrophic 
consequences all around the world. From Kyoto Protocol in 1997 through Paris 
Agreement in 2015 to Glasgow COP26 in 2021, it took 23 years for the world to fully 
wake up to the urgency of the situation and take decarbonization seriously. Fortunately, 
the scientific community was fully committed well ahead of the political consensus on 
this matter, and has compiled a significant body of work on decarbonization. These 
contributions, spanning a broad spectrum of issues, can be classified into three themes: 
reduce, recycle/reuse, and replace carbon; which are widely known as 3Rs. In most 
countries, the journey towards decarbonization has involved the 3Rs in the same 
sequence. 

Decarbonizing existing systems require addressing inherently large-scale problems. 
Consequently, our collective 3R-driven decarbonization journey has witnessed a 
resurgence of the need to apply the classical Chemical and Process Systems Engineering 
(PSE) concepts and methods. Parallelly, low carbon technology innovations are required 
for capturing carbon emissions and producing power, chemicals, and fuels. We believe 
that their industrial success requires mission oriented translational work, and constant 
guidance from PSE right from the beginning can benefit them greatly. 
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In this talk, we present our perspectives on the 3Rs for our journey from high-carbon 
present to no-carbon future with examples from our work at the National University of 
Singapore that illustrate the central role of PSE in this urgent and critical mission. 

2. Reduce 
Reducing CO2 emissions from the power and industry sectors by increasing energy 
efficiency is a low hanging fruit, hence the obvious first target for many countries and 
research. Our work has yielded several observations. 

Much literature has used energy or exergy as a KPI (Key Performance Index) for many 
problems. In our opinion, annualized total cost (TAC) should be the preferred KPI, as 
minimum-TAC solutions can be significantly different from minimum-energy/exergy 
solutions (Rao et al., 2016; Rao & Karimi, 2018). Furthermore, no doubt a sound 
theoretical concept, exergy is inadequate for economic industrial decisions in practice. 

Rigorous simulation-based optimization has been quite useful for us. Our work (Dutta et 
al., 2018; Rao & Karimi, 2017) required detailed rigorous simulations of industrial 
facilities with realistic thermodynamic properties. It proved easier and more accurate to 
use them directly versus deriving analytical correlations for the conventional algebraic 
optimization. Hamedi et al. (2020) have identified several pitfalls of the latter. 

Saleem et al. (2018) developed a computational fluid dynamics (CFD) model for an 
industry-scale LNG storage tank and showed that surface evaporation predominates, and 
nucleate boiling is unlikely. Furthermore, the static pressure delays internal circulation 
and complete mixing. Sundaram & Karimi (2021) were able to predicts pressure 
transients using a simpler model and their results matched both the CFD model real tank 
data. LNG recirculation is a major cause of BOG losses (hence power use in 
reliquefaction) from these tanks. Using a validated dynamic simulator, we (Karimi et al, 
2019) proposed a modified recirculation scheme, a new operations schedule for BOG 
compressors, and a lower recondenser pressure to reduce power use by nearly 40%. 

Heat integration has hugely benefitted the process industry. We addressed several key 
areas. First, Nair et al. (2019) developed a novel stageless superstructure that offers 
complete flexibility in network configuration and is seamless for both grassroots and 
retrofit synthesis. Second, Nair et al. (2016) showed that inter-plant (versus intra-plant) 
heat integration can offer substantial energy savings, but at the cost of several significant 
complexity, safety, control, logistics, ownership, and collaboration challenges. Capital 
costs become much more crucial. Third, integrating work along with heat (Hamdi et al., 
2020) offers additional carbon reduction. Fourth, Rao & Karimi (2017) and Rao et al. 
(2019) addressed the flowsheet and operation optimizations of processes with multi-
stream exchangers. Fifth, Christopher et al. (2017) used vapor recompression and self-
heat recuperation to decrease energy use by 45% for propane/propylene separation. 

LNG regasification terminals worldwide waste LNG’s cold energy. Dutta et al. (2018a) 
showed that a well-configured organic Rankine cycle (ORC) can recover this energy and 
produce 0.5−12.9 kW/t-LNG of power with an NPV of $2.45-6.87 million at an operating 
regasification terminal. Furthermore, Dutta et al. (2018b) proposed an integrated 
regasification-production process to produce valuable heavy hydrocarbons (ethane, LPG) 
from rich/medium LNG by exploiting the cold energy. In fact, such a process can generate 
7-10% profit for the terminal. 
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We have implemented process data-based pump and insulation health monitoring at the 
same terminal. While estimating the remaining useful life (RUL) to schedule timely 
preventive maintenance, the user interface also tracks increasing CO2 emission from 
deteriorating health. Thus, it is possible to account for environmental impact (carbon tax) 
to schedule maintenance. 
Our above discussion illustrates how PSE methodologies for design, simulation, 
integration, and optimization can reduce carbon emissions in real industrial processes. 

3. Recycle / Reuse 
While renewable energy sources are a priority, hydrocarbons will remain in use during 
the transition to a zero-carbon economy. Hence, carbon capture and concentration (CCC) 
from various stationary emission sources for sequestration and utilization (CSU) will be 
important and unavoidable during the transition. CO2 recycle/ utilization can be achieved 
in two ways. The conventional way is to capture it from the existing processes and 
produce useful chemicals via green hydrogen. The alternative is to radically change the 
way we produce power and chemicals today by integrating their productions to achieve 
zero net CO2 emissions. 
Our studies (Khurana & Farooq, 2017, 2019) on CCC have led to the following 
perspectives. First, the scale and footprint of a CCC plant, irrespective of the technology, 
are far larger than the largest chemical plant known today. Second, adsorption-based CCC 
processes (VSA, TSA, etc) do not show any significant cost advantage compared to the 
established industrial amine processes. Third, the cost reduction from designing both 
adsorbent and process simultaneously (process inversion) by considering adsorbent 
attributes also as optimization variables was minimal. This implies that process rather 
than material innovation is more promising. The idea of process inversion can help other 
R&DD efforts such as catalysts for CO2 utilization (CU). 
In order to gain a broader understanding of the prospects and challenges of CO2 reuse, 
we (Dutta et al., 2017) conceptualized a zero-emissions scheme (Figure 1) to integrate 
both power and chemicals production. All CO2 produced was recycled internally and 
reused to produce useful fuels and chemicals. All reaction and separation operations along 
with heat and power integration were also built within the scheme. Using the scheme as 
a surrogate to achieve zero net carbon emissions made us quickly realize that an abundant 
supply of green renewable hydrogen is a prerequisite. If the scheme was used to meet the 
current global demands of all chemicals, CO2 avoidance would be at most 59% of 2013 
emissions. This implies that CU must produce fuels to increase CO2 avoidance. 
Furthermore, CU products must be cost-competitive and profitable. 
Our recent study (Vo et al., 2021) on the feasibility of producing transportation fuels, 
methanol and 1-propanol from CU shows that only 1-propanol is competitive at the 
present levels of carbon tax, CO2 cost, and green hydrogen price. Our proposed scheme 
for producing 1-propanol from CO2 utilization is a three-step process. Even though this 
process is economically profitable and emits less CO2 than the current commercial 
process, a novel catalyst allowing a single step process may seem more attractive 
intuitively. However, our technoeconomic study based on preliminary data from a single-
step catalyst shows contrary results. The first problem is low selectivity towards propanol 
versus non-alcoholic by-products. The second problem is the high H2 burden arising from 
the oxygen molecules introduced with each mole of CO2. This is an excellent illustration 
of how a complete process study at an early stage of catalyst development can guide 
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further materials research. In view of the current high green H2 cost, its higher 
consumption in CO2 utilization compared to the conventional routes deserves further 
study. 
 

 

 

 

 
Figure 1: Scheme for the integrated production of power and chemicals with zero net 

carbon emissions. 

4. Replace 
The grand vision for deep decarbonisation foresees the emergence of an energy landscape 
based on global hydrogen supply chains (HSCs, Figure 2). While much effort is underway 
on technologies (e.g. water electrolysis) to produce green hydrogen via renewable 
electricity, it will take time before such green H2 is cost competitive with the blue 
hydrogen produced from NG with CCS. Other material and equipment hurdles along with 
the lack of infrastructure will keep both NG and CCSU critically relevant for the 
foreseeable future. In other words, HSCs will be inseparable from NG/LNG and CO2 
supply chains. Several countries (e.g. EU, USA, Korea, Australia, Japan) have developed 
roadmaps for how H2 could develop in specific regions. Since some countries (e.g. 
Singapore) with high energy needs have few renewable energy resources, export/import 
of H2 via global transport routes will be a key aspect of HSCs with low density of H2 as 
a significant hurdle. Hence, countries are asking three main questions: what are the 
technoeconomic and environmental costs of producing, importing, and transporting H2? 
Fully funded by and in collaboration with ExxonMobil USA, we are working on a 
hydrogen roadmap for ASEAN (Association of South East Asian Nations) under the 
umbrella of Singapore Energy Center. We conducted a holistic study of various options 
for producing and transporting hydrogen from both technoeconomic and environmental 
perspectives, and are analysing various scenarios for the planning of HSCs in ASEAN 
from now to 2050. For this, we (Hong et al., 2021) have developed a multiperiod mixed-
integer nonlinear programming model for geographically distributed SC capacity 
planning, and a tool called HEART (Hydrogen Economy Assessment & Resource Tool). 
HEART enables the long-term design and planning of H2 production and import, and 
computes the cost of producing and transporting H2. In the near future, we will also be 
collaborating with Chiyoda and Mitsubishi Japan to plan and optimize the local 
distribution of H2 in Singapore, when MCH (Methyl CycloHexane) is used as a carrier 
for importing H2. 
Using data from various H2 reports, we developed simplified analytical correlations for 
the cost of producing H2 from NG, coal, biomass, and water electrolysis at various 
locations in ASEAN. We (Hong et al., 2021) then analysed four options for transporting 
hydrogen, namely methyl cyclohexane (MCH), liquid hydrogen (LH2), compressed 
hydrogen (CH2), and liquid ammonia (LNH3) and computed the landed cost of H2 as a 
function of various technoeconomic and geographic parameters. Our study showed that 
HSC costs are comparable to production costs, hence both require careful attention for 
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H2 economy. H2 produced via steam reforming with CCS and supplied via pipelines is 
the cheapest option for distances within 2000 km. The next best option is the direct use 
of NH3 instead of H2 for power generation. MCH and liquid NH3 showed comparable 
landed costs for H2, and using green H2 is essential for achieving >80% carbon 
avoidance. Liquid H2 has the highest energy penalty. Contrary to the misgiving that direct 
NH3 burning will increase NOx emissions, our recent comparative study (Saleem et al., 
2022) of literature data on burning hydrogen, ammonia, and natural gas shows that NOx 
generation from H2 combustion is more than that from an equivalent amount of NH3. 

 
Figure 2: Schematic of hydrogen supply chain and its key elements. (Hong et al., 2021) 

5. Conclusions 
Various branches of chemical engineering and related sciences have sufficiently 
progressed where we can have high confidence in simulation-based prediction of a 
process performance obtained via PSE tools and techniques. In this paper, we have 
demonstrated with examples drawn from our work how that can play important roles in 
all three Rs to arrest our existential threat from global warming.  

We strongly advocate a paradigm shift where PSE would be the guiding vector for 
materials research from the beginning in order to provide timely feedback necessary to 
ensure that what looks exciting at a small scale meets the requirements of a successful 
commercial translation. This new paradigm has the potential to maximize resource 
utilization and shorten development times. 
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Abstract 
In recent years, high-fidelity simulation models have become widespread to study, design, 
and optimize engineering systems. However, the complexity of the models often requires 
computational power beyond what is feasible. One common way to reduce computational 
cost is to use surrogate/meta models, simplified approximations of more complex, higher-
order models, and map input data to output data. Many techniques have been developed 
for surrogate modeling; however, there remains a need for a systematic method for 
selecting suitable techniques. In addition, surrogate models built using traditional 
methods do not accurately represent the outputs of high-fidelity stochastic simulations, 
e.g., simulations with uncertain parameters. This work describes a new framework that 
combines PRESTO (Predictive REcommendations of Surrogate models To Optimize), a 
surrogate model selection tool, with a novel technique, PARIN (PARameter as INput-
variable), for building accurate surrogate models of stochastic simulations. We applied 
the framework to two stochastic test functions with one uncertain parameter. The results 
reveal that the framework yielded lower normalized root mean square errors than 
stochastic kriging in predicting the mean and standard deviation of the test function 
outputs. 
 
Keywords: surrogate model, stochastic simulation, surface approximation, process 
design/optimization 

1. Introduction 
In recent years, high-fidelity simulation models have become widespread to study, design, 
and optimize engineering systems (e.g., (Burnak et al., 2019; Al et al., 2020; Marvi-
Mashhadi et al., 2020; Wang et al., 2020)). However, in many cases, the complexity of 
the models requires computational power beyond what is available for applications like 
sensitivity analysis or optimization studies. One common way to reduce computational 
costs is to use surrogate/meta models. Surrogate models, also known as response surfaces, 
black-box models, metamodels, or emulators, are simplified approximations of more 
complex, higher-order models and map input data to output data (Jiang et al., 2020). 
 
With all the surrogate modeling techniques currently available, there is a need for a 
systematic procedure for selecting the appropriate technique. Recent works (Cui et al., 
2016; Garud et al., 2018; Jia et al., 2020) have made progress in generalizing the selection 
of a surrogate model to approximate a design space by using meta-learning approaches 
avoiding expensive trial-and-error methods. However, selecting surrogate models for 
surrogate-based optimization remains an open challenge. Furthermore, surrogate models 
built using traditional techniques do not accurately represent the outputs of high-fidelity 
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stochastic simulations, e.g., simulations with uncertain parameters (Staum, 2009). High-
fidelity simulations may contain different sources of uncertainty, including uncertain 
inputs, parameters, and model form (Ankenman et al., 2008). The existing machine 
learning (ML) methods are mainly built for deterministic problems, and they usually fail 
in representing the stochastic simulation outputs properly (Staum, 2009). The current ML 
techniques can be used to model outputs of stochastic simulation only when the source of 
uncertainty is the inputs. A surrogate model is built using an appropriate ML technique 
with the input/output data generated using the deterministic simulation. Then, the input 
uncertainty may be propagated to the ML model outputs using uncertainty propagation 
methods (Kim, 2016). 
 
Three current approaches to model the stochastic simulations with uncertain parameter(s) 
are 1) fixing the value of the uncertain parameters (Hüllen et al., 2019), 2) using a subset 
of realizations of the uncertain parameters (Hüllen et al., 2019), and 3) stochastic kriging 
(Ankenman et al., 2008). Using the first method leads to a deterministic output and the 
loss of uncertainty. The second method requires training several surrogate models to 
estimate the output and its uncertainty. Applying stochastic kriging limits the ML 
technique to kriging; however, it has been shown that the best ML technique for building 
a surrogate model depends on the data characteristics, which is a function of the 
underlying phenomena the model represents (Williams and Cremaschi, 2021).  
 
In this paper, we propose a new framework to address the shortcomings of the previous 
methods and build surrogate models of simulations with uncertain parameter(s). The 
approach combines our recently developed surrogate model recommendation tool 
(PRESTO - Predictive REcommendations of Surrogate models To Optimize) with a novel 
approach, PARIN (PARameter as INput-variable), for building accurate surrogate models 
of stochastic simulations with uncertain parameters (Section 2). Computational studies 
use two test functions with different dimensions to evaluate the new framework (Section 
3). The training data set is generated using Sobol sampling methods, and then the output 
for each given input point is calculated. The resultant training data set is fed to the 
PRESTO to obtain a set of recommended ML techniques for the data set. The 
recommended models are trained for each of the test functions. The performance of the 
new framework is compared to stochastic kriging (Section 3). Normalized root mean 
square error is used as the metric to compare the accuracy of the mean and standard 
deviation estimations of the test function outputs (Section 3). The comparisons reveal that 
the mean and standard deviation estimates obtained by the new framework are closer to 
their true values than the ones obtained using stochastic kriging. These results are 
presented and discussed in Section 4, followed by conclusions in Section 5.  

2. Framework for Training Surrogate Models for Stochastic Simulations 
The framework (Figure 1) starts by collecting input/output data, i.e., the training data set, 
from the stochastic simulation using a space-filling design. PARIN, PARameter as INput-
variable, converts the stochastic simulation into a deterministic one by extracting its 
uncertain parameters and considering these parameters as additional inputs to the 
simulation (Section 2.2). Therefore, the input data set also includes the uncertain 
parameters. PRESTO (Section 2.1) selects the best surrogate modeling technique given 
the training data set, and a surrogate model is trained using the selected technique. The 
parameter uncertainty is incorporated into the surrogate model outputs utilizing an 
appropriate uncertainty propagation method (Section 2.2).  
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Figure 1 – Workflow of the new framework 

2.1. PRESTO - Predictive REcommendations of Surrogate models To approximate and 
Optimize 
PRESTO is a random forest-based framework for selecting appropriate surrogate 
modeling techniques (Williams et al., 2021). Given a dataset of input-output values, it 
provides a list of surrogate models predicted to give the most accurate surface 
approximation of the underlying model of the given input-output pairs. In order to collect 
the data required to construct PRESTO, data sets were generated using test functions from 
the optimization test suite of the Virtual Library of Simulation experiments (Surjanovic 
and Bingham, 2013) at various input dimensions and sample sizes. Surrogate models were 
trained for each generated data set using a set of candidate surrogate modeling techniques. 
The calculated performance of each model was used to determine if a surrogate model 
was appropriate (“recommended”) or not (“not recommended”) for modeling a particular 
data set. This information was used to train random forest classifiers using data set 
characteristics as inputs and the assigned recommendation class as outputs (Williams et 
al., 2021). 

PRESTO recommends models based on the prediction of their performance for adjusted- 
R2. The formula for calculating adjusted-R2 (𝑅𝑅�2) is shown in Eq. (1). 

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝑛𝑛 − 1

𝑛𝑛 − (𝑘𝑘 + 1)� (1) 
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In Eq. (1), 𝑅𝑅2  is the R-squared regression coefficient, 𝑛𝑛 is the number of data points in 
the training set, and 𝑘𝑘 is the number of model parameters (or hyperparameters). The 
adjusted-R2 takes into account both the surrogate model accuracy and complexity. Taking 
complexity into account is important in preventing overfitting of the model as overfit 
models do not generalize well to data outside of the training set. 𝑅𝑅2 values typically fall 
between zero and one, with an 𝑅𝑅2 of one indicating an exact fit to the original, more 
complex model data. However, with the adjustment for model size, adjusted-R2 values 
can become negative.  
 
PRESTO calculates characteristics, or attributes, of the underlying model using only the 
available input-output information. These attributes include calculations related to the 
location and distribution of the data points and estimations of the gradients of the surface. 
Based on the values of the data set attributes, PRESTO classifies each of a set of candidate 
surrogate model forms as being either “recommended” or “not recommended” for that 
data set (Williams et al., 2021). 
2.2. PARIN - PARameter as INput-variable: A novel approach for surrogate modeling of 
stochastic simulations 
PARIN builds surrogate models of stochastic simulations by considering the uncertain 
parameter(s) as additional inputs to the system. Suppose we are given a stochastic 
simulation, 𝑌𝑌 = 𝑔𝑔(𝑋𝑋;𝐾𝐾), where 𝑋𝑋 is the input vector, 𝐾𝐾 is the uncertain parameter, and 
𝑌𝑌 is the stochastic output (Figure 2). PARIN converts the stochastic simulation to a 
deterministic one, 𝑌𝑌′ = 𝑔́𝑔(𝑋𝑋∗), where the vector 𝑋𝑋∗ now also includes the uncertain 
parameter 𝐾𝐾 (Figure 2), and the output of the deterministic model is denoted 𝑌𝑌′. A 
surrogate model, 𝑌𝑌′� = 𝐹𝐹′(𝑋𝑋∗), is trained to predict the deterministic simulation output, 
𝑌𝑌′, with data generated from the deterministic simulation, 𝑌𝑌′ = 𝑔́𝑔(𝑋𝑋∗). Different 
surrogate modeling techniques can be employed to train 𝐹𝐹′(𝑋𝑋∗). We select the surrogate 
modeling technique using PRESTO (Section 2.1). Then, the stochastic output of the 
original simulation model is estimated by propagating the uncertainty of the parameter 𝐾𝐾 
to the surrogate model output. Here, again, a number of uncertainty propagation methods 
can be employed.  

 
Figure 2 – PARIN (PARameter as INput-variable) - A novel approach for building surrogate 
models of stochastic simulations 

3. Computational Experiments 
We evaluate the performance of the framework via computational experiments using two 
test functions, Griewank and Rastrigin functions given in Eqs. (2) and (3), from the 
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Virtual Library of Simulation Experiments optimization test suite (Surjanovic and 
Bingham, 2013). Each test function includes one uncertain parameter and one, two, or 
four inputs. A normal distribution is assumed for the uncertain parameter (𝑝𝑝) of each 
function. Variable 𝑑𝑑 in both functions denotes the input dimension, which can be 
changed. The dimension is increased from one to four geometrically to investigate the 
impact of the input dimension on the performance of the proposed framework. 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥𝑖𝑖2

𝑝𝑝

𝑑𝑑

𝑖𝑖=1

−�𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑥𝑥𝑖𝑖
√𝑖𝑖
�

𝑑𝑑

𝑖𝑖=1

+ 1 (2) 

where,  

𝑝𝑝 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(4000, 400)  

𝑓𝑓(𝑥𝑥) =  𝑝𝑝𝑝𝑝 + ��𝑥𝑥𝑖𝑖2 − 𝑝𝑝�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)��
𝑑𝑑

𝑖𝑖=1

 (3) 

where, 

𝑝𝑝 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(10, 1)  

The training data set for each test function included the inputs, the uncertain parameter, 
and the corresponding function values for 1000 evaluations generated using Sobol 
sampling (Sobol’, 1967). We used Sobol sampling because it has been shown to yield 
robust results in comparative studies of uncertainty propagation methods (Mohammadi 
and Cremaschi, 2019). PRESTO is used to select the best surrogate modeling technique 
for each training data set. A surrogate model is trained using the selected technique. 
During training, the hyperparameters of the models are optimized using 5-fold cross-
validation (Wong, 2015).  

The performance is evaluated using 10,000 test points sampled using Halton method 
(Halton, 1960). The parameter uncertainty is propagated to the output of each of these 
test points using a simulation-based method using Halton sampling. With 𝑚𝑚 = 1000 
points sampled from the uncertain parameter distribution, the mean (𝜇𝜇𝑙𝑙) and standard 
deviation (𝜎𝜎𝑙𝑙) of the 𝑙𝑙𝑡𝑡ℎ test point is calculated using Eq. (4) and Eq. (5), respectively. 

𝜇𝜇𝑙𝑙 = 𝐸𝐸[𝐹𝐹′(𝑋𝑋𝑙𝑙∗)] ≈  
1
𝑚𝑚
�ℎ(𝑥𝑥𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

 (4) 

𝜎𝜎𝑙𝑙2 = (𝐸𝐸[𝐹𝐹′(𝑋𝑋𝑙𝑙∗)2] − 𝐸𝐸[𝐹𝐹′(𝑋𝑋𝑙𝑙∗)]) ≈  
1
𝑚𝑚
�ℎ�𝑥𝑥𝑗𝑗�

2
𝑚𝑚

𝑗𝑗=1

− 𝜇𝜇2 (5) 

3.1. Metric for evaluating framework’s performance 
The metric used to evaluate the performance of the new framework is the normalized 
Root Mean Squared Error (nRMSE), shown in Eq. (6). The metric is calculated using 
10,000 test points generated by the Halton sampling method (Halton, 1960). The 
framework’s ability to estimate the mean and standard deviation of the stochastic 
simulation output is assessed using nRMSE for each test function. 
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𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �
�∑ (𝑌𝑌𝑖𝑖 − 𝒀𝒀�𝒊𝒊)𝟐𝟐𝑵𝑵

𝒊𝒊=𝟏𝟏
𝑵𝑵

𝒀𝒀𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒀𝒀𝒎𝒎𝒎𝒎𝒎𝒎
� � (6) 

In Eq. (6), 𝑌𝑌𝑖𝑖 and Y�i are the true and predicted values of the desired moments 
(mean/standard deviation), respectively, for 𝑖𝑖𝑡𝑡ℎtest point. 𝑁𝑁 is the total number of test 
points. Ymax and Ymin are the maximum and minimum values of the true moment values 
within the test set, respectively. 

3.2. Stochastic kriging 
Among three existing approaches for building surrogate models of stochastic simulations, 
fixing the value of the uncertain parameter does not provide information about the output 
uncertainty. The second approach, building multiple surrogate models, each built using a 
value from a select subset of parameter values, requires training multiple models, which 
introduces additional uncertainty, and may become computationally expensive as the 
number of surrogate models increases. Hence, here, the accuracy of the proposed 
framework is only compared to that of stochastic kriging, described briefly below. The 
performance metric, nRMSE, is also used to assess the stochastic kriging model’s ability 
to estimate the mean and standard deviation of the stochastic simulation output. 
 
Stochastic kriging (SK) (Ankenman et al., 2008), which extends classic kriging 
(Rasmussen and Williams, 2005), was initially proposed to account for the intrinsic 
variance in addition to the extrinsic one. The prediction of an SK model, 𝐲𝐲�, can be 
represented by Eq. (7), where ∑𝑀𝑀 is the covariance matrix across all sample points, 
∑𝑀𝑀 (𝑥𝑥, . ) is the covariance vector consisting of the covariance of the point 𝑥𝑥 and other 
points, and ∑𝜀𝜀 is the diagonal covariance matrix of the intrinsic uncertainty. 𝛽𝛽0 is the 
unknown parameter estimated by the maximum likelihood.  

𝒚𝒚� =  𝜷𝜷𝟎𝟎 + ∑𝑴𝑴 (𝒙𝒙, . )𝑻𝑻[∑𝑴𝑴 + ∑𝜺𝜺]−𝟏𝟏 (𝒚𝒚� − 𝜷𝜷𝟎𝟎𝟏𝟏𝒌𝒌) (7) 

The training data set for SK included 1000 input/output pairs for each test function at 
each input dimension. The set is constructed by evaluating the test functions for 100 input 
values at ten samples from the uncertain parameter distribution. Both input values and the 
samples from the distribution were determined using Sobol sampling.  

4. Results and Discussion 
4.1. Selected Surrogate Modeling Techniques by PRESTO 
The candidate surrogate model techniques considered in this study included single hidden 
layer artificial neural network (ANN) models (Haykin, 2009), extreme learning machines 
(ELM) (Huang et al., 2006), Gaussian process regression (GPR) (Rasmussen and 
Nickisch, 2010), multivariate adaptive regression splines (MARS) (Friedman, 1991), 
random forests (Breiman, 2001), and support vector regression (Smola and Scholkopf, 
2004). The models selected for the test functions at each studied input dimension are 
listed in Table 1. 
 
Figures 3 and 4 show the average adjusted-R2 value for the trained surrogate models that 
PRESTO recommended compared to the average adjusted-R2 value of the models that 
PRESTO did not recommend for the Griewank and Rastrigin functions. The models 
trained using the recommended techniques for both functions have higher adjusted R2 
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values and thus better predictive capability than the not recommended ones. The 
difference is more pronounced for higher dimensions and the Rastrigin function than the 
Griewank function.  

Table 1 – PRESTO selected models for Griewank and Rastrigin functions 

 Recommended Surrogate Models 
 1D 2D 4D 

Griewank 

ANN 
ELM 
GPR 
MARS 

ANN 
ELM 
GPR 
MARS 

GPR 
MARS 

Rastrigin GPR 
MARS 

GPR 
MARS MARS 

 

 
Figure 3 – Average Adjusted R2 values for Griewank Function. Error bars represent +/- one 
standard deviation. 

 

 
Figure 4 – Average Adjusted R2 values for Rastrigin Function. Error bars represent +/- one 
standard deviation. 
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4.2. Surrogate modeling of stochastic simulations using PARIN 
We selected GPR and MARS techniques (both recommended by PRESTO, bold in Table 
1) for training surrogate models for deterministic Griewank and Rastrigin functions at 
each input dimension. The deterministic functions are obtained by including the uncertain 
parameter as an additional input for each function. We also trained SK models for the test 
functions. The mean and standard deviation of the test points are estimated using the GPR 
and MARS surrogate models with Halton-sampling-based uncertainty propagation 
(Section 3) and the SK models (Section 3.1). Then, the nRMSEs of the mean and standard 
deviation are calculated via Eq. (6). The results are summarized in Figures 5 and 6. 

Figure 5 includes bar plots of the nRMSE obtained using the new framework and SK 
models for estimating the mean of the two test function outputs. For the Grienwank 
function, the nRMSE obtained by the new framework for estimating the mean is lower 
than the nRMSE obtained by SK models for all dimensions (Figure 5). However, the 
nRMSE yielded for the mean estimates by the SK models for one and two inputs are 
lower than the nRMSE yielded by the new framework for the Rastrigin function though 
the difference is relatively small (Figure 5). As shown in Figure 5, the trend is reversed 
for the Rastrigin function with four inputs with the new framework yielding a 
significantly lower nRMSE value for estimating the mean of the output.  

 
Figure 5 - Bar plots of nRMSE for predicting mean of the two test function outputs using the new 
framework and stochastic kriging (SK) 

 
Figure 6 - Bar plots of nRMSE for predicting standard deviation of the two test function outputs 
using the new framework and stochastic kriging (SK) 
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Figure 6 presents similarly-formatted bar plots of the nRMSE for estimating the standard 
deviation of the test function outputs. As shown in Figure 6, for both functions and input 
dimensions, the nRMSEs of the standard deviation estimates obtained by the new method 
are lower than those obtained by the SK models. Figure 6 reveals that the difference is 
larger for the Grienwank function and at higher dimensions for both functions.  

Overall, these results suggest that the new framework generates closer mean and standard 
deviation estimates of the output to the true values (i.e., the stochastic simulation outputs) 
compared to the same obtained by SK. Furthermore, it is better than SK in capturing the 
uncertainty of the output due to parameter uncertainty. 

5. Conclusions 
High-fidelity simulations are complicated and expensive to run. Surrogate models are 
used to represent these simulations with cheaper to evaluate functions. However, most of 
the existing surrogate modeling techniques cannot model the stochastic simulation 
outputs with high accuracy, and the current methods do not capture the uncertainty of the 
output. This study introduces a new framework to build surrogate models of stochastic 
simulations where the source of stochasticity is the uncertain model parameters. The 
framework converts the stochastic simulation to a deterministic one by incorporating 
uncertain parameters as model inputs (PARIN - PARameter as INput-variable) and uses 
PRESTO, Predictive REcommendations of Surrogate models To Optimize, to select the 
best modeling technique for training surrogate models. Comparing the new framework to 
stochastic kriging, the most popular method to train surrogate models for stochastic 
simulations, revealed that the framework yielded output mean and standard deviation 
estimates closer to the true values than those obtained by SK.  
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Abstract 

Towards the goal of zero fossil-based greenhouse gas emissions, a trend is growing to 
change the raw materials for energy and materials to those derived from renewable 
sources. When considering the introduction of any technology, the basics of PSE, i.e., 
mathematical modelling and simulation of changes to understand the impact on mass and 
heat balances, are essential for appropriate technology and system assessments including 
life cycle assessment (LCA). In this study, the role of PSE is discussed through case 
studies in the assessment of several technologies and systems under consideration, such 
as cellulose nanofibers reinforced plastics (CNFRP), recycling of lithium-ion batteries 
(LIB), and regional material and energy systems design in Tanegashima. Although the 
technology options for those issues are under development, the performances of systems 
applying them are necessitated for current decision making. The data for LCA, however, 
is not sufficiently collected due to their low technology readiness levels. Prospective LCA 
for such emerging technologies is employed in the filling of data gaps and interpretation 
of assessment results with uncertainties. PSE can be applied into such assessments and 
have an important role of design of systems.  

Keywords: life cycle assessment, technology readiness level, sociotechnical analysis, 
socioeconomical analysis, technoeconomic analysis. 

1. Introduction 

Towards the goal of zero fossil-based greenhouse gas emissions, a trend is growing to 
change the raw materials for energy and materials to those derived from renewable 
sources. When considering the introduction of any technology, the basics of PSE, i.e., 
mathematical modelling and simulation of changes to understand the impact on mass and 
heat balances, are essential for appropriate technology and system assessments including 
life cycle assessment (LCA).  

In this study, the role of PSE is discussed through case studies in the assessment of several 
technologies and systems under consideration, such as cellulose nanofibers reinforced 
plastics (CNFRP), recycling of lithium-ion batteries (LIB), and regional material and 
energy systems design in Tanegashima. The related previous literatures are briefly 
reviewed. The applicability of PSE basics is discussed considering the requirements for 
the technology and systems design and assessments towards social changes. Although the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50006-3 



 Y. Kikuchi 

technology options for those issues are under development, the performances of systems 
applying them are necessitated for current decision making. The data for LCA, however, 
is not sufficiently collected due to their low technology readiness levels (TRLs).  

2. Reviews on application of PSE 

2.1. CNFRP production from lignocellulosic biomass (Kanematsu et al., 2021) 

Cellulose nanofibers (CNF) can be produced from plant-derived renewable resources and 
have advantage of mechanical properties in lightness and strength when it was applied as 
the filler of the composites. Acetylated cellulose nanofiber-reinforced plastics (AcCNF-
RP) have been developed as substitutes for conventional structural materials (Eichhorn et 
al., 2010). CAPE tools enabled simulation-based life cycle inventory analysis to reveal 
the environmental and economic performance of AcCNF-RP considering the future scale-
up of production processes. CAPE tools have huge potentials for systems design and 
assessment adopting emerging technologies, which are necessitated towards carbon 
neutral society. Especially in chemical production, biomass-derived production can 
become one of the production routes with sustainable feedstocks. Not only conversion 
routes, but also the acquisitions of feedstocks from agriculture or forestry are now under 
development and construction. Before their huge installation, CAPE tools should be 
combined with prospective LCA to visualize the performances of such low TRL emerging 
technologies. 

2.2. LiB recycling systems (Kikuchi et al., 2021) 

When designing the target recycling systems, best mixture of physical segregation and 
chemical treatment should be pursued considering the specific characteristics of 
respective components. The recycling of cathode particles and aluminum (Al) foil from 
positive electrode sheet (PE sheet) dismantled from spent LiBs was experimentally 
demonstrated by applying a high-voltage pulsed discharge (Tokoro et al., 2021). This 
separation of LIB components by pulsed discharge was examined by means of 
prospective LCA (Kikuchi et al., 2021). The indicators selected were life cycle 
greenhouse gas (LC-GHG) emissions and life cycle resource consumption potential (LC-
RCP). CAPE tools can become methods applicable for acquiring data for prospective 
assessments. Prospective LCA should be applied into the technology assessment that 
employs modelling tools which focus on potential environmental impacts arising from 
various technologies even still at the R&D stage, i.e., low technology readiness level. 
With CAPE tools, the inventory data for prospective LCA can be connected with the 
design methods for optimizing the throughputs of unit operations, analyzing the upscaled 
process systems, and conducting the quantification of environmental loads with plausible 
process systems design. 

2.3. Regional systems design in Tanegashima (Kikuchi et al., 2020) 

Well-coordinated, multifaceted actions, including a shift from imported fossil to locally 
available renewable resources and empowering of rural areas are vital in tackling the 
social challenges such as resource security, sustainable food production, and forest 
management. Co-learning approach to practice the multifaceted actions with a case study 
on Tanegashima, an isolated Japanese island, was applied to move the society towards 
sustainability. In these actions, thorough understandings in the feasible technologies, the 
locally available resources and the socioeconomic aspects of the local community should 
be shared among the stakeholders to acquire the momentum for a change. In addition to 
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the technoeconomic analysis, several other analyses were conducted to reveal the 
concerns of respective stakeholders, share the understandings on the possibilities of 
technology options, and their socioeconomic implications on local sustainability. Tools 
such as the life-cycle assessment, input–output analysis, and choice experiments based 
on questionnaire surveys on the residents' preferences are used for the analyses. The 
stakeholders were provided with the results. These opportunities gradually converted the 
concerns of the local stakeholders on their future regional energy systems into 
expectations and yielded constructive alternatives in technology implementation that can 
use the locally available resources. PSE basics were employed in the simulation and 
visualization of the possible future visions achieved by feasible technologies and 
available resources. 

3. Application of PSE into social changes 

3.1. Arguments for social changes 

3.1.1. Design and assessment considering TRL 
Novel technologies, including processes, systems, and ways of thinking, are expected to 
play a critical role in transforming regional societies to become revitalized and sustainable. 
However, technology development has the “valley of death” in the transfer to society, as 
is often seen for various energy technologies (e.g., Weyant 2011). Although many types 
of subsidies are designed to bridge the valley by accelerating technology development 
based on the TRL (e.g., Debois et al. 2015), the public may perceive that an insufficiently 
mature technology, or the new installation of existing technology even if it has previous 
implementation examples in other regions, could have unpredicted consequences 
associated with its implementation in their regional societies, resulting in the creation of 
a difficult obstacle to overcome for innovative change in social systems (Weyant 2011).  

 
Figure 1 Phases of social implementation considering the TRLs adopted in government 
subsidized projects towards decarbonization in Japan (Ministry of Environment Japan, 2014) and 
surveyed on the projects funded by RISTEX (Research Institute of Science and Technology for 
Society, Japan Science and Technology Agency) (Kaya and Okuwada, 2015). 
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Figure 1 shows the phases of social implementation considering various types of TRLs. 
Especially in energy-related technologies that mitigate fossil resource consumption, 
decentralized and multiple-generation technologies are often seen as promising, but the 
barriers in progressing to demonstration tests are often too high, hindering the 
implementation of such technologies. Although technology road-mapping has become a 
method to address such obstacles by making the effects of technology implementation 
qualitatively or quantitatively transparent, technology road-mapping has limited roles in 
practical technology implementation. Appropriate technology and systems design and 
assessments could support the progressing phases of social implementation. 

3.1.2. Prospective LCA for emerging technology 
Conventional LCA does not take into account changes in technology level, because it 
refers to information on the current technology level and specifically estimates the 
environmental impacts of each process related to the provision of products and services. 
The significance of conducting a strategic LCA of emerging technologies for the 30-year 
time horizon up to the target year of 2050 arose regarding the issues on the climate change. 
Emerging technologies, as defined by Rotolo et al. (2015), are characterized as 
“innovative”, “rapid growth”, “consistent”, “significant impact” and “uncertain”, which 
makes technology assessment difficult due to lack of existing data and knowledge. Four 
main issues were identified as needing to be addressed in conducting prospective LCAs 
of emerging technologies (Thonemann et al., 2020; Moni et al., 2020). (1) comparability 
of technologies; (2) availability and quality of data; (3) scale-up challenges; and (4) 
uncertainty of assessment results. Process modeling and simulation are effective in 
estimating the missing process inventories in industrial scale production, because these 
technologies are under development in lab or pilot scale. 

3.1.3. Technoeconomic, socioeconomic, and sociotechnical analyses 
Elements of technology assessment that have been proposed for implementation include 
the shift in social systems such as the relationships between the socio-, econo-, and 
techno- spheres through transformation in aviation systems (Kikuchi et al., 2020b). 
Economic aspects of technology implementation have been examined in technoeconomic 
(TE) analyses to clarify the relationships between the characteristics of technologies and 
various economic indicators, such as direct and indirect costs, fixed capital investment, 
and product price. Socioeconomic (SE) analysis has also become an essential method for 
analyzing the impacts of technology implementation on SE systems. The benefits should 
be analyzed within a sociotechnical (ST) approach to ensure that society benefits from 
the technology implementation.  

3.1.4. Social changes with process systems design and assessments 
Geels and Schot (2007) argue that transitions occur through interactions among niche 
innovations, sociotechnical regimes, and the sociotechnical landscape. The seeds of niche 
innovations were generated by university researchers, e.g., AcCNF-RP for structural 
materials, a high-voltage pulsed discharge as physical separation methods for products, 
and energy systems applying regionally available renewables. The windows of 
opportunity for such seeds of niche innovation are created by the destabilization of 
regimes such as the policy/regulation, market, infrastructure, industrial network and 
ecosystem as the specific conditions for technologies and systems. The landscape, such 
as the public movements towards carbon neutral society, may have placed pressure on the 
regimes. To grow the seeds of niche innovation, niche actors should be involved and 
motivated by technology assessments by university researchers, triggering adjustments in 
existing systems (Geels et al. 2017). 
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The social embeddedness of emerging technology options should be addressed through 
the holistic application of scientific technology assessments into co-learning. The main 
questions are whether systematic technology assessments could contribute to the bridging 
of the valley of death between research development and actual implementation, how the 
settings of assessment, i.e., boundary, indicators, and raw data, could be defined through 
co-learning for mitigating concerns of stakeholders, and how the assessment results could 
become informative for the stakeholders to understand the necessity of the 
implementation of the technology options. The TRLs of potential technologies may be 
lab-scale demonstration, where the process inventory data required for LCA was not 
sufficiently obtained from the experimental demonstration considering their upscaling. 
For such technology, modeling and simulation can be employed to fill the gap of 
foreground data (Tsoy et al., 2020), which can take into account the future potential of 
the technology and aim to predict the environmental impacts on the technology under 
development (Arvidsson et al., 2018; Moni et al., 2020; Thonemann et al., 2020). 

4. Conclusions 

Prospective assessments for novel technology options are employed in the filling of data 
gaps and interpretation of assessment results with uncertainties. PSE can be applied into 
such assessments and have an important role of design of systems. The basics of PSE, i.e., 
mathematical modelling and simulation of changes to understand the impact on mass and 
heat balances, are essential for appropriate technology and system assessments. The 
obtained information applying PSE can become the essential information for the social 
changes which involve various stakeholders. The elaborated interpretation for those who 
are not experts in PSE is needed to accurately convey the quantitative and qualitative 
essences clarified by PSE.  
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Abstract 
Model-free reinforcement learning (RL) learns an optimal control policy by using the 
process data only. However, simple application of model-free RL to a practical process 
has a high risk of failure because the available amount of data and the number of trial 
runs are limited. Moreover, it is likely that state constraints are violated during the 
learning period. In this work, we propose Q-MPC framework, an integrated algorithm of 
RL and model predictive control (MPC) for safe learning. The Q-MPC learns the action-
value function in an off-policy fashion and solves a model-based optimal control problem 
where the trained action-value function is assigned as the terminal cost. Because the Q-
MPC utilizes a model, the state constraints can be respected during the learning period. 
For simulation study, Q-MPC, MPC, and double deep Q-network (DDQN) were applied 
with varying prediction horizons. The results show the advantages of Q-MPC that 
outperforms MPC by reducing the model-plant mismatch and shows much fewer 
constraint violations than DDQN. 

Keywords: Reinforcement Learning; Model Predictive Control; Optimal Control; Safe 
Learning 

1. Introduction 
As the digitalization of manufacturing processes progresses, an unprecedented amount of 
operational data are measured and stored. Accordingly, there is a growing interest in 
developing data-based methods that can improve the existing process performance. 
Model-free reinforcement learning (RL) is a data-based optimal control method that aims 
to learn an optimal control policy in the absence of a process model. Model-free RL can 
be applied to any discrete-time system as long as the system has the Markov property. 
Therefore, optimal control policies for a wide range of complex systems characterized by 
nonlinearity, discrete events, and stochasticity can be obtained if one can secure a 
sufficient amount of data. In addition, the online computation of trained control policy is 
much less than that of the model-based control such as model predictive control (MPC). 
In line with these advantages, several studies conduct apply model-free RL methods to 
chemical processes, such as simulated moving bed (Oh et al. 2021), microfluid (Dressler 
et al. 2018), polymerization (Ma et al. 2019), polishing, and photo-product bioprocesses 
(Petsagkourakis et al. 2020).  
 
However, using model-free RL to obtain an optimal control policy of the manufacturing 
process may pose several practical challenges. First, the amount of data required to learn 
an optimal control policy may not be practical to obtain even for a digitalized process. 
Also, the data should be generated with a certain degree of explorations that may do harm 
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to the process performance. Finally, the model-free RL does not have any model for the 
state transition, which cannot guarantee the satisfaction of state constraints. More 
specifically, model-free RL cannot explicitly ensure the state constraints, but it can 
consider the constraints implicitly by modifying either the optimality criterion such as 
adding penalty terms or the exploration procedure with the guidance of a risk metric 
(Garcia and Fernandez 2015). Therefore, the model-free RL can learn the state constraint 
only after it experiences the constraint violation. This is a major drawback as the state 
constraints are typically imposed for safety reasons. 
 
In most cases, a model built on a priori knowledge of system dynamics is available. This 
model may not be precise, but it can provide the information of correlation between the 
state and input and can be used to ensure the safety constraints with a sufficient margin. 
Therefore, using data to improve the existing model-based control can be a more practical 
approach instead of completely ruling out the model like model-free RL. We propose an 
algorithm that integrates RL and MPC, referred to as Q-MPC. Q-MPC improves the 
performance of existing MPC by incorporating the advantage of data-based learning of 
RL. We first formulate a double deep Q-network (DDQN) optimization problem on the 
continuous action space, which uses gradient-based numerical optimization. This method 
is an off-policy algorithm where only the critic is approximated by a deep neural network. 
Then, the actor, originally represented as the optimizer of the trained action-value 
function, is extended to an open-loop model-based optimal control problem. This model-
based optimal control problem predicts the states and costs up to the prediction horizon 
with a model and assigns the action-value function as a terminal cost. Therefore, the Q-
MPC is a generalization method of MPC as the actor implements the control input by 
solving the optimization problem in a receding horizon fashion. Furthermore, Q-MPC 
becomes equivalent to DDQN in continuous action space by setting the prediction horizon 
length to 0. The Q-MPC can explicitly impose the state constraints and explicitly schedule 
the exploration. In addition, it can improve the control policy with a much less amount of 
data than the model-free RL methods. For the simulation study, MPC, Q-MPC, and 
DDQN are applied, where the length of the prediction horizon is scheduled. The 
simulation results show that Q-MPC outperforms MPC by learning and can guarantee the 
satisfaction of state constraints even during the learning period. DDQN also outperforms 
MPC after sufficient learning, but it violates the state constraints much more frequently 
than Q-MPC during the learning period. 
 

2. Q-model predictive control  
Suppose that the dynamic model and constraints are represented as 𝑥ሶ = 𝑓ሺ𝑥,𝑢ሻ  and 𝑔ሺ𝑥,𝑢ሻ ≤ 0. In addition, let the path-wise and terminal cost of the system be 𝐿(𝑥,𝑢) and 𝜙(𝑥,𝑢), respectively. Even though the system dynamics is given as continuous time, the 
control input is assumed to be implemented on the system in a discrete-time manner with 
zero-order hold. The time interval between control inputs is denoted as Δ𝑡 and is fixed as 
a constant value. Let the system be terminated at a finite time step 𝑁். Then, the total cost 
is given by  

𝐽൫𝑥଴:ே೅ ,𝑢଴:ே೅൯ = 𝜙൫𝑥ே೅ ,𝑢ே೅൯ + ෍ 𝐿(𝑥௞,𝑢௞)ே೅ିଵ
௞ୀ଴ . 

 

(1) 

48 



Q-MPC: Integration of Reinforcement Learning and Model Predictive Control 
   

Suppose that the system is controlled by a control policy 𝑢(⋅) . The value function, 𝑉௨(⋅)௟ (𝑥) associated with this control policy 𝑢(⋅) is defined as  

𝑉௨(⋅)௟ (𝑥଴) = 𝐸 ቎𝜙൫𝑥ே೅ ,𝑢(𝑥ே೅)൯ + ෍ 𝐿(𝑥௞,𝑢(𝑥௞))ே೅ିଵ
௞ୀ௟  | 𝑥௟ = 𝑥଴቏ , 

 

(2) 

where the integer 𝑙 ∈ ሾ0, … ,𝑁்ሿ  denotes the time step. Similarly, the action-value 
function (Q-function) is defined as  

𝑄௨(⋅)௟ (𝑥଴,𝑢଴) = 𝐸 ቎𝜙൫𝑥ே೅ ,𝑢(𝑥ே೅)൯ +  ෍ 𝐿(𝑥௞,𝑢(𝑥௞))ே೅ିଵ
௞ୀ௟  | 𝑥௟ = 𝑥଴,𝑢௟ = 𝑢଴  ቏ . 

 

(3
) 

The optimal control policy 𝑢∗(⋅) is defined as a control policy that gives the minimal 
return, V௨∗(⋅)୪  (x) ≤  V௨(⋅)୪  (x), for all feasible 𝑥 and 𝑙. Suppose that an optimal control 
policy exists, then the value function with 𝑙 = 0 is equal to the optimal value. In addition, 
once the optimal action-value function is given, then the optimal control policy can be 
obtained without the information of system dynamics by  𝑢∗(𝑥) ∈ argmin௨ 𝑄௨∗(⋅)௟ (𝑥,𝑢). 

 

(4) 

Therefore, learning the action-value function implies learning an optimal control policy, 
and the Q-learning based RL aims to approximate the optimal action-value function 
without any knowledge of state dynamics.  
 
The Q-learning based RL is classified as an off-policy algorithm, that is the action-value 
function can be learned from any data obtained from the system. Therefore, all the data 
obtained from the system can be stored in a single data set, and learning can proceed with 
the data randomly sampled from this set (Van Hasselt et al, 2016). This random sampling 
helps to break the correlations in the measured sequence and smooth over changes in the 
data distribution. The Bellman equation states that the optimal action-value function 
satisfies the following recursive equation (Sutton and Barto 2018) 𝑄௨∗(⋅)௟ (𝑥௟ ,𝑢௟) = 𝐸 ቂ𝐿(𝑥௟ ,𝑢௟) + min௨ 𝑄௨∗(⋅)௟ାଵ (𝑥௟ାଵ,𝑢)ቃ. 

 

(5) 

The Bellman equation (5) breaks the sequence of costs into a single time step by using 
the principle of optimality. Then, the input choice made from the behaviour policy for the 
next time step is replaced by the target policy which enables to update the actor in an off-
policy fashion.  
 
To prevent the selection of the under-estimated value (over-estimated for maximization) 
in (5), two function approximators can be used to approximate the action-value function. 
This algorithm is called Double Deep Q-Network (DDQN). The target deep neural 
networks is denoted as 𝑄ఏ೟(𝑥,𝑢) and the online deep neural networks is denoted as 𝑄ఏ೚೙(𝑥,𝑢), respectively. The target network is only utilized to evaluate the minimal value 
of action-value function in (5) to learn the online network. In this case, the squared error 
for a single list tuple 𝐷 = [𝑥௟ ,𝑢௟ , 𝐿(𝑥௟ ,𝑢௟), 𝑥௟ାଵ] is given as 
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𝐸𝑟𝑟𝑜𝑟(𝜃௢௡,𝜃௧ ,𝐷) = 𝐸 ቂ𝑄ఏ೚೙௟ (𝑥௟ ,𝑢௟) − 𝐿(𝑥௟ ,𝑢௟) − min௨ 𝑄ఏ೟௟ାଵ(𝑥௟ାଵ,𝑢)ቃ. 
 

(6) 

Let 𝐵 = {𝐷ଵ,𝐷ଶ, … ,𝐷௡}  be the batch data set which is the set of several data lists 
randomly sampled from the data set. Then, the online network is updated by applying the 
one-step gradient descent with the appropriate learning rate 𝛼 as  𝜃௢௡ ← 𝜃௢௡ + 𝛼∇ఏ೚೙ 1|𝐵|෍ 𝐸𝑟𝑟𝑜𝑟(𝜃௢௡,𝜃௧ ,𝐷)஽∈஻ .  

 

(7) 

The target network can be updated by 𝜃௧ ← (1 − 𝜏)𝜃௧ + 𝜏𝜃௢௡.  
 

(8) 

where 𝜏 ∈ [0, 1] is the update rate. Then, DDQN selects the control input 𝑢௟ associated 
with the state 𝑥௟ by solving the following simple optimization problem:  𝑢௟ = argmin௨ 𝑄ఏ೚೙௟ (𝑥௟ ,𝑢). 

 

(9) 

The input of DDQN is totally determined by the learned action-value function 𝑄௢௡. This 
implies that the control performance of DDQN can be degraded, and the constraints can 
be violated with inaccurate action-value function. This is a common but crucial problem 
for all model-free RL that the constraints can be learned only after they are violated.  
 
Instead of using (4) to calculate control input, the Q-MPC solves the following open-loop 
optimal control problem:  

min௨ 𝑄ఏ೚೙ ቀ𝑥௟ାே೛ ,𝑢௟ାே೛ቁ + ෍ 𝐿(𝑥௞,𝑢௞)௟ାே೛ିଵ
௞ୀ௟  

subject to 𝑥௟ is given, 𝑥௞ାଵ = 𝑓(𝑥௞,𝑢௞) and 𝑔(𝑥௞,𝑢௞) ≤ 0  
 

(10) 

where 𝑁௣ denotes the prediction horizon and the continuous system is converted into its 
discrete-time counterpart. If the prediction reaches the terminal time, then the exact 
terminal cost 𝜙 is assigned to (10) instead of action-value function. Note that, solving the 
optimization problem (10) gives the open-loop control trajectory 𝑢௟ , … ,𝑢௟ାே೛ but only 𝑢௟ 
is implemented to the system.  
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Figure 1: The scheme of Q-MPC. 

 
The scheme of Q-MPC is presented in Figure 1. Compared with nominal MPC, the 
terminal cost of Q-MPC is replaced by the trained action-value function. Because the 
action-value function Q learns the value from the data, Q-MPC can adapt the system 
dynamics. Compared with DDQN, the actor of Q-MPC is also presented as an 
optimization problem formulated as a mathematical program such as the quadratic 
program (10). However, the model is used to predict the state transition and associated 
cost for 𝑁௣  time step. The use of the model helps to satisfy the constraints and 
dramatically reduces the required amount of data to improve the control policy. The 
receding horizon control makes it easy to satisfy the constraints even with a short 
prediction horizon. 
 
The prediction horizon of Q-MPC determines how long model is involved in prediction. 
For example, if the length of prediction horizon is 0, then the Q-MPC is equivalent to 
DDQN in the continuous domain. In this case, the model is completely excluded in 
determining control policy. On the other hand, if the prediction reaches the terminal time, 
the action-value function is excluded in calculating control inputs, and Q-MPC becomes 
equivalent to nominal MPC. Therefore, the performance of Q-MPC is directly affected 
by the length of prediction horizon which is another tuning parameter. We suggest setting 
the prediction horizon much smaller than the whole batch operation because even for the 
short prediction horizon length, the input is highly affected by the model. In addition, we 
suggest setting relatively long prediction horizon at the early stage of learning where the 
accuracy of action-value function is low.  
 

3. Simulation studies 
A simple photo-production system having 3 states ( 𝑥ଵ, 𝑥ଶ,𝑎𝑛𝑑 𝑥ଷ ) and 2 inputs 
(𝑢ଵ 𝑎𝑛𝑑 𝑢ଶ) is considered where the system dynamics are given as (Petsagkourakis et al. 
2020) 𝑑𝑥ଵ𝑑𝑡 = 1, 

 

(11) 

Q-MPC: Integration of Reinforcement Learning and Model Predictive Control 
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𝑑𝑥ଶ𝑑𝑡 = −(𝑢ଵ + 0.5𝑢ଵଶ)𝑥ଶ + 0.5𝑢ଶ(𝑥ଶ + 𝑥ଷ + 0.1), 
 

(12) 

𝑑𝑥ଷ𝑑𝑡 = 𝑢ଵ𝑥ଶ − 0.2𝑢ଶ𝑥ଶ, 
 

(13) 

where the first state denotes the time. The time interval is selected as 0.05 and system is 
assumed to be terminated at 1. Therefore, the system contains 20 horizons. Note that 
because the system terminates in finite steps, the time should be included in the state.  
 
The lower and upper bounds for all states are 0 and 1, respectively, and the bounds for 
inputs are 0 and 5, respectively. In addition, the second state has additional lower bound 
presented as  𝑥ଶ  ≥  0.45. 

 

(14) 

The path-wise cost and terminal cost is given as  𝐿(𝑥,𝑢) = 0.01 ቀ𝑢ଵ25ቁଶ , and 
 

(15) 

𝜙(𝑥,𝑢) = 3(1 − 𝑥ଷ), 
 

(16) 

and the penalty max(0, 0.45 − 𝑥ଶ) for violating constraint (*) is added to the cost.    
 
The surrogate model that Q-MPC used is given as  𝑑𝑥ଵ𝑑𝑡 = 1, 

 

(17) 

𝑑𝑥ଶ𝑑𝑡 = −(𝑢ଵ + 0.55𝑢ଵଶ)𝑥ଶ + 0.5𝑢ଶ(𝑥ଶ + 𝑥ଷ + 0.5), 
 

(18) 

𝑑𝑥ଷ𝑑𝑡 = 𝑢ଵ𝑥ଶ − 0.1𝑢ଶ𝑥ଶ. 
 

(19) 

 
The Q-MPC solves the following optimization problem  

min௨ 𝑉 ቀ𝑥ே೛ቁ + ෍ 𝐿(𝑥௞,𝑢௞)ே೛ିଵ
௞ୀ଴  

subject to 

(4), (5), (6), and 𝑥ଶ  ≥  0.45 for k = 0, ..., 𝑁௣. 
 

(20) 

 
The action-value function is approximated by deep neural networks that is consisted of 
three layers. The number of nodes for each layer are 16, 4, and 1, respectively. The 
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following smooth activation function is utilized to optimize the deep neural network by 
IPOPT method 𝐴(𝑥) = log(1 + 𝑥ଶ). 

 

(21) 

The online network was trained for every episode, and the target network was updated 
for every 5 episodes. The learning and updating rates were selected as 0.02 and 0.01, 
respectively. The batch size |B| was selected as 64. Each method was applied to the system 
for 1,000 episodes, but the first 10 episodes were simulated with random control inputs 
for comparison. The prediction horizon of Q-MPC was set to 20 for episodes 10 to 30, 5 
for episodes 30 to 200, and 1 for episodes 500 to 1,000. 
 
The simulation results are presented in Figures 2 and 3. Figure 2 shows the optimal total 
cost and total cost obtained by Q-MPC, MPC, and DDQN. Because the model in MPC 
does not change throughout the simulations, the total cost of MPC is kept constant. The 
Q-MPC cannot outperform MPC with a prediction horizon of 5, as the mismatch between 
the model and action-value function can worsen the performance. In addition, the total 
cost increases around 200 episodes because the prediction horizon of Q-MPC is changed 
from 5 to 3. Then, the total cost gradually decreases to that of MPC by learning. The first 
episode that Q-MPC outperforms MPC is the 297௧௛ episode. DDQN also successfully 
learns the system dynamics and eventually outperforms MPC, but the first episode that 
outperforms MPC is the 718௧௛ episode. Figure 2 clearly shows that Q-MPC improves the 
control policy much faster than DDQN. Figure 3 shows the number of constraint 
violations. Because the number of horizons for a single episode is 20, the maximum 
possible number of violations is 20. Q-MPC never violates the constraint throughout 
learning, whereas DDQN violates the constraint even if the learning is nearly finished. 
Note that the violations in the early stage are made by randomly implemented input and 
not by Q-MPC. Figure 3 shows the advantages of Q-MPC that it can safely learn the 
system dynamics and improve the existing control policy. 

4. Conclusions 
We proposed a novel Q-MPC algorithm to learn the system safely. Q-MPC is a 
generalization method of both DDQN and MPC, where each method can be recovered by 
adjusting the length of the prediction horizon. The simulation results showed that Q-MPC 
could improve the control policy by satisfying the state constraint. In addition, Q-MPC 
requires much less amount of data to improve the control policy than DDQN. 
 
 

Q-MPC: Integration of Reinforcement Learning and Model Predictive Control 
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Figure 2: The moving averaged value of total cost with 50 samples. 

 

 
Figure 3: The number of constraint violations. 
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Abstract 
In many process systems engineering applications, we seek to integrate surrogate models, 
e.g. already-trained neural network and gradient-boosted tree models, into larger 
decision-making problems. This presentation explores different ways to automatically 
take the machine learning surrogate model and produce an optimization formulation. Our 
goal is to automate the entire workflow of decision-making with surrogate models from 
input data to optimization formulation. This presentation discusses our progress towards 
this goal, gives examples of previous successes, and elicits a conversation with colleagues 
about the path forward. 

Keywords: neural networks, gradient-boosted trees, Pyomo, optimization formulations 

1. Main Text 
The optimization and machine learning toolkit (https://github.com/cog-imperial/OMLT, 
OMLT 1.0) is an open source software package enabling optimization over high-level 
representations of neural networks (NNs) and gradient-boosted trees (GBTs). Optimizing 
over trained surrogate models allows integration of NNs or GBTs into larger decision-
making problems. Computer science applications include maximizing a neural 
acquisition function (Volpp et al., 2019) or verifying neural networks (Botoeva et al., 
2020). Engineering applications of grey-box optimization (Boukouvala et al., 2016) 
hybridize mechanistic, model-based optimization with surrogate models learned from 
data. OMLT 1.0 supports GBTs through an ONNX (https://github.com/onnx/onnx) 
interface and NNs through both ONNX and Keras interfaces. OMLT transforms these 
pre-trained machine learning models into the algebraic modeling language Pyomo 
(Bynum et al., 2021) to encode optimization formulations. 

OMLT is a general tool incorporating both NNs and GBTs, many input models via ONNX 
interoperability, both fully-dense and convolutional layers, several activation functions, 
and various optimization formulations. The literature often presents these different 
optimization formulations as competitors, e.g. our partition-based formulation competes 
with the big-M formulation for ReLU NNs (Kronqvist et al., 2021; Tsay et al., 2021). In 
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OMLT, competing optimization formulations become alternatives: users can switch 
between the formulations and find the best for a specific application. 
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Abstract 

Confronted with the global challenges including COVID-19, pharmaceutical 
manufacturing needs to simultaneously achieve long-term efficiency and short-term 
resilience. Process systems engineering (PSE) can provide scientific basis here, and in 
fact, PSE researchers have made significant contributions to pharma in the last decade. 
The author, after having worked for a global pharmaceutical company, initiated research 
on pharmaceutical process systems engineering: Pharma PSE. The research tackles 
different challenges in small molecules, biopharmaceuticals, and regenerative medicine, 
at the scales of molecules/cells, processes, and the society. This paper first introduces the 
viewpoint of Pharma PSE, followed by showcasing a research example that involved a 
range of computer-aided analyses at different scales. The multiscale approach of Pharma 
PSE can provide a new horizon to “reimagine” pharmaceutical manufacturing processes 
and beyond, towards establishment of a sustainable healthcare society. 

Keywords: Pharmaceuticals, Regenerative medicine, Process modelling, Process design, 
Sustainable healthcare society. 

1. Introduction 

The relevance of pharmaceuticals is more apparent than ever before. The Sustainable 
Development Goals (SDGs; United Nations Development Programme, 2021) defined the 
achievement of the “access to safe, effective, quality and affordable essential medicines 
and vaccines for all” as a part of Goal No. 3. Long-term efficiency is critical for 
manufacturing while the development pipeline of new drugs needs to be enhanced further. 
Another mandate for manufacturing is to cope with pandemics, especially COVID-19, by 
dealing with the short-term surges in demand and disruptions in the supply chain. The 
pharmaceutical industry needs to establish a system where long-term efficiency and short-
term resiliency are achieved at the same time. 

In the last decade, the community of process systems engineering (PSE) have 
been introducing and practicing systems approaches in the design, operation, and control 
of pharmaceutical production processes. The previous studies have covered various topics 
in the manufacture of active pharmaceutical ingredients (APIs) as well as dosage forms 
(e.g., tablets and injectables). Continuous manufacturing and process analytical 
technologies (PATs) have been intensively researched (e.g., Badr and Sugiyama, 2020; 
Bhalode et al., 2021; Diab et al., 2021, Ghijs et al., 2021; Hong et al., 2021). Furthermore, 
advanced model-based approaches for quality assurance (e.g., Ochoa et al., 2021) and the 
subjects related to personalized healthcare (e.g., Içten et al., 2015; Wang et al., 2018; 
Papathanasiou et al., 2020) have been investigated.  
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Table 1. Characteristics and research opportunities in the pharmaceutical domain 

 

In a world of ever-increasing demand for advanced pharmaceuticals, there is a 
need for increasing efficiency, flexibility, and production capacity. At the same time, 
there are innovations that span all categories of pharmaceutical products. Table 1 shows 
the characteristics of different product categories, and the associated modeling challenges. 
Innovations here include the introduction of novel therapeutics, materials, and shifts in 
production scales especially for personalized medicine. Such innovations create a need 
and an opportunity to “reimagine” pharmaceutical manufacturing to better accommodate 
the changes and developments in the industry and in society. 

The author, after having worked for a global pharmaceutical company, launched 
a research group on pharmaceutical process systems engineering: Pharma PSE. The 
research tackles challenges in small molecules, biopharmaceuticals, and regenerative 
medicine from a multiscale viewpoint. The research aims to expand PSE into a critical 
domain in society by incorporating the systems approach into the development of new 
products and processes. This paper first introduces the multiscale viewpoint of Pharma 
PSE, followed by a case study on regenerative medicine. This paper serves as the basis 
for the keynote lecture at PSE2021+ with more materials to be added. 

2. Multiscale research viewpoint 

Figure 1 describes the multiscale viewpoint of Pharma PSE. At the molecule/cell level, 
elements of a manufacturing process are investigated such as the choice of host cells, 
nutrition media, or protective agents are considered. At the process level, alternatives 
regarding manufacturing technologies, equipment specification, and operation strategy in 
manufacturing processes are investigated. Higher level assessments are conducted up to 
the level of the healthcare society. 

 

Figure 1  The multiscale viewpoint in Pharma PSE research.  

Small molecules Biopharmaceuticals Regenerative medicine

• Large quantity in supply

• Most conventional form of 
medicine (e.g., tables)

• Intensive research performed on 
“flow chemistry” & “continuous 
manufacturing”

• Rigorous modeling needed for the 
G/L/S interfaces in flow chemistry

• Difficulty in modeling 
heterogeneity in powder processing

• Market rapidly growing

• Monoclonal antibodies (mAbs) and 
vaccines attracting recent attentions

• Intensive research performed on 
host cells, media, manufacturing 
technologies and equipment, and 
measurement devices

• Challenges in modeling biological 
behavior (e.g., heterogeneity, 
dynamics, and impurities)

• Future therapy based on stem cells

• Clinical trials intensively performed

• Need to establish manufacturing 
processes as well as supply chain

• High cost of R&D and 
manufacturing raising social 
attentions

• Models required for describing cell 
behavior, process performance, 
supply chain, and cost-effectiveness
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Recognizing the entire system as in Figure 1 would facilitate bottom-up analyses 
that allow for the comprehensive assessment of impacts of lower-level modifications on 
higher-level targets. For example, the performance of novel host cells (cell level) could 
be assessed regarding lead time (process level), and supply agility (society level). Top-
down analyses could also be enabled for determining promising alternatives at lower 
levels given higher levels goals. In conducting Pharma PSE research, such “zoom-in and 
zoom-out” is supported by the appropriate consideration/use of modeling strategy (first-
principle, data-driven, or hybrid), simulation methods, objective function(s), design and 
operational alternatives, and physical- and cyber-space information. 

3. Research example on cryopreservation of hiPS cells 

This paper introduces design of cryopreservation processes for hiPS cells as an example. 

3.1. Molecule/cell level: computational screening of cryoprotective agents 
As a study at the molecule/cell level, this work (Hayashi et al., 2021a) investigated 
cryoprotective agents (CPAs) that are used in the cryopreservation of cells including hiPS 
cells. A computational screening was performed for candidate compounds using quantum 
chemistry and molecular dynamics (MD) simulations. The motivation was to search for 
an alternative CPA to dimethyl sulfoxide (DMSO), which is currently widely used but is 
known to be toxic to cells. Figure 2 shows the overview of the work. For forty compounds, 
the solvation free energy and partition coefficient, and the root mean square deviation 
(RMSD) of a phospholipid bilayer which composes a cell membrane, were calculated by 
quantum chemistry simulation and by MD simulation, respectively. These three 
indicators were used to assess osmoregulatory ability, affinity with a cell membrane, and 
ability to stretch a cell membrane, respectively. The quantum chemistry simulation 
revealed that trimethylglycine, formamide, urea, thiourea, diethylene glycol, and dulcitol 
were better than DMSO, regarding either or both of the indicators considered. Further 
analysis with the MD simulation suggested formamide, thiourea, and urea as promising 
candidates within the simulated conditions. 

 

 

Figure 2  Computational screening of CPA candidates using quantum chemistry and MD 
simulations (Hayashi et al., 2021a)  

manufacturing 
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3.2. Process level: model-based assessment of temperature profiles in slow freezing 
As a study at the process level, this work (Hayashi et al., 2021b) presented a model-based 
assessment of temperature profiles in slow freezing for hiPS cells. Figure 3 shows the 
summary. The basis here was our previously developed single-cell model (Hayashi et al., 
2020) that consists of heat transfer, mass transfer, and crystallization models. The three 
models can quantify temperature distribution in a vial, cell volume change through 
transmembrane water transport, and intracellular ice formation during freezing, 
respectively. These first-principle models was then extended to cover the cell survival 
rate through data-driven modeling. Experiments using hiPS cells provided the necessary 
parameter values of the multivariate regression model. The newly developed hybrid 
single-cell model can, given a temperature profile of freezing, estimate the cell survival 
rate and required freezing time as the quality and productivity indicators, respectively. As 
a case study, the model was used to assess ca. 16,000 temperature profiles. The simulation 
results suggested that fast-slow-fast (i.e., non-linear) cooling in the dehydration, 
nucleation-promoting, and further cooling zones, respectively, as a promising profile. 

 

Figure 3  Model-based assessment of freezing temperature profiles (Hayashi et al., 2021b) 

 

 

Figure 4  Agent-based model for analyzing cost-effectiveness in the manufacture of 
allogeneic hiPS cells in Japan (Hayashi et al., 2022)  
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3.3. Society level: cost-effectiveness analysis in the manufacture of allogeneic hiPS cells 
in Japan 
Finally as a study at the society level, this work (Hayashi et al., 2022) proposed an agent-
based model (ABM) for cost-effectiveness analyses in the manufacture of allogeneic hiPS 
cells in Japan. The ABM (see Figure 4) was set up for estimating the disability-adjusted 
life years (DALYs) of each patient and the total required cost for manufacturing 
allogeneic hiPS cells. The DALYs and the total required cost for manufacturing were 
used as the indicators of effectiveness and cost, respectively. Cryopreservation was 
considered as a part of the manufacturing processes. The developed ABM can calculate 
these two indicators, given the disease, the annual number of treated patients, and the 
treatment mode. The developed model was then applied to analyze therapy for two 
diseases using allogeneic hiPS cells, which are currently undergoing clinical studies in 
Japan. A case study suggested that the treatment mode (i.e., treating patients from the 
youngest to the oldest) would affect the cost-effectiveness significantly. 

4. Lessons learnt towards future research 

The interconnections between each of the above studies across different scales are visible 
by taking the multiscale view shown in Figure 1. For example, the choice of CPA can 
influence the extracellular condition during freezing, which can affect the process 
duration, and thus the supply performance. Taking a multiscale approach requires the use 
of flexible modelling strategies, e.g., in this case the use of models spanning quantum 
chemistry and agent-based modelling with different degrees of detail. The approach also 
requires taking the position of multiple stakeholders, such as varying the research 
viewpoint form experimental investigator (for CPA) to process practitioner (for freezing 
unit), and further to manufacturers and the government (for cell supply). Similar 
characteristics could be observed in other workpieces in small molecule (e.g., Matsunami 
et al., 2020) and biopharmaceuticals (e.g., Badr et al., 2021). Recognition of these 
characteristics can provide new research opportunities such as multiscale scenario 
analyses and optimization, investigation of appropriate model resolution considering 
cross-scale interconnections, and multiobjective decision-making. The multiscale 
approach can provide a richer insight for “reimagining” the manufacturing processes and 
the associated systems of pharmaceuticals. 

5. Conclusions 

This paper presented the research viewpoint of Pharma PSE, which aims to cover topics 
in different drug categories at various scales in one frame. As an example, a study on 
cryopreservation of hiPS cells was showcased, which involved various simulation-based 
analyses. The observation indicated that the multiscale approach of Pharma PSE can 
provide a new horizon to “reimagine” the manufacturing processes and beyond, towards 
establishment of a sustainable healthcare society. 
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Abstract 
Process systems engineering is a thriving field within chemical engineering. PSE deals 
with several design and operational tasks that allow process systems to work efficiently 
and safely. There is a large intersection between PSE tools and Artificial Intelligence (AI) 
algorithms, recognized for decades now. With unprecedented availability of various 
forms of data and significant improvement in computational prowess, AI techniques have 
started to address large and meaningful engineering problems. 
In this talk, we will explore the relevance and importance of AI techniques in the next 
generation process systems engineering applications.  Various aspects of PSE and the 
impact of AI cross-cutting these aspects will be described as outlined below. The focus 
of this talk will be on the most recent developments and industrial applications that the 
author has been involved in. 
 
PSE as an area has implications in process modelling, process design, process 
optimization and process operations. Computer-aided tools are at the centre of all 
modelling activities. With the advent of AI, automated model building tools are being 
increasingly researched. Assembling first principles models in a purely data-driven 
manner is a promising area. Of course, process design is a key aspect of PSE. Design is 
an inverse problem, where a set of requirements are provided and designs that can satisfy 
the requirements are desired. As a result, any data-driven modelling tool can also be used 
in design if there are many exemplar designs that are available for training. As the result, 
the strength of AI in modelling can be leveraged for this inverse modelling problem. 
Natural evolution inspired techniques such as genetic algorithms also continue to play an 
important part in addressing complicated inverse design problems. Recently, 
reinforcement learning has also been used in solving design problems. 
 
The use of AI techniques in optimization is another exciting area of research. Many core 
AI algorithms themselves use optimization techniques in their development; use of 
learning approaches in optimization is an interesting synergy between the two fields. 
Convex representations using neural networks that allow convex optimization approaches 
to be used in optimization is an emerging area of research. Other convenient 
representations from an optimization viewpoint are likely to pursued. An example of such 
a representation is the difference of convex representation.  
 
The biggest impact of AI in PSE is in the area of process operations. With the ability of 
systems to collect data at an unprecedented level and the possibility of collecting 
variegated datatypes, AI algorithms can now be comprehensively explored for various 
process operations tasks. In process monitoring and operator training, natural language 
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processing ideas have a large role to play. Further, data from different types of sensors 
such as vision, noise and so on, over and above the standard sensor data, is likely to 
revolutionize the way process monitoring and fault detection and diagnosis tasks are 
performed. This is particularly powerful when data from different plants are centralized 
allowing for the possibility of transfer learning to occur. 
 
Standard data rectification and gross error detection techniques that used to rely on 
process models are now being addressed by purely data driven approaches. This brings 
in several important questions that need to be satisfactorily addressed by the machine 
learning techniques. Interestingly, sensor placement for data reconciliation, fault 
detection and diagnosis algorithms that used to rely on process models are also being 
reimagined as data driven problems. 
 
Work on the use of neural networks and knowledge-based systems in control has been 
around for more than three decades. However, with renewed interest in AI, these 
approaches are being explored again with better architectures and larger computational 
power. Reinforcement learning is a natural approach to address several learning-based 
control problems. There has been a flurry of activity in this area, and one would expect 
this area to progress quite rapidly. There are several challenges related to inclusion of 
constraints, robustness and so on that need to be addressed comprehensively. 
 
Looking forward, two important streams of work can be identified. One of those is the 
hybridization of existing knowledge with the data driven AI systems. This will be a very 
profitable area of research and will bring in systems that are explainable, robust and more 
deployable in engineering problems. Another avenue that will assume significance is 
moving towards purely unsupervised learning. Many successful applications use 
supervised and/or semi-supervised learning approaches. However, in the future, several 
concepts for unsupervised learning will be explored. This, we believe, will lead to truly 
intelligent process systems that are safe, efficient and robust to inherent variations that 
cannot be controlled. 
 
Keywords: PSE, AI, ML. 
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Abstract 

Decarbonization of the Chemicals/Materials Industry (CMI) is feasible, even though tech-

nical and economic hurdles exist. However, given the prevailing constraints (economics, 

green electricity, available biomass), and weak decoupling of GDP from resource utiliza-

tion, it is clear that the industry cannot achieve the Paris Agreement targets without trans-

forming itself to a Sustainable Circular Enterprise. Such transformation will have deep 

and broadly-based ramifications on the economy, the structure of CMI and the character 

of CMI-companies, which need to reinvent themselves. In this paper we will offer data 

and arguments to substantiate the above statements, and will outline the questions that 

need to be answered by academic research. 

Keywords: Climate change; Circular economy; Sustainability; Process/product redesign; 

Energy, Environmental systems. 

1. The Chemicals and Materials Industry (CMI) 

Industrial activities create all the physical products (e.g., cars, agricultural equipment, 

fertilizers, building construction materials, transportation vehicles, electronic devices, 

textiles, household items, food, health and security related products, etc.), whose use de-

livers the services that satisfy specific human needs. In this paper we consider industrial 

activities over the whole supply chain, from extraction of primary materials (e.g., ores, 

coal, petroleum, natural gas) or recycling of waste materials, through chemicals-materi-

als-products manufacturing, to the services these products offer and the demand that such 

services satisfy.  For the purposes of this paper, the Chemicals and Materials Industry 

(CMI) includes the classical chemical/petrochemical industry (organic, inorganic), the 

cement industry, the iron and steel industry, the non-ferrous materials industries (alumin-

ium, magnesium, copper, and others), and a variety of industrial activities producing 

smaller amounts of a broad array of chemicals and materials. 

Figure 1 shows the complete supply chain of what we consider as the CMI’s position in 

the economy. The supply chain is composed of the following components: (a) Raw Ma-

terials: Earth stock of ores, minerals, petroleum, coal, natural gas, raw biomass. (b) Ex-

tractive Industry: Extracts the Raw Materials from the earth stock of raw materials and 

generates the Feedstocks. For example, natural deposits of petroleum contain gases and 

solids, which are separated, before the petroleum satisfies the specs to be a feed in a pe-

troleum refinery. Similar extractive processing is required for the preparation of mined 
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coal, minerals, and natural gas. (c) Feedstocks: The form and state of Raw Materials, 

which satisfy the required specs for feeds to the Processing Industry, in order to pro-

duce the Materials that the Manufacturing Industry needs. (d) Processing Industry: 

The set of activities that converts the Feedstocks to Materials. Examples include the 

conversion of coal, petroleum, or natural gas to fuels and chemicals; iron ore to var-

ious grades of iron and steel; conversion of clay, marl, lime, sand, into cement; raw 

biomass into grades of lignin, sugars, proteins. (e) Materials: All chemicals and ma-

terials generated by the Processing Industry, which are used for the manufacturing of 

the various Products the market needs. Examples include: all polymers; various 

grades of iron and steel; various grades of cement; various types of pulp and paper; 

etc. (f) Products: Buildings, roads, general infrastructure, automobiles, airplanes, 

electronic devices, pharmaceuticals, household items, etc. (g) Services: The satisfac-

tion of the specific need that a product satisfies, such as: housing, clothing, transpor-

tation, food, therapeutics, entertainment, security, etc. 

In all activities of the supply chain in Figure 1, scrap/wastes are generated and are pro-

cessed by the “Waste Industry”. The corresponding wastes can be reused, repaired, re-

manufactured, recycled, discarded (landfilled), or destroyed (incinerated). 

  

Figure 1. Complete supply chain of the Chemicals and Materials Industry (enclosed by the 

dashed and dotted envelops) from Raw Materials to Services that satisfy human needs. 

2. GHG and Materials Emissions from CMI 

Nearly 3/4 of Green House Gas (GHG) emissions (i.e. 73.2%) come from energy use, and 

1/3 of it (24.2%) is attributed to industrial use of energy.  Adding 5.2% of process-related 

GHG emissions (primarily from chemicals and cement), we take 30% of total emissions 

stemming from CMI. When compared with the emissions from transportation (16%), build-

ings (17.5%, heating, cooling, lighting), and agriculture, forestry and land use (18.4%), we 

realize that industry is the largest contributor of GHG emissions. The largest contributors 

of industrial GHG emissions are: iron and steel (24%), cement (19%), chemicals (18%), 

aluminium (6%), pulp and paper (3%). For the chemicals industry, the largest contributors 

are; ammonia, olefins (ethylene, propylene), methanol, and aromatics (benzene, toluene, 

xylenes).  
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As indicated above, from a strict accounting point of view (i.e. see dashed envelop in Figure 

1), the CMI accounts for 30% of global GHG emissions; CO2, CH4, N2O, and F-gases. How-

ever, within the scope of CMI’s complete supply chain of production and consumption activ-

ities, as shown in Figure 1 (i.e. append the activities in the dotted envelop), the GHG emissions 

corresponding to “chemicals/materials handling and use” are much higher, and account for 

about 70% of the total GHG emissions. In the extreme case, these emissions include all emis-

sions, except passenger mobility and energy use for residential purposes (space, water heating, 

and lighting). For example, GHG emissions related to freight transport are not “energy re-

lated”, because they serve material needs, i.e. move consumer goods around. 

In addition, CMI produces large amounts of materials emissions with possible adverse 

effects on the environment; e.g. 0.5 Gt/yr of plastics with ~40% going to landfills (where 

carbon is sequestered for hundreds of years) and ~ 20% leaking to the environment with 

disastrous health effects.  

During the period 1990-2016, the global GHG emissions from industry increased by 

175%, while the global GDP increased by 110%. Emissions from other sectors were far 

lower: transport 70%, manufacturing 50%, agriculture 20%, buildings 5%. Furthermore, 

we note that over the 20-year period of 1998-2018 despite the fact that the share of industry in 

global GDP has declined, and the annual per cent growth of manufacturing’s value added has 

remained roughly constant, around 2%, the rate of growth of emissions from industry has far 

outpaced the emissions from any other sector of the world economy 

(https://data.worldbank.org/indicator/NV.IND.MANF.KD.ZG).  The conclusion is clear and 

inescapable: Industry’s emissions are closely related to the rates of GDP growth. 

The relationship between GDP and GHG emissions has been the subject of many studies 

and is characterized by the absolute and relative decoupling between GDP and resource 

utilization or emissions, which are defined as follows:  

(Resource Utilization)
Absolute Decoupling

(GDP)

(Resource Utilization)
Relative Decoupling

(GDP)


= 




= 



0

1

          (1) 

Analysis of nearly 900 studies, based on empirical data on levels of emissions versus 

levels of consumption and production per capita, have led to important observations, 

which frame the scope of analysis for the transition of the Chemicals and Materials In-

dustry to a net-zero fossil carbon industry, and can be summarized as follows (Haber, et 

al., 2020; Mir and Storm, 2016): (i) There is econometric evidence which supports the 

Carbon-Kuznets-Curve (CKC) hypothesized pattern (see Figure 2), between CO2-eq 

emissions production or consumption, and GDP per capita. Such pattern would lead to 

absolute decoupling after the turning point. (ii) The turning point, for a production-based 

CKC curve, has been estimated to lie in the range of 50 to 100 GtCO2-eq, which is far 

beyond the COP21 emissions reduction goals. (iii) Examples of consumption-based ab-

solute decoupling are very rare. (iv) Relative decoupling is frequent for material use as 

well as GHG and CO2 emissions, but not for useful exergy. From the above observations 

we reach two important conclusions: (i) Absolute decoupling, i.e. reduction of resource 

(energy, materials) utilization and GHG emissions per unit of GDP growth, cannot be 

achieved through observed decoupling rates. (ii) To reach the Paris Agreement goals by 

2050, efforts to decouple resource utilization from GDP growth are necessary conditions 

Sustainable Circular Enterprise
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but not sufficient. Sufficiency-oriented strategies must include strict enforcement of ab-

solute targets. 

 

Figure 2. The Carbon-Kuznets-Curve (CKC) relationship between CO2-eq emissions and real income. 

3. Towards the Circularization of CMI 

The following formula offers a simple way for computing GHG emissions. It also identi-

fies the points where major interventions would lead to emissions reductions.  

G E M Pr
G S
E M Pr S

=      (2) 

G, GHG emissions. G/E, Emissions Intensity; GHG emissions per unit of energy used.  E/M, 

Energy Intensity; energy used per unit of material. M/Pr, Materials Intensity; materials used 

per unit of product to create the product and maintain stock of the product. It depends both 

on the design of the product and on the scrap discarded during its production. Pr/S, Product-

Service Intensity; it determines the level of service provided by a product, and depends on 

whether the product is consumable or durable. S=Total Service Demand=(Popula-

tion)×(GDP/capita); the total global demand for service. Traditional programs of Continu-

ous Improvement (KAIZEN) and process optimization can reduce the values of the first 

three factors, G/E, E/M, and M/Pr, with potential reduction of emissions by 25% - 40%. 

The remaining must come from the following sources: (i) Renewable energy supplies and 

major technological breakthroughs, such as: carbon capture sequestration and/or use. (ii) 

Major reductions in Materials Intensity (M/Pr), Product-Service Intensity (Pr/S), and To-

tal Service Demand (S). S is directly related to GDP/capita and we discussed earlier. (iii) 

Introduction of Circular practices: reuse, repair, remanufacturing, recycle products, 

wastes or scraps. The conclusion is inescapable: To meet the Paris Agreement goals we 

must do the following: (1) Change the focus from the energy sector to the chemicals/ma-

terials sector. (2) Enhance circularization of all supply chain activities (processing, man-

ufacturing, distributions, sales, recovery, reuse, reprocessing, remanufacturing). (3) Re-

duce virgin material demand by extending the percent utilization of all material products 

(housing, mobility, nutrition, communications, consumables).  

A series of obstacles prevents the full and idealized circularization of the CMI. These obstacles 

are: (a) Products may be too complex to recycle, reuse, or remanufacture. The large-scale use 

of synthetic materials makes the closing of the cycle nearly impossible. Furthermore, the re-

cycling of synthetic materials (e.g. polymers) invariably produces inferior materials. Redesign 

of products with easily assembled and disassembled material components, as well as extensive 
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use of biomass-based, degradable materials, could address these concerns to a large degree. 

(b) How do you recycle fossil fuels? A large part of fossil materials is used to provide energy 

for heating and electricity, leading to exhaust streams, whose useful energy has diminished 

and is unusable. Two options are open: Shift to progressively larger amounts of renewable 

energy, and optimize the process of capturing and sequestering or/and using CO2. (c) Growing 

human needs. Continuous growth of material human needs leads to the extraction of continu-

ously larger amounts of natural resources. By increasing the amount of materials recycled, we 

may be able to establish steady state. However, in order to achieve this, we ned to have a 

holistic approach to the circular economy that involves the complete life cycle of materials; 

something that many advocates of the circular economy fail to account for, by focusing on 

limited segments of the whole. (d) Accumulation of natural resources. A significant portion 

(about 30-35%) of processed natural resources remains in the economy and accumulates in 

the form of buildings, infrastructure, and consumer products; it is not recycled, destroyed, or 

disposed in a landfill. Therefore, the circular economy is not truly a steady state situation, but 

one which continues to be extractive economy, with increasing inventory of materials over 

various time horizons. (e) Recycling and reuse are not enough. The economy needs to adjust 

to the above limitations, by increasing the percent utilization of all material goods. For exam-

ple, we cannot have a sustainable circular economy with cars unused more than 90% of the 

time, office buildings used only 60% of the time, or more than 30% of food wasted. 

4. The Research Scope of Sustainable Circular CMI (S-CCMI) 

So far, the prevailing discussion on circular economy has been driven by the following simple 

definition of the sustainable circular CMI (S-CCMI): It is an economic model, focused on 

designing and manufacturing products, components and chemicals/materials for reuse, reman-

ufacturing and recycling. However, the S-CCMI must sustain economic growth, and this def-

inition is not sufficient to delineate its actionable scope. While the specific characteristics of 

S-CCMI can differ for different sectors of CMI, they must be driven by a simple principle: 

The resource inputs and recycled materials should maintain dynamic material balances of 

“wastes” at the sustainably highest allowable materials-accumulation levels. Pure “steady 

state” requirements are impossible; materials accumulate in the economy continuously. For 

example, carbon extracted from earth is equal to the amount of carbon returned to the earth, 

while the amount of carbon accumulated in the system remains below the sustainably highest 

level. The “sustainably highest level” allowance is determined by climate change (GHG emis-

sions) and environmental impact (materials emissions) constraints.  

Design elements of the S-CCMI.  The above simple principle has a broad range of impli-

cations for all activities in the “materials handling and use” network of Figure 1. At The 

Global KAITEKI Center (TGKC) of Arizona State University, we have undertaken an 

extensive research program, which addresses all questions related to the transition of CMI 

to S-CCMI, such as: (i) Reduction in the input and use of non-renewable material re-

sources. (ii) Reduction in the generation of wastes and emissions (GHG and materials). 

(iii)  Increase in inner materials use and recycle up to the sustainably highest level of 

materials use. (iv) Redesign of products and associated components, materials, and chem-

icals to facilitate recycle, and reuse. (v) Development of new technologies for the capture, 

sequestration and use of carbon.   

Transformation of CMI companies to S-CCMI companies. Aspects of the research program 

evaluate the following implications on the structure and operations of the CMI companies, as 

they transform to S-CCMI companies: (1) Transition from centralized and vertically inte-

grated, open-chain large-scale processing and manufacturing systems, to smaller-size, 

Reinventing the Chemicals/Materials Company: Transitioning to a  
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decentralized, distributed and locally managed processing and manufacturing activities.  (2) 

Economies of scale, which have dominated the large-scale processing in CMI will no longer 

be the drivers for large-scale investments. Materials, transportation, logistical services, and 

financial costs will drive the structure of S-CCMI. (3) Redefinition of the scope of the business 

activities, with the CMI companies transforming themselves from producers of virgin chemi-

cals and materials, to producers of integrated components and products, and suppliers of tech-

nical services to support the life-cycle of their products.  

The economics of transition from CMI to S-CCMI. The economic benefits of such trans-

formation S-CCMI companies have been estimated to be very attractive: (1) Significantly 

higher returns on investment. (2) Reduction in volatility between supply and demand, due 

to effective recycling and self-regulating system, leading to resilient economic growth. 

(3) Stronger market position and competitive differentiation for the companies, which 

espouse the future of S-CCMI. This will be particularly true for the companies, which are 

presently strong and have strong R&D, engineering, and supply-chain market positions. 

Societal and human adjustments during the transition from CMI to S-CCMI. The con-

sumers will need to adjust their behavior away from “owning physical products” towards 

“using services of physical products”, but the benefits are many and attractive: (i) The 

transition from “owning, using and disposing” to “using and returning” will force im-

provement of service quality, durability and reliability of products. (ii)  This transition 

will foster the appearance of new emerging trends of sharing, lending, swapping etc. that 

will benefit the consumers. (iii) The companies of present CMI employ very few people 

per dollar of asset values. The S-CCMI will increase these numbers significantly and fuel 

more predictable and sustainable demand of products and services at higher levels. (iv) 

The demands of S-CCMI can only be met by human resources of significantly higher 

education and skills. This will be in-line with historical expectations.  

5. Conclusions 

The transition of the CMI to a Sustainable Circular CMI is a necessary (and possibly 

sufficient) condition for industry to maintain under control the growing mountains of en-

vironmental “wastes”; GHG emissions and discarded materials. The implications are 

broad and deep and require restructuring of CMI, reinvention of the CMI companies and 

realignment of human behavioural traits in the new market place. The question is not 

whether to transition to S-CCMI or not, but how; the scope of research at TGKC. 
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Abstract 

The presented work focuses on the value chain optimization of a conceptually designed 

biorefinery, considering the plant capacity and other logistic and design constraints. An 

existing framework is used to create surrogate models, which are then used to 

reformulate the underlying optimization problem for performing value chain 

optimization. The used Delaunay triangulation regression surrogate model performs 

well and is a suitable candidate for value chain optimization. The results indicate an 

apparent effect of the economics of scale, and the market conditions mainly constrain 

the designed value chain. 

Keywords: Biorefinery, Surrogate Modelling, Delaunay Triangulation, Mixed-Integer 

Linear Program, Value Chain Optimization 

1. Introduction 

A key approach in expediting the transition towards a bio-based economy is the 

conceptual design and implementation of value chains based on integrated second-

generation biorefineries. Although these biorefineries have been investigated for several 

decades, and despite their vast potential regarding a sustainable production of fuels and 

chemicals, the major challenge remaining concerns their economic viability (Ubando et 

al., 2020). Among other factors that influence the economic viability, the capacity and 

location of the plant and the design of suitable feedstock and product supply chains are 

essential considerations to take (Gargalo et al., 2017). What is classically referred to as 

economies of scale can improve the economic key performance indicators (KPIs) of a 

plant up to a certain point, as the capital expenditures do not increase proportionally 

with the plant capacity. In contrast, additional necessary equipment, as well as increased 

operational costs for logistics, can thwart this effect. 

 

Hence, it is crucial to conceptually design both the biorefinery process and the entire 

value chain in which the biorefinery will be embedded. Vollmer et al. (2021) have 

recently developed a framework (S3O) that allows for the conceptual design of 

biorefinery processes based on mechanistic modeling for all unit operations in the 

process. The framework utilizes flowsheet simulations and different types of surrogate 

models to perform a superstructure optimization to determine candidate process 

topologies. This procedure is applied to eliminate nonlinearities, which are inherent to 

all unit operation models and constitute the superstructure optimization as a mixed-

integer nonlinear optimization problem (MINLP) (Vollmer et al., 2021b). The surrogate 

models aim either at linearizing the original model or eliminating the integer variables. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50012-9 
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Similarly, in value chain optimization, nonlinear models are commonly linearized with 

piecewise linear approaches (Krämer et al., 2021). 

 

In the scope of this work, the S3O framework is extended by using the already present 

Delaunay Triangulation Regression (DTR) surrogate model to perform value chain 

optimization based on a conceptually designed process through the framework. By 

flowsheet sampling with the process flowsheet with relevant input and output variables 

for the value chain optimization, piecewise linear DTR surrogate models are created. 

The value chain optimization is set up and constituted as a mixed-integer linear program 

(MILP), using the DTR surrogate model and solved with a suitable solver. This solution 

is benchmarked with a Gaussian Process Regression (GPR) surrogate model, which is 

equally incorporated in the S3O framework. The solution is analyzed and compared to 

the initial base case process design to conclude how to design an optimal value chain. 

2. Methodology 

2.1. Mechanistic Process Models 

The basis of the work in this manuscript is a running flowsheet simulation model 

created in the first step of the S3O framework. Each flowsheet model consists of various 

unit operation models. All unit operation models are mechanistic models, consisting of 

mass and energy balances and a kinetic description of the respective reaction or transfer 

process. Based on the mass and energy balance calculations, the fixed capital 

investment for each unit operation is calculated by a plant capacity ratio based on a 

report by the National Renewable Energy Laboratory (NREL) regarding a similar 

biorefinery setup. Based on the fixed capital investment and other report data, capital 

expenditures and operational expenses (CAPEX and OPEX) and different KPIs, e.g., 

the net present value (NPV) of the plant, are calculated. Input parameters for the 

flowsheet simulation can be operational variables and the feedstock mass, and other 

setup parameters. Output variables can be all mass and energy flows, as well as design 

parameters, e.g., vessel sizes, or economic variables referring to CAPEX or OPEX, or 

ultimately the KPIs of the plant. All flowsheet simulations are performed through the 

S3O framework as it is implemented in MATLAB. 

2.2. Delaunay Triangulation Regression 

DTR is based on a triangulation of points as a logical extension of piecewise linear 

regression in any dimension (Vollmer et al., 2021b). In a two-dimensional case, a 

triangulation consists of triangles or 2-simplices. For any dimension n, the triangulation 

hence consists of n-simplices. Each n-simplex itself is constituted by n+1 vertices. 

Within each simplex, each point can be described as a linear affine combination of the 

vertices. In this manuscript, the vertices are assigned to be the sampling points of the 

flowsheet simulations. The DTR utilizes Delaunay triangulation, which imposes the 

criterion to each simplex not to contain any other vertex of another simplex within the 

circumcircle – or its pendant in other dimensions – of the simplex. For a more detailed 

description, the reader is referred to Vollmer et al. (2021b). The results show an 

excellent functionality of the DTR surrogate for superstructure optimization 

applications within the S3O framework, despite impaired validation metrics. 

Furthermore, DTR has been used in other research works for performing operations 

optimization (Obermeier et al., 2021). In this work, the DTR surrogate model is created 

with functions provided through the scipy library for Python. 
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2.3. Gaussian Process Regression 

Another very popular type of surrogate model is a GPR model, a machine learning 

model with a broad variety of possible applications (McBride and Sundmacher, 2019). 

The model itself harvests its potential through a stochastic process – the eponymous 

Gaussian Process – which correlates the given input and output data, in this case, the 

flowsheet samples (Vollmer et al., 2021b). Also, using GPR surrogate models for 

process design applications within the S3O frameworks shows good functionality with 

good validation metrics (Vollmer et al., 2021a). In this work, the GPR functionalities of 

the Statistics & Machine Learning Toolbox in MATLAB are used. 

2.4. Value Chain Optimization 

The original value chain optimization in this manuscript is an MINLP of the form given 

in Eq. (1). 

𝑀𝐼𝑁𝐿𝑃:   

max 𝑧 = 𝑓(𝑥, 𝑦)

  𝑠. 𝑡.   𝑔(𝑥, 𝑦) ≤ 0

ℎ(𝑥, 𝑦) = 0
𝑥 ∈ 𝑋,   𝑦 ∈ [0,1]

 (1) 

The functional relation 𝑓(𝑥, 𝑦) denotes the flowsheet simulation, including continuous 

input variables 𝑥 and binary input variables 𝑦. The objective 𝑧 is equally one of the 

model outputs. Inequality constraints are represented by 𝑔(𝑥, 𝑦) and equality constraints 

are represented by ℎ(𝑥, 𝑦) = 0. Both inequality and equality constraints can describe 

conditions regarding logistics, markets, plant capacity, location, and supply and demand 

for the biorefinery. When utilizing the DTR surrogate model, the MINLP converts into 

a MILP due to eliminating the nonlinearities by the piecewise linear approach. When 

using the GPR surrogate model, the MINLP converts into a set of nonlinear programs 

(NLP), with each element of the set representing one realization of the combinations of 

all binary variables that need to be solved separately. The MILP can be solved with the 

GUROBI solver, whereas each NLP is solved with the fmincon solver in MATLAB 

while employing a multi-start procedure to guarantee global optimality. 

3. Application 

3.1. Case Study 

The biorefinery in this case study is a multi-product biorefinery that converts wheat 

straw into xylitol, succinic acid, and heat. The latter is used for process integration 

purposes in the downstream processing of the former two products. It consists of a 

biomass pretreatment unit, a unit for enzymatic hydrolysis, two evaporation units in the 

upstream process, two fermentation units for the production of xylitol and succinic acid, 

two evaporation units, four crystallization units, and one combustion unit for the lignin. 

3.2. Optimization Problem 

The original biorefinery is designed for an annual feedstock mass of 𝑚 = 150.000 𝑡 

designed for being located in Denmark, corresponding to approximately 3% of the 

nationally harvested amount of wheat straw (Danish Agriculture & Food Council, 

2015). In order to see a significant effect of the economies of scale, the capacity of the 

biorefinery could be potentially increased up to 𝑚 = 600.000 𝑡, as practiced in the 

mentioned report of the NREL (Humbird et al., 2011). However, as wheat straw is 

harvested and centrally collected, a higher amount of feedstock correlates with a longer 
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transportation distance. Per each full additional 150.000 t of feedstock, it is considered 

to increase the transportation distance stepwise by 100km, with a transportation price of 

0.05 $ (𝑡 ∙ 𝑘𝑚)⁄ . As this increases the costs for transportation, a potential option is to 

not install one plant with a capacity of bigger than 𝑚 = 300.000 𝑡, but to install two 

plants with the ability to be able to process 𝑚 = 600.000 𝑡 in a decentralized manner 

which alleviates the economic impact (Galanopoulos et al., 2020). This is expressed by 

a binary variable 𝑦𝑝 as part of the optimization problem. Lastly, as fermentation 

processes need equipment for inoculation, a higher capacity than the original one 

requires an additional fermentation tank, which increases the CAPEX of the plant. The 

costs of the additional tank scale linearly with the feedstock mass. The capacity itself, 

however, is calculated through the capacity ratio. For the flowsheet simulations, the 

operational variables, as well as the feedstock mass and the plant number 𝑦𝑝 are used. 

The effects of all three mentioned aspects are calculated in the flowsheet simulation. As 

output, the NPV of the plant and the mass of produced xylitol and succinic acid are 

calculated. The objective in the optimization is set to be the NPV of the plant, and the 

mass of xylitol and succinic acid are constrained to be 𝑔1 =  𝑚𝑥𝑦𝑜 ∈ [5,33]% and 𝑔2 =

 𝑚𝑥𝑦𝑜 ∈ [20,50]% of the global production of the respective substance. The lower 

limits are imposed to assure a minimal production, whereas the upper limits are 

imposed to avoid decreasing market prices, which would negatively influence the plant 

profitability due to the comparatively small market size of both products. 

3.3. Results 

For illustrative purposes, the NPV as the objective function of the feedstock mass with 

fixed operational conditions is displayed in Figure 1. 

 

Figure 1: Plot of the objective function with the feedstock mass as a variable for 𝑦𝑝 = 0 and 𝑦𝑝 =

1 

The effect of the economies of scale, the constraining effects of increased costs for 

logistics and equipment, and the reduction of the expenses through decentralized 

production are visible. For the value chain optimization, the process flowsheet model is 

sampled with N=1000 simulation samples for all five operational variables, the 

feedstock mass, and the binary variable 𝑦𝑝 with two sets of the sample size sampled by 

Latin Hypercube sampling for each realization of 𝑦𝑝. The DTR and the GPR surrogate 
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models are fitted to the sampling data and cross-validated. The results of the cross-

validation for both models are presented in Table 1. 

Table 1: Results of the surrogate model validation for the NPV as output variable 

 
DTR GPR 

 𝑦𝑝 = 0 𝑦𝑝 = 1 𝑦𝑝 = 0 𝑦𝑝 = 1 

𝑅𝑡𝑟𝑎𝑖𝑛
2  1 1 1 1 

𝑅𝑡𝑒𝑠𝑡
2  0.552 0.408 0.957 0.937 

𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 0 0 3.19 ∙ 105 1.04 ∙ 105 

𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 3.07 ∙ 108 2.97 ∙ 108 9.48 ∙ 106 1.57 ∙ 105 
 

It becomes evident that the DTR surrogate metrics are impaired compared to the ones of 

the GPR. Particularly for the case of 𝑦𝑝 = 1, the DTR surrogate model does fail to 

predict accurately, while the GPR shows improved metrics compared to the case of 

𝑦𝑝 = 0. The optimization problem for the value chain optimization is set up as 

described in section 2.4 with all variables, the objective function, and the constraints as 

described in section 3.2. The results are presented in Table 2. 

Table 2: Results of the value chain optimization with the optimization result (left) and the 

validation simulation result (right) for each binary decision and surrogate model 

 
DTR GPR 

 𝑦𝑝 = 0 𝑦𝑝 = 1 𝑦𝑝 = 0 𝑦𝑝 = 1 

𝑀𝑓𝑒𝑒𝑑  [103 ∙ 𝑡] 302 293 292 292 

𝑵𝑷𝑽 [𝟏𝟎𝟖 ∙ $] 𝟏. 𝟗𝟔 𝟐. 𝟒𝟕 𝟐. 𝟗𝟑 𝟑. 𝟐𝟗 𝟕. 𝟏 𝟑. 𝟓𝟔 𝟓. 𝟖 𝟐. 𝟔𝟎 

𝑀𝑥𝑦𝑜 [103 ∙ 𝑡] 19.8 20.4 22.1 22.2 29.1 22.4 21.8 20.2 

𝑀𝑠𝑢𝑐 [103 ∙ 𝑡] 35.9 38.0 35.9 35.1 35.9 35.9 35.9 35.9 
 

Primarily, the result from both the optimization with the DTR and the GPR surrogate 

shows that the effect of the economics of scale is visible, and the feedstock capacity is 

increased to a maximally feasible limit, which is imposed by the market saturation 

bounds. The effects of increased transportation costs and additional equipment do not 

influence the objective to the same degree. In other studies investigating products as 

bioethanol with higher market volumes, these effects become more significant 

(Galanopoulos et al., 2020). Furthermore, the operational conditions were not 

significantly influenced. Also, the results of both optimization problems with the 

different surrogate models agree, indicating that the DTR model is a suitable candidate 

for value chain optimization despite insufficient validation metrics, since it performs 

better in predicting the objective function and the constraints. The differences in 

prediction with the GPR surrogate model for the case of 𝑦𝑝 = 1 and 𝑦𝑝 = 0 can be 

explained by the different fit of each model, which is reflected by the validation metrics. 

The differences in prediction for the DTR surrogate model can be equally attributed to 

the different fit expressed by the validation metrics. This indicates a potential increase 

in prediction quality for both models by using larger sampling sizes. It is noted that the 

economic metrics are calculated with fixed price considerations for feedstock and 

products. Hence the emphasis is on the trend of NPV rather than its absolute value. 

Further studies of uncertainties that will yield a distribution of NPV are needed as the 

volatility in the market prices for feedstock and products, as well as the market demand 

uncertainty, will affect the nominal values presented here. 

Value Chain Optimization of a Xylitol Biorefinery with Delaunay Triangulation 

Regression Models 
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4. Conclusion 

Based on a conceptually designed process for an integrated second-generation 

biorefinery, this study aimed to design an optimal value chain with the given process 

design by taking into account a varying feedstock mass and other logistic and design 

constraints for the plant. The value chain optimization was performed using two 

surrogate models to transform the underlying MINLP into either a MILP or a set of 

NLPs. The results from solving the optimization problems show results in agreement 

with each other. This proves the suitability of DTR surrogate models for the use in 

value chain optimization problems, and this despite impaired validation metrics of the 

surrogate model, which has been addressed before (Vollmer et al., 2021a; Vollmer et 

al., 2021b) With regards to the actual value chain, it becomes evident that the 

economics of scale positively influence the KPIs of the biorefinery. The limitations for 

economic resilience are found in the actual market sizes of the products rather than in 

the additional costs for increased CAPEX and OPEX of a larger biorefinery. These 

results are essential and contribute to facilitating the further design and implementation 

of biobased value chains to create more sustainable production patterns in the future. 
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Abstract 
Optimization-based process design can be an efficient tool for finding synergies between 
process units, but it strongly relies on accurate process models. Hence, experiments for 
model refinement may be necessary. We present an optimization-based methodology to 
enhance the process development by integrating superstructure optimization under 
uncertainties and optimal design of experiments. In this manner, experiments for model 
refinement can be focussed on the parameters which are critical for discrete design 
decisions. These parameters are identified by a local discrimination analysis followed by 
a computation of the partial dependence or the permutation feature importance. The 
methodology is applied to the hydroaminomethylation of 1-decene. It is shown that it 
reduces the number of experiments needed for the decision between alternative process 
structures. 

Keywords: Superstructure Optimization, Process Design, Optimal Design of 
Experiments, Linear Discrimination Analysis. 

1. Introduction 
Superstructure optimization has been developed as a tool to support design decisions in 
process development by the optimization of discrete and continuous parameters of a 
superstructure that describes a range of process alternatives. The formulation of the 
superstructure and the solution of the resulting large mixed-integer optimization problems 
have been widely studied ((Chen & Grossmann, 2017), (Skiborowski et al., 2014)). 
However, the prerequisite of the application of the approach is the availability of models 
that describe the chemical and physical phenomena in the different pieces of equipment 
as well as the necessary investments and the costs of operation accurately. Since the 
models that are available for process design are usually uncertain in the early process 
design phases, where nonetheless often important structural decisions are taken, these 
uncertainties should be considered in the optimization. Steimel and Engell (2016) 
proposed a two-stage formulation for superstructure optimization under uncertainty 
where the uncertainty is modelled by discrete scenarios and the design degrees of freedom 
are identical for all scenarios but the operational degrees of freedom are adapted to the 
realization of the uncertainties, i.e. the real behavior of the plant. However, often there 
will be several process structures that are optimal for different scenarios, and the 
uncertainty should be reduced by experimental work to obtain a unique solution. In order 
to identify the optimal design with the smallest experimental effort, the authors proposed 
an integrated methodology that combines superstructure optimization under uncertainty, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50013-0 
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sensitivity analysis, and optimal design of experiments ((Kaiser & Engell, 2020), (Kaiser 
et al., 2021)). The parameters with the highest impact on the process cost for the most 
promising design are identified using a sensitivity analysis. A modified optimal design of 
experiment is used to plan experiments that focus on determining these parameters. 

Our earlier work showed that the process design could be accelerated, but it did not yet 
take the impact of the uncertain parameters on the structural decisions into account. We 
improve the methodology by evaluating the impact of the model parameters on the 
discrete design decisions and planning experiments that are targeting to determine the 
parameters that influence the discrete design decisions the most. In the following, we will 
describe the methodology and apply it to the hydroaminomethylation of 1-decene. 

2. Methodology 
The idea is to integrate superstructure optimization under uncertainty, the identification 
of relevant parameters, the design of focused experiments, and parameter estimation as 
can be seen in Figure 1. By this, efficient experiments can be planned for model 
refinement that are focused on determining the parameters that have the highest impact 
one the discrete design decisions. The single steps are explained in the next section. 
2.1. Superstructure optimization under uncertainty 

For superstructure optimization under uncertainty Steimel and Engell (2016) proposed to 
formulate a two-stage mixed integer optimization problem. 

min
𝑦𝑦𝑑𝑑,𝑦𝑦𝑐𝑐,𝑥𝑥𝜔𝜔

𝐺𝐺�𝑦𝑦𝑑𝑑, 𝑦𝑦𝑐𝑐� +  �𝜋𝜋𝜔𝜔𝐹𝐹𝜔𝜔�𝑦𝑦𝑑𝑑, 𝑦𝑦𝑐𝑐, 𝑥𝑥𝜔𝜔, 𝑧𝑧𝜔𝜔�
Ω

𝜔𝜔=1

s.t.   ℎ�𝑦𝑦𝑑𝑑, 𝑦𝑦𝑐𝑐, 𝑥𝑥𝜔𝜔, 𝑧𝑧𝜔𝜔� = 0
𝑔𝑔�𝑦𝑦𝑑𝑑, 𝑦𝑦𝑐𝑐, 𝑥𝑥𝜔𝜔, 𝑧𝑧𝜔𝜔� ≤ 0

 (1) 

The objective function (1) consists of two terms. The first term accounts for the cost when 
fixing the discrete (𝑦𝑦𝑑𝑑) and continuous (𝑦𝑦𝑐𝑐) design degrees of freedom, which cannot be 
adapted to the realization of the uncertainties. The second term is the weighted sum of the 
scenario dependent costs for the Ω discrete scenarios of the uncertain parameters. The 
operational degrees of freedom 𝑥𝑥𝜔𝜔 are assumed to be adapted to the realization of the 
uncertainty and are therefore optimized separately for each scenario. 

Figure 1: Schematic representation of the integrated methodology. 
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ot Reduce the Experimental Effort 

2.2. Linear discrimination analysis 

To identify the effect that the uncertainties have on the design decision, the outputs are 
divided into 𝑔𝑔 classes 𝐾𝐾𝑙𝑙– here the best design decisions – depending on the values of the 
uncertain parameters. By a linear discrimination analysis, the features that separate the 
classes can be identified. A realization 𝑥𝑥𝑖𝑖 of a feature carrier 𝒆𝒆 is assigned to the class 𝐾𝐾𝑙𝑙 
for which the value of the discrimination function is maximum (Rinne, 2008): 
𝑑𝑑𝑙𝑙∗(𝑥𝑥𝑖𝑖) = max

1≤𝑙𝑙≤𝑔𝑔
𝑑𝑑𝑙𝑙(𝑥𝑥𝑖𝑖)  ⇒ 𝑥𝑥𝑖𝑖 ∈ 𝐾𝐾𝑙𝑙∗. (2) 

Supposing that a number or realizations (samples) 𝑥𝑥𝑖𝑖 have been classified, arbitrary 
values of 𝒆𝒆 can be assigned to the classes under the assumption that the features are 
independent, Gaussian distributed, and have an equal feature-independent variance 
𝚺𝚺𝑙𝑙 = 𝜎𝜎2𝑰𝑰 ∀ 𝑙𝑙. (3) 

A realization with vector 𝒙𝒙 is assigned to the class with the minimum Euclidean distance 
between the class center 𝝁𝝁𝑙𝑙 and 𝒙𝒙. The linear discrimination function is defined as: 

𝑑𝑑𝑙𝑙(𝒙𝒙) = −
1

2𝜎𝜎2
𝝁𝝁𝑙𝑙′𝝁𝝁𝑙𝑙 +

1
𝜎𝜎2

𝝁𝝁𝑙𝑙′𝒙𝒙. (4) 

𝝁𝝁𝑙𝑙 is computed as the average of the classified samples that belong to class l . 
The relationship between the features and the predicted class can be represented by the 
partial dependence (PD) as described by (Greenwell, 2017). It is computed as the average 
probability of the output belonging to the different classes when the value of this feature 
is varied, averaged over the values of all other features. The assignment of the class for a 
value of the feature is based on (4) and the averaging is done over the set of the classified 
realizations of the parameter vector (samples). This gives the fractions of the predictions 
of each design decision being the optimum one depending on the values of the individual 
features (parameters in our case). If 𝒙𝒙𝑠𝑠 is the feature of interest and 𝑿𝑿𝒄𝒄 is its complement 
(i.e. all other features), the partial dependence of the output 𝑓𝑓 at 𝒙𝒙𝒔𝒔 is defined as: 

𝑓𝑓𝑠𝑠(𝒙𝒙𝑠𝑠) = 𝐸𝐸𝐶𝐶[𝑓𝑓(𝒙𝒙𝑠𝑠,𝑿𝑿𝑐𝑐)] = �𝑓𝑓(𝒙𝒙𝑠𝑠,𝑿𝑿𝑐𝑐)𝑝𝑝𝑐𝑐(𝑿𝑿𝑐𝑐)𝑑𝑑𝑿𝑿𝑐𝑐 (5) 

The results of the PD are compared to the permutation feature importance (PFI) that also 
capture interaction effects (Fisher et al., 2019). For each feature, the values are exchanged 
with values from a different sample to generate a new feature matrix 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The 
classification of the discrimination model of 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is then compared to the true optimal 
discrete design as indicated in the training data and the number of wrong classifications 
is compared for all features. If permuting one feature leads to a wrong classification, it 
implies that this feature as a large influence on the model output.  
2.3. Optimal design of experiments 

To design an experiment to determine the parameters that influence the design decision, 
an optimal design of experiment (ODoE) is used. In ODoE a metric of the inverse of the 
Fisher information matrix (FIM) is minimized (Franceschini & Macchietto, 2008).  

𝑭𝑭𝑭𝑭𝑭𝑭 = � 𝑸𝑸𝑻𝑻(𝒖𝒖𝜏𝜏)𝐝𝐝𝐝𝐝𝐝𝐝𝐠𝐠−𝟏𝟏(𝜎𝜎12, … ,𝜎𝜎𝑛𝑛𝑦𝑦
2 )𝑸𝑸(𝒖𝒖𝜏𝜏)

𝜏𝜏𝑁𝑁

𝜏𝜏=𝜏𝜏1

 (6) 

with 𝑸𝑸(𝒖𝒖𝜏𝜏) being the matrix of the derivatives of the model outputs with respect to the 
parameters of the experiment with the input 𝒖𝒖𝝉𝝉. As only some of the parameters will have 
an impact on the design decision, as identified by PD and PFI, only these are included in 
the ODoE. Here an A-optimal design of experiments is used which minimizes the trace 
of the inverse of the FIM. 
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3. Case study 
The presented methodology is applied to the homogeneously catalysed hydroamino-
methylation of 1-decene in a thermomorphic solvent system of methanol and dodecane. 
In this process, long-chain amines are produced and water is formed as a by-product. 
Thermomorphic solvent systems are single phase at reaction temperature and separate 
into two phases when cooled down which enables a recycling of the expensive catalysts. 
The reaction can either be performed as a tandem reaction (HAM) in one reactor or in 
two subsequent steps, thus performing the two subsequent reactions hydroformylation 
(HYFO) and reductive amination (RA) in different reactors. The superstructure is 
depicted in Figure 2. The process consists of three steps: reaction, separation and removal 
of water. Kinetic models for the two reactions steps can be found in (Hentschel et al., 
2015) and (Kirschtowski et al., 2021). The HAM was modelled by combining both model 
structures and fitting the parameters to twelve experiments. The gas solubilities as well 
as the phase separation are predicted using the equation of state PC-SAFT. As the iterative 
solution of the PC-SAFT equations is not feasible in the optimization, surrogate models 
were trained as proposed in (Nentwich & Engell, 2019). The membrane separation is 
modelled using a solution-diffusion model. The uncertainties considered in this case study 
are the pre-exponential factors and the activation energies of all reaction rates resulting 
in 31 uncertain parameters. The binary design degrees of freedom are the choices whether 
the tandem reaction or the subsequent reactions are used and whether the nonpolar solvent 
dodecane is fed before or after the reaction, and the continuous design decisions are the 
volumes of the reactors and the area of the membrane. As recourse variables, the 
temperatures in the reactors and the decanter, the partial pressures of syngas, the solvent 
ratio and the catalyst concentration are optimized. The cost function is the production cost 
per kg of product for a constant capacity of 10.000 t/a.  

3.1. Application of the integrated methodology 

The superstructure optimization was performed for the four structurally different process 
alternatives. For each alternative, the predicted costs for the best designs are shown in 
Figure 3 (left). Each line in the figure represents one scenario of uncertain parameters. 
Initially, design 1 is optimal for most but not for all scenarios. As one cannot make a 
design decision based on this result, a further model refinement is necessary. As a next 
step, we analyzed which parameters influence the design decision. Therefore, a linear 
discrimination analysis was performed. Designs 2 and 4 are not optimal for any scenario 
and therefore, only designs 1 and 3 are considered. The influence of the parameters on 
the class allocation was analysed via PD and PFI. The partial dependence plots are shown 
in Figure 4, where the scores of all 31 parameters are presented. One can see that 

 
Figure 2: Superstructure of the process. 
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parameter P27 (the activation energy of the side reaction to from n-decene to iso-decene) 
determines the decision the most. The same result was obtained by PFI where only 
changing this parameter shows an effect on the predicted class.  

Hence, the optimal design of experiments was restricted to determining this parameter. 
The reaction temperature, the total pressure, the syngas ratio, the catalyst concentration 
and the sampling times were optimized for one batch experiment. The experiment was 
replaced by a simulation of the reaction with the nominal values of the parameters 
corrupted with added white noise with a standard deviation of 5 %. After one simulation 
experiment, the parameters were updated and the procedure was repeated. After seven 
iterations, one design could be identified as optimal for all scenarios as it can be seen in 
Figure 3 (right). In contrast, by a full factorial design with 32 additional experiments one 
cannot identify one design as optimal for all scenarios. Therefore, the proposed 
methodology shows an advantage over established techniques for model refinement. 

  
Figure 3: Predicted costs for the four best structurally different designs for 50 scenarios of the 
uncertain parameters after the initial superstructure optimization (left) and after 7 iterations. The 
design IDs indicate the structurally different designs. Design 1 and design 2 correspond to the 
tandem reaction with a dodecane feed after and before the reaction respectively and design 3 
and 4 to the two subsequent reactions with a dodecane feed after and before the reaction.   

 
Figure 4: Partial dependence plots for the two discrete designs that were identified as optimal 
for at least one of the different scenarios considered. 
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4. Conclusion and Outlook 
We presented an integrated methodology that accelerates the process development 
process by reducing the number of required experiments to find the optimum discrete 
design decisions. Using a superstructure optimization under uncertainties followed by a 
discrimination analysis, the parameters that influence the design decision the most can be 
identified. Hence, efficient experiments can be planned by optimal design of experiments 
that focus only on determining these parameters until the model is accurate enough to 
make a design decision. In the case study, we could identify one parameter as strongly 
influencing the design decision. Simulation studies showed that designing experiments 
for this parameter can reduce the number of experiments compared to a full-factorial 
design. In the future, we plan to expand the methodology to uncertain parameters in 
different process units.  
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Abstract 
Organic synthesis plays an essential role in the pharmaceutical industry. Traditionally, 
knowledge-based methods are used for the design of synthesis route, which is expensive 
and time-consuming and thus hinders the high-throughput design of the synthesis route. 
In this article, a retrosynthetic analysis framework is established using hybrid reaction 
templates and Group Contribution (GC)-based thermodynamic models. First, a hybrid 
database consisting of partial atom-mapping and full atom-mapping reaction templates 
is constructed utilizing well-studied organic reactions from literature. Second, numerous 
virtual reactions are generated from reaction templates with respect to target molecule, 
and reaction thermodynamic models based on the GC method are developed to validate 
the effectiveness of virtual reactions in a timely fashion. Finally, Breadth-First Search 
(BFS) algorithm is employed to search candidate retrosynthesis pathways which are 
thermodynamically feasible. In this procedure, five quantitative criteria are used to 
identify the top-ranked routes, including Fathead Minnow 96-hr LC50 (LC50FM), flash 
point (Fp), Natural Product-likeness Score (NPScore), Synthesis Accessibility Score 
(SAScore), and Synthesis Complexity Score (SCScore). With the help of the developed 
framework, synthesis routes considering thermodynamic feasibility can be obtained. 
Two case studies involving Aspirin and Ibuprofen are presented to highlight the 
feasibility and reliability of the proposed framework. 

Keywords: Retrosynthesis pathway design; Reaction template; Reaction equilibrium 
constant; Group contribution method; Breadth-First Search algorithm 

1. Introduction 
Organic synthesis is one of the most crucial components of the modern pharmaceutical 
industry. Traditionally, knowledge-based methods are applied to design synthesis routes 
for different pharmaceutical products. Nowdays, Computer-Aided Synthesis Design 
(CASD) techniques have enabled in-silico retrosynthesis and thus received considerable 
attention from chemists (Law et al., 2008; Szymkuc et al., 2016; Schwaller et al., 2020). 
Various searching algorithms have been successfully applied to optimize different 
objectives of synthesis route design. A crucial step in retrosynthetic analysis is to find a 
method that constructs explicit or implicit relations between reactants and products. 
Corey and Wipke are forerunners in retrosynthesis for their efforts in introducing the 
Logic and Heuristics Applied to Synthetic Analysis (LHASA) in the 1960s (Corey & 
Wipke, 1969). In their work, reaction templates (a certain type of sub-molecular pattern 
that maps atom connectivity) were used as a bridge linking up reactants with products. 
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Route Designer (Law et al., 2008) employed extended reaction templates to ensure the 
validity of synthesis routes. Syntaurus (Szymkuc et al., 2016) used more than 20,000 
explicitly defined reaction rules to avoid obtaining absurd synthesis routes. The 
developers of Chematica (Szymkuc et al., 2016) have manually encoded more than 
10,000,000 molecules and reactions to form synthesis networks. Among these methods, 
the reaction template is more favorable for its concise form in representing chemical 
reactions. Reaction templates are manually encoded by chemists who are experienced in 
organic synthesis. Gradually, chemists pay more and more attention to algorithms that 
automatically extract features as well as generate templates from the known reactions in 
commercial databases owned by pharmaceutical companies and non-commercial 
databases like USPTO (Lowe, 2014) and Reaxys (Goodman, 2009). So far, extraction 
algorithms have made significant progress in theory and practice. Law et al. (2008) 
focusing on extending the reaction cores to necessary chemical environments. Coley et 
al. (2017) used a heuristics-driven algorithm to extract reaction templates from the 
USPTO database. Reaction templates cannot work alone in retrosynthesis. Specialized 
algorithms written by expert chemists are used to cooperate with reaction templates. As 
the Artificial Intelligence (AI) develops, many researchers have found that Machine 
Learning (ML) can solve retrosynthesis when reaction templates are applied. Segler and 
Waller (2017) proposed a model for retrosynthesis using neural-symbolic ML and 103 
hand-coded reaction templates, while Coley et al. (2017) applied ML and rigid reaction 
templates for the reversed problem. Template-free method is developing rapidly thanks 
to the new advancement in NLP (Natural Language Process) technology. Reactions 
written in SMILES (Simplified Molecular-Input Line-Entry System) (Weininger, 1998) 
notations are used to train RNN (Recurrent Neural Network) or Transformer model. The 
well-known template-free architecture is Molecular Transformer (Schwaller et al., 
2019), which reads the mixed (or separated) strings of reactants, solvents, catalysts, and 
reagents as the inputs to predict possible product strings.  

Although retrosynthesis analysis has been studied for several decades, there are 
remaining problems unsolved. Increasing the depth of a neural network or applying 
newly raised neural network architecture may allow us to get more satisfying results for 
prediction, but the relation between input and output becomes hard to be understood. 
Other aspects, such as process safety, environmental friendliness of reagents, and the 
price of raw materials, should also be considered during the process of synthesis route 
design. This paper presents a retrosynthetic analysis framework using hybrid reaction 
templates and GC-based thermodynamic models. The curated reaction templates are 
manually encoded according to available literature (Smith & March, 2001) to ensure the 
validity. In Section 2, the proposed three-steps framework is discussed in detail. In 
Section 3, two case studies are presented to highlight the feasibility and reliability of the 
proposed framework. 

2. Retrosynthetic analysis framework using hybrid reaction templates and 
GC-based thermodynamic models 
The proposed retrosynthetic analysis framework is divided into three parts: (1) Generate 
virtual routes; (2) Verify virtual routes; (3) Rank valid routes, as shown in Figure 1.  

2.1. Step 1: Generate virtual routes 

Reaction template is a sub-molecular pattern that maps atom connectivity. SMARTS 
strings are used to encode reaction templates in this framework since they are fully 
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supported in RDKit (Landrum, 2016). Chemical reactions written in SMARTS strings 
are reversible by simply switching reactants and products. SMARTS strings are 
classified into two categories according to the completeness, called partial atom-
mapping and full atom-mapping. Partial atom-mapping SMARTS strings have 
asymmetric numbers labeling, while full atom-mapping SMARTS strings have 
symmetric numbers labeling. The most of the SMARTS strings in the well-known 
USPTO 1976-2016 database (Lowe, 2014) are partial atom mapping and thus hardly 
useful for our framework. As a result, the reaction template database is established 
manually according to available literature (Smith & March, 2001). In our reaction 
template database, 347 different reaction templates covering the most used reactions are 
established. These reaction templates are classified into nine categories. Some partial 
atom-mapping reaction templates (9.7% of total reaction templates) in our reaction 
template database are kept maintaining the diversity of the reaction template database. 

 
Figure 1. A three-step retrosynthesis analysis framework using hybrid reaction 

templates and GC-based thermodynamic models 

2.2. Step 2: Verify virtual routes 

Chemical equilibrium theory provides a convenient way to evaluate whether a reaction 
is able to occur or not under a given temperature. For isothermal and isobaric reaction, 
the reaction equilibrium constant is correlated with the change of standard molar Gibbs 
free energy of the reaction ∆!𝐺"# , ideal gas constant R and reaction temperature T, as 
shown in Eq.(1). 

𝐾 = exp	)−∆!𝐺"#/𝑅𝑇. (1) 

A more flexible formula for calculating reaction equilibrium constant using standard 
molar Gibbs free energy is expressed as Eq.(2), which is derived under a rational 
assumption as per the textbook “Principles of Modern Chemistry (7th Ed)” (Oxtoby et 
al., 2011). 

∆!𝐺"# (𝑇) = ∑ 𝜐$∆%𝐻",$# (298.15	K)$ − 𝑇∑ 𝜐$𝑆",$# (298.15	K)$   (2) 

Here, ∆%𝐻",$#  and 𝑆",$#  represent the standard molar enthalpy of formation and the 
standard molar entropy for compound j, respectively; 𝜐$ is the stoichiometric coefficient 
of compound j. Existing databases such as Lange’s Handbook of Chemistry (Speight, 
2005) contain thermodynamic parameters at 298.15 K for most common molecules. 
However, molecules involved in retrosynthesis pathway design are usually 
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intermediates whose thermodynamic parameters are not readily available from the 
databases. Therefore, GC methods are introduced here as an alternative way to calculate 
relevant thermodynamic parameters and other properties that are involved in 
retrosynthesis pathway design. The relevant data used in GC methods come from our 
previous work in solvent design (Liu et al., 2019). BFS algorithm is widely used in 
solving problems like shortest path problems and minimum steps problems. Pre-set 
reaction equilibrium constant 𝐾'  is used as a criterion to keep the BFS algorithm 
focusing on the most promising reaction routes. An online database of market-buyable 
molecule is introduced to improve computational effectiveness and accelerate 
convergence. 

Step 3: Rank valid routes 

In this step, a quantitative evaluation system is developed to rank routes that pass the 
thermodynamic verification objectively. The following criteria are considered: (1) 
Fathead Minnow 96-hr LC50 (LC50FM); (2) flash point (Fp); (3) Natural Product-
likeness Score (NPScore) (Ertl et al., 2008); (4) Synthesis Accessibility Score 
(SAScore) (Ertl et al., 2009); (5) Synthesis Complexity Score (SCScore) (Coley et al., 
2018). A normalization is applied for each criterion to ensure they are normalized to a 
fixed range between 0 to 1. Euclidean distance is used as a quantitative method to 
calculate the distance between a specific molecule and the target (optimal) molecule in 
chemical space as shown in Eq.(3). 

𝑆𝐶𝑂𝑅𝐸()*+ = ?∑ )𝑠𝑐𝑜𝑟𝑒,- − 𝑠𝑐𝑜𝑟𝑒,,)./- .01
,23   (3) 

In a multi-step synthetic problem, the node with the highest value of SCOREnode is 
deemed to be the synthesis-determining step. After finding all the synthesis-determining 
steps of corresponding routes, their scores are ranked in ascending order to find out the 
optimal synthesis route as shown in Eq.(4).  

𝑆𝐶𝑂𝑅𝐸.4/5 = min)max(𝑆𝐶𝑂𝑅𝐸()*+). (4) 

The SCOREpath in Eq.(4) is defined as the score of a full synthesis route, representing 
the synthetic features of the synthesis route. If any additional criterion needs to be 
considered in the future, Eq.(3) is extensible while Eq.(4) remains valid. 

3. Case studies 
3.1. Synthesis route design for Aspirin 

 
Figure 2. The results of synthesis route design for Aspirin 

The SMILES of Aspirin is required, which is CC(=O)OC1=CC=CC=C1C(=O)O. Here, 
𝐾' was set to 100 and search depth was set to 2. The reaction temperature was set to 
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298.15 K in order to search reactions that are feasible at room temperature. The results 
of synthesis route design for Aspirin are shown in Fig. 2. 

According to Eq. (4), the optimal synthesis route for Aspirin is to use acetic anhydride 
reacting with salicylic acid, which is consistent with the industry practice. Acetyl 
chloride gets a higher overall score for its low flash point and thus ranked second. 

3.2. Synthesis route design for Ibuprofen 

The SMILES of Ibuprofen is required, which is 
CC(C)CC1=CC=C(C=C1)C(C)C(=O)O. All synthesis constraints were the same as 
Aspirin except for the search depth which was set to 3. The design results for Ibuprofen 
are shown in Fig. 3. 

 
Figure 3. The results of synthesis route design for Ibuprofen 

The top-1 route is Friedel-Crafts alkylation which tends to produce multi-substituted 
products. The catalysts with high shape-selectivity are needed to make this route 
practical. The well-known olefin carbonylation method is found and ranked 4 while a 
method alike to BHC method is found and ranked 13.  

4. Conclusions 
In this paper, a retrosynthetic analysis framework using hybrid reaction templates and 
GC-based thermodynamic models is proposed. First, a hybrid reaction template 
database is used to generate various possible routes. Then, reaction equilibrium constant 
is used to verify the thermodynamic tendency of virtual routes while BFS algorithm is 
applied to the searching process. Finally, model criteria are proposed as a quantitative 
and efficient method to evaluate different synthesis routes. The constructed hybrid 
reaction templates database is reliable and can be updated manually. During the process 
of ranking synthesis routes, the concept of “synthesis-determining step” is introduced 
and integrated with the ranking system, and more attentions ought to be paid to the 
synthesis-determining steps. The synthesis route design results for Aspirin and 
Ibuprofen are satisfactory and thus highlight the feasibility and effectiveness of the 
proposed framework. The limitations are clear due to the using of thermodynamic 
models which only provide the tendency of reaction. Reaction kinetics should also be 
considered and work together with the thermodynamics. Considering reaction kinetics 
requires the knowledge of precise kinetic equations which could be a major obstacle for 
developing reaction kinetics-based models in retrosynthesis. In conclusion, the proposed 
framework provides a new solution for a rational retrosynthesis by utilizing reaction 
thermodynamics. 
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Abstract

For many industries addressing varied customer needs means producing a family of prod-
ucts that satisfy a range of design requirements. Manufacturers seek to design this family
of products while exploiting opportunities for shared components to reduce manufactur-
ing cost and complexity. We present a mixed-integer programming formulation that deter-
mines the optimal design for each product, the number and design of shared components,
and the allocation of those shared components across the products in the family. This for-
mulation and workflow for product family design has created significant business impact
on the industrial design of product families for large-scale commercial HVAC chillers in
Carrier Global Corporation. We demonstrate the approach on an open case study based on
a transcritical CO2 refrigeration cycle. This case study and our industrial experience show
that the formulation is computationally tractable and can significantly reduce engineering
time by replacing the manual design process with an automated approach.

Keywords: product family design, discrete optimization, product manufacturing

1. Introduction

For many industries, addressing global markets and varied customer needs means pro-
ducing a family of products that are able to satisfy a range of design requirements. For
example, commercial chiller systems for HVAC sold in different regions of the world are
subject to different operating and boundary conditions, customer cost and performance
expectations, and efficiency regulations. This requires the design and manufacturing of a
family of products to meet requirements of different geographical regions and customer
needs. Optimizing each of the products independently results in significantly increased
manufacturing cost and complexity since each design will include unique sizing for all of
the sub-components, ignoring the potential for sharing these components across multiple
products within the family. Therefore, manufacturers seek to design the entire family of
products simultaneously, determining the optimal design for each product, the designs of
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common components, and the assignment of these components to each of the products
in the family. This is a highly-combinatorial problem, that is typically performed with
heuristics and ad-hoc approaches, takes significant engineering time, and results in sub-
optimal designs. Many industries need effective design of product families that can exploit
shared components, and this is an active area of research in manufacturing where various
heuristics and optimization strategies have been applied (Simpson et al. 2014). Some ex-
amples of optimization-based approaches have focused on definition and optimization of
a commonality index or degree of commonality (Thonemann & Brandeau 2000) and ap-
plication of genetic algorithms (Liu et al. 2011). Integer programming techniques have
also been used in, for example, the integration of the supply chain with the product family
design (Baud-Lavigne et al. 2016). These concepts have applicability to chemical process
design. In particular, for decentralized applications where many instances of similar pro-
cesses with different performance specifications are required, the benefits of well-designed
product families allow for significant reduction in engineering and construction costs.

In this paper, we present an mixed-integer programming formulation for product family de-
sign with common sub-components developed in collaboration with researchers at Carrier
Global Corporation. Instead of manufacturing uniquely specified (e.g., sized) components
for each product, we seek to manufacture a small number of component designs and share
these across multiple products. The formulation determines the cost optimal designs for
each of the products, the optimal sizing for the shared components, and the allocation of
these components for each of the products. This formulation and workflow for product
family design has created significant business impact on the industrial design of prod-
uct families for large-scale commercial HVAC chillers in Carrier Global Corporation. In
one application, the product family design workflow selected common compressors for a
global family of over 200 products, leading to significant direct cost savings (material and
labor), indirect cost savings (prototype design, build, and test), and an order of magnitude
reduction in R&D time associated with this task. This process is being used and extended
within Carrier across several product lines.

We demonstrate the product family design formulation on an open case study considering
a family of HVAC products based on a CO2 refrigeration cycle described in Li & Groll
(2005). The model for the system is built using the IDAES process modeling platform (Lee
et al. 2021) and the product family design problem is implemented in Pyomo (Bynum et al.
2021). The approach is shown to be computationally tractable for real-world systems,
with significantly reduced engineering time, replacing the manual design process with an
automated, optimization-based approach.

2. Product Family Design Formulation

We assume that the set of products P and their performance requirements have already
been specified (e.g., from market analysis). Product requirements may be captured as
boundary conditions that must be matched exactly or as inequalities that provide bounds
on the product performance. The set of components where there is opportunity for utilizing
shared designs across multiple products is given by C, and the set of candidate designs for
each component c is given by Sc. Our goal is to optimally design all of the products p ∈ P
while reducing the overall manufacturing costs by utilizing a (hopefully small) subset of
the candidate component designs in these products.
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For each product p we consider a set of design alternatives. For each alternative, we
specify which candidate component designs are to be utilized in the product. For the initial
set of design alternatives, we typically consider all combinations of candidate designs for
each of the components (i.e., the Cartesian product of all Sc for all c ∈ C). Then, for
each of these alternatives, we can perform simulations (or optimizations) and identify the
alternatives that meet the required performance specifications. We define this set of all
feasible alternatives for product p as Ap. The set Qa is a tuple set that captures the specific
candidate component designs used within each alternative a.

The proposed formulation for optimal design of product families with common compo-
nents is shown in Equations (1-6). The binary variables zcs identify which candidate
designs s are selected for each component c, and xpa captures which alternative is se-
lected for product p. Equation (1) is the objective function, and the first term captures the
expected cost associated with the family design where wp is the expected sales (or sales
fraction) for each product, and αpa is the annualized cost if alternative a is selected for
product p. The second term captures the cost required to develop the manufacturing pro-
cess for each unique component selected. In many industrial examples, the cost of this
manufacturing complexity is difficult to capture, and we can also constrain the number of
candidate component designs selected with Equation (2).

min
x,z

∑
p∈P

wp

∑
a∈Ap

αpaxpa +
∑
c∈C

∑
s∈Sc

βcszcs (1)

s.t.∑
s∈Sc

zcs ≤ Nc ∀ c ∈ C (2)

∑
a∈Ap

xpa = 1 ∀ p ∈ P (3)

xpa ≤ zcs ∀ p ∈ P, a ∈ Ap, (c, s) ∈ Qa (4)
0 ≤ xpa ≤ 1 ∀ p ∈ P, a ∈ Ap (5)
zcs ∈ {0, 1} ∀ c ∈ C, s ∈ Sc. (6)

Equation (3) ensures that only one alternative is selected for each product, and Equation (4)
allows alternative a for product p only if the required components have been selected.

3. Process Case Study

For our case study, we consider the design of a family of products for commercial HVAC
applications based on the transcritical CO2 refrigeration cycle described in Li & Groll
(2005). The process flow diagram is shown in Figure 1. We developed an IDAES model
for this process using the standard unit model library with the exception of the ejector
which required a custom model. The compressor model includes an efficiency curve to
capture the drop in efficiency when it is operating away from the design flowrate. IDAES
also includes a costing framework that was used to capture the equipment capital costs.

We consider two performance criteria when specifying the products P . The cooling ca-
pacity is the primary criterion determining the size of the components in the refrigeration
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Figure 1: Process flowsheet for CO2 refrigeration cycle. This model was based on Li &
Groll (2005)

.

cycle and can vary significantly based on customer needs. The outside air temperature
varies significantly by region, and different units are designed for different conditions.

Here, we consider capacities of CAP={80, 100, 120, 140, 160, 180, 200} tons of refrig-
eration and outside air temperature specifications of OAT={28, 29, 30, 31, 32, 33, 34, 35}
degrees Celsius. With these specifications, we have a total of 56 different products to
consider, identified as the Cartesian product of all values in CAP and OAT.

The opportunities we consider for shared components across the products include the evap-
orator, the condenser, and the compressor, defining C={Evap,Cond,Compr}. We con-
sider five sizes of evaporator labeled A through E in order of increasing size, seven sizes of
condenser labeled A through G in order of increasing size, and four sizes for the compres-
sor, labeled A through D, also in order of increasing size. This gives us a total of 140 alter-
natives to consider for each product defined by the Cartesian product of the different candi-
date components specified as, SEvap = {A,B,C,D,E}, SCond = {A,B,C,D,E,F,G},
and SCompr = {A,B,C,D}.

We performed simulations for each of these alternatives across all the products (with CAP
and OAT specified as boundary conditions) for a total of 7840 simulations. Of these,
3708 were infeasible and not able to meet the desired performance specifications. The
feasible alternatives were used to define the remaining data required in the optimization
formulation along with recorded capital and operating costs from the IDAES model.

The product family design problem (1-6) was formulated in Pyomo (Bynum et al. 2021)
and solved using Gurobi (Gurobi Optimization, LLC 2021). We set the maximum num-
ber of candidate components to 2 for each of the evaporator, condenser, and compressor.
Gurobi was able to solve this problem in under one second. Results showing the optimal
designs are illustrated in Figure 2. The figure on the left shows the solution consider-
ing capital cost only (materials and construction). In this case, the optimization selected
evaporators C and D, condensers A and B, and compressors A and B for manufacturing.
The colors on the figure show unique designs, and the legend on the right indicates which
selected components were matched with each design. The optimization selected a larger
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Figure 2: Optimal design of the product family with capital costs only on the left and
capital plus operating costs on the right.

compressor when moving from 120 to 140 tons of capacity, and a larger evaporator when
moving from 160 to 180 tons. As well, we see a change to a larger condenser for the higher
outside air temperatures at the largest capacity. In this case, since we considered capital
costs only, the optimization has selected the smallest compressors that are able to guaran-
tee feasibility across the products. However, for most of these products, these compressors
are operating off of their design flowrates and not achieving peak efficiency.

The figure on the right shows the optimal product family design considering both capital
and operating costs. Here, we notice that the optimization did not select the smallest
compressors, but has selected larger compressors so that they are operating closer to their
design flowrate for improved operating efficiency.

4. Conclusion

In this paper, we have presented a formulation for optimal product family design. This
formulation determines optimal designs across a set of products from a number of defined
alternatives while reducing manufacturing costs by exploiting the opportunity for shared
components across multiple products. This approach has been used industrially at Carrier
Global Corporation with significant reduction in both costs and engineering time. The
approach is also easily extended to support optimization of non-shared components by re-
placing the simulations with optimization problems for each of the alternatives considered.

This formulation can be efficiently solved for large data sets with commercial mixed-
integer linear programming solvers. The computational bottleneck is the large number of
simulations or optimizations that are required to gather the input data. It can be beneficial
to use engineering knowledge to reduce the set of alternatives, and consequently, the total
number of simulations that need to be performed.

It is important to note that there are a number of chemical process applications that can
benefit from distributed operation of smaller, intensified, modular processes (Baldea et al.
2017). Any application that requires a large number of similar processes with variation
in specific process requirements is an excellent candidate for the approaches outlined in
this paper. This includes, for example, applications in water treatment, carbon capture
from smaller localized sources, direct air capture, and other environmental processes. The
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concepts of product family design can be utilized to shift from one-off unique designs for
each application to the definition of a suite of products that span the design space while
reducing manufacturing costs with shared components.
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Abstract 

Techno-economic analysis (TEA) was performed for the production of electricity or 
nano-porous silica (NPS) from 50 t/d of rice husk (RH). The process for electricity 
generation from RH had a net electricity efficiency of 15%. Using the same amount of 
RH (approximately 2 t/h), 278 kg/h of NPS was produced. The electricity production 
process was not profitable because of negative return on investment (ROI). In the case of 
producing NPS from RH, the total investment cost (TCI) and total production cost (TPC) 
were 13.7 M$ and 1.5 M$/y, respectively. The ROI and payback period (PBP) were 
predicted to be 3.7%/y and 17.5 y, respectively. 

Keywords: Rice husk; Rice husk ash (RHA); Nano-porous silica (NPS); Electricity 
production; Techno-economic analysis (TEA) 

1. Introduction 

About 782 million tonnes of paddy rice were produced in the world in 2020. Asia 
accounts for 90% (705 million tonnes) of global production (FAO, 2020). During the 
milling process of paddy rice, rice husk is produced as an agricultural by-product 
(Peerapong and Limmeechokchai, 2009). 1,000 kg of paddy rice produces 220 kg of rice 
husk (Mor et al., 2017). 1,000 kg of rice husk (RH) produces 480~1,000 kWe of electricity 
(Steven et al., 2021). Along with electricity generation, about 18~20 % of rice husk 
remains ash (Subbukrishna et al., 2007). The ash is mainly composed of silica (>90%) 
(Liu et al., 2011; Nayak et al., 2019). Silica with the purity of 95 wt% is used in industrial 
fields such as reinforced rubber additives (tire), materials (zeolite and polymer), concrete, 
and semi-conductor (Prasara-A and Gheewala, 2017; Steven et al., 2021). In general, 
Silica is produced from sand and sodium carbonate at 1400-1500 °C (Munasir and 
Triwikantoro, 2013). Sodium silicate (SS) is produced from RH ash burned at 650~850 °C 
(Kim and Kim, 2020). The nano-porous silica (NPS) is finally synthesized from a 
polymerization of SS in H2SO4 solution (Pode, 2016). Therefore, eco-friendly electricity 
and nano-porous silica (NPS) can be produced using rice husk, which is considered as a 
carbon-neutral biomass (Bergqvist et al., 2008; Pode, 2016).  

In this study, two process flow diagrams (PFDs) were constructed for electricity and 
nano-porous silica (NPS) productions from rice husk using a commercial process 
simulator (ASPEN Plus, ASPEN Tech, USA). Based on the PFDs, the economic 
feasibility of the electricity and NPS production processes was compared using an equal 
amount of rice husk.   
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2. Process description 

The rice husk (RH) used in this study is a by-product of paddy rice produced in Vietnam. 
Table 1 shows the proximate and ultimate analyses of RH containing 41.0 wt% carbon, 
5.5 wt% hydrogen, 34.9 wt% oxygen, 0.7 wt% nitrogen, 0.1 wt% sulfur, and 17.8 wt% 
ash. The ash includes 94.20 wt% SiO2, 0.75 wt% P2O5, 2.88 wt% K2O, 0.97 wt% CaO, 
and 1.20 wt% others.  

 

Table 1. Proximate and ultimate analyses of rice husk (RH) in this study. 

Proximate analysis 
(wt%) 

 Ultimate analysis  
(wt%, dry basis)  Ash 

Moisture 10.00 C 41.0 SiO2 94.20

Volatile matter 68.30 H 5.5 P2O5 0.75

Fixed carbon 13.68 O 34.9 K2O 2.88

Ash 16.02 N 0.7 CaO 0.97

 S 0.1 others 1.20

 Ash 17.8  
Total 100.00  100.0  100.00

HHV (MJ/kg) 14.80   
 

To compare the economic values of the electricity or NPS production process, the same 
amount of RH (50 t/d) was used as a raw material. Two processes using RH were 
considered: Case 1 (electricity), and Case 2 (NPS).  

Case 1 is the electricity production power plant from RH, as shown in Figure 1. The RH 
is burned with 50% excess air at 750 °C (see Eq. (1)). 

𝑅𝑖𝑐𝑒 ℎ𝑢𝑠𝑘 + 𝑂ଶ  →  𝐻ଶ𝑂 + 𝐶𝑂ଶ +  𝑆𝑖𝑂ଶ + 𝑜𝑡ℎ𝑒𝑟𝑠  (1) 

The steam turbine generates electricity at 400 °C and 25 bar using the heat of combustion. 
The cyclone to remove fly-ash, bag-filter and bird blue scrubber to remove fine dust were 
used. 

In Case 2, the NPS is produced using RHA (see Figure 2). RHA reacts with sodium 
carbonate to produce sodium silica (SS) in the hydrothermal synthesis reactor as shown 
in Eq. (2). 

𝑁𝑎ଶ𝐶𝑂ଷ + 𝑆𝑖𝑂ଶ  →  𝑁𝑎ଶ𝑂 ∙ 3.4𝑆𝑖𝑂ଶ +  𝐶𝑂ଶ (2) 

The activated carbon (AC), which is an unconverted carbon, is separated in the 
ultrafiltration. SS reacts with sulfuric acid to produce NPS (see Eq. (3)). Finally, NPS 
containing 6% moisture is produced through filtering and drying. 

𝑁𝑎ଶ𝑂 ∙ 3.4𝑆𝑖𝑂ଶ +  𝐻ଶ𝑆𝑂ସ  →  𝑁𝑎ଶ𝑆𝑂ସ  +  𝑆𝑖𝑂ଶ + 𝐻ଶ𝑂 (3) 
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Figure 1. Block flow diagram (BFD) of electricity production from rice husk 

 

 

Figure 2. Block flow diagram (BFD) of NPS production from rice husk 

3. Methodology of techno-economic analysis 

The techno-economic analysis (TEA) is a method for determining the economic 
feasibility of a process (Do et al., 2014; Lim et al., 2016). The TEA used in this study 
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investigates the technical feasibility of the process by calculating mass and energy 
balance using thermodynamic models and equations of state. In addition, the economic 
values such as the total investment cost (TCI), total production cost (TPC), return on 
investment (ROI), and payback period (PBP) are examined in the TEA (Kim and Lim, 
2021; Kim et al., 2021).  

Table 2 shows the assumptions used in economic evaluation. The prices of raw electricity 
and cooling water are the same as Vu et al. (Vu et al., 2020). For the raw material price, 
the 2019 market price was applied. The prices of RH, AC and NPS were assumed to be 
10, 1,000, and 1,500 $/t, respectively. 

 

Table 2. Economic assumptions for electricity or NPS plants from rice husk. 

Parameter Assumption Unit 

Debt ratio (λ) 0.7  

Plant availability 8000 h/y 

Startup time (50% plant performance) 4  month 

Plant lifetime (Lp) 20 y 

Inflation rate (α) 2 %/y 

Corporation tax rate (β) 20 %/y 

Interest rate (γ) 6 %/y 

Raw material and 
product price 

Rice husk 10 $/t 

Na2CO3 200 $/t 

H2SO4  143 $/t 

Activated carbon 1,000 $/t 

Nano-porous silica 1,500 $/t 

Utility price Electricity 0.098 $/kWh 

Liquefied natural gas 0.5 $/kg 

Cooling water 0.273 $/m3 

4. Results 

The performance and economic feasibility of the electricity or NPS production process 
from RH were compared. 
 

4.1. Process performance  

The process simulation was performed for the two processes to produce electricity and 
NPS, respectively. Table 3 shows the process performance for the two processes. In Case 
1, electricity was 1,343 kWe from 2,083 kg/h (50 t/d) rice husk. The 90 kWe was 
consumed for steam turbine, flue gas treatment, and air compression. The net electricity 
was 1,254 kWe, which was a net electricity efficiency of 15% . Case 2 produced 278 kg/hr 
NPS and 40 kg/hr AC with the same amount of rice husk as Case 1. An electricity of 90.5 
kWe was consumed in NPS production. 

100 



Economic evaluation and analysis of electricity and nano-porous silica 
productions from rice husk   

Table 3. Process performance for electricity or NPS plants from rice husk. 

 Case 1 Case 2 Unit 

Feed (Rice husk) flow rate 2,083.3 2,083.3 kg/h 

Product    

Nano-porous silica - 278.1 kg/h 

Activated carbon - 39.5 kg/h 

Electricity 1,343.2 - kWe 

Electricity consumption 88.9 90.5 kWe 

Net electricity 1,254.3 - kWe 

Net electricity efficiency  14.9 - % 

 

4.2. Economic values (TCI, TPC, POI, and PBP) 

Table 4 shows the economic values of the processes for electricity or NPS production 
from rice husk. The TCI for electricity generation (Case 1) including combustion, flue 
gas treatment, and steam turbines was 13,447 k$. In Case 2 including hydrothermal 
synthesis reactor, filter, and dryer for NPS production, TCI was 13,705 k$. The TPCs of 
Case 1 and Case 2 were 998 and 1,476 k$/y. 
Case 1 was not economically feasible because of negative ROI. The ROI and PBP of Case 
2 were 3.7 %/y and 17.5 y, respectively. 
 
Table 4. Economic values for electricity or NPS plants from rice husk. 

5. Conclusions 

The agricultural by-products are produced from crop production, and an eco-friendly 
process is required to treat the by-products. In this study, the economic feasibility of 
electricity or NPS production process was compared using the same amount of rice husk 
(50 t/d). The electricity production plant included a combustor and steam turbine. The 
NPS plant included a combustor, reactor, filter, and dryer. An electricity of 1,254 kWe 
were produced with a net electrical efficiency of 14.9%. The 278 kg/h NPS was produced 
using the same amount of RH. The TCI and TPC of the electricity production plant 
were13,447 k$ and 998 k$/y, respectively, which was not profitable. Those of the NPS 
production plant were13,705 k$ and 1,476 k$/y, respectively. The ROI was 3.7%/y, 
which may be attractive as a carbon-neutral technology.  

Economic values Case 1 Case 2 Unit 

Total capital investment (TCI) 13,446.9 13,705.1 k$ 

Total production cost (TPC) 997.9 1,476.1 k$/y 

Return on investment (ROI) - 3.7 %/y 

Payback period (PBP) - 17.5 y 
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Abstract 

In this work, we present a process systems engineering framework that allows the 

integration of catalysis, process synthesis, and fuel property modelling enabling the 

systematic design of fuels with tailored properties and the biorefineries able to produce 

them. Methodologically, the proposed framework relies on a superstructure-based 

formulation in which three hierarchical decisions are made: what chemical products will 

undergo chemical transformations? what chemistries will be used to transform these 

chemical products? and which specific catalyst and processes will be used? This 

optimization framework is coupled with a fuel property model such that the decisions 

made at the process synthesis level are constrained by the desired fuel properties. We 

apply this framework to the problem of ethanol upgrading with an emphasis on three 

specific problems: First, we show how we can design biorefineries for the production of 

fuels (gasoline, diesel, or jet fuel) with specific properties. Second, we study the 

interplay between fuel properties and profit, and we show how the constraints imposed 

on the fuel properties impact both the optimal biorefinery designed and its economics. 

Finally, we show how the studied framework can be used to find the optimal biorefinery 

associated with a specific chemistry or catalyst. The results presented constitute the first 

systematic and comprehensive study of ethanol upgrading in which the simultaneous 

process and product design are considered.  

Keywords: Biorefineries; superstructure; process synthesis; biofuels; product design. 

1. Introduction 

In the last twenty years, ethanol has been established as the dominant biofuel. However, 

ethanol has significant limitations: first, it can only be blended at a maximum 10% level 

with gasoline; and second, it is a poor replacement for middle distillates (Eagan et al., 

2019a). These limitations are becoming increasingly problematic. At the same time, it is 

likely that in the near future there will be a surplus of ethanol, provided that the demand 

for blending at 10% is satisfied, and the consumption of gasoline will decrease as 

electric and fuel cell vehicles penetrate the market (Eagan et al., 2019a, 2019b; Fasahati 

and Maravelias, 2018). These challenges have prompted the search for technologies 
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en ab l in g the c hem ic al  tran s f orm ation  of  ethan ol  in to m ore f u n gib l e c om pon en ts . W ith 

this  goal  in  m in d n u m erou s  c hem is tries ,  c atal y s ts ,  an d proc es s es  hav e b een  dev el oped 

( E agan  et al .,  2019a;  S u n  an d W an g,  2014) . A t f irs t,  res earc h w as  f oc u s ed on  des ign in g 

ethan ol  u pgradin g s trategies  y iel din g f u el  produ c ts  w ith properties  s im il ar to thos e of  

c u rren tl y  u s ed f os s il  f u el s . I n  rec en t y ears ,  how ev er,  w e hav e c om e to real iz e that this  

v is ion  is  s hort-s ighted ( K ö n ig et al .,  2020) . T he div ers ity  of  c hem is tries  as s oc iated w ith 

ethan ol ,  w hic h is  k n ow n  f or b een  a pl atf orm  c hem ic al ,  c an  b e expl oited to des ign  f u el  

produ c ts  w ith properties  n ot on l y  eq u al  b u t b etter than  c u rren tl y  u s ed f os s il  f u el s . T he 

real iz ation  of  this  v is ion  req u ires  the in tegration  of  s u c h div ers e areas  as  c atal y s is ,  

proc es s  s y n thes is ,  an d f u el  property  m odel l in g ( R es trepo-F l ó rez  an d M arav el ias ,  2021) . 

I n  this  w ork  w e dev el op a s u pers tru c tu re-b as ed f ram ew ork  f or the au tom ated des ign  of  

b ioref in eries  f or ethan ol  u pgradin g. T his  f ram ew ork  is  c on c eiv ed s u c h that w e c an  

s im u l tan eou s l y  c on s ider the des ign  of  proc es s es  ( b ioref in eries )  an d f u el s . T hu s ,  

en ab l in g the des ign  of  b iof u el s  w ith tail ored properties . W e appl y  this  f ram ew ork  three 

prob l em s  ( 1)  the iden tif ic ation  of  the optim al  ref in ery  to produ c e gas ol in e,  dies el ,  an d 

j et f u el  ( 2)  the c harac teriz ation  of  the rel ation  b etw een  f u el  properties  an d prof it,  an d ( 3)  

the iden tif ic ation  of  the optim al  tec hn ol ogy  as s oc iated w ith a s pec if ic  c hem is try .  

2. Superstructure description 

A n  u pgradin g s trategy  c an  b e def in ed as  a s eq u en c e of  c hem ic al  tran s f orm ation s  l eadin g 

to the produ c tion  of  produ c ts  w ith des ired properties . T here are at l eas t three dec is ion s  

as s oc iated w ith the des ign  of  an  u pgradin g s trategy  ( 1)  w hic h m ol ec u l es  w il l  u n dergo 

tran s f orm ation  ( 2)  w hic h c hem is tries  w il l  b e u s ed to tran s f orm  thes e m ol ec u l es ,  an d ( 3)  

w hic h proc es s es  ( reac tion -s eparation  s y s tem )  w il l  b e u s ed s u c h that thes e c hem ic al  

tran s f orm ation s  c an  b e ac c om pl is hed. T o repres en t this  s eq u en c e of  n es ted dec is ion s  w e 

propos e a hierarc hic al  s u pers tru c tu re ( F igu re 1)  c on tain in g three l ev el s ,  eac h of  w hic h is  

as s oc iated w ith on e of  the af orem en tion ed dec is ion s  ( 1)  tec hn ol ogy  grou p,  ( 2)  

tec hn ol ogy  an d ( 3)  m odu l e.  

 

F igu re 1. S u pers tru c tu re arc hitec tu re propos ed an d the three dec is ion  l ev el s  repres en ted 

( a)  M odu l e ( b )  T ec hn ol ogy  ( c )  T ec hn ol ogy  grou p 
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Figure 2. Ethanol upgrading superstructure containing the chemistries that can be used 

as well as feedstocks and final products. D: Diesel, JF: Jet fuel, G: Gasoline, E: 
Electricity, W: Waste. 

In the case of ethanol, we use the architecture inf Figure 1 to build a comprehensive 
superstructure capturing the multiple chemistries available for ethanol upgrading 
(Figure 2). This superstructure is designed to consider three ethanol sources with 
different purity (50%, 93%, and 99.9%), and five products: gasoline, jet fuel, diesel, 
electricity, and waste. The superstructure is comprehensive because (1) it contains a 
representative set of the chemical reactions available for ethanol upgrading, and (2) it is 
richly connected, allowing to capture all feasible sequences of upgrading steps.  

3. Mathematical model 
The problem of finding the optimal sequence of upgrading steps to produce a given fuel 
can be represented as a mixed inter non-linear program (MINLP) model. The simplified 
mathematical representation is shown in Eq. (1). To write the model, we define three 
types of binary variables to account for the discrete decisions made at each of the 
superstructure levels (1) 𝑌𝑖

TG (∀𝑖 ∈ 𝐈TG) (2) 𝑌𝑖
T (∀𝑖 ∈ 𝐈T) and (3) 𝑌𝑖

M (∀𝑖 ∈ 𝐈M), where 
𝐈TG is the set of technology groups considered, 𝐈T the set of technologies, and 𝐈M the set 
of modules. The equations in the mathematical model can be grouped in (1) Process 
equations, used to model the selection of technology groups, technologies, and catalyst; 
represent mass balances for the different superstructure units; calculate capital and 
operating costs associated with the selected units; and enforce the superstructure 
connectivity (2) A fuel property model, used to estimate the values of the most relevant 
fuel properties.  

𝑀𝑎𝑥(Profit)                                                                                                                                                     (1) 

𝑠. 𝑡. {
Process equations                      
Fuel property model                

 

The fuel property model consists of: Linear blending rules used to estimate the value of 
viscosity (𝜐), density (𝜌), cetane number (CN), and octane number (RON) as a function 
of the fuel composition; a model of the distillation profile constructed based on the true 
boiling point approximation, according to which the components of a blend boil 
sequentially based on their boiling points; and a set of constraints limiting the amount of 
certain components (olefins, aromatics, and ethanol) in the final fuel blend.   

Catalysis, Process Synthesis, and Fuel Properties
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4. Results 
Optimal refineries to produce gasoline, jet fuel and diesel 

The framework that we developed can be used to find the optimal sequence of 
upgrading operations required to produce a fuel with similar properties to gasoline, jet 
fuel, or diesel. We show these results by means of a Sankey diagram in Figure 3 (a-c). 
Additionally, we show the breakdown of capital and operating costs for each of these 
refineries in Figure 3(d-f). The simplest refinery also yielding the higher economic 
benefit is the one used to produce gasoline (Figure 3(a)). In this case, a Guerbet 
coupling module, followed by a hexanol dehydration module is enough to produce a 
blend satisfying the imposed constraints. In the case of jet fuel, the optimal biorefinery 
consists of an ethanol Guerbet coupling module followed by a butanol dehydration 
module and a sequence of oligomerization reactions. Additionally, the refinery also 
contains a small etherification module, and a hydrogenation module aimed at reducing 
the olefin content in the final fuel. Finally, in the case of diesel, the optimal biorefinery 
consists of a Guerbet coupling module, followed by a butanol dehydration module and a 
sequence of oligomerizations. This biorefinery also contains a hydrogenation unit. We 
note that in all cases the most important economic driver is the cost of the feedstock. 
This implies that to improve the biorefinery economics it is important to find strategies 
to reduce the cost of ethanol, or alternatively to increase the biorefinery’s yield.  

 
Figure 3. (a)(b)(c) Sankey diagram with the mass flows in the optimal biorefineries. 

(d)(e)(g) Capital and operating costs breakdown in these biorefineries. 
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The role of complexity 

In Figure 4, we show the relation that exist between the biorefinery complexity, 
measured as the number of modules, and the profit and fuel composition in a diesel 
production biorefinery. Increasing complexity leads to a higher profit, but at the same 
time increases the operational challenges of the system. Understanding this relation is 
fundamental in the design stage of upgrading refineries. 

 
Figure 4. Effect of complexity on (a) profit and (b) fuel composition 

The role of properties on the biorefinery economics 

The production of high-quality fuels from ethanol is an exciting opportunity that opens 
the door to a new paradigm in biofuel research. In Figure 5, we study the role of fuel 
properties on the biorefinery economics (Figure 5(a)) and fuel composition (Figure 
5(b)). Particularly, we study the effect cetane number on a diesel production biorefinery. 
Cetane number (CN) has been identified as a key property to mitigate NOx emissions. 
Having a biofuel with high CN can serve two purposes: first, such a fuel burns cleaner; 
second, it can be used in blends with fossil diesel to raise the overall quality of the fuel. 
From Figure 5(a), we see that producing fuels with higher CN impacts the refinery 
economics, the higher the CN the lower the profit. In terms of fuel composition (Figure 
5(b)), we note that as the CN increases so does the fraction of ethers (known for having 
a high CN) in the fuel. It is important to highlight that finding strategies to produce 
these fuels while simultaneously considering their properties was only possible because 
we used a framework able to capture the complexity of the problem.  

 
Figure 5. Effect of cetane number on (a) process economics and (b) fuel composition. 

Components are labelled using a character to identity of the functional group (P: 
paraffin, O: olefin, E: ether, A: alcohol), and a number to denote the number of carbons 

in the molecule. 

Future biofuels: A Superstructure-Based Optimizarion Framework Integrating
Catalysis, Process Synthesis, and Fuel Properties
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Identification of optimal technologies  

Another capability of the developed framework consists in providing insights as to the 
optimal strategy that can be used to produce a specific fuel by using a specific 
chemistry. For example, in Figure 6, we show the optimal biorefinery for diesel 
production obtained when we force the system to use ethanol dehydration. The strategy 
selected consist in dehydrating ethanol to ethylene, and then use a sequence of 
oligomerization reactions to increase the molecular weight. A final hydrogenation unit 
to reduce the olefin content is also employed. This kind of approach is useful to  
researchers working in the development of a specific chemistry to identify how their 
work fits into a broader context.   

 
Figure 6. Sankey diagram showing the optimal refinery compatible with ethanol 

dehydration to produce diesel fuel 

4. Conclusions 
In this work, we developed a superstructure optimization approach to study the problem 
of ethanol upgrading toward fuels with tailored properties. We showed optimal ethanol 
upgrading strategies for the production of gasoline, jet fuel, and diesel. The most 
important cost driver in all cases was the cost of feedstock. We studied the relation 
between profit and biorefinery complexity and showed that increasing complexity may 
lead to improvements in the process economics. Additionally, we explored the relation 
between fuel properties and profit in the context of a diesel production biorefinery. We 
proved that it is possible to upgrade ethanol toward diesel fuel with high cetane number, 
with a superior quality than its fossil counterpart. This contrasts with typical approaches 
for biofuel production, focused on finding fuels with the same quality than fossil fuels.  
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Abstract 

This work presents a superstructure model with the objective to maximize the total 

profit of biodiesel production by reducing the production cost and increasing the value 

of the by-product glycerol. The heat integration of the superstructure model is a novel 

feature which allows further reduction of utility costs and energy consumption of the 

biodiesel separation. The superstructure model is used to optimize two biodiesel 

production scenarios from a conventional continuous stirred tank reactor (CSTR) and a 

membrane reactor (MR). The superstructure optimization is solved with Advanced 

Interactive Multidimensional Modeling System (AIMMS) software. The annual profit 

of the new optimized production pathway for the conventional reactor is 840,606 $. The 

biodiesel production pathway with the membrane reactor consumed 70% less energy 

than the conventional reactor. However, the production cost of the MR is nearly two 

times higher than the CSTR due to the low biodiesel yield of the membrane reactor. The 

results show the potential to improve traditional biodiesel production and make 

intensified production methods more viable with the superstructure optimization. 

Keywords: Biodiesel, Superstructure, Optimization, AIMMS, Process, Design. 

1. Introduction 

Biodiesel is a biofuel which is mainly obtained from chemical reactions between 

vegetable oil or animal fat with alcohol in the presence of a catalyst (Knothe et al., 

2010). Biodiesel has become a potential solution for reducing greenhouse gas (GHG) 

because it has a lower net carbon dioxide (CO2) emission than fossil fuels. CO2 released 

from biodiesel engines is absorbed by plants which will be the feedstock for biofuel 

production making this a circular process (Hanaki and Portugal-Pereira, 2018). 

However, biodiesel is more expensive than fossil fuels, which poses a significant 

challenge for integrating the biofuel into GHG reduction strategies.  

The cost of biodiesel can be reduced by optimizing its production which consists of 

reaction and purification processes. Intensified reactor designs which combine reaction 

and separation into one operation unit have been developed to improve biodiesel 

conversion and purity. A membrane reactor is a process intensification option which 

integrates a membrane separation into a cross-flow reactor to produce higher quality 

biodiesel than conventional reactors (Cao et al., 2008). Besides the reaction, the 

purification process plays an important role in biodiesel production as it accounts for 

60-80% of the total production cost (Atadashi et al., 2011). Therefore, the optimization 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50018-X 
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of a biodiesel purification process has become an important research topic. For example, 

several biodiesel purification scenarios have been simulated and analysed to identify the 

optimal biodiesel production process from soybean oil (Myint and El-Halwagi, 2009). 

To design an optimal biodiesel production process, two methods are commonly used: 

the heuristic approach and the superstructure-based approach. The heuristic approach is 

based on rules derived from experience and understanding of unit operations while the 

superstructure approach is based on optimization algorithms and mathematical models 

to identify the optimal process from all possible alternatives (Tula et al., 2017). 

However, a disadvantage of the heuristic approach is that the interaction between 

different process stages and levels of detail are difficult to capture. The superstructure 

approach solves design problems simultaneously as a mathematical programming 

problem and therefore does not have this disadvantage (Mencarelli et al., 2020).  

Superstructure optimization has become more popular in recent researches of 

biochemical process design. AlNouss et al. (2019) used superstructure optimization to 

develop an economic and environmentally friendly gasification process, which produces 

fuels, fertilizers, and power from multiple biomass sources. Galanopoulos et al. (2019) 

developed a superstructure framework for optimizing the design of an integrated algae 

biorefinery which can reduce the cost of biodiesel production up to 80%. However, 

superstructures for biodiesel production are usually generalized with a minimum 

numbers of operating units and a simplified glycerol purification process. 

Therefore, this work proposes a superstructure model for biodiesel production that 

includes a wide range of operating units, a detailed glycerol purification section and 

heat integration functions. The model is used to optimize two biodiesel production 

processes from: a) continuous stirred tank reactor and b) membrane reactor. The results 

are compared with a conventional biodiesel production process (Zhang et al., 2003a,b). 

2. Superstructure development 

2.1. Problem statement 

Given are the composition of feedstock and products from the transesterification reactor 

and options of processing equipment which are grouped into tasks and stages, and the 

technical and economic specifications of processing options. Under conditions that: 1) 

The possible processing routes are represented by logical constraints where each 

processing option is associated with a logical decision variable. 2) The flow rates in and 

out of an option complies with mass balance constraints. 3) The energy requirements are 

calculated based on the flowrates. 4) A heat integration function which is capable of 

matching hot and cold streams is integrated for further reduction of heating and cooling 

requirements. 5) The investment and operating costs are calculated according to 

according to the flowrates and energy requirement. The superstructure optimization 

problem decides the optimal biodiesel processing route while complying with logical, 

mass and energy constraints, and ASTM standards of biodiesel product (Zhang et al., 

2003a), while maximizing the total profit of the biodiesel refinery. 

2.2. Superstructure topology  

The superstructure of the biodiesel purification section has 28 technical options which 

are relating to 28 binary decision variables and grouped into different tasks including 

phase separation, methanol removal, neutralization, washing and purification. By 
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grouping similar options into tasks, the superstructure can be defined easier. The 

possible processing routes which are combinations of different options over 5 

consecutive stages are presented in Figure 1. The input stream of the superstructure is 

the product stream of the transesterification reactor which converts vegetable oil into 

biodiesel. The main output is the biodiesel stream with purity of 99.65% according to 

ASTM standards. The glycerol output of phase separation tasks becomes the input of 

glycerol treatment superstructure. 

In Figure 2, the glycerol superstructure is useful in deciding the numbers of treatment 

stages depending on the initial purity of glycerol input and the final grade of glycerol 

output. The final glycerol grades are waste glycerol (~ 50% - 85% wt. glycerol), crude 

glycerol (~85% - 98%) and technical glycerol (~98% - 99.5%) (Bart et al., 2010). 

2.3. Mathematical model  

The mathematical model includes mass balances of component k in each option j as 

shown in Eq.(1) and Eq.(2). 

𝑚𝑗,𝑘
𝑃 = 𝑚𝑗,𝑘

𝐹 ∙ 𝑆𝐹𝑗,𝑘 ∙ 𝑦𝑖  (1) 

𝑚𝑗,𝑘
𝑊 = 𝑚𝑗,𝑘

𝐹 ∙ (1 − 𝑆𝐹𝑗,𝑘) ∙ 𝑦𝑖   (2) 

where mF
j,k, mP

j,k and mW
j,k are mass flow rates of feed (kg/h), product and waste streams 

of component k in and out option j, respectively. SFj,k is the split factor which indicates 

how much of component k going to product stream from the feed stream. yj is the binary 

decision variable which is 1 if the option is selected and 0 if the option is not selected. 

The product stream of an option will be the feed stream of the next option on the same 

process route. The equipment cost (USD) of a technical option, ECj, is presented in 

Eq.(3) (Seider et al., 2016).  

𝐸𝐶𝑗 = 𝐸𝐶𝑗
𝑅𝑒𝑓,𝑦𝑒𝑎𝑟

∙ (
𝑚𝑗
𝐹

𝑚
𝑗
𝐹,𝑅𝑒𝑓)

𝐸

∙ (
𝐶𝐸2020

𝐶𝐸𝑦𝑒𝑎𝑟
) ∙ 𝑦𝑗  (3) 

where ECRef,year
j, mF,Ref and CEyear are the reference cost of the equipment, the reference 

capacity and the Chemical Engineering Index of the reference year, respectively. The 

total capital investment (TCI) is shown in Eq.(4) (Seider et al., 2016). 

𝑇𝐶𝐼 = 1.05 ∙ 𝑓𝐿,𝑇𝐶𝐼 ∙ ∑ (𝐸𝐶𝑗)𝑗   (4) 

where 1.05 is the delivery cost of equipment to the plant location and fL,TCI is the Lang 

factor with value of 5.93 (Seider et al., 2016). The total annualized capital investment 

(TACI) is calculated with interest rate (IR) (0.1) and total project lifetime (LT) (20 

years) as shown in Eq.(5). 

𝑇𝐴𝐶𝐼 = 𝑇𝐶𝐼 ∙
𝐼𝑅∙(𝐼𝑅+1)𝐿𝑇

(𝐼𝑅+1)𝐿𝑇−1
  (5) 

The objective function is to maximize the total annualized profit (TAP) as follows. 

max𝑇𝐴𝑃 = 𝐵𝐷𝑆 + 𝐺𝐿𝑆 − 𝑇𝐴𝐶𝐼 − 𝑇𝐴𝑂𝑃  (6) 
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where the total annual operating costs (TAOP), the annual biodiesel sales (BDS) and 
glycerol sales (GLS) are defined from the mass flow rate of the superstructure.  

Heat integration of the superstructure optimization model is a function based on Pinch 
Technology to minimize the heating and cooling requirements of the biodiesel 
production. First, a series of heat intervals defined from the temperature differences of 
the product streams which are designated as hot streams or cold streams depending on 
their heating or cooling requirements. Second, the function selects hot and cold streams 
based on the decision variable in each product stream. Third, the hot and cold streams 
are matched with each other according to their temperature to calculate the total heat 
load of heat intervals and set up the heat cascade. Finally, the minimum hot and cold 
utility requirements can be predicted by balancing the negative heat interval of the 
infeasible heat cascade. To reduce the complexity of the model, the heat exchanger 
network and investment costs are not considered in the heat integration function. 

The mathematical model is implemented in the software AIMMS, version 4.82.3.29 64-
bit. The AIMMS solver is the Outer Approximation Algorithm, which is an algorithm 
using CPLEX 20.1 as MIP solver and CONOPT 4.1 as NLP solver. The model includes 
1,602 constraints and 1,629 variables with 43 binary variables. The optimization 
problem is solved in an average of 1.83 s with a CPU Intel(R) Core(TM) i5-8265U CPU 
@ 1.80 GHz and 8.00 RAM. 

3. Results and discussion 
The superstructure model is applied for two base cases of biodiesel produced from 
CSTR and MR. The feedstock is rapeseed oil, infeed flowrate 1000 kg/h. The costs are 
calculated based on the price of biodiesel, feedstock, chemical and equipment in 2020. 

 
Figure 1: Superstructure of biodiesel purification from the transesterification of 
vegetable oil. The optimal processing route is the arrow line. 

For the case of biodiesel produced in a CSTR, the optimal processing route is presented 
by the arrow line in Figure 1 and 2. The separation of methanol and glycerol at the first 
and second stages increases methanol recycle and reduces downstream equipment costs. 
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The third stage is neutralization of the base catalyst with H2SO4, then dry washing the 
product stream with magnesol. Finally, water, methanol and unreacted oil are removed 
from the biodiesel stream with vacuum flash evaporators to achieve the purity standard. 
The glycerol stream from second stage goes through neutralization and decanter to 
increase the glycerol content to 95%. The glycerol is sold as crude glycerol.  

 
Figure 2: Superstructure of treatment routes for the glycerol separated from biodiesel 
production process. The arrows show the optimized glycerol processing route.  

Options 1, 10, 22 and 36 are centrifuges; 2, 11 and 37 are decanters; 3, 8 and 31 are 
flash evaporators; 4, 9, 27, 32, 40 and  42 are vacuum distillation columns; 5, 12, 18 and 
33 are neutralization with H3PO4; 6, 13, 19 and 34 are neutralization with H2SO4; 7, 14, 
20 and 35 are neutralization with HCl; 15, 21 are 23 are water washing; 16 and 24 are 
dry washing with magnesol; 17 and 25 are dry washing with ion exchange resins; 26, 
27, 39 and 41 are vacuum flash evaporators. Option 30 is treatment of waste glycerol 
with counting as expense of the process. Options 29, 38 and 43 are selling biodiesel, 
crude and technical glycerol, respectively. 

The total annualized profit of the optimal process is 840,606 $ which is higher than the 
process proposed by Zhang (2003b). The explanation for finding different profits is that 
the optimal process has lower production costs by using magnesol dry washing instead 
of water washing, a system of flash evaporators instead of distillation columns and heat 
integration to reduce energy consumption. 

For the case of MR, the superstructure model gives the same optimal processing route 
as the case of the CSTR. The difference is within the final purification stage where the 
MR case uses only one vacuum flash evaporator to remove methanol and water, because 
the membrane reactor removes the unreacted oil. Therefore, the energy requirement is 
70% lower than the case of CSTR. However, the membrane reactor has only 56% 
biodiesel yield of the conventional reactor making the annualized profit of the process 
of membrane reactor negative, -2,126,584 $. 

4. Conclusions 
A superstructure model for optimizing the biodiesel production has been developed. The 
superstructure can be developed faster and expanded easier by grouping similar options 
into processing tasks. With a novel heat integration function, the proposed model can be 
used to identify the best processing route which minimizes the production cost and the 
energy requirement. The optimization results show the potential for improvement of 
biodiesel production in terms of economic and environment indicators. The optimized 
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process of the CSTR shows a good profit and the case of MR has better energy 

consumption. However, the superstructure only considers one feedstock and two types 

of reactor. The superstructure will be extended to cover a large range of feedstock and 

different reaction technologies to further reduce the cost of biodiesel production. 
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Abstract 

Iron- and steel-making companies throughout the globe have been aiming to reduce 

emissions. One method to do so is to replace pulverized coal used in blast furnaces with 

biochar, but biochar is currently far more expensive than coal. To increase the value of 

biochar, by-products of pyrolysis can be combusted to generate heat and offset fossil fuel 

usage. In this study, pyrolysis by-product combustion was studied using Aspen Plus and 

process cost models to offset fuels in both Ontario, Canada, and Aichi, Japan. It was found 

that each tonne of biochar made produces by-products which save 130 USD and 1.47 t 

CO2-e of emissions in Ontario, while in Aichi 96 USD and 2.44 t CO2-e are saved. 

Keywords: Biochar, Pyrolysis, Pulverized Coal Injection, Iron, Steel 

1. Introduction 

 Steel production currently accounts for about 8% of annual anthropogenic 

carbon emissions (Worldsteel Association, 2021a). One method of reducing emissions is 

replacing coal used in pulverized coal injection in blast furnaces with biocarbon produced 

from the pyrolysis of biomass (Ye et al., 2019). However, widespread biochar usage has 

several hurdles, one of which is that it is prohibitively expensive at present. There is 

currently little published information on wholesale biochar prices, and the few data points 

available are not particularly recent. For example, in values of USD2021, wholesale prices 

were 2400 USD/t (metric tonne) in 2015 (Campbell et al., 2018). Research has suggested 

production costs may drop to 870 USD/t with small scale production (Keske et al., 2020) 

or 240 USD/t in a large-scale production facility designed for an economy that uses 

biochar heavily (Project Drawdown, n.d.). In comparison, steam coal is typically only 70 

USD/t(U.S. Energy Information Administration, 2021). Therefore, there is incentive to 

reduce the net cost of using biochar to match or even go below that of coal.  

Another issue with biomass pyrolysis is that it also produces by-products, which 

are often considered to be waste and are difficult to handle due to toxicity (Bridgwater et 

al., 1999). The by-products of biomass pyrolysis are separated into two phases, including 

bio-oil, also known as tar, and light gases (Dunnigan, Ashman, et al., 2018). The light 

gases generally consist of CO, CO2, CH4, H2, and low carbon fuel gases, while the tar 

phase consists of water and volatile organic compounds (VOCs) (Amini et al., 2019).  

To tackle both of these issues, it is worthwhile to investigate the value of 

utilization of the by-products of biomass pyrolysis. Although there are studies which 

looked at tire pyrolysis by-product value (Czajczyńska et al., 2017), usage of by-products 

for self-sustaining pyrolysis (Xu et al., 2011), the economic value of bio-oil specifically 

(Badger et al., 2011), and the heating value of biomass pyrolysis by-products (Dunnigan, 

Morton, et al., 2018), there have not been any comprehensive techno-economic analyses 

which cover environmental and economic benefits of the utilization of biomass pyrolysis 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50019-1 
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by-products. Given that the products mostly consist of combustible hydrocarbons, one of 

the simplest potential methods to use these by-products is heat generation through 

combustion. This heat can be used for processes such as steam generation, iron 

production, or even biomass drying and pyrolysis. This allows for fossil fuel usage to be 

offset, thereby reducing purchase and emission costs, which increases the value of 

biochar. This value can be used to close the gap between biochar and coal prices. 

For this analysis, Aspen Plus chemical process simulation software was used to 

calculate the thermodynamics and products of combustion of pyrolysis by-products based 

on experimental compositions and conditions. These results were then compared to fuel 

and carbon prices used in iron- and steel-making facilities in two locations. The locations 

investigated were Aichi Prefecture in Japan, which is in the third largest steel producing 

country in the world (Worldsteel Association, 2021b), and the province of Ontario in 

Canada. These locations were chosen because Aichi and Ontario both produce a similar 

amount of steel, at about 10,000,000 t annually (Aichi Prefectural Government, 2017), 

(Cheminfo Services Inc., 2019), but use different fuels for heat generation. Relevant data 

were readily available for the most commonly used heating fuels both locations, allowing 

for a complete cost comparison. 

Collaboration with and data sharing from ArcelorMittal Dofasco, Natural 

Resources Canada (NRCan), and CHAR Technologies has allowed for a realistic 

determination of the value and feasibility of pyrolysis by-product usage. ArcelorMittal 

Dofasco is aiming to replace up to 40,000 t of pulverized coal with biochar per year, so 

this value was used for design calculations. 

2. Methods 

To determine the financial and environmental value of pyrolysis by-product 

combustion, the heat generated from combustion was considered to be used to offset the 

currently most-used non-renewable fuels in local iron- and steel-making facilities. 

According to data from ArcelorMittal Dofasco, natural gas is generally the only fuel that 

is purchased for heat generation in their plant. Therefore, by-product value was 

determined based on offsetting natural gas in the Ontario case. However, in Japan, iron- 

and steel-making companies tend to use both natural gas and steam coal, but 

approximately four times more heat is generated with steam coal than natural gas (Japan 

Iron and Steel Federation, 2020). Therefore, in the Aichi case, steam coal will be assumed 

to be the main fuel that is offset with by-product combustion. Since the pyrolysis was 

done with biomass, emissions from by-product combustion are carbon neutral if it is 

assumed that the biomass would not otherwise be used for carbon sequestration. 

Therefore, emissions reductions from offsetting fossil fuels with pyrolysis by-product 

combustion were considered to be direct reductions. 

Data on the composition of by-products were received from NRCan’s lab-based 

experiments from the pyrolysis of construction and demolition wood at 600 °C. These 

data include the ratio of biochar, bio-oil, and light gas produced from pyrolysis, as well 

as bio-oil and light gas compositions. The distribution of products from wood pyrolysis 

is shown in Table 1. These ratios are similar to others in literature (Amini et al., 2019).  

Table 1: Product distribution of pyrolysis of wood on a dry, ash-free basis 

Pyrolysis Product Mass % of Initial Feedstock 

Light Gas 27.6 

Bio-oil 44.8 

Biochar 27.6 
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In regards to data used for simulation, the composition of the light gas is given 

in Table 2, while the composition and ultimate analysis of the bio-oil are given in Table 

3 and Table 4, respectively. Although the bio-oil composition given in this paper includes 

only general categories of compounds, the actual data set used for simulation includes 

approximately 30 specific compounds. Also, it is common for pyrolysis to be done in a 

nitrogen-rich atmosphere, but the method used by CHAR Technologies creates positive 

pressure in the chamber shortly after pyrolysis begins, preventing combustion. This 

means that the by-products do not contain any nitrogen gas. CHAR Technologies also 

noted that the pyrolysis process can be considered to be steady state. 

Table 2: Composition of light gas by-product of pyrolysis on a dry basis 

Light Gas Component Composition (Volume %) 

H2 9.4 

CO 26.2 

CO2 43.0 

CH4 17.2 

C2H6 1.3 

C2H4 0.6 

Other Light Hydrocarbons 2.3 

Table 3: Composition of the bio-oil by-product of pyrolysis 

Bio-oil Component Composition (Mass %) 

Water 56.6 

Acids 9.6 

Other Oxygenates 8.9 

Methanol 7.6 

Phenols 3.6 

Furans 1.6 

Other Condensable Compounds 12.1 

Table 4: Ultimate analysis of the bio-oil on a wet basis 

Ultimate Analysis Element Mass % 

Carbon 26.6 

Hydrogen 9.5 

Oxygen 63.9 

  

The pyrolysis by-products contain many VOCs, which are gaseous at the 600 °C 

pyrolysis process outlet temperature but can begin to condense at temperatures below 450 

°C, as per data from CHAR Technologies. Therefore, it was imperative that the process 

was designed so that the by-products can be combusted without condensation. Although 

it is typical to use thermal oxidizers to destroy gaseous VOCs while recovering a portion 

of the heat of combustion, thermal oxidizers are used for flue gases which contain up to 

only 10,000 ppmv organic compounds, with the rest being air (Wang et al., 2020). For 

destruction of streams without oxygen and that contain VOCs in higher concentrations, a 

vapour combustor, also known by other names such as enclosed flare (Anguil, n.d.), 

should be used instead (Gulf Coast Environmental Systems, n.d.). A vapour combustor is 

essentially a small flue gas stack with the option to recover the heat of combustion, and 

related operating and capital costs were found for annual usage of 40 kt of biochar using 
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published correlations (United States Environmental Protection Agency, 1980). A 

diagram of the process design is shown in Figure 1.  

 

Figure 1: A system based on pyrolysis by-products which generates heat with a vapour combustor 

 The products of by-product combustion were predicted using an RGIBBS block 

in Aspen Plus, which calculates the products and enthalpy change of a reaction through 

minimizing Gibbs free energy based on the parameters and composition of the reactants 

used. In the model, pyrolysis by-products at 600 °C and 1.01325 bar in a gaseous phase 

were mixed with air at 25 °C and 1.01325 bar so that the products contained 2 % oxygen 

by volume after combustion, as per guidelines from ArcelorMittal Dofasco. The property 

method used was the Peng-Robinson-Boston-Mathias (PR-BM) model, which has been 

shown in literature to work well for mixtures of CO2 and hydrocarbons (Li et al., 2019). 

Peng-Robinson-based methods have also been shown to predict CO2-H2O well (Zhao & 

Lvov, 2016). This simulation model was also used to determine that the by-products are 

within the flammability envelope when mixed with up to 30 % excess air, as per the 

calculated adiabatic flame temperature method (Hansel et al., 1992). Aspen Plus was also 

used to calculate higher and lower heating values of the by-product stream. This was done 

by adding the known lower heating values of the reactants for the LHV and then adding 

to this heat of vaporization of product water to determine the HHV. 

 Cost savings gained from by-product combustion in each location were 

calculated based on local fuel costs and carbon prices. Specific values used for each 

situation as well as the equation used for cost calculation are available in the supporting 

document (Rose & Adams, 2021). 

3. Results 

Results for the calculated HHV and LHV of the light gas, bio-oil, and weighted 

by-product mixture are given in Table 5.  

Table 5: Calculated heating values for the pyrolysis by-products 

By-Product Stream LHV (MJ/kg) HHV (MJ/kg) 

Light Gases 10.0 10.9 

Bio-Oil 10.7 11.4 

Mix 10.5 11.2 

Given the pyrolysis product ratios in Table 1 and these heating values, it was 

found that each tonne of biochar made also creates enough by-products to produce 29.4 

GJ HHV or 27.4 GJ LHV of heat through combustion. Also, for a vapour combustor 

system that uses 40 kt of biochar per year, capital and operating costs were found to be 

912,000 USD2021 total and 271,000 USD2021 per year, respectively. Assuming a 20-year 

project lifetime, these values were then used to calculate specific future value cost savings 

and carbon emissions reductions from offsetting fossil fuels through vapour combustion, 

as shown in Table 6. At a rate of 1 tonne of pulverized coal used per 10 tonnes of metal 

produced (U.S. Department of Energy, 2000), if all pulverized coal for 10 Mt of metal 
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production were to be replaced with biochar, there would be an annual emissions 

reduction of 1.50 Mt CO2-e in Ontario or 2.44 Mt CO2-e in Aichi, equivalent to taking 

625 thousand or one million cars off the road, respectively (Wynes & Nicholas, 2017). 

Table 6: Cost savings per tonne of biochar produced from offsetting fossil fuels with by-product 

combustion in a vapour combustor 

Location Cost Savings/t 

Biochar 

2022 Case 

Cost Savings/t 

Biochar 

2030 Case 

Emissions 

Reductions  

(t CO2-e/t Char) 

Ontario 135 USD2021 280 USD2021 1.50 

Aichi 96 USD2021 350 USD2021 2.44 

4. Conclusions 

Combustion of pyrolysis by-products has been shown to be a viable method for 

increasing the value of biochar as a replacement for pulverized coal in blast furnaces. 

Even with the purchase and operation of new equipment, by-product combustion can 

increase the value of one tonne of biochar by anywhere from 96 to 350 USD2021 in Aichi, 

Japan, and 135 to 280 USD2021 in Ontario, Canada. The greater difference in Aichi is due 

a greater reduction in carbon emissions with a similar increase in carbon taxes. These 

reductions are up to 1.50 tCO2-e/t char used in Ontario and 2.44 tCO2-e/t char used in 

Aichi, applicable for up to one million tonnes of biochar used per year in each location. 
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Abstract 
In this work, a machine-learning based optimisation framework is proposed for optimal 
design of solar steam methane reforming using molten salt (SSMR-MS) with CO2 capture 
and utilisation. The computational results demonstrate that significant profit in TAC can 
be made compared with the existing SSMR-MS. With ethylene glycol (EG) production, 
the optimal Levelised cost of Hydrogen Production (LCHP) is 0.00 $ kg-1 which is largely 
reduced compared to the existing process with LCHP of 2.40 $ kg-1. The captured CO2 
using the amine-based solution is utilized to produce around 33.59 kt y–1 EG. 

Keywords: Hydrogen; Solar energy; CO2 utilization; Machine learning 

1. Introduction 
Hydrogen is an important energy carrier in the transportation sector and essential 
industrial feedstock for petroleum refineries, methanol, and ammonia production. The 
global demand for hydrogen is expected to increase 10-fold by 2050, clearly indicating 
its significant role in the future (Wang et al., 2021). Conventional hydrogen production 
primarily utilises natural gas and oil-based feedstock for steam reforming, which results 
in considerable greenhouse gas emissions mainly CO2, thus contributing to global 
warming (Voldsund et al., 2016). The damaging consequences of global warming deem 
further investigation into clean and affordable hydrogen production process using 
renewable energy sources to be crucial. Meanwhile, research is also ongoing into CO2 
capture and utilisation technology which considers CO2 as a viable alternative carbon 
source for the chemical supply chain (Alper et al., 2017) to obtain value-added products 
such as methanol, ethylene carbonate and ethylene glycol (Yang et al., 2021).   

Solar energy for hydrogen production has received significant attention in recent years 
due to its primary abundance as an energy source (Koumi Ngoh et al., 2012). To 
effectively use solar energy for large-scale hydrogen production, an optimal design of 
solar steam methane reforming using molten salt (SSMR-MS) which shows great 
potential has been studied to reduce TAC and CO2 emission (Wang et al., 2021). However, 
the optimal Levelised Cost of Hydrogen Production (LCHP) is still much higher than that 
of the conventional methane steam reforming. Furthermore, in their work CO2 removal 
model is represented using a simple separation block with a constant separation efficiency, 
which could lead to inaccurate account of annualized cost of CO2 capture. To further 
reduce LCHP and improve the model accuracy, an integrated rate-based CO2 removal 
model in SSMR-MS along with CO2 utilization for ethylene glycol (EG) production is 
investigated in this work. This is the main novelty of this work.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50020-8 
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compact models that can be implemented in an optimisation environment with ease 
(Ibrahim et al., 2018).  
In this work, a surrogated model for the CO2 capture process is firstly developed and 
integrated within SSMR-MS process in Aspen Plus V8.8. This is because when the 
rigorous rate-based CO2 removal model for CO2 capture is integrated with the SSMR-MS 
process in Aspen Plus V8.8, the simulation of the integrated system is extremely difficult 
to converge. The input variables for the CO2 capture process include the inlet stream 
component flowrate of CH4, H2O, CO, CO2, H2 which are denoted as 𝐹"#,%!",&'() , 
𝐹"#,!!*,&'() , 𝐹"#,%*,&'() , 𝐹"#,%*!,&'()  and 𝐹"#,!!,&'() , respectively and temperature 
(𝑇"#,&'()) obtained from hydrogen production process. In other words, 

𝒛 = [𝐹"#,%!",&'(), 𝐹"#,!!*,&'(), 𝐹"#,%*,&'(), 𝐹"#,%*!,&'(), 𝐹"#,!!,&'(), 𝑇"#,&'()]
+. 

The outlet stream flowrates of CH4, H2O, CO, CO2 and H2 in the CO2 removal process 
are predicted using ANN surrogate models respectively, as shown in Eqs.1-5. 

𝐹,-.,%!/,&'() = 𝐴𝑁𝑁0(𝒛)  (1) 

𝐹,-.,!1*,&'() = 𝐴𝑁𝑁1(𝒛)  (2) 

𝐹,-.,%*,&'() = 𝐴𝑁𝑁2(𝒛)  (3) 

𝐹,-.,%*1,&'() = 𝐴𝑁𝑁/(𝒛)  (4) 

𝐹,-.,!1,&'() =	𝐴𝑁𝑁3(𝒛)  (5) 

These surrogate models are then integrated with the rigorous models of SSMR-MS by 
using user model within Aspen Plus interface with Excel Link (Fontalvo, 2014) for 
sample generation. Then a new surrogate model representing the entire integrated process 
is constructed through extending the optimisation framework of Wang et al. (2021). There 
are usually three steps for the development of a surrogate model, including data 
generation (i.e., sampling), construction of the surrogate model and construction of 
feasibility constraints using a support vector machine (Wang et al., 2021). Samples 
generated using the Latin hypercube sampling method are used as input in Aspen Plus 
V8.8 to get values for the corresponding output variables.  

In the integrated process, the independent input variables including molar flowrate of 
natural gas into pre-reformer 𝐹45, steam to methane ratio 𝛾6/%, operating temperature of 
reformer 𝑇8, high-temperature water gas shift (HWGS) reactor 𝑇!956, low-temperature 
water gas shift (LWGS) reactor 𝑇:956 , tube length of pre-reformer 𝐿;8 , reformer 𝐿8 , 
HWGS reactor 𝐿!956  and LWGS reactor 𝐿:956 , tube number in pre-reformer 𝑁;8 , 
reformer 𝑁8, HWGS reactor 𝑁!956 and LWGS reactor 𝑁:956 vary between lower and 
upper bounds. A vector 𝐱 is used to denote all these variables. In other words,  

𝒙 = [𝐹45 , 𝛾6 %⁄ , 𝑇8 , 𝑇!956, 𝑇:956, 𝐿;8 , 𝐿8 , 𝐿!956, 𝐿:956, 𝑁;8 , 𝑁8 , 𝑁!956, 𝑁:956]+.  

𝑥: ≤ 𝒙 ≤ 𝑥= (6) 

The objective function TAC can be calculated as follows, 

𝑇𝐴𝐶 = 		𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙 ∙ 𝐴𝐶𝐶𝑅 + 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	 (7) 

where 𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙  is total capital investment. 𝐴𝐶𝐶𝑅  is annual capital charge ratio. 
𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the total production cost per year.  
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The optimisation problem using the surrogate models is stated as follows, 

(PS)       Min          𝑇𝐴𝐶 = 𝑇𝐴𝐶0 + 𝑇𝐴𝐶>,?@A 

              s.t.              𝑇𝐴𝐶0 = 𝐴𝑁𝑁B(𝒙) + 𝐴𝑁𝑁C(𝒙)	

               																					 𝑇𝐴𝐶>,?@A = 𝑓(𝑄&6)		

	 QDE = ANNF(𝐱)	  

	 𝐹!! = 𝐴𝑁𝑁G(𝒙) ≥ 𝐹!!
+)		

 Eq. (6) 

where 𝑇𝐴𝐶0 is non-solar related cost, 𝑇𝐴𝐶>,?@A is the solar related cost. 𝐴𝑁𝑁B(𝒙) is CO2 
removal process related cost. 𝐴𝑁𝑁C is the non-solar related cost excluding MDEA unit. 
	𝐱	is the set of independent variables in hydrogen production process, 𝑄&6 is molten salt 
duty. The relationship of solar-related equipment cost, and molten salt duty is described 
using an algebraic linear function 𝑓(𝑄&6). The surrogate model comprises 4 artificial 
neural networks as indicated above in the optimization problem 𝑃𝑆  and a linear 
regression model 𝑓(𝑄&6). 𝐹!! denotes the predicated flowrate	of hydrogen. 

4. Solution algorithm 
A hybrid optimisation algorithm similar to that of (Wang et al., 2021) is employed to 
solve the optimisation problem PS, as shown in Figure 2. This hybrid algorithm combines 
the advantages of the stochastic optimisation algorithm and the deterministic optimisation 
method. We employ different platforms and data are transferred between them to exploit 
their strength and reduce the computational complexity. In sample generation process, 
Matlab is used as the core platform to interact with other programs. Sample points are 
imported to Aspen Plus. Within Aspen Plus, the process contains a user model which calls 
Visual Basic Application (VBA) in Excel (Fontalvo, 2014) as a bridge to transfer data 
between Aspen Plus user model and Matlab (ANN model for composition prediction in 
CO2 removal process). The hybrid algorithm is implemented in MatLab R2019a.  

 
Figure 2: Flowchart of the extended design methodology 
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5. Computational studies 
The extended optimisation framework is used to generate the optimal design of the 
SSMR-MS process with integration of CO2 capture and utilisation. The hydrogen 
production rate is 2,577 kmol h–1. The desired hydrogen purity is 99.9 vol%. Other data 
can be referred to Wang et al. (2021). The results are given in Table 1. It can be seen that 
the optimal TAC is 166.50 M$ y-1. The optimal steam to carbon ratio is 2.7. 
Table 1: Optimisation results for SSMR-MS from surrogate models 

Item Optimal value 

𝛾!/# 2.7 

𝑇$ (oC) 962.3 

𝑇%&'! (oC) 421.1 

𝑇(&'! (oC) 200.7 

𝐿)$ (m) 11.2 

𝐿$ (m) 12.0 

𝐿%&'! (m) 4.8 

𝐿(&'! (m) 4.3 

𝑁)$ 4,031 

𝑁$ 55 

𝑁%&'! 1367 

𝑁(&'! 2624 

𝐹*' 	(kmol h–1) 781.9 

𝑄+! (MW) 14.54 

𝐹%! 	(kmol h–1) 2,577 

TAC (M$ y–1) 166.50 

The optimal values of independent variables in Table 1 are used as input in Aspen Plus 
V8.8 to generate values of all dependent variables. The validated results for 𝑄&6, 𝐹!! and 
TAC are 14.31 MW, 2577.2 kmol h–1, 165.22 M$ y–1 respectively. The largest difference 
between actual results and predicted results from the ANN surrogate models is within 
1 %, indicating the ANN model has high prediction accuracy.  

Then heat integration is conducted to further reduce energy consumption. The final results 
are provided in Table 2. It can be observed after heat integration, TAC is 155.05 M$ y–1, 
which is reduced by 6.2 % compared to that before heat integration (165.22 M$ y–1). What 
is striking is that, with the integration of EG production, the whole hydrogen production 
process cost can be compensated with a large profit. 

We also compare our optimal results with the best results from Wang et al. (2021) and 
the conventional steam methane reforming (denoted as CSMR), as shown in Table 2. It 
can be observed that without EG production, TAC in this work is higher than that from 
Wang et al. (2021) due to CO2 capture cost increased using the rate-based CO2 removal 
model. With an annual production of 33.59 kt EG, LCHP decreases from 2.40 $ kg-1 to 0 
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$ kg-1 due to high profit from EG. CO2 emission reduces by 68.92 %. What is more 
important is that LCHP (0.00 $ kg-1) is extremely economic attractive and CO2 emission 
is reduced by 73.80 % compared to that of CSMR. The economic and environmental 
benefit obtained by using solar energy and applying CO2 utilization process show the 
optimal case in this work is very promising for industrial hydrogen production. 
Table 2: Comparative optimization results 

Item Optimal Case Wang et al. (2021)  CSMR 

𝑄+! (MW) 14.31 10.20 20.00 

𝐹%! 	(kmol h–1) 2,577.2 2577.3 2,577.0 

TAC without EG production (M$ y–1) 155.05 122.30 90.90 

TAC with EG production (M$ y–1) -21142.24 - - 

LCHP ($ kg-1) 0.00 2.40 2.00 

CO2 emission (kt y–1) 131.74 423.90 502.90 

EG (kt y–1) 33.59 0.00 0.00 

6. Conclusion 
In this paper, the existing optimisation-based framework using machine learning 
techniques is extended for optimal design of solar steam methane reforming using molten 
salt (SSMR-MS) integrated with CO2 capture and utilization for large-scale H2 production. 
The computational results show that TAC was reduced largely with significant profit 
generated compared to the existing SSMR-MS. By considering CO2 conversion, around 
33.59 kt EG is produced per year. In the future, more process options for different pre-
reformer operating conditions are expected to evaluate. 
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Abstract 
This work introduces a novel hybrid concept to produce H2 from natural gas by using 
the protonic membrane reformer (PMR) with liquefaction based CO2 capture system. 
For process intensification, recycling of the off-gas from the capture process and a water 
gas shift reactor for the retentate gas from the PMR are applied to the hybrid 
configuration. The suggested concept achieves around 99 % of system H2 and CO2 
recovery rates even when the PMR is operated at relatively low hydrogen recovery, 
resulting in energy efficient H2 production with a low carbon intensity.  

Keywords: Low emission hydrogen production, proton conducting membrane, 
membrane reactor, CO2 capture, hybrid process. 

1. Background 
Hydrogen is a clean fuel and is thus expected to play an important role in a future 
decarbonized energy scenario. Currently, 48 % of the world's hydrogen is produced by 
steam reforming (Voldsund et al., 2016), where natural gas and steam react to form 
hydrogen rich syngas. The focus on low-carbon hydrogen production from natural gas 
has been predominantly on CO2 separation technologies. However, CO2 separation does 
not contribute significantly to the energy penalty of the process (Voldsund et al., 2016). 
The largest losses are in the reforming of natural gas to hydrogen and subsequent 
separation to produce high purity hydrogen. The key focus area for cost-efficient low 
emission hydrogen production is an intensified process for hydrogen production and 
separation from natural gas with suitable CO2 separation technology. Here we 
investigate an innovative hybrid technology for H2 production with CO2 capture 
combining H2 production from natural gas by a protonic membrane reformer (PMR) 
technology with subsequent CO2 separation by liquefaction in a novel integrated 
process. The technology enables a high carbon capture rate with high purity CO2 and H2 
and a hydrogen cost comparable to conventional technologies without CO2 capture. 

The PMR technology produces high-purity hydrogen from steam methane reforming 
(SMR) in a single-stage electrochemical membrane reactor process with near-zero 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50021-X
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energy loss (Malerød-Fjeld et al., 2017). The tubular membrane reformer comprises a 
BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni 
composite electrode with a dual function as a reforming catalyst. Methane is steam-
reformed to CO and H2 over Ni particles inside the ceramic tube. Hydrogen is 
electrochemically transported as protons to the outer side, and CO is thereby converted 
to CO2 as the water gas shift (WGS) equilibrium is shifted due to the extraction of H2. 
The hydrogen produced is of high purity and electrochemically compressed in situ. The 
H2 recovery in the PMR is proportional to the electricity input (Malerød-Fjeld et al., 
2017). At high hydrogen recovery, the outlet composition is mainly CO2 and steam. The 
retentate gas from the PMR has a relatively high fraction of CO2, which makes CO2 
separation by liquefaction the most competitive technology for this application (Berstad 
et al., 2013). Liquefaction based CO2 capture technologies have also been well tested 
for a wide range of syngas compositions with hydrogen (Kim et al., 2020). 

Thus, in this work, different process configurations are developed in an analytical 
manner to combine the two technologies. One of the process concepts considers the 
appropriate placement of recycle streams to improve overall H2 and CO2 recovery when 
the PMR is operated at low H2 recovery of around 90 % (for example reduced current 
density) for less energy intensive unit operation. Such operating conditions are also 
expected to lower stress on the material leading to prolonged life. Detailed process 
models of the different unit operations including the protonic membrane reactor are 
included in the hybrid system to analyse the different process options.  

2. Hybrid process concepts 
High recovery rates of H2 and CO2 are required on the plant level to achieve energy 
efficient low carbon hydrogen production for the PMR based system. This requires the 
development of optimal integration between the PMR and CO2 liquefaction processes 
where additional process steps are considered. Figure 1 shows one of the process 
concepts for the PMR based hydrogen production with carbon capture. In this 
configuration, natural gas and water are heated by the hot temperature H2 product and 
the retentate gas from the PMR. The mixture of natural gas and steam is then sent to a 
pre-reformer to convert heavier hydrocarbons in natural gas to hydrogen, CO, and CO2   
to supply a pre-reformed feed to the PMR. The pre-reformer outlet stream is set to have 
a fixed steam carbon ratio.  

 
Figure 1. Process flow diagram of the simplified hybrid system for clean hydrogen production. 
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The temperature of the PMR feed is further increased to the operating temperature of 
the PMR by using the heat produced from the PMR, which is assumed to be operated 
isothermally. Then, the compressed pure hydrogen and the retentate gas are produced 
from the PMR. The SMR and WGS in the PMR result in a net endothermic reaction. 
However, the heat requirement can be covered by the heat generated by electricity used 
for the separation and compression of H2 in the membrane, which is also enough to 
increase the temperature of the feed streams via PMR HX-1 and 2. The remaining PMR 
heat after the heat integration could be further used to produce steam.  

The retentate gas from the heat recovery unit is fed to the CO2 liquefaction process, 
after dehydration, to capture high purity liquid CO2 while removing impurities in the 
liquid product through off-gas venting. In the CO2 capture process (CCP), the 
dehydrated retentate gas is compressed before being liquefied by a hydrocarbon based 
mixed refrigerant (CH4, C2H6, C3H8, and C4H10). The cold energy of the incondensable 
gas (off-gas) from the liquefier (MHE-2) is then used to pre-cool the compressed 
retentate gas. The off-gas from the pre-cooler is further utilized to supply the cold duty 
of heat exchanger MHE-1 by depressurizing it via a turbo expander. The liquid CO2 
product from the liquefier is also sent to the pre-cooler to cover the cold duty after being 
pressurized to the transport pressure. The off-gas leaving the CO2 capture process could 
be vented or used as fuel to produce steam in the system. 

Hydrogen production of this configuration is, however, dependent on the performance 
of the PMR as it is the only place where H2 is extracted. If the hydrogen recovery rate 
(HRR) of the PMR is low with reduced electric power input, a considerable amount of 
H2 left in the PMR is sent to the liquefaction process through the retentate gas. Since the 
hydrogen is not condensed in the CCP, it is lost through the off-gas, resulting in a low 
system HRR. Thus, when the PMR is operated at lower hydrogen recovery, the system 
HRR is also reduced, showing limited flexibility of the process. Another issue of the 
simplified concept with the PMR operating at low hydrogen recovery is the relatively 
high CO fraction in the retentate gas that causes poor performance of the CO2 
liquefaction system. The high fraction of CO in the feed to the CCP results in a deeper 
purification of the liquid CO2 to achieve high purity. For the purification of the liquid 
CO2, a larger amount of off-gas is produced, containing traces of CO2, hence reducing 
the system carbon capture rate (CCR). The large flow rate of the off-gas stream will also 
require an extra facility to treat the CO and H2 mixture. The high CO fraction, and thus 
a lower CO2 fraction in the retentate gas, also means larger power consumption for the 
liquefaction process where the energy efficiency of the system is proportional to the 
CO2 purity of feed gas (Kim et al., 2020). 

To maintain H2 production performance high at a low HRR of the PMR, the off-gas 
from the liquefaction system can be recycled (see Figure 2). This recycle allows 
collecting the valuable H2 in the off-gas through the PMR, achieving a high system 
HRR. However, some off-gas venting will still be required to avoid N2 accumulation in 
the system, which is assumed to be 10 % in this work. The off-gas recycle, however, 
will not reduce the CO fraction in the retentate gas, resulting in poor carbon capture 
performance of the hybrid concept. The improvement of the CCP can be achieved by a 
WGS reactor for the retentate gas as illustrated in Figure 2. The WGS reactor will 
convert the CO in the retentate gas to CO2 and H2, giving a low CO content and 
simultaneously increasing CO2 content in the feed to the liquefaction process. Thus, this 
configuration can achieve high HRR and CCR while producing liquid CO2 with 
negligible impurities even when the PMR is operate at low hydrogen recovery. 
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Figure 2. Process flow diagram of the modified hybrid system with off-gas recycle and a WGS 
reactor for the PMR operating at a low H2 recovery (See text boxes for the modifications). 

3. Modelling approach and design basis 
In order to simulate the hybrid system, the PMR is modelled in C to represent the data 
from Malerød-Fjeld et al. (2017) and connected to Aspen HYSYS where all the other 
process units are built. In this work, the two process concepts neither include a vent gas 
utilization nor a steam cycle for the PMR surplus heat left after the heat integration. The 
PMR operating conditions that give 91 % of HRR are selected for the comparison of the 
two hybrid configurations assuming the membrane reformer is operated at relatively 
low H2 recovery. However, it is worth mentioning that the PMR operating conditions 
such as temperature and current density will certainly impact process performance. 
While this has been analysed as part of this work, is not included in the paper. The 
hybrid system is assumed to have a natural gas feed rate of 3,000 kmol/h (lower heating 
value of 50 MJ/kg) to produce about 500 t/d hydrogen. CO2 is assumed to be delivered 
at 150 bar with 99 mol% purity while allowing CO level lower than 0.5 vol%, assuming 
pipeline transport (Harkin et al., 2017). Other design conditions are listed in Table 1. 

Table 1. Design basis for the PMR and the CO2 capture process. 

Parameters Unit Value 
PMR feed steam to carbon ratio - 2.5 
PMR operating pressure bar 26 
PMR operating temperature °C 800 
PMR current density A/m2 7000 
PMR H2 product and retentate pressure  bar 26 
PMR H2 product and retentate temperature °C 800 
Pre-reformer inlet temperature °C 450 
WGS reactor inlet temperature °C 200 
∆Tmin for gas/gas heat exchanger °C 30 
∆Tmin for gas/liquid heat exchanger °C 20 
∆Tmin for low temperature heat exchanger °C 3 
Isentropic efficiency of compressor % 80 
Isentropic efficiency of gas expander % 85 
Isentropic efficiency of pump % 75 
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4. Key performance indicators (KPIs) 
Various key performance indicators are selected to evaluate the thermodynamic 
performance of the hybrid systems, such as specific power consumption (SPC) of the 
PMR, the CO2 capture process, and the overall system. The SPC of the PMR is based on 
the electricity input to the PMR per unit mass of hydrogen produced. The SPC of the 
CCP is the net power consumption in the CCP per unit mass of CO2 captured. The SPC 
of the hybrid system is estimated by the total net power consumption per unit mass of 
H2 produced. The CCR of the CCP is the molar flow rate of the CO2 captured per unit 
molar flow rate of CO2 in the retentate gas. The system CCR is defined as the molar 
flow rate of CO2 captured divided by the total molar flow rate of carbon in natural gas. 
Other KPIs such as hydrogen recovery rate (HRR) are as follows (it is worth 
mentioning that CH4 conversion of the PMR is always kept high in this work): 

𝐻𝐻𝐻𝐻𝑅𝑅PMR  =  
𝑛̇𝑛H2,product

𝑛̇𝑛H2,PMR feed + 𝑛̇𝑛H2,generated in PMR
 (1) 

𝐻𝐻𝐻𝐻𝑅𝑅sys  =  
𝑛̇𝑛H2,product

𝑛̇𝑛H2,produced  in pre−ref + 𝑛̇𝑛H2,produced in PMR + 𝑛̇𝑛H2,produced in WGS
 (2) 

5. Results and discussion 
The simulation results in Table 2 indicate that compared to the simplified hybrid 
concept, the process with off-gas recycle and a WGS reactor has a larger H2 production 
capacity and a lower system SPC. Besides, the configuration with the off-gas recycle 
gives very high system HRR and CCR at around 99 %, verifying that this concept can 
produce H2 with a low carbon intensity even when the PMR operating conditions are set 
for a relatively low HRR (91 %). As presented in Table 2, due to the recycle of the H2 
rich off-gas, the HRR and the hydrogen production rate of the PMR are improved 
compared to the simplified hybrid system. The recycled stream also makes the PMR 
feed richer in hydrogen, and it is advantageous to extract and compress H2 in the 
membrane reformer, reducing its SPC. Besides, the WGS reactor effectively shifts CO 
to CO2 in the retentate gas, increasing the CO2 content of the feed to the liquefaction 
process and the efficiency of the CO2 capture system (higher CCR and lower SPC). 

The simplified hybrid concept has a low system carbon capture rate although the 
process has a similar CCR in the CCP compared to the hybrid process with off-gas 
recycle. This is because only a part of the natural gas supplied to the system is shifted to 
CO2 in the PMR while the rest becomes CO, which is not captured through the 
liquefaction process. Thus, significant amounts of carbon are lost through the CO rich 
off-gas from the CO2 capture process. However, the hybrid concept with off-gas recycle 
has a WGS reactor where almost all CO in the retentate gas is shifted to CO2, thus 
allowing the liquefaction system to reduce the carbon loss via the vented off-gas. 

It is worth noting that the heat from the PMR is more effectively utilized in the hybrid 
concept with off-gas recycle as it has a smaller amount of heat left from the PMR 
compared to the simplified hybrid system. Although the remaining of the PMR surplus 
heat is assumed to be used to produce electricity and supplied to the hybrid concepts 
with a 50 % conversion rate, the configuration with off-gas recycle will still have a 
lower system SPC (43.0 MJ/kg H2) compared to the simplified scheme (45.6 MJ/kg H2).  
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Table 2. Performance of the two hybrid concepts for clean hydrogen production with the PMR. 

 Parameter Unit Simplified hybrid Modified hybrid  
PMR H2 production t/d 475 560 
PMR heat leftover MW 29.38 13.00 
SPCPMR MJ/kg H2 46.39 42.19 
HRRPMR % 91.06 93.99 
xCO2,CCP feed (dry basis) 0.53 0.65 
xCO,CCP feed (dry basis) 0.22 0.01 
Captured CO2  t/d 1965 3374 
SPCCCP MJ/kg CO2 0.45 0.30 
CCRCCP % 83.44 89.27 
HRRsys % 91.06 98.75 
CCRsys % 57.80 99.30 
SPCsys MJ/kg H2 48.26 43.99 

6. Conclusions 
In this work, a novel hybrid concept is developed to produce H2 from natural gas using 
an innovative proton membrane reformer followed by a liquefaction based CO2 capture 
system. The hybrid concept with off-gas recycle and a WGS reactor effectively recovers 
H2 produced in the PMR while capturing almost all CO2 from the process even when 
the PMR is operated at relatively low H2 recovery with less energy input. Thus, this 
hybrid scheme will be a promising option for H2 production with a low carbon intensity. 
This process design can be further improved by optimal heat integration with the PMR 
surplus heat and the utilization of the vent stream as fuel. 
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Abstract 
CO2 capture, utilization, and storage (CCUS) as well as renewable energy (RE) 
technologies are key options for the decarbonization of economies. The high cost of 
such pathways makes it important to develop a strategic screening approach that yields 
the optimal implementation of CO2 reduction pathways while ensuring the economic 
viability of such projects. This work proposes a Process Systems Engineering approach 
to develop minimum cost CO2 reduction pathways. The approach implements a 
systematic analysis methodology to understand key decisions of the optimal design. 
After that, a detailed network portfolio can be obtained by solving a reduced 
optimization problem. The method is demonstrated in a case study which shows how 
the high-level analysis can be used to guide the detailed design of CO2 reduction 
networks, resulting in an efficient systematic planning. 

Keywords: cost-optimal CO2 reduction, marginal abatement cost, economic analysis, 
optimization. 

1. Introduction 
Process Systems Engineering methods have been developed to optimize the planning of 
CO2 emissions mitigation (Manan et al., 2017). The general process engineering 
approach consists of analysing the problem to develop high-level insights and targets 
based on which the designs of integrated systems are assessed (Klemes, 2013). The 
early applications of such approach were focused on developing pinch analysis 
methodologies for optimizing heat integration (Linnhoff et al., 1979). The minimum 
heating and cooling targets developed allowed the validation and the understanding of 
optimal designs of heat exchanger networks (Linnhoff & Hindmarsh, 1983). The 
problem of cost-optimal CO2 reduction has been addressed through designing an 
integrated system considering all available CCUS and RE options that achieve the 
desired CO2 emissions reduction at the lowest possible cost (Al-Mohannadi et al., 
2020). The solution is obtained through implementing an optimization model which 
yields the integrated processing system with the minimum cost. However, such 
solutions are not usually easily understood, and they require further analysis and 
interpretation. Recently, a cost analysis methodology for CO2 reduction pathways was 
developed based on the Marginal Abatement Cost (MAC) of the different considered 
options (Lameh et al., 2021). This methodology allows the development of low-cost 
CO2 reduction solutions using basic high-level information about the reduction 
technologies, but it lacks the level of detail that the design optimization models have. 
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To our knowledge, none of the exiting studies show a comprehensive Process Systems 
Engineering approach with analysis and design methodologies that systematically 
identify optimal pathways for CO2 reduction. This work addresses the gap by presenting 
a two-step approach to support the decisions of planners and policy makers to achieve 
optimal CO2 reduction. In the first step, the analysis method uses technical and 
economic factors of the different possible CO2 reduction pathways to develop quick 
insights into the minimum cost solutions based on high level overview of the defined 
problem. These insights would simplify the optimization so that a global optimal 
solution is achieved. In the second step, the integrated CCUS-RE network optimization 
is performed to design a detailed CO2 reduction configuration through physical CO2 
emissions processing and storage, and through applying renewable energy technologies. 
The solution of the optimization problem can then be understood based on the high-
level insights obtained from the analysis tool applied in the first step. A case study is 
presented to illustrate the application of the method.  

2. Methods 
The aim of the proposed approach is to identify cost-optimal transitions to achieve a set 
target for CO2 reduction. Different CO2 emitting sources exist, among which are fossil-
based energy production plants that cover a defined demand. The set target for CO2 
emissions reduction can be achieved by implementing a CO2 abatement network which 
consists of CCUS and RE pathways. In the CCUS pathways, the emissions from the 
sources are captured and allocated to CO2 sinks which can either store the CO2 or utilize 
the emissions to produce value-added products. The RE pathways involve the 
implementation of renewable energy options to replace some of the existing fossil-based 
energy sources to cover the demand. The problem is addressed at two stages: analysis 
and design. At the first stage, CO2 reduction analysis is conducted to determine the 
expected cost of the optimal CO2 abatement network which achieves a set level of 
reduced emissions (Figure 1 (a)). This approach allows the identification of major 
insights corresponding to the total cost of CO2 reduction through a simple illustrative 
procedure. The detailed design of the optimal network that achieves the CO2 reduction 
target is addressed in the second stage in which the exact layout of the network with the 
flowrates and allocations is identified (Figure 1(b)). The analysis is conducted through 
developing the marginal abatement cost (MAC) curve  considering the different 
available options (Lameh et al., 2021). 

𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝐶𝐶𝑠𝑠𝑠𝑠 − 𝑅𝑅𝑑𝑑𝑑𝑑
𝜂𝜂𝑑𝑑𝑑𝑑 − 𝛾𝛾𝑠𝑠𝑠𝑠

 (1) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝑒𝑒𝑒𝑒 − 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒
ε𝑒𝑒𝑒𝑒 − ε𝑒𝑒𝑒𝑒𝑒𝑒

 (2) 

 Each CCUS option is characterized by the cost (Csi) of CO2 supply from each source 
(capture, compression, and transport), the profit (Rdj) generated by each sink, the 
secondary emissions associated with supplying CO2 from the sources (γsi), and CO2 
fixation efficiency of each sink (ηdj). The MAC for the CCUS options can be calculated 
as shown in equation (1). The RE options are considered as energy-shifting pathways 
which are characterized by the cost of the RE source (Cei), the cost of the existing 
source that is phased out (Cexi), and their corresponding emissions levels (εei and εexi). 
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The MAC for the RE options can be determined as shown in equation (2). The CO2 
reduction potential for each option is determined based on prioritizing the cheapest 
pathways. The different options in the CO2 abatement network are demonstrated on a 
minimum MAC (mini-MAC) profile from which the cost of a set level of CO2 reduction 
can be determined. 

   
(a) (b) 

Figure 1 The CO2 abatement network as considered through system analysis (a) and network 
design (a) 

  
(a) (b) 

Figure 2 The framework applied in the analysis (a) and design (b) of the CO2 abatement network 

The network optimization problem is decomposed in a two-step approach (Al-
Mohannadi et al., 2020) with the main network synthesis problem being formulated as a 
mixed integer linear program (MILP). The MILP determines the overall design of the 
CO2 reduction portfolio which corresponds to the minimum cost for the set level of CO2 
reduction. The model is formulated by setting the equations for the energy and mass 
balances and the costs for the different components in the system (CO2 capture, 

135 



 M. Lameh et al. 

compression, piping, sinks, and RES). The optimization problem is defined by setting 
an objective function (minimizing the total cost of the system), and the constraints that 
ensure that the capacities of the CO2 abatement technologies are not exceeded, and the 
set CO2 emissions reduction is achieved. Figure 2 describes the methodologies followed 
in conducting the analysis and design of the CO2 reduction network. 

3. Case Study 
The system studied in this work consists of four major CO2 emitting sources which 
emissions flowrates is estimated based on the energy and industrial sectors existing in 
Qatar (Alfadala & El-Halwagi, 2017). Table 1 shows the data used to characterize each 
of the considered sources. The capture costs and secondary emissions are estimated 
based on Metz et al. (2005) and von der Assen et al. (2016). The cost of transportation 
is based on linearized compression, pumping, and piping cost models (Al-Mohannadi et 
al., 2020). Four potential CO2 sinks are considered for implementation as CO2 
utilization and storage technologies (Table 2). The data is estimated based on existing 
technoeconomic studies (Hepburn et al., 2019) for enhanced oil recovery (EOR) , CO2 
storage (GCCSI, 2011), chemicals (Pérez-Fortes et al., 2016), and fuels (Tremel et al., 
2015). For the renewable energy contribution, the demand for electric power can be 
covered either by an existing natural gas power plant (NG PP) or by introducing solar 
photovoltaic system (Solar PV). The solar PV can cover up to 13% of the electric power 
demand without requiring energy storage. The levelized cost of electricity for the solar 
PV is assumed to be 0.017 $/kWh (BELLINI, 2020). The cost of operating the NG PP 
was neglected (assuming very low cost of natural gas). 
Table 1 The data for the sources 

Source CO2 Produced 
(MtCO2/y) 

 Capture 
Cost ($/tCO2) 

Transportation 
Cost ($/tCO2) 

Secondary emissions 
(tCO2/tCO2-captured) 

High 
Concentration 8.32 0.00 3.00 0.01 
Combustion 48.65 31.12 3.48 0.24 
Cement 1.99 56.85 3.15 0.24 
NG PP 25.88 27.33 3.27 0.24 

Table 2 The data for the sinks 

Sink Capacity 
(MtCO2/y) 

CO2 Breakeven Cost 
($/tCO2) 

CO2 Fixation Efficiency 
(tCO2/tCO2-utilized) 

EOR 1 45 1 
Storage 15 -20 1 
Chemicals 4 -280 0.92 
Fuels 17 -440 0.6 
  
The collected data was used to analyze the cost of economic CO2 reduction by 
generating the mini-MAC profile of the considered options (Figure 3 (a)). The mini-
MAC profile identifies the promising pathways for economic CO2 reduction: these are 
the pathways represented by the segments forming the MAC curve. The total cost of 
CO2 reduction can be determined by integrating the mini-MAC profile (area under the 
curve) as shown in Figure 3 (b). This outcome can guide the network design by showing 
the expected total cost for different levels of CO2 reduction. Each single point on the 
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total cost profile corresponds to an optimal network design that can achieve the CO2 
reduction target with minimum cost. Instead of generating random designs through an 
exhaustive procedure of running the optimization model multiple times, key targets 
from the total cost profile can be determined. The high-level analysis shows that the 
maximum CO2 reduction potential that can be achieved is 26.2 MtCO2/y, which is 
around 31% of the considered emissions (84.8 MtCO2/y). This is due to the limited 
capacity of the considered options (the capacity of the sinks is 37 MtCO2/y), and to the 
secondary emissions associated with CO2 supply and CO2 sinks. The analysis identifies 
a cost neutral CO2 reduction with a flowrate of 2.8 MtCO2/y (11% of the maximum 
reduction potential). The mini-MAC profile shows a high cost for the options that 
require CO2 supply from NG PP and combustion for utilization in chemicals and fuels 
production. Implementing a hybrid network consisting of renewable energy (shifting to 
solar) and CO2 integration (capturing from high concentration sources and NG PP and 
allocating the emissions to EOR and storage) can reduce the emissions by 17.4 MtCO2/y 
(66% of the maximum reduction potential) at a relatively low cost (35.6 $/tCO2). 
Beyond that abatement level, the expensive pathways are required, and the average 
MAC would rise to 374 $/tCO2 at the maximum achievable level of CO2 reduction.  

  
(a) (b) 

Figure 3 The mini-MAC profile (a) and the estimated cost of optimal CO2 reduction (b) 

To verify the results of the analysis, the design is performed for: a network that achieves 
a cost-neutral CO2 reduction, a network corresponding to the maximum CO2 reduction 
before the aggressive rise in the cost, and a network with the ultimate CO2 reduction 
that can be achieved with the considered options. The CO2 reduction levels for the three 
different targeted networks were determined from the total cost profile, and they were 
used as the CO2 reduction constraints in the described optimization model. The 
optimization model minimizes the cost by determining the optimal CO2 allocation 
between sources and sinks and the energy contribution of each power option. The 
design results for the three targeted systems are shown in Figure 4. The costs of the 
detailed designs for the three cases validated the results obtained from the analysis, with 
a slight marginal error (up to 2%). Hence, the proposed approach provides a systematic 
methodology for identifying cost-optimal CO2 reduction by implementing simple high-
level analysis to determine the expected costs, and to plan the designs of the optimal 
networks, and validate their outcomes.  

4. Conclusions 
This work presented a comprehensive Process Systems Engineering approach for 
planning and designing cost-optimal CO2 abatement networks considering CCUS and 
RE options through analysis and design. The application of the method to a case study 
showed how the analysis of the system can be used to validate the results obtained from 
the design procedure and to understand the optimization solutions in the context of 
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achieving affordable CO2 emissions reduction. Future work will analyze the errors and 
deviations in both approaches and their impact under various uncertainties.  

 
Figure 4 Three designs for the CO2 abatement network with different levels of CO2 reduction 
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Abstract 

Considering the un-declining emissions of CO2, which is a major contributor to global 

warming, carbon capture and utilisation (CCU) has been promoted as a potential CO2 

reduction pathway, generating economic benefits and reduced environmental burdens. 

The integration of CCU with power plants and chemical industries drives the potential of 

adapting a CO2 capture and utilisation scheme. Chemical synthesis such as gas-to-liquids 

(GTL) process using the Fischer-Tropsch technology is a promising pathway in this 

configuration. The objective of this study is to assess the techno-economic-environmental 

viability of maximising the production of wax, diesel, gasoline and LPG in an FT-GTL 

plant, while optimizing the utlisation of different variables such as steam, oxygen, CO2, 

and the syngas recycle to purge ratio. The effect of reforming techniques and syngas 

recycle ratio on the production capacity are analysed upon supplementing the process 

with additional CO2 at a range of 1000-2000 t/d. The methodology is based on the 

maximum production of syngas in the reforming units, which include steam-based 

methane reforming (SMR) and oxygen/steam-based auto-thermal reforming (ATR). 

Aspen HYSYS is used to model the GTL production flowsheets. The results demonstrate 

a significant improvement in the total refined products capacity for all scenarios based on 

variable function of raw material flow rate of CO2, steam, oxygen and split ratio of syngas 

to the purge. The sensitivity analyses demonstrate the feasibility of the ATR and SMR 

options to provide significant enhancement when integrated with CO2. The total refined 

product of hydrocarbons increase significantly when the decision variables are optimized. 
 

Keywords: SMR, ATR, CO2 Utilisation, GTL, CAPEX, OPEX, Optimisation 

1. Introduction 

Greenhouse gas (GHG) emissions are one of the most considerable environmental 

concerns of the recent era and are a leading cause for global warming, where CO2 is a 

major contributor (IEA, 2018). The concentration of CO2 in the atmosphere can be 

reduced through applying carbon capture and utilisation (CCU) processes. The Gas-to-

Liquid (GTL) process is one example of an application that can accept CO2 as a feedstock 

to enhance its product output (Al-Yaeeshi et al., 2020). Incidentally,  McGregor (2019) 

stated that the CO2 can replace the CO product in Fischer–Tropsch synthesis within the 

GTL process. Although, there are challenges for the introduction of CO2 as feedstock in 

the FTS process, there are economic and environmental benefits in utilising the otherwise 

waste CO2. 

The main function of the GTL process is the conversion of natural gas (NG) into liquid 

refined products using the intermediate carbon monoxide (CO) and hydrogen (H2) rich 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50023-3 
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syngas. The long chain hydrocarbon products from the FT reactor include wax, diesel, 

gasoline and LPG at a reduced aromatic and sulphur content, thereby enhancing 

environmental compliance. Therefore, the synthetic fuels are considered a relatively more 

environmentally friendly array of  products (Shell, 2019). The GTL production line 

comprises of five major units: pre-reforming, reforming, FT synthesis, product upgrading 

and fractionation. It begins by converting the natural gas into synthesis gas via various 

possible reforming reactions. The long chain hydrocarbons are then synthesised in the FT 

reactor, and subsequently treated in the upgrading section using H2. Finally, in the 

fractionation column the refined products are separated. The economics of the GTL plant 

is high due to the costs of the FTS, and the efficiency required to produce a high stability 

ratio of H2 and CO (syngas) (Al-Sobhi et al., 2021).  

The CO2 can be introduced as a feedstock or as recycled stream to influence the chemical 

equilibrium in the reforming unit and enhance syngas quality. Accordingly, the key 

parameters required in an optimisation problem include; reactor model design, operating 

conditions, and the total feed of CO2 quantity, where by each component directly 

contributes to the enhancement of the product and the syngas H2:CO ratio. Ekwueme et 

al. (2019) assessed the economics of a GTL plant considering an autothermal reforming 

model (ATR) and a steam/CO2 reforming model, demonstrating positive economics of 

GTL process relative to other gas conversion technologies. Moreover, the steam/CO2 

reforming model is better performing from an economic perspective than the ATR in a 

small scale plant. Marchese et al. (2021) assessed the economic performance of direct air 

capture to the FT model, and maximised CO2 conversion into synthetic chemicals, with a 

focus on wax. Furthermore, the recirculation of the FT off-gas was studied to enhance the 

performance, demonstrating a high system efficiency with a maximum carbon dioxide 

conversion at approximately 68.3 %. 

CO2 utilisation within GTL process has been studied by Al-Yaeeshi et al. (2019) and Al-

Yaeeshi et al. (2020) to evaluate the efficiency of integrating the CO2 into the steam 

methane reformer (SMR) and Auto-Thermal reformer (ATR). With the objective of 

maximising the production of wax, diesel, gasoline and LPG, this study analyses from a 

techno-economic-environmental perspective, the effect of reforming techniques, steam 

and oxygen demands and syngas recycle to purge ratio on the production capacity upon 

supplementing the FT-GTL process with CO2 at the range of 1000-2000 t/d. A model is 

developed to assess different ATR and SMR reforming techniques within the GTL 

process. The CO2 sink considered in this study is the Oryx GTL plant located in state of 

Qatar, which is configured with an ATR reformer with a natural gas feed of 330,000 cubic 

feet per day  (QP, 2018). The feedstock consists of natural gas and steam with oxygen in 

the case of ATR and steam only in the case of SMR. The oxygen enters a Gibbs reactor, 

where natural gas is reformed to mainly CO and H2. The purification process of syngas 

occurs prior to the FT unit to ensure high production of hydrocarbon molecules. Further 

purification is applied for the effluent from the FT unit to separate water and reprocess 

the unreacted CO and H2. Subsequently, the hydrocarbon flow is sent to the upgrading 

unit, in which hydrogen is used to crack the longer-chain carbon molecules into smaller-

chain hydrocarbons. Finally, the hydrocarbons are fractionated into wax, diesel, gasoline 

and LPG while the remaining stream is recycled to hydrocracking section.  
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2. Methodology 

This study introduces a simulation flowsheet of the FT-GTL process integrated with CO2 

as a feedstock to maximise the production of wax, diesel, gasoline and LPG. It assumes 

the raw feed CO2 is pure at the required operating parameters of GTL plant. The model 

is developed based on the raw data and ranges listed in Table 1 by using Aspen HYSYS-

V9. 

 

Table 1. Model raw data 
Parameter NG Feed CO2  O2 (ATR) Steam (ATR) Steam (SMR) 

Flow (T/d) 1.54 x 104 1-2 x 103 1.5-2 x 104 2-5 x 103 1-9 x 104 

T (C) 25 150 144 500 500 

P (bar) 1 25 25 25 25 

 Hydrocracking FT Reformer Fractionator Split Ratio 

T (C) 345 250 1050 Top P: 1 bar (0.7-1)% 

P (bar) 80 25 23 Bottom P :1.5 bar  

 

Various scenarios are studied depending on the GTL plant capacity, reformer type and 

CO2 feedstock rate. The plant capacity is designed to process 15372 ton/d of NG feedstock 

to produce 34000 bbl/day of liquid hydrocarbons through dual trains. The molar oxygen 

to carbon ratio (O2/C) is 0.6, and steam to carbon ratio (S/C) is 0.4 in the ATR reformer 

base scenario. In the case of the SMR reformer, the steam to carbon ratio is 3. The feed 

rate range of CO2 for both reformers is varied between 1000-2000 ton/d to demonstrate 

the enhancement profile in the production of liquid hydrocarbons. Aspen HYSYS is used 

to assess the variations in each operating parameter. Results of the sensitivity analyses 

are used to construct regression models relating total refined products and H2:CO ratio in 

syngas to changes in each operating parameter. The functions of the total refined products 

and H2:CO ratio in syngas for each operating parameter are employed, where the 

weighted average of these functions is calculated to characterise the objective functions 

of the proposed optimisation model. The singular objective function of total refined 

products and H2:CO ratio in syngas is then maximised to produce the optimal decision 

variables for each objective.  

Variables:  

ṁ𝑇𝑜𝑡𝑎𝑙: Total hydrocarbons production rate (t/d) 

ṁ𝐿𝑃𝐺: LPG production rate (t/d) 

ṁ𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 : Gasoline production rate (t/d) 

ṁ𝐷𝑖𝑒𝑠𝑒𝑙 : Diesel production rate (t/d) 

ṁ𝑊𝑎𝑥: Wax production rate (t/d) 
H2

CO
: Molar ratio of hydrogen to carbon monoxide (oC) 

Decision variables:  

ṁ𝑠𝑡𝑒𝑎𝑚: Steam flowrate (t/d) 

ṁ𝑂𝑥𝑦𝑔𝑒𝑛: Oxygen flowrate (t/d) 

ṁ𝐶𝑂2 : CO2 flowrate (t/d) 

SR: split ratio of syngas to the purge (%) 

Objective function:  
Maximise: ṁ𝑇𝑜𝑡𝑎𝑙 = ṁ𝐿𝑃𝐺 + ṁ𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 + ṁ𝐷𝑖𝑒𝑠𝑒𝑙 + ṁ𝑊𝑎𝑥   (1) 

Maximise: 
H2

CO
        (2) 

Constraints: As illustrated in Table 1 
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3. Results 
The output of sensitivity analyses demonstrates a variation in the rates of refined products 
with the changes in CO2, O2, steam, and recycle ratio. Figure 1 illustrates the effect of 
steam variation for ATR and SMR cases. The total refined products decreases with the 
increase in steam rate indicating optimum values at 21,500 and 2500 t/d for SMR and 
ATR, respectively while the H2:CO ratio increases. 

 
Figure 1: Effect of steam on total refined products and H2:CO ratio for (a) SMR and (b) ATR. 

The effect of CO2 injection rate illustrated in Figure 2, demonstrates that the total refined 
products increases with the increase in CO2 injection rate indicating an optimum value at 
1900 t/d for ATR and continuous increasing trend for SMR, while the H2:CO ratio 
decreases indicating more generation of CO through the equilibrium shift reaction. 

 
Figure 2: Effect of CO2 injection on total refined products and H2:CO ratio for SMR and ATR. 

The variation of the split ratio of syngas recycle to FT reactor and purge stream illustrated 
in Figure 3a indicates that the total refined products are maximised at around 0.95 ratio 
with no pressure build up issues. The variation on oxygen rate (Figure 3b) applicable to 
the ATR indicates an optimum value at 18,000 t/d. 
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Figure 3: Trends of (a) split ratio variation for SMR and ATR and (b) oxygen flowrate for ATR. 

 
Figure 4: Optimal CO2 source-sink allocation for (a) scenario 3 and (b) scenario 4. 

 
Figure 5: Results of the techno-economic-environmental assessment. 

Plotting the two competing functions together as in Figure 4 indicates a high production 
for gasoline at higher H2:CO ratio of approximately 3.9-4 compared to 3.8 for diesel and 
wax in the ATR case. Whereas, the SMR case revealed different schemes where the wax 
is maximised at a higher H2:CO ratio of approximately 3.9-4.5 compared to 3 for diesel 
and gasoline. In summary, the optimization problem for the ATR case indicates an oxygen  
requirement rate of 18000 t/d, steam rate of 2500 t/d, CO2 injection rate of 1900 t/d, a 21 
bar FT pressure and a 0.97 split ratio. Whereas, in the case of the SMR, the optimization 
problem reveals a steam rate requirement of 20000 t/d, continuously increasing CO2 
injection trend, a 25 bar FT pressure, and a 0.98 split ratio. Furthermore, in both the ATR 
and SMR, the steam rate has a significant impact on the system. The techno-economic-
environmental assessment demonstrates an improvement in the net profit per products for 
both ATR and SMR cases, and a reduction in the environmental emissions for the ATR 
case as illustrated in Figure 5 compared to the study conducted by Al-Yaeeshi et al. 
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(2020). This is associated with a slight increase in the capital cost due to the increased 

capacity and a reduction in operating costs, thus indicating a reduction in the requirement 

of utilities. This provides a substantial assessment to enhance the entire process efficiency 

and optimise the total capacity of refined products. 

4. Conclusions 

The assessment in this study is applied to two different GTL reforming technologies, 

which are the ATR and SMR. The integration of captured CO2 with the FT-GTL process  

demonstrates a significant enhancement in the production of refined products. The results 

of the sensitivity analysis demonstrate that the wide range of variables impact the total 

refined hydrocarbon products, namely LPG, Gasoline, Diesel, and Wax. The variables 

applied in the assessment are steam, CO2, oxygen, and split ratio of syngas recycle to FT 

reactor and purge stream for the ATR and SMR cases. The output in both cases detail 

optimal operating values that result in the significant enhancement in the final 

hydrocarbon production. The highest impact in both cases is with steam injection. Future 

studies should include the computation of the energy output / input, impact of CO2 price 

on the techno-economic recycle of hydrogen and economic viability of hydrogen 

integration from different sources.  
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Abstract 

Recycling ionic liquids (ILs) from dilute aqueous solutions is essential for their 

applications in both labs and industries. In this work, an efficient hybrid process scheme 

that combines aqueous two-phase extraction (ATPE) and distillation operating at their 

highest efficiencies is proposed for the recovery of ILs from dilute aqueous solutions. 

To find high performance salting-out agents for ATPE, an optimal IL-based aqueous 

biphasic systems (ABS) design method is employed. In this optimal design method, a 

machine learning (ML)-based model, i.e., artificial neural network (ANN)-group 

contribution (GC) model, is applied to predict the phase equilibrium behaviours of IL-

based ABS. As a proof of the concept, results of the recovery of two hydrophilic ILs 

from their aqueous solutions are presented. 

Keywords: IL recovery, Hybrid process scheme, ATPE, Machine learning, ABS. 

1. Introduction 

Ionic liquids (ILs) as innovative fluids have received wide attention in both academia 

and industries due to their unique properties such as negligible vapor pressure, non-

flammability, wide electrochemical windows, excellent catalytic activities. Great efforts 

have been made to facilitate their applications in industry. However, currently there are 

little industrial processes employing ILs mostly because their relatively high costs in 

comparison with conventional solvents and our limited understanding of their 

environmental impacts. For example, large volumes of dilute aqueous IL solutions will 

be produced during the dissolution and regeneration of cellulose when using ILs as 

solvents. The disposal of these aqueous IL solutions will directly cause the loss of these 

high value solvents and this may even result in severe environment issues due to the 

toxicity and degradation of the disposed ILs. Both economic and environmental 

concerns of using ILs can be offset to some extent if they are efficiently recycled.  

To date, various technologies including distillation, extraction, adsorption, membrane 

separation, aqueous two-phase extraction (ATPE), crystallization, electrodialysis and 

external force field separation have been proposed for the recovery/recycling of ILs 

after their application (Zhou et al., 2018). Each separation technology described above 

has its own advantages and shortcomings. Currently, distillation and extraction are two 

of the most widely studied separation approaches for the recovery/recycling of ILs. Due 

to the fact that most ILs have very low volatility, distillation is usually used for the 

recovery of ILs from volatile substances, while extraction is preferred in the case of 

separating ILs from non-volatile or thermally sensitive components. When recovering 

ILs from dilute aqueous solutions, however, distillation method has an extremely low 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50024-5 
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thermal efficiency since large volumes of water need to be evaporated, while extraction 

approach demands a large amount of solvent for achieving a high recovery yield. On the 

other hand, ATPE that based on the formation of the aqueous biphasic systems (ABS), 

provides an alternative pathway for recovering ILs from dilute aqueous solutions. This 

is due to the fact that it allows the ILs to be efficiently concentrated or recovered in the 

IL-rich phase with the addition of a small amount of salting-out agent (Ventura et al., 

2017). However, further purification process such as distillation is generally still 

required after aqueous two-phase extraction due to the fact that the IL purity in the IL-

rich phase is not high enough. On the other hand, hybrid process schemes, which 

combine processing units operating at their highest efficiencies to perform one or more 

process tasks, are being considered as promising innovative and sustainable processing 

options (Chen et al., 2018). With this concept, a hybrid process scheme combining 

ATPE and distillation method is proposed for the recovery of ILs from their dilute 

aqueous solutions. In this hybrid process scheme, salting-out agents with high ABS 

forming ability are identified for ATPE through an optimal design method integrating a 

machine learning (ML)-based model into the computer-aided design technique. Results 

of two case studies are presented to highlight the hybrid process design method 

proposed in this work. 

2. Design method 

2.1. ANN-GC model 

The ability to predict phase equilibrium behaviours of IL-based ABS is essential for its 

early design. However, thermodynamic models that can provide such predictions are 

still not available for these aqueous systems due to their high complexity. Fortunately, a 

machine learning-based nonlinear model proposed in our recent work provides the 

possibility of describing IL-based ABS (Chen et al., 2021a). This model combines the 

artificial neural network (ANN) algorithm and the group contribution (GC) method. 

Together with the system’s’ temperature and the mass fraction of IL, 34 IL functional 

groups and 37 salting-out agent functional groups are used as inputs (size of 73 x 1) in 

this ANN-GC model. The input layer reads the structure information of IL-ABS and 

then the hidden layer transfers and delivers this input information to the output layer 

where the phase composition of IL-based ABS is quantified, as shown in Figure 1. A 

combination of tansig transfer function (Eq. (1)) in the hidden layer and purelin transfer 

function ((Eq. (2)) in the output layer was applied. 
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Figure 1. Structure of the three-layer artificial neural network (ANN) with an input 

vector size of 73 x 1. 
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To train and test this ANN-GC model, 17,449 experimental data points covering 171 

IL-based ABS at different temperatures (278.15K-343.15K) from numerous literatures 

were collected. This ANN-GC model gives a mean absolute error (MAE) between the 

experimental and model-calculated mass fraction of salting-out agent of 0.0175 and a 

coefficient of determination (R2) of 0.9316 for the 13,789 training data points, and for 

the 3,660 test data points they are 0.0177 and 0.9195, respectively. These results show 

that this ANN-GC model can well describe the IL-based ABS. 

2.2. Optimal salting-out agent design 

The separation performance of an ATPE largely depend on the ABS forming ability of 

the used salting-out agents. The formation and stability of IL-based ABS is not only 

dependent on the structures of ILs such as cation types, lengths of alkyl chain and the 

anions, they are also highly associated with the type of salting-out agents.36 ABS with 

different ILs and salting-out agents at different temperature generally present different 

phase behaviors, it is challenging to find optimal ABS for the recovery of various ILs. 

Due to the number of potential IL-ABS being so large, it would be time consuming and 

expensive to use the trial-and-error approach to search for the optimal ABS. On the 

other hand, the optimal design of compounds/systems through manipulating properties 

at the molecular level is often the key to considerable scientific advances and improved 

process systems performance (Alshehri et al., 2020). For IL-based ABS , the optimal 

design method that integrates the ANN-GC model into the computer-aided design 

technique proposed in our most recent work is ideally suited as salting-out agents with 

high ABS forming ability can be rapidly and reliably identified for different IL aqueous 

solutions (Chen et al., 2021b).  

When tailoring an ABS for the recovery of ILs from aqueous solutions, the IL should be 

as much as possible to be concentrated in the IL-rich aqueous phase, while the salting-

out agent and water should be at the other phase. As we know, the closer to the axis 

origin a binodal curve is, the greater is the ability of a salting-out agent to phase split, 

the tie-line length (TLL) and slope of the tie-lines (STL) are able to verify trends in the 

partition coefficients or recovery efficiencies of ABS. 

( ) ( )
2 2

T B T B

S S IL ILTLL x x x x= − + −  (3) 

T B

IL IL
TL T B

S S

x x
S

x x

−
=

−
 (4) 

where the supercrits T and B designate the top phase (IL-rich phase) and the bottom 

phase (salt-rich phase), respectively, while the subscripts S and IL denote the mass 

fraction x of the salting-out agent and of the IL. 
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With the use of an objective function combining TLL and STL, the optimal design of IL-

based ABS is formulated as a MINLP optimization problem mathematically descried by 

Eq. (5). In IL-based ABS, the specific IL is denoted by a vector HIL = [H1
IL, H2

IL … 

H34
IL]. The first 5 elements H1-5

IL are integer variables describing the number of cation 

substituents. and the rest elements H6-34
IL are binary variables denoting the existence of 

cations and anions. On the other hand, each generated salting-out agent is represented 

by a vector y = [y1, y2 … y37]. The first 26 elements y1-26 are binary variables describing 

the existence of salt anions, carbohydrates, amino acids. The other elements y27-37 are 

integer variables denoting the number of salt cations. The best performance salting-out 

agent and its inputs can be determined for specific IL aqueous solutions (e.g., specific 

temperature Tas, IL structure HIL and IL mass fraction in IL-water mixture Gas) by 

maximizing f (z, y, Tas, HIL, Gas) that subjects to a series of constraints on salting-out 

agent structure, mass balance and phase equilibria. 

( ),max ( ) , , , ,r as IL as

z y TLTLL S f z y T H G − =  

. .s t  salting-out agent structural constraints 

 mass balance constraints 

 
phase equilibria constraints 

 

(5) 

where vector z represents a continuous variable describing the ratio of added salting-out 

agent to the original IL-water mixture and r is an adjustable parameter describing the 

degree of influence from TLL and STL. 

2.3. Hybrid recovery process scheme  

The novelty of a hybrid process scheme is that each involved processing unit can 

operate at their highest efficiencies. The result is same task performed at much less 

energy inputs and/or lower cost. As mentioned above, distillation method has an 

extremely low thermal efficiency for recovering ILs from their dilute aqueous solutions, 

while ATPE approach cannot meet the final product specification. In such a case, hybrid 

process scheme combining ATPE and distillation is ideally suited as most water can be 

easily removed by adding a certain amount of salting-out agents and the rest of water 

can be distilled with a low energy input, as shown in Figure 2.  

Column

 IL

Salting-out agent

IL dilute aqueous solution

ATPE

IL concentrated 
aqueous solution

IL + H2O

H2O

Salting-out agent 
+ 

H2O
Salting-out agent 
aqueous solution

 

Figure 3: Hybrid process scheme for the recovery of ILs from dilute aqueous solutions. 
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3. Case studies 

1-butyl-3-methylimidazolium chloride ([C4mIm][Cl]) is a highly efficient direct solvent 

for the dissolution and regeneration of cellulose and large volumes of dilute IL aqueous 

solutions are produced during the precipitation of the regenerated cellulose.12,13 

Therefore, efficient recycling of [C4mIm][Cl] from these aqueous solutions is a critical 

step for the commercialization of this IL-based pretreatment technology. n-

butylpyridinium trifluoromethanesulfonate ([C4Py][TfO]) is another well-known 

hydrophilic IL that has potential industrial applications and it’s also important to 

recover them from aqueous solutions during these applications. In this section, the 

proposed hybrid process design method will be used to recover [C4mIm][Cl] and 

[C4Py][TfO] from their aqueous solutions. First, two salting-out agents NH4)2SO3 and 

KH2PO4 are, respectively, identified for [C4mIm][Cl]- and [C4Py][TfO]-based ABS 

formation by solving the MINLP problems in the modelling system GAMS 24.4.6, 

where a deterministic global optimization solver, Lindoglobal, is applied. As shown in 

Figure 3a and 3b, both (NH4)2SO3 and  KH2PO4 have better ABS forming ability than 

their counterparts K2CO3 (Zafarani-Moattar et al., 2010) and (NH4)2SO4 (Guo et al., 

2020) reported in the literature, indicating the availability of this optimal salting-out 

agent design method.  

 

(a) (b) 

Figure 3: Ternary phase diagrams for ABS composed of (a) [C4mIm][Cl]-H2O-

K2CO3/(NH4)2SO3 and (b) [C4Py][TfO]-H2O-(NH4)2SO4/KH2PO4. 

For the recovery of 10 wt% [C4Py][TfO] from aqueous solutions, the ABS of 

[C4mIm][Cl]-H2O-(NH4)2SO3 gives an IL recovery efficiency of 95.0 wt% and a 

salting-out agent input of 2.36 kg/kg IL recovery, and for the ABS of [C4Py][TfO]-H2O-

KH2PO4 they are 95.6 and 1.81, respectively.  

After removing most water by APTE, the IL concentrated aqueous solution is sent to the 

distillation column, where purified IL can be obtained at the bottom and the rest of 

water is distilled from the top. In this work, the detailed process simulations of 

distillation column are performed in Aspen Plus. By far, ILs are still not included to the 

component database in Aspen Plus and therefore they should be defined as pseudo-

components. To do this, properties of ILs such as molecular weights, physical properties 

and critical properties need to be specified. Likewise, information of the thermodynamic 

method for the IL containing system should also be specified. In this work, the physical 

property models are taken directly from our previous work (Chen et al., 2019) and 
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critical properties are calculated from the fragment contribution-corresponding states 

method proposed by Huang et al. (2013). On the other hand, UNIFAC model is selected 

as the thermodynamic method and model parameters including group volume 

parameters, surface area parameters and interaction parameters are taken from the 

published works (Song et al., 2020). Table 1 presents the process performance of both 

hybrid process scheme (Scheme 1) and pure distillation process (Scheme 2). Clearly, the 

hybrid process scheme demands much less energy input than that of the pure distillation 

process. However, a certain amount of salting-out agent is needed for ATPE in the 

hybrid process scheme. Nonetheless, the hybrid process scheme provides a good 

alternative for recovering ILs from dilute aqueous solutions due to its excellent energy 

performance. 

Table 1: Energy performance of hybrid process scheme and pure distillation process. 

IL aqueous solutions [C4mIm][Cl] solution [C4Py][TfO] solution 

Process scheme Scheme 1 Scheme 2 Scheme 1 Scheme 2 

Salting-out agent input 

(kg/kg IL recovery) 

2.36 0 1.18 0 

Energy input  

(kW/kW IL recovery) 

0.16 6.86 0.082 6.62 

4. Conclusions 

A hybrid process scheme that combines ATPE and distillation method has been 

proposed for the recovery of hydrophilic ILs from their dilute aqueous solutions. In this 

hybrid process scheme, salting-out agents with high ABS forming ability are identified 

for ATPE through an optimal design method integrating the ANN-GC model into the 

computer-aided design technique. Two case studies are performed to test this hybrid 

design method. In both cases, the salting-out agents identified by the optimal design 

method have better ABS forming ability than their counterparts reported in the literature, 

and the hybrid process scheme present much better energy performance than the 

recovery process only using distillation unit. 
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Abstract 

In the process industry, non-ideal mixtures are mainly separated by solvent-based 

separation, such as extraction, extractive distillation, and azeotropic distillation. For these 

separation methods, the separation barrier is overcome by adding an external component 

(solvent/entrainer) to the system. Much effort has been devoted to optimally design/select 

the solvent through screening different solvents’ physical properties. It is also necessary 

to account for separation process properties such as energy consumption, number of 

stages, etc., during solvent selection. In this work, a short-cut evaluation model that can 

quickly assess the solvents’ physical/mixture properties and process properties has been 

applied for designing an optimal separation-based process. Four case studies 

(acetone/chloroform, acetone/methanol, benzene/cyclohexane, and methanol/methyl 

acetate) have been considered. The results reveal that given a list of potential solvents, 

the short-cut evaluation model can correctly predict the process performance.  

Keywords: Solvent-based separation; optimization; solvent selection. 

1. Introduction 

Solvent-based separation is a class of processes where non-ideal mixtures are purified 

based on their solubility difference (extraction) or vapor-liquid equilibrium difference 

(extractive distillation and azeotropic distillation). Typically, a third component 

(solvent/entrainer) is added to bypass the separation barrier and facilitate the separation. 

The effectiveness of this separation is highly dependent on the solvent. Different solvents 

lead to different process designs and eventually influence the overall capital/operating 

cost. Many solvent selection methods have been proposed to select the optimal solvent. 

Shen et al. (2015) proposed a solvent evaluation and ranking algorithm, which selects the 

solvents based on the summation of five important physical properties, such as boiling 

point, selectivity, molecular weight, etc. Cignitti et al. (2019) presented an optimization 

model to design the solvent by maximizing the separation driving force. Kossack et al. 

(2008) pointed out that solvent screening based on physical properties alone may result 

in unfavorable solvent choices. A more comprehensive solvent selection method, 

rectification body method (RBM), was proposed by Kossack et al. (2008), which can 

accurately calculate the process properties, like minimum solvent flowrate and minimum 

energy demand. However, this method is computationally demanding. 

It is necessary to develop a fast and reliable solvent selection method so that a large 

number of solvents can be evaluated efficiently. A short-cut solvent evaluation model is 

presented in this paper, which takes both solvent physical properties and separation 
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process properties such as minimum energy consumption, the minimum number of 

stages, etc., into account during solvent selection. Given a list of potential solvents, the 

model can quickly evaluate the performance of the different solvents and give 

recommendations on the best option. The paper includes two parts: 1) solvent evaluation, 

2) evaluation results validation. In the solvent evaluation, the model is applied to rank a 

list of solvents. The ranking results are validated by rigorous process simulation models 

where the operating/design variables are identified via derivative-free optimization. 

2. Methodology  

2.1. Solvent short-cut evaluation method 

The solvent evaluation model aims to quickly and reliably assess different solvents based 

on various performance indicators. This model considers both the process properties and 

physical properties in the evaluation process. Firstly, a short-cut calculation model, which 

is based on Underwood and Fenske equations, is applied to calculate the process 

properties like minimum reflux ratio and the number of stages of a column. The 

Underwood and Fenske equations assume that the system has constant relative volatility. 

A typical extractive distillation system includes two columns, where the second column 

is simply solvent recovery distillation. Therefore, for the second column, the Underwood 

and Fenske equations can be applied to calculate the minimum number of stages and 

reflux ratio. However, these two equations cannot be directly applied to the extractive 

distillation column. Figure 1 shows the vapor-liquid equilibrium curve across the 

extractive distillation column. The extractive distillation column is divided into three 

sections: rectification, extraction, and stripping, and the relative volatility is different for 

each section, which means this change in relative volatility across the sections has to be 

accounted for. Here, we assume that the relative volatility is constant for each section, so 

the Fenske equation can be used in each section separately to calculate the minimum 

number of stages. The minimum reflux ratio is calculated when the operating line 

intersects with the VLE curve. In this way, the column minimum reboiler duty can be 

calculated by using the stage enthalpy balance. The extractive distillation column is 

described by Equations (1) – (6), where Equation (1) is only applied for ternary systems 

that do not have a separation boundary (Gerbaud and Rodriguez-Donis, 2014). For ternary 

systems with a separation boundary, such as the acetone/chloroform/ethylene glycol 

system, one can assume the distillate/bottom composition and calculate the minimum 

solvent flowrate through mass balance. 
 

(
𝐹𝐸

𝐹𝐴𝐵
)

𝑚𝑖𝑛
=

(𝑅𝑅+1)𝐷

𝐹𝐴𝐵
×

(𝑥𝑃𝐴−𝑦𝑃𝐴
∗ )

(𝑥𝐸−𝑥𝑃𝐴)
+

𝐷(𝑥𝐷−𝑥𝑃𝐴)

𝐹𝐴𝐵(𝑥𝐸−𝑥𝑃𝐴)
  (1) 

𝑁𝑚𝑖𝑛,𝑖 =
𝑙𝑔[(𝑥𝑖, 𝑙/𝑥𝑖,ℎ  )/(𝑥𝑖+1,𝑙/𝑥𝑖+1,ℎ)]

lg (𝛼𝑙ℎ,𝑖)
, 𝑖 = 0,1,2 (2) 

𝑁𝑚𝑖𝑛 = ∑ 𝑁𝑚𝑖𝑛,𝑖

2

𝑖=0

 (3) 

𝑅𝑚𝑖𝑛,𝑗 =
𝐹𝐸𝑥𝑗,𝑙 + 𝐷(𝑥𝐷 − 𝑦𝑗,𝑙)

𝐷(𝑦𝑗,𝑙 − 𝑥𝑗,𝑙)
, 𝑗 = 1, 2 (4) 

𝑅𝑚𝑖𝑛 = 𝑚𝑎𝑥{𝑅𝑚𝑖𝑛,1, 𝑅𝑚𝑖𝑛,2} (5) 

𝑄𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟,𝑚𝑖𝑛 = (𝑅𝑚𝑖𝑛 + 1)𝐷𝐻𝐷,𝑉 + 𝑊𝐻𝑊 − 𝐻𝐸𝐹𝐸 − 𝐻𝐴𝐵𝐹𝐴𝐵 − 𝑅𝑚𝑖𝑛𝐷𝐻𝐷,𝐿 (6) 
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In the model, FE is the solvent/entrainer flowrate, FAB is the raw material flowrate, RR is 

the predefined reflux ratio for solvent flowrate calculation. D and W are the distillate and 

bottom flowrates. xD and xW are the distillate and bottom compositions. xE is the inlet 

solvent composition. xPA is the minimum solvent composition that breaks the azeotropes 

after adding the solvent, and component A is the lightest component in the system. yPA* 

is the vapor composition in equilibrium with xPA. Nmin,i is the minimum number of stages 

in the ith section. xi,l and xi,h are the light and heavy component compositions in the ith 

section. αlh,i is the geometric relative volatility of the ith section. xj,l and yj,l are the light 

compound liquid and vapor compositions at the first (j=1) and last (j=2) stage of the 

extractive section. Rmin is the minimum reflux ratio. HD,V are HD,L are the vapor and liquid 

enthalpies of the distillate product. HE and HAB are the enthalpies of entrainer and binary 

raw materials. The inlet is assumed to be at boiling point (q = 1). After analyzing different 

extractive distillations systems, x1,E is usually between 60 % to 80%, x2,E is close to x1,E, 

and the difference is in the range of 5%. 

 

Figure 1. VLE plot of acetone/methanol/water extractive distillation. (x0, x1, x2, x3 – boundary 

composition in each section). 

For each solvent, we calculate the minimum reboiler duty, number of stages, and reflux 

ratio by applying the proposed calculation method. Eight properties, including six process 

properties, e.g., the minimum number of stages, reboiler duty and reflux ratio, and two 

physical properties, e.g., solvent flowrate and boiling point, are considered in the 

evaluation model. These properties are selected because they directly influence the 

process capital and/or utility cost. Given N number of potential solvents, for each 

property, a value from one to N is assigned (where one is given to the best solvent with 

that property). Finally, the solvents are ranked based on summation scores, and the best 

solvent has the overall lowest score. 

2.2. Validation model 

To validate the rankings given by the solvent evaluation method, simulation-based 

optimization is employed to optimally design the extractive distillation setups. The total 

annualized cost, which considers both capital and utility costs, is the objective function. 

The number of stages, inlet stage, and solvent flowrate are the decision variables. A 

generalized form of the optimization problem solved by the simulation-based 

optimization algorithms is given in Equations (7)-(15). 
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𝑚𝑖𝑛: 𝑇𝐴𝐶 =  
𝑖(𝑖 + 1)𝑛

(𝑖 + 1)𝑛 − 1
× 𝐼𝐶 + 𝐴𝑈𝐶 (7) 

𝑠𝑡. 𝐼𝐶 =  ∑ 𝐶𝑜𝑠𝑡𝑗(𝑞𝑠,𝑗)

𝑗

 
(8) 

𝐴𝑈𝐶 = 24 × 300 × ∑ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗(𝑞𝑜,𝑗)

𝑗

 
(9) 

𝑞 =  𝛩(𝐹𝑆, 𝑁𝑘 ,  𝑁𝑘,𝑓𝑒𝑒𝑑 , 𝑁1,𝑆), 𝑘 = 1, 2 (10) 

𝑥𝑚 ≥ 𝑝𝑢𝑟𝑖𝑡𝑦 (11) 

𝐹𝑠,𝐿 ≤ 𝐹𝑆 ≤ 𝐹𝑆,𝑈 (12) 

𝑁𝑘,𝑓𝑒𝑒𝑑, 𝐿 ≤ 𝑁𝑘,𝑓𝑒𝑒𝑑 ≤ 𝑁𝑘,𝑓𝑒𝑒𝑑, 𝑈 (13) 

𝑁𝑘,𝐿 ≤ 𝑁𝑘 ≤ 𝑁𝑘,𝑈 (14) 

𝑁1,𝑆,𝐿 ≤ 𝑁1,𝑆 ≤ 𝑁1,𝑆,𝑈 (15) 

Here, 𝑇𝐴𝐶 is the total annualized cost, 𝐼𝐶 is the investment cost, 𝐴𝑈𝐶 is the annualized 

utility cost, i is interest, n is plant life (n =5 is used in this model), 𝐶𝑜𝑠𝑡j is the investment 

cost of equipment j, 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗 is the utility cost of equipment j, qs,j is the sizing variable for 

equipment j, qo,j is the operating variable for equipment j, 𝑥m is the product purity of 

component m, Θ(FS, Nk, Nk,feed, N1,S) is the process simulation model, FS is the solvent 

flowrate rate, Nk is the number of stages of column k, Nk, feed is the materials feed stages 

of column k, N1, S is the solvent feed stage of the first column, and L and U represent the 

lower and upper bounds. 

 

Figure 2. DFO solving algorithm for validation model. 

To generate stable results that are not influenced by the initial lower and upper bounds, 

an algorithm (Figure 2) is developed to solve the optimization problem. The algorithm 

has two parts: 1) inner loop: given the initial upper and lower bounds of the decision 

variables, the inner loop runs the process simulation, and using a derivative-free 

optimization (DFO) solver, the best design parameters are identified. 2) outer loop: 

according to the identified best design parameters from the inner loop, the lower and 

upper bounds are updated and sent back to the inner loop. The process terminates after 

reaching a stable objective value. 

3. Results and Discussion 

Four separation systems, acetone/chloroform, acetone/methanol, benzene/cyclohexane, 

and methanol/methyl acetate, with their potential solvents, were selected from the review 
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paper by Gerbaud et al. (2019). The short-cut evaluation model and DFO results are listed 

in Table 1. The identified design parameters of the best solvent are listed in Table 2.  

Table 1. Tested evaluation and DFO results. 

Solvents Score TAC, 106$ Solvents Score TAC, 106$ 

Acetone/Chloroform  Acetone/Methanol 

EG 16 0.77 Water 20 3.32 

DMSO 14 0.66 2-Proponal 35 7.6 

o-Xylene 28 1.05 Ethanol 27 6.64 

Benzene  33 1.29 DMSO 14 2.87 

Chlorobenzene  29 0.94 EG 24 4.63 

Benzene/Cyclohexane Methanol/Methyl Acetate 

Dimethyl phthalate 22 0.95 DMSO 13 1.05 

NMP 24 0.76 EG 18 1.11 

Aniline 34 0.97 2-Methoxyethanol 17 0.98 

Sulfolane 19 0.69 - - - 

Furfural 21 0.72 - - - 

 

For acetone/chloroform separation, the short-cut evaluation method ranks the five 

solvents in the following order: DMSO (Dimethyl sulfoxide) > EG (ethylene glycol) > 

chlorobenzene > o-xylene > benzene. The DFO gave a similar TAC order except for 

chlorobenzene and o-xylene. This is because the system has a separation boundary, and 

we have to approximate this separation boundary using calculated residue curves from 

process simulation software. The solvent flowrate of o-xylene is 1.22 times larger than 

chlorobenzene, but it is 1.61 times larger from the DFO results. So, the o-xylene system 

has higher reboiler duty and higher TAC value. The short-cut and DFO results give the 

same order: DMSO > water > EG > ethanol > 2-proponal for acetone/methanol 

separation. For the benzene/cyclohexane case, the short-cut model predicts the following 

order: sulfolane > furfural > dimethyl phthalate > N-Methyl-2-pyrrolidone (NMP) > 

aniline, but the DFO results show that the NMP has better performance than dimethyl 

phthalate. Although the evaluation model correctly represents that the dimethyl phthalate 

system has a lower number of stages, but its high boiling point results in higher column 

temperatures, which requires a furnace. Due to this, the capital cost of dimethyl phthalate 

system is higher than the NMP system. For the methanol/methyl acetate case study, only 

three solvents were selected because of the lack of experimental phase equilibrium data. 

Among these three solvents, the short-cut evaluation method predicts that DMSO has the 

best performance, but the DFO results show that 2-methoxyethanol has better 

performance. The evaluation model shows that the 2-methoxyethanol has a smaller 

number of stages for the extractive column and a higher number of stages for the second 

column, which results in similar capital costs. However, the predicted minimum reboiler 

duty does not correctly represent the utility cost. Two reasons may cause this deviation: 

1) Boiling point, DMSO has higher boiling point than 2-methoxyethanol, so different 

types of utilities have to be used. However, in this model, we rank the properties only 

based on their relative heat duty, and the different types of utilities are not considered. 2) 

Boundary composition (x1, x2). The boundary composition influences the sections’ 

relative volatility and thus influences the calculated reboiler duty. The same x1,E value is 

used in all cases, but DFO proves that DMSO x1,E is equal to 60%, while 2-

methoxyethanol, EG has similar x1,E values around 70%. 
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Table 2. Design parameters of the identified best solvent for the four separation systems. 

 Acetone/ 

chloroform 

Acetone/ 

methanol 

Benzene/ 

cyclohexane 

Methanol/ 

methyl acetate 

Best identified solvent DMSO DMSO Sulfolane 2-methoxyethanol 

FAB (equimolar), kmol/h 100 540 100 100 

T1 

N1 36 41 25 49 

N1,f 13 27 13 37 

N1,s 3 3 2 6 

T2 
N2 13 19 13 23 

N2,f 4 14 4 8 

Fs, kmol/h  111 399.6 88 263 

4. Conclusions 

Solvents can alter the relative volatility of mixtures and therefore the selection of the 

optimal solvent impacts extractive distillation design and operation. The best solvent has 

to balance the process capital and utility cost so that the annualized cost is minimized. 

This work presents a simple and reliable short-cut evaluation method to assist in solvent 

selection for solvent-based distillation. The proposed method was applied to four different 

extractive distillation systems. By including the process properties in the solvent ranking 

algorithm, the solvent with the best process performance (lower capital/utility cost) is 

identified. The evaluation results were validated by a rigorous design approach where the 

key operating parameters are optimally designed. Both the solvent evaluation and the 

optimized process results demonstrated that DMSO, DMSO, sulfolane, are the best 

solvents for separating acetone/chloroform, acetone/methanol, and benzene/cyclohexane 

azeotrope systems, respectively. The methanol/methyl acetate azeotrope system results 

indicated that the solvent boiling point and the choice of boundary composition might 

highly impact the ranking results, so the ranking algorithm will need to be further 

improved by taking these factors into account. The proposed approach can be applied as 

a first screening of potential solvents with low computational cost and decent screening 

results.  
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Abstract

Ionic liquids (ILs) have recently been considered as alternatives to conventional amine-
based absorbents in post-combustion CO2 capture processes. However, solvent losses by
IL thermal degradation could be more significant than in the case of conventional amine
solvents. In this paper, we propose an advanced process design that uses a thin-film unit
under vacuum to minimize the thermal degradation of solvent during regeneration. We
employ rigorous thermodynamics and rate-based mass transfer models, with robust simu-
lation and optimization capabilities implemented using a pseudo-transient modeling tech-
nique. The impact of solvent thermal degradation on the economic performance of the
IL-based carbon capture process is studied. A comparison to a conventional process de-
sign is presented.

Keywords: carbon capture, flowsheet optimization, ionic liquids, process design,
thermal degradation kinetics

1. Introduction

Recently, ionic liquids (ILs) have gained attention as promising solvents for post-
combustion carbon capture due to desirable properties such as negligible volatility, high
CO2 absorption capacity and low heat of regeneration (Aghaie et al., 2018).

In this work, we consider triethyl-(octyl)phosphonium 2-cyanopyrrolide ([P2228][2-
CNPyr]) as an IL chemical absorbent for CO2 capture because of its high CO2 absorption
capacity, moderate reaction enthalpy, superior reversibility, and relatively low viscosity
(Seo et al., 2014). Although it is a promising candidate IL for carbon capture in terms of
these properties, its thermal stability should also be considered because solvent (thermal)
degradation could result in economic losses as well as operational problems (Rao and Ru-
bin, 2002). Our experiments indicate that the thermal degradation rate of [P2228][2-CNPyr]
is comparable to or greater than that of monoethanolamine (MEA), a conventional amine-
based solvent. In addition, given that the bulk price of ILs is expected to be higher (esti-
mated $10/kg) than that of conventional amine solvents (e.g., MEA at $1.5-2/kg) (Ramdin
et al., 2012), the cost associated with solvent loss is particularly important.

Solvent thermal decomposition occurs mainly during solvent regeneration, where the sol-
vent is exposed to high temperatures. A conventional solvent regeneration system (strip-
per and reboiler) has a relatively long liquid residence time (5-10 minutes) (Walters et al.,
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2016; Jung et al., 2018), exposing the solvent to high temperatures for prolonged periods
of time. The thermal degradation of the solvent can be reduced by using a short residence
time with a small liquid hold-up (Alhusseini et al., 1998) at the regeneration temperature.
Thin-film technology can replace such a conventional regeneration system, diminishing
residence times and thus the thermal degradation issue. When thin film units are operated
under vacuum pressure, the regeneration temperature can be lowered even further.

Based on these considerations, we propose a novel flowsheet design for an IL-based carbon
capture process. We then perform economic optimization of the proposed process flow-
sheet using a pseudo-transient optimization framework (Pattison and Baldea, 2014) with a
focus on the economic impact of solvent thermal degradation. The regeneration tempera-
ture and associated liquid residence time are reduced using a thin-film column integrated
with a vacuum compressor. This can significantly reduce the thermal degradation of IL
absorbent and the associated make-up costs compared to the conventional regeneration
system using a reboiler.

2. Flowsheet description

Figure 1 shows the proposed process design for IL-based CO2 capture. The conventional
regeneration system that consists of a stripper and reboiler is replaced with a thin-film unit.
A thin-film unit is composed of a bundle of tubes in a shell. A liquid film flows downward
on the interior vertical surface of each tube and the tube walls are heated by steam on the
shell side. This unit can provide high heat and mass transfer rates due to the large surface
area created by the liquid film. In the case of the proposed carbon capture plant, the liquid
is the rich (i.e., high CO2 concentration) IL solvent. The CO2 is desorbed from the liquid
and leaves at the top of the unit.

Figure 1: Proposed IL-based carbon capture process flowsheet. A conventional system
stripper and reboiler system is replaced with a thin-film unit (shown by the dashed line)
for solvent regeneration.
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The CO2 absorption model and other physical properties for the IL solvent used in this
work ([P2228][2-CNPyr]) are presented in our previous work (Seo et al., 2020). The exper-
imentally measured thermal degradation of this IL solvent can be described by apparent
zero-order kinetics, with an Arrhenius temperature dependence of the rate constant:

m(t)

m(0)
= 1 −

(
k0 exp

(
− Ea

RT

))
t (1)

where m(0) is the initial mass of solvent and m(t) is the mass after time t. The pre-
exponential factor k0 and activation energy Ea are estimated from experimental data to be
k0 = 305.5 h−1 and Ea = 41.8 kJ/mol.

We use a rate-based mass transfer model to describe kinetically limited transport phenom-
ena. A detailed description of the rate-based model for the absorber column and the related
material and energy balances can be found in our previous work (Seo et al., 2020). How-
ever, we modify the mass transfer coefficient and effective area correlations (Song et al.,
2018) to be more suitable for viscous IL solvent flow. For the thin-film unit, the same rate-
based model is used with some modifications. The liquid phase mass transfer coefficient is
estimated using the correlation of Yih and Chen (1982). The mass transfer resistance in the
vapor phase is assumed to be negligible. The mass transfer area per volume is calculated
by dividing the total tube surface area by the overall thin-film column volume. For the
heat transfer rate in the thin-film unit, an additional heat transfer term between the steam
and liquid film is introduced. The heat exchanger model is also based on Seo et al. (2020).
However, the overall heat transfer coefficient and the associated pressure drop models are
modified to use empirical correlations for viscous liquids (Talik et al., 1995). The flooding
point for the thin-film unit is determined using an empirical correlation from Mouza et al.
(2005). Finally, the liquid residence time for each unit (only residence times in the heat
exchanger and the regeneration unit where the solvent operates at high temperature are
considered) is estimated from the ratio of the total hold-up volume to the liquid flowrate.

3. Process economic optimization

The optimization problem is formulated as:

min
π

φ(χ, π, ξ)

s.t. f(χ, π, ξ) = 0

c(χ, π, ξ) ≤ 0

(2)

where the objective function, φ, is the sum of the annualized capital cost (for the absorber,
heat exchanger, compressor, cooler, gas blower, solvent pump, and thin-film unit) and the
operating cost (for heating, cooling, electricity, and solvent make-up) of the IL-based CO2
capture process, f is the flowsheet model described above, and c are process operating
constraints. π are process decision variables, χ are process state variables, and ξ are
process parameters. The decision variables and constraints are summarized in Table 1.
The resulting CO2 capture process flowsheet model is difficult to solve because of its large
size and coupled nonlinear equations. We improve the initialization and convergence of
this complex flowsheet optimization problem using a pseudo-transient modeling technique
(Pattison and Baldea, 2014).
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Table 1: Decision variables and process constraints for process optimization
Component Relevant variables and equations

Decision variablesa F L, L, D, LT, DT, Tabsorber,in, Tthin-film,in, Tsteam, PT

Process constraintsb FV
CO2,in−F

V
CO2,out

FV
CO2,in

≥ 0.9

∆Tappr, min ≥ 1 ◦C
TS ≤ 150 ◦C
0.08 bar ≤ PT ≤ 1 bar
FrV ≤ 0.8Fr∗V

a F L is IL solvent circulation flowrate, L and D are height and diameter
of the absorber, LT and DT are height and diameter of the thin-film unit,
Tabsorber,in and Tthin-film,in are inlet temperatures of the absorber and thin-film
unit, Tsteam is regeneration steam temperature, and PT is pressure of the thin-
film unit.
b The CO2 removal rate is constrained to be at least 90%, the minimum ap-
proach temperature of heat exchanger is constrained to be not lower than 1
◦C, the suction pressure of the vacuum is limited to equal or greater than
0.08 bar, and the thin-film unit is restricted to operate below 80% of the
flooding point.

Figure 2 shows a comparison of optimal process costs between the proposed (thin-film
unit operated under vacuum pressure) and conventional (stripper with a reboiler system
operated under atmospheric pressure) regeneration systems. The flue gas conditions cor-
respond to a natural gas combined cycle power plant (case B31B in James et al. (2019)).
The same cost correlations are used for both systems. In the conventional process, the res-
idence times in the stripper and reboiler are assumed to be 0.1 and 5 minutes, respectively
(Walters et al., 2016).

The absorber cost of the conventional system ($74.4 M/year) is higher than that of the
thin-film system ($38.7 M/year). Also, the optimal absorption temperature is 15 ◦C for
the conventional system whereas it is 30 ◦C for the proposed system. This is because a
smaller mass transfer area for CO2 absorption and higher absorption temperature would be
sufficient to capture the same level of CO2 since the solvent regeneration is more effective
under reduced pressure. The optimal operating pressure for the proposed regeneration
system is found to be 0.41 bara. Therefore, the compressor equipment cost is much higher
for the thin-film case ($51.0 M/year) compared to the conventional case ($18.4 M/year)
because a larger compressor is required to accommodate increased CO2 gas volume at the
reduced operating pressure. However, the CO2 loading in the regenerated IL solvent can
be much lower for the proposed system (0.097 CO2/mol IL) compared to the conventional
system (0.161 mol CO2/mol IL).

A key comparison in the operating costs is the solvent replacement cost. The residence
time in the regeneration system is much smaller in the proposed configuration (thin-film:
1.2 min vs. conventional: 5.1 min). This can be attributed to a small liquid hold-up volume
in the thin-film unit. As a result, the solvent make-up cost related to thermal degradation is
significantly reduced (thin-film: $31.7 M/year vs. conventional: $90.2 M/year). Electric-
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Figure 2: Comparison of process economics between proposed and conventional systems.

ity cost for the compression would be higher for the thin-film system because of operating
under vacuum (thin-film: $16.9 M/year vs. conventional: $11.3 M/year). However, the
solvent cooling cost is higher for the conventional system because of lower absorption
temperature (thin-film: $3.2 M/year vs. conventional: $15.8 M/year). Overall, the process
economic cost is significantly reduced for the proposed system ($227.3 M/year) relative to
the cost for the conventional setup ($271.6 M/year).

4. Conclusions

Solvent thermal degradation can be a significant concern in an IL-based CO2 capture pro-
cess. In this work, we propose a flowsheet configuration that utilizes a thin-film solvent
regeneration unit under vacuum for reducing the regeneration temperature and the associ-
ated liquid residence time. We determine the optimal annualized process cost of this ad-
vanced IL-based carbon capture process (for a a natural gas combined cycle power plant)
and find a significant reduction in process cost (in particular, the solvent make-up cost as-
sociated with thermal degradation is reduced by about a factor of three) compared to the
conventional case, in which a stripper and reboiler are used for the solvent regeneration.
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Abstract 

Carbon dioxide conversion technologies have been extensively investigated as a viable pathway for lowering 

greenhouse gas emissions. However, due to thermodynamic and product separation limitations, numerous routes 

have been proposed. This work presents a techno-economic study of the production of formic acid and methanol 

promoted by ionic liquid at a commercial scale. To that aim, Aspen Plus® V10 was employed to build a simulation 

that included the solubilization of CO2 in 1-ethyl-2,3-dimethylimidazolium nitrite ([Edmim][NO2]) ionic liquid 

(IL), synthesis of the CO2-[Edmim][NO2] adduct with hydrogen, product separation, and recycling of the IL. The 

CO2 conversion (87 %) resulted in ~83 % and ~14 % yield of formic acid and methanol, respectively. This result 

is an improvement in previous conducted findings. Furthermore, it was discovered that a discount rate between 4-

5 % (@ 0.78 USD/kg of formic acid) or 0.93-1 USD/kg (@ 10% discount rate) would make the project profitable.  

 

Keywords: Carbon dioxide Conversion; Formic acid; Ionic Liquid; Methanol. 

1. Introduction 

Carbon dioxide (CO2) utilization and conversion in the production of fuels, chemicals, and materials are potentially 

promising CO2 abatement alternatives by lowering CO2 emissions, reducing fossil fuel usage (Pérez-Fortes and 

Tzimas, 2016), and also providing a chemical storage alternative for intermittent renewable electricity (Schlögl, 

2013). This approach can significantly contribute to the decarbonization of the energy system (Olah et al., 2009). 

Formic acid (FA) and methanol (MeOH) are typical examples of chemicals and liquid energy carriers. However, 

the hydrogenation of CO2 to formic acid is endergonic in the gas phase (∆G
o

298 = +33 kJ/mol), hence, 

thermodynamically unfavorable (Wang & Himeda, 2012; Leitner, 1995). The thermodynamic limitation can be 

overcome by perturbing the reacting system with a secondary reaction or molecular interaction. One of the 

available strategies is the neutralization of the reaction with a weak base (tertiary amines or alkali/alkaline earth 

bicarbonates) to yield formamides (Xu et al., 2011; Jessop et al., 1999). However, there are concerns about the 

post-treatment of intermediates to get a pure formic acid. (Leitner, 1995; Su et al., 2015). Ionic liquids (ILs) play 

an essential role in solving these two problems due to their solvating and low volatility property (Zeng et al., 2017). 

In addition, ILs can fine-tune the properties of the solvent by altering the structure, catalyst immobilization (Ghavre 

et al., 2011; Kokorin, 2012; MacFarlane et al., 2017), and CO2 activation (Wang et al., 2015). Hence, in this work, 

the economic implications of deploying a process plant for the hydrogenation of CO2 to formic acid and methanol 

using IL ([Edmim][NO2]) as the reaction media was examined. The evaluation to retrieve technical and process 

significant parameters was carried out with the Aspen Plus V10 process simulation software.    

2. Process Description. 

The process flow diagram of the CO2 hydrogenation to FA acid and MeOH was developed and shown in Figure 1. 

The synthesis method is a two-step process comprising CO2 solubilization and conversion in a column and reactor, 

respectively. The plant capacity was set at 33,000 t/y of FA and MeOH with a purity of 97.7 % and 99.99 %, 

respectively. The feedstocks for this process are CO2 and hydrogen (H2) and the ionic liquid, which serves as the 

reaction media. CO2 and H2) were assumed to be free from impurity. The [Edmim][NO2] was initially heated to a 

temperature of 40 oC before entering the solubilization section together with compressed CO2 at 80 bar. The CO2 

dissolves in the IL forming a CO2-[Edmim][NO2] adduct. The resulting adduct leaves the solubilization unit and 

enters the synthesis section together with a stream of compressed hydrogen gas. The reactor operates at 20 oC and 

17 bar for CO2 conversion. FA, MeOH, and water are the resulting products of the reaction, which, together with 

unreacted CO2 and H2, are sent to a separator to remove and recycle the [Edmim][NO2], while the remaining 

compounds leave the column as vapor products. The products are cooled, and unreacted H2 and CO2 are separated 

using black-box separator units and recycled to the reactor and solubilization column, respectively. The stream of 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50027-0 
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formic acid, methanol, and water are sent to the separation unit, where two distillation column units are employed. 

Methanol is separated at the first distillation column. The bottom product from the first column, an azeotropic 

mixture of FA and water, enters an extractive distillation using [Edmim][NO2] as solvent. FA with 97.7 % w/w is 

recovered as the top product, while [Edmim][NO2] and water are separated by a simple flash separation process. 

Table 1 presents the operating conditions for the main process equipment.  

 

 Figure 1: Proposed process flowsheet of CO2 hydrogenation with [Edmim][NO2] as reaction media  

Table 1: Operating conditions for the main process equipment  

 

 

 

 

 

 

 

3. Process Simulation.  

The thermodynamic models for the CO2 solubilization and synthesis sections are the conductor-like screening 

model for segment activity coefficient (COSMO-SAC) with Peng Robinson-Wong Sandler equation of state 

(ESPRWS). Due to the unavailability of experimental data of [Edmim][NO2], its thermodynamic properties were 

estimated by Conductor Like Screening Model for real solvents (COSMO-RS) as described in previous works 

(Bello et al., 2021a, 2021b). The reactor was modeled using RYield with two independent reactions (FA and MeOH 

formation) (Bello et al., 2021b). The solubilization column was modelled with a two-outlet flash using rigorous 

vapor-liquid equilibrium.. The distillation columns (D-100 and D-101) were modelled with a rigorous RADFRAC 

model in equilibrium mode. All the property methods were selected following the guidelines of Towler and Sinnott 

(2013) and taking into account the reaction system's temperature, pressure, and volatility. Multistage compressors 

Units  Operating Conditions 

Compression CMP-101 Pexit = 80 bar, Number of stages = 3 

Solubilization 

Column 

F-100 T = 20 ºC; P = 80 bar 

Separator F-101 T = 150 ºC; P = 0.1 bar 

Reactor R-100  T = 20 ºC; P = 17 bar 

Distillation 

Column 

D-100 P = 1 bar; Stages = 22; Feed stage = 11; Reflux 

ratio = 4; Condenser: Full. 

Extractive 

Distillation 

Column 

D-101 P = 1 bar; Stages = 23; Feed stage = 2; Reflux 

ratio = 0.01; Condenser: full; Distillate to feed 

ratio = 0.69 
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were selected and modelled as isentropic with a fixed discharge pressure from the last stage. Heat exchangers were 

modelled by the shortcut method.  

4. Techno-Economic Assessment  

In any chemical project, estimating capital (CAPEX) and operational (OPEX) costs are critical components in 

determining the long-term viability of any chemical process. The CAPEX comprises costs such as equipment, land, 

and installation. Raw materials (CO2 and H2), reaction media [Edmim][NO2], and utilities are all included in the 

OPEX. The equipment purchase and utility costs were estimated using the inbuilt Aspen Process Economic 

Evaluation (APEA). Aspen software's cost basis calculation is based on the first quarter of 2016. When compared 

to other cost correlations, this method can provide reasonably accurate cost estimates during the conceptual phase 

(Towler and Sinnott, 2012). The installation costs of the sized equipment were then calculated. After that, the total 

capital investment was determined utilizing several factors linked to the total installation costs. Revenues were 

calculated by multiplying each product's annual production by its market value. A discounted cash flow analysis 

was performed assuming a 15-year plant lifespan. The projected interest rate was 10%, the income tax rate was 

45%, and depreciation was calculated using the straight-line technique for project years. The impact of the product 

price and discount rate on the project's Net Present Value (NPV) were evaluated. 

5. Results and Discussion 

5.1. Process Simulation Results 

As seen in Table 2, the technical indicators presented are the per pass and overall CO2 conversions, as defined by 

Eq.(1) and Eq.(2), and utility requirements. As depicted in Table 1, per pass CO2 conversion of 86% was achieved 

in the presence of the [Edmim][NO2] as reaction media. The unreacted CO2-[Edmim][NO2] adduct was recycled 

back to the reacting system, which allows nearly 100 % CO2 conversion. 

 

Table 2. Technical indicators of the CO2 hydrogenation to formic acid and methanol process. 

 

 

 

 

 

 

 

 

 

 

 
 

        

 

𝐶𝑂2𝐶𝑜𝑛𝑣𝑅 =  (
𝐶𝑂2𝑖𝑛  −  𝐶𝑂2𝑜𝑢𝑡

𝐶𝑂2𝑖𝑛
)

𝑅𝑒𝑎𝑐𝑡𝑜𝑟

 
(1) 

 

        

 

𝐶𝑂2𝐶𝑜𝑛𝑣𝑃 =  (
𝐶𝑂2𝑖𝑛  −  𝐶𝑂2𝑜𝑢𝑡

𝐶𝑂2𝑖𝑛
)

𝑃𝑟𝑜𝑐𝑒𝑠𝑠

 
(2) 

Indicators Values Units 

Overall CO2 conversion 100 % 

Per Pass Conversion 87.5 % 

Conversion factor (FA) 1.17 tCO2/t FA 

Conversion factor (MeOH) 6.87 tCO2/t MeOH 

MeOH Produced 0.46 t/h 

FA Produced 2.68 t/h 

Hot utility  1.35  MWh/t MeOH +FA 

Cold utility  3.63  MWh/t MeOH +FA 

Electricity 1.97 MWh/t MeOH +FA 
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5.2. Economic Result 

Table 3 summarizes the economic breakdown of plant investment and operation cost. The raw material and utility 

constitute the larger shares of the OPEX. The utility cost is majorly influenced by the compression of H2 and CO2, 

which is required to fulfill the solubilization and synthesis requirements for CO2 and H2, respectively. The net 

present values at different discount rates and formic acid prices are presented in Figures 2 and 3, respectively. At 

a discount rate of 10%, the project is not economically viable. Hence, a sensitivity analysis of discount rate from 

4% to 10% was carried out to determine the discounted cash-flow rate of return (DCFROR, when NPV =0). From 

the result, a discount rate between 4-5% makes the project profitable. At this discount rate, a free cost of CO2 

would improve the NPV as only H2 is the major contributor to the raw material cost since the ionic liquid cost is 

estimated on a biannual basis (low volatility). In figure 3, the price of formic acid was varied to observe the 

behavior of the NPV at a 10% discount rate. At NPV =0, the selling cost of formic acid is 0.935 USD/kg, which 

makes it the minimum selling point for the project to be viable at a 10 % discount rate.   

 

 

Table 3: Estimated CAPEX, OPEX and revenues of simulated process 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPEX USD OPEX USD Revenue USD/YR 

Purchase Equipment Cost 11,775,700 Raw Material Cost 4,089,956 Formic 

Acid @ 

0.78 

16,715,161 

ISBL 15,308,410 Utilities 4,157,864 Methanol @ 

0.5 

1,827,864 

OSBL 1,837,009 Operating Labour Cost 1,483,442   

Indirect costs (IC) 15,259,423 Other Manufacturing 

Cost 

3,051,827   

Project Contingency 3,240,484     

Process Contingency 1,620,242     

Fixed Capital Investment 

(FCI) 

37,265,569     

Working Capital (WC) 4,471,868     

Cost of Land 2,000,000     

Total Capital Investment 

(TCI) 

43,737,436     
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Figure 2: Cash flow diagram at different discount rates 

 

 

   

Figure 3: Cash flow diagram at different selling prices of formic acid 

6. Conclusions 

The techno-economic study based on process simulation has proven the economic feasibility of the hydrogenation 

of CO2 promoted by [Edmim][NO2] at a commercial scale. The results showed that the CAPEX and OPEX required 

are 43.9 MUSD and 12.7 MUSD, respectively.  To ensure economic profitability, the calculated minimum selling 

cost of formic acid was 0.935-1 USD/kg. In addition, at the current 10% discount rate, the project is profitable with 

a carbon credit tax of 66 USD/tCO2. The project's minimum payback time was calculated to be four years. 
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Abstract 

  Distillation column is a representative chemical process unit, which is the most popular 

choice to separate a multicomponent mixture into pure substances. Since a typical 

industrial process involves multiple distillation columns, it is important to obtain an 

optimal sequence to optimize energy consumption and separation performance. For this 

a large number of candidates have to be investigated in the optimization problem, while 

the number of possible sequences becomes larger when thermally coupled configuration 

is considered. In this study, reinforcement learning algorithm is applied to find an optimal 

sequence to avoid the computational burden of exhaustive in solving such large scale 

problems. Reinforcement learning searches for a solution in an evolutionary fashion via 

value function approximation in a limited region of the solution space. Case studies 

demonstrate the efficacy of reinforcement learning to find a nearly optimal solution for 

distillation sequence synthesis problems. The objective of the case studies is to derive 

distillation sequence which minimizes the total annual cost for separating five component 

mixtures. The result is that total annual cost of the configurations of distillation sequence 

designed using reinforcement learning were only about 2.5% larger than the optimal result 

obtained from mixed-integer nonlinear programming. This shows that reinforcement 

learning can find a nearly-optimal structure without exhaustive search. 

Keywords: design, distillation column, thermally coupled, reinforcement learning, 

                     optimization 

1. Introduction 

Distillation column is an essential unit operation for multicomponent separation and the 

efficiency of separating multicomponent depends on the configuration of distillation 

sequences. Therefore, it is important to design distillation sequences to obtain an optimal 

sequence with high efficiency and a large number of candidates have to be investigated 

to find an optimal distillation sequence. However, the size of the search space increases 

rapidly with the number of components to be separated and grows exponentially when 

thermally coupled (TC) configurations are considered (Shah, V. H. et al., 2010). 

Moreover, continuous variables such as liquid and vapor flowrate for mass balance in the 

distillation column should be determined while the configuration that is a discrete 

decision is chosen simultaneously, which means synthesis of distillation column is a 

mixed integer problem (Gooty, R. T. et al., 2019). Thus, the exhaustive search approach 

is not effective for large size multicomponent separation problems and reinforcement 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50028-2 
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learning (RL) is proposed as an alternative framework to find an optimal distillation 

sequence in this study. RL approximates a value function of state via learning based on 

trial and error. Value function indicates how optimal the decision is and RL optimizes the 

objective function by outputs from value function. RL has two types of algorithm: value-

based method and policy gradient method. Q-learning, SARSA, and deep Q network are 

well-known value-based methods and REINFORCE, actor critic, and deep deterministic 

policy gradient are representative policy gradient methods (Nian, R. et al., 2020). In this 

study, actor-critic algorithm is used to synthesize distillation sequences and case studies 

are implemented for 5 components separation problem including thermally coupled 

configurations. The objective of the problems is to minimize total annual cost of the 

distillation sequence. Finally, the results from RL are compared with those from mixed-

integer nonlinear programming (MINLP) in order to analyze the ability of RL to optimize 

the distillation sequence. 

2. Distillation sequence 

  If there exists difference between relative volatilities, a mixture having more than three 

components is separated through a train of several distillation columns. When it comes to 

mixture separation, types of split in a distillation column can be categorized into sharp 

and non-sharp splits. There are substances of which relative volatility is between that of 

light key (LK) component and heavy key (HK) component in a case of non-sharp split, 

whereas sharp split does not have such substances. For simplicity and clear presentation 

of the proposed concept, this study considers the sharp split only. TC configuration is also 

introduced to the optimization problem.  

2.1. Thermally coupled configuration 

Distillation process using conventional columns which includes heat exchangers such 

as condenser and reboiler shows an inherent inefficiency due to remixing an intermediate 

component which should be re-purified in the next column. Introducing TC 

configurations by removing heat exchangers, the inefficiency of the conventional 

columns can be improved with a side stream because it prevents remixing (Hernández, S. 

et al., 2003).  

2.2. Fenske-Underwood-Gilliland method 

Once a structure of distillation sequence is decided, the corresponding variables such as 

reflux ratio, column diameter, and flow rate of distillate and bottom stream are calculated 

via distillation system dynamics. In this study, Fenske-Underwood-Gilliland (FUG) 

method was used for calculating the variables instead of the rigorous method such as 

Aspen simulator. FUG method is based on the assumption that the relative volatility of 

the component is constant along the column and the molar overflow of the component is 

constant along the column. FUG method consists of Equations (1)-(4). 

 

(1) 

 
(2) 
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(3) 

 
(4) 

where i indicates the component, 𝛼𝑖 is the relative volatility, 𝑓𝑖 is the feed flow rate, 𝜑 is 

the root of Underwood equation, F is the total feed flow rate of the column, q is the quality 

of the feed, 𝜉𝑖  is the recovery fraction, D is the total distillate flow rate, 𝑅𝑚𝑖𝑛  is the 

minimum reflux ratio,  𝑁𝑚𝑖𝑛  is the minimum number of theoretical stages, 𝑁𝑡  is the 

number of theoretical stages, and R is the actual reflux ratio. Eqs. (1) and (2) are 

Underwood equations, Eq. (3) is Fenske equation, and Eq. (4) is Gilliland equation 

(Fenske, 1932; Underwood, 1949; Gilliland, 1940).  

2.3. Total annual cost 

The objective of this study is to find the most economical distillation sequence and total 

annual cost (TAC) is used as a criterion for evaluating the economics. Therefore, the 

optimal distillation sequence has the minimum TAC. TAC consists of the capital cost and 

sum of the operation cost of distillation sequences. Operation cost includes column 

equipment investment, condenser equipment investment, and reboiler equipment 

investment. Column equipment investment is a function of D, R, and 𝑁𝑡, and condenser 

and reboiler equipment investment is a function of R and 𝜉𝑖 . Therefore, TAC of a 

distillation sequence can be estimated with these parameters obtained from FUG method 

and its calculation formulas were referenced in Zhang, S. et al. (2018). 

3. Reinforcement learning 

RL refers to a family of algorithms that learns the optimal value function that satisfies 

the optimality equation of dynamic program using either simulation or operational data. 

A decision-making entity called an agent takes an action based on the current state, the 

environment is changed by the action, and it gives the agent a reward as a feedback of the 

action. As a result, the agent learns the value function and policy in the state space, and 

its corresponding control policy maps the current state to a nearly-optimal action. Among 

various RL algorithms, this study employs the actor-critic algorithm since it can make a 

discrete decision and learn the policy directly with policy gradient method. Given a 

current state, the actor calculates an action using the learned policy function and the critic 

evaluates how beneficial the action is. The actor learns policy based on the evaluation 

from the critic and critic updates evaluations by rewards from environment (Konda, V. R. 

et al., 2000). The main challenge in this approach is to formulate the problem and define 

state, action, and reward. 

3.1. State 

Separation matrix representation (SMR) (Shah, V. H. et al., 2010) was employed in 

order to convert the topology of distillation sequence into a mathematical form which can 

be used in the RL algorithm. SMR is an upper triangular matrix as shown in Figure.1 and 

each element of the matrix means the stream in the sequence correspond to feed, distillate, 

or bottom flow of each column. 1 is assigned to each element if there exists a reboiler or 
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Figure 1. Separation matrix representation for 

separating 3 components mixture. 

 

      

 

 

(a) (b) 

Figure 2. an example of separation matrix representation for separating 3 components mixture. 

 

condenser in the stream, while 2 is assigned if TC configuration exists. For instance, the 

sequence shown in Figure.2 (a) is represented as the matrix in Figure.2 (b). Additionally, 

temperature and flow rate of each component in the stream are converted into the matrix 

form based on the SMR indicating the sequence. As a result, all matrices are stacked and 

used in the current state. 

3.2. Action 

  A distillation sequence is determined by the choice of which components are separated 

at which column and where TC configurations are located. For each column, what 

material is separated and whether there is a TC structure become actions in each column. 

One of the actions is choosing a HK substance, and the other is deciding if there is a TC 

structure. Accordingly, a stage is defined as deciding a HK substance and TC structure of 

each column and a stage-wise reward is described in section.3.3. 

3.3. Reward 

Since the objective function is TAC of a distillation sequence, the return in RL 

formulation is also TAC of a sequence, i.e. sum of TAC of all distillation columns. 

Therefore, TAC of each distillation column in a sequence is set to a reward because sum 

of the all rewards equals to the return as definition. In addition, negative value of TAC is 

used as the reward in algorithm so as to minimize total TAC because RL algorithms 

basically learn in the direction of maximizing the reward. 

4. Results and discussion 

  A case study was implemented for confirming the ability of RL to design optimal 

distillation sequence with an arbitrary multicomponent mixture.  Through the case study, 

the sequence was found to minimize TAC for separating 5 components mixture. For 

simplifying explanation in the case study, the stream flowing through the distillation  
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Table 1. Components and feed composition. 

Case study 1 
Component Mole fraction 
ethanol (A) 0.25 

n-propanol (B) 0.15 
i-butanol (C) 0.35 
n-butanol (D) 0.10 

phenol (E) 0.15 
The flowrate of the feed mixture is 500.4 kmol/h 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Return of RL and distillation sequences synthesized by RL and MINLP in case studies. 

 
sequence is denoted as ABCDE, where each letter means a component in the stream and 
is assigned to a nature number to use in mathematical equations: A = 1, B = 2, ..., E = 5. 
The notation is arranged in order of relative volatility, for example, in a stream ABCDE, 
A is the most volatile component and E is the least volatile component. RL algorithm was 
carried out to find the distillation sequence minimizing TAC via trial and error as 
mentioned above, followed by comparing the result from learned RL and that from 
MINLP. 
4.1. Case study 

Components in the inlet mixture are ethanol, i-propanol, n-propanol, i-butanol, and n-
butanol, corresponds to A, B, C, D, and E orderly, and their feed composition are 
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presented in Table.1. Figure.3 (a) shows return, i.e. TAC of a designed distillation 

sequence, decreased as episode progresses and converged to a certain level after about a 

thousand iteration. A distillation sequence was determined using the learned RL agent as 

shown in Figure.3 (b) and its TAC is 222,258.15 $/y, whereas Figure.3 (c) is the optimal 

sequence found by MINLP and has TAC of 216,747.68 $/y. The separation order of the 

two structures is same, so the difference in TAC between the sequences comes from TC 

configuration. TC configuration should be adopted for efficient separation of mixture 

according to MINLP, but RL was learned in a direction that does not consider the TC 

configuration. Nonetheless, TAC of the sequence from RL is only about 2.5% higher than 

that from MINLP, which means RL found the near-optimal structure. Moreover, any 

superstructure is not required when solving the problem of finding an optimal distillation 

sequence using RL. 

5. Conclusion 

Through this study, it was demonstrated that a near-optimal structure can be determined 

without a superstructure or any prior knowledge except for the material properties of the 

desired mixture. This is more beneficial when solving a large-scale optimization problem 

since full search becomes near impossible and time consuming as the scale increases. It 

can be proved by applying RL algorithm to a larger design problem, for instance, a 

separation problem for more than 5 components mixture. 
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Abstract 

A dividing wall column (DWC) is capable of saving capital costs and improving 

energy efficiency for ternary liquid separations. Alternative DWC structures have been 

proposed, termed Reduced Vapor Transfer DWC (RVT-DWC) in this work, which 

involves less difficult-to-control vapor transfer streams. The most interesting RVT-

DWC structure, the LL structure, which has a dividing wall extending throughout the 

column and has no interconnected vapor transfer streams, is studied in this work. Three 

heat integrated designs of the LL structure, the LL structure with combined condenser 

and reboiler (LL-CCR), vapor recompression assisted LL structure (VR-LL), and vapor 

recompression assisted LL structure with combined condenser and reboiler (VR-LL-

CCR), are introduced and compared to the standard DWC, standard LL structure, and 

vapor recompression assisted DWC (VR-DWC) designs, respectively. Although the 

LL-CCR structure shows only minor improvement in total annualized costs (TAC) 

when compared to the LL structure, its vapor recompression assisted design (VR-LL-

CCR) has the lowest TAC among all the structures studied (17 % lower than LL-CCR, 

4 % lower than VR-DWC, and 10 % lower than VR-LL). Moreover, the vapor 

recompression assisted structures have lower TAC than their corresponding base 

structures. 

Keywords: Distillation, Dividing Wall Column, Optimization, Heat integration, Vapor 

recompression 

1. Introduction 

Process Intensification (PI) has received significant interest in recent years as a mean of 

achieving more energy efficient chemical processes. A prime example of PI is a 

dividing wall column (DWC) for the separation of ternary mixtures. Agrawal (2000) 

proposed several alternatives to a standard DWC, denoted as Reduced Vapor Transfer 

DWCs (RVT-DWCs) in this work, which involve less difficult-to-control vapor transfer 

streams, thus reducing the complexity of the unit. These RVT-DWCs have been claimed 

to be superior to a standard DWC in terms of controllability (Cui et al., 2020), and to 

have a similar economic performance (Agrawal, 2000) and almost identical energy 

demands (Waltermann et al., 2019), thus the RVT-DWCs can be considered as 

competitive alternatives to the standard DWC. Out of all the RVT-DWC structures, the 

LL structure (liquid-liquid structure, both thermal coupling streams replaced by liquid 

sidedraw streams, the dividing wall extended throughout the column, utilizing two 

condenser and two reboilers) has the most interesting structure, and is the structure that 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50029-4 
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Figure 1: Flowsheets of (a) Vapor recompression assisted dividing wall column (VR-DWC),  

(b) LL structure with combined condenser and reboiler (LL-CCR), (c) vapor recompression 

assisted LL structure (VR-LL), and (d) vapor recompression assisted LL structure with combined 

condenser and reboiler (VR-LL-CCR). 

will potentially provide the most improvement with heat integration. Heat integration by 

combining the condensers and reboilers in the LL structure may improve the economic 

performance (Ramapriya et al., 2014). Moreover, heat integration by vapor 

recompression can save both energy and cost, and its effectiveness for a standard DWC 

was considered by Xu et al. (2017), but its potential effectiveness for a RVT-DWCs has 

not yet been studied. This work therefore aims to investigate the economic performance 

of the LL structure by considering heat integration based on vapor recompression. 

2. Methodology 

In this work, six different structures are designed, optimized, and compared, which are 

the standard dividing wall column (DWC, not shown), vapor recompression assisted 

dividing wall columns (VR-DWC, Figure 1a), LL structure (LL, not shown), LL 

structure with combined condenser and reboiler (LL-CCR, Figure 1b), vapor 
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recompression assisted LL structure (VR-LL, Figure 1c), and vapor recompression 

assisted LL structure with combined condenser and reboiler (VR-LL-CCR, Figure 1d). 

It should be noted that, unlike the structures proposed by Agrawal (2000), in all the LL 

structures studied in this work, the product streams (distillate and bottom streams) are 

combined into single product streams, which also reduces the number of product 

constraints for optimization. For all vapor recompression assisted structures, the same 

structure is utilized including a superheater installed just after the top vapor stream 

from the column to improve the efficiency of the heat integration design (Yang et al., 

2019). The superheated vapor is compressed in an isentropic compressor with 85 % 

efficiency. Then, a counter-current shell and tube heat exchanger (HEX) is used to 

vaporize the boilup flow using the recompressed vapor stream. After that, a Joule-

Thompson valve (JT valve) and a trim cooler are used to lower the stream pressure 

back to the column pressure and to condense the stream, respectively. Finally, a splitter 

is used to control the product and reflux flowrates. For LL-CCR and VR-LL-CCR, two 

additional splitters are used to control the flowrate (split ratio) of reflux and boilup 

streams into the prefractionator (left)/main column (right). 

All rigorous simulations (equilibrium based) are performed in gPROMS ProcessBuilder 

version 1.4 (Process Systems Enterprise, 2020). As there is no built-in column libraries 

for DWC and LL structures, their corresponding Petlyuk designs are used instead. All 

designs are optimized using both stand-alone particle swarm optimization (PSO) and a 

combined stochastic/deterministic optimization method similar to the one proposed by 

Chia et al. (2021), but using PSO instead of Genetic Algorithm (GA). PSO is coded in 

MATLAB (The MathWorks Inc., 2019) while OAERAP is built-in within gPROMS 

ProcessBuilder, with gO:MATALAB (Process Systems Enterprise, 2019) used to 

transfer data between MATLAB and gPROMS ProcessBuilder. The objective function 

is the total annualized cost (TAC) based on the summation of annualized capital cost of 

all equipment and of the operating cost. The operating hour is set as 8400 h y−1 and the 

payback period is 8 y. The sizing equations of the column are from Seider et al. (2016) 

and cost equations and installation factors are from Sinnott and Towler (2020). High 

pressure steam is used as the heating utility with a cost of 24 € t−1 and for electricity a 

cost of 23.5×10−6 € kJ−1. All prices are converted to US dollars at the end for 

comparison. The design with the lowest TAC from both optimization methods is taken 

as the final results to ensure a good optimal design and fair comparison. For all the 

designs, the column pressure is maintained at 1 bar and not optimized. For the 

optimization task, all design and operating variables are optimized simultaneously 

including the number of stages, feed/sidedraw locations, reflux/boilup ratios, 

distillate/bottom flowrate, splitter ratio (used in LL-CCR and VR-LL-CCR), 

temperature in the superheater, and outlet pressure in the compressor. In terms of 

optimization constraints, other than the three product specifications, the number of 

stages on both sides of the wall is considered the same for the LL structures (although 

does not have to be), the vapor fraction of the stream from the compressor should be 

equal to one, and the heat exchanger inlet temperature difference should be greater or 

equal to the minimum temperature approach. 

3. Case Study 

The comparison of the economic performance of the various structures are based on the 

separation of an equi-molar benzene/toluene/o-xylene (0.33/0.34/0.33) mixture, with 

Wall Columns
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UNIQUAC as the thermodynamic model. The feed is supplied at 1000 kmol h−1 as a 

saturated liquid at 1 bar, which is the same as the operating pressure in the column with 

no pressure drop. Calculations are performed using an AMD Ryzen 9 3900X CPU with 

3.79 GHz and 64 GB memory. For PSO, the parallel computing function in MATLAB 

was activated with 18 workers to speed up the optimization, and it takes about 1 to 3 

hours to perform the optimization depending on the complexity of the model. 

The key design and operating variables for all structures are shown in Table 1. In 

general, all structures have similar total number of stages (48-52). For the main 

column, the LL structures have lower reflux ratio compared with DWC structures as 

the majority of the light and heavy components are removed from the system from the 

prefractionator, which makes the separation in the main column easier. By comparing 

the vapor recompression assisted structures with their corresponding base designs, no 

significant changes of design and operating variables are found, which indicates that 

the retrofit of the base designs can easily be achieved without changing the column 

structures. Considering the energy usage of designs without vapor recompression, they 

have similar total reboiler/superheater and condenser/cooler duties. The LL-CCR 

structure does not improve the energy efficiency (LL duties similar to LL-CCR duties). 

The vapor recompression assisted designs require about 60 % less total energy (steam 

plus electricity), and there are significant savings in the reboiler/superheater and 

condenser/cooler duties (about 80 % and 70 %, respectively) when compared to the 

base designs. Out of the three vapor recompression assisted structures, VR-LL and VR-

LL-CCR have similar energy consumption, slightly lower than the energy required by 

VR-DWC. It is worth noting that there are two vapor recompression systems in the 

VR-LL structure (one at each side of the wall, Figure 1c), but the equipment duties in 

VR-LL is very close to the VR-LL-CCR which has one vapor recompression system 

(Figure 1d). Breaking down the equipment duties in VR-LL (not shown), the 

equipment at the prefractionator side requires more energy (e.g., 1.75 MW for 

compressor on the prefractionator side vs 0.94 MW on the main column side) due to the 

removal of the majority of the light and heavy components in the prefractionator. 

The cost information of all the designs is shown in Table 1. Compared to DWC and 

VR-DWC, all variations of LL structures have lower capital costs (CAPEX) for 

distillation columns (inclusive of column shell and trays) as the removal of products 

(distillate and bottom streams) from the prefractionator leads to a smaller column 

diameter. Considering the total CAPEX of each design, all vapor recompression 

assisted designs have significantly larger cost (e.g., VR-LL CAPEX is 2.61 times of LL 

CAPEX) due to the high compressor cost (e.g., in VR-LL structure, the compressors 

contributes 66 % of total CAPEX). It should be noted that, although VR-LL and VR-

LL-CCR require similar total compressor duty, VR-LL uses two separate vapor 

recompressor systems (i.e., two compressors), thus the compressor CAPEX is higher 

(about 44 %). By considering the operating cost (OPEX) of each design, the OPEX for 

the vapor recompression assisted structures are about 40 % lower than their 

corresponding base structures. The comparison of the total annualized cost (TAC) 

shows that the standard DWC and standard LL structure have similar TACs (DWC 1 % 

more expensive). Compared with LL, LL-CCR (LL with combined condenser and 

reboiler) shows only very minor improvement (1 % lower). More importantly, all vapor 

recompression assisted structures achieved significant saving in TAC when compared 

with their corresponding base structures (15 % savings in VR-DWC, 8 % savings in  
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VR-LL, and 17 % savings in VR-LL-CCR). The comparison between all vapor 

recompression assisted structures shows that the VR-LL-CCR design is the best (4 % 

and 10 % lower when compared to VR-DWC and VR-LL, respectively). It should be 

noted that the improvement of the vapor recompressor assisted structures is indeed a 

trade-off between the increased capital cost of compressor and energy saved, thus the 

improvement is dependent on the payback period (here assumed to be 8 years). 

Items DWC 
VR- 

LL LL-CCR 
VR- VR- 

DWC LL LL-CCR 

Prefractionator 

Total stages 26 30 52 49 52 48 

Feed stage 14 14 29 24 28 27 

Liq. sidedraw stages - - 11/38 9/36 10/40 9/37 

Liq. side (kmol h−1) - - 283/283 266/311 275/313 266/304 

Distillate (kmol h−1) - - 211 - 204 - 

Molar reflux ratio - - 2.78 - 2.72 - 

Main Column 

Total stages 48 48 52 49 52 48 

Feed stages 8/35 7/38 9/40 8/36 8/38 8/35 

Side prod. stage 21 18 25 20 21 19 

Side prod. (kmol h−1) 337 338 337 337 338 337 

Liq. side (kmol h−1) 231 239 - - - - 

Vap. side (kmol h−1) 690 692 - - - - 

Distillate (kmol h−1) 333 331 122 332 127 332 

Molar reflux ratio 2.58 2.66 2.16 - 2.31 - 

Mass Split Ratio to Main Column 

Reflux flowrate - - - 0.36 - 0.35 

Boilup flowrate - - - 0.35 - 0.34 

Vapor Recompression System - Pre/Main 

Superheater temp. (K) - -/409 - - 413/404 -/410 

Compressor pres. (bar) - -/5.22 - - 5.21/5.12 -/5.16 

Total Duty/Power (MW) 

Reboiler/Superheater 10.93 2.02 10.84 10.86 1.87 1.98 

Condenser/Cooler 10.28 3.73 10.19 10.2 3.61 3.64 

Compressor - 2.78 - - 2.69 2.71 

CAPEX (M $) 

Column 5.155 5.2007 4.7378 4.4081 4.7484 4.3047 

Reboiler/Heater 1.4325 0.3363 1.6428 1.4245 0.4379 0.3318 

Condenser/Cooler 1.5797 0.5602 1.5273 1.5669 0.6244 0.5468 

Compressor - 9.4839 - - 13.5107 9.3629 

Heat Exchanger - 1.2427 - - 1.2968 1.324 

Total CAPEX 8.1672 16.8238 7.9079 7.3995 20.6182 15.8702 

OPEX (M $ y−1) 

Steam 5.242 0.9696 5.1995 5.2061 0.9487 0.9526 

Electricity - 2.2337 - - 2.165 2.1746 

Total OPEX 5.242 3.2033 5.1995 5.2061 3.1137 3.1272 

TAC (M $ y−1) * 6.2629 5.3063 6.1879 6.131 5.691 5.111 

* Operating hours = 8400 h y−1; Payback period = 8 y 

 

 

Table 1: Key design and operating parameters of all the structures 
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4. Conclusions 

This work introduces three types of heat integrated reduced vapor transfer dividing 

wall designs (LL-CCR, VR-LL, and VR-LL-CCR) and compares them with the 

standard DWC, standard LL, and VR-DWC. It was found that the LL-CCR shows only 

minor improvement of Total Annualized Cost (TAC) compared with LL but its vapor 

recompression assisted design (VR-LL-CCR) has the lowest TAC (17 % lower than 

LL-CCR, 4 % lower than VR-DWC, and 10 % lower than VR-LL). Moreover, all 

vapor recompression assisted designs have lower TAC compared to their 

corresponding base designs. The improvement is, however, dependent on the payback 

period as it is a trade-off between the more expensive compressor and the energy saved 

from the vapor recompression system. It should be noted that the steam and electricity 

prices will affect the economic performances of the VR designs. A more 

comprehensive study which includes the sensitivity analysis of utility prices will be 

carried out in the future. Besides, the VR designs are more complex than the standard 

structures, which may be more difficult for operation. Thus, the controllability study 

will be performed as the future work. 
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Abstract 

Currently, more than one million chemicals can be found on planet earth and thousands 

of new chemicals-based products are entering the global market every year. Many of the 

chemicals used in these products serve specific functions and are therefore included in 

the synthesized product. Some of these chemicals, however, could have harmful 

hazardous effects, while for others, better functioning alternatives may be available. 

Therefore, an analysis-based method to identify and substitute chemicals that are 

classified as hazardous or may have lower economic potential is needed. This paper 

presents a model-data based chemical analysis method for chemicals-based products and 

their associated processes. A large database of chemicals has been developed to identify 

hazardous chemicals.  A link to a library of property models has been established to fill 

out gaps in measured property data. A flexible work-flow for analysis has been developed 

to identify and substitute chemicals within the product and/or its associated process. The 

main concepts and tools are highlighted through two case studies.  

Keywords: Chemical products; Hazardous chemicals; Chemical substitution; Health 

hazards, Environmental hazards, Physical hazards  

1. Introduction 

Today, we are living with chemicals that are in our food, clothes, furniture, appliances, 

toys, cosmetics and medicines. Society, for its existence anywhere on earth, needs to use 

a variety of products and/or means that are directly or indirectly connected to chemicals. 

For example, from the time one wakes up in the morning to the time one goes to sleep, 

one may use products that are directly connected to chemicals, such as tooth-paste, soap, 

drugs, preserved milk or juice, perfume, creams for skin-care, and many more. Other 

chemicals-based products (to be called chemical products) indirectly influence our 

activities, such as cooking oil, paint, gasoline, fuel for cooking, electricity, etc., while 

others affect our survival, such as, air we breathe, water we drink, water we use for 

cleaning, soil we use for various purposes, to name a few.  

Over 95 percent of all manufactured goods rely on some form of industrial chemical 

processes (ICCA, 2019). Chemicals are also a significant contributor to our economies. 

World chemicals sales were valued at €3,669 billion in 2019. Nearly 500,000 chemical 

substances from CAS REGISTRY® cover areas of community interest and an estimated 

40,000 to 60,000 industrial chemicals are found in commerce globally. As the number of 
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chemicals grows rapidly, understanding their implications on human health and 

environment is increasingly becoming a problem. An important and urgent challenge is 

not only to identify the chemicals, which may have harmful effects but also to substitute 

and/or control their use. What is needed is an intelligent chemical analysis-substitution 

system. Note, however, while reducing the use of hazardous chemicals is a primary goal 

of this system, replacing substances without proper assessment of the alternatives can 

lead to regrettable substitutions (Hogue, 2013). Regulated chemicals subject to phasing 

out should be urgent candidates for substitution. For example, Per- and Polyfluoroalkyl 

Substances (PFAS) are restricted by EU POPs regulation due to their bio persistence and 

bio accumulative nature (Cousins et al., 2019). In addition to regulations, consumer 

comfort, awareness or economics may also act as driving factors for the substitution of 

chemicals in many products. Every product or chemical is related to its manufacturing 

process and life cycle assessment could point to the need for substitution of hazardous 

chemicals also used in processing. In order to substitute hazardous chemicals in a process, 

the main functional role of the chemical in the process must be specified along with a 

complete process description and process operating parameters (Jhamb et al.,2018). 

Demand for safer alternatives in products is increasing continuously and regulatory 

authorities, such as EU REACH (EU, 2021), US EPA (Harten, 2014) and Occupational 

Safety and Health Administration (OSHA, 2021) have taken up substitution of chemicals 

that are harmful to human health and environment as one of the central elements of their 

policies. Avoidance of hazardous chemicals in the processes is recommended by Control 

of Major Accident Hazards Regulations (HSE, 2015). Different international 

organizations, research institutes and state/provincial governments have proposed 

frameworks for the assessment of alternative substitute candidates in a product and/or 

process. These frameworks are mostly case specific and limited to prescribed classes of 

chemicals. Even though several databases are available, most of them are incomplete and 

have information gaps that need to be filled. An overview of assessment frameworks, 

methods and associated tools (such as databases) are discussed in Syeda et al. (2021). An 

important unresolved issue is the accessibility of the data needed to perform analysis for 

different types of chemical products.  

In this paper, aspects of a systematic analysis method for chemical substitution related to 

chemical products and their associated processes are presented. The method is based on 

collected data stored in structured databases, a suite of property model libraries, and a 

work-flow applicable for a wide range of chemical substitution problems. Selected 

features of the chemical analysis method are highlighted through two case studies.   

2. Database and Methodology 

The developed (ChemSub) database consists of 3 knowledge sections (chemical product 

classes, chemical properties, hazard data). For each product class, examples of known 

products in terms of product classification (single molecule, blend-formulation, 

functional and device) along with chemical identity, compositions, chemical functions, 

etc., are also stored. Within each class, the products are further divided into sub-classes. 

Data of 189 product sub-classes, such as refrigerants, dyeing additives, solvents, 

adsorbents, etc., have been collected. In the chemical properties section, collected data is 

divided and stored in terms of pure component property, functional pure component 

property, functional mixture property and phase equilibrium related properties. For the 

hazard data section, chemicals are classified according to three types of hazardous effects. 

A simplified version of the ontology, implemented for knowledge representation in the 

created library of databases is highlighted in Figure 1, where the chemical identity is the 
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link to each section of the database. This knowledge representation allows easy retrieval 
of all information (properties, hazardous effects, product classes) of an identified 
chemical. A reverse search, that finds, for example, chemicals according to their product 
class and then determines, which of them have unacceptable properties and/or hazardous 
effects is also allowed. Currently, as Fig 1 indicates, there are 919823 chemicals in all the 
databases, there are 3 hazardous effects as defined by Globally Harmonized System 
(GHS) hazard classes and associated hazard category, under which, there are 10 physical, 
2 environmental and 9 health hazardous effects. Within pure component properties, 17 
properties are covered (in addition to functional and mixture properties). 

 
Figure 1: The ontology for knowledge representation in the database 

The main steps of the work-flow for chemical substitution, developed from the experience 
of solving numerous substitution problems, are highlighted in Figure 2. The starting point 
(step-1) is problem definition, where details of the product are given in terms of product 
classification, product functions, the identity of chemicals involved, their compositions 
and many more. In step-2, the identified product is analysed in terms of important 
properties and their values. Here in-house property estimation models available in the 
ProCAPE toolbox (ChemSub, 2021) is used. In step-3, the chemical species are further 
analysed in terms of hazardous properties and/or effects, by retrieving the relevant 
hazardous effects data for each chemical through the ChemSub software (ChemSub, 
2021). In steps 4-5, substitutes that match the desired target values for substitution are 
identified through the ProCAMD toolbox (Kalakul et al., 2018). That is, chemicals that 
have the desired product function properties and do not have the undesired hazardous 
effects are identified. In step-6, the top ranked substitution candidates are listed for further 
verification of their properties and functions with experiments. An option for the design 
of experiments for selected products is also available. Note that each of the 6 steps 
requires its own specific computational methods and tools as highlighted in Fig 2.  

 
Figure 2: Work-flow for analysis based chemical substitution 
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3. Case studies 

Results from two selected case studies are given below to highlight the main concepts of 

chemical substitution. These two case studies are selected because they exhibit features 

that are common to many chemical products. Note that the work-flow outlined in Fig 2 

has been found to be applicable for a large number of products that have been analysed.  

3.1. Mosquito Repellent 

The mosquito repellent product is used to highlight the substitution of the active 

ingredient (N, N-Diethyl-meta-toluamide or diethyltoluamide, known as DEET), which 

is widely used in different versions of this product. DEET repels mosquitos by blocking 

the neuron to smell humans. Currently, insect repellents based on DEET are available in 

different product types; liquid formulations, lotions or sprays. Table 1 gives an example 

of the DEET based mosquito repellent product. It can be noted that in addition to DEET, 

a solvent is used to dissolve DEET, which is solid at standard conditions. Also, additives 

such as acidic acid (for pH adjustment) and Linalool (for fragrance) are used. The 

hazardous effects of each compound in the product are also given in Table 1. 

Table 1: Typical formulation of a DEET based mosquito repellent product 

Chemical % 
Weight 

Health hazard 
(Category) 

Environmental 
hazard (Category) 

Physical Hazards 
(Category) 

DEET 10 Skin irritant (2), Eye irritant 
(2) Acute Toxicity (4)   

Aquatic Chronic (3) - 

Acetic Acid  0.11 Skin Corrosive (1), Eye 
Damage (1) 

- - 

Iso-
propanol  

41.8 Skin irritant (2), Specific 
Target Organ Toxicity 
STOT(SE) (3) 

- Flammable liquid (2) 

Linalool  0.10 Skin irritant (2), Eye irritant 
(2), Skin Sensitizer (1) 

- - 

Note: The category effect numbers in parenthesis range from 1 (very serious) to 4 (least serious) 

From the analysis (step 3), it is found that DEET may cause irritation of the skin and eye. 

Search of the ChemSub database identifies picaridin, methyl nonyl ketone and ethyl 3-

(N-butylacetamido) propionate as alternatives, which do not have any restriction from EU 

or US EPA. Natural compounds like Citronella oil and Eucalyptus oil extracted from 

plants are also found to be alternatives for DEET. The ChemSub database also helps to 

check the hazardous effects of the alternative active ingredients, which are listed in Table 

2. From Table 2, Picaridin appears to be a safe alternative and is known to be very 

effective against mosquitoes by forming a vapor barrier on the skin surface leading to 

difficult landing. The formulation of picaridin based mosquito repellents contains 20% 

by weight of picaridin with the remaining being solvents and additives (Conte et al., 

2011).  

3.2. Textile finishing agent 

Formaldehyde resins are used in the textile industry, as a finishing agent, to stiffen clothes 

and make fabrics, such as wrinkle-free cotton, rayon and corduroy. Different hazardous 

effects of formaldehyde retrieved from the ChemSub database are listed in Table 3. Due 

to the off-gassing and emission issues of formaldehyde from clothing, replacements are 

desired. Alternatives that are showing some efficacy in textile finishing include glyoxal, 

butane tetracarboxylic acid (BTCA) and citric acid. An important issue in the handling of 

these chemicals is related to their processing requirements along with their functionality 

in the product. Table 4 lists the limitations, hazardous effects, and processing 

requirements of some alternatives found in the ChemSub database. The most effective 
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finishing agent among the three is found to be BTCA, which is less hazardous than 

formaldehyde but is more expensive as larger amounts are required. On the other hand, 

citric acid is a cost-effective and environment friendly alternative, but it impacts the fabric 

adversely. More candidates need to be investigated and needed data need to be measured.  

Table 2: Hazardous effects of alternatives to DEET in mosquito repellents 

Chemical Health hazard 
(Category) 

Environmental 
hazard (Category) 

Physical Hazards 
(Category) 

Picaridin Acute Toxicity (4) Slight aquatic toxicity 
(4) 

Flammable liquid (3) 

Methyl Nonyl 
Ketone 

Dermal toxicity; eye and 
dermal irritation (3) 

Aquatic Chronic (1) Not classified 

Ethyl-P Eye irritant (2) - - 
Citronella Oil Skin irritant (2); Eye damage 

(1); Skin sensitizer (1) 
Aquatic Chronic (2) Flammable liquid (2) 

Eucalyptus oil 
 

Skin (2) & eye irritant (4); 
Aspiration (1); Skin sensitizer 
(1); Acute toxicity (4); 

- Flammable liquid (3) 

Note: Ethyl-P is short for Ethyl 3-(N-butyl acetamido) propionate 

Table 3 Hazardous effects Formaldehyde found in textile finishing agent 

Chemical Health hazard (Category) Environmental 
hazard (Category) 

Physical Hazards 
(Category) 

Formaldehyde Oral toxicity (3), Dermal toxicity 
(3), Skin Sensitization (1), Eye 
irritant (1), Inhalation toxicity (1), 
Respiratory Sensitization (1), 
Organ toxicity (3), Germ cell 
mutagenicity (2), Carcinogenicity 
(1), Reproductive toxicity (1) 

Flammable 
substance (1), 
Compressed gas 

Acute aquatic 
environment hazard 
(2), Long-term 
aquatic environment 
hazard (3) 

 
Table 4: Alternative anti-crease finishing agents 

Alternatives Limitations/ 
disadvantages 

Hazards (Category) Processing 
requirements 

Remarks 

Glyoxal  Low mechanical 
strength; fabric 
discolouring 

Skin irritant (2), Eye 
irritant (2), Skin 
sensitization (1), Germ 
cell mutagenicity (2), 
Respiratory tract 
irritation (3)  

 Aluminium 
sulphate is used as 
a catalyst and 
glycols are used as 
additives  
 

Processing is 
expensive and may 
have corrosion 
issues  

Butane 
tetracarboxylic 
acid (BTCA) 

Low mechanical 
strength 

Acute Toxicity (4), Skin 
irritant (2), Eye irritant 
(2) 

Sodium 
hypophosphite 
(NaH2PO2) is used 
as additive 

High anti-crease 
capacity, tensile 
strength; imparts 
satisfactory 
whiteness, high 
cost 

Citric acid Fabric 
discolouring, low 
resilience  

Eye irritant (2) Nitrogenous 
additives  

Cost-effective; 
environmentally 
friendly 

4. Conclusions 

The main components of a data-model based analysis method for chemical substitution 

related to chemical products and their associated processes have been presented. Two 

examples are given as representatives of many similar problems studied to establish the 

method.  For example, replacement of solvents in products as well as processes, 
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refrigerants, additives as stabilizer, and many more. The implemented ontology in the 

ChemSub database, the property model library and the suite of algorithms for different 

steps define the application range, which is being extended continuously.  Even though 

over 910000 chemicals are listed in the ChemSub database, actual measured property data 

exist for less than 10% of the chemicals. There is, therefore, a need to establish integrated 

and accessible databases based on reliable experimental data and accompanying property 

models to fill the gaps. Also, although the situation is improving, barriers to the 

implementation of green chemistry principles still exist (Matus et al., 2012). An 

opportunity exists for the development of machine learning based property models with 

a wide application range as well as a new class of integrated computer-aided methods and 

associated tools (Pistikopoulos et al., 2021). That is, an opportunity exists for the 

development of more intelligent search methods to identify better and safer alternatives. 

Product oriented knowledge representation in the ChemSub database and a framework 

for chemical substitution are proposed to overcome the case specific nature of existing 

tools. In case of substitution in processes, computer aided tools for chemical substitution 

need to be integrated with process simulators to generate necessary information on 

process parameters. Finally, disclosure of product components by manufacturers and 

traders is a precondition for successful chemical substitutions 
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Abstract 

Nanomaterials have been put into practical use in many fields. Therefore, the ability to 
predict the properties of nanomaterials has gained utmost significance. In this study, we 
have presented a database of solubility of organically-modified and non-modified 
nanomaterials in organic solvents. Furthermore, we attempted to model the solubility of 
one collected nanoparticle using various data-driven statistical modeling techniques. 
The solubility prediction using data-driven models is more accurate than that of the 
conventional solute-solvent similarity method based on Hansen solubility parameters 
(HSPs). In addition, the modeling results exhibit that certain solvent features, such as 
dielectric constant and molar logP, also have a significant influence on the solubility of 
nanomaterials. 

Keywords: process science; machine learning; organically-modified nanomaterial; 
nanomaterial database; nanomaterial solubility. 

1. Introduction 

A nanoparticle has been widely accepted as a particle of any shape with dimensions in 
the range of 1 and 100 nm (Vert et al., 2012). These nanometer-sized materials have 
been applied in various fields such as medicine, electronics, materials, and chemical 
engineering. To retain their unique physical and chemical properties, the nanoscale 
structures of individual nanoparticles must be protected from undesirable interactions 
with other substances, such as solvents or polymers. One of the many effective 
protection strategies involves modifying the surface of nanoparticles with organic 
substances (Tomai et al., 2021), which further introduces unique solubility and 
cohesiveness behaviors. Therefore, from an industry perspective, the ability to predict 
the physical and chemical properties of modified and non-modified nanoparticles is 
becoming increasing vital, as it significantly impacts the design, construction, and 
operations of the manufacturing processes. 

Recently, machine learning techniques have been introduced in the research of 
molecular and material sciences, for designing new compounds and synthesis routes, as 
well as revealing new principles hiding behind phenomenon (Butler et al., 2018). To 
construct and evaluate such machine learning models, training data must be collected 
first. We believe that to estimate the solubility or cohesiveness of nanoparticles, features 
such as Hansen solubility parameters (HSPs), UV shift, and Z potential are equally 
relevant. However, such data have not been previously collected or organized. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50031-2 



 J. Xia and Y. Yamashita 

In this study, we introduced a new database for the solubility of nanomaterials in 
various solvents, which is currently at its early development stage with limited data 
points. In addition, we applied several data-driven statistical techniques to model the 
relationship between solubility and solvent feature parameters for one nanoparticle. 

2. Solubility database for nanomaterials 

With the growing numbers of practical use of nanomaterials, various databases have 
been established to collect the unique properties of these materials, such as caNanoLab, 
Dortmund data bank (DDB) nanofluids, eNanomapper, NANoREG, NanoDatabank, 
NanoMILE, and PubVINUS. For example, DDB nanofluids contain experimental data 
on the thermophysical properties of nanofluids (Mondejar et al., 2021). eNanoMapper 
serves as a data infrastructure for managing the toxicity of engineered nanomaterials 
(Jeliazkova et al., 2015). PubVINUS provides physicochemical properties and 
bioactivities as well as descriptors of various nanomaterials (Yan et al., 2020). However, 
most of the existing databases are focused on the bioactivities and the environmental 
impact of nanomaterials; thus, only the solubility in water is included. To establish the 
correlations among the structure, functionality, and properties of nanomaterials related 
to process manufacturing (Figure 1), we have proposed a new database as its foundation 
for future development. Our ultimate goal includes establishment of correlation models 
among feature measurements/parameters (e.g. molar weight, size distribution), 
transformed features (e.g. solubility parameter, surface potential), and process 
properties of nanomaterials (e.g. solubility, cohesiveness), as shown in Figure 2. 

2.1. Data collection 

Currently, this database is focused on the solubility of nanomaterials. Research papers 
and reviews were screened for collecting data points. The keywords used for searching 
include, but are not limited to: colloids, dispersibility, HSPs, nanomaterial, nanoparticle, 
solubility, stability, and organic solvent. Nanomaterials such as 2D-nanomaterials and 
nanotubes were also collected, as particles with dimensions smaller than 500 nm, as 
well as tubular or fiber-like structures with two dimensions below 100 nm are also 
qualified as “nanoparticles” (Vert et al., 2012).  

 

 
 

Figure 1  Layout of the database Figure 2  Illustration of correlation models 
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2.2. Features of the database 

The current database contains approximately 1,200 solubility data points from 74 types 
of organically-modified and non-modified nanomaterials, including six types of 
nanotubes, 44 types of 2D-nanomaterials, and 38 types of nanoparticles. The core 
compositions of the collected nanomaterials and their percentages in this database are 
shown in Table 1. Furthermore, parameters related to solubility, such as the estimated 
HSPs of nanomaterials, sonification conditions (time, initial concentration, sonification 
power, temperature), and centrifugation conditions (revolutions per minute, time), were 
collected as well, depending on the applicability.  
Approximately 250 pure, and 30 mixed solvents were collected. Among them, there 
were 23 frequently-utilized solvents, ranging from low polarity (such as hexane) to high 
polarity (such as dimethyl sulfoxide). In addition, approximately 53 % of all data points 
were originated from organically-modified nanomaterials. Decanoic acid, oleic acid, 
and acetic acid are currently the most commonly used organic modifiers in this database. 

Solvents and organic modifiers were reorganized into their own auxiliary databases to 
enrich the information contained in the database, for modeling purposes. For each 
substance in its corresponding auxiliary database, more than 230 additional feature 
parameters were gathered from various sources: for example, surface tension and 
dielectric constants were collected from handbooks (Haynes et al., 2017), quantum 
chemical properties such as highest occupied molecular orbital were calculated using 
the Python package Psi4 (Psi4 project team, 2021), and molecular descriptors were 
acquired using the Python package RDKit (G. Landrum, 2021). 

2.3. Data quality and discussions 

The greatest challenge we experienced during data collection was the different formats 
of solubility in different reports. Only 28.9 % of the solubility data were reported as 
concentration measurements with the units of mg/mL or mg/mg, and 18.1 % of the data 
were expressed in terms of light absorption. Nearly 49.5 % of the data points were 
reported using descriptions such as “good” or “bad,” and the rest can only be evaluated 
indirectly from photos. In addition, data that related to the preparation of nanomaterial 
solutions, such as sonification time, were often either unavailable or incomplete. 

The quality of the data will certainly affect the quality of the prediction models. It also 
limits the direct comparisons among different nanomaterials. Therefore, it is crucial to 
form a standard format for recording experimental data in the future. 

Currently, this database is at its early stages. More solubility data, features and 
properties of nanomaterials will be collected and reorganized in the future. 

Table 1   Core composition of nanomaterials and their percentages in the database 

ZrO2 18.0 % Al2O3 4.4 % WS2 3.7 % MoSe2 2.8 % 

RGO[1] 11.7 % ZnO 4.4 % C3N4 3.2 % MoS2 2.5 % 

C60 7.8 % Graphene 4.2 % Germanane 3.2 % MoTe2 1.9 % 

CNT[2] 6.0 % GO[3] 4.0 % CeO2 2.9 % Others 19.3 % 

[1] RGO: reduced graphene oxide; [2] CNT: carbon nanotube; [3] GO: graphene oxide. 
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3. Selection of solvent features and data-driven solubility models  

In previous studies, HSPs have often been used to predict the solubility of 
nanomaterials (Tomai et al., 2021). This prediction is based on the similarity between 
the solvent and solute, by calculating Rs = (4ΔδD

2 + ΔδP
2 + ΔδH

2)0.5, where Δδ = δsolvent − 
δsolute, and δD, δP, and δH are different HSPs that contribute to solubility (Hansen, 2007). 
When Rs is smaller than an experimental-determined threshold, it indicates that the 
solvent and solute are adequately similar, so that a stable solution can be formed. This 
method functions well for bulk materials. However, to reiterate the demonstration by 
various data points in our database, Rs does not predict well for nanomaterials, 
regardless of their surfaces being modified or not. 

3.1. Feature selection 

In this study, we attempted to obtain important solvent feature parameters and their 
correlations with the solubility of nanomaterials using data-driven statistical models. 
However, the quality of the data prevented us from creating a universal solubility model. 
Thus, the CeO2 nanoparticle modified with decanoic acid (Tomai et al., 2021) was 
chosen as the modeling nanoparticle because of its typical diameter (5.2 nm) and tight 
size distribution.  

To construct reliable data-driven statistical models, important solvent feature parameters 
governing the solubility of nanomaterials must be identified first before modeling. 
Instead of using feature extraction methods (for example, principle component analysis), 
feature selection methods are used to eliminate irrelevant solvent feature parameters. 
Feature selection methods are commonly categorized into three types: the filters rely on 
the correlation of candidate variables with the variable to predict regardless of models, 
the wrappers select best performed subsets of variables depending on chosen models, 
and the embedded methods select variable subsets and tune the model parameters 
simultaneously. In this study, recursive feature elimination (RFE) was used as the 
wrapper algorithm for several linear and nonlinear data-driven models listed in Table 2. 
Least absolute shrinkage and selection operator for logistic regression (LASSO-LR) 
was chosen as the embedded method. Both feature selection and modeling were 
conducted under the R-4.1.0 environment using “caret” and “glmnet” packages. 

Table 2   Selected solvent features using RFE 

Logistic Regression 

BCUT2D_MWHI, dielectric constant, dipole moment, 
HOMO, δP, FpDensityMorgan1, LUMO, MaxEStateIndex, 
MinAbsEStateIndex, MinEStateIndex, molar volume,  
molar weight, QED, VSA_EState1 

Random Forest, 
SVM[1] (linear),  
SVM (polynomial) 

BCUT2D_MWHI, dielectric constant, dipole moment, 
EState_VSA1, FpDensityMorgan1, δP, 
MinAbsPartialCharge, molar logP, molar refractivity 

SVM (radial),  
LDA[2], kNN[3] 

dielectric constant, δP, δH, MaxPartialCharge,  
MinAbsPartialCharge, MinPartialCharge, molar logP, 
PEOE_VSA1, SlogP_VSA2 

[1] SVM: support vector machine; [2] LDA: linear discriminant analysis;  
[3] kNN: k-nearest neighbors. 
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Twenty-five solubility data points of the modified CeO2 nanoparticles were divided into 
an 18-sample training dataset and a seven-sample test dataset. All test samples have 
missing values for solvent surface tension. Because no detailed measurement of 
solubility was reported, the nanoparticle solubilities in all solvents were categorized into 
two classes: samples with solubility larger than 0.01 wt% was labeled as “soluble,” 
while the rest were labeled as “non-soluble.” The results of the RFE from 230 solvent 
features using the training dataset are listed in Table 2. It can be observed that only two 
HSPs, δP and δH, were able to be selected as significant features. In addition, it is clear 
that other features might also play important roles in solubility prediction, such as the 
dielectric constant, dipole moment, and molar logP. 

3.2. Data-driven modeling for solubility of nanomaterial 

The selected features using RFE and LASSO were reorganized into combinations of 
feature data as the inputs for each corresponding modeling method. Any combination 
containing correlated features was removed. Owing to the small sample size of the 
training dataset, the leave-one-out cross-validation strategy was used for model training. 
The prediction performance of the models was tested using the test dataset. A few of the 
best-performed feature combinations for each model are listed in Table 3. 

It can be observed that the solubility prediction performances using the data-driven 
models, especially the radial-kernel SVM, were much better as compared to using the 
similarity-based Rs. In addition, solvent features, such as dielectric constant, dipole 
moment, and molar logP, performed as good as, if not better than HSPs δP and δH. This 
coincides with the results obtained from the previous feature selections. However, it 
needs to be emphasized that these predictions are limited to only one nanoparticle, and 
further evaluation of the models is constrained by the small size of available data. 
Therefore, more research will be conducted on how to construct better solubility 
prediction models using various yet limited information from the entire database. 

Table 3   Best-performed feature combinations for each data-driven model 

Data-driven Model Modeling Variables Accuracy 

Logistic Regression  
dielectric constant, EState_VSA1, LUMO, 
MinEStateIndex 

85.7 % 

Random Forest 
dielectric constant, EState_VSA1, 
MinAbsPartialCharge 

85.7 % 

SVM (linear) dipole moment 71.5 % 

SVM (polynomial) dipole moment,  EState_VSA1, molar logP 85.7 % 

SVM (radial) 
dielectric constant, EState_VSA1, 
MaxPartialCharge, SlogP_VSA2 

100  % 

LDA dipole moment, FpDensityMorgan2, δH 85.7 % 

kNN dipole moment, molar logP, VSA_EState1 85.7 % 

LASSO-LR 
dipole moment, δP, NumAliphaticCarbocycles, 
QED, SlogP_VSA4 

71.5 % 

Rs  δD, δP, δH 42.9 % 
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4. Conclusions 

In this study, we have presented a database for the solubility of organically-modified 
and non-modified nanomaterials in organic solvents. This database contains 
approximately 1,200 data points. Furthermore, we attempted to construct data-driven 
statistical models for solubility using the collected data of one nanoparticle. The data-
driven solubility prediction models perform better than the Rs method based on the 
similarity of solute-solvent HSPs. These models demonstrated that in addition to HSPs 
δP and δH, solvent feature parameters, such as dielectric constant and molar logP, should 
also be viewed as important factors in predicting the solubility of nanomaterials. 
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Abstract 

Process systems engineering involves the use of systematic methods and tools to solve a 

wide range of problems. In this paper, the integration of a new class of computer-aided 

methods and their associated tools in a flexible software architecture is presented. Two 

problem specific software architectures are highlighted, one for sustainable process 

design and another for integrated product design and analysis. In each case, the core 

software components, which are extended versions of ProCAFD (software for sustainable 

process design) and ProCAPD (software for product design and analysis) are highlighted 

together with linked software-components, and, solutions from different case studies.    

Keywords: Sustainable process design, Chemical product design, integrated software 

architecture, computer-aided methods 

1. Introduction 

To tackle the grand challenges of energy, water, environment, food and health that 

modern society is currently facing, opportunities exist for development and use of new 

methods and associated computer-aided tools that are not available in the currently 

available software tools, such as the well-known process simulators (Pistikopoulos et al., 

2021). Synthesis and design of new, innovative and significantly more sustainable 

processes require implementation of hybrid methods that employ multiple models, data 

sources and solution algorithms. For example, validation and testing of novel hybrid 

energy efficient separation techniques require the integration of data, models, simulation 

and analysis at various levels of complexity and integration of operational tasks (Tula et 

al., 2020). For generation and verification of new intensified process options, models that 

can simulate new intensified operations are needed as well as methods for design of 

chemicals and materials, as in membrane-based hybrid separation schemes (O’Connell et 

al., 2019). Similarly, synthesis, design, analysis of chemical products needs large 

databases to identify and/or substitute potentially harmful or hazardous chemicals within 

the product being designed (Syeda et al., 2022). The verification of new products needs 

validated models of processes, which are normally not available in commercial software 

tools, while, implementation of their design methods requires new and innovative unit 

operations and/or materials, as in membrane-based separation, that may also not be 

known. In many of the product and/or process synthesis and/or design problems, 

thermodynamic properties play a more significant role than their conventional use in mass 

and energy balance-based process models. For example, synthesis and design of energy 

efficient and environmentally acceptable solvent-based separations or fluids for 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50032-4 
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refrigeration, need integrated solution strategies accounting for product and process 

design issues.  Solution of these problems contribute to tacking the challenges facing 

modern society. 

Based on the above, any computer-aided software tool needs a number of options, such 

as, an option for synthesis of processing routes as well as chemical products; an option 

for design and analysis of chemical processes and products so that targets for sustainable 

improvements can be identified; and, an option for innovation so that novel and more 

sustainable alternatives can be generated and verified. To provide the above options, in 

addition to the model-based process simulation option, a number of computer-aided 

methods and their associated software tools (to be called linked components) are needed: 

a versatile database of chemicals with respect to their properties, their use, their 

environmental impacts etc.; a versatile modelling toolbox, including options for 

generating new models through data analysis, machine learning as well as first principles, 

when the needed model is not available in the model library; a versatile toolbox of 

property estimation options; a toolbox for process synthesis and another for product 

synthesis based on different methods of solution; a toolbox for design and analysis 

including economics, sustainability, environmental impacts, etc., and many more.  

The objective of this paper is to highlight two integrated software tools that allow the 

needs to be matched through flexible and integrated software architectures. Two specific 

software tools, ProCAFD (Tula et al. 2019) and ProCAPD (Kalakul et al., 2018), for 

sustainable process design and chemical product design, respectively, are presented in 

their extended versions. The extensions are mainly with respect to how different linked 

components are integrated to the original, thereby enabling them to solve a wider range 

of problems. The additional software components are, PSE for SPEED database with data 

on more than 75000 chemicals; HI-Opt toolbox for simultaneous heat integration and 

process optimization, ProREFD (Udomwong et al., 2020) for refrigerant design and 

verification; ChemSub for substitution of hazardous and less efficient chemicals, to name 

a few. Note that external tools like process simulators or numerical solvers needed for 

specific steps in different work-flows are available. Results from case studies highlighting 

selected features of the integrated software tools are also presented.    

2. Methodology & Associated Tools 

2.1 ProCAFD-Sustainable process design: The work-flow for sustainable process design 

implemented in ProCAFD consists of 12 steps within the 3-stages methodology of Babi 

et al., (2015). Figure 1a highlights the 12 steps of the work-flow. Figure 1b highlights the 

tools needed for the different steps of the work-flow. Starting at the centre, where the 

ProCAFD tool is located, the next level (shaded in blue) shows the component functions 

and the next outer level (shaded in light green) shows the actual linked-components 

available for the steps of the work-flow. This component-based architecture provides the 

flexibility to configure and generate customized integrated software tools tuned for 

specific application areas and/or problem needs. That is, it removes the options not needed 

for the problems of interest and allows to add and/or remove linked-components as and 

when necessary. Figure 1b also highlights that different tool-components are available 

different stages, for example, Super-O for process synthesis stage, ECON, LCSoft for 

design-analysis stage and HI-Opt for process innovation stage.  

  

2.2 ProCAPD-Chemical product design: ProCAPD is a collection of linked components 

that are needed for various stages of the work-flow for design and/or analysis of different 
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types chemical products. Figure 2a shows the work-flow steps of the design methodology, 

while Figure 2b shows the architecture of ProCAPD.  

 

 
(1a) (1b) 

Figure 1: Work-flow (1a) and architecture of ProCAFD (1b) 
   

 
(2a) (2b) 

Figure 2: Work-flow (2a) and architecture of ProCAPD (2b)  

Note that design of chemical products, which are classified as single molecules, liquid 

blends, formulated liquid blends, formulated functional products and devices, need for 

each product type and within it, each product sub-type, different sets of data, models and 

computational algorithms, even though the steps of the work-flow of the methodology 

are the same. For example, design of single molecules involving small molecules (as in 

refrigerant design) or larger organic chemicals (as in organic solvent design) or complex 

molecules with ions and organic fragments (as in ionic liquids), may require similar 

properties but different data-sets and/or property models. On the other hand, liquid blends 

are mixtures of liquid compounds while formulated liquid blends have active ingredients 

that are usually solids to which solvents and additives are added to obtain a final liquid 

blended product. A large database of 24000 chemicals classified in terms of lipids, 

solvents, ionic liquids, active ingredients, etc., is available for selection of a product 

component. A database of 810000 chemicals help to identify potentially hazardous 
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chemicals. The link to ProCAPE helps to analyse product and/or process functional 
properties. Since less than 10% of the chemicals in the different databases have measured 
property data, property prediction options in ProCAPE for pure component, mixture and 
phase equilibrium properties help to quickly fill-out the gaps in the required properties. 
Finally, different problem solution algorithms are available in ProCAPD for, selection of 
chemicals based on database search, computer-aided molecular design (ProCAMD), 
mathematical programming based molecular design (OptCAMD), and hybrid solution 
approaches. ProCAPD is also linked to ProREFD for refrigerant design and ChemSub for 
chemical product analysis and identification of hazardous chemicals in products.  

3. Case Studies 
3.1 Sustainable process design: The production of Cumene, an important intermediate 
substance for phenol and acetone production, is considered to highlight selected work-
flow steps of the 3-stages methodology for sustainable process design. All steps and tools 
of ProCAFD shown in Figure 1 are used. Propylene reacts with benzene to produce 
cumene. Propylene also reacts with cumene to produce p-diisopropylbenzene as a by-
product. Unconverted benzene is reacted with p-diisopropylbenzene in a second reactor 
to produce additional cumene. The synthesis toolbox generates a total of 8160 processing 
routes considering two reaction steps and all available process group options. Removing 
some of the membrane-based separation process groups, 2622 processing routes are 
obtained. Selecting only vapor-liquid distillation/flash process groups, 20 processing 
routes are obtained and one of these (Maity et al., 2013) is selected as the base case.   

 
Figure 3: Reduced superstructure of processing routes for cumene production. 

The starting point for the design-analysis stage is process simulation (results highlighted 
in Figure 4a).  Driving force-based reverse design is performed (Tula et al. 2019) to obtain 
the design parameters of unit operations (such as distillation column, reactors, heat 
exchangers, etc.) that are needed for process simulation. AVEVA PROII 
(https://www.aveva.com/en/products/pro-ii-simulation/), which is linked to ProCAFD is 
used to perform steady state simulation and analysis tools such as ECON (cost 
estimation), LCSoft (life cycle assessment), Safety (inherent safety analysis) are used to 
identify the process “hotspots”. As shown in Fig 4b, distillation columns 2 and 3 have the 
largest utility costs. This is also confirmed by the plots of the carbon footprints. The 
environmental impacts (not shown in Fig 4) indicate that the release of benzene, a 
carcinogenic chemical (also confirmed by ChemSub) leaves the process with the purge 
stream. Therefore, unlike the published design, the benzene feed is adjusted so that there 
is zero benzene purge, indicating that a small amount of by-product that has a lower price 
than the cumene will be produced as part of the more sustainable design. In stage 3, the 
targeted improvement in terms of decrease of energy demand is realized through 
simultaneous heat integration and process optimization (Duran and Grossmann, 1986), 
by adding an extended transhipment model to the optimizer in AVEVA PROII. Compared 
to the base case design, the profit is increased by 13.57%, the carbon footprint is reduced 
78.65 % for the reboiler in DIST2. The ecological footprint is calculated to be 1.219. 
Detailed results for this sustainable process design can be obtained from the authors.  

( y )
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(4a) (4b) 

Figure 4: Flowsheet for cumene production (4a) and selected analysis results (4b) 

3.2 Chemical Product Design – Substitution Issues: Two chemical substitution problems 
related to chemical product design are highlighted. The first problem involves the 
replacement of refrigerants used in a two-cycle refrigeration process (Biegler et al., 1997) 
with alternatives that are more efficient and checked for safety issues through the hazards 
database. The refrigerants to be replaced are propylene (R290) and ethylene (R1150). 
ProREFD is used to find and verify the alternative refrigerants. One of the best 
alternatives for cycles 1 & 2 are listed in Table 1 together with refrigeration process 
performance results from ProREFD. In this example, ProCAPE, ProREFD and ChemSub 
have been used within ProCAPD. More solution details can be obtained from the authors.  

Table 1 Performances of the best alternatives for cycles 1 & 2 & the reference 
Cycle 1 Cycle 2 Overall 

Comp Qc kJ/hr Qe kJ/hr W kJ/hr Comp Qc kJ/hr Qe kJ/hr W kJ/hr COP 
R290 67820 44867 22954 R1150 86098 54245 31853 0.99 

R1270/R1216 
(38/62) 43279 23270 20009 Chemicals with similar boiling point could not be found. 

Note: The numbers in italic in the second row give the values of the reference refrigerants 

The second example involves the improvement of a formulated liquid product (an insect 
repellent) by substituting its active ingredient (DEET, found in many commercial 
products), by another (Picaridin, found in some commercial products). The analysis 
shows that Picaridin has better functional properties against mosquitos, while Deet is 
more effective against other insects. Table 2 gives lists their known hazardous properties. 
Note that if the active ingredient is changed, the formula for the formulated liquid product 
also needs to be verified. The formulated liquid insect repellent with Deet has the 
following contents (in terms of weight percent): Deet = 10%; isopropanol = 41.8 %; water 
= 44.15%; and additives (acetic acid for pH control and linalool for fragrance) = 4.05%. 
For insect repellent based on Picaridin the formula is the following: Picaridin = 9.7%; 2- 
propanol = 42.3%; water = 43.95%; additives (acetic acid for pH control and linalool for 
fragrance) = 4.05%, which has been verified through experiments (Conte et al., 2012). In 
this example, Product template, ProCAPE, and ChemSub have been used within 
ProCAPD. More solution details can be obtained from the authors.   

Table 2 Example of active ingredient used in mosquito repellent 
Chemical State Health hazard  Environmental hazard  Physical hazard  
Deet Solid Irritant-, skin (2), eye (2); 

Acute toxicity (4)   
Aquatic chronic (3) May damage 

plastic and leather  
Picaridin  Solid Acute toxicity (4) Slight aquatic toxicity (4)  - 
Note: The numbers in parenthesis indicate assigned category, where 5 indicates low hazard level 
and 1 indicates high hazard level.  
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4. Conclusions 

A flexible software architecture that is capable to meeting the needs of sustainable process 

design and chemical product design and analysis has been presented. The architecture 

allows the linking of specific computer-aided methods and associated software tools as 

linked components for specific integrated software tools. Two integrated software tools 

one configured for sustainable process design and another for chemical product design 

and analysis have been presented. Through case studies, some of the features of the 

integrated software tools have been highlighted. The architecture of the integrated 

software tools allows linked components to be added or removed according to specific 

problem requirements. In this way, the changing specifications of methods and associated 

computer-aided tools needed to efficiently and reliably solve problems tackling the 

challenges of energy, water, environment, food and health can be matched. Current and 

future work is developing more case studies and testing the plug and play issues of linked 

components within problem specific software architectures to identify the desired more 

sustainable product and process alternatives. Flexible component-tools based architecture 

of software tools could be the answer for the need for computer-aided tools that are 

required to tackle the challenges of a changing earth.   
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Abstract 

Direct application of fast-pyrolysis bio-oil as biofuel is limited due to its undesirable 

attributes like low heating value, high viscosity, and storage instability. Solvent addition 

is a simple and practical method in upgrading pyrolysis bio-oil. In this work, a computer-

aided molecular design (CAMD) tool was developed to generate the molecular structure 

of the solvent with desirable properties. Molecular signature descriptors were employed 

to represent property prediction models that comprise different classes of topological 

indices. Because of the differences in the structural details involved in different property 

prediction models, signatures of different heights were needed in formulating the design 

problem. However, the complexity of a CAMD problem increases with the height of 

signatures, due to the combinatorial nature of higher-order signatures. Thus, a multi-stage 

framework was developed by introducing a novel set of consistency rules that restrict the 

number of higher-order signatures. With the developed consistency rules, only relevant 

and consistent signatures were generated to keep the CAMD problem in a manageable 

size. Phase stability analysis was conducted after solvent candidates were identified to 

evaluate the stability and miscibility of the solvent-oil blend. As a result, a feasible solvent 

that fulfils the target properties with low environmental impact was identified.  

Keywords: Computer-aided molecular design, bio-oil solvent, molecular signature 

descriptor. 

1. Introduction 

Biomass has received increased attention as a potential alternative fuel by converting into 

bio-oil via various conversion processes. Among the available biomass conversion 

processes, pyrolysis has the advantage of being a relatively simple and inexpensive 

technology. However, poor fuel properties of bio-oil from pyrolysis such as 

corrosiveness, high viscosity and low heating value limit its application as a biofuel. 

Solvent addition is one of the most popular bio-oil upgrading methods as it is relatively 

simple and economically viable. Conventionally, the design of solvents involves a trial-

and-error process within a large set of candidates which is tedious, time-consuming, and 

costly. Unlike traditional search and optimisation techniques, a more efficient solvent 

design can be carried out by utilising CAMD (Computer-Aided Molecular Design) tools 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50033-6 
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where molecules possessing desired properties are identified based on the pre-determined 

product requirements. CAMD is a reverse engineering approach in which the optimal 

molecules can be identified from a given set of molecular building blocks and a specified 

set of targeted properties. In the past, CAMD has been widely incorporated in designing 

solvents for biofuel additives. Previous research focused only on the functionality of the 

solvent itself that can be predicted using GC prediction models with 1st order group 

contributions. However, it is also important to include the environmental aspects into the 

design of bio-oil solvent to minimise the environmental impact. Moreover, incorporation 

of contributions from higher-order molecular groups in CAMD is crucial to account for 

the interactive effects of molecular groups (Marrero & Gani, 2001). In addition, the 

selected GC model may not have all the model parameters required for the estimation of 

property of a specific chemical (Hukkerikar et al., 2012). For this reason, TI (Topological 

Index) approaches can be applied as they are a function of the entire molecular graph, 

which reflect the entire nature of the molecular structure (Austin et al., 2016). 

Different types of property prediction models can be modelled using either GC or TI 

approach. Different properties may be expressed with different TI as well. However, 

different TIs exhibit different mathematical expression, which pose challenges in 

combining and solving it simultaneously on a common platform (Chemmangattuvalappil 

& Eden, 2013). To overcome this issue, molecular signature descriptor was introduced, 

where various GC models and TIs can be expressed on a common platform (Visco et al., 

2002). Molecular signature descriptor is one of the 2D fragment-based TI that 

systematically captures the structural information of a 2D structural formula. It describes 

the molecular atoms in terms of extended valencies up to a predefined height (Faulon et 

al., 2003). Owing to the fact that molecular signature descriptor is known as the canonical 

representation of a molecule, all other 2D classes of descriptors can be represented in 

terms of molecular signature (Visco & Chen, 2016).  

Signatures of higher height were required for the coverage of TIs and higher-order GCs. 

Despite the high accuracy of estimation, the complexity of CAMD increases due to the 

combinatorial nature of higher-order signatures. Hence, the height of signatures must be 

lowered to be used in a CAMD formulation. However, not all the signatures considered 

in the CAMD problem are consistent with each other to form a feasible molecule. Thus, 

a consistency rule was developed in this work to reduce the size of CAMD problem by 

excluding irrelevant molecular signature at a lower height from the building block sets 

(Chong et al., 2021). Infeasible signatures (signature that do not fulfil the consistency 

rules) are systematically eliminated at different levels and this can help to keep a 

manageable problem size. After determining all the possible additives, the accuracy of 

the estimated higher heating value of solvent candidates were verified through a database 

search. Other than the thermodynamic properties, Gibbs free energy of mixing was 

estimated to evaluate the miscibility of solvent-oil blend. With the developed approach, 

an optimum solvent that improves the solvent-oil blend properties and stability was 

generated.  
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2. Methodology 

This work presents a novel multi-stage solvent design methodology with consistency rule 

incorporated to reduce the size and complexity of the CAMD problem. The developed 

framework can be divided into 4 main stages as shown in Figure 1. 

 
Figure 1 Framework for the development of CAMD model for the design of solvent 

 

2.1. Problem Definition 

Firstly, the problem definition was formulated, where the product needs were determined 

based on the requirements from regulations and specifications. In addition, environmental 

properties were considered to ensure that the generated solvent molecules have low 

environmental impact. The identified product requirements were then translated into 

measurable quantitative target properties. This is then followed by selection of suitable 

property prediction models to estimate the target properties of the solvent. In this work, 

property prediction models in terms of GC method and TI were considered and expressed 

as a function of the molecular signature descriptor. As shown in Eq. 1, the molecular 

signature descriptor of molecule G, TI(G) can be expressed as a dot product between two 

vectors, ℎ𝛼𝑔, the vector of occurrence number of atomic signatures of height h, and 

𝑇𝐼(𝑟𝑜𝑜𝑡( ℎ ∑  )), the vector of predicted values from the model computed for each of the 

atomic signatures.  
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2.2. Consistency Rules 

In the developed approach, signatures of height ℎ were generated based on the collection 

of height ℎ − 1 signatures identified from the CAMD problem. The first layer of signature 

generated must contain one of the height ℎ − 1 signatures from the previous result. For 

example, assuming the signatures C1(C), C2(CC), C2(CO) and C3(CCO) were identified 

as the promising height 1 signature from the CAMD problem, the generated height 2 

signatures based on C1(C) are shown as below: 

1. C1(C2(CC)) 

2. C1(C2(CO)) 

3. C1(C3(CCO)) 

With this approach, the total number of generated height 2 signatures was reduced from 

13 signatures to 3 signatures. In another example, taking the collection of height 2 

signatures, the following set is obtained:  

1. C1(C3(CCO) 

2. C1(C2(CC)) 

3. C2(C1(C)C2(CC)) 

4. C2(C2(CC)C2(CC)) 

5. C2(C2(CC)C3(CCO)) 

6. C3(C1(C)C2(CC)O1(C)) 

7. O1(C3(CCO)) 

In this case, height 3 signatures generated based on the signature (3), C2(C1(C)C2(CC)) 

are listed as:  

1. C2(C1(C2(CC))C2(C1(C)C2(CC))) 

2. C2(C1(C2(CC))C2(C2(CC)C2(CC))) 

3. C2(C1(C2(CC))C2(C2(CC)C3(CCO))) 

2.3. Verification and Miscibility Analysis 

To ensure that the molecules generated from previous steps are feasible and practical, 

verification step was conducted through database search from various platforms. On the 

other hand, phase stability test was conducted by computing the Gibbs tangent plane 

distance to avoid phase separation in the final solvent-oil blend.  

3. Case Study 

3.1. Problem Definition 

The main objective of the designed solvent is to improve the physical properties of the 

bio-oil. Greater higher heating value (HHV) is preferable for better fuel combustion. 

Thus, the HHV of the designed solvent was maximized, which serves as the objective 

function. Table 1 summarized the constraints for each target properties identified. In this 

study, bio-oil derived via palm kernel shells (PKS), with moisture content of 16 wt.% and 

HHV of 19 MJ/kg, was used as the basis. The main components of the pyrolysis bio-oil 

include phenol, 2,6-dimethoxyphenol, 2-methoxyphenol, furfural, acetic acid and 1,2-

benzenediol.  

Based on the target properties identified, suitable property prediction models in terms of 

GC method and connectivity index were selected to estimate the properties of the 

designed solvents. In this case study, maximum signature height required in this problem 

was set at 4. The atoms that are commonly present in solvents (hydrogen, carbon, 
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nitrogen, and oxygen) were chosen for the design of bio-oil solvent. The hydrocarbon 

groups considered in this study were limited to alkanes, alkenes, alcohol, carboxylic acid, 

ketones, aldehyde, esters, ethers, and nitriles which can be predominately found in 

solvents. Then, the molecular signatures descriptors up to height 4 were generated based 

on the selected atoms’ type and chemical families, resulting in a total of 10,000 different 

molecular signature combinations. By applying the consistency rule, the signature set size 

was reduced to the final 21 height 4 signatures. 

Table 1 Target properties and constraint for each identified product requirements. 

Requirements/Needs Targeted Properties Constraints 

Liquid state at room 

temperature 

Normal boiling point / K > 400.15 

Normal melting point / K < 298.15 

Combustion quality Higher heating value To maximize 

Fuel flow consistency 
Viscosity / mPa s 1 > 𝑣 > 6 

Density / kg m-3 800 >𝜌 > 1000 

Environmental related 

properties and 

toxicology 

Aquatic acute toxicity, LC50 > 100 

Aquatic acute toxicity, EC50 > 100 

Oral acute toxicity, LD50 > 100 

Bioconcentration factor < 1000 

Soil-water partition coefficient / L kg-1 < 31622 

Global Warming Potential < 10 

Photochemical Oxidation Potential < 10 

3.2. Results and Discussion 

Based on the database search conducted, the feasible solvent molecules were identified 

as 2-octanol, 2-heptanol, 2-hexanol and 2-pentanol, respectively. The higher heating 

value estimated in present work for the abovementioned solvent candidates were close to 

the actual higher heating value obtained from NIST database, with less than 1% 

differences. All the resulting molecules possess a higher heating value of at least 37.5 

MJ/kg. It can be concluded that 2-octanol is the most suitable solvent candidate with the 

highest higher heating value at 40.89 MJ/kg. Figure 2 shows the Gibbs energy and tangent 

plot for 2-octanol and bio-oil blend. From Figure 2, the blend is stable and exhibit 

homogenous single-phase as the tangent line was plotted below the Gibbs curve.  

 

Figure 2 Gibbs energy and tangent plot for 2-octanol and bio-oil.  

-2.5

-2

-1.5

-1

-0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
ib

b
s 

En
er

gy

Mole Fraction of Solvent

Gibbs energy

Tangent

Design of Bio-Oil Solvents using Multi-Stage Computer-Aided Molecular

  Design Tools
203 



 

4. Conclusion 

A multi-stage CAMD methodology was developed to design an optimal solvent that can 

upgrade bio-oil while possessing low environmental impact. The developed multi-stage 

approach was used to reduce the size of problem due to the combinatorial nature of 

higher-order signatures. Moreover, consistency rules were applied to ensure only relevant 

and consistent signatures are generated. The results from the case study shows that solvent 

generated can achieve good functionality while displaying promising environmental 

characteristics. To conclude, the developed methodology in this work can be applied in 

the design of molecules for any application. Further improvements can be made by 

considering the addition of emulsifiers and/or reactive solvents in the design of additives 

for bio-oil upgrading purposes.  
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Abstract 
This work presents a synthesis method for deriving distillation process structures to 
separate a ternary mixture with a homogeneous azeotrope. First, the liquid composition 
space is divided into small subspaces, each of which is assigned to a distillation module. 
Then, all of the connections among the heating, cooling, feed, product, and distillation 
modules are contained in a  superstructure. The relations expressed in the superstructure 
are mathematically reformulated as a linear programming problem in which the utility 
cost is minimized. The optimal solution shows the connection between modules that 
indicates the best structure. The optimal solution is interpreted and translated to a feasible 
and realistic distillation process at a post-optimization step. 

The proposed method is applied to the separation problem of the mixture of acetone, 
chloroform, and benzene. The optimization result shows that the direct sequence of two 
columns is a possible candidate for the optimal structure. Moreover, this structure is 
derived without assigning any a priori knowledge of the process structure.  

Keywords: Process Synthesis, Azeotropic Distillation, Process Optimization 

1. Introduction 
Distillation is the most widely used technique to separate liquid mixtures. However, it 
uses large amounts of energy because the vaporization of liquid streams is inevitable. 
Although distillation research is often regarded as a mature area, new design and/or 
operation discoveries renew the interest in distillation because such improvements can 
translate into huge economic benefits (Caballero and Grossmann, 2013). 

Li, Demirel, and Hasan (2019) proposed a block-based phenomena methodology for the 
synthesis of distillation processes. The blocks with phase and material assignment 
assemble to represent various phenomena (e.g., mixing, reaction, phase contact, and 
phase transitions), which are typical in distillation processes. These blocks can connect 
to represent various distillation processes, including single columns, dividing wall 
columns, and reactive distillation columns. Although an MINLP formulation was 
presented, the proposed methodology can generate intensified distillation processes 
without any a priori enumeration of candidate distillation processes. The separation of a 
ternary zeotropic mixture was taken up as a case study, and the optimization result showed 
that the dividing wall column (DWC) was the best process.  

Takase and Hasebe (2015) proposed a synthesis method for the separation of a ternary 
mixture. In their method, the composition space was discretized, and each discretized 
subspace was assigned to a distillation module. For each module, the liquid and vapor 
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compositions and their molar enthalpies are uniquely determined. Thus, the synthesis 
problem was formulated as a linear programming (LP) problem. The vapor and liquid 
flow rates among modules were treated as optimization variables. The case study problem 
showed that the  DWC was the best process to minimize operating costs. 

It is known that even though a distillation boundary exists, in some cases, it is possible to 
separate a ternary mixture by using simple distillation columns (Biegler, Grossmann and 
Westerberg, 1997). The method proposed by Takase and Hasebe (2015) was applied to 
separating a ternary zeotropic mixture. However, this research extends their method 
because it considers separating a ternary mixture with an azeotrope and a distillation 
boundary. Thus, the separation is more difficult because a distillation boundary divides 
the composition space into two distillation regions. 

2. Problem Statement 
In this work, the synthesis problem for the separation of a ternary mixture containing a 
homogeneous azeotrope, based on the following assumptions, is formulated: 

1. The ternary mixture forms a homogeneous azeotrope. 
2. The feed is saturated liquid, and its flow rate and composition are given in advance. 
3. All products are withdrawn as saturated liquids, and the purity specification of each 

product is given in advance as the lower bound of its key component. 
4. The operating pressure is given in advance, and the pressure drop is negligible. 
5. The process is at a steady-state. 
6. The vapor leaving from a distillation stage is in equilibrium with the liquid on that 

stage. 
7. Utility costs per unit amount of heating and cooling are given in advance. 

Under these assumptions, the optimal process is derived without any structural 
assumption. The state-space discretization used in the IDEAS approach is adopted to 
formulate the material and heat balance equations (Drake and Manousiouthakis, 2002). 
A stage in any distillation column is treated as a distillation module. All possible flow 
connections among these modules are considered. Figure 1 represents the superstructure 
for the connections among modules. 

 
Figure 1. Superstructure representation for the separation of a ternary mixture 

The squares numbered from 1 to N represent each distillation module. Each distillation 
module is further divided into input and output parts in which the same number is assigned. 
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Products 1 to 3 have only input flows, and the feed has only output flows. The heating 
and cooling utilities are also treated as modules. The solid, dashed, and dotted lines 
between modules represent feasible paths of liquid flows, vapor flows, and heat, 
respectively.  

The proposed superstructure allows liquid and vapor flows among all distillation modules. 
The feed can be supplied to any distillation module. Each product module can accept 
liquid flows from any distillation module. Furthermore, heating and cooling are allowed 
in any distillation module. 

3. Mathematical formulation 
Based on the superstructure in Figure 1, the optimization problem which aims to minimize 
the utility cost (𝑈𝑈𝑈𝑈) is formulated by Eq. (1) to Eq. (6). Since the utility cost is the most 
relevant cost in distillation, the UC minimization is a valid assumption. Moreover, this 
research aims to derive novel distillation structures that do not depend on any a priori 
structural assumption rather than optimizing a predefined distillation structure. 

 Eq. (1) shows the objective function, Eq. (2) to Eq. (4) represent the material balance at 
each module, Eq. (5) represents the energy balance at each module, and Eq. (6) represents 
the purity constraint on each product 

𝑈𝑈𝑈𝑈 = � (𝑐𝑐𝐻𝐻𝑄𝑄𝑖𝑖𝐻𝐻

𝑖𝑖∈𝑆𝑆𝑀𝑀

+ 𝑐𝑐𝐶𝐶𝑄𝑄𝑖𝑖𝐶𝐶)    (1) 

� 𝐿𝐿𝐹𝐹𝐹𝐹 − 𝐿𝐿𝐹𝐹 = 0
𝑖𝑖∈𝑆𝑆𝑀𝑀

 (2) 

��𝐿𝐿𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑗𝑗𝑗𝑗� + 𝐿𝐿𝐹𝐹𝐹𝐹
𝑗𝑗∈𝑆𝑆𝑀𝑀

− � �𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖�
𝑗𝑗∈𝑆𝑆𝑀𝑀

− � 𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃

𝑝𝑝∈𝑆𝑆𝑃𝑃

= 0          𝑖𝑖 ∈ 𝑆𝑆𝑀𝑀 (3) 

��𝐿𝐿𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑗𝑗𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗� + 𝐿𝐿𝐹𝐹𝐹𝐹𝑥𝑥𝑘𝑘𝐹𝐹
𝑗𝑗∈𝑆𝑆𝑀𝑀

− � �𝐿𝐿𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖�
𝑗𝑗∈𝑆𝑆𝑀𝑀

− � 𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃

𝑝𝑝∈𝑆𝑆𝑃𝑃

𝑥𝑥𝑖𝑖𝑖𝑖

= 0          𝑖𝑖 ∈ 𝑆𝑆𝑀𝑀 , 𝑘𝑘 = 1, 2 
(4) 

��𝐿𝐿𝑗𝑗𝑗𝑗ℎ𝑗𝑗𝐿𝐿 + 𝑉𝑉𝑗𝑗𝑗𝑗ℎ𝑗𝑗𝑉𝑉� + 𝐿𝐿𝐹𝐹𝐹𝐹ℎ𝐹𝐹 + 𝑄𝑄𝑖𝑖𝐻𝐻 − � �𝐿𝐿𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝐿𝐿 + 𝑉𝑉𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑉𝑉�
𝑗𝑗∈𝑆𝑆𝑀𝑀𝑗𝑗∈𝑆𝑆𝑀𝑀

− � 𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃 ℎ𝑖𝑖𝐿𝐿

𝑝𝑝∈𝑆𝑆𝑃𝑃
− 𝑄𝑄𝑖𝑖𝐶𝐶 = 0           𝑖𝑖 ∈ 𝑆𝑆𝑀𝑀 

(5) 

𝑥𝑥𝑘𝑘𝑃𝑃 � 𝐿𝐿𝑗𝑗𝑗𝑗𝑃𝑃 − � 𝐿𝐿𝑗𝑗𝑗𝑗𝑃𝑃

𝑗𝑗∈𝑆𝑆𝑀𝑀

𝑥𝑥𝑗𝑗𝑗𝑗 ≥ 0
𝑗𝑗∈𝑆𝑆𝑀𝑀

           𝑘𝑘 = 1,2,3 (6) 

where 𝑆𝑆M  and 𝑆𝑆P  are the sets of distillation module numbers and product numbers, 
respectively. 𝑐𝑐H and 𝑐𝑐C are the heating and cooling costs per unit amount of energy. 𝑄𝑄𝑖𝑖H 
and 𝑄𝑄𝑖𝑖C are the amounts of heat supply and removal at distillation module 𝑖𝑖. 𝐿𝐿F𝑖𝑖 is the feed 
liquid flow rate entering to module 𝑖𝑖 and  𝐿𝐿F is the feed flow rate. 𝐿𝐿𝑗𝑗𝑗𝑗 and 𝑉𝑉𝑗𝑗𝑗𝑗 are the liquid 
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and vapor flow rates from module 𝑖𝑖 to module 𝑗𝑗, respectively. 𝐿𝐿𝑖𝑖𝑖𝑖P  is the liquid flow rate 
from module 𝑖𝑖 to product p.  𝑥𝑥𝑗𝑗𝑗𝑗 and  𝑦𝑦𝑗𝑗𝑗𝑗 are molar fractions of the kth component in the 
liquid and vapor at module 𝑗𝑗, respectively. 𝑥𝑥𝑘𝑘𝐹𝐹 is the molar fraction of the kth component 
in the feed stream. ℎ𝑗𝑗L  and ℎ𝑗𝑗V  are liquid and vapor molar enthalpy at module 𝑗𝑗. It is 
assumed that the purity specification of product k is given as the lower bound of the molar 
fraction of kth component and is given by 𝑥𝑥𝑘𝑘P. 

Eq. (1) to (6) are linear equations and inequalities for the optimization variables. 
Therefore, the optimization problem can be formulated as a linear programming (LP) 
problem. In plotting the result on a ternary distillation diagram, it is possible to recognize 
how the separation of the mixture with a distillation boundary is performed (Królikowski 
et al., 2011). The result shown on the ternary distillation diagram is used to find the 
plausible process structure. 

 

4. Case Study 
The separation of acetone, chloroform, and benzene was taken as a case study (Biegler, 
Grossmann and Westerberg, 1997). The feed composition was 35 mol% of acetone, 25 
mol% of chloroform, and 40 mol% of benzene, while the product specifications were 90 
mol% for each product. This mixture forms a maximum temperature azeotrope between 
acetone and chloroform. The ternary diagram is separated into two distillation regions by 
a distillation boundary. The feed flow rate is 120 kmol/h, and the heating and cooling 
costs are 10 GJ/$ and 0.5 GJ/$, respectively. The NRTL method in Aspen HYSYS® V9 
was used to estimate the physical properties. 

5. Results and Discussions 
5.1. Reference designs 

Figure 2 shows the reference designs that meet the target 90 mol% compositions for all 
products. The designs were simulated in HYSYS® V9 for the sake of comparison. Design 
1 has 50 stages in the first column (C1) and 60 stages in the second column (C2), while 
Design 2 has 45 stages in C1 and 50 stages in C2. The liquid composition profile of each 
design is shown in Figure 3. The utility cost for Design 1 was 130.60 $/h, while that for 
Design 2 was 152.20 $/h. 

5.2. Optimization results 

The composition space was discretized in increments of 0.025, and each discretized 
composition represents a subspace assigned to a distillation module. However, near the 
distillation boundary and above a benzene composition of 0.7, the composition space was 
discretized with increments of 0.005. As a result, 2,700 distillation modules were placed 
on the ternary composition diagram. Figure 4 shows the liquid flows between distillation 
modules obtained by solving the optimization problem. The squares in the figure 
represent the modules with liquid flows above 5 kmol/h, and the coordinates of each 
square represent the liquid composition assigned to the module. The solid grey lines 
represent the selected liquid path. The solid red squares near the benzene product mean 
that heating is necessary at each of those modules. In contrast, the solid blue squares near 
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the acetone and chloroform products mean that cooling is needed. The utility cost was 
129.3 $/h, which is slightly lower than that of Design 1. 

Since the composition space is discretized, the obtained process includes many secondary 
flows of small flow rate among the modules. However, extracting the dominant flows 
from the result shown in Figure 4 makes it possible to construct a simple and efficient 
process structure. In this case, the dominant flow paths in Figure 4 are similar to those in 
Figure 3. Thus, it can be said that the structure in Figure 2 is close to the optimal structure. 
As a result, the optimal structure's utility cost is close to that of Design 1. Though a new 
process structure was not created, the process structure was derived without inputting the 
structure information. 

 
Figure 2. Reference designs 

 
Figure 3. Liquid composition profile for each reference design 
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Figure 4. Liquid composition profile of the optimization result 

6. Conclusions 
A module-based synthesis method using the IDEAS approach was proposed for the 
separation of homogeneous azeotropic mixtures, which did not require a decanter. The 
method was applied to the separation problem of acetone, chloroform, and benzene, and 
the result showed that the optimal structure was close to the structure known as a direct 
sequence. The proposed method can be used without assuming the process structure in 
advance. Thus, it has a great potential to generate an original process structure that has 
not been used in the existing chemical plants. 
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Abstract 

There is a significant need in chemical and petrochemical industries for process 

synthesis tools to identify cost-competitive processes with low greenhouse gas 

emissions and environmental impact compared to existing designs, based on process-

wide multi-objective optimization. Deadlines and human resources usually constrain the 

design process; however, only single-objective optimization for individual units is 

usually considered. To extend the optimization scope, AVEVATM Process Simulation 

can be coupled with the multi-objective optimization software modeFRONTIER®. The 

integrated system allows solving multi-objective problems in a short time. This study 

demonstrates how a given industrial process can be optimized, ensuring stable and 

robust operation at low total annual cost (TAC) while reducing idle time and 

outperforming manual work. The proposed methodology is demonstrated using a case 

study of an ethanol distillation process plant. Designers and consultants can use this 

methodology to aid decision-makers in the design phase to identify robust, low-cost 

designs that deliver preferred performance in terms of environmental impact in the 

future operation. 

Keywords: Multi-objective Optimization; Process Design; Process Simulation. 

1. Introduction 

Globally, governments are starting to impose regulations on greenhouse gas emission in 

addition to the existing regulations on water, and toxic pollution. Manufacturers are 

looking to make their operations greener and simulation can assist companies in their 

pursuit of greener production. Generative design, an iterative design process that uses 

simulation and machine-learning to mimic nature's evolutionary approach to design, 

offers the potential to boost sustainability across the manufacturing industry. Until now, 

generative design has been used primarily to optimize products, such as reducing the 

mass of products or costs while preserving functionalities. Currently generative design 

has shown capability and versatility to provide benefits in other applications, 

succeeding, for example, in construction industry's new challenges. This study will 

investigate if Generative Design has the potential ability to redesign larger 

manufacturing systems entirely. It must be emphasized that an ideal plant that is at the 
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same time efficient, cost-effective, environment-friendly, and risk-free is hard to 

achieve. There are always some necessary trade-offs to be made to ensure optimal use 

of energy resources while limiting environmental, health impacts or operability as 

shown by L. Gerber (L. Gerber et al., 2013) or B. Brent (B. Brent et al., 2020). 

 When the fluid includes the azeotropic components and recycles, it's hard to determine 

the optimum design for total number of trays, feed stages, recycle flow rate, reflux ratio, 

operating pressures and heating/cooling medium. Also the detailed engineering data 

associated with unit operations are necessary to estimate operating, equipment costs and 

environmental burden. In this project, AVEVATM Process Simulation has been used as 

the first-principles simulation tool that has the flexibility to change various specification 

and the functionality to calculate the COD (Chemical Oxygen Demand) in the 

wastewater (environmental load), the Capital Cost(CapEx), Operating Costs (OpEx) and 

Greenhouse gas (GHG) emissions. To support this design process, to get a better 

understanding of the model itself, and to reduce the number of evaluations to find the 

optimal solution, it has been coupled with modeFRONTIER, the desktop solution for 

process automation and optimization in the engineering design process. 

2. Simulation model and Design condition 

2.1. Base model for the case study 

 The separation of ethanol and water is complex because of the existence of azeotrope; 

several distillation sequences are described in the book of Seader (Seader et al., 2010). 

The distillation feed mixture is composed of 90% water and 10% ethanol. In this study, 

following the most common and classic distillation method, three-column sequences 

using benzene as entrainer have been selected. The first column, Preconcentrator 

concentrates most of the ethanol from the feed. From the bottom of the second column, 

Azeotropic column, ethanol with more than 99% purity is produced. The overhead of 

the azeotropic column is condensed and decanted. The effluent with a high 

concentration of entrainment and ethanol is 

recycled to the Azeotropic column with the 

fresh benzene as reflux from the L1 phase. 

The water-rich phase is sent to the Entrainer 

Recovery column. The third column, the 

Entrainer Recovery column, recovers the 

entrainer and ethanol from the overhead and 

recycles them to the Azeotropic column. 

The distillation processes were simulated in 

AVEVA Process Simulation software using 

NRTL physical property model with the 

default binary parameters.  

2.2. Design conditions summary 

The column diameter is set to keep the flooding factor = 0.7 and the height for each 

stage is fixed as 0.59m. The flooding factor is calculated using the Fair correlations. The 

Sieve tray is selected as the internals of the columns. The column efficiency is set as 0.6. 

Cooling water return temperature is set as 45C and U value is set as 1,000kcal/h-m2-K 

for all condenser. Steam outlet vapor fraction is set as 0 and U value is set as 5,000 

kcal/h-m2-K for all reboiler. Counterflow heat exchange was applied for all heat 

exchanger. Pump efficiency is set as 0.7 and the elevation of each reflux drum is set as 

10m for all pumps. The pipe length for the suction and discharge of the pump is set as 

Figure 1: Flowsheet of the entire ethanol 

distillation process 

212



Reduce Environmental Impact and Carbon Footprint for Cost Competitive  

  Process Plant Design: Integrating AVEVA Process Simulation with 

 

20m and the velocity is set as 2m/s for the liquid line. The preconcentrator column 

design condition is separately done from the entire optimization  by creating NQ-curve 

using Python API because there are no recycles to this column. The Azeotropic column 

and the EntrainerRecovery column conditions are designed using modeFRONTIER as 

mentioned in section 4.3.  

3. Objective function 

3.1. Environmental impact 

The environmental load is evaluated by the concentration of ethanol in the wastewater. 

In particular, the measure used to evaluate such concentration is the COD. Many 

governments impose strict regulations regarding the maximum chemical oxygen 

demand allowed in wastewater before it can be returned to the environment. For 

example, in Japan , a maximum oxygen demand of 160mg/l must be reached before 

wastewater or industrial water can be returned to the environment due to the Water 

Pollution Prevention Act. COD of the ethanol can be considered as 2.09 g COD/g 

ethanol from the following reaction: C2H6O + 3O2 → 2CO2 + 3H2O.  The equation to 

calculate COD is implemented as a flowsheet equation. 

3.2. Total annual cost (TAC) 

AVEVATM Process Simulation has the functionality to add the cost estimate model to 

each unit. The operational cost is based on the paper by Ulrich (Ulrich et al., 2006) as 

shown below. Each cost depends on two utility-specify coefficients (a, b), the current 

CEPCI, and Cs,f (the cost of fuel in $/GJ). 

𝐶𝑆,𝑢 = 𝑎(𝐶𝐸𝑃𝐶𝐼) + 𝑏(𝐶𝑆,𝑓) (1) 

The price is based on the 2019 CEPCI (607.5) and the average wholesale price of No. 2 

fuel oil in 2019 for the United States ($12.83/GJ). Benzene cost is taken from 2015 ICIS. 

Operation time is considered as 8000hr/year. Installed cost is calculated based on the 

below equation from the book of James (James et al., 1988). As reported on Ethanol 

Producer Magazine (http://www.ethanolproducer.com), ethanol plants require stainless 

steel (SS) for most of the equipment hence it has been used for the cost calculations. 

(𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑜𝑠𝑡, $) = 𝐶 (
𝑀&𝑆

280
) 𝐻𝑛1𝐷𝑛2𝐴𝑛3𝐹𝑇 (2) 

M&S index is calculated based on the below equation from the book of Zacharias 

(Zacharias et al., 2007).  

𝑀&𝑆 = 1250 + 25(𝑌𝑒𝑎𝑟 − 2005) (3) 

With SI units, the following equation is used for the cost of the column, internals, and 

heat exchanger.  

(𝐶𝑜𝑙𝑢𝑚𝑛 𝑐𝑜𝑠𝑡, $) = (957.904) (
𝑀&𝑆

280
) 𝐻0.802𝐷1.066(2.18 + 𝐹𝑚𝐹𝑝) (4) 

(𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑐𝑜𝑠𝑡, $) = (97.243) (
𝑀&𝑆

280
) 𝐻1𝐷1.55(𝐹𝑠 + 𝐹𝑡 + 𝐹𝑚) (5) 

modeFRONTIER®
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(𝐻𝑒𝑎𝑡𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟 𝑐𝑜𝑠𝑡, $) = (474.67) (
𝑀&𝑆

280
) 𝐴0.65(2.29 + (𝐹𝑑 + 𝐹𝑝)𝐹𝑚) (6) 

The cost for the piping, electrical, buildings, and indirect costs are considered as double 

of the installed costs based on the rule of thumb. The wastewater treatment is not 

included in this cost model because the COD in the wastewater will be controlled to be 

under the regulation. The above equations are all included in the equipment cost 

submodel. The Total Annualized Cost (TAC) is calculated as a function of an 

annualized form of total capital cost in three years and the total operating cost. Cost 

escalation, interest, location factor is not considered here. 

4. Optimization-driven design 

4.1. Design exploration 

Design Space Exploration is the process of finding a design solution (unique 

combinations of the settings of the independent variables) or solutions that best meet the 

desired design requirements from a space of tentative design points.  One of the 

difficulties of the distillation process, especially azeotropic distillation process, is due to 

its high nonlinearity and number of variables to be considered. It's difficult to find the 

optimal number of stages, feed stage, reflux/boilup ratio and recycle flow rate as there 

are no analytical solutions. Also trying to analyse every possible design requires 

millions of case studies. This is a time-consuming method and due to the shortage of 

engineer's time, the case studies are usually stopped far before it gets the best solution. 

Process automation and machine learning algorithms are required to obtain optimal 

solutions with minimum computation and time. In this context, the engineer's know-

how is fundamental while modeFRONTIER advanced data analysis and visualization 

tools allow to turn data into valuable insights and pick the best design solution. 

4.2. Process Automation 

To leverage modeFRONTIER’s Machine Learning algorithms to optimize the process 

parameters in order to reduce the waste and the cost, an interface between the process 

simulation software AVEVATM Process Simulation and modeFRONTIER®  has been 

developed. The integration uses Python and communicates directly to AVEVATM 

Process Simulation thanks to native Python APIs. 

The studied model has seven Input variables and eight Output Variables. Increasing the 

recycle flow rate raises the product purity. On the other hand, it will cause a higher 

pump power consumption and the need for pipes with bigger diameters so TAC goes to 

increase. Increasing the number of stages, feed stage, and reflux/boil-up ratio improves 

Variables Description Type
T1FT Azeotropic column feed stage of recycle stream Discrete

T1NT Azeotropic column total number of tray Discrete

T1BR Azeotropic column boil up ratio Continuous

T2FT EntrainerRecovery column feed stage Discrete

T2NT EntrainerRecovery column total number of tray Discrete

T2RR EntrainerRecovery column reflux ratio Continuous

BZF Entrainer flow rate Continuous

Figure 2: Workflow created by modeFRONTIER® and the input variables table 
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product purity, but the CapEx and OpEx increase. So the trade-off relation between the 

wastewater, product purity and TAC can be expected by changing the above variables. 

5. Case Study 

5.1. Preliminary investigation using pilOPT 

As a preliminary study, 400 case study using Uniform Latin Hypercube DOE(Design of 

Experiments) and 100 case study using pilOPT, autonomous optimization alogrithm, is 

done to explore the relatively wide range of the design space. This work provides some 

insight into this process optimization like the minimum T1BR, sensitivity of T1FT.  

 

Figure 3: Scatter Matrix chart on Input Variables 

5.2. Detailed study based on the above study 

 In order to reduce the domain of Input Variables, in the output domain, the designs of 

the most promising region, have been selected and this allowed to highlight their 

distribution in the space of inputs (Figure.3 Scatter Matrix chart on the right). From this 

study, the design space is narrowed down, shrinking the Upper Bound of T1BR and 

T2FT Variable. Few designs from the Pareto Front of this initial study have been 

selected and used as DOE for a second phase of optimization. Given the high 

nonlinearity of the model a Genetic Algorithm has been adopted. To speed up the 

optimization, we leveraged on two AVEVATM Process Simulation running in parallel 

under the control of the same MOGA-II genetic algorithm. To run 900 designs it took 

little more than 25 hours and the resulting Pareto Front is visible at figure 4. 

 

Figure 4: MOGA-II Pareto Front 
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6. Result 

The Generative design approach produced a Pareto Front composed of eight designs 

(Figure.5), with a difference of ~3$/ton of produced ethanol between the minimum and 

maximum waste options. For each of these nominal designs (Figure. 4), to validate the 

robustness of each solution, a cloud of “Robust Designs” that follow a Gaussian 

distribution around the nominal design, has been generated automatically by 

modeFRONTIER® and validated with AVEVATM Process Simulation. 

 

Figure 5: Robust design analysis 

The result visible from Figure.5 is that even if very small noise is applied to BZF, T2RR 

and T1BR, it causes high variation in the Waste, while Cost and Purity are not affected 

so much. In particular, Design N. 6 has one Robust Design that reaches COD = 168 that 

is clearly out of regulation. Decision-makers should reject this design and select the 

N.19 instead that seems less sensitive to noise.  

7. Conclusions 

We have seen that several charts generated by modeFRONTIER® give some insights 

about the direction of the design and reduce the execution time of a parametric study 

thanks to its algorithms. Moreover, modeFRONTIER® identified several good designs 

that satisfy constraints and reduce environmental impact and total annual cost (TAC). 

We could reduce the COD by ~56% and the Cost of 21% with respect to the rough 

baseline design in just a few days.   Furthermore, the project demonstrated that among 

several possible solutions feasible in a deterministic way, some of them may not satisfy 

requirements when considering noise affecting input variables. A probabilistic analysis 

helped to reject one of the eight designs present in the Pareto Front. 
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Abstract 
Biofuel from microalgae is one of the promising solutions on addressing climate change 
by its possibility of reducing the fossil fuel dependency. Till-date, the overall 
competitiveness of microalgae based biorefinery is the major concern due to its unique 
operational mechanism, especially the biological growth of microalgae that fluctuates 
towards the surrounding. Therefore, a  novel graph-theoretic approach has been proposed 
to provide an optimization approach for identifying optimal process design with the 
consideration of three aspects that includes: economic, environmental, and reliability. The 
optimization is conducted using P-graph (a powerful graph-theoretic tool) which is 
capable to determine optimal and near-optimal solutions based on three objective 
functions: (i) minimizing annual operating cost, (ii) minimizing potential environmental 
impact, and (iii) maximizing reliability of process. The pool of feasible solutions (optimal 
and near-optimal) is obtained by satisfying the constraints on both greenhouse gas 
emissions and its respective reliability along. Thereupon, a  further analysis was carried 
out with the aid of TOPSIS considering three of the assessment aspects to identify the 
optimal microalgae biorefinery configuration 

Keywords: Optimization, Reliability, Microalgae biorefinery, Climate Change, P-graph 

1. Introduction 
Exponential growth of the worldwide population has led to the urge on exploring 
sufficient energy sources to suppress the effect of energy droughts that would bring 
negative impact on the evolution of human civilization. Till-date, the main energy 
supplies are still dominated by fossil-fuel based energy sources which are depleting at an 
unaccountable pace. One of the promising solutions on addressing such is by increasing 
the portion of renewable energy shares in the energy supplies. Among the conventional 
renewable energy sources, solar and wind energy have been recognized as the most 
promising alternative energy supplies that could be harvested from the nature. However, 
one of the critical issues reported with the aforementioned conventional renewable energy 
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sources is the intermittency in providing stable energy as it is highly dependent on the 
weather condition at the particular location where harvesting facilities are installed. 
Biofuel, which is another type of renewable energy that has received attention due to its 
similar calorific value while compared to mineral diesel and is further validated with its 
compatibility in ignition engine. Common biofuel production is involved with the crops 
and lignocellulosic biomass in agricultural activities which are categorized as 1st and 2nd 
generation biofuels, respectively. Yet, both input source of biofuel generation has the 
known issue of food security (1st generation) and extra processing steps are required for 
the lignocellulosic biomass (2nd generation).  

Microalgae-based biofuel, which is known as the third-generation biofuels, are gaining 
its popularity especially with its capability in supplying lipids that is essential for 
producing biofuel via microalgae cultivation. A good cultivation condition (i.e., sunlight, 
nutrient, pH, and salinity) is expected for the microalgae cultivation to maximize the lipid 
content that is essential in producing biofuel. In norm, the monocultures of microalgae 
are used in practice where the species with high lipid content is preferable such as the 
Chlorella vulgaris that is commonly used in the industry as it has been reported with 40% 
to 53% of dry weight lipid content. However, the monocultures of certain microalgae 
species are often reported with extensive operational cost especially in maintaining the 
surrounding condition and preventing the cultivation farm from contamination. Therefore, 
the co-culturing of microalgae is more favourable as it allows the existence of multiple 
strains at one time by allowing healthy symbiotic relationship among species. Such 
cultivation strategy has been proven with the capability in enhancing biofuel production 
as the amount of biomass from cultivation are reported with significant enhancement.  

Apart from the microalgae cultivation, a  series of biorefinery process is required to 
upgrade the biomass harvested from the cultivation farm such as pre-treatment, lipid  
extraction, upgrade, and post-treatment. Due to the intensive energy requirement on 
producing biofuel, a  proper process selection for the microalgae biorefinery is essential 
to ensure the overall sustainability on producing the biofuel. Herein, an extensive work 
was proposed to identify the optimal configuration for the biorefinery considering the 
aspects of economic, environment, and reliability in a single stage optimization 
framework. An optimization framework is developed to address the aim of this study with 
P-graph. The graphical aided optimization tool - P-graph is originally developed to solve 
the problem involving process network synthesis (PNS) alongside on providing a series 
of near-optimal solutions that is essential in decision making. Till recent, an innovative 
modification to the algorithm of P-graph was successfully proposed and implemented by 
Kovacs et al., (2019) which aims to solve the problem of process design with the 
consideration of its reliability simultaneously. Such reliability incorporated P-graph will 
be extensively implemented on the process design of microalgae biorefinery considering 
economic, environment, and reliability.    

2. Methodology 
A brief superstructure optimization framework targeted on proposing an optimal process 
configuration for microalgae biorefinery that considers economic, environment, and 
reliability aspects as shown in Figure 1. The raw material i required for certain process 
technology j in process stage k a long with the final product m are identified accordingly.  
P-graph tool were originally developed to identify economical feasible solution of the 
problem declared and further providing a ranking of all feasible pool of solutions. Yet, 
certain modifications could be made to address the desired assessment criteria on the 
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problem. In such, Lim et al., (2021) has proposed a novel fertilizer selection with the aid 
of P-graph in consideration of the economic, environmental, and health aspects by 
aligning certain configuration towards the desired evaluation metrics. Similarly, a  
configuration was made to assess the economic and environmental aspects of the process 
configuration proposed alongside with the modification towards the P-graph algorithm 
by incorporating the reliability assessment which was firstly proposed by Kovacs et al., 
(2019).  

 
Figure 1. Microalgae process technology selection via superstructure optimization 
considering economic, environmental, and reliability aspects.   

The objective function is expressed by minimizing the annual operating cost, AOC 
required for the process (See Eq. (1)) considering the required raw materials (𝑅𝑅𝑅𝑅𝑖𝑖) and 
the utility (𝑈𝑈𝑛𝑛 ,𝑗𝑗,𝑘𝑘 ) alongside with its respective cost of materials (𝑅𝑅𝑅𝑅𝑖𝑖) and utility (𝑈𝑈𝑅𝑅𝑛𝑛). 
Whereas the greenhouse gas emissions, GHG was assessed similarly based on Eq. (2) in 
terms of materials and utility used with its respective emission factor of 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 , and 𝑅𝑅𝑅𝑅𝑈𝑈𝑛𝑛 .    

𝑀𝑀𝑀𝑀𝑀𝑀  𝑇𝑇𝑇𝑇𝑅𝑅 =  ∑ (𝑅𝑅𝑅𝑅𝑖𝑖 ×  𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘)𝑖𝑖,𝑗𝑗,𝑘𝑘 +  ∑ (𝑈𝑈𝑅𝑅𝑛𝑛 × 𝑈𝑈𝑛𝑛,𝑗𝑗,𝑘𝑘)𝑛𝑛,𝑗𝑗,𝑘𝑘 + ∑ (𝐸𝐸𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘 × 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘)𝑖𝑖,𝑗𝑗,𝑘𝑘   (1)  

𝑅𝑅𝐺𝐺𝑅𝑅 =  ∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ×  𝑅𝑅𝑖𝑖 ,𝑗𝑗,𝑘𝑘)𝑖𝑖 ,𝑗𝑗 ,𝑘𝑘 +  ∑ (𝑅𝑅𝑅𝑅𝑈𝑈𝑛𝑛 ×  𝑈𝑈𝑛𝑛,𝑗𝑗 ,𝑘𝑘)𝑛𝑛 ,𝑗𝑗,𝑘𝑘   (2)  

Reliability analysis of the solutions is incorporated through the P-graph-based method 
given by Kovacs et al., (2019). The reliability formula, given by Eq (3), determines the 𝑟̂𝑟 
reliability from the reliabilities of the operations (𝑝𝑝𝑛𝑛 ), where 𝑈𝑈 represents the operational 
subnetworks in the solution, and 𝑥𝑥𝑛𝑛, the state of a unit. 
 

𝒓𝒓� = ∑(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 ,...,𝒙𝒙𝑵𝑵)∈𝑼𝑼 �∏𝑵𝑵
𝒏𝒏=𝟏𝟏 𝒑𝒑𝒏𝒏𝒙𝒙𝒏𝒏 (𝟏𝟏 − 𝒑𝒑𝒏𝒏)(𝟏𝟏−𝒙𝒙𝒏𝒏)�  (3) 
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3. Development of P-graph model  
The configuration of a generic superstructure optimization is demonstrated in Figure 2(a) 
for selecting feasible processes among two different technology. As previously 
mentioned, the reliability assessment has been incorporated into the P-graph which a new 
configuration on such modification is displayed in Figure 2(b). Herein, three different 
types of process configuration were considered for the specific technology that avail for 
the selection. Type A: a single equipment with the size x is considered, Type B: three 
similar size equipment with the halving of size A (𝑥𝑥

2
), and Type C: two similar equipment 

with size x. The difference in configuration could allow the system to propose an optimal 
configuration that considers the reliability.       

 

Figure 2. Demonstration of generic process selection superstructure optimization in P-
graph: (a) general configuration and (b) configuration after incorporating reliability.  
 
A P-graph model is developed to identify the optimal process in microalgae biorefinery 
as shown in Figure 3. Such process selection considers the aspects of technical, economic, 
environment, and reliability which are discussed in Section 2. The P-graph model 
comprises eight different sections covering: (A) Cultivation, (B) Dewatering and Cell 
Disruption, (C) Lipids extraction, separation, and recovery, (D) Anaerobic Digestion, (E) 
Digestate purification, (F) Biogas upgrade, (G) greenhouse gas emissions, and (H) 
Electricity distribution. Such model developed is solved with the custom solver of 
combining solution structure generation, linear programming, and reliability analysis. A 
case study was implemented where an approximation of 6.82 t of dry microalgae are 
cultivated in an area of 200 ha in Incheon, South Korea. All the process selection 
parameters considered in this study were based on the one reported by Lim et al., 2020. 
Due to strategic location of Incheon, various renewable energy sources are avail to be 
incorporated to fulfil the electricity demand of the microalgae biorefinery. 
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Figure 3. One-stage technical-economical-environmental-reliability P-graph model 
targeting microalgae biorefinery.  
 

4. Results and discussion 
A total of 34,992 solutions were proposed by the P-graph model developed based on the 
modified solver that incorporated the reliability alongside the calculation (see Figure 4). 
The total annual cost from the solution pool has reported with the range of 9.04 × 107 to 
1.35 × 108 USD/y; whereas the GHG emissions were reported in the range of 1.62 × 105 

to 7.24 × 105 kg CO2-eqv/y. As of the incorporated reliability aspects that bounds within 0 
(lowest reliability) to 1 (highest reliability), the solution has reported with the reliability  
range of 0.35 to 0.86. Thereupon, a further analysis was conducted with the aid of 
Technique of Preference by Similarity to Ideal Solution (TOPSIS) that was first proposed 
by Hwang and Yoon (1981). A detailed calculation steps of TOPSIS can be found 
similarly in Lim et al., (2021) which a non-bias approach has been implemented where 
all assessment aspects are considered equally important. Top 100 solutions that are re-
ranked according to TOPSIS score are highlighted in Figure 4. The ranked 1 microalgae 
biorefinery configuration is reported with 9.69 × 107 USD/y, 1.81 × 105 kg CO2-eqv/y, and 
0.81 in respect of the total annual cost, GHG emission, and reliability, respectively. The 
process configuration of the ranked 1 solution is as: cultivation, dewatering, high pressure 
homogenization, hexane lipid extraction, phase separation, solvent recovery, anaerobic 
digestion, digestate purification, and biogas upgrade. 
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Figure 4. Solution pools generated from P-graph model for the microalgae biorefinery 
process selection alongside with the top 100 solutions highlighted from TOPSIS. 

5. Conclusions 
This study has successfully proposed a one stage technical-economical-environmental-
reliability P-graph model on the selection of sustainable microalgae biorefinery process 
configuration. TOPSIS is then implemented to identify the ranked 1 configuration which 
resulted with 9.69 × 107 USD/y, 1.81 × 105 kg CO2-eqv/y, and 0.81 in respect of the total 
annual cost, GHG emission, and reliability, respectively. 
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Abstract 

This work presents a design framework for solid drug product manufacturing processes 

based on economic and quality assessment. Process alternatives were generated using a 

superstructure, which includes novel continuous manufacturing. Each generated 

alternative can be assessed considering various uncertainties in the design phase. 

Economic assessment calculates a net present value from the decision stage to the end of 

commercial production. Product quality assessment predicts dissolution behavior by 

surrogate models developed from existing mechanistic models. In this work, the use of 

the tools was presented in the form of an activity model and demonstrated in a case study. 

The proposed framework and the assessment tools can assist rational and efficient 

simulation-based design of solid drug product manufacturing processes. 

Keywords: Pharmaceuticals, continuous manufacturing, superstructure, economic 

assessment, quality. 

1. Introduction 

Solid drug products, e.g., tablets and capsules, are major products in the pharmaceutical 

industry. Solid drug product manufacturing consists of powder-based unit operations with 

the active pharmaceutical ingredient (API) as the initial raw material. Examples of unit 

operations are mixing, granulation, drying, compression, and coating, which have been 

traditionally performed batch-wise. Recently, continuous manufacturing, where all unit 

operations are interconnected, has been developed as a novel technology in 

pharmaceutical manufacturing. Unlike in the chemical industry, continuous solid drug 

product manufacturing is generally performed within certain running hours, e.g., 12 h. 

This characteristic increases flexibility in demand change (Lee et al., 2015), but the start-

up operation has high impacts on material losses. The number of potential process 

alternatives has increased with the emergence of continuous manufacturing, which makes 

process design more complicated. 

Numerous studies have been performed toward rational design of solid drug product 

manufacturing considering continuous manufacturing. Experimental investigations of 

continuous manufacturing have been reported to identify critical process parameters (e.g., 

Liu et al., 2019). Economic assessment to compare between batch and continuous 

manufacturing has been developed focusing on tablet manufacturing using wet 

granulation (Matsunami et al., 2018). Regarding product quality assessment, mechanistic 

modeling has been proposed by many researchers. Van Hauwermeiren et al. (2018) 

established a population balance model for continuous twin-screw wet granulation; Metta 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50037-3 
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et al. (2019) proposed a flowsheet model for continuous wet granulation. However, these 

studies have focused on specific manufacturing processes and/or drug types. A 

comprehensive design approach applicable for any drug is still needed. 

This study proposes a design framework for solid drug product manufacturing along with 

assessment models. A superstructure for alternative generation is presented with models 

for economic and product quality assessment. The use of assessment tools is then 

presented in the form of an activity model. This work describes the comprehensive design 

strategy, details of individual tools can be found in the article paper (Matsunami et al., 

2020) and the book chapter (Matsunami et al., 2021) by the authors’ research group. 

2. Developed assessment tools 

Tools are developed for process synthesis with alternative generation from a 

superstructure. The tools also include subsequent economic and quality assessments. 

2.1. A superstructure for process synthesis  

Process alternatives of solid drug product manufacturing are comprehensively generated 

using a superstructure created based on the unit, port, conditioning stream (UPCS) 

representation (Wu et al., 2018), as shown in Figure 1. Characters B and C in general 

units represent batch and continuous mode in the unit operations. Each process alternative 

is defined as the combination of streams, ports, and units from source (providing raw 

materials) to sink (collecting final products) units. 

The superstructure in Figure 1, which was created through a literature survey as well as 

the expert knowledge of the pharmaceutical industry, yields 9,452 process alternatives. 

Among these alternatives, 1,261 alternatives were identified as “continuous technology,” 

where all unit operations were performed in continuous operation mode. This work uses 

the granulation step, one of the essential production steps, as a case study for applying 

the assessment tools. Therefore, a higher-resolution of the available options was used 

compared to the other steps. In general, there are three options within this step: wet 

  
Figure 1. The developed superstructure (Matsunami et al., 2020) 
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granulation, dry granulation, or direct compression methods. Each option is associated 

with a range of options for unit operations.  

2.2. Economic assessment 

The indicator for the economic assessment is the net present value (NPV) to consider the 

cash flow from a decision stage to the end of the commercial production. Assuming the 

common decision stage of process alternatives is the beginning of phase II in clinical 

development, 𝑁𝑃𝑉 can be defined as shown in Eq.(1): 

𝑁𝑃𝑉 =– ∑
𝐶dev(𝜏)

(1 + 𝑟)𝜏

𝜏3

𝜏=0

– ∑
𝐶invest(𝜏)

(1 + 𝑟)𝜏

𝜏prod

𝜏=0

+ ∑
𝐶sales(𝜏)– 𝐶op(𝜏)

(1 + 𝑟)𝜏

𝜏prod

𝜏=𝜏lau

 (1) 

where 𝐶dev  [USD yr−1], 𝐶invest  [USD yr−1], 𝐶sales  [USD yr−1], and 𝐶op  [USD yr−1] 

represent the development cost, investment cost, sales, and operating cost, respectively. 

The parameter 𝜏 [yr] represents the period from the decision stage to the target phase. The 

subscripts 3, lau, and prod represent the clinical trials in phase III, the product launch, and 

the end of the commercial production, respectively. The calculation of 𝑁𝑃𝑉 can be made 

by setting the interest rate 𝑟. Material losses at the start-up operation are included in 𝐶op. 

Variations in the production scales to accommodate changing demand are reflected in this 

calculation. 

To reflect uncertainty in the decision stage in the economic assessment, the stochastic 

optimization problem of the expected (E) 𝑁𝑃𝑉 was determined, as shown in Eq.(2): 

max 𝐸𝜽(𝑁𝑃𝑉(𝑙)) 

s. t. 

𝐸𝜽(𝑁𝑃𝑉(𝑙)) > 0 

(Mass balance constraints) 

(Processing time constraints) 

(Pharma-specific constraints) , 

(2) 

where the design variable and uncertainty parameters are process alternative 𝑙 and the 

vector 𝜽, respectively. The developed economic assessment has been implemented as a 

part of a software tool “SoliDecision” (Matsunami et al., 2020). 

2.3. Product quality assessment 

As an example of product quality assessment, the dissolution behavior was studied. In 

this work, dissolution behavior is defined as the profile of mass ratio of API dissolved in 

water during a dissolution test. It was chosen as an example since it represents a critical 

quality attribute of solid drug products with a direct impact on drug efficacy. Surrogate 

modeling was chosen because both applicability to new drugs and calculation speed are 

important for the assessment in process design. The modeling activities consist of the four 

steps: (i) flowsheet model development, (ii) input/output data generation, (iii) dissolution 

behavior fitting, and (iv) random forest regression. Firstly, existing mechanistic models 
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are integrated to create flowsheet models of solid drug product manufacturing. The 

flowsheet models were then used for the calculation of dissolution behavior by changing 

the values of input model parameters. After obtaining a set of output data, mass ratio of 

API dissolved 𝐷  [%] were fitted by the Weibull model to transfer it into a lower 

dimension, as shown in Eq.(3): 

𝐷(𝑡) = 100 ∙ (1 − 𝑒{−𝑘(𝑡−𝑡0)𝑏}) (3) 

where the parameters 𝑡 [min], 𝑘 [–], 𝑡0 [min], and 𝑏 [–] represent time from the start of a 

dissolution test, reciprocal of the scale parameter, time lag, and the shape parameter, 

respectively. The Weibull model was chosen because it showed the highest fitting 

accuracy among seven popular dissolution fitting models, e.g., first-order kinetics. Finally, 

the relationships between the input model parameters and the Weibull model parameters 

were trained by random forest regression. The hyper-parameters of random forest models 

were chosen by maximizing coefficients of determination in five-fold cross-validation. 

By integrating all the steps, the surrogate model can be expressed as the combination of 

the Weibull model 𝑊 and the random forest regression 𝒈, as shown in Eq.(4): 

𝐷(𝑡) = 𝑊(𝒈(𝑷), 𝑡) (4) 

where 𝑷 represents the vector of the input model parameters. The developed surrogate 

model can calculate expected ranges of dissolution behavior under the uncertainty of the 

input model parameters. 

3. Design framework 

The application of the assessment tools in the design activities was described as a design 

framework by using the type zero method of integration definition for function modeling 

(IDEF0). The top activity of the framework is “evaluate processes for process design,” 

where the viewpoint was set as process designers in the pharmaceutical industry 

(Matsunami et al., 2021). The four sub-activities of the top activity were defined as shown 

in Figure 2. The sub-activities are controlled by design cases, which are defined by new 

drug information as well as the pharma-specific constraints, e.g., regulations and clinical 

trial results. The developed assessment tools are used as a mechanism of the activities. 

By executing the activities, promising alternatives are determined, which will be further 

tested in the subsequent design activities. 

The proposed framework was demonstrated by setting a scenario where the beginning of 

phase II in clinical development was set as the decision stage. The design problem was 

set as “find a process which maximizes 𝑁𝑃𝑉  and dissolution rate.” In A1, possible 

process alternatives were chosen based on material properties and design policy. Here, 32 

alternatives, including batch/continuous dry granulation and wet granulation methods, 

were focused on in this demonstration. After defining probability density functions 

(PDFs) of all input parameters in A2, both economic and product quality assessments 

were performed. Figure 3 shows violin plots of PDFs of 𝑁𝑃𝑉 differences between target 
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alternatives and the best alternative in terms of 𝐸𝜽(𝑁𝑃𝑉(𝑙)) generated by “SoliDecision”. 

Alternative numbers are defined by the order of 𝐸𝜽(𝑁𝑃𝑉(𝑙)), where an alternative of 

continuous dry granulation was the best alternative. In product quality assessment, 

dissolution behavior in continuous dry granulation was compared with that in batch high-

shear wet granulation, which is one of the typical production methods. Dissolution 

behaviors using average values are presented in Figure 4. Batch high-shear wet 

granulation made dissolution faster than continuous dry granulation. The results of 

 
Figure 4. Simulation results of dissolution behavior using average values. 
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economic and product quality assessments were interpreted in A4. At commercial scale, 

the expected 𝑁𝑃𝑉 of continuous dry granulation was USD3.37×105 higher than that in 

batch high-shear wet granulation, whereas mass ratio of API dissolved at 10 mins was 

9.86% slower. This trade-off between cost and quality should be considered by weighting 

each indicator to determine the promising alternatives. Continuous dry granulation could 

be chosen if lowering cost was more important than fast dissolution. Batch wet 

granulation could be selected if a higher dissolution profile was the most important.  

4. Conclusions 

A design framework for solid drug product manufacturing processes was presented along 

with economic and product quality assessment tools as a new mechanism. Process 

alternatives were comprehensively generated using a superstructure and can be assessed 

in terms of NPV and dissolution behavior. Both assessments can propagate the 

uncertainty of the input parameters, which should be high in the design phase, into the 

results. The application of the tools was described by an activity model and demonstrated 

in the case study. A part of the tools has been implemented as software, “SoliDecision,” 

which is ready for use in the actual decision-making in the pharmaceutical industry. 
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Abstract 

Seawater flue gas desulfurization (SWFGD) is considered to be a viable solution for 

marine and coastal applications. SWFGD, however, still has a couple of drawbacks that 

have to be resolved. High pumping costs and poor mass transfer efficiency require large 

volume and heavy construction. Thus, intensified and advanced process configurations 

have become necessary in process industries to improve the SWFGD processes 

performance. This work presents an overview of several advanced SWFGD systems such 

as swirling gas flow, square-based shapes scrubber, rotating packed bed and addition of 

a pre-scrubber. This work also presents an overview of industrial uses, challenges, and 

improved SWFGD processes. 

Keywords: seawater flue gas desulfurization (SWFGD); process retrofit; process 

improvement; Heat integration 

1. Introduction 

As the energy demand worldwide is overgrowing, many power plant constructions using 

fossil fuel are increasing [1]. Sulfur oxides (SOx), mainly consisting of SO2, are generated 

and emitted when fossil fuel is combusted, negatively influencing the environment [2]. 

As a result, many countries have propagated strict SOx emissions regulations [3]. 

Furthermore, sea transport, which accounts for more than 90% of international trade [4], 

emits a considerable amount of SOx [5]. The International Marine Organization (IMO) 

recently consented to regulations of sulfur emissions to prevent the negative effect on the 

environment from its emissions [6]. 

Many power plants prefer to be built offshore because they require lots of water for 

cooling. In addition, owing to its high availability and natural alkalinity, seawater has 

been considered an environmentally and economically reliable candidate for the solvent 

of flue gas desulfurization (FGD) processes in offshore and maritime applications [7].  

However, the seawater FGD (SWFGD) process has a couple of drawbacks that have to 

be resolved. High pumping costs and poor mass transfer efficiency require large volume 

and heavy construction [8]. Due to the typical limitations of maritime applications, these 

drawbacks must be investigated and addressed [6]. Consequently, a lot of research has 

been performed to improve SWFGD process efficiency and capacity and make this 

process more compact and lighter due to the constraints of space and weight for maritime 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50038-5 
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applications. This paper focuses on producing a comprehensive review of the 

improvement of SWFGD, which has been given significant attention recently. 

2. SWFGD systems in a coastal area 

The flue gas from power plants’ combustion of coal contains approximately between 210 

to 1540 ppmv of SO2 [7], and typical seawater usually has a pH value of 7.6 to 8.4 at a 

temperature of 5 to 15 °C The reaction procedures of absorption of SO2 into seawater are 

tabulated in Table 1 [2,9]. 

Table 1. SO2 absorption reactions into seawater 

Procedure Reaction  

Absorption SO2 + H2O ↔ HSO3
- + H+ (1) 

Oxidation HSO3
- + 1/2O2 ↔ SO4

2- + H+ (2) 

Neutralization HCO3
- + H+ ↔ CO2 + H2O (3) 

CO3
2- + 2H+ ↔ CO2 + H2O (4) 

Figure 1 shows simple configurations of open-loop, closed-loop, and hybrid mode. In the 

open-loop mode in Figure 1a, raw seawater is fed into the scrubber as a solvent, absorbs 

SO2, and neutralizes using its natural carbonate ions (CO3
2-) and bicarbonate ions (HCO3

-

). As shown in Figure 1b, in closed-loop mode, the seawater or freshwater is not 

discharged into the sea but is recycled inside the scrubber system. Hence, a wash water 

unit is necessary before releasing the water. Before recycling the wash water, use a heat 

exchanger to lower its temperature. To remove the moisture in the gas from the scrubber, 

it goes through a demister or moisture eliminator before entering the stack in both the 

open and closed loops. 

 

Figure 1. Schematic configurations of the (a) open-loop, (b) closed-loop FGD process mode 

3. Maritime SWFGD systems 

The fuel gas from the engines of existing ships typically emits SO2 in concentrations of 

80 to 1000 ppmv [10,11]. Table 1 shows the typical desulfurization process design 

conditions of the land-based SWFGD system and the SWFGD system used in large ships 

[9]. 

Table 2. The typical desulfurization process design conditions of the land-based SWFGD system 

and the SWFGD system used in large ships 

  Land-based Large Ships 

Flue gas flow rate Nm3/h 600,000 to 4,000,000 23,000 to 540,000 
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Inlet SO2 level ppmd 100 to 1800 700 

Outlet SO2 level ppmd 10 to 220 20 

SO2 removal 

efficiency 
% 75 to 98 

97.1 (3.5 %S to 0.1%S): SECAs 

85.7 (3.5%S to 0.5%S): global sea 

areas excluding SECAs 

Regulatory items for 

seawater discharge 

pH, dissolved oxygen 

(DO), temperature, etc 
pH, PAH, turbidity, nitrates 

For long-distance sea transportation, the SWFGD system with scrubber has many 

advantages such as simple structure, easy operation, and low initial investment compared 

to using low-sulfur oil or replacing it with an LNG vessel [12,13]. It usually consists of a 

spray column using seawater or seawater with NaOH added as a solvent [6], and this 

column is generally utilized when pressure drop is a critical factor [14] or when high 

levels of separation are not required [15].  

Nevertheless, the scrubber still has some disadvantages that need to be addressed. High 

pumping costs and poor mass transfer efficiency require large volume and heavy 

construction [8]. Due to the typical limitations of maritime applications, these drawbacks 

must be investigated and addressed [6]. So possible developed and integrated process 

configurations have become necessary in process industries to improve the SWFGD 

processes performance. 

4. Improvement of water and SWFGD systems 

If the swirling gas flow concept is used for the flow of gas entering into the spray column, 

the effect of mass transfer is increased [16]. When this concept is applied, the residence 

time of the flue gas inside the column becomes longer, resulting in improved mass transfer 

performance. Figure 2 shows the conceptual diagram of the swirling gas flow of the SOx 

scrubber [17]. Recently, Schrauwen and Toenes studied the effect of mass transfer after 

generating a swirling gas flow by injecting flue gas tangentially into the column [18]. The 

swirling gas flow increases the mass transfer performance, allowing a compact scrubber 

design and consequently expanding the applicability to marine vessels. 

 

Figure 2. The conceptual diagram of the swirling gas flow of the Sox scrubber.[17] 

A square scrubber [19], which is more efficient in terms of volume than a cylindrical 

scrubber, is frequently applied to the FGD system [9]. It is because the diameter of the 

cylindrical scrubber is larger than the side of the square scrubber in the same area. 

However, the square scrubber has difficulty in evenly distributing the flue gas and can 

only be used when the operating pressure is low [15,20]. PacificGreem Technologies 

and perspectives
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recently developed a square scrubber that is compact, flexible and does not compromise 

efficiency [17]. 

Hansen [8] has developed a method of installing an additional pre-scrubber to effectively 

remove SO2 in flue gas from engines of marine vessels. The flue gas temperature is 

rapidly cooled from about 180-250 °C to 45-60 °C in the pre-scrubber before flowing into 

the main scrubber. As shown in Figure 3, Alfa Laval installed a jet scrubber that uses 

water as a coolant to lower the flue gas temperature before the primary scrubber [21]. A 

venturi scrubber can be used as a pre-scrubber to screen PM [22], but this will increase 

the pressure drop. The venturi scrubber can be used to cool the hot flue gas (up to 1000 

°C) [17]. 

 

Figure 3. Schematic configuration combining a jet scrubber and an absorber [21]. 

Rotating packed bed (RPB) generates high acceleration through centrifugal force and 

forms a thin liquid film and tiny droplets through centrifugal acceleration to improve mass 

transfer performance [23]. As a result, RPB can improve the removal efficiency of SO2 

[24]. Recently, research has been conducted to enhance the absorption of SO2 using RPB 

and ionic liquid [25]. 

5. Challenges 

a. Due to the acidity of the flue gas, the scrubber must consider the effect of corrosion 

[6]; thus, it is crucial to choose a suitable material that can prevent decay. 

b. Since the flue gas pressure from the marine engine is similar to the atmospheric 

pressure, the pressure drop due to the auxiliary internals such as the demister and gas 

distributor inside the column should be low [6]. 

c. Designers must consider essential design factors such as the material of constructions, 

nozzle droplet size or nozzle type, solvent flow rate, and pressure drop to design an 

appropriate scrubber. [17]. 

d. The flue gas from a marine engine contains a complex PM composed of carbon 

particles [10], especially the soot particles that can cause severe disease [26]. A venturi 

scrubber, cyclone, dust collector, or electrostatic precipitator can be used to prevent PM 

from entering the scrubber [27,28]. 

f. The pH of seawater that absorbs acid gases from marine engines can be reduced to a 

range of around 2.53 [13]. However, the 2015 IMO guideline regulates the pH of the 

discharged seawater to be above 6.5. To increase the pH of the discharged seawater, 

caustic soda can be used as an additive in the SWFGD system [29]. 

 Gwangsik KIM et al.232



 

6. Conclusion 

Considering the strict IMO environmental regulations worldwide, this paper succeeded 

in investigating and analyzing SWFGD's current researches and industrial applications. 

The SWFGD process can be an excellent alternative for marine applications to meet the 

stringent IMO regulations due to seawater's natural alkalinity and high availability, design 

simplicity, convenient operation, no chemical solvent requirement, no solid waste, and 

relatively higher performance of SO2 removal. Several solutions were assessed, including 

process modification, integration, and intensification to enhance the SWFGD process 

effectively. Developed and improved SWFGD systems with compact units, lighter 

construction, low energy consumption, and reduced seawater flowrate have been 

commercialized. However, several issues are still to be solved, such as establishing an 

accurate and broader range of SO2 solubility, equilibrium data, and developing models 

describing advanced and improved scrubbers. 
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Abstract 

The use of natural gas as a source of energy is widely known. Before it is processed to be 

a sale gas, the water content in the natural gas should be reduced to 200 ppmv in low 

pressure level, as water is corrosive in the pipeline. This work was carried out after several 

configurations in the dehydration unit had been simulated to find the best one in terms of 

the total annual cost. (Affandy et al, 2020; Affandy et al., 2017). The dehydration unit 

considered consists of a TEG (triethylene glycol) contactor and TEG regenerator. The 

contactor is used for dehydrating natural gas, where the water is absorbed using TEG 

solution while in the regenerator the water is desorbed by using stripping gas to increase 

the purity of TEG so as to absorb water in the TEG contactor. A new configuration was 

proposed in this paper. The configuration consists of a packed column in the TEG 

contactor on one hand, and a coldfinger and the recycled flare gas in the TEG regenerator 

on the other hand. The results showed that the new configuration had a total annual cost 

of US$ 212.829 x 103 per year. This indicated that the total annual cost of this 

configuration was lower than that of the base case where there were no coldfinger and 

recycled flash gas used. The reduction of total annual cost from the base case was about 

33.3 %.  

Keywords: Dehydrating Unit; Natural Gas; Process Synthesis; TEG Contactor; TEG 

Regenerator. 

1. Introduction 

The use of natural gas as a source of energy source is widely known. It is naturally 

containing some impurities such as hydrogen sulphide, carbon dioxide, or nitrogen. It is 

also typically saturated with water moisture at the wellhead. The water moisture may 

cause problems like hydrate formation and also potentially leads to corrosion in the 

pipeline. The water moisture needs to be reduced to below certain level, for example to 

below 200 ppmv before sold as sale gas. There are few methods to reduce the water 

moisture from the natural gas, i.e. gas condensation using refrigerant, solid adsorption 

and using liquid absorption (Carrol, 2014).  

One of the most widely solvent used in the liquid absorption water dehydration is the 

Triethylene Glycol (TEG). There are several published works to improve the performance 

of the TEG dehydration and regeneration system. Kong et al (2018) elaborated several 

available methods in the TEG regeneration system, covering from conventional 

regeneration to the use of several stripping agents such as nitrogen, portion of dehydrated 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50039-7 
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gas, as well as liquid volatile hydrocarbon (Drizo process). It also covers the use of water 

exhauster (Coldfinger) as well as the emerging technologies such as membrane and 

supersonic separation technologies. The use of water exhauster in the regeneration system 

has been subject of recent research as well. Rahimpour et al (2013) simulated the 

dehydration unit using the Coldfinger system in a domestic gas plant. They focused on 

studying the influence of temperature, pressure and flowrate of the Coldfinger unit to the 

performance of the dehydration system. They also proposed a new mathematical model 

to approach the Coldfinger unit. Romero et al (2019) proposed two equilibrium stages 

operated at different temperatures to model the Coldfinger unit. Affandy et al (2020) 

investigated the performance improvement through the use of flash gas as a stripping gas 

source to the regenerator. They revealed that there will be some improvements in the TEG 

purity (up to 98.8%-wt) and the water moisture in the treated gas. However, it will be 

limited due to the availability of the flash gas, as well as the water content in the flash gas 

itself. The Total Annual Cost (TAC) of the proposed configuration showed around 20% 

reduction of TAC compared to the base case. 

This work focuses on the synthesis of the regeneration system involving the Coldfinger 

concept and reusing the flash gas as the stripping gas source. The performance of the unit 

should satisfy the water moisture content in the treated gas and should provide lower TAC 

compared to the base case. 

2. Process Description 

Process configuration in Figure 1 used as the base case in this work was based on the 

work developed by Affandy et al (2017). The wet natural gas (stream 3507) was brought 

into contact with a lean Triethylene Glycol (TEG) solution (stream 4) in a trayed TEG 

Contactor (C-1). The dehydrated gas (stream 3604) is expected to have water moisture 

content less than 200 ppmv.  

 

Figure 1 Process configuration of natural gas dehydration unit using TEG: base case 

 

The glycol solution that has absorbed water (i.e. rich glycol solution, stream 3603) was 

then routed to a regeneration system in which the water content to be reduced to certain 

level so that it can be used again as lean glycol. The regeneration system consists of a 

flash drum (FD-1), a series of lean-to-rich heat exchanger (HE-1, HE-2, and HE-3) to 

conserve the heat, and a regenerator consisting of still column (C-2), condenser and 
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reboiler. The conventional regeneration typically uses a regenerator operating pressure of 

near atmospheric to maximize the water vaporization. The operating temperature of 

reboiler typically is limited to 204 oC to minimize TEG glycol degradation. The 

regenerated lean glycol will have a water content of about 1.5 %-wt. The lean glycol 

(stream 3614) is then cooled to a temperature of around 45-48 oC (stream 3602) through 

the lean-to-rich heat exchanger system and further in a glycol cooler, prior to entering the 

TEG Glycol Contactor. 

3. Method 

The process simulation model was built in ASPEN Plus V10. The Predictive Redlich-

Kwong-Soave (PSRK) was used as the thermodynamic property package used in the 

simulation model from Affandy et al. (2017). The simulation model was also validated 

using the actual plant data taken from a domestic gas plant. The base case process 

configuration was subjected to area optimization of heat exchanger networks as defined 

in previous work from Affandy et al. (2017). 

The proposed process configurations were evaluated to give the lowest Total Annual Cost 

(TAC). The TAC itself was determined using formulae from Luyben (2011) in which it 

is the sum of total energy cost and the total capital cost divided by payback period. In this 

work the payback period was taken as 3 (three) years. The total operating cost consists of 

steam cost, cooling water, and TEG makeup (Affandy, 2020) 

𝑇𝐴𝐶 = 𝑇𝑂𝐶 +
𝑇𝐶𝐶

𝑃𝐵
       (1) 

Where: TAC = Total Annual Cost ($ / year) TCC = Total Capital Cost ($) 

 TOC = Total Operating Cost ($ / year) PB = Payback period (year) 

4. Proposed Configurations 

4.1. General 

 

Figure 2 Process configuration of natural gas dehydration unit using TEG: regeneration 

package using Coldfinger system 
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The proposed process configurations in this work were based on the additional Coldfinger 

unit to the regeneration system as depicted in the Figure 2. In this scheme, the lean glycol 

outlet from reboiler (stream 3614) is routed to the Coldfinger unit that produces a leaner 

glycol (stream 3615). Furthermore as depicted in the Figure 3, the flash gas (stream 3621) 

from the Flash Drum was rerouted to the regenerator as the stripping agent (stream 5), 

following the scheme proposed by Affandy et al (2020). 

 

Figure 3 Process configuration of natural gas dehydration unit using TEG: Absorption 

column using trays column and regeneration package including Coldfinger system and 

flash gas as stripping gas 

 

4.2. Coldfinger Model 

The principle of the Coldfinger process is that the partly regenerated glycol from the 

distillation column is further concentrated in a two-phase tank with a cold spot (the 

Coldfinger) and a condensed collector in the gas phase. Figure 4 depicts the model of 

Coldfinger unit. The condensing of the water results in reduced water pressure in the tank 

and more water will evaporate from glycol. It shows the coldfinger simulation using two 

flash units (Affandy, 2020).  

Figure 4 The Coldfinger model 

 

Since the coldfinger unit is difficult to simulate in steady-state simulation program due to 

the unit is not in equilibrium, the condensing at the cold spot is at a lower temperature 

than the glycol, therefore coldfinger is simulated using two flash drums similar to the 

work of Erik and Tyvand (2002). The first flash drum for simulating the equilibrium 
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between the glycol and the vapor above. The vapor is sent to second flash tank simulating 

the condensing and removal of the water at a lower temperature.  

5. Results and Discussion 

Among all configurations, the base case simulation has moisture concentration close to 

maximum limitation (200 ppmv) due to the availability of data validation to plant data. 

The proposed configurations were set to achieve 180 ppmv moisture content. The purpose 

of setting the moisture concentration in dry gas stream below the base case result, is to 

show that the optimized base case and proposed configuration are better than the base 

case (Affandy, 2020). 

 

The proposed configurations using coldfinger system or flash gas as stripping gas have 

improved the solvent purity. This result will have big relation with the TEG flow rate that 

needed to obtain the water moisture concentration target in the dry gas stream. Since both 

proposed configurations gave higher solvent purity, therefore to achieve the moisture 

target, the system could be run at much lower solvent flowrate as presented in Table 1. 

The solvent loss based on the TEG make-up needed for every configuration also be 

studied here. The reason solvent loss occurs in the natural gas dehydration unit using TEG 

is the solvent carried over in dry gas increase as well as at TEG purification step. The 

coldfinger system and flash gas as stripping gas in the regeneration column is extremely 

high compared to another configuration. The combination between coldfinger system and 

flash gas as stripping gas likely has effect on the solvent loss (Affandy, 2020) 

 

Table 2 shows that the addition of coldfinger system in the regeneration package affects 

to the total capital cost of the configuration that use coldfinger system. The main variables 

affecting the TOC reduction in the proposed configurations are TEG flow rate and TEG 

purity. Lower circulation rate has big impact on the total duty in the regeneration process. 

The proposed configuration to involve flash gas as stripping agent was found to give 

slightly higher reboiler loads compared to the configuration of regeneration with 

Table 1 Performance comparison between the base case and the proposed configurations 

Configuration 

Lean TEG  

flowrate 

(kmole/h) 

Lean TEG 

purity (%-

mole) 

Dry Gas 

Moisture 

(ppmv) 

Solvent 

Loss 

(kg/h) 

Base case 70.0 90.7 198 0.016 

+ Coldfinger 16.5 96.1 181 0.013 

+ Coldfinger + Flash gas 

as stripping 

17.5 94.9 180 0.037 

Table 2 Cost comparison between the base case and the proposed configurations 

Configuration 
TCC  

($) 

TCC / PB  

($/year) 

TOC  

($/year) 

TAC  

($/year) 

Base case 362,654  120,884   198,144   319,028  

+ Coldfinger 366,301 122,100 87,306 209,406 

+ Coldfinger + Flash gas 

as stripping 

 369,048  123,016   89,803   212,819  
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Coldfinger only, hence more operating cost required. However, all proposed 

configurations have lower TAC compared to base case (Affandy, 2020). 

6. Conclusions 

This article described process synthesis of new configuration for natural gas dehydration 

using TEG. The configuration consists of a packed column in TEG Contactor and 

combined Coldfinger and rerouted vent gas as additional stripping gas in the regeneration 

section. The results showed that the new configuration is capable of providing similar 

water moisture content in the treated gas stream while minimizing the utilities 

requirements. This has led to about 33% reduction of the Total Annual Cost of the new 

configuration compared to the Base Case. It reduced the TAC to US$ 212,819 per year 

from US$ 319,028 per year.  
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Abstract 

Multi-period Heat Exchanger Networks (HENs) are designed as heat recovery energy 

efficient systems over a set of operating conditions for process streams. The problem 

becomes more complex when detailed exchanger designs are accounted for in the network 

synthesis problem. Typically, in mixed-integer nonlinear programming (MINLP) multi-

period HEN optimisation, the maximum area heat exchanger across all periods is 

considered. However, when considering detailed designs, often this exchanger is 

unsuitable for operation over all periods. In this study, a trust-region algorithm is 

proposed to incorporate detailed exchanger designs for multi-period operation. The 

exchanger design is modelled using surrogate models inside a network-level NLP model 

which is derived from the multi-period MINLP HENS model solution. The method is 

applied to a case study and the results show the effectiveness of the proposed algorithm. 

Keywords: Process Synthesis, Heat Exchanger Network, Optimization  

1. Introduction 

HENs are common heat recovery systems in process industries that minimize utility costs. 

These systems exchange heat between hot process streams required to be cooled and cold 

process streams which need heat to reach higher desired temperatures. It is increasingly 

common for industrial plants to be operated over multiple, differing operating conditions, 

especially in batch processing. This requires HEN designs to be robust and feasible for 

different possible operating conditions, with this design process called multi-period HEN 

synthesis. Many studies have addressed this variation of the HEN problem, beginning 

with Aaltola (2002), which solved a simultaneous MINLP problem over different periods. 

Verheyen and Zhang (2006) solved the multi-period HEN using the largest exchanger 

area over the periods in the objective function. While most of these approaches focus on 

the trade-off between capital costs (exchanger area costs) and operating costs (heating 

and cooling utilities), the underlying detailed designs of the exchangers are not considered 

in the optimization. With varying conditions and streams with different thermophysical 

properties, it becomes more important to include the effect of exchanger design (number 

of shells, baffles, tubes etc.) in the HEN solution performance (Kang and Liu, 2019).   

Mizutani et al. (2003) was the first to use Bell-Delaware based MINLP exchanger design 

models in HEN synthesis. They used integer variables for discrete decisions such as 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50040-3 
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number of baffles, fluid allocation, tube diameter etc. and nonlinear equations for heat 

transfer correlations and pressure drop. Due to the nonconvex MINLP nature of the 

exchanger design model, it is difficult to solve large HEN problems with many 

exchangers. Short et al. (2016a) developed a two-step hybrid strategy to incorporate the 

exchanger design based on the Bell-Delaware method, using correction factors in the 

HEN MINLP model. Short et al. (2016b) used a similar strategy to solve multi-period 

HEN problems, with feasible detailed exchanger designs over all operational periods, 

using manual heuristics to design the exchangers at each iteration. 

Recently, Goncalves et al. (2019) have used linearization techniques and heuristics to 

solve the exchanger design model much more efficiently. Kazi et al. (2021a) proposed a 

discrete differential algebraic equation (DAE) model for detailed exchanger design which 

requires fewer assumptions than LMTD based methods. They also proposed a trust-region 

algorithm (Kazi et al., 2021b) to directly incorporate detailed exchanger designs into HEN 

synthesis, ensuring feasibility and optimality of the solution. In this work, we extend the 

formulation of Mahmood et al. (2021) to design shell and tube heat exchangers over 

multiple operating conditions using a discrete first principles model. We formulate a trust-

region algorithm which embeds these discrete models inside a network-level HEN NLP 

model to solve for detailed exchanger designs along with optimal splitting ratios for 

process streams. To the extent of the authors' knowledge, this is the first study to 

incorporate multi-period exchanger design directly in HEN synthesis models.  

2. Heat Exchanger Model 

The heat exchanger design model uses a two-step algorithm, where the first step applies 

an enumeration-based approach to determine the discrete decision variables (tube 

diameter, number of baffles etc.). This model is similar to Mahmood et al. (2021) which 

uses an LMTD-based NLP formulation and smart enumeration to solve multi-period 

multi-shell heat exchanger designs. We expand this model to reformulate it to include the 

ability for different heat exchanger shells to have different geometry (tube diameter, tube 

length and number of baffles), in addition to including multiple tube pass arrangements. 

This enables the exchanger design to be more robust to varying stream.  

The model also has additional degrees of freedom by introducing splitting variables on 

both tube and shell side for each operational period. This allows the streams to split and 

mix at the inlet and outlet of each shell respectively. The fraction of splitting provides 

additional degrees of freedom to find more feasible designs. For simplicity, the number 

of passes and tube allocation is kept the same across the multiple shells. Splitting and 

mixing constraints are as follows: For period j and shell k, volumetric flow rate (Vjk) is 

related to total inlet mass flow rate (mj) using split ratio variable rjk: 

𝑉𝑗𝑘 =  (𝑚𝑗 /𝜌𝑗). (1 − 𝑟𝑗𝑘)       ∀𝑗, 1 ≤ 𝑘 ≤ 𝑁            (1) 

Similarly, the mixing occurs at the exit of each shell using the following energy balance: 

𝑇𝑗𝑘
𝑜𝑢𝑡(1 − 𝑟𝑗𝑘)  + 𝑇𝑗𝑘

𝑖𝑛𝑟𝑗𝑘 =  𝑇𝑗𝑘+1
𝑖𝑛     ∀𝑗, 1 ≤ 𝑘 ≤ 𝑁 − 1          (2) 

The duty for the shells, using the tube and shell side temperatures and split ratios, is: 

𝑄 =  𝑚𝑗 . 𝐶𝑝𝑗 . (1 − 𝑟𝑗𝑘). (𝑇𝑗𝑘
𝑜𝑢𝑡 − 𝑇𝑗𝑘

𝑖𝑛)   ∀𝑗, 1 ≤ 𝑘 ≤ 𝑁            (3) 
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LMTD for each shell is approximated using a small positive parameter (𝜀) as shown: 

𝐿𝑀𝑇𝐷 ≈  𝛥𝑇2. √(((𝛥𝑇1/𝛥𝑇2 − 1)2 + 𝜖)/(𝑙𝑜𝑔(𝛥𝑇1/𝛥𝑇2)2 + 𝜖))         (4) 

The other constraints in the model and the design equations are provided in the 

supplementary section of Kazi et al. (2021a), extended to multi-period. 

2.1. DAE Model 

The heat exchanger design based on the LMTD equation has certain assumptions such as 

constant physical properties and no phase change. Moreover, the LMTD approximation 

makes the Bell-Delaware model unsuitable for derivative based solvers. In the second 

step, a more accurate first principles DAE model which was proposed in Kazi et al. 

(2021a) is used which does not use the LMTD formula, Ft correction and its assumptions. 

This is particularly useful in situations where thermophysical fluid properties can change 

with temperature which is commonplace in batch processing. 

The DAE model uses coupled ODEs with algebraic design equations to size the 

exchanger. The ODEs are discretized using the discrete geometric design variables 

(number of tube passes and baffles) into finite elements. The heat equation for both tube 

and shell side is discretized and solved and the size of the discretized elements are used 

to calculate overall exchanger design variables such as number of tubes, shell diameter 

etc. In the algorithm, values of the discrete variables are obtained from the solution of the 

first step using the LMTD method.   

Similar to the first step, the multi-period DAE model gives for more flexible design by 

allowing for streams to split and bypass over exchanger shells. The discretized heat 

equations inside each element are written as: 

𝐶ℎ
𝑗𝑘 (𝑇𝑗𝑘

𝑖+1 − 𝑇𝑗𝑘
𝑖)/2 +  𝑈𝑗𝑘𝛥𝐴𝑘(𝑇𝑗𝑘

𝑖+1 − 𝑡𝑗𝑘
𝑖+1)/3 + 𝑈𝑗𝑘 𝛥𝐴𝑘(𝑇𝑗𝑘

𝑖 − 𝑡𝑗𝑘
𝑖)/6 = 0 

𝐶𝑐
𝑗𝑘 (𝑡𝑗𝑘

𝑖+1 − 𝑡𝑗𝑘
𝑖)/2 − 𝑈𝑗𝑘𝛥𝐴𝑘(𝑇𝑗𝑘

𝑖+1 − 𝑡𝑗𝑘
𝑖+1)/3 − 𝑈𝑗𝑘 𝛥𝐴𝑘(𝑇𝑗𝑘

𝑖 − 𝑡𝑗𝑘
𝑖)/6 = 0 (5) 

The complete DAE model is described in Kazi et al. (2021a) with details on discretization 

and solution strategy. 

3. Trust Region Algorithm 

The multi-period HEN model has inaccurate and insufficient design equations for each 

exchanger. To obtain accurate detailed designs for each exchanger, we use a trust-region 

algorithm, similar to Kazi et al. (2021b), that embeds detailed DAE models as black box 

functions using surrogate models.  The network NLP model can be written as Eq.(6) :                  

min 𝑓(𝑥) , 𝑠. 𝑡. 𝑔(𝑥) ≤ 0, ℎ(𝑥) =  0, 𝑦 = 𝑑(𝑤)                                    (6) 

where f, g, and h are twice differentiable functions and d is the black box DAE model, 

whose equations are unknown to the NLP model. y and w are input and output variables 

to the black box function, and the other variables in the NLP are denoted by z, such that 

𝑥𝑇 = [𝑤𝑇 , 𝑦𝑇 , 𝑧𝑇]. The black box function is replaced by reduced model r(w) and a trust-

region constraint is added to ensure that the reduced model is a “good” approximation of 

the original model within the trust-region. The trust region subproblem (TRSPk) is then: 

𝑚𝑖𝑛 𝑓(𝑥), 𝑠. 𝑡. 𝑔(𝑥)  ≤ 0, ℎ(𝑥)  =  0, 𝑦 = 𝑟𝑘(𝑤), ||𝑥 − 𝑥𝑘|| ≤ 𝛥𝑘             (7) 
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To further simplify and reduce the size of 
the TRSP NLP problem, the variables can 
be partitioned into 𝑥𝑇 = [𝑢𝑇, 𝑣𝑇], where u 
are the degrees of freedom and v are the rest 
of the variables. The reformulated TRSPk is 
written as Eq.(8) follows: 

min 𝑓(𝑥) + 𝛽𝑞, 𝑠. 𝑡. 𝑔(𝑥) ≤ 𝑞 ∈ 𝑅+, 

ℎ(𝑥) = 0, 𝑦 = 𝑟𝑘(𝑤),        (8) 

||𝑢 − 𝑢𝑘|| ≤ 𝛥𝑘   

where β is a penalty parameter and q is a 
relaxation variable. Eq.(8) ensures that 
TRSPk is always feasible and has the same 
solution as Eq.(7) for sufficiently large 
value of β. 

3.1. Trust-region filter and update 

The trust-region filter (TRF) compares the infeasibility (θ=||d(w)-r(w)||) and the objective 
value (f(xk)) to update the trust-region radius (Δk) after each iteration of NLP solve. The 
reduced model (rk) is also updated using the correction order formula as: 

𝑟𝑘(𝑤) = 𝑠(𝑤) + (𝑑(𝑤𝑘) − 𝑠(𝑤𝑘)) + (𝛻𝑑(𝑤𝑘) − 𝛻𝑠(𝑤𝑘))𝑇(𝑤 − 𝑤𝑘)          (9) 

where s is a simple surrogate model (in this case s(w) = 0) and d(wk),∇d(wk) are the 
solution and sensitivity of the black box function model. The trust-region radius (Δk) is 
updated using the ratio test based on the decrease in infeasibility. 

𝜌 = (1 − 𝜃(𝑤𝑘+1)/𝜃(𝑤𝑘), 𝛥𝑘+1 = 𝛾𝛥𝑘 𝑖𝑓 𝜌 ≥ 𝜂2, 𝑒𝑙𝑠𝑒 𝛥𝑘+1 = 𝛥𝑘/𝛾        (10) 

4. Case Study 
The proposed algorithm is tested with a multi-period HEN case study from Verheyen and 
Zhang (2006) with 3 hot streams, 4 cold streams, over 3 operational periods. Detailed 
stream parameters required for detailed design are obtained from Short et al. (2016b). 

4.1.       Results 

The optimal network results are shown in Figure 2, with the detailed heat exchanger 
designs summarised in Table 1. The MINLP finds the optimal network topology to 
contain 7 heat exchanger matches and 5 utility exchangers, with an overall total annual 
cost (TAC) of $3,152,295 p.a. When detailed heat exchanger designs are incorporated via 
the NLP TRF algorithm, a TAC of $3,342,549 p.a. is found, when using the same 
objective function as used in Short et al. (2016b). This shows that without the 
consideration of the detailed heat exchanger designs that the costs may be significantly 
underestimated, particularly when considering multi-pass heat exchangers that may stray 
far from ideal counter-current flow and requiring more shells. Interestingly, when the 
tube-side velocities are allowed to be quite low (lower bound of 0.5 m/s), all the optimal 

Figure 1: Algorithm illustration 
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detailed heat exchangers can carry out the required duty across all periods of operation. 

However, if a lower bound of 1 m/s is enforced for the tubeside, there are certain periods 

that require an additional heat exchanger to perform the heat exchange.  

 

Figure 2: Solution obtained for illustrative Case Study from Verheyen and Zhang (2006) 

Table 1: Summarized results for the detailed heat exchanger designs 

Exchanger 

Assignment 

Exchanger 

Area (m2) 

Number 

of shells 

Split-ratio Tubeside 

(rp
tube) for periods 

{1, 2, 3} 

Split-ratio Shellside 

(rp
shell) for periods 

{1, 2, 3} 

[H1, C1, 1] 395.6 1 {0.055, 0.147, 0} {0.263, 0.344, 0.03} 

[H1, C1, 2] 1191.4 5 {0.02, 0.038, 0.09} {0.0154, 0.0267, 0} 

[H1, C1, 4] 5785 7 {0.014, 0.0124, 0.01} {0.051, 0.038, 0.0225} 

[H1, C3, 2] 2384.4 4 {0.083, 0.0347, 0} {0.0334, 0.0203, 0.0083} 

[H2, C2, 4] 1404.3 3 {0.023, 0.12, 0.035} {0, 0, 0.063} 

[H3, C1, 2] 3298.3 6 {0.02, 0.132, 0.02} {0.023, 0.0132, 0.0201} 

[H3, C2, 3] 1843.04 4 {0.02, 0.053, 0.073} {0.003, 0.032, 0.034} 

5. Conclusions 

In this paper a new approach to the design of multi-period HENs is presented that incorporates 

detailed heat exchanger designs into the network optimisation via surrogate modelling and a trust-

region filter algorithm. This is the first algorithm presented in literature that incorporates detailed 

shell-and-tube heat exchanger designs in the network synthesis problem for multi-period operation 

automatically. Detailed shell and tube heat exchangers are designed optimally for the input-output 

information provided from the NLP network optimisation via a novel hybrid multi-period heat 

exchanger design algorithm using DAEs to make for a general and rigorous process synthesis 
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framework. The results obtained show that it is important to consider the detailed heat exchanger 

designs during network synthesis, as the obtained design and optimal solution were shown to be 

very different, with the MINLP network synthesis using only the maximum area across the 

operational periods underestimating the overall costs significantly. By including more information 

regarding numbers of shells, non-counterflow behaviour in the exchangers, and the potential for 

stream bypassing and splitting, the new algorithm provides more realistic answers within an 

optimisation framework. The algorithm presented here may help in finding improved networks in 

dynamic multi-period industrial environments. The DAE formulation also can consider fluids with 

physical properties that can change within a heat exchanger, as are common in the food and fast-

moving consumer goods industries. The current implementation does not allow for multiple 

network topologies to be systematically assessed, and is computationally costly, and hence future 

work will focus on improving these aspects. 

References 

J. Aaltola, 2002, Simultaneous synthesis of flexible heat exchanger networks, Applied Thermal 

Engineering, 22(8), 907-918. 

Goncalves C.O., Costa A.H., Bagajewicz M.J., 2019. Linear method for the design of shell and 

tube heat exchangers using the Bell-Delaware method. AIChE Journal, 65, e16602. 

Kang L., Liu Y., 2019. Synthesis of flexible heat exchanger networks: A review. Chinese Journal 

of Chemical Engineering, 27 (7), 1485-1497. 

Kazi S., Short M., Biegler L., 2021a. Heat exchanger network synthesis with detailed exchanger 

designs: Part 1. A discretized differential algebraic equation model for shell and tube heat 

exchanger design. AIChE Journal, 67(1), e17056. 

Kazi S., Short M., Biegler L., 2021b. A trust region framework for heat exchanger network 

synthesis with detailed individual heat exchanger designs. Computers and Chemical Engineering, 

153, 107447. 

Mahmood Z., De Mel I.A., Kazi, Z., Isafiade, A.J., Short M., 2021. An optimisation algorithm for 

detailed shell-and-tube heat exchanger designs for multi-period operation. Chemical Engineering 

Transactions, 88(1), to appear. 

Mizutani F.T., Pessoa F.L.P., Queiroz E.M., Hauan S., Grossmann I.E., 2003. Mathematical 

programming model for heat exchanger network synthesis including detailed heat exchanger 

designs. 1. Shell and tube heat exchanger design. Industrial & Engineering Chemistry Research, 

42, 4009-4018. 

Short M., Isafiade A., Fraser D.M., Kravanja Z., 2016a. Two-step hybrid approach for the 

synthesis of multi-period heat exchanger networks with detailed exchanger design. Applied 

Thermal Engineering, 105, 807-821. 

Short M., Isafiade A., Fraser D.M., Kravanja Z., 2016b. Synthesis of heat exchanger networks 

using mathematical programming and heuristics in a two-step optimisation procedure with 

detailed exchanger design. Chemical Engineering Science, 144, 372-385. 

Verheyen W., Zhang N., 2006. Design of flexible heat exchanger network for multi-period 

operation. Chemical Engineering Science, 61(23), 7730-7753. 

 et al. Saif R. Kazi246



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan ©  2022 Elsevier B.V. All rights reserved. 

A mathematical technique for utility exchanger 

network synthesis and total site heat integration 

Jui-Yuan Leea,b*, Wilasinee Seesongkramc 

a Department of Chemical Engineering and Biotechnology, National Taipei University 

of Technology, 1, Sec 3, Zhongxiao E Rd, Taipei 10608, Taiwan, ROC 
bResearch Center of Energy Conservation for New Generation of Residential, 

Commercial, and Industrial Sectors, National Taipei University of Technology, 1, Sec 3, 

Zhongxiao E Rd, Taipei 10608, Taiwan, ROC 
cChemical Engineering Practice School, King Mongkut’s University of Technology 

Thonburi, 126 Prachautid Road, Bangmod, Thoongkru, Bangkok 10140, Thailand 

juiyuan@ntut.edu.tw 

Abstract 

Fossil energy has been increasingly consumed since the second Industrial Revolution, 

with economic growth and modernisation. This has led to environmental issues such as 

resource depletion, pollution and climate change. To enhance energy efficiency as a 

measure to mitigate climate change, heat exchanger networks (HENs) for heat recovery 

are widely used in various industrial applications. This work develops superstructure-

based mathematical models for direct and indirect HEN synthesis for interplant heat 

integration. The mixed-integer nonlinear programming model minimises the total 

annualised cost for utility exchanger network synthesis and total site heat integration, 

and the results are compared with those from the conventional and unified total site 

targeting methods. An industrial case study is presented to demonstrate the application 

of the proposed approach. 

Keywords: energy efficiency; heat recovery; mathematical programming; stage-wise 

superstructure. 

1. Introduction 

Due to population expansion and the Industrial Revolution as well as rapid economic 

growth, energy consumption in the world has significantly increased. From 2015 to 

2040, world energy consumption is expected to increase by about 28% (Rodriguez, 

2018). However, energy resources are limited. Therefore, heat exchanger networks 

(HENs), as an important heat recovery system, plays a significant role in processing 

plants. Synthesising HENs in chemical processes allows energy efficiency to improve. 

HEN synthesis has gained a lot of attention in the process industry. There have been 

numerous studies on HENs (Klemeš and Kravanja, 2013). 

HEN research has focused mostly on a single process because of the inability to recover 

all the waste heat within chemical plants. Hence, considerable amounts of heat and 

energy are wasted. Subsequently, some researchers were interested in extending the 

work for a single plant to multi-plant HEN synthesis, which is also known as interplant 

heat integration. Both the process streams (direct integration) and the intermediate 

streams (indirect integration) are involved in multi-plant HEN synthesis. The direct 

method provides more potential for energy saving because heat is transferred directly 
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between process streams. However, this method can entail a higher capital cost than the 

indirect method. This is due to the large requirement of piping and pumping. Although 

the indirect method can result in a lower capital cost, the achievable energy saving is 

reduced because of the use of intermediate fluid. Chang et al. (2019) found that 

considering both the direct and indirect methods could reduce the energy consumption 

by 3.2% when compared to using only the direct method. To maximise the benefits 

from multi-plants HENs synthesis, both the direct and indirect methods should be 

considered in the optimisation. Tarighaleslami et al. (2018) presented a unified total site 

integration method for HEN synthesis and utility exchange network (UEN) design. This 

method only allows utility heat exchangers in series within the same process. 

In this work, HEN synthesis is carried out in the multi-plant/process context. Both the 

direct and indirect methods are used to minimise the total annualised cost (TAC) of the 

plant(s). A mathematical programming model is developed as an alternative to pinch-

based techniques and applied to an industrial case study, where the hot-side and cold-

side temperatures of the intermediate fluid (hot water) are treated as optimisation 

variables. The results obtained are then compared with the results reported in the 

previous works using pinch analysis. 

2. Problem statement 

⚫ There are a set of hot process streams 𝑖 ∈ IP𝑝 and a set of cold process streams 𝑗 ∈

JP𝑝 in a set of processes 𝑝 ∈ P. The supply and target temperatures of the process 

streams and their heat capacity flowrates are known parameters. 

⚫ A set of hot utilities ℎ𝑢 ∈ HU and a set of cold utilities 𝑐𝑢 ∈ CU are available for 

heating and cooling demands that cannot be met by heat recovery. Additionally, 

intermediate streams (e.g. hot water) that act as both a hot stream (𝑖 ∈ IM𝑝) and a 

cold stream (𝑗 ∈ JM𝑝 ) are also used in the processes. The supply and target 

temperatures on both hot and cold sides of the intermediate streams and their heat 

capacity flowrates are to be determined or optimised. 

⚫ The objective is to synthesise an optimal HEN, which consists of a heat recovery 

network and a UEN, for the minimum total annualised cost (TAC). 

In this HEN synthesis problem, direct heat integration of process streams is allowed in 

individual processes. Inter-process heat integration is carried out indirectly through 

intermediate streams. It is assumed that intermediate streams are split for the processes 

that require heating/cooling, and mixed isothermally. Also, the supply temperature of 

the hot side of an intermediate stream equals its cold-side target temperature, whilst its 

hot-side target temperature equals its cold-side supply temperature. 

3. Model formulation 

Figure 1 shows a modified stage-wise superstructure, based on which the mathematical 

model for multi-process HEN synthesis involving heat recovery and utility exchange is 

formulated. This superstructure considers heat exchange matches between process and 

intermediate streams in all stages. However, the match between intermediate streams is 

excluded because intermediate streams are used for the heating and cooling of process 

streams. The hot side of an intermediate stream loop may use cold utilities to achieve its 

target temperature, whilst the cold side achieves its target temperature by heat exchange 

with hot process streams, without using hot utilities. 
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Figure 1. Stage-wise Superstructure for a HEN Involving Utility Exchange 

The formulation of the HEN model is as follows. Eqs. (1)-(4) describe the overall heat 

balances for process and intermediate streams 

𝐹𝑖(𝑇𝑖
in − 𝑇𝑖

out) = ∑ ∑ 𝑞𝑖𝑗𝑘

𝑘∈ST𝑗∈J

+ ∑ 𝑞𝑖,𝑐𝑢

𝑐𝑢∈CU

   ∀𝑖 ∈ IP𝑝, 𝑝 ∈ P (1) 

𝐹𝑗(𝑇𝑗
out − 𝑇𝑗

in) = ∑ ∑ 𝑞𝑖𝑗𝑘

𝑘∈ST𝑖∈I

+ ∑ 𝑞ℎ𝑢,𝑗

ℎ𝑢∈HU

   ∀𝑗 ∈ JP𝑝, 𝑝 ∈ P (2) 

𝑓𝑖(𝑡𝑖
in − 𝑡𝑖

out) = ∑ ∑ 𝑞𝑖𝑗𝑘

𝑘∈ST𝑗∈JP𝑝

+ ∑ 𝑞𝑖,𝑐𝑢

𝑐𝑢∈CU

   ∀𝑖 ∈ IM𝑝, 𝑝 ∈ P (3) 

𝑓𝑗(𝑡𝑗
out − 𝑡𝑗

in) = ∑ ∑ 𝑞𝑖𝑗𝑘

𝑘∈ST𝑖∈IP𝑝

   ∀𝑗 ∈ JM𝑝, 𝑝 ∈ P (4) 

Eqs. (5)-(8) describe the heat balances in each stage. 

𝐹𝑖(𝑡𝑖𝑘 − 𝑡𝑖,𝑘+1) = ∑ 𝑞𝑖𝑗𝑘

𝑗∈J

   ∀𝑖 ∈ IP𝑝, 𝑝 ∈ P, 𝑘 ∈ ST (5) 

𝐹𝑗(𝑡𝑗𝑘 − 𝑡𝑗,𝑘+1) = ∑ 𝑞𝑖𝑗𝑘

𝑖∈I

   ∀𝑗 ∈ JP𝑝, 𝑝 ∈ P, 𝑘 ∈ ST (6) 

𝑓𝑖(𝑡𝑖𝑘 − 𝑡𝑖,𝑘+1) = ∑ ∑ 𝑞𝑖𝑗𝑘

𝑝∈P𝑗∈JP𝑝

   ∀𝑖 ∈ IM𝑝, 𝑝 ∈ P, 𝑘 ∈ ST (7) 

𝑓𝑗(𝑡𝑗𝑘 − 𝑡𝑗,𝑘+1) = ∑ ∑ 𝑞𝑖𝑗𝑘

𝑝∈P𝑖∈IP𝑝

   ∀𝑗 ∈ JM𝑝, 𝑝 ∈ P, 𝑘 ∈ ST (8) 

Temperature assignments are omitted due to space limitations. Temperature feasibility 

constraints are given in Eqs. (9)-(12). 

𝑡𝑖𝑘 ≥ 𝑡𝑖,𝑘+1 ≥ 𝑇𝑖
out   ∀𝑖 ∈ IP𝑝, 𝑘 ∈ ST (9) 
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𝑇𝑗
out ≥ 𝑡𝑗𝑘 ≥ 𝑡𝑗,𝑘+1   ∀𝑗 ∈ JP𝑝, 𝑘 ∈ ST (10) 

𝑡𝑖𝑘 ≥ 𝑡𝑖,𝑘+1 ≥ 𝑡𝑖
out   ∀𝑖 ∈ IM𝑝, 𝑘 ∈ ST (11) 

𝑡𝑗
out ≥ 𝑡𝑗𝑘 ≥ 𝑡𝑗,𝑘+1   ∀𝑗 ∈ JM𝑝, 𝑘 ∈ ST (12) 

Heat loads for hot and cold utilities are given by Eqs. (13)-(15). 

𝐹𝑖(𝑡𝑖𝑘 − 𝑇𝑖
out) = ∑ 𝑞𝑖,𝑐𝑢

𝑐𝑢∈CU

   ∀𝑖 ∈ IP𝑝, 𝑝 ∈ P, 𝑘 = 𝐾 + 1 (13) 

𝐹𝑗(𝑇𝑗
out − 𝑡𝑗𝑘) = ∑ 𝑞ℎ𝑢,𝑗

ℎ𝑢∈HU

   ∀𝑗 ∈ JP𝑝, 𝑝 ∈ P, 𝑘 = 1 (14) 

𝑓𝑖(𝑡𝑖𝑘 − 𝑇𝑖
out) = ∑ 𝑞𝑖,𝑐𝑢

𝑐𝑢∈CU

   ∀𝑖 ∈ IM𝑝, 𝑝 ∈ P, 𝑘 = 𝐾 + 1 (15) 

Logical constraints are given in Eqs. (16)-(18). 

𝑄𝑖𝑗
L 𝑧𝑖𝑗𝑘 ≤ 𝑞𝑖𝑗𝑘 ≤ 𝑄𝑖𝑗

U𝑧𝑖𝑗𝑘    ∀𝑖 ∈ I, 𝑗 ∈ J, 𝑘 ∈ ST (16) 

𝑄𝑖
L𝑧𝑖,𝑐𝑢 ≤ 𝑞𝑖,𝑐𝑢 ≤ 𝑄𝑖

U𝑧𝑖,𝑐𝑢   ∀𝑖 ∈ I, 𝑐𝑢 ∈ CU (17) 

𝑄𝑗
L𝑧ℎ𝑢,𝑗 ≤ 𝑞ℎ𝑢,𝑗 ≤ 𝑄𝑗

U𝑧ℎ𝑢,𝑗    ∀𝑗 ∈ JP𝑝, ℎ𝑢 ∈ HU (18) 

Eq. (19) excludes the matches between intermediate streams. Eq. (20) then excludes the 

matches between hot and cold streams of different processes. 

𝑧𝑖𝑗𝑘 = 0   ∀𝑖 ∈ IM𝑝, 𝑗 ∈ JM𝑝, 𝑝 ∈ P, 𝑘 ∈ ST (19) 

𝑧𝑖𝑗𝑘 = 0   ∀𝑖 ∈ IP𝑝 ∪ IM𝑝, 𝑝 ∈ P, 𝑗 ∈ JP𝑝′ ∪ JM𝑝′, 𝑝′ ∈ P ∧ 𝑝′ ≠ 𝑝, 𝑘 ∈ ST (20) 

Temperature difference constraints are given in Eqs. (21)-(27). 

∆𝑇min − Γ(1 − 𝑧𝑖𝑗𝑘) ≤ 𝑡𝑖𝑘 − 𝑡𝑗𝑘   ∀𝑖 ∈ I, 𝑗 ∈ J, 𝑘 ∈ ST (21) 

∆𝑇min − Γ(1 − 𝑧𝑖𝑗𝑘) ≤ 𝑡𝑖,𝑘+1 − 𝑡𝑗,𝑘+1   ∀𝑖 ∈ I, 𝑗 ∈ J, 𝑘 ∈ ST (22) 

∆𝑇min − Γ(1 − 𝑧𝑖,𝑐𝑢) ≤ 𝑡𝑖𝑘 − 𝑇𝑐𝑢
out   ∀𝑖 ∈ I, 𝑐𝑢 ∈ CU, 𝑘 = 𝐾 + 1 (23) 

∆𝑇min − Γ(1 − 𝑧𝑖,𝑐𝑢) ≤ 𝑇𝑖
out − 𝑇𝑐𝑢

in    ∀𝑖 ∈ IP𝑝, 𝑝 ∈ P, 𝑐𝑢 ∈ CU, 𝑘 = 𝐾 + 1 (24) 

∆𝑇min − Γ(1 − 𝑧𝑖,𝑐𝑢) ≤ 𝑡𝑖
out − 𝑇𝑐𝑢

in    ∀𝑖 ∈ IM𝑝, 𝑝 ∈ P, 𝑐𝑢 ∈ CU, 𝑘 = 𝐾 + 1 (25) 

∆𝑇min − Γ(1 − 𝑧ℎ𝑢,𝑗) ≤ 𝑇ℎ𝑢
out − 𝑡𝑗𝑘   ∀𝑗 ∈ JP𝑝, 𝑝 ∈ P, ℎ𝑢 ∈ HU, 𝑘 = 1 (26) 

∆𝑇min − Γ(1 − 𝑧ℎ𝑢,𝑗) ≤ 𝑇ℎ𝑢
in − 𝑇𝑗

out   ∀𝑗 ∈ JP𝑝, 𝑝 ∈ P, ℎ𝑢 ∈ HU, 𝑘 = 1 (27) 

The objective function is to minimise the TAC, which consists of the annual operating 

cost and the annualised capital cost, as given in Eq. (28). 

min 𝑓TAC = 𝑓AOC + 𝑓ACC (28) 

Due to space limitations, detailed operating and capital cost functions are omitted. The 

complete model is a mixed integer nonlinear programme (MINLP). 

In the next section, an industrial case study is presented to demonstrate the proposed 

HEN model. The MINLP model is solved in GAMS using BARON. 
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4. Case study 

This case study considers a large kraft pulp mill plant, which contains 10 processes and 

64 process streams (Bood and Nilsson, 2013). The model for this case study involves 

more than 10,000 constraints and variables, depending on the number of stages. 

In the optimal UEN, high-pressure steam is used for four cold streams in three processes 

(bleaching, digestion and recovery boiler), with a total requirement of 27,741 kW. This 

is identical to the target of Tarighaleslami et al. (2018). In addition, low-pressure steam 

is used for 18 cold streams in nine processes (bleaching, causticizing, digestion, 

evaporator, district heating, miscellaneous, paper room, stripper and recovery boiler), 

with a total requirement of 131,128 kW. This is 6.65% less than that of Tarighaleslami 

et al. (2018). The total cooling water requirement was determined to be 79,309 kW, 

which is 11.56% more than that of Tarighaleslami et al. (2018). 

For indirect inter-process heat integration, low-temperature and high-temperature hot 

water are used as intermediate streams. The optimised low-temperature hot water loop 

has a cold temperature of 29.19°C, a hot temperature of 59.96°C and a heat capacity 

flowrate of 1,051.87 kW/°C, as shown in Figure 2. On the other hand, the optimised 

high-temperature hot water loop has a cold temperature of 60°C, a hot temperature of 

93°C and a heat capacity flowrate of 271 kW/°C, as shown in Figure 3. 

 

Figure 2. Low-temperature Hot Water Loop in the optimal UEN 

Compared to the results of Tarighaleslami et al. (2018), the solution obtained in this 

work has a lower utility cost ($42,966,983/y versus $44,834,691/y) and a higher capital 

cost ($2,109,177/y versus $1,856,486/y). This is due to increased heat recovery in total 

site integration. Consequently, the TAC is reduced by $1,615,017 (3.46%). In addition, 

compared to the sequential unified total site targeting method, the proposed HEN model 

considers the trade-off between utility and capital costs, and allows better solutions in 

terms of TAC to be found through a simultaneous optimisation approach. 

A mathematical technique for utility exchanger network synthesis and
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Figure 3. High-temperature Hot Water Loop in the optimal UEN 

5. Conclusions 

A multi-plant/process heat integration scheme with a HEN model has been presented in 

this paper. The model comprehensively considers the interactions between utility use, 

heat recovery and heat transfer area in minimizing the TAC. This model can be used to 

determine the required heat capacity flowrates of intermediate streams, their supply and 

target temperatures, and the HEN structure simultaneously. An industrial case study was 

solved to illustrate the applicability and effectiveness of the proposed model. Compared 

to sequential targeting approaches, simultaneous optimisation using the proposed model 

has the capability of finding the minimum-TAC solution. In future work, the objective 

function will be modified to include further details such as piping requirements for 

inter-plant/process matches in design. 
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Abstract 
A purpose of the present paper is to demonstrate feasibility of two NOx to ammonia 
(NTA) processes in the combined cycle power generation systems by using process 
simulation. In application of NTA process that is single-stage system for conversion of 
NO to NH3 available in existence of oxygen, an effect of NTA process operating 
temperature on power generation efficiency of two class of gas turbines (1300 °C, 
1700 °C) was estimated. Possible configurations of the exhaust gas aftertreatment 
incorporating the NTA system were also proposed and clarified. 

Keywords: Process Synthesis; Nitrogen Cycle; Thermal Power Plant; Heat Exchanger 
Network. 

1. Introduction 
Exhaust gas, wastewater, and residues generated from industries and living activities 
contain harmful nitrogen compounds such as NOx, organic nitrogen, ammonia nitrogen 
[NH4 +, NH3, etc.], NO3

-, etc. It has been reported the amount of reactive nitrogen 
(NOx) discharged by combustion of fossil fuel and biomass alone accounts for 20% of 
the total amount discharged from the human systems (Galloway et al., 2008). So far, 
various selective catalytic reduction (SCR) methods have been reported to remove NOx 
in combustion exhaust gas. For example, in the urea SCR system, ammonia is utilized 
as a reductant. Previous study for the SCR system using hydrocarbon (HC-SCR 
systems) has reported that ammonia formed in the middle of SCR could accelerate the 
SCR process. 

Instead of converting NOx into compound that has no economic value like N2, 
possibilities to convert it into valuable product of NH3 using similar principle as SCR 
process exists. Recently, development of NOx to ammonia conversion process (NTA 
process) has been actively promoted, since it is expected that reuse of the produced 
ammonia as a fuel and a denitration agent will bring about reduction of CO2 emissions. 
It is estimated that approximately 250 million ton of ammonia could be produced by 
using a half of NOx (4%) in exhaust gas from all the thermal power plants located in 
Japan. 

Hence, we consider that the NTA process could achieve both reduction of nitrogen 
compound emissions and reduction of greenhouse gas emissions, that is, "Cool & Clean 
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Earth". However, a method of the NTA process incorporation into the plant system and 
its effect have not been sufficiently investigated. The introduction of the NTA process 
not only reduces the amount of nitrogen compounds emitted into the environment to 
zero, but also can be expected to reduce the amount of denitration agent supply, the cost 
of denitration equipment, and the amount of energy supply to the overall plant system. 
A purpose of the present paper is to analyse and demonstrate the incorporation of NTA 
process to combined cycle gas turbine (CCGT) as part of exhaust gas aftertreatment. 
Process simulation was employed to predict the possible optimum process efficiency, as 
well as reduction of nitrogen compound emission. 

2. Analysis for introducing two-stage NTA process system to CCGT system 
A steady-state process simulator for CCGT (Figure 1) was developed by using the free 
process simulation environment COCO (CAPE-OPEN to CAPE-OPEN: 
https://www.cocosimulator.org/). The model of the CCGT system consists of a model of 
a high-pressure steam turbine and a model of a medium-pressure steam turbine. The 
process simulation of feeding natural gas consisting of CH4 (about 90%), C2H6, C3H8, 
and C4H10 to a gas turbine at about 56 t/h revealed that about 370 MW of energy was 
recovered in (1) to (4) in Figure 1. The power generation efficiency was estimated to be 
about 54 %. In this paper, we investigated the introduction methods of the following 
two types of NTA processes (i) and (ii). 

 NTA process (i): Two-stage process system that consists of “adsorption/ 
concentration of NO” and “conversion of NO to NH3 that is available in absence of 
oxygen” 

 NTA process (ii): Single-stage process system for conversion of NO to NH3 that is 
available in existence of oxygen 

 
Figure 1 Example of process simulation of combined cycle power generation system. 

First, influence of introducing the NTA process (i) in the CCGT system was analysed 
by the above-mentioned steady-state process simulator. In this simulation, the NTA 
process model based on the above-mentioned reaction of R1 and R2 was applied. 

R1： 2NO+5CO+3H2O→2NH3+5CO2 

R2： 2NO+5H2→2NH3+2H2O 
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In reactions R1 and R2, CO and H2 act as reductant of NO to produce NH3. Based on 
the previous literature data (Kobayashi et al., 2019), a correlation equation between the 
reaction temperature and the NO conversion was estimated (Figure 2), which was 
applied to the NTA reactor model. In addition, in case of incomplete conversion of NO 
by the NTA reaction, it was assumed that the generated NH3 was used for denitration of 
the remained NO in subsequent conventional SCR process. 

The CO and H2 for these NTA reactions were assumed to be supplied from the process 
of steam reforming of methane that was utilized from fuel gas to the gas turbine. In this 
process simulation, the amount of fuel gas used in the CH4 steam reforming was 
determined based on the amount of reductant that was stoichiometrically required for 
conversion of NO in the combustion exhaust gas. In calculation for the steam reforming 
process, the reaction temperature was 1000 °C, the pressure was 1.4 MPa, and the molar 
ratio of CH4 to H2O was 1. 

 
Figure 2 An example of calculation results based on the NTA reactor model. 

Simulations for five cases (A－E) were performed as shown in Figure 3 to analyse 
influence combination of the heat exchanger (1) – (4) (Figure 1) in the heat recovery 
steam generator (HRSG) and the NTA process. In the cases of A and B, the temperature 
Ti before the NTA process was too low to commence the NTA reaction. For the case of 
C, conversion of NO to NH3 by the NTA reaction was not complete. Subsequently, the 
SCR post-treatment was required, which consumed a portion of the generated NH3 and 
decreased its overall yield. For the cases of D and E, it was seen that the outflow of NO 
from the NTA process was small. In particular, for case of E, about 1.9 t/h of ammonia, 
which was the maximum yield, was estimated when the NO concentration in the 
exhaust gas was about 130 ppm. 

In the above simulation analysis, the amount of energy required for the CH4 steam 
reforming to produce the reductant (CO, H2) was estimated to be about 30 MW. 
Considering that the amount of energy recovered by the high-pressure steam turbine 
was about 25 MW, it was found that the energy consumption for production of the 
reductant significantly decreased in the power generation efficiency of the entire CCGT 
system. In addition, the use of natural gas reforming to produce CO-H2 reductants offset 
the benefits of CO2 reduction from the NTA system. Furthermore, for minimizing the 
energy consumption of the entire system, it is necessary to optimize position of the 
installed NTA reactor in the HRSG. 
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Case X Y 

A 1,2,3,4 － 
B 1,2,3 4 
C 1,4 2,3 
D 2,4 1,4 
E 4 1,2,3 

Figure 3 Five cases for combination of heat exchanger and NTA process in heat 
recovery steam generator (HRSG). Numbers in the table denote the heat exchange 

combination shown in Figure 1. 

3. Design of CCGT system with single-stage NTA process system 
We investigated a method for introducing the NTA process (ii) to the CCGT system by 
using the process simulator. It is considered that the CO2 emissions derived from power 
generation can be significantly reduced by raising the combustion temperature of the 
gas turbine, which was attributed to improvement of the power generation efficiency.  

Thus, we analysed influence of combustion temperature for the gas turbine to preferable 
position of the installed NTA process and the power generation efficiency of the entire 
CCGT system, by using a simulation system that included the pinch analysis (Figure 4). 
In the simulation system, the structure of the heat exchanger network in the HSRG that 
could perform the maximum recovery of heat of steam was derived by pinch analysis. 
And the amount of power generated by the entire CCGT system was estimated by using 
process simulation based on the derived heat exchanger network models. 

In the present paper, the operating temperature for the NTA reactor was set at 300 °C or 
higher, by referring to information of the catalyst developed by Prof. Iwamoto research 
group in Waseda University. Assuming the operating temperature of the conventional 
ammonia selective catalytic reduction (NH3-SCR) process in the CCGT system was 
350 °C, it was considered that a part of the NH3-SCR equipment in the HRSG could be 
replaced by the NTA process. In introduction of the developed NTA process, it is 
expected that its performance will facilitate revamp of the target CCGT system. Thus, 
we investigated influence of the operating temperature of the NTA process to energy 
consumption and power generation efficiency of the entire system. It was also assumed 
that the outlet temperature of the NTA reactor was different from the operating 
temperature of NH3-SCR equipment. 
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Figure 4 A framework of simulation system for design of CCGT system with one-stage 
NTA process system. 

In a case when the operating temperature of the NTA process was set at 330 °C, which 
was reported to attain a relatively high NH3 yield (however, conversion was less than 
50%), it was assumed that NH3-SCR process was placed after the NTA process. Thus, 
we came up with the two kinds of subprocess (Figure 5) as a means of raising the 
temperature of outflow from the NTA reactor to 350 °C.  

 Subprocess 1: An afterburner is inserted at the midpoint between NTA reactor and 
NH3-SCR equipment, and the gas temperature is adjusted to 350 °C. 

 Subprocess 2: Part of the exhaust gas is bypassed from the inlet of HRSG to the 
midpoint between NTA reactor and NH3-SCR equipment, and the gas temperature 
is adjusted to 350 ° C. 

As mentioned in Section 2, it was found that change of the combustion temperature of 
the gas turbine from 1300 °C to 1700 °C could increase the NO concentration in the 
exhaust gas and further reduce CO2 emissions. Thus, for two case studies with gas 
turbine combustion temperatures of 1300 °C and 1700 °C, we investigated effects of 
introducing the above-mentioned two subprocesses on power generation efficiency of 
the entire system, respectively. In the present simulation analysis, simulation models for 
two types of gas turbine M701DA, M701JAC (Mitsubishi Heavy Industries, Ltd.) were 
applied to calculate process data for CCGT system applying 1300 °C class and 1700 °C 
class, respectively. 

Table 1 shows an example of results for optimization of the heat exchanger network in 
the HSRG based on the pinch analysis for Subprocess 1. For the case study applying a 
1700 °C class gas turbine, implementation of the Subprocess 1 increased the amount of 
power generated by the steam turbine (ST). In contrast, implementation of Subprocess 2 
showed decrease in the amount of generated power. As shown in Table 1, positioning of 
the NTA reactor and the NH3-SCR equipment differed slightly for Subprocess 1, which 
depends on the combustion temperature in the gas turbine. 

257 Synthesis and Assessment of NOx to Ammonia Conversion Process 
in Combined Cycle Power Generation Systems



 H. Matsumoto et al. 

4. Conclusions 
For combined cycle power generation systems, we estimated effects of introduction 
methods for two different types of NTA processes (i) and (ii) on efficiency of the entire 
system, respectively. In application of NTA process (ii), an effect of the design 
temperature of the NTA process (around 350 °C) on the decrease in power generation 
efficiency was estimated, and furthermore the difference of changes in power generation 
efficiency between two class of gas turbines (1300 °C, 1700 °C) was also clarified. 
Hence, the optimization of the mass and energy balance and the evaluation of 
performance of CCGT system from the viewpoint of overall system were demonstrated 
to be useful for setting target temperature and target performance in the research and 
development of NTA catalysts. 

 
Figure 5 Introduction method of NTA process and NH3-SCR process. 

Table 1 Simulation results for optimization of the heat exchanger network in the HSRG 
for Subprocess 1. 
 1700 °C class gas turbine 1300 °C class gas turbine 
Additional fuel 17.81 MW 10.55 MW 
Changes in the amount of 
power generated by ST 

＋4.6 MW (Increase) ＋3.67 MW (Increase) 

Changes in power generation 
efficiency 

－0.6 pt (Decrease) －0.4 pt (Decrease) 

Optimum position of NTA & 
NH3-SCR processes 

In the middle of high-pressure 
secondary economizer & 
medium pressure overheating 

In the middle of high- 
pressure steam economizer 
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Abstract 

In order to achieve an effective energy transition, development of new materials must 

be accompanied with the development of new and renewable energy facilities. However, 

to this day, material design is costly because material development relies on the designer's 

intuition. Therefore, for the competitiveness of material development, AI-based material 

design automation must be made through the combination and composition prediction of 

components. As the first step in the AI-based material reverse engineering system, this 

study predicts the mechanical properties and behavior of polymer matrix composites 

(PMC). 

The mechanical behavior of a material can be expressed from the strain-stress curve 

(S-S curve), and the deformation from the elastic section to the plastic section can be 

judged along with mechanical properties such as tensile strength, elastic modulus, and 

maximum load. Therefore, this study aims to predict the mechanical behavior of the PMC 

by learning the minimum tensile test data and information on the components for the two-

component PMC based on the deep learning methodology. 

Through literature/data analysis, most features that can affect mechanical properties 

were classified into two predictive models. The first predictive model inputs tensile test 

data and chemical/mechanical properties, and outputs mechanical properties behavior. 

And the second prediction model predicts by inputting structural information of each 

components. Through SMILES of each components, MACCS key was obtained and 

converted to use functional group information and used as a feature. As a result of 

comparing the performance of the two predictive models, the second model required less 

material information than the model that did not learn structural information, and 

performed better. As a result, it is a model that predicts the behavior of the plastic section 

beyond the existing prediction model that stayed in the elastic modulus section. 

Keywords: Machine learning, Language process model, Polymer matrix composite 

(PMC), Mechanical property, Chemical language processing  

1. Introduction 

Stable securing of new materials is one of the important conditions to achieve efficient 

energy transition. For example, to solve the green mobility issue with low energy 

efficiency, many companies are paying attention to fuel efficiency improvement through 
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vehicle weight reduction and participating in material development. In particular, a 

material attracting attention in the face of energy conversion is polymer matrix 

composites (PMC). 

For material development, it is essential to reflect mechanical properties, and there are 

tensile strength, modulus of elasticity, maximum load, maximum stress, break point, and 

stress. These can be easily derived from the S-S curve obtained from the tensile test. 

Mechanical properties and behaviors are expressed differently depending on the 

components (matrix, filler), the composition of each components, test conditions, process 

conditions, etc. Because of the various complexity, to this day, designs are made by the 

designer's intuition. For the competitiveness of material development, we proposed an 

AI-based reverse engineering system with the mechanical properties required for the 

application, away from the material design method that relied on experience. 

There have been attempts to predict mechanical properties in the past, but in this study, 

the S-S curve problem over the entire section of the material, which was difficult to 

predict due to the large plasticity section and complex response, was predicted based on 

the deep neural network (DNN). The model predicts the entire S-S curve even in the 

absence of test data by using complex correlations between vast amounts of experimental 

data. In this paper, tensile test data in various compositions for a two-component 

combination using amorphous and partially crystalline polymers, which are often used as 

materials for transportation equipment, as a base material, and ceramic powder, glass fiber, 

carbon fiber, etc. as reinforcing materials was used to build a data-based prediction model. 

2. Background 

In this section, 2.1 describes previous studies and challenge for predicting PMC 

mechanical properties behavior, and 2.2 describes the theoretical background based on 

the study. 

2.1. Challenge 

There are two representative mathematical models that predict the S-S curve through 

numerical models. First, Ramberg-Osgood relationship: 
𝜀

𝜀0

=
𝜎

𝜎0

+ (
𝜎

𝜎0

)𝑛 (1) 

𝜀 = strain, 𝜀0 = (
𝜎0

𝐸
) , 𝑠𝑡𝑟𝑎𝑖𝑛, 𝜎 =  𝑠𝑡𝑟𝑒𝑠𝑠,  𝜎0 =  𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝐸 =

𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 . And a second is Hollomon piecewise power law: 

𝜀

𝜀0
= {   

 

𝜎

𝜎0
         𝑓𝑜𝑟 𝜎 ≥ 𝜎0                  

      

(
𝜎

𝜎0
)𝑛     𝑓𝑜𝑟 𝜎 ≥ 𝜎0;   1 < 𝑛 ≤ ∞

 

(2) 

n=1, it is a complete elastic material, and when n=∞, it is an elastic-complete plastic 

material. 

The two mathematical relational expressions, most of all, are not suitable for functions 

with high nonlinearity. In the case of Eq.1, the prediction accuracy is lowered for 
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materials with rapid changes in the plasticity section because the calculation is performed 
without separating the elastic/plastic section (H. C. Hyun et al.). On the other hand, in the 
case of Equation Eq.2, the prediction rate is higher than the Eq.1 using the section power 
function method, but it is difficult to apply a new material, due to that it is hard to 
categorise the carbon/plastic section. The mechanical behavior of PMC has more than 
one directionality and various parameters, so there is a limit to expressing it in a numerical 
formula.. Therefore, mechanical properties behavior including the plastic section of PMC 
is predicted through DNN. 

2.2. Theoretical background 

(1) Chemical structure information 

Chemical structure information was expressed through chemical identifiers. Chemical 
identifiers are strings designed to encode chemical structures, chemicals, and molecular 
information. Types of formula identifiers include InCHI, SMILES, and SMARTS. 
Among them, SMILES advantageous for MACCS keys conversion was selected, and 
SMILES of matrix, filler were obtained through the database source of PubChem, 
respectively. 

 
Figure 1. Example of String representation of 2D and 3D chemical structure information 

(2) Chemical fingerprints 

Fingerprints are the main expression methods that can confirm each molecular 
information in machine learning, and molecular structures and functional groups can be 
identified. Recently, predictions using functional groups of Fingerprints have been 
actively used in the field of drugs and catalysts. However, Binding energy, and Young's 
Modulus are also highly related to functional groups. When three specific functional 
groups are placed on Graphene sheets for mechanical properties simulation, the 
dimension and molecular structure of the functional group affect Binding energy and 
Young's Modulus. (Qingbin Zheng et al., 2010). In this study, among various 
methodologies representing Fingerprints of chemical substances, MACCSkeys 
represented by 0, 1 binary at 166 bits was selected as structural information and used for 
input. Functional groups represented by MACCS keys are related to the mechanical 
properties of the material and are used as input features (G. Chen, et al.). 
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3. Prediction of mechanical behavior based on chemical/mechanical 
information of components 
3.1. Data collection 

As for the tensile test data to be used for learning, the tensile test results according to 
the composition of each type of PMC in provided by the Korea Research Institute of 
Chemical Technology were used. (Under the same conditions, the test proceeds five times 
each.) The tensile test results include values such as the type of material, mark distance, 
and force according to strain. Additionally, the 'Poisson ratio' to reflect the difference in 
length strain according to the load direction, density for pore reflection, and density and 
molecular weight for each Matrix/Filler related to mechanical properties were extracted 
from PubChem’s database(https://pubchem.ncbi.nlm.nih.gov/). Through data analysis, it 
was found that the test conditions were correlated with the S-S curve, so we added the 
mark distance and type as input features. 

3.2. Data preprocessing 

First, the experimental error data on the tensile test data is processed. Since the negative 
value of stress in raw data is physically impossible due to an experimental error, all data 
of negative values were converted to zero. In addition, values such as molecular weight, 
density, elastic modulus, Poisson ratio, marker distance, and stress of matrix and filler are 
pretreated to have a large range of 0.3 to 300. Standardization was performed using the 
stats module provided by Scipy to improve the performance of the model. 
3.3. Model construction and training 

 
Figure 2. Workflow of mechanical behavior predictive model based on chemical/mechanical 

information of components. (As input, the density, molecular weight, young's modulus of each 
components (matrix/filler), matrix composition, filler poisson ratio, tensile test strain data, gauge 

length are used) 

The model learns the remaining composition’s data, and predict PMCs mechanical 

behavior according to the desired composition and test conditions. The learning data set 
and the test data set are divided into 5:1.The model has a Feed-forward Neural Network 
(FNN) structure, using TensorFlow Keras, four hidden layers, ReLu as an activation 
function, Adam as an optimization function, and Mean Square Error (MSE) as a loss 
function. To further prevent overfitting, Batch Normalization, Regularization, Dropout 
structure, He-normalization, and L1 Regularization were added to the structure. Bayesian 
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optimization was applied to optimize each hyperparameter, and the accuracy of the model 
was evaluated as R2 (N. Lee, et al.). 

4. Predicting mechanical behaviour based on structural information of 
components 
4.1. Data collection 

SMILES of each component material scraped from PubChem's database is used to 
reflect structure information in addition to the tensile test data conducted in Section 3. 

4.2. Data preprocessing 

Section 3 performed the same preprocessing for the same data. MACCS keys compared 
eight types of MACCS keys functional groups and used only 72 functional groups with 
differences among 166 functional groups. We compared eight types of component 
material’s functional groups and used only 72 functional groups with differences among 

166 functional groups. 

4.3. Model construction and training 

To check the influence of features, we completed a model with two different types of 
inputs. Therefore, the same network structure as the model in Chapter 3 was used in the 
model that reflects the structural information of the components. However, the prediction 
model was completed by selecting different optimal hyperparameters through the 
Bayesian optimizer. 

 
Figure 3. Workflow of mechanical behavior predictive model based on structural information of 

components.  

5. Results 
It can be seen that not only different PMC conditions, but also different composition and 
gauge distance affects the prediction results. Prediction model using the 
chemical/mechanical properties of the components showed an accuracy of R2≅ 0.45 ~ 
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0.95 depending on the type of polymer composite, and the model using the structural 

information showed an accuracy of R2≅0.55 ~ 0.93. 

a.  b.  c.  

d.  
e.  f.  

Figure 4. a, b, c above are suggested model based on chemical/mechanical information, and 

below d,e,f are suggested model based on structural information ( a) PP+Al2O3, b) PA6+Si3N4, c) 

PA6,6+Al2O5Si, d) PA6+Al2O3, e),PA6,6+BN, f)PA6,6+Al2O5Si) : Orange line is 'prediction', 

blue line is 'experiment' 

6. Conclusion 

This study proposes a model for predicting the mechanical properties of a polymer 

composite resin using deep learning-based material information. Compared with previous 

studies utilizing chemical/mechanical properties of constituent materials, the model 

reflecting the component structure has similar performance, but has versatility by using 

data from fewer components. Compared to the first model that needs to know the seven 

chemical/mechanical properties of the constituent materials, it is possible to predict using 

only the SMILES structure information of each constituent material, that is, only two 

pieces of information about the constituent material. As a result, it was found that the 

structural information of the molecule had a great influence on the mechanical properties. 

Accordingly, it is expected that the mechanical properties can be predicted based on the 

minimum information of the constituent materials. As a follow-up study, the predictive 

performance of the model will be improved by improving the model structure through 

Natural Language Processing (NLP). 
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ABSTRACT: A multi-stage CO2 capture process using Mixed Matrix Membrane (MMM) could 

separate molecules with similar molecular diameter such as CO2 and N2 by dissolution and 

diffusion. The required energy and the membrane area were investigated based on the membrane 

performance such as CO2 permeance and CO2/N2 selectivity. In this multi-stage CO2 capture 

process, the feed gas fed into the first and second membranes. The gas permeated through the 

second membrane was recycled to Feed. The permeate gas from the first membrane was fed to 

the adsorption column to separate H2O. The CO2-rich dry gas was liquefied by using a compressor 

and a condenser. The residual gas was separated using a membrane, and the permeate gas was 

recycled to the dry gas. The flue gas assumed from a coal-fired power plant containing 11.6 mol% 

CO2. When the CO2 permeance of 1000 GPU and CO2/N2 selectivity of 50 were used for the first 

and second membranes of the multi-stage CO2 capture process, the required energy was 139 MW 

and the membrane area was 3.6×106 m2, respectively. From these results, the operation, 

construction, and membrane skid costs were calculated. The CO2 capture cost per ton of CO2 was 

found to be $38/ton-CO2. In addition, the membrane area of the second was large, and the 

membrane area could be reduced by using a membrane with high CO2 permeance and low CO2/N2 

selectivity. Therefore, a membrane with CO2 permeance of 1000 GPU and CO2/N2 selectivity of 

50 was used in the first. A membrane with CO2 permeance of 3000 GPU and CO2/N2 selectivity 

of 30 was used in the second. As a result, it was clarified that the required energy was 141 MW, 

and the membrane area was 1.25×106 m2. The CO2 capture cost was $29/ton-CO2. 

 

Keywords: Membrane separation, Carbon dioxide, Process design 

 
1. Introduction 

United Nations was accelerating its efforts on the Sustainable Development Goals (SDGs), and 

the number 13 climate change has been an urgent issue. The main cause of climate change was 

the increase of greenhouse gases such as CO2 (T. M. Lenton et al., 2019). IEA has been announced 

that CO2 emissions in 2021 would be expected to be about 33 billion tons. Especially, 11 billion 

tons have been emitted from coal-fired power plant (Ministry of Economy, Trade and Industry, 

2019). Recently, to achieve drastic reduction of CO2 emissions, Carbon dioxide capture and 

storage (CCS) which is the separation and storage carbon dioxide from large-scale intensive CO2 

emission sources has attracted much attention. Examples of CO2 separation technologies include 

chemical absorption and membrane separation. In chemical absorption, gases containing CO2 

have been absorbed in an alkaline aqueous solution in an absorption tower. After that, the absorbed 

solution has been sent to the stripper where thermal energy is required to strip the CO2 in the 

absorbed solution. Although gas absorption could recover CO2 at a concentration of 99 mol% or 

higher, it consumes a large amount of thermal energy in the stripper that results in high CO2 

capture cost (D. Leeson et al., 2017). On the other hand, in membrane separation, the driving 

force has been the difference in partial pressure between the permeate and retentate of the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50044-0 

Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan ©  2022 Elsevier B.V. All rights reserved. 



Kakeru FUJITA et al.
 

membrane. Therefore, the only energy required for separation was a pressure exchanger such as 

a compressor or a vacuum pump (A. Stankiewicz et al., 2000). Membranes include inorganic 

membranes such as zeolite which are permeable by molecular sieves. Polymeric membranes have 

been separated by dissolution and diffusion. Polymeric membranes are used with close molecular 

diameter such as CO2 and N2 because the effect of molecular sieving is less effective and the 

separation proceeds by dissolution and diffusion. Among polymer membranes research and 

development of organic-inorganic hybrid membranes (MMM) which have the advantages of 

durability of inorganic materials and excellent gas permeability of organic materials has been 

conducted (M. Tanaka, 2016). However, few studies have been conducted on the required energy 

and membrane area of processes how parameters such as permeance and selectivity. Therefore, 

process synthesis and integration based on the process systems engineering approach have been 

demanded as socioeconomic innovations (B. Ghalei et al., 2017). Process synthesis consists of 

three methods. 1. Planning of process that examines the selection and combination of process 

equipment, 2. Functional design of the process that quantitatively assigns functions to this 

equipment, 3. Evaluation of these process that meet their intended functions. In this study, the 

multi-stage CO2 capture process using MMM was developed via process synthesis method and 

evaluate the economic performances. 
 
2. Modelling 
Fig. 1 shows schematic diagrams of multi-stage CO2 capture process for CCS (T. C. Merkel et al., 

2010). Assuming exhaust gas from a coal-fired power plant, this process separated to a recovery 

ratio of 90% CO2 against flow rate of CO2 on Feed. The feed was assumed following conditions; 

flow rate of 2.2×104 mol/s, a pressure of 100 kPa, a temperature 298 K, a composition CO2:11.6, 

N2:73, H2O:11, O2:4.4 mol%. The process consists of a pressure exchanger (blower, compressor, 

vacuum pump), an adsorption column to remove H2O, a condenser and three membrane modules. 

The feed gas pressure is elevated to 200 kPa with a blower which fed into the membranes 2 and 

3. The permeate is depressed by 20 kPa with vacuum pomp. The permeate gas from membrane 3 

is recycled to the feed gas. The permeation gas of membrane 2 separated H2O with adsorption 

tower of 6. The dry gas is compressed to 2250-3800 kPa with compressor of 7 (253 K). The gas 

is pumped into the ground at 14,000 kPa by compressor 10. The residual gas in the condenser is 

separated by the membrane of 9, and the permeate gas is recycled to the dry gas. The membrane 

module is a cross plug flow module in which the permeate gas exits in the flow direction. The 

CO2 permeance and CO2/N2 selectivity set to be 1000, 3000, 5000 GPU, CO2/N2:10-100, 

CO2/H2O:0.03, N2/O2:1, respectively. All of simulation was implemented of the Aspen Plus®V11. 

The Peng Robinson type equation of state was applied to estimate the vapor-liquid equilibrium for the 

steady state. 
 

 
Fig. 1 Schematic diagram of multi-stage membrane CO2 capture process (CCS) 
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1 : Blower   2, 3, 9 : Cross-plug flow module 4, 5 : Vacuum pump
6 : Adsorption tower  7, 10 : Compressor  8 : Condenser

266



Evaluation of Economic Performance of CO2 Separation Process Using 
Matrix Membrane

3. Result and discussion 

3.1 Effect of CO2 Permeance and CO2/N2 Selectivity on CO2 concentration for CCS, required 

energy, and membrane area  

First, the effects of the same CO2 permeance and CO2/N2 selectivity of membranes 2, 3, and 9 on 

the CO2 concentration for CCS, the required energy and the membrane area are investigated. In 

this study, the CO2 permeance are set to 1000, 3000, and 5000 GPU, and the CO2/N2 selectivity 

is varied in the range of 10-100. Table 1 shows the comparison of CO2 concentration for CCS, 

required energy and membrane area. The required energy is the sum of the CO2 separation process 

(1-4) and CO2 storage process (5-10). The membrane area is total of 2, 3 and 9. The CO2 

concentration for CCS increased with high CO2/N2 selectivity. The required energy for the storage 

process decreases with high CO2/N2 selectivity due to the higher CO2 concentration in permeate 

gas of membrane 2. In addition, the required energy with CO2/N2 selectivity 100 decreases by 

60% compere to CO2/N2 selectivity 10. On the other hand, the CO2 partial pressure on the 

permeate is larger for the high CO2 concentration on the permeate. As a result, the difference 

between the CO2 partial pressure on the retentate and that on the permeate is smaller, and the 

membrane area of the multi-stage CO2 capture process increases. In addition, the membrane area 

with CO2/N2 selectivity100 increases by 225% compere to CO2/N2 selectivity 10. On the other 

hand, by increasing the CO2 permeance from 1000 to 5000 GPU, the membrane area is reduced 

by 80% due to the flow rate of CO2 on permeates increases.  

 

Table1 Comparison of CO2 mole fraction, required energy and membrane area  

CO2/N2 

selectivity 
- 10 20 30 40 50 60 70 80 90 100 

CO2 

concentration  
mol% 88.5 93.9 95.6 96.5 97.0 97.3 97.4 97.5 97.7 97.8 

Required energy MW 285 213 170 151 139 133 124 119 117 115 

Membrane area 

(1000 GPU) 
×10

6
 m

2
 2.40 2.50 2.90 3.20 3.60 4.00 4.30 4.70 5.10 5.40 

Membrane area 

(3000 GPU) 
×10

6
 m

2
 0.80 0.83 0.97 1.07 1.20 1.33 1.43 1.57 1.70 1.80 

Membrane area 

(5000 GPU) 
×10

6
 m

2
 0.48 0.50 0.58 0.64 0.72 0.80 0.86 0.94 1.02 1.08 

 

3.2 Evaluate the economic performance for CO2 capture process for CCS 

The cost index is shown in Table 2. The CO2 capture cost, CC is estimated by Eq. (1)  

                         𝐶𝐶 =
(𝑃×𝑇×𝐸)+(0.2×𝐶)

𝐹𝐶𝑂2×𝑇
                             (1) 

P is the required energy for CO2 capture process (kW), T is the annual operating time (h/year), E 

is the cost of electricity ($/kWh), C is the capital cost of the CO2 capture process ($), FCO2 is the 

mass flow rate of captured CO2 (T. C. Merkel et al., 2010). Fig. 2 shows CO2 capture cost for CO2 

permeance and CO2/N2 selectivity. The CO2 capture cost decreases because the reducing the 

operating cost is larger than the increasing the membrane skid cost with high CO2/N2 selectivity. 

The high CO2 permeance has a significant effect on the CO2 capture cost by reducing the 

membrane area due to increasing flow rate of CO2 on permeate. It is clarified that the minimum 

CO2 capture cost is 18.6 US$/ton-CO2 with the CO2 performance of 5000 GPU and CO2/N2 

selectivity of 90 under these conditions. 
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Table 2 Cost index of CO2 capture process  
Category Units Value 

Mechanical efficiency - 0.8 
Mechanical cost $/kW 500 

Membrane skid cost $/m2 50 
Cost electricity $/kWh 0.04 

Annual operating time h/year 7446 
 

 
Fig. 2 CO2 capture cost for CO2 permeance and CO2/N2 selectivity 

 
3.3 Configuring membranes with appropriate separation performance 
In this study, the required energy and the membrane area can be reduced with appropriate 

separation performance in membrane 2 and 3. Table 3 shows the CO2 permeance and CO2/N2 

selectivity configured. The membranes used are those with CO2 permeance of 1000 GPU and 

CO2/N2 selectivity of 50 and those with CO2 permeance of 3000 GPU and CO2/N2 selectivity of 

30. In Scenarios 1 and 2, the same CO2 permeance and CO2/N2 selectivity are used for membrane 

2 and 3. In Scenarios 3 and 4, membranes with different CO2 permeance and CO2/N2 selectivity 

are used. Fig. 3 shows the effect of whole scenario on the membrane area. Since the multi-stage 

CO2 capture process using MMM requires a larger membrane area for membrane 3 than for 

membrane 2, membrane 3 with a CO2 permeance of 1000 GPU and a CO2/N2 selectivity of 50 

resulted in a larger membrane area due to the pressure difference problem as explained in Section 

3.1. In the scenario where the CO2 permeance and CO2/N2 selectivity are changed for each 

membrane, the membrane area in scenario 3 decreases by 64% compared to scenario 4. Thus, it 

is found that the membrane area can be reduced by configuring with high CO2 permeance and 

low CO2/N2 selectivity at membrane 3. Scenario 1 results in the smallest membrane area in whole 

scenario.  
 

Table 3 Membrane configuration of CO2 capture process  
Category Unit Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Membrane 2 
CO2 permeance GPU 3000 1000 1000 3000 

CO2/N2 selectivity - 30 50 50 30 
Membrane 3 

CO2 permeance GPU 3000 1000 3000 1000 
CO2/N2 selectivity - 30 50 30 50 
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Fig. 3 The effect of membrane area on CO2 permeance and CO2/N2 selectivity  

 

Fig. 4 shows the effect of whole scenario on the required energy. The required energy is the sum 

of the CO2 separation process (1-4) and the CO2 storage process (5-10) as in the study in Section 

3.1. The required energy in the CO2 storage process (5-10) is larger for each scenario in Figure 4. 

However, required energy for CO2 storage is reduced in Scenarios 1 and 2. In Scenario 1, the 

membrane area is the smallest, but the required energy is the largest at 177 MW. In Scenario 3, 

the required energy is reduced by 33 MW compared to Scenario 1 by setting the CO2/N2 selectivity 

50 on membrane 2. Furthermore, the required energy in Scenario 3 is reduced by 8 MW compared 

to Scenario 4 by considering the membrane configuration with appropriate separation 

performance. In addition, cost evaluation of scenario 3 and scenario 4 is done. The cost of 

Scenario 3 is $29/ton-CO2 and that of Scenario 4 is $37/ton-CO2. By considering the appropriate 

CO2 permeance and CO2/N2 selectivity configuration of the multi-stage CO2 capture process using 

MMM as in Scenario 3, the membrane area and required energy are reduced compared to Scenario 

4. The CO2 capture cost is reduced by $8/ton-CO2.  

 

 

Fig. 4 The effect of membrane area on CO2 permeance and CO2/N2 selectivity  
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4 Conclusions 

The multi-stage CO2 capture process using MMM were fully developed by Aspen plus V11. The 

multi-stage CO2 capture process using MMM was developed via process synthesis method and 

evaluate the economic performances. The required energy decreased with membranes of high 

CO2/N2 selectivity because of CO2 concentration on the permeate gas increased. On the other 

hand, the membrane area increased due to the smaller in the pressure difference as the high 

CO2/N2 selectivity. The CO2 permeance had a significant effect on the reduction of the membrane 

area. Regarding the economic evaluation, increasing the CO2/N2 selectivity from 30 to 100 

reduces the required energy, but because the membrane area increased, the effect of increasing 

the CO2/N2 selectivity above 30 on the cost reduction was small. If a membrane with a CO2 

permeance of 5000 GPU or higher could be developed, the CO2 capture cost will be less than 

$20/ton-CO2. By configuring membranes with appropriate CO2 permeance and CO2/N2 selectivity 

in a multi-stage membrane CO2 capture process, the required energy and membrane area could 

be reduced.   
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Abstract 

This work compares integrated facilities to capture CO2 from the atmosphere and use it 

for the production of bulk chemicals, methanol. Two different alternatives have been 

proposed. On the one hand, the use of direct air capture (DAC) employing either alkaline 

solutions based in KOH or a bipolar membrane electrodialysis (BPMED). The CO2 

captured is subsequently hydrogenated with electrolytic hydrogen produced using solar 

and/or wind energy. On the other hand, the use of biomass such as switchgrass, corn 

stover, miscanthus, wheat straw and forest residues, from spruce and pine, are considered. 

This biomass is pretreated, gasified, either direct or indirect gasification, the raw syngas 

followed steam reforming or partial oxidation, it is cleaned and its composition is adjusted 

for the synthesis of methanol. All units are modelled individually to formulate the 

superstructure as an MINLP optimization model. The results show that the optimal option 

consists of the use of spruce bark biomass gasification. The direct air capture has 

production and investment costs almost 10 times higher due to the large consumption of 

electricity to power the fans. 
 

Keywords: Process design, CO2 capture, biomass, renewable methanol  

1. Introduction 

Since the 18th century with the beginning of the industrial revolution, as well as the 

development of the use of steam and other energy sources, mainly fossil fuels, human 

growth and its development was linked to the increasing emission of carbon. Because of 

this, humanity is in a race to reduce emissions to keep the planet's temperature within 1.5 

°C. Some efforts to remove CO2 from the atmosphere are thus being investigated (Allen 

et al., 2021). Purified CO2 can be used in the chemical industry for food production, 

cosmetics and even for the population of intermediate reagents for the production of acids 

and aldehydes, among others. This work considers the use of CO2 to obtain intermediate 

compounds such as methanol. Two major capture technologies can be used. On the one 

hand, nature captures CO2 to grow biomass. This biomass is later gasified to produce 

methanol. On the other hand, direct air capture (DAC) is an engineered alternative that is 

emerging in our attempt to remove CO2 from the atmosphere. By using an air-water 

contactor, it allows a constant flow of air to circulate through alkaline solutions. CO2 is 

absorbed and captured by transforming it into CaCO3. This carbonate is subsequently 

calcined, thus releasing the captured CO2 to be purified (Keith et al., 2018). A 

modification of the DAC process consists of the use of a bipolar electrodialysis membrane 

(Sabatino et al., 2020). Ion exchange membranes allow the recovery of CO2 through the 
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use of water and the subsequent regeneration of the H+ and OH- species in the respective 

solutions. The CO2 is hydrogenated with electrolytic H2 to produce methanol. This work 

evaluates, from a techno-economic perspective, both pathways towards the production of 

methanol comparing the nature and the manmade alternatives. The processes are 

optimized using a mathematical modelling approach.  

2. Process description 

The alternative based on biomass requires washing and milling before the gasification. 

Two technologies are considered: The Renugas gasifier (R), direct gasification, operates 

at medium pressure using oxygen and produces a gas rich in CO2. It allows large 

throughput per reactor volume and reduces the need for a downstream pressurization. 

However, its efficiency is lower (Eggeman, 2005). The low pressure gasifier, Battelle 

Columbus (Ferco, F), is indirectly heated. The system consists of two chambers, a 

gasifier and a combustor. Olivine is heated up by burning char to provide the energy for 

gasification. The syngas shows low CO2 content but heavier hydrocarbons (Phillips, 

2007). Subsequently, the syngas is reformed to remove the hydrocarbons. Steam 

reforming (S) is endothermic but provides a higher concentration of hydrogen in the 

syngas. Partial oxidation (O) is exothermic but its yield to hydrogen is lower. Finally, 

the raw syngas is cleaned. Two steps are proposed. Cold cleaning by means of a scrubber 

for low pressure gasification, or a ceramic filter operating at high temperature for high 

pressure gasification. The second step consists of a multibed PSA system used to remove 

the last traces of hydrocarbons, H2S and CO2 in that order. Once the syngas is purified, 

we use it for traditional methanol synthesis. The superstructure of alternatives is presented 

in Figure 1. 

  

 
 

Figure 1.-Superstructure for the production of methanol 

The DAC process captures the CO2 from the air using a counterflow air contactor. The 

concentration of CO2 in air is around of 300-400 ppm. This low concentration requires 

the use of alkaline salts, KOH, to reduce the water flow (Keith et al., 2018). Once the CO2 

has been captured, it can be recovered from the alkaline solution with a pellet-type reactor 

where CO2 byproducts react with a stream rich in Ca(OH)2, forming CaCO3 and 

regenerating the pH of the original solution, releasing OH-groups. Later the calcination 

of CaCO3 allows recovering the CO2 producing CaO, which is sent to a slaker unit where 
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the Ca(OH)2 is regenerated. The high temperatures reached allow to produce medium-

low pressure steam, obtaining energy in a turbine. The alternative process employs the 

bipolar electrodialysis membrane (BPMED), separating a basic solution rich in CO2 and 

an acid solution. The control of pH is important to maintain most of the CO2 dissolved, 

the recovery yield in the membranes and the regeneration of the H+ and OH- species in 

the respective solutions, avoiding CO2 bubbles (Sabatino et al., 2020). The stream with 

CO2 recovered is sent to the condenser and molecular sieves units to remove the water 

content and lately hydrogenated with electrolytic hydrogen produced using energy from 

PV panels or wind turbines is evaluated. The CO2 is hydrogenated using renewable H2 

for the production of methanol by eq. (1).  

2 3

2 2 2

2CO H CH OH

CO H CO H O

+ 

+  +
       (1) 

3. Modelling approach 

The different units are modelled using first principles, and mass and energy balances 

based on detailed simulations and/or experimental data. For particular units such as the 

direct air capture including the bipolar membrane electrodialysis (Sabatino et al., 2020), 

surrogate models are developed.  

The gas composition produced from the gasifiers is defined by experimental correlations. 

The reforming stage uses conversions from the literature (Eggemann, 2005; Phillips et 

al., 2007) 

The capture of CO2 from air needs the use of an air contactor where the air and the water 

streams are placed in contact. The efficiency of capture and the molar flow rate of CO2 

through the membranes are a function of the concentration of bicarbonate and carbonate 

ions, [HCO3]- and [CO3]2-, the concentration of KOH, [KOH], and current density, i. 

(Sabatino et al., 2020). 

2

2

3 3

2

3 3

([HCO ] ,[CO ] ,[KOH],i)

([HCO ] ,[CO ] ,[KOH],i)

current

CO

f

f f

 − −

− −

=

=

     (2) 

The methanol synthesis reactor is modelled based on chemical equilibrium, mass and 

energy balances (Cherednichenko, 1953). 

The superstructure is formulated in terms of total mass flows, component mass flows, 

component mass fractions, and temperatures of the streams in the network. 

4. Optimization procedure 

The superstructure is decomposed into three different flowsheet alternatives based on the 

pretreatments: direct air capture with alkaline solutions, direct air capture with bipolar 

membrane electrodialysis and the gasification of biomass. An NLP problem is solved for 

each one where the objective function consists of simplified production costs given by 

eq. (3) 

 

2 2
·MetOH MetOH O O Electricity consumed utilities utilities

i i

Z P m P m P W P m= + − −   (3) 

 

subject to the models described in section 3. The NLP’s consist of around 2000-2500 eqs 

and 3000 variables and it was solved with GAMS, CONOPT, requiring 30-60 s of CPU-

time. After the optimization, a heat exchanger network is designed to reduce energy 

consumption. Finally, a detailed economic evaluation of the alternatives is performed to 
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compute the production and investment costs of the facility using the cost correlations in 

Martín and Grossmann (2011) and the procedure described in that work. 

5. Results 

This section shows the principal operating results, and the economics of the different 

alternatives. For wind and solar capture, we consider Cadiz, to the south of Spain where 

high solar irradiance is available, and the wind velocity is fairly high. Different types such 

as switchgrass, corn stover, miscanthus, wheat straw and pruning residues including pine 

and spruce bark are evaluated 

5.1. Process analysis 

The superstructure of alternatives is decomposed by technology to evaluate the yield and 

performance of each alternative. The biomass path follows indirect gasification followed 

by steam reforming, since the H2 to CO ratio required for the production of methanol is 

around 2, After the gas clean up and the adjustment of the composition, the syngas is fed 

to the synthesis loop. In the case of DAC processes both alternatives are presented. Tables 

1 and 2 show the major results. In general, DAC needs more energy than biomass 

gasification due to the low concentration of CO2 in air that forces to move large volumes 

of air through the fans increasing the requirements of electricity, that is generated using 

wind turbines or solar panels. The conventional DAC is more efficient than the BPMED 

resulting in 10% lower energy requirements. However, the cost of PV panels and 

aerogenerators, together with the requirements of a large surface, increase considerably 

the investment cost of this technology. Thus, the yield to methanol is higher from those 

wastes with a composition richer in carbon. 
 

Table 1. Major yields for gasification of biomass 
 Gasification 

Switchgrass Corn Stover Wheat Straw Miscanthus Pine Bark Spruce Bark 

Product cost(€/kgMetOH) 0.192 0.216 0.170 0.224 0.169 0.110 

Investment (M€) 181.27 175.09 157.67 172.27 144.16 152.79 

kgMetOH/ kgBiomass 0.658 0.674 0.620 0.687 0.875 0.816 

Productivity (t/ha) 12.00 10.92 7.30 10.00 6.94 4.08 

Surface required (ha) 51,840 55,925 90,47 59,552 67,334 122,980 

 

 
 Table 2.  Major yields for DAC process paths 

 DAC 

Conventional 

Process 

PV panels 

Conventional 

Process 

Wind 

BPMED 

PV panels 

BPMED 

Wind 

Product cost (€/kgMetOH) 0.934 1.089 1.059 1.233 

Investment (M€) 
Plant 959.45 959.45 1,218.75 1,218.75 

PV/Aerogenerators 449.86 685.50 503.83 767.75 

Surface required (ha) PV panels 205.12 - 230.52 - 

Number of units Aerogenerators - 572 - 643 

kgCO2 air captured/kW 573.60 573.60 867.03 867.03 

kgCO2 available captured/kW 968.79 968.79 867.03 867.03 

    

5.2.  Process economics 

Table 1 presents the investment and the production costs for the six different biomass 

species. The most economic ones are pine and spruce bark since the higher composition 

in carbon lead to larger yields to methanol, reducing the production costs. Although 

spruce bark biomass shows an investment cost above that of pine bark and the largest 
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growing area, the lower cost of biomass, even with a slighter lower yield of kg 

methanol/kgBiomass, results in the best option, for a production cost is 0.11 €/kg methanol. The 

use of biomass is competitive with the production cost of methanol from fossil resources.  

 

Another issue would be to be able to meet the global demand using biomass waste. 

Although growth of biomass is very efficient to capture CO2, it is important to indicate 

that DAC technology is still at an early stage of development and with potential for 

improvement. Table 2 shows the investment and the production cost of the two DAC 

alternatives, conventional process and BPMED, both with a renewable power supply 

from PV panels and/or aerogenerators. These costs could change as a function of the 

chosen technology and the location. Conventional DAC process has a lower ratio kgCO2 

air captured/kW than BPMED process due to the use of biogas as fuel in the calciner. The 

CO2 from the combustion of this biogas is added to the CO2 captured from air, decreasing 

the volume of air and with that the power consumption of the fans, with the corresponding 

reduction in PV panels and wind turbines.  

 

The location has a direct effect due to the availability of resources. In this case the location 

was the province of Cádiz (Spain), which shows long sun hours and high wind velocities. 

The best option corresponds to the use of the conventional DAC power with PV panels. 

The production and investment costs are the lowest among the DAC alternatives, 0.934 

€/kg methanol and 1409.31 M€, which are around 9 and 10 times larger than the values 

of the best biomass process. Figure 2 shows that the investment cost of the PV panels 

represents around of 32% of the total, i.e., a third of the investment cost is destined to the 

energy requirements. The breakdown of the investment in the equipment shows that the 

fans, the PV panels, and the electrolysis represent around of 90% of the total investment 

cost, leaving only the remaining 11% destined to capture of CO2 and synthesis of 

methanol. The expected improvement in the efficiency of the solar panels would reduce 

not only the number of panels and the total surface but also the cost.  

 
Figure 2.-Distribution of costs in DAC conventional process with PV panels 

 

6. Conclusions 

This work systematically compares the capture of CO2 from atmosphere using a natural, 

biomass growth, and manmade, direct air capture (DAC), alternatives towards the 

production of a bulk chemical, methanol, in an attempt to build a sustainable chemicals 

industry as well. Two different configurations for DAC are optimized, the use of alkaline 

solutions (Keith et al., 2018) and a membrane (Sabatino et al., 2020), that captures the 
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CO2, which is subsequently hydrogenated using electrolytic hydrogen. The facility is 

powered using wind or solar energy depending on the regional availability. This 

technology is compared to the Nature’s alternative based on biomass, considering 

switchgrass, corn stover, miscanthus, wheat straw, and forest residues (spruce, pine). The 

biomass harvested is fed to a gasification-based process, consisting of indirect 

gasification, steam reforming, syngas clean-up and composition adjustment and methanol 

synthesis. The most economical alternative to remove CO2 from the atmospheric air is 

the gasification of spruce bark biomass due to present a lowest production cost, 0.11 €/kg 

methanol, a low investment cost, 153M€, and the high yield to methanol, 0.816 kg 

methanol/kg biomass. DAC technologies still show 10 higher production and investment costs, 

that are expected to decrease with the improvements in PV panels, wind turbines and the 

capture process itself. 

Acknowledgment 

The authors thank the PSEM3 GIR at USAL and the CAPD at CMU. GG appreciates the 

FPU PhD fellowship from the Spanish Government. 

References 

M. Allen, O. P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. 

Kala, N.   Mahowald, Y. Mulugetta, et al, (2020). Global Warming of 1.5°C; An IPCC Special 

Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related 

Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global 

Response to the Threat of Climate Change, Sustainable Development, And Efforts to Eradicate 

Poverty; IPPC. 

V.M. Cherednichenko, V. M., Dissertation, Karpova, Physico Chemical Institute, Moscow, 

U.S.S.R., 1953. 

T. Eggeman, 2005, Updated Correlations for GTI Gasifier – WDYLD8. Technical memorandum 

for Pam Spath, National Renewable Energy Laboratory, Golden, Colorado. June 27, 2005. 

D. W. Keith, G. Holmes, D. St. Angelo, K. Heidel., (2018) A Process for Capturing CO2          

from the Atmosphere. Joule 2, 1573–1594 

M. Martin, I.E. Grossmann, (2018). Towards zero CO2 emissions in the production of Methanol 

from switchgrass.  CO2 to methanol. Comp. Chem. Eng. 105, 308–316 

S. Phillips, A. Aden, J Jechura, D Dayton, T Eggeman, 2007, Thermochemical ethanol via indirect 

gasification and mixed alcohol synthesis of lignocellulosic biomass. Technical Report, 

NREL/TP-510–41168, April 2007. 

F. Sabatino, M. Mehta, A. Grimm, M. Gazzami, F. Gallucci, G. J. Kramer, M. van Sint Annaland, 

(2020) Evaluation of a Direct Air Capture Process Combining Wet Scrubbing and Bipolar 

Membrane Electrodialysis. Ind. Eng. Chem. Res., 59, 7007−7020 

 

276



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Superstructure Optimization for the Design of an 

Algae Biorefinery Producing Added Value Products 

Maryam Raeisia*, Jiawei Huang a, Thien An Huynh a, Meik B. Frankea, Edwin 

Zondervana 
aSustainable Process Technology, Faculty of Science and Technology, University of 

Twente, Meander, kamer 216, Postbus 217, 7500 AE Enschede, the Netherlands 

m.raeisi@utwente.nl 

Abstract 

This study presents a superstructure framework to evaluate processing pathways for the 

production of omega-3 and pigments in an algae biorefinery. Different stages such as 

cultivation, harvesting, dewatering, drying, cell distribution, and extraction are 

considered as processing sections in this superstructure. To simplify and speed up 

modelling, each of these technologies is grouped in blocks.  

The superstructure framework is converted to a mixed-integer nonlinear programming 

(MINLP) model. It has more than 6.000 constraints/variables. The model is implemented 

in the Advanced Interactive Multidimensional Modelling System (AIMMS) software. 

The CPLEX and CONOPT are the selected solvers. The most promising pathways for 

three types of microalgae are proposed. These have differences in the dewatering section. 

Furthermore, the different pathways are compared in terms of cost and performance. The 

results show that the Haematococcus Pluvialis biorefinery leads to the highest profits due 

to pigments products' high amount and price.  

Keywords: Superstructure optimization; algae biorefinery; biochemical; MINLP; 

techno-economic analysis. 

1. Introduction 

Biomass has been considered a renewable feedstock to overcome the shortage of 

petroleum-based fuel sources and handle global warming. Microalgal biomass offers 

incredible possibilities to be used as feedstock for biochemical and bioenergy production 

compared to other biomass sources. Microalgae is a non-food biomass feedstock that 

grows very fast in many types of water (such as freshwater, saltwater, wastewater, etc.) 

(Gebreslassie et al., 2013).  

Algae biomass is composed of pigments, lipids, proteins, and carbohydrates that can be 

converted into various products (de la Noue & de Pauw, 1988). There is a growing 

industrial interest in using microalgae for an extensive range of applications, including 

biofuels and bioenergy, biofertilizers, vitamins, and chemical compounds for food 

production, nutraceutical dietary supplements, cosmetics, and pharmaceutical products, 

etc. (Torres et al., 2021). Despite the vast potential to use microalgae as a feedstock for 

various industries, a technical challenge must be addressed to commercially extend the 

use of biochemicals and biofuels from algal biomass. The optimization of a superstructure 

is one approach to enhance the application of microalgae on a large scale by finding a 

cost-effective pathway.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50046-4 
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Rizwan et al. (2015) formulated a superstructure as a mixed integer non-linear program 

(MINLP), optimizing the net present value (NPV) of an algae biorefinery. Although 

biodiesel, bio-oil, and biogas are produced in this biorefinery, the capital costs are not 

considered (Rizwan et al., 2015). Galanopoulos et al. (2019) proposed a superstructure 

for an integrated algae biorefinery to minimize the price of biodiesel. The total biodiesel 

costs can be decreased with 20 % by producing bioethanol, glycerol, and levulinic acid  

(Galanopoulos et al., 2019). Their study showed that the price of biodiesel could be 

decreased by producing added-value products. Still, the profits of this algae biorefinery 

are not high enough to scale it up to a commercial level. Furthermore, they considered 

only a Chlorella Vulgaris biorefinery. Including different types of microalgae with 

different compositions and investigating various bioproducts will increase the prospect 

of commercializing the algae biorefinery. For this reason, a superstructure that includes 

three types of microalgae is developed to optimize the production pathway of added value 

products such as pigments, biodiesel, biogas, glycerol, omega-3, fertilizers.  

2. Methodology 

2-1 Process description and superstructure development 

By using carbon dioxide and wastewater, microalgae can be cultivated. Four technologies 

(open pond, flat plate photobioreactor, bubble column photobioreactor, turbo column 

photobioreactor) are available for this cultivation stage. Subsequently, microalgae are 

separated from water in harvesting (including sedimentation and flotation/filtration), 

dewatering (flocculation, centrifugation, filter press), and a  drying section. Next, the cells 

are disrupted to extract pigments and various lipids. There are a number of technologies 

for cell disruption, such as bead beating, high-pressure homogenization, microwaving, 

sonication, and hydrothermal liquefaction. After cell disruption, the pigments, (which are 

the most expensive products) are extracted. This stage is commonly done by using organic 

solvents or supercritical carbon dioxide. The lipids are extracted with appropriate solvents 

(n-butanol, Hexane, supercritical carbon dioxide) and forwarded to the lipid production 

stage to produce omega-3, biodiesel, and glycerol. Finally, the remaining parts of the 

microalgae are transported to the remnant treatment section to produce biogas and 

biofertilizer. Based on the current technologies, different process pathways can be 

selected to produce added-value components and bioenergy. All the alternatives are 

considered in the superstructure, as shown in Figure 1. Each block represents one of the 

technologies mentioned before. 

2-2 Problem statement 

Given is a superstructure with all current technologies and pathways. The specifications 

of products and raw materials are extracted from the literature. Furthermore, the 

equipment data includes performance (split factors and yields), cost factors 

(CAPEX/OPEX, Lang factors, and interest rates). The superstructure is optimized under 

the condition that the mass and energy balance hold and that costs display in economy of 

scale. The decision to be made is to select one technology at each stage and to determine 

the mass and energy flows at each stage. Then, the cost-effective pathway and related 
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technologies are decided by optimizing this superstructure to maximize profits and 
minimize the cost-based as the objective function. 

 
Figure 1: Superstructure of algae biorefinery and cost-effective production pathway for each type 
of algae 

2-3 mathematical model 

A mathematical model can be used to optimize the superstructure. This model contains 
an objective function and various constraints and variables (such as mass and energy 
balances and equipment limitations). The logical constraints are defined to allow only for 
the selected one option of each stage. There are nine intervals and 23 options in total (as 
shown in Figure1).  

All flows that can enter/leave each option (𝑗) are shown in figure 2, schematically. In the 
first part of each block, there is a mixing process to produce input flow (𝐼𝑁). The mass 
flow of mixing section (𝑚𝑘.𝑗

𝐼𝑁 ) for each component (𝑘) is a mixture consisting of two 
parts, the upstream stream (𝑈) mass flow (𝑚𝑘,𝑗

𝑈 ) from the previous stage or feedstock 
(for four options of cultivation stage) and the reactant stream mass flow (𝑚𝑘,𝑗

𝑅 ), which 
could be used to add solvents or reactants. The concentration factor 𝑥𝑘,𝑗 is defined for 
calculating the reactant stream. It is a weight fraction based on the basic component 𝑘 in 
the upstream flow. All these flows are added up in the Eq. (1). 

𝑚𝑘,𝑗
𝐼𝑁 = 𝑚𝑘,𝑗

𝑈 + 𝑚𝑘,𝑗
𝑅 = 𝑚𝑘,𝑗

𝑈 + 𝑥𝑘,𝑗 ∙ 𝑚𝑘,𝑗
𝑈   (1) 

The reactant (R)
mass flow (m)

for component k, option j

The upstream (U) 
mass flow (m) 

for component k, option j

The downstream (D) 
mass flow (m) 

for component k, option j

The waste (W)
mass flow (m) 

for component k, option j

The product(P)
mass flow (m) 

for component k, option j
,

R
k jm ,

P
k jm

,
D
k jm,

U
k jm

,
W
k jm  

Figure 2. Mass balances in option J 

To consider the reaction inside each block, the output (𝑂𝑈𝑇) mass flow (𝑚𝑘,𝑗
𝑂𝑈𝑇) (Eq. (2)) 

can be calculated either by a mass stoichiometric coefficient 𝑆𝑘,𝑗 or by distribution 
coefficients 𝐷𝑘,𝑗  in the case of remnant treatment. If no reaction or distribution takes place 
inside the option, the outlet flow should equal the inlet flow.  
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𝑚𝑘,𝑗
𝑂𝑈𝑇 = 𝑚𝑘,𝑗

𝐼𝑁 +𝑆𝑘,𝑗 ∙ 𝑚𝑘,𝑗
𝐼𝑁 + 𝐷𝑘,𝑗 ∙ 𝑚𝑘,𝑗

𝐼𝑁   (2) 

Then the output mass flow (𝑚𝑘,𝑗
𝑂𝑈𝑇) can be separated into three streams: A downstream 

(𝐷) mass flow (𝑚𝑘,𝑗
𝐷 ) going to the next stage, a waste(𝑤) flow (𝑚𝑘,𝑗)

𝑊 , and products(𝑃) 

flows (𝑚𝑘,𝑗)
𝑃 . These streams are calculated by using split factors 𝑆𝐹𝑘,𝑗as shown in Eq. (3).  

𝑚𝑘,𝑗
𝑂𝑈𝑇 = 𝑚𝑘,𝑗

𝐷 + 𝑚𝑘,𝑗
𝑊 + 𝑚𝑘,𝑗

𝑃 = 𝑆𝐹𝑘,𝑗
𝐷 ∙ 𝑚𝑘,𝑗

𝑂𝑈𝑇 + 𝑆𝐹𝑘,𝑗
𝑊 ∙ 𝑚𝑘,𝑗

𝑂𝑈𝑇 + 𝑆𝐹𝑘,𝑗
𝑃 ∙ 𝑚𝑘,𝑗

𝑂𝑈𝑇   (3) 

For the energy balances, three elements (electricity (𝑈𝑗
𝐸), heating (𝑈𝑗

𝐻), and cooling 

(𝑈𝑗
𝐶)) are considered. For the utility consumption of each option (𝑈𝑗), it is assumed that 

the energy demand is proportional to the total inlet stream mass flow going through the 

option. (𝑆𝑈𝐶𝑗) is the specific utility consumption factor (Eq. (4)).  

𝑈𝑗 = ∑ 𝑚𝑘,𝑗
𝐼𝑁 ∙𝑘 𝑆𝑈𝐶𝑗  (4) 

The profit margin is defined as the difference of the annualized investment cost (𝐴𝐼𝐶), 

annualized operating cost (𝐴𝑂𝐶), and the product sales (𝑃𝑆).The 𝐴𝐼𝐶 are calculated from 

the total plant installation cost (𝑇𝐼𝑃𝐶), the interest rate (𝐼𝑅), and the lifetime (𝐿𝑇), as 

shown in Eq. (5). The 𝑇𝐼𝑃𝐶 can be calculated from the equipment cost with an 

engineering coefficient (𝐾𝐸𝑁𝐺) and the land cost (𝐿𝐶𝑗) for the cultivation stage, which is 

shown in Eq. (6). The equipment cost is calculated using the economy-of-scale principle 

(𝑓𝑗), with a reference cost(𝐸𝑗
𝑟𝑒𝑓

), a reference mass flow (𝑚𝑗
𝑟𝑒𝑓

), a cost index in 2020 

(𝐼𝐷𝑋𝑗
2020) and a reference cost index (𝐼𝐷𝑋𝑗

𝑟𝑒𝑓
). The land cost 𝐿𝐶𝑗 is calculated with the 

land price (𝑃𝐿𝑎𝑛𝑑) and the productivity for algae cultivation (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦) by Eq. (7). 

𝐴𝐼𝐶 = 𝑇𝐼𝑃𝐶 ∙
𝐼𝑅∙(𝐼𝑅+1)𝐿𝑇

(𝐼𝑅+1)𝐿𝑇−1
  (5) 

𝑇𝐼𝑃𝐶 = 𝐾𝐸𝑁𝐺 ∙ ∑ 𝐸𝐶𝑗
𝑟𝑒𝑓

∙ (
∑ 𝑚𝑗,𝑘

𝐼𝑁
𝑘

𝑚
𝑗
𝑟𝑒𝑓 )

𝑓𝑗

∙ (
𝐼𝐷𝑋𝑗

2020

𝐼𝐷𝑋
𝑗
𝑟𝑒𝑓 ) 𝑗 + 𝐿𝐶𝑗  (6) 

𝐿𝐶𝑗 = 𝑃𝐿𝑎𝑛𝑑 ∙
𝑚𝐴𝑙𝑔𝑎𝑒,1−4

𝑂𝑈𝑇

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐴𝑙𝑔𝑎𝑒,1−4
   (7) 

The annualized operating cost includes the raw material cost (𝑅𝑀𝐶), the utility cost 

(𝑈𝐶), the operating and maintenance cost (𝑂𝑀𝐶), and the waste treatment cost (𝑊𝑇𝐶), 

which are presented in Eq. (8). The 𝑅𝑀𝐶 and 𝑈𝐶 are calculated from multiplying the 

operating hours per year and the material prices and utility price, respectively. The 
operating and maintenance cost (𝑂𝑀𝐶) are calculated from multiplying the operating and 

maintenance factor and the AIC. The waste treatment cost (𝑊𝑇𝐶) is linear to the waste 

stream mass flow with a price for waste treatment. 

𝐴𝑂𝐶 = 𝑅𝑀𝐶 + 𝑈𝐶 + 𝑂𝑀𝐶 + 𝑊𝑇𝐶  (8) 

The product sales are calculated using the product prices (𝑃𝑃𝑟𝑜𝑑𝑢𝑐𝑡) , the operating hours 

per year (𝐻) and the total product mass flow as shown in Eq. (9). 

𝑃𝑆 = 𝐻 ∙ ∑ 𝑃𝑝
𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ∙𝑝 ∑ ∑ 𝑚𝑘,𝑗

𝑃
𝑘𝑗   (9) 

To decrease the number of variables, parameters, and constraints and to relax the model 

a block integration is generated in this study. With this approach, the whole process of 

each technology would be considered as one integrated option with one data set. The 
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block integration parameters are calculated in advance based on the parameters for each 

sub process within the option, ensuring that there is only one series of data for each option. 

3. Results 

Three types of microalgae (Chlorella Vulgaris  (B. Wang et al., 2008), Nannochloropsis 

spp. (X. Wang et al., 2017), and Haematococcus Pluvialis (Ba et al., 2016) ) are 

considered in this study. These algae grow in influent wastewater in the Netherlands. The 

required carbon for growing is prepared with pure carbon dioxide gas. Since daylight 

hours are another factor that influences algae growth, an average of 12hr sunlight per day 

is assumed in this study. 

The Advanced Interactive Multidimensional Modelling (AIMMS) software version 

4.82.3.29 64-bit is used to set up a mixed-integer non-linear programming (MINLP) 

model. It is solved with the Outer Approximation Algorithm (AOA) that consists of the 

CONOPT 4.1 solver for the non-linear part and the CPLEX 20.1 solver for a mixed-

integer part. Furthermore, the model contains 6710 variables, 23 integers variables, and 

6161 constraints.   

For the Chlorella Vulgaris and the Nannochloropsis spp., the open pond, sedimentation 

and flotation, flocculation, without a dryer, hydrothermal liquefaction, organic solvent 

pigment extraction, N-butanol lipid extraction, lipid production, and anaerobic digestion 

are selected as the most cost-effective pathway (as shown in Figure 1). The optimal 

process pathway for Haematococcus Pluvialis is different only in the dewatering section. 

Centrifugation is chosen for this step in the biorefinery. Based on the productivity and 

cultivation reaction of Haematococcus Pluvialis, the amount of this algae is higher than 

other types, and it is not economically beneficial to use flocculant for separation water 

from them.  

The Haematococcus Pluvialis biorefinery has the highest profit due to the high amount of 

pigments. During one year, 1 Mt of influent wastewater and 2 Mt of carbon dioxide are 

approximately used. 0.7 Kt of pigment and 3 t of Omega-3 can be produced. The daily 

profit margin of Haematococcus Pluvialis biorefinery is 28 and 34 times higher than 

Chlorella Vulgaris and Nannochloropsis spp. biorefineries, respectively.  

The pigment is one of the expensive bioproducts. Depending on pigment composition, its 

price is about 2500-7000 ($/t) (Panis & Carreon, 2016). The amount of pigment that can 

be produced in a Haematococcus Pluvialis biorefinery are 5 and 28 times higher than 

Chlorella Vulgaris biorefinery and Nannochloropsis spp. biorefinery, respectively. The 

annual profits Haematococcus Pluvialis biorefinery for this bioproduct is approximately 

200M$. 

To validate the model, the superstructure is simplified to produce only biodiesel. 

Furthermore, one common microalgae (Chlorella Vulgaris) with 25 % lipid composition 

are studied in this comparison. The results are (an estimated biodiesel price of 5.2 $/L) in 

good agreement with data found in(Davis et al., 2011)who report biodiesel prices of 

2.6$/L, as well as data from (Richardson et al., 2021), who found biodiesel prices of 9.2 

$/L. 

As recycles were not included and an open pond was considered for cultivation, the 

investment costs are relatively low. To separate large amounts of water, 31 % of total 

investment costs are attributed to harvesting and dewatering stages. The cell disruption 

stage is the most expensive part due to disrupting a massive amount of algae (39 % of 
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total investment costs). In addition, the operating costs contribute to approximately 83% 

of the total costs. Utilities are about 50 % of the total operating costs. 

4. Conclusion 

A superstructure of an algae biorefinery is developed to produce added-value products 

from microalgae (Haematococcus Pluvialis, Chlorella Vulgaris, Nannochloropsis spp). 

These superstructures are optimized in the AIMMS to find cost-effective production 

pathways. The optimal pathways consist of an open pond, sedimentation and flotation, 

flocculation/centrifugation, without a dryer, hydrothermal liquefaction, organic solvent 

pigment extraction, N-butanol lipid extraction, lipid production, and anaerobic digestion. 

Types of microalgae have an important role in finding the appropriate technology for the 

dewatering step (flocculation/centrifugation). The profit of Haematococcus Pluvialis 

biorefinery is more than 28 times higher that of the Chlorella Vulgaris biorefinery and 

more than 32 times higher than that of Nannochloropsis spp biorefinery. Haematococcus 

Pluvialis can produce 0.7 Kt of pigment and 3 t of Omega-3 using 1 Mt of influent 

wastewater and 2 Mt of carbon dioxide. 
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1. Introduction 

Biodiesel from palm oil has been promising and continuously supported by the Thai 

government since 2010 as an alternative and sustainable energy. Generally, biodiesel is 

produced from the transesterification of crude palm oil (CPO) or palm stearin with short-

chain alcohol (methanol or ethanol) involving homogeneous catalyst (KOH or NaOH) 

under appropriate conditions and reaction time. However, the use of homogeneous 

catalysts leads to the continuous catalyst consuming reaction thus reducing the catalytic 

efficiency over the reaction period. In addition, it is technically difficult to remove 

unreacted catalyst after the reaction completion and a large amount of wastewater is 

produced to and it needs to be separated and cleaned the products, which increases the 

overall cost of the process. Thus, the biodiesel production cost based on homogeneous 

catalysis, is not yet sufficiently competitive as compared to the cost of diesel production 

from petroleum (Zhang, 2003).  

The development of heterogeneous catalysts is an alternative choice that could eliminate 

the additional operation costs associated with the aforementioned (separation and 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50047-6 

KF/(Ca/Al) catalyst developed in laboratory robust activity and stable than a conventional 
CaO catalyst for biodiesel production from refined palm oil. The highest conversion yield 
of 94.7% wt. obtained by employing KF/(Ca/Al) catalyst (10% wt.) in a 350 ml batch 
reactor. It was operated at methanol to oil molar ratio of 15:1, reaction temperature of

°
oil transesterification reaction (WongSree et al., 2016). In order to produce biodiesel in 
industrial scale and intensification, in this work, approximately 1,050 kg hr-1 of biodiesel 
production rate was considerably basis, and the transesterification reaction was occurred 
in the reactive distillation (RD) column as shown in Figure 1. The thermophysical 
parameters of all the components were computed and validated with available 
experimental data with reasonable accuracy. In addition, the kinetic model obtained from 
laboratory experiment was also used and modelled in the RD column simulation. The 
optimal conditions, with a maximum conversion of approximately 90% wt., are a 
methanol to oil molar ratio of 5:1, a reflux ratio of 0.2, a total number of trays of 15, a 
reboiler heat duty 20 kW, and the number of reactive trays should not be less than 7. 

65 C,  and reaction time of  3 hrs, the pseudo-first-order rate law could be used to fit the palm 



 C. Treeyawetchakul

purification step). Furthermore, biodiesel production with heterogeneous catalysts does 

not produce soap as a by-product. Therefore, the study of heterogeneous catalysts has 

been focused on by several researchers since it leads to a possibility of another pathway 

for biodiesel production development. 

WongSree et al. (2016) developed and studied the effects of KF/(Ca/Al) on biodiesel 

production from purified palm oil compared with CaO and KF/CaO catalysts on the 

laboratory scale. They concluded that the highest oil conversion of 94.7% could be 

achieved by employing the KF/(Ca/Al) catalyst in a batch reactor together with methanol 

to oil molar ratio 15:1, catalyst loading of 10 wt.%, reaction temperatures of 65 oC, and 

reaction time 3 hours. They also proposed that the kinetic model of the transesterification 

could be explained and fitted with the experiments by the pseudo-first order model as 

shown in Eq. (1) 

6 58.47
5.1 10 exp
  

=    
  

A
A

dc
c

dt RT
          (1) 

Where  Ac  is concentration of tripalmitin  

The aim of this study is in preliminary proposing and applying an RD column simulation 

of the biodiesel production process via Aspen Plus® as a simulator by using the 

aforementioned laboratory results as basic parameters for industrial production.   

2. Description of RD and methodology 

For simulation experiments, based on 1,000 kghr-1 biodiesel production rates, the CPO 

was fed approximately 1,167 kghr-1 at 25 oC, 1 atm. The RD column for the biodiesel 

production process consists of three sections: rectification, reaction, and stripping as 

shown in Fig. 1. In the reaction stage, the transesterification reaction scheme is: 

51 98 6 3 17 34 2 3 8 33+ → +C H O CH OH C H O C H O          (2) 

57 104 6 3 19 36 2 3 8 33C H O CH OH C H O C H O+ → +          (3) 

In the reaction zone, the pseudo-first order kinetic model as shown in eq.1 was used in 

the simulation. For this case, methanol excess was released at the top of the RD column 

while both glycerol and methyl palmitate were separated via decanter. 

The Aspen Plus® tool was used for simulation of this process. Regarding the CPO as raw 

material which is high content of triolein (C57H104O6) and tripalmitin (C51H98O6), then 

both of them were represented in this simulation. Accordingly, methyl oleate (C19H36O2) 

and methyl palmitate (C17H34O2) were taken as the FAME products and their properties 

were available in the library of the Aspen tool. Due to the highly polar components 

presenting in this process such as methanol and glycerol, the UNIF-DMD and NRTL 

thermodynamic/activity model were used to estimate the activity coefficients in a liquid 

phase. 

The important parameters such as molar reflux ratio, column pressure, number of the 

column tray, and so on would be adjusted in order to get highest biodiesel yield and lowest 

RD column duty. 
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Figure 1. Biodiesel production with RD column 

 

3. Results and Discussion 
3.1 Effects of operating pressure and molar reflux ratio 

At steady-state simulation, with the 15-theoretical stage of the RD column, the effect of 
column pressure and molar reflux ratio were shown in Fig. 2 and 3, respectively. Fig. 2 
shows that the reboiler duty of the RD column continuously increases with operating 
pressure increasing and it is the same trend for molar reflux ratio (Fig. 3). It can also be 
interpreted that the column pressure 0.2 bar and molar reflux ratio 0.5 are optimal 
operating conditions.  

 
Figure 2. Effect of column pressure on the column duty 
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Figure 3. Effect of molar reflux ratio on the column duty 

 

Besides the duty of the column considering, the proper pressure reduction (0.2 bar) was 
also kept the reboiler temperature lower than 200 oC and condenser temperature higher 
than 20 oC as shown in Fig. 4. Furthermore, at this pressure, the reaction zone temperature 
was kept between 60-80 oC which corresponds to the experiments (WongSree et al., 
2016). However, the temperature at the 12th tray (methanol feed tray) is rapidly decrease 
which is different from Karacan and F Karacanb (2014) have reported. This can be 
explained that this study used methanol fed at the room temperature (25 oC) without 
preheater. 

 

 

Figure 4. Temperature profiles of the RD column for the operating pressure 0.2 bar 

 

 

Reaction zone 
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3.2 Effects of methanol to oil molar ratio as feed 

At the preliminary optimal conditions of RD column (reflux ratio =3.0, operating pressure 

0.2 bar, methanol to oil ratio = 5:1, number of total stages = 15, and number of the reaction 

stage = 8), the biodiesel product (mixture of methyl oleate and methyl palmitate) was 

achieved at the flow rate of 1,050 kghr-1 with the highest yield at 0.903 as shown in Fig. 

5. It can be seen that the yield of biodiesel production from the simulation was closed to 

the experiments. 

 

Figure 5. Liquid compositions profiles of the RD column at optimal condition 

(methanol to oil molar ratio = 5:1) 

 

 

Figure 6. Liquid compositions profiles of the RD column at optimal condition 

(methanol to oil molar ratio = 15:1) 
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Fig.5 shows the concentration distribution of all chemicals within RD column. The figure 

shows that, with the oil feed stage is 2, the rapid reaction rates are occurring on stages 3-

4 while the transesterification is occurred continuously between stage 4 and stage 11. 

Then the biodiesel produced along with glycerol flowed downward to the bottom of the 

RD column. 

However, at the same biodiesel yield, in an experiment, the methanol to oil molar ratio 

should be 15:1, while this ratio from the simulation is only 5:1. This can be explained that 

when a large amount of methanol is fed at stage 12, it would be affecting on the bottom 

temperature to be lower than 150 oC (approximately 80-100 oC). Compared with methanol 

boiling point temperature (approximately 65 oC), some methanol might not be vaporized 

to the above stage and poured and mixed with biodiesel product. This phenomenon was 

proved in Fig. 6. 

4. Conclusions 

In this paper, the biodiesel production catalysed by KF(Al/CO) was simulated by Aspen 

Plus with the biodiesel production rate at 1,050 kghr-1. The simulation results show that, 

the biodiesel yields is approximately 90.3% which closed to the experimental result at 

optimal conditions (molar reflux ratio =3.0, operating pressure 0.2 bar, methanol to oil 

ratio = 5:1, number of total stages = 15, and number of the reaction stage = 8), and the 

RD column heat duty is around 50 kW. Then these preliminary results show that this 

modified process can be interesting to both of energy saving concern. 
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Abstract 

In process synthesis, generative approaches are algorithmic strategies able to produce 

new structures, which differs from conventional optimization techniques consisting in 

choosing among a predetermined set of structures (e.g. heuristics and superstructure 

optimization). The development of these approaches has only intensified recently with 

the rise of both evolutionary computation and machine learning techniques. This paper 

aims at introducing some recent experiments, categorized into reward-driven and data-

driven algorithms; and discussing key aspects of the generative steps such as: required 

initial database, process data representation, generative model architecture, reward 

design, optimization strategy and post-processing for the engineer. 

Keywords: Process Synthesis; Machine Learning; Artificial Intelligence; Evolutionary 

Programming; Optimization 

1. Introduction 

The essence of process synthesis implies to propose a process structure, i.e. a set of unit 

operations for the transformation of mass and energy interconnected in a network 

(process flowsheet), associated with degrees of freedom such as equipment design and 

operating conditions. Solutions to solve this problem evolved from heuristics and 

expertise, through iterations with process simulators and experimental works, towards 

mathematical optimization techniques. A common approach consists in optimizing the 

process structure among a postulated set of alternative paths, called superstructure, 

using optimization (Mixed Integer Non-Linear Programming, Generalized Disjunctive 

Programming, etc.) to select the best structures with respect to given objective(s) and 

constraints. These approaches are proving to be very complex to implement in real 

industrial cases and intrinsically introduce an inductive bias due to the restriction to a 

search space limited by the defined superstructure: if the optimal structure is not in the 

defined space, the optimizer cannot find it.  

Recently, generative approaches have used advanced algorithms to propose process 

structures directly from a set of available unit operations. These approaches differ from 

conventional optimization techniques by their capacity to generate new structures, 

instead of choosing among a predetermined set of structures. This paper aims at 

introducing some of those recent experiments, discussing the key aspects of the 

generative steps, and highlighting some remaining challenges.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50048-8 
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2. Recent prospective works on “Generative Approaches” 
The idea of using algorithmic strategies to generate process structures is not new 
(Nishida et al., 1981), but its development has only intensified recently with the rise of 
both evolutionary computation and machine learning techniques (see examples in 
Figure 1). Yet, most of the works on generative approaches remain prospective with 
academic proof-of-concept and/or specific case-studies. We provide here a non-
exhaustive overview of the various techniques proposed to generate process structures 
and highlight their key features. 

 

 

 
Figure 1. Examples of generative approaches to build flowsheets: evolutionary 
programming using mutation operators (top), machine learning using language 
processing (middle), and reinforcement learning using a two-player game (bottom); 
respectively adapted from Neveux (2018), Nabil et al. (2019), and Göttl et al. (2022). 
 

Generative approaches usually rely on a two-level decomposition of the process 
synthesis problem, an upper level for designing the topology (i.e. the process flowsheet) 
and a lower level for evaluating the flowsheet (i.e. optimizing the degrees of freedom 
for a given structure). In this paper, we discuss only the topological problem, i.e. the 
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generation of process structures. The more specific task of generating structures with 

certain desired properties is called targeted process generation; it consists in producing 

flowsheets which will maximize a given fitness function. Some recent contributions in 

the field of process synthesis suggest using artificial intelligence algorithms to generate 

new flowsheets. They could be categorized into: 

 Data-driven algorithms, learning from an initial database of known process 

structures and their performance indicators to generate new structures (see Figure 

1, middle). This category is based on Machine Learning and Deep Learning 

techniques. For instance, Nabil et al. (2019) used a string representation of a 

power cycle and applied Natural Language Processing to generate new structures. 

 Reward-driven algorithms, performing a topological optimization driven by a set 

of objectives and constraints. This category includes Evolutionary algorithms (EA) 

and Reinforcement Learning (RL) models. For instance, EA could apply mutation 

operators to modify a population of process structures (Figure 1, top); operators 

could be elemental such as unit addition, unit removal, stream permutation 

(Neveux, 2018) or hierarchical with function and technology levels (Wang et al., 

2015); while RL techniques (Figure 1, bottom) maximize a reward by sequentially 

modifying the structure of the process. For instance, Göttl et al. (2022) formulated 

the problem as a turn-based two-player game and applied RL for ethyl tert-butil 

ether synthesis. Midgley (2020) used RL with deep neural networks to optimize a 

sequence of reactors and a distillation column train.  

Process design could also benefit from initiatives in other research fields with similar 

data representation and network generation problems. In particular, machine learning 

generative models have obtained significant successes in the field of molecular design 

(Elton et al., 2019), and their approaches could be adapted to processes. 

3. Discussions on generative aspects 

In this section, we formalize the notion of a generative machine learning model and 

study how to apply it to process synthesis, highlighting some key challenges. 

3.1 Generative machine learning models 

Consider a set of observed data 𝒟. We assume that each element in 𝒟 is a sample from 

an underlying -unknown- data distribution 𝑝∗. The goal of a generative machine 

learning model is to learn a parametric approximation 𝑝θ of 𝑝∗, where the model 

distribution 𝑝θ belongs to a model class ℳ = {𝑝θ: θ ∈ Θ}, parameterized by a vector θ 

from the model family Θ. The following optimization problem is thus solved: 

𝑚𝑖𝑛
θ∈Θ

𝑑(𝑝∗, 𝑝θ), with 𝑑(⋅) a distance between probability distributions. Once it is learned, 

one may sample from the model distribution to generate new elements: 𝑥𝑛𝑒𝑤 ∼ 𝑝θ(⋅). 

Hence, one advantage of generative models is that they can produce (infinitely many) 

new samples, extending 𝒟. 

3.2 Application to process synthesis: concept and challenges 

Applied to process synthesis, e.g. in (Nabil et al., 2019), the generative approach starts 

by gathering an initial database of flowsheets, determining the set of unit operations to 

include and their numerical representation. Next, the chosen model architecture is 

optimized to represent the underlying data distribution and maximize a certain fitness 
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function for targeted generation. The outcome is a large pool of flowsheets with good 

properties, to be analysed by the design engineer. We call this approach data-driven. 

Another complementary approach is also emerging, namely a purely reward-driven 

optimization including evolutionary programming (Neveux, 2018) and reinforcement 

learning models (Göttl et al., 2022, Midgley, 2020). In practice, the two approaches can 

be combined to obtain better performances. For instance, reinforcement learning can 

accelerate the convergence of the generative model towards good regions of the search 

space, as in (Olivecrona et al., 2017) for molecules. 

In the sequel, we discuss several practical challenges that need to be addressed in order 

to apply successfully the machine learning approach to process synthesis. 

3.2.1 Initial database 

The first task is to collect data, i.e. a set 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛 , where each process structure xi 

is associated with a label yi, e.g. the economic cost, for a large integer n ~ 106. Whereas 

such datasets already exist for molecule synthesis (Elton et al., 2019), it is not the case 

for processes. We suggest three ways to overcome this issue. Firstly, one can generate 

processes as random coloured graphs - it was shown by Nabil et al. (2019) that starting 

with a small-size set of random layouts could yield promising results by iteratively 

augmenting the training set with the generated data. Secondly, former expert knowledge 

can be exploited by listing every layout included in a given superstructure. The third 

option is to re-use artificial samples generated by another method, e.g. reward-driven 

methods not requiring an initial database (Neveux, 2018). 

Besides, each label yi is not an intrinsic property of the layout xi but depends instead on 

certain boundary conditions. yi is usually found by solving an optimization problem 

whose complexity depends on the physics of the process. This adds to the 

computational burden of generative models, since for each new use case with specific 

boundary conditions, the label yi should be computed again. Hence, a typical dataset of 

processes might be sparse (unlabelled xi's) and noisy or heterogeneous (yi's obtained 

from different optimization algorithms). Finally, one last challenge is to create a dataset 

that is not trivially separable on process structures while covering a large, non-local, 

fraction of the search space. 

3.2.2 Data representation 

Generative approaches rely on an abstract representation of a process structure to be 

processed by a machine learning algorithm, and it remains an open question to 

determine which format is most suitable for process structures. Two formats stand out 

particularly, namely a graph-based or a string-based representation. Both formats are 

bijective and can benefit from advances in artificial intelligence on graphs and Natural 

Language Processing, respectively. For instance, the underlying representation used by 

Neveux (2018) or Göttl et al. (2022) is a graph, whereas Nabil et al. (2019) explicitly 

created a language with an alphabet and syntactic rules to represent a power cycle. 

Language encoding could in the future exploit the more generic SFILES (simplified 

flowsheet-input line-entry system) format (d’Anterroches and Gani, 2005). On the other 

hand, a graph-based representation, typically a directed graph with node colouring, is 

closer to the flowsheets known to chemical engineers and removes the need to learn 

syntactic rules. However, graph generative models have a greater computational cost, 

since graph isomorphism is not solvable in polynomial time. 
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It is interesting to note that generative models for molecules were historically based on 

molecular fingerprints, then strings (so-called SMILES format), and the recent trend is 

to shift towards graph representations (Elton et al., 2019). 

3.2.3 Generative model architecture 

Once the observed data 𝒟 is available and the data representation chosen, it remains to 

determine the architecture of the generative model, i.e. to select a class of models ℳ. 

The deep learning literature is rich of such generative models, which have achieved 

state-of-the-art performances. The three main classes are the recurrent neural networks 

(RNNs), the variational autoencoders (VAEs) and the generative adversarial networks 

(GANs). The field of graph or string generative models is also driven by the application 

to molecule synthesis, which constitutes thus an excellent first set of architectures to 

adapt to process synthesis: see e.g. Elton et al. (2019). 

3.2.4 Reward design 

In targeted process generation, the generative model is biased towards a certain region 

of the search space by a reward function. The reward should be designed carefully to 

obtain processes with desirable features such as (i) diversity and novelty (ii) feasibility 

and respect of the constraints and (iii) high fitness. Diversity and novelty metrics can be 

found in (Elton et al., 2019). The feasibility and constraints are to be defined on a per 

use-case basis. In particular, the performances of generative models might decrease 

whenever the problem is severely constrained, reducing thus the space of valid 

flowsheets. As an example, if 99% product purity is expected, a process reaching 90% 

is not valid yet better than 0%; the reward should therefore encode this designer 

expertise, e.g. by penalizing the objective function (such as an economic cost) by the 

constraints violation (distance from 99% purity). Hence, softening the constraints by 

adding adequate penalty terms in the reward function can facilitate the convergence of 

the model. See also (Göttl et al., 2022) for a discussion on how the reward function 

might impact the diversity of the generated flowsheets. Finally, the ability to evaluate 

the fitness of a flowsheet is a nonlinear optimization problem itself. Since generative 

models are data-intensive and require the evaluation of thousands of flowsheets, 

efficient evaluation is necessary for the application to real use cases. A promising track 

to alleviate this computational cost is to develop surrogate meta-models (Gorissen et al., 

2010) or train a machine learning regression or classification model on separate data 

(Nabil et al., 2019). 

3.2.5 Optimization strategy 

Reward-driven methods are optimization algorithms, as such they are explicitly 

designed for targeted process generation. Machine learning generative models can also 

produce focused libraries of processes, although in a less straightforward manner. For 

instance, transfer learning is used by Nabil et al. (2019) to bias the RNN network 

towards regions of high efficiency and shaft power output for power cycles while 

reinforcement learning is combined with generative models by Olivecrona et al. (2017). 

Whereas the space of process flowsheets is discrete and large, another approach is to 

take advantage of the latent space built by VAEs or GANs, enabling thus the 

optimization in a low-dimensional continuous space (Gómez-Bombarelli et al., 2018).  

In the future, the ease of the optimization process, for instance the sensibility of the 

model to hyperparameter tuning, should also be a criterion for discriminating between 
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models, in particular between string-based and graph-based approaches: robust models 

adaptable to new use cases are preferable for the adoption by the process engineer. 

3.2.6 Post-processing for the engineer 

The finality of generative models is to produce pools of relevant flowsheets to help the 

process engineer at the design stage. Beyond the selection of the best topology achieved 

by the model, it is also beneficial to gain knowledge from the generated data, to extract 

new heuristic rules. For instance, Zhang et al. (2019) propose a methodology to 

compare process flowsheets and detect structural similarities between them, by applying 

text pattern mining algorithms to SFILES. 

4. Conclusive remarks 

Applying generative approaches for the synthesis of process structures is a new field, 

with various recent experiments using evolutionary and machine learning techniques. 

They have been tested on a limited number of use cases, which calls for further 

investigation to evaluate their most appropriate use and define practical tips for the 

process engineer. The search space being virtually infinite, the computation effort could 

become prohibitive. Therefore, there is a need both for results reproducibility and for a 

comprehensive comparison on identical synthesis problems, to assess the potential and 

drawbacks of these techniques; whether they could substitute to established techniques 

(such as heuristics or superstructure optimization) or serve as new search heuristics to 

better define a restricted search space for conventional synthesis approaches.  
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Abstract 

Gas separation accounts for a major production cost in chemical industries. So far, 

pressure swing adsorption (PSA) has been widely used for gas separation applications 

such as H2 purification and CO2 capture. For PSA processes, the adsorption efficiency is 
greatly affected by the selected adsorbent and process operating conditions. Over the 

past decade, porous metal-organic frameworks (MOFs) have been recognized as 

innovative adsorbents featuring tunable properties. For achieving a high separation 

efficiency, a novel two-step integrated MOF and PSA process design approach has been 

recently proposed. In the first step, MOF is represented as a set of geometric and 

chemical descriptors. The MOF descriptors and process operating conditions are 

simultaneously optimized to maximize the process performance. In this work, the 

second step, namely MOF targeting, is presented. The objective is to use various 

computational tools to synthesize hypothetical MOFs and identify potential candidates 

based on the optimized MOF descriptors. The involved computational tools include 

Tobacco for computational MOF synthesis, Poreblazer for geometry characterization, 

and RASPA for rigorous adsorption isotherm simulation.  

Keywords: MOF targeting, Hypothetical MOF, Machine learning, Adsorption process 

design, Gas separation 

1. Introduction  

Pressure swing adsorption (PSA) has been widely used in chemical and energy 

industries for gas separation. It exploits different gas affinities on solid adsorbents at 

different pressures to achieve the separation. Currently, multiple types of porous 

materials are used as adsorbents such as metal-organic framework (MOF), zeolite, and 

activated carbon. Among them, MOFs are formed via the self-assembly of various 

molecular building blocks (i.e., metal nodes and organic linkers) in different topologies. 

Due to the large variety of building blocks, a near-infinite design space exists for MOFs 

(Yao et al. 2021). In addition, MOFs have many superior properties such as high 

porosity, tunable pore geometry, and functional pore surface. Therefore, MOFs have a 
great potential to enhance process efficiency in adsorption-based gas separation (Wang 

et al. 2020). 

When MOFs are used for adsorption-based gas separation, four alternative mechanisms 

exist: equilibrium separation, kinetic separation, molecular sieving, and gate-opening 

separation. Among these, equilibrium separation is the most common method, which is 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50049-X 
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based on the difference in gas equilibrium loadings. So far, numerous MOFs with 
diverse isotherm characteristics have been synthesized in the laboratory by varying 
MOF chemistry and structure (e.g., pore geometry and topology). Unfortunately, this 
experimental trial-and-error approach is time-consuming and inefficient. Importantly, 
many MOFs cannot lead to good process performance (Burns et al. 2020). It is well-
known that adsorbents ultimately serve a specific adsorption process. In this case, the 
design of a MOF for use in PSA processes is indeed a multiscale design problem that 
incorporates the inter-linked material, phase, and process levels. Variations of materials 
and process operating conditions affect the adsorption behavior and thus jointly decide 
the process performance. With this in mind, a computational approach is desired to 
expedite the identification of promising MOF adsorbents that can best serve the PSA 
process. 

Recently, focusing on the equilibrium separation, our group has proposed a novel two-
step integrated MOF and PSA process design framework to tackle the above challenges 
(Zhang et al. 2021). As shown in Figure 1, it consists of two steps: descriptor 
optimization and MOF targeting. Due to the large number of MOF building blocks, it is 
difficult to build mathematical models to predict adsorption isotherms directly from 
building blocks. Therefore, in the published first step, a MOF is represented by a set of 
chemical and geometry descriptors. Several data science techniques are utilized to select 
proper descriptors, define a valid design space, and build data-driven models for the 
prediction of adsorption isotherms. This enables an explicit formulation of the 
integrated MOF and PSA process design problem, where MOF descriptors and process 
operating conditions are simultaneously optimized to maximize the process 
performance. In the present work, the second step namely MOF targeting is addressed. 
We will show how the optimal results obtained in Step 1 can be used to guide the 
discovery of high-performance MOFs. Same as the first step, this second step is 
demonstrated on the separation of propene (PE) and propane (PA), which is currently 
achieved with energy-intensive cryogenic distillation. Clearly, an optimal design of 
MOF and PSA process is of great importance for energy saving. The paper is organized 
as follows. First, the specific workflow of the MOF targeting step is introduced, 
followed by the introduction of MOF decomposition and building block construction. 
Afterwards, the workflow will be applied to identify the optimal MOFs for the PE/PA 
separation. 

 
Figure 1. General methodology for integrated MOF and PSA process design 
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2. Workflow of Descriptor-based MOF Targeting  

Figure 2 shows the explicit workflow of the descriptor-based MOF targeting. First, 

hypothetical MOF candidates are generated by retrieving existing MOF database and 

computational MOF synthesis via building blocks (BBs). The computational MOF 

synthesis is performed using genetic algorithm (GA) that continuously generates 

potential combinations of BBs. The BB combinations are sent to Tobacco that can 

validate MOF structural feasibility (e.g., connection feasibility, size feasibility, bond 

feasibility, etc.) based on certain construction rules (Colón et al. 2017). In this case, the 

computationally feasible MOFs can be obtained. For each MOF candidate generated, its 
key descriptors (i.e., 9 geometry and 10 chemical descriptors pre-specified in Step 1) are 

calculated using Poreblazer and RDKit. Afterwards, the feasibility of calculated 

descriptors are verified, including bound feasibility, design space feasibility, and tailor-

made feasibility criteria (see Section 3). For those MOFs whose descriptors are 

reasonable, rigorous Grand Canonical Monte Carlo (GCMC) simulation is performed to 

obtain the single-component adsorption isotherms for both PA and PE. Again, these 

isotherms are verified via the above feasibility criteria. If feasible, the MOFs are used 

for final PSA process optimization. This can enable the generation of high-performance 

MOFs and better adsorption process. In the following context, the screening of MOFs 

from a known database is first demonstrated for defining the benchmark process. Then, 

the construction of MOF BBs are introduced, followed by the computational synthesis 

of new advanced MOFs.  

 

Figure 2. Workflow of descriptor-based MOF targeting 
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3. Descriptor-based MOF Screening 

In Step 1, 471 different MOFs are already selected from the CoRE MOF database where 

stable and synthesizable MOFs with available atomic coordinates are collected. These 

471 MOFs include considerable diversity of chemistry, geometry, and topology. Here, 

to demonstrate the above workflow, the potential MOFs are first screened out from the 

471 MOFs for obtaining a benchmark for subsequent comparison. Before this, two 

feasibility criteria are established in advance for enhancing screening efficiency. First, 

based on the optimal isotherm obtained in Step 1, 250 pairs of PA and PE isotherms are 

sampled using the Latin hypercube sampling approach. The hypothetical isotherms are 
sent to perform rigorous PSA process optimization. The same as in Step 1, the 

separation specifications are 99% PE with recovery larger than 30%. The result shows 

that 116 sets of isotherms can successfully separate PA and PE. Based on the process 

feasibility data, two criteria can be concluded.  

𝑃𝐴2 ≤ 2.01  (1) 

𝑃𝐸0.01 ≤ 6.5879 × 𝑃𝐸0.01 − 0.3525  (2) 

The first criteria is that the adsorption loading of PA at 2 atm should be less than 2.01 
mol/kg. The second is that the adsorption loading of PA and PE at 1013 Pa should fulfill 

a linear constraint. For each of the 471 MOFs, their isotherms have already been 

estimated using rigorous GCMC simulations and given in our previous publication. 

Based on those isotherms and the two feasibility criteria, it can be found that only 19 

MOFs can be regarded as feasible for PA/PE separation. These 19 MOFs are then sent 

to PSA process optimization and it can be found that only 9 MOFs can meet the 

separation specifications. Table 1 lists the top 5 candidates out of the 471 MOFs. 

Meanwhile, all of the other 452 MOFs are also sent for PSA process optimization. It 

turns out that none of the 452 MOFs can meet the separation requirements. Thus, from 

these results, we can conclude that the two criteria (eqs. 1 and 2) can be used as 

necessary conditions, instead of sufficient conditions, for efficient MOF screening.  
 

Table 1. Feasible and most promising candidates screening from the 471 CoRE MOFs 

MOFs Energy consumption (kWh/kg PE) 

SEYDUW 92 

QUJFUX 98 

XOVVIO 214 

VISTUM 251 

XEHTUB 257 

4. Construction of MOF Building Blocks 

In general, MOF can consist of metal vertexes, organic vertexes and organic linkers. 

The vertexes and linkers are assembled in certain topology. Here, the 471 CoRE MOFs 

are decomposed into the corresponding building blocks. The decomposition procedures 

are as follows. First, the topology of each MOF is characterized using Topospro that is a 

open-source software for topology characterization of periodic structures including 

MOFs. Then, referring to the introduction of topology templates given in the Reticular 

Chemistry Structure Resource (RCSR) database, the types of vertexes and the 

corresponding number of connections are identified. Based on these information, the 
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metal and organic vertexes can be easily identified and the organic linkers between 

vertexes can be obtained. Following these procedures, Figure 3 shows that 81 metal 

vertexes, 85 organic vertexes, 133 organic linkers, and 68 regular topologies can be 

obtained from the 471 CoRE MOFs. The obtained BBs can be subsequently used for 

computational MOF synthesis. Note that a fraction of MOFs possessing irregular 

topology that cannot be described by three letters from the RCSR database are simply 

discarded, since those topologies cannot be used for computational MOF synthesis. 

 

Figure 3. Decomposition of 471 CoRE MOFs into various building blocks 

5. Computational MOF Synthesis and MOF Targeting 

5.1. GA-based MOF synthesis 

For easy implementation, 26 topologies that can usually support the use of only one 

type of metal vertex are selected out of the 68 topologies. Based on these 26 topologies, 

GA is adopted to efficiently generate potential combinations of BBs. Each gene consists 

of 3 integer variables denoting the selection of metal node, organic linker, and topology. 

The produced BB combinations are directly sent to Tobacco to generate hypothetical 

MOFs (Colón et al. 2017). In this process, a series of MOF construction feasibility rules 

will be verified. There are several possible infeasible outcomes such as node 

connections mismatching with topology, bond infeasibility, etc. Only if a BB 

combination successfully pass all the feasibility rules, a hypothetical MOF written in the 

form of crystallographic information framework (.cif) can be obtained. The cif file can 
be directly used to calculate the corresponding chemistry and geometry descriptors and 

perform GCMC simulation using the open-source software RASPA (Dubbeldam et al. 

2016). Clearly, it is computationally demanding to perform GCMC simulation for each 

generated hypothetical MOFs. In this case, the synthesized MOFs can go through the 

screening procedures described above and only the survived MOFs are sent for GCMC 

simulation as shown in Figure 2.  

5.2. Optimal MOF targeting 

After over 10 generations of GA operations, a set of potential MOFs that can survive 

after the feasibility verifications are obtained such as topology acs with 6-connection-

471 CoRE MOFs 81 metal nodes

85 organic nodes

133 organic linkers

68 topology

MOF decomposition 

into building blocks
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based two-Zn metal vertex and bromobenzene organic linker and topology rob with 6-

connection-based two-Ag metal vertex and benzene organic linker.  

6. Conclusions 

As a continuation, the present work elaborates the second step of our previous proposed 

integrated MOF and PSA process design framework. The objective is to use 

computational tools to generate optimal MOFs based on the optimized MOF descriptors 

obtained from the first step (Zhang et al. 2021). To achieve this, a detailed descriptor-

based MOF targeting workflow is invented. First, hypothetical MOF candidates can be 

either retrieved from known MOF databases or synthesized computationally via 
building blocks. According to the optimal descriptor values, a set of MOF building 

blocks are selected and defined in ToBaCCo. From the building blocks, a series of 

hypothetical MOF candidates with detailed chemical and structural information can be 

generated. With this information, their descriptors can be computed and used to predict 

the adsorption isotherms via the machine learning models developed in the first step. 

Then, the isotherms go through a preliminary screening step where improper isotherms 

and the corresponding MOFs are discarded. Finally, the remaining candidates can be 

sent for rigorous GCMC simulation to obtain adsorption isotherms, which are 

subsequently used in the process evaluation in order to find the real optimal MOFs. As 

demonstrated by the PA/PE separation example, hypothetical MOFs with a great 

potential of leading to better process performance can be computationally synthesized. 
The largest novelty of the present work is the use of multiscale modeling approach to 

integrate the variations of MOF chemistry and structure into P/VSA process design. 

This provides a reliable and efficient way for computational adsorbent design to 

maximize the practical adsorption process performance. 
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Abstract

Heat integration studies are commonly performed in the wider chemical industry to iden-
tify current energy utilization and detect potential improvements with respect to energy
efficiency. In this regard, there are several established methodologies, such as: Pinch
analysis, Mathematical Programming (MP) and Hybrid methods. In pinch analysis, the
objective is to remove cross pinch heat transfer and configure appropriate utilities, based
on a minimum approach temperature ∆Tmin. The Minimum Energy Required (MER) for
the network can then be calculated. However, a drawback is that the user must specify
the changes of the HEN to achieve MER, which may not be the best economical solution.
In MP the latter problem can be expressed as an optimization problem. However, due to
the complexity of HEN in the industry, pinch analysis is typically the preferred method
(Sreepathi and Rangaiah 2014). A similarity for all 3 retrofit solutions, are the challenges
regarding data collection and the associated uncertainty. To accommodate for this, we
present a methodology that involves an iterative application of a process simulator with
plant data (to match the heat flows) and the uncertainty of the pinch point(s).
The pinch analysis was constrained to 1 reforming section and 3 hydrofining sections. Av-
erage temperature, pressure, volume flow rate and assay of the heavy feeds and residues
were taken over a month. One month was selected, when the refinery had been cleaned
and flowrates were in the normal ranges of operation. After balancing mass and energy
based on the SRK EOS, enthalpies were segmented and exported into UniSim Exchang-
erNet. Based on a minimum approach temperature of 20◦C, the cold pinch temperature
was found to be 127.5◦C and the hot pinch temperature was 147.5◦C, with a total of 9MW
cross pinch. A feasible retrofit solution could not be achieved for the heat exchanger with
the highest cross pinch of 2.88 MW. Nonetheless, a retrofit solution was possible for the
heat exchanger with the second-highest cross pinch at 1.16MW. However, the payback
time exceeded the specified requirement, which made the retrofit economically infeasible.
Nevertheless, the uncertainty analysis showed that 2 possible pinch points existed. The
uncertainty of the pinch point would change the retrofit considerably and therefore also
the economical potential of the retrofit.

Keywords: Pinch analysis, Retrofit, HEN, Process simulation, Oil refinery.

http://dx.doi.org/10.1016/B978-0-323-85159-6.50050-6 



N. N. Sørensen et al.

1. Introduction

In 2017 approximately 19% of energy consumed in the EU industrial sector, was by crude
oil refining (European Energy Agency 2015, Bourgeois et al. 2012). The potential to in-
crease energy efficiency and decrease CO2 emissions in the downstream process, is there-
fore substantial. One way to optimize energy efficiency, is to increase heat recovery in the
HEN. Several established methodology exists to achieve MER for an existing HEN, such
as: Pinch analysis, mathematical programming (MP) and hybrid methods (Kemp 2006).
MP is the ideal solution, as MER is achieved by optimizing capital cost and ∆Tmin. The
drawback is the implementation of MP, due to constraints and complexity in an industrial
HEN. Pinch analysis is a proven method to reach MER, in an industrial HEN, due to its
simplicity. However, in pinch analysis, the user has to suggest the best option to achieve
MER, in contrast to MP.

Figure 1: Scope of the retrofit, which includes 3 hydrofining sections and 1 reforming
section.

To increase heat recovery and therefore decrease fuel consumption, a retrofit is investigated
of a heat exchanger network in Denmark’s largest oil refinery, located in Kalundborg. The
retrofit will be based on simple pinch analysis, due to the scale of the HEN, which includes
1 reforming section and 3 hydrofining sections (see figure 1).

2. Methodology

The novelty of this study is the clear methodology of using pinch analysis for an industrial
retrofit. In studies on industrially HEN retrofits such as: (Alhajri et al. 2021) and (Joe and
Rabiu 2013) no emphasis was on: Data extraction, balancing mass, balancing energy and
the uncertainty of the pinch point. Real process data has to be balanced by mass and energy
due to a combination of sensor calibration errors and taking averages of process data.
Process fluctuations have to be accounted for, as it will affect the pinch point and therefore
the economical feasibility of the retrofit. Furthermore, in retrofit studies, the estimation of
capital cost is usually only based on the HE. However, pipping and instrumentation can be
more expensive than the HE, which will increase the payback time considerably.
To accommodate this, we present a systematical approach (see figure 2), to analyze and
suggest a retrofit, of the HEN.
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Figure 2: The overall method used for analyzing and suggesting a retrofit, based on pinch
analysis.

The first step is to determine, the time interval of data extraction. In general, the time inter-
val for the data extraction, is a trade-off between difficulty in balancing mass/energy and
gathering enough data to reflect the uncertainty of the system. To easier balance mass and
energy, time interval can be chosen, when key streams are in normal operation. For this
HEN, process values were extracted based on 1-month of averages process values, such
as: Assay, temperature, pressure, densities and volumetric flow-rate, where major heavy
streams were in normal operation. Whereas, data extraction for the uncertainty analysis
was based on daily averages values, which meant it was easier to balance mass and energy
in contrast to the base case.
In general, for the petroleum industry, it is well known that cubic equations of state can be
used as a valid thermodynamic model, as the majority of components are simple hydro-
carbons. The Soave-Kwong equation of state (SRK), was therefore the chosen thermody-
namic model for all conducted simulations in PRO II.
The properties of the stream in the 4 sections were acquired by modelling all unit opera-
tions of the block in PRO II. Where the unit operations included: Distillation’s columns,
flash drums, heat exchangers, pumps, compressors, and valves.
The composition of the effluent of reactors, for the HF sections, was estimated by using an
assay of the remanence. The saturation of olefins could somehow be accounted for, by as-
suming that most of the product would end up as fuelgas in the stripper. As the volumetric
flowrate of fuelgas was known and the molecular weight was expected to be in the range
of 25-35g/mol, then the amount and composition of product could be fitted by iterating.
The effluent composition of the reactor in the reforming section was estimated by using
GC measurements.
In each section the inlet and outlet massflow, based on averages PV were balanced. Next,
all HE was integrated by balancing energy, by using a temperature correction term. When
balancing the first HE in the cascade, 4 streams can be corrected. The temperature effluent
will then be cascaded to the next HE, which means that the inlet temperature of that HE is
fixed. The cascade then continues until all HE’s are balanced.
Enthalpy and temperature of cold and heat stream of the respective HE’s were then ex-
tracted from PRO II, by using zone analysis to account for the nonlinearity. The H-T
segments were then inserted into UniSim ExchangerNet. ∆Tmin of 20◦C was then cho-
sen as the minimum approach temperature, as this was the minimum LMTD in the HEN.
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Furthermore, a ∆Tmin= 20◦C is typically applied, when implementing a retrofit in the
petrochemical industry (March 1998).
The cross pinch heat transfer of each HE, were then calculated and removed based on
the methodology of Li and Chang 2010. However, inlet and outlet temperatures were not
available for HE in series. To account for the cross-pinch heat transfer for multiple HE
in series, rigorous HE was implemented in PRO II by inserting the properties of the shell
and tube heat exchanger. The rigorous HE in PRO II uses the well-known design equa-
tion, where PRO II can predict the heat transfer coefficient U, correction factor F and the
pressure drop. The duty for each HE was then normalized in relative to the total duty, by
adjusting the fouling factor.

3. Results

3.1. Removing cross pinch heat transfer

In table 1 one can see that if MER is achieved, one can achieve 9.58MW heat recovery.

Table 1: MER at ∆T=20◦C

Network [MW] Target [MW] % Deviation
Qhot 24.61 15.03 163.7
Qcold 27.64 18.07 153
Qrec 59.58 69.16 86

However, one can see in table 2, that the cross-pinch heat transfer is unfortunately dis-
tributed on many HE. The highest cross pinch is 2.88MW for E-808D, 1.16MW for E-851
B and 1.11MW for E-411A. A retrofit for E-808D was then investigated.

Table 2: Cross pinch at ∆Tmin=20◦C.

Section 800 850 400 300 800 400 300 300 300 850 800 850 300
HE E808D E851B E411A E306 E802C E414 E301F E301C E307 E855A E808B E856 E302
Cross pinch [MW] 2.88 1.16 1.11 0.95 0.7 -0.387 0.326 0.318 0.237 0.219 0.212 0.114 0.141

First, the required duty to heat the cold stream to the cold pinch. However, the only hot
stream below pinch point, that had enough Q, was an air cooler, in the reformate section.
If a HE was to be inserted in 0400 then the compressor would compensate for the expected
significant pressure drop, which would decrease reformate yield. The option to insert a HE
before the air cooler was then discharged.
Another idea was to split the hot streams from several air-coolers. However, the cost of
pipping would be too expensive. A feasible hot stream could not be found from a utility
stream, so the stream would be needed from another HE. However, due to the relatively
high duty required, several splits would be required, which would be expensive, due to the
price of pipping. A feasible hot stream could not be found, to heat the cold stream to the
cold pinch temperature.
A retrofit solution was not found for E-808D. However, a retrofit was proposed for E-
851B, which has the second-highest cross pinch (see table 2). Two options were proposed
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to remove the cross pinch. Both options would heat the cold pinch by using air coolers.
However, from experience the refinery wanted at least 1.5MW of cross-pinch, due to a
specified payback time, for the retrofit to be economically feasible. The ∆Tmin was then
decreased to see if the cross pinch for the 3 mentioned HE would increase, but the increase
of cross pinch was not significant. As a result, an economically feasible retrofit solution
could not be obtained, due to a combination of cost of pipping and the only HE with a
cross pinch of 1.5 MW was E-808D.

3.2. Uncertainty analysis

The 2 retrofit solution, analyzed in UniSim ExchangerNet was based on average PV’s,
taken over a month, which resulted in a pinch temperature of 137.5◦C. The composite
curves were rather parallel to each other, in which a specific pinch point was not well-
defined. Rather, than a pinch point a ”pinch region” exists, in a range of 110-220◦C. To
evaluate the uncertainty of the pinch point, MATLAB was used to see the effect of daily
averages mass and temperature fluctuations, considering 614 days. Iterating over 614 days,
by using the same methodology as described in figure 1, resulted in figure 3a and figure
3b.

(a) Dashed white lines is the clean HEN, solid
white line mean fouled HEN and black solid
lines pinch over 614 days.

(b) Histogram evlauted over of 614 days.

Figure 3: Uncertainty analysis of pinch point at ∆Tmin=20◦C.

The uncertainty analysis confirms the pinch region as seen in figure 3. However, as seen
in 3b it seems that 2-pinch point exists – a high pinch with a mean of 214◦C and low pinch
temperature with a mean of 126.5 ◦C. Thermodynamically, it is possible to have multiple
pinch points, where the same methodology apply for identifying and removing cross heat
transfer. Furthermore, in figure 3b one can see that the higher pinch-point is more fre-
quent and less dispersed than the lower pinch point. In terms of numerical values, the low
pinch is in a range of 120-131◦C and the high pinch temperature in a range of 213-219◦C.
The combination of higher frequency and lower uncertainly makes the higher pinch in,
relative to the lower-pinch, more significant in terms of calculating the cross-heat transfer.
However, even-though all streams were segmented by making polynomial fits, several as-
sumptions were made, in the uncertain analysis. i.e., the pressure and composition were
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assumed to be the same as the PRO II simulation. However, there will be pressure changes
and the composition of: Treatgas, HVN/HVBN, reformate, VBGO and KERO will change
over time. These changes will i.e. influence the volatility for the flash, distillation units
and the T-H curves. In contrast to a well-defined pinch point, then it is in this HEN, im-
portant to decrease the uncertainty of parameter estimation, as the pinch point(s) in this
HEN, is very sensitive to the changes in heat flow, as seen in figure 3a. Ideally, the next
step is to synchronize the PRO II simulation, with i.e., MATLAB or Python, to reduce
the uncertainly/assumption of the input parameters. Furthermore, the cross heat transfer
would be calculated again, based the on the 2 pinch point, by using the methodology from
Li and Chang 2010.

4. Conclusions

In this study, it has been shown how mass and temperature fluctuation effect the pinch
point and therefore the economic feasibility of an industrial retrofit. When considering the
base case of averages process values, a pinch temperature of 137.5◦C, was found. The
base case network hot utility was 24.61MW, which was 163% above target. The network
cold utility was found to be 27.64MW, which was 153% above target. To reach MER with
a corresponding 59.58MW of heat recovery. The heat recovery would have to be increased
with 9.56MW. However, an economically feasible retrofit could not be found, for the HE
with the largest cross pinch of 2.88MW. Two retrofit solution could be found for the HE
with the second-highest cross pinch of 1.16 MW. However, the relatively low cross pinch
meant that the proposed retrofit would exceed the specified payback time. However, when
using process values over 614 days, 2 pinch temperatures were found. One temperature
with a mean of 126.5 ◦C and a pinch at a mean of 214◦C, which frequency was significant
higher than the pinch at 126.5◦C. The amount of cross pinch heat transfer would then
be different from the base case, in which the same methodology (Li and Chang 2010)
can be applied to suggest a retrofit, when dealing with 2 pinch points. Furthermore, to
improve the uncertainty analysis, one could combine MATLAB and PRO II to use the
properties generated from PRO II and simulate daily averages values and thereby get a
better estimation of the ”true” pinch point(s) in the HEN.
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Abstract 

To help slow climate change, international efforts have begun to mandate the phase-out 
of high global warming potential (GWP) hydrofluorocarbons (HFCs) throughout the next 
decade. Most HFC refrigerant mixtures form azeotropes, complicating separation into the 
individual HFC components for reuse and recycling. In this paper, we design and analyze 
ionic liquid (IL)-enabled extractive distillation processes for ternary HFC separations 
using AspenPlus. Specifically, we design processes to separate three commercially 
important HFC refrigerant mixtures (R-404A, R-407C, and R-410A) into high purity 
HFC streams. We find added value of the separation of R-410A of 0.58 $/kg with current 
market conditions, specifically laboratory-scale IL manufacturing costs (1000 $/kg of IL) 
and a low-price differential of 1.00 $/kg between raw materials and separated products. 
If the IL purchase cost decreases 90 % due to mass production, consistent with prior 
adoption of ILs for niche separations, the added value increases to 0.76 $/kg. Moreover, 
under proposed reductions in HFC manufacturing, the price of recovered products may 
dramatically increase in the future. For example, if the price of R-32 increases by 50 %, 
the added value would reach 3.08 $/kg. In summary, we find IL-based recycling of HFCs 
is economically viable based on simple technoeconomic analysis. Moreover, this paper 
reports capital and operation cost curves and a general analysis framework to analyze 
evolving market conditions. 

Keywords: Extractive Distillation; Azeotrope; Ionic Liquid; Modeling; Economic 
Analysis. 

1. Introduction 

Thousands of tons of HFC refrigerant mixtures, commonly used in industrial, 
commercial, and residential applications, are scheduled for phase-out worldwide under 
the 2016 Kigali amendment to the Montreal Protocol, the European Union F-Gas 
regulations (2015), and the American Innovation and Manufacturing (AIM) Act of 2020. 
The latter directs EPA to phase down production and consumption of HFCs in the US by 
85 percent over the next 15 years. Common HFC mixtures such as R-410A (50 % R-32, 
50 % R-125), R-404A (44 % R-125, 4 % R-134a, 52 % R-143a), and R-407C (23 % R-
32, 25 % R-125, 52 % R-134a) are targeted for phase-out because of their high global 
warming potential (GWP): R-410A with 2088 GWP, R-404A with 3922 GWP, and R-
407C with 2107 GWP, where CO2 has a GWP of 1 by definition. However, R-32 and 
other HFCs have a low GWP and could be reused after a global phase-out. R-134a is used 
in R-450A, offering similar performance but with a lower GWP (547) (Honeywell, 2021). 
Unfortunately, there is no means to easily separate HFC mixtures due to their azeotropic 
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or near azeotropic nature. Without a new economically viable separation process, the 
phase-out will require all HFCs to be collected and incinerated. 

Extractive distillation, the most common method for separating azeotropic or close-
boiling mixtures, is a promising approach to separate HFC mixtures. Moreover, tailored 
IL solvents can enable extractive distillation of near-azeotropic HFC mixtures. In 2003, 
Lei et al. first proposed extractive distillation with ILs as entrainers, and Lei et al. (2005) 
discussed the use of ILs in extractive distillation in detail. ILs have exhibited high 
capacity as entrainers to separate azeotropic or close-boiling mixtures (Pereiro et al., 
2012). ILs can be recycled in separation processes, reducing the material demands and 
improving the economics (Zhao et al., 2005, Zhao et al., 2017). Shiflett and Yokozeki 
(2006) proposed extractive distillation to separate fluorinated refrigerant mixtures using 
ILs. 

2. Methods 

2.1. HFC Separation Process Development and Modeling  

In this work, we design three extractive distillation processes to separate three ternary 
azeotrope mixtures, R-404A, R-407C, and a mixture of R-410A and R-22 using an IL 
entrainer. Table 1 summarizes these three case studies (Finberg and Shiflett 2021). We 
use the Peng-Robison (PENG-ROB) equation of state to calculate thermodynamic 
properties. We fit the HFC binary interaction parameters similar to Shiflett and Yokozeki 
(2006, 2007).  

Table 1. Compositions of HFCs mixtures separated and IL used. 

 R-404A R-407C R-410A 

HFC mol/mol mol/mol mol/mol 

R-32 0.00 0.23 0.45 

R-125 0.44 0.25 0.45 

R-134a 0.04 0.52 0.00 

R-143a 0.52 0.00 0.00 

R-22 0.00 0.00 0.10 

IL used [emim][Tf2N] [bmim][PF6] [bmim][PF6] 

IL (kg/h) 2000 400 750 

 
Figure 1 shows the process flow diagram for the R-404A case study. The process flow 
diagrams for the other case studies are nearly identical and not shown for brevity. 

2.2. Sensitivity analysis 

We performed single-parameter sensitivity over eight variables. The base case used 20 
theoretical stages, a flowrate of IL of 1000 kg/h, the IL is fed in stage 2, the HFC mixture 
fed at stage 15, the inlet temperature of 25 °C, the pressure of 10 bar, a reboiler 
temperature of 130 °C, and a reboiler ratio of 2.5. We found that the extractive distillation 
column's pressure and reflux ratio are most important to minimize energy consumption 
while obtaining 99.5 mol% purity of all HFC products. Through our sensitivity analysis, 
we look to obtain the desired purity (99.5 mol%) of R-134a in the distillate of the 
extractive distillation in the presence of [emim][Tf2N] with moderate energy 
consumption. We found that it is impossible to reach the required purity without 25 
theoretical stages and a flowrate of IL of 2000 kg/h, even though they significantly 
influence the capital cost. The IL is fed in stage 2, and the HFC mixture is fed in stage 20 
at a temperature of 20 °C. We selected a pressure of 7 bar in the column and a reboiler 
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temperature of 90 °C to ensure the energy consumption was as low as possible while 
reaching the purity target. Finally, following the same analysis, we selected a reflux ratio 
of 3. Aspen equipment sizing tools were used to size the equipment.  

3. Economic Performance Evaluation 

We now analyze the economics of the design HFC separation processes. We evaluate the 
capital cost, shown in Eq. (1), which includes equipment, installation cost, and the price 
of the IL as expressed in units of M$/y.  

We assume a 20-year (N) plant lifetime and a salvage value of 20 % of the cost of the 
plant assets (excluding the IL). We assume 24 hours a day workload for 330 days in a 
year for all calculations. We calculate the annualized capital cost (Canm) using Eq. (2), in 
which CRF is the capital recovery factor, and CNPC is the net present cost estimated in 
AspenPlus. We assume a nominal discount rate (i’) of 8 % and an expected inflation rate 
(f) of 3.5 % to calculate the real discount rate (i). With the assumptions above, we 
calculate a capital recovery factor (CRF) of 0.077 using Eqs. (3) and (4). We estimate 
2,000 kg/h of IL, which corresponds to a column fill of 65 %. We estimate operation costs 
using AspenPlus and the following utility costs: electricity (0.07$/KW), cooling water 
(120 $/MMGAL), and high-pressure steam (8.22 $/Klb). 

𝐶௔௡௠ = (𝐶𝑅𝐹)(𝐶ே௉஼) (2) 

𝐶𝑅𝐹 =
𝑖(1 + 𝑖)ே

(1 + 𝑖)ே − 1
   (3) 

𝑖 =
𝑖ᇱ − 𝑓

1 + 𝑓
  (4) 

Capital cost ቆ
M$

y
ቇ = Equipment cost ቆ

M$

y
ቇ +  Installation cost ቆ

M$

y
ቇ + IL price ቆ

M$

y
ቇ (1) 

 
Figure 1. Process flow diagram of the developed HFC separation process. 
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As shown in Figure 2, the capital and operating costs ($/kg of HFC feed) of the R-404A, 
R-407C, and R-410A separation increase as we decrease the mixture feed flow rate. We 
observe that the significant increase in the capital cost is due to the amount of IL necessary 
to achieve the 99.5 mol% purity of HFCs desired in the separation. The cost of equipment 
and installation have minor variations as the size of the equipment is nearly minimum or 
standard size. As observed in Figure 2, the capital cost may increase to up to 60 % of the 
total cost. The rise in total capital cost is dependent on the ratio of IL/HFC mixture 
required for each process. 1 % to 2 % of IL degradation per year corresponds to an 
increase of the operating cost of 0.03 $/kg to 0.05 $/kg, respectively. 

Currently, most ILs are only available in high purity for laboratory-scale experiments at 
high prices of $1,000/kg. Historically, after an IL is selected for a commercial application 
and production increases, the price decreases by 90-92 % (Shiflett et al., 2020). In 
anticipation of a similar economy of scale, we consider five IL price scenarios: 1,000 
$/kg, 750 $/kg, 500 $/kg, 250 $/kg, and 100 $/kg. Figure 3 shows the impact of IL price 
on capital costs. Specifically, the capital cost (M$/y) increases linearly with the IL 
flowrate (kg/h) at a given IL price. As expected, changing the IL price changes the slope 
of this relationship. Moreover, the capital cost is extremely sensitive to the IL price. For 
example, at 5000 kg/h IL flowrate, decreasing the IL price from 1000 $/kg (laboratory 
scale specialty chemical) to 100 $/kg (commercial IL) decreases the capital cost from 8 

  
Figure 2. Capital and operating cost of the R-404A, R-407C, and R-410A AspenPlus model. The capital 

cost of the separation process increases rapidly as we increase the inlet flowrate. 

  
Figure 3. Influence of the ionic liquid price in capital cost for the separation of R-404A. 
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M$/y to 1.5 M$/y. We reiterate that previous commercialization of ILs suggests a 90 % 
reduction in IL price is reasonable (Shiflett et al., 2020). 

 

Added value ቆ
$

kg
ቇ =  Sell price low GWP components ቆ

$

kg
ቇ − Cost of recovery HFC mix. ቆ

$

kg
ቇ
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ቇ  

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
େ୭ୱ୲ୱ

 

(5) 

Next, we propose added value, with units $/kg of HFC feed, as a metric to easily compare 
different hypothetical scenarios. Eq. (5) calculates added value from the price differential 
and costs. The selling price of low GWP components is the value of the recycled products, 
and the cost of recovery HFC mixture corresponds to the value of the used HFC 
refrigerant mixtures (half of the cost of production and transportation of the HFC mixture 
used as a base and worst-case scenario). A negative cost of recovery HFC mixture is 
possible with government subsidies incentivizing HFC recycling (instead of illegal 
venting). Figure 2 reports the operating and capital costs ($/kg) as a function of the HFC 
feed rate. Similarly, Figure 3 shows the dependence of capital cost ($/kg) on IL price. 
Because the added value metric represents profit per kilogram of HFC processed, it allows 
quick evaluation of different market scenarios (e.g., HFC and IL prices).  

Using values from these plots, the added value metric can quickly be used to evaluate the 
benefits of new ILs for the separation process. For example, if a new hypothetical IL 
required 20 % less mass than the analyzed ILs, the cost in Figure 3 can be proportionally 
reduced. Likewise, if a new hypothetical IL reduces the separation energy requirement by 
50 %, the operating cost value used in Eq. (5) can be reduced by approximately 50 %. 
This metric gives valuable insights and enables fast “what if” analyses to guide IL and 
process design.  

Under current market conditions, we found that R-410A separation has an added value of 
0.55 to 0.72 $/kg with an IL price of 1000 $/kg and 100 $/kg, respectively. Under a 
futuristic scenario where phase-outs in production doubles the market price for R-32, the 
added value of the separation of R-410A could be as high as 5.60 $/kg to 5.78 $/kg with 
an IL price of 1000 $/kg and 100 $/kg respectively. If the price of R-32 increases by 50 
%, the added value would reach 3.08 $/kg. We found that the price of ILs has the most 
significant impact on the capital cost, and the price differential between the HFC mixture 
and the pure HFC impacts the added value and the payback period.  

4. Conclusions 

In this paper, we show that separating and recycling HFCs with extractive distillation 
utilizing ILs is economically attractive, especially under anticipated future scenarios. It is 
important to note that ILs are viscous, and a rate base model is needed for rigorous design 
and more accurate technoeconomic analyses. This is left as future work. 

The presented results are based on currently available ILs [bmim][PF6] and 
[emim][Tf2N]. However, ILs can be tailored for specific purposes due to the vast diversity 
of anions and cations available. For example, tailored ILs with higher selectivity would 
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reduce the amount of IL required and thus capital costs. Tailoring other properties of the 
ILs, such as the density, viscosity, and thermal capacity could reduce the operating costs 
of the process. 

There are also unexplored opportunities to optimize the extractive distillation process. 
While the one and two-dimensional sensitivity analyses presented here show 25 
theoretical stages and the amount of IL necessary for the separation, rigorous optimization 
may find additional opportunities for improvement by exploiting interactions across 
multiple design decision variables. Moreover, simultaneous process optimization (e.g., 
flowrates, temperatures) and heat integration may further reduce the energy intensity of 
the process by systematically balancing reboiler duty and compression costs (e.g., by 
changing column pressure). This is left as future work. 
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Abstract 

Hybrid distillation/pervaporation processes have the potential to reduce the energy 

consumption and cost of standard distillation for difficult separations such as that of 

azeotropic systems. Current optimization strategies for such hybrid processes either 

considers only a simplified membrane system or requires repeated (sequential) 

optimization for each potential number of membrane stages. This work proposes a 

superstructure optimization strategy for the optimal design of hybrid 

distillation/pervaporation processes, and discusses different solution alternatives for 

how to handle the integer nature of the membrane network, as well as proposes a 

procedure for systematic initialization, simulation, and optimization of the process. The 

strategy is illustrated for an azeotropic separation, demonstrating that the optimal 

design can be obtained in a fraction of the time compared to repeated simulation.  

Keywords: Distillation, Hybrid Distillation, Membrane network, Superstructure, 

Optimization 

1. Introduction 

The optimization of a hybrid separation process is a challenging task due to the highly 

integrated and complex design. Current optimization studies typically simplify the 

membrane system to consider only the membrane area (Singh and Rangaiah, 2019), 

and/or very limited (typically up to 3) number of membrane stages in series (Koch et 

al., 2013). A more holistic superstructure optimization of membrane systems was 

proposed by Marriott and Sorensen (2003), however, the superstructure optimization 

was solved for n superstructure sizes (from one to n membrane stages), then compared. 

This strategy reduces computational burden, but requires some manual effort in recon-

structing the superstructure for each stage addition, so the maximum number of 

membrane stages that can be considered is limited. Moreover, when applying this 

strategy in a hybrid process, which may potentially involve more than one recycle 

between units, the number of iterative procedures increases and becomes challenging.  

Most studies on the optimization of hybrid processes often reported only their main 

membrane equations, the flowsheet of the superstructure, and the optimization method 

used, without clearly describing how to overcome the inevitable numerical/ 

mathematical issues faced during the initialization/convergence of the optimization.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50052-X 
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This work therefore aims to: (1) propose a membrane superstructure and optimization 

strategy which improves the convergence and allows the simultaneous optimization of 

the full membrane system, and (2) apply the full membrane superstructure in a hybrid 

process with recycle streams. 

2. Methodology 

2.1. Membrane System Superstructure 

A lumped hollow fiber pervaporation membrane model is developed in gPROMS 

ProcessBuilder (Process Systems Enterprise, 2020) and the model is validated against 

the work of Tsuyumoto et al. (1997) (not shown). The superstructure of the membrane 

system extends from the work of Marriott and Sorensen (2003). Due to the small scale 

plant considered in this work and the fact that the area needed by the heat exchangers 

are very small for cases with and without recycle streams (outlet streams from a 

membrane stage recycled back to the previous heater/membrane stage), the capital 

costs of the heat exchangers are almost constant. Therefore, recycle streams are not 

considered in this work because a plant with a large recycle flow but with few heaters 

supplying all the heat would be unrealistic (Marriott and Sorensen, 2003). The 

membrane stages are connected sequentially in series and in each membrane stage the 

feed is evenly distributed between the number of membrane modules in parallel (Figure 

1), thus greatly reducing the computational burden as only one mathematical model is 

needed to describe the membrane module (i.e., the membrane stage feed stream is 

divided by the number of membrane modules in parallel) (Marriott and Sorensen, 

2003). A membrane stage feed heater can potentially be added to improve the 

separation performance. Thus, the optimization task of this membrane system includes 

the number of membrane stages connected in series (n), the number of membrane 

modules connected in parallel in a membrane stage (in), the existence of the membrane 

Figure 1: Flowsheet of the hybrid distillation/pervaporation process with a membrane system 

further purifying the distillate. The membrane system depicts the first and last (𝑛 = 𝑛𝑚𝑎𝑥 ) 

membrane stages connected in series and the i membrane modules connected in parallel within 

each membrane stage. 
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stage feed heater (HEX), and if in existence also the heater temperature, totalling 4n 

optimization variables.  

2.2. Membrane System Superstructure Simultaneous Optimization Strategy 

The membrane superstructure is a composite model of nmax membrane stages, where 

nmax should be set as a parameter which cannot be varied as this might introduce 

convergence difficulties when optimizing nmax. There is a lack of open literature 

discussing the optimization of a membrane network, thus this work introduces three 

modelling/optimization strategies which can overcome the computational difficulties. 

The first strategy is to eliminate the non-existing membrane stages from the solution. 

This can be done by setting, for example, the membrane fluxes of each component or 

membrane length/area in the non-existing membrane stages to zero. This strategy is 

straight-forward and only requires the related variables to be set to zero (directly or via 

a binary variable). The simulation results for the outlet of the membrane section can 

still be collected at the nmax stage even if nmax is not the optimal number of stages. 

However, this strategy has difficulties at the initialization stage and often fails to 

converge into a feasible solution. The membrane model involves differential equations, 

and a good set of initial values is essential to ensure convergence to a solution. 

However, it is impossible to provide a different set of initial values for each structure 

(i.e. for each potential number of membrane stages) in the superstructure, and instead, a 

single set of initial values is typically provided for the whole superstructure. The 

existence of zeros for non-existing stages may therefore cause large difference between 

the initial and final values, and will cause numerical errors such as division by zero. 

To avoid using zeros, the non-existing membranes can instead be given a feasible non-

zero pseudo-feed. This can be achieved by providing the feed to the non-existing 

membranes a user-defined pseudo-feed or a copy of the feed from the last-existing 

membrane. The simulation results can still be taken from the nmax membrane stage. This 

strategy does improve the convergence, but it requires a number of additional “if-else” 

statements which increases the computational costs and difficulties. 

The last strategy is to assume that all membrane stages exist, regardless of the 

optimization result for the number of membrane stages, but the results are collected at 

the optimized number of membrane stages. This strategy can avoid using zeros, and has 

fewer “if-else” statements and smoother simulations. However, although not 

encountered in this work, theoretically, this strategy may face a situation where the 

feed streams to the non-existing membrane stages are overly pure if the product purity 

constraint is high, and may therefore cause mass balance convergence issues. The 

chance of this issue happening can be minimized by forcing the number of membrane 

modules in parallel in the non-existing membrane stages to one, thus reducing the 

separation performance of the non-existing membrane stages (which are after all just 

theoretical rather than actual). From the authors’ experience, this strategy does have the 

best convergence performance and is therefore recommended and applied in this work.   
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2.3. Hybrid Process Simulation and Optimization 

In this work, the hybrid process shown in Figure 1 is considered following the 

procedure shown in Figure 2. The membrane system (including heaters) is user-defined 

using the recommended modelling structure discussed in Section 2.2., whilst the other 

unit models required are modeled within gPROMS ProcessBuilder. 

As the hybrid distillation/pervaporation process is often used for handling separation 

tasks involving azeotropes, rough mass balance calculations around each unit (without 

considering the recycle stream) can initially be performed by assuming that the column 

distillate is at the azeotropic point and all product streams are at the required purity. 

Then, the initial design of the distillation column can be obtained using a proper 

shortcut method. The membrane system can initially be set with a large number of 

membranes stages and membrane modules in parallel, so that the product purities are 

achieved (some trial-and-errors may be needed). Next, the hybrid process is 

constructed including the recycle stream from the membrane unit back to the column, 

then simulated with the simulation results obtained from the individual unit simulations 

as initial values and providing initial values for the recycle stream. If the simulation 

failed, the values of the key design variables (e.g., reflux ratio, distillate, and number of 

membrane stages) should be varied and the simulation rerun. Else, the optimization of 

the whole process can be carried out. In this work, a user-defined genetic algorithm 

(GA) coded in MATLAB is used, and the details of the settings and strategies applied 

can be found in our previous study (Chia et al., 2021). The tool gO:MATLAB (Process 

Systems Enterprise, 2019) is used for data transfer between gPROMS ProcessBuilder 

and MATLAB. An improvement is made by using parallel computing (18 workers) in 

MATLAB to speed up the optimization. 

Figure 2: Procedure followed in this work for the initialization, simulation, and optimization of 

the hybrid process. 
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3. Case Study 

The separation of an azeotropic ethanol-water mixture is used as a case study, with 

UNIQUAC as the thermodynamic model. The feed is provided at 200 kmol h−1 with 10 

mol% ethanol, and is a saturated liquid at 1 bar. The optimization task is to minimize 

the total annualized cost (TAC), where the TAC calculations can be found in Sinnott 

and Towler (2020) and Seider et al. (2016). To examine the performance and reliability 

of the proposed optimization strategy, the hybrid process is also optimized using the 

strategy by Marriott and Sorensen (2003) (where optimization is repeated at each 

number of membrane stages and the design with minimum TAC is selected as the 

optimal design) and is termed as “repeated optimization” in this work. For the 

optimization task, the existence of the heater before each membrane stage is optimized 

but the temperature is fixed at 343 K which is the maximum tested temperature in the 

experiment (Tsuyumoto et al., 1997). 

The main optimization results are shown in Table 1. Due to space limitation, the 

existence of the heater before each membrane stage is not shown but all the 

optimization results show that heaters should exist between n = 2 to n = 5 where 

possible. The first stage does not require a heater as a subcooled condenser is used in 

the distillation column to cool the distillate to 343 K. From stage six onwards 

Items 
Repeated Optimization This 

Work n = 4 n = 5 n = 6 n = 7 n = 8 

Column 

Total stages 23 18 20 20 19 19 

Feed stages (Main/Recycle) 19/19 14/17 17/17 15/17 15/17 15/18 

Distillate (kmol h−1) 22.84 23.05 22.72 23.24 23.04 23.23 

Molar reflux ratio 1.17 1.21 1.3 1.15 1.23 1.14 

Membrane Network * 

No. membrane stages 4 5 6 7 8 6 

No. modules in stage 1 13 8 6 8 6 5 

No. modules in stage 2 18 12 7 7 2 9 

No. modules in stage 3 18 10 11 8 10 9 

No. modules in stage 4 19 15 17 17 10 20 

No. modules in stage 5 - 18 3 9 12 9 

No. modules in stage 6 - - 17 5 9 12 

No. modules in stage 7 - - - 10 6 - 

No. modules in stage 8 - - - - 8 - 

Total no. modules 68 63 61 64 63 64 

Total membrane area (m2) 408 378 366 384 378 384 

Fitness and Time 

TAC (M $ y−1) 0.7669 0.7573 0.7588 0.7609 0.7605 0.7577 

CPU time (s) † 802 1193 875 1164 1370 1233 

Total CPU time (s) 5404 1233 

* The existence of membrane stage feed heater is also optimized but not shown here 

† Parallel computing used to speed up optimization, number of workers/cores = 18 

Table 1: Main optimization results obtained from repeated optimization and optimization 

recommended in this work, where n is the number of membrane stages. 𝑛 = 1,2,3 are also 

optimized, but cannot achieve the product specifications, so the results are not shown here. 

(Purity specifications in all product streams are 99 mol %.)  
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(optimization with 𝑛 =  6,7,8), the temperature drop across the membrane stages are 

low, thus the feed heaters are not needed. The best design obtained using the repeated 

optimization method is when n = 5 with TAC as 0.7573 M $ y−1. The simultaneous 

optimization strategy recommended in this work gave the optimal structure when n = 6 

with a TAC of 0.7577 M $ y−1, with slightly different column and membrane system 

structures when compared to the repeated optimization, showing that the proposed 

optimization strategy in this work is reliable and accurate. Moreover, the recommended 

optimization strategy is more time efficient by considering the total CPU time for the 

optimization task where the proposed optimization strategy can save 77% time. (This 

time saving is underestimated as the time taken for the optimization for 𝑛 = 1,2,3 

were also performed but not considered as they could not achieve the product purities.) 

4. Conclusions 

This work proposes a superstructure optimization strategy for the optimal design of 

hybrid distillation/pervaporation processes, and discusses different solution alternatives 

for how to handle the integer nature of the membrane network, as well as proposes a 

procedure for systematic initialization, simulation, and optimization of the process. The 

optimization strategy is applied to a case study considering a binary azeotropic 

separation. The optimization results obtained are compared to solution by repeated 

optimization (optimize the superstructure at each number of membrane stages). The 

superstructure optimization strategy is found to be superiority in terms of CPU time (at 

least 77% time saving) given its ability to simultaneously optimize the distillation 

column and membrane system superstructures. Theoretically, for membrane systems 

with recycle streams, the same methodology can be applied but some modifications 

(e.g., adding stream selectors) may be required which will increase the computational 

difficulty, and the performance of this methodology will be tested in future work. 
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Abstract 

Currently, the CO2 purification specification for natural gas liquefaction is fixed as 50 

ppm based on the solubility of CO2 in liquid methane. However, for unconventional 

natural gas with high ethane content like shale gas and oilfield associated gas, the CO2 

solubility in these cryogenic fluids may increase considerably due to the azeotropic 

properties of ethane-CO2 mixture. In this study, a novel integrated process is proposed to 

simultaneously realize natural gas liquefaction, ethane recovery and CO2 separation, in 

which high purity methane and ethane products are obtained through a cryogenic 

distillation column and an extractive distillation column. The proposed process with 

refrigeration supplied by a single mixed refrigerant (SMR) cycle is designed, optimized, 

and comprehensively evaluated through performance indicators such as specific energy 

consumption, exergy efficiency, CO2 removal rate as well as ethane recovery rate. Based 

on a thermodynamic analysis of the CH4-CO2-C2H6 ternary mixture, the maximum 

allowable CO2 content in a feed gas with 2 - 20 mol% ethane is 1.8 - 17 mol%, which is 

much larger than 50 ppm. In addition, the recovery rate and purity of the ethane product 

reached 99.5% with a CO2 removal rate larger than 99.3%. The results show that the 

specific power consumption and system exergy efficiency corresponding to the maximum 

allowable CO2 content are around 0.41 kWh/Nm3(NG) and 53.1 - 56.4 %, respectively. 

Keywords: natural gas liquefaction, ethane recovery, CO2 removal, cryogenic 

distillation, extractive distillation 

1. Introduction 

The world energy system is accelerating the transition to a clean and efficient energy 

system, and natural gas will play an important role in this transition process before large-

scale application of renewable energies. In recent years, unconventional natural gas, has 

promoted the rapid growth of world natural gas production. In particular, shale gas has 

successfully transformed the United States from a natural gas importer to an exporter 

(Shcherba et al., 2019). Unlike conventional natural gas, the ethane content of shale gas 

in the US is significantly higher (Kort et al., 2016). As an important raw material for 

ethylene (Yang and You, 2017), the ethane recovery from shale gas can provide additional 

revenue. The recovery of ethane from natural gas usually requires cryogenic distillation, 

and this process consumes a large amount of cold energy. If it can be integrated with other 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50053-1 
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parts in the natural gas chain, for example natural gas liquefaction, considerable 

investment reductions and energy savings can be achieved through integration within the 

process and the energy system (Ansarinasab and Mehrpooya., 2017). For ethane recovery, 

the integration of various natural gas liquefaction processes has been considered in our 

previous studies (He and Lin, 2020), and the results show that when the ethane content in 

the feed gas is 10-40 mol%, the proposed processes realized desirable separation effects, 

with both the purity and recovery rate of ethane reaching 99.5%. Besides, much attention 

has been paid to the integration of natural gas liquefaction and natural gas liquids (NGL) 

recovery. Vatani et al., (2013) also proposed an integrated process system for NGL-LNG 

co-production, and when it is applied to a typical feed gas rich in heavy hydrocarbons (75 

mol% methane and 23 mol% heavy hydrocarbons), the specific power consumption is 

0.414 kWh/kg (LNG).  

In general, natural gas contains a certain amount of CO2 that is causing calorific value 

reduction, equipment corrosion, even blockage in cryogenic conditions (Park et al., 2021). 

Thus, strict standards for carbon content are set for commercial natural gas, which lead 

to the development of carbon removal technologies for natural gas. The widely used 

methods for carbon removal in natural gas include physical absorption, chemical 

absorption, adsorption, cryogenic and membrane technologies (Babar et al., 2019). For 

LNG production, the purification specification of 50 ppm makes most carbon removal 

methods unsuitable, while chemical absorption and cryogenic methods (Baccioli et al., 

2018) stand out. Although cryogenic carbon removal is considered to be environmentally 

friendly, it has not been widely used due to high energy consumption. More importantly, 

the freeze-out problem of CO2 during cryogenic processes brings another challenge. 

However, the disadvantage in energy consumption can be overcome if it can be combined 

with the natural gas liquefaction process (Lin et al., 2018). In addition, because of the 

azeotropic properties of ethane and CO2 (Gugnoni et al., 1974), the problem of blockage 

inside the distillation column due to CO2 freeze-out may also be solved. However, there 

are few reports on the natural gas liquefaction process integrated with cryogenic carbon 

removal, especially by distillation. Focused on natural gas with high ethane content, this 

study proposes a novel single mixed refrigerant (SMR) liquefaction process integrated 

with ethane recovery and carbon removal. The separation of CO2 and ethane is realized 

through cryogenic distillation and extractive distillation.  

2. Process simulation and optimization 

2.1. Process description 

The flow diagram of the entire process is described in Figure 1. Focusing on the 

liquefaction and CO2 removal process, the upstream natural gas processing, such as water 

removal, are excluded in this study and the feed gas (101) is simplified as a mixture of 

methane, ethane and CO2. 

The feed gas (101) first passes through a multi-stage compression unit (C-101, C-102) 

equipped with interstage coolers, and then passes through heat exchangers HEX-101, H-

101, and HEX-102 to be partially condensed. Next, it enters the cryogenic distillation 

column (D-101) to obtain the enriched methane flow (109). After further pressure 

increase by the cryogenic compressor (C-103), it is completely condensed in HEX-102 

and subcooled in HEX-103. Finally, it enters the storage tank (T-101) after throttling. The 

liquid flow from D-101, a mixture of CO2 and C2H6, is first throttled by valve V-201, and 

then provides cooling capacity in heat exchangers H-203 and H-205. Finally, it enters the 
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extractive distillation column (D-102), where C2H6 is produced in liquid form by the 

extractant isobutane, and CO2 gas is obtained at the top of the column. The mixture of 

ethane and isobutane (205) enters the distillation column D-103 to obtain high-purity 

ethane, and the separated isobutane (301) enters D-102 for recycling. High-purity ethane 

(207) is also subject to further condensation, subcooling, throttling and finally storage as 

a liquid product with a pressure slightly above atmospheric. The refrigeration needed in 

heat exchangers and condensers in this process is provided by a standard SMR cycle (the 

black lines in Figure 1). 
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Figure. 1. Diagram of the SMR natural gas liquefaction process integrated with ethane recovery 

and carbon removal by cryogenic distillation. The process units are classified as follows: C: 

compressor, D: distillation column, H: heat exchanger, HEX: multi-stream heat exchanger, P: 

pump, Q: heat flow, S: separator, T: tank, V: valve, W: work; WC: water cooler 

In addition to the cooling demand, the reboilers of D-102 and D-103 in this process 

require heat load with a temperature up to 112°C. Waste heat in the flue gas from the 

combustion-driven compressor unit is integrated in HEX-104 with circulating hot water 

that provides the required heat to the reboilers. 

2.2. Initial settings and assumptions 

The proposed process is modeled in Aspen HYSYS V11 by utilizing the Peng–Robinson 

equation of state to calculate thermodynamic properties of the feed gas and the mixed 

refrigerant. To simply the simulation, some parameters need to be set or assumed as 

presented in Table 1 according to initial conditions, product requirements or industry 

standard. 

Table 1 Initial parameter settings and assumptions (Δp: Pressure drop) 

Initial parameter 

settings 
Value Assumptions Value 

t101 /oC 40 Δp in water coolers /kPa 0 
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p101 /kPa 120 Δp in heat exchangers /kPa 0 

n101 /kmol/h 1000 Δp in separator/mixer /kPa 0 

Products storage 

pressure /kPa 
120 Adiabatic efficiency of compressors 85 % 

CO2 in LNG < 50 ppm Adiabatic efficiency of pump 75 % 

Ethane purity > 99.5 mol% Temperature after water cooling / oC 40 

2.3. Process evaluation and optimization 

In this study, the system evaluation involves the calculation of energy efficiency, carbon 

removal effect, ethane recovery rate, etc. The definition of each performance indicator 

used is shown in Table 2. 

Table 2 Definition of evaluation indexes 

Evaluation index Definition Annotation 

ideal minimum work (Wmin) slmin WWW   
Wl: minimum theoretical 

liquefaction work, kW; 

Ws: minimum theoretical 

separation work, kW; 

WP: power consumption of 

pump, kW; 

WC: total power consumption 

of compressors, kW; 

VM: nominal molar volume, 

Nm3/kmol; 

N: molar flow, kmol/h; 

C: mole fraction 

total power consumption (W) CPW W W+=  

specific power consumption (w) 
CP

NG M

W W
w

N V

+

=
  

exergy efficiency (η) 
W

WW

W

W
η l smin +

==
 

methane loss rate (α) %1001
1C 101,101

1C 109,109 













=

CN

CN
α －

 

CO2 removal rate (β) %100
CO2 101,101

CO2 206,206
=

CN

CN
β

 

ethane recovery rate (γ) %100
C2 101,101

C2 207,207
=

CN

CN
γ

 

In this study, sequential search and a genetic algorithm (GA) are combined to find the 

optimal solution for the parameters that have an influence on the energy consumption of 

the proposed process. The objective function is minimum specific power consumption. 

3. Results and discussion 

3.1. Calculation of the maximum allowable CO2 content 

First, this study analyzes the maximum allowable CO2 content under different ethane 

fractions by comparing the CO2 freeze-out temperature in both gas and liquid phases with 

tray temperature under given operating conditions. To be specific, for a certain ethane 

content, the CO2 fraction in the feed gas is gradually increased, and then the freeze-out 

temperature of CO2 is calculated based on a thermodynamic analysis of the CH4-CO2-

C2H6 ternary mixture. By determining whether the CO2 freeze-out temperature is lower 

than the tray temperatures of the distillation column, the corresponding maximum 

allowable CO2 content without blockage due to freeze-out can be found in Table 3. 

Table 3 Maximum allowable CO2 content under different ethane contents 

Ethane content 0.02 0.05 0.1 0.15 0.2 

Maximum allowable CO2 content 0.018 0.07 0.11 0.14 0.17 

3.2. Process optimization results 

After obtaining the maximum allowable CO2 content, the process is optimized, and the 

results for a typical feed gas (15 mol% C2H6, 14 mol% CO2) are presented in Table 4. 

Table 4 Optimization results 

Stream t (°C) p (Pa) N (kmol/h) Stream t (°C) p (kPa) N (kmol/h) 
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101 40.0 120 1000 302 112.4 2500 247 

105 40.0 3600 1000 303 40.0 2500 247 

108 -72.0 3600 1000 401 34.8 183 2679 

109 -92.0 3550 710 403 40.0 1000 2679 

110 -75.7 4600 710 409 40.0 2688 2679 

111 -95.0 4600 710 410 26.0 2688 2679 

112 -161.3 4600 710 414 -96.0 2688 1485 

113 -159.7 120 710 415 -96.1 183 1485 

201 -2.1 3600 290 420 -160.0 2688 1194 

202 -16.2 2500 290 421 -164.6 183 1194 

203 -14.8 2500 290 426 -45.9 183 290 

204 30.0 2500 290 427 22.0 183 290 

205 54.1 2500 397 428 36.9 183 2389 

206 -12.8 2400 140 501 500.0 120 1505 

207 -0.2 2400 150 502 283.9 120 1505 

209 -89.0 2400 150 601 120.2 200 1150 

210 -88.1 120 150 602 122.0 200 1150 

301 20.0 2500 247 603 120.2 200 1150 

3.3. Process performance 

Table 5 shows the performance indicators of the proposed process under different feed 

gas conditions (the CO2 content is the maximum allowable). It can be seen that the 

proposed process can remove more than 99.3% of the CO2 and recover 99.5% of high-

purity ethane with very little methane loss, which indicates that this carbon removal 

method has obvious advantages over other methods like membrane separation. In 

addition, with increased contents of ethane and CO2, the minimum theoretical work 

gradually decreases, while the actual work consumed by the system rises slightly, which 

leads to a slight decline in the exergy efficiency.  

Table 5 System performance indexes of the optimal state 

Ethan content 0.02 0.05 0.10 0.15 0.20 

Wmin (kW) 5137 5117 5059 4983 4883 

W (kW) 9116 9120 9260 9250 9189 

η 0.5635 0.5611 0.5463 0.5387 0.5314 

w (kWh/Nm3(NG)) 0.4070 0.4071 0.4134 0.4129 0.4102 

α (%) 0.28 0.11 0.41 0.48 0.45 

β (%) 99.31 99.60 99.52 99.44 99.40 

γ (%) 99.50 99.51 99.50 99.50 99.51 

According to previous research results that only consider natural gas liquefaction and 

ethane recovery, the liquefaction power consumption is 0.38 - 0.42 kWh/Nm3(NG) (He 

and Lin, 2020). Therefore, from the energy perspective, the CO2 removal process 

proposed in this study increase the energy consumption of the liquefaction system only 

marginally through reasonable system integration. When adopting the most widely used 

chemical absorption method, although the additional power consumption is  not very 

large, an additional heat load of 2.2 - 2.5 MJ/kg CO2 for solvent regeneration is needed 

(Baccioli et al., 2018). As for equipment required, chemical absorption processes require 

at least two columns, one for the CO2 absorption and the other for the absorbent 

regeneration. If ethane recovery is considered, one more cryogenic distillation column is 

also required. So, the required main equipment for the two methods are similar. Besides, 

the solvent required in this study is hydrocarbons, which can be directly obtained from 

natural gas, while the chemical absorption method requires a large amount of absorbent, 

thereby increasing its cost.  

Design and analysis of a single mixed refrigerant natural gas liquefaction process 

integrated with ethane recovery and carbon removal using cryogenic distillation
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4. Conclusion  

In this study, a novel integrated Single Mixed Refrigerant (SMR) natural gas liquefaction 

process is proposed, which combines cryogenic distillation and extractive distillation to 

realize ethane recovery and CO2 removal. The proposed process is designed and 

optimized using Aspen HYSYS and Matlab. The results show that the process can handle 

a maximum allowable CO2 content of 1.8 - 17 mol% when the ethane fraction is 2 - 20 

mol %. More than 99.3% of the CO2 can be removed with very little methane loss and 

over 99.5% of the ethane can be recovered as a high-purity product. The specific power 

consumption corresponding to the maximum allowable CO2 content is about 0.41 

kWh/Nm3(NG), and the system exergy efficiency is in the range 53.1 - 56.4 %. 
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Abstract 

Due to the complexities arisen from the non-convexities in the mathematical models for 

the HEN synthesis incorporating detailed exchanger design, constant heat transfer 

coefficients and short-cut model for the calculation of exchanger capital cost are used for 

a majority of approaches to obtain a synthetic network topology, which causes inaccurate 

heat transfer areas and trade-offs between energy usage and capital investment. This paper 

presents an enhanced iterative-based decomposition algorithm to achieve realistic HEN 

synthesis with detailed heat exchanger sizing, which targets to overcome the drawbacks 

associated with the use of short-cut heat exchanger model in configuration synthesis, and 

further presents how these exchanger details can be employed to lead the HEN synthesis 

towards generating more cost effective solutions. Fouled individual stream heat transfer 

coefficients and corrected total process cost are updated iteratively between heat 

exchanger design (HED) and HEN superstructure (HENS) to guide HEN topology 

optimization. Global optimization for heat exchanger sizing is achieved in each iteration 

using a global solver BARON/GAMS.34 to overcome instability in the iteration process 

caused by local optimum issues. A case study shows that it can provide a better solution 

than the results in the literature with a lower total annual cost and computational time. 

Keywords: Heat exchanger network synthesis, Detailed heat exchanger sizing, 

Mathematical programming, Optimization, Process synthesis  

1. Introduction 

The increased pressure of reducing carbon emissions in the worldwide chemical 

industries leads to rising awareness for incorporating cost-effective ways of saving 

energy. Heat exchanger networks (HEN) are essential in the process industries, since they 

can improve energy efficiency and reduce “greenhouse” gas emissions by heat integration 

of process heat sources and sinks to reduce utility consumptions. The approaches used in 

HEN synthesis can be categorized into sequential and simultaneous methods. Pinch 

Technology has been developed based on the sequential thermodynamic analysis, but it 

requires experienced designers and may lead to missing promising solutions. 

Mathematical programming has been developed by many researchers for simultaneous 

HEN synthesis. The synthesis problem is commonly formulated as a superstructure, in 

which the HEN topologies, stage temperatures, utilities and heat duties can be optimized 

simultaneously. A widely used stage-wise superstructure (SWS) was proposed by Yee 

and Grossmann (1990). By using SWS, the HEN synthesis is formulated as an MINLP 

problem, targeting the minimum total annual cost. In addition, several other approaches 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50054-3 
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have been reported to solve the HEN synthesis problem by using different algorithms, 

such as stochastic algorithm (Rathjens and Fieg, 2020) and a deterministic approach 

(Yang et al., 2021).  

Understandably, to achieve industrial applications, practical considerations related to heat 

exchanger details are significant for HEN synthesis, as short-cut heat exchanger 

calculations can lead to impractical design. More recently, simultaneous and iterative-

based decomposition approaches have been developed to enhance the HEN synthesis 

towards realistic design by bringing heat exchanger details in the HEN optimization. Xiao 

et al. (2019) adopted a simultaneous approach based on a hybrid GA/SA algorithm. But 

their implementation coupled with stochastic algorithms inclines to generate a local HEN 

solution as requiring a relatively high utility usage.  

Alternative to the simultaneous optimization, iterative-based decomposition strategies 

deal with detailed heat exchanger design as an individual block to avoid the massive 

nonlinearities in the MINLP HEN superstructure, which can helps to reduce the 

combinational difficulties for a large-scale MINLP problem. Ravagnani and Caballero 

(2007) presented a heuristic decomposition method to update stream heat transfer 

coefficients from heat exchanger design to HEN superstructure. Short et al. (2016) and 

Kazi et al. (2021) proposed a two-step optimization procedure, in which several 

correction factors were introduced to the iterative procedures to correct investments of 

heat exchangers in HENS. But their method brings two certain problems, including (1) 

tricky convergence of the proposed algorithm with many preliminary iterations; (2) 

difficulty to solve large-scale problems. This work addresses the existing problems 

identified from the literature, and proposes a novel iterative-based decomposition 

algorithm that integrates a heat exchanger network superstructure (HENS) (Yang et al., 

2021) and heat exchanger design (Yang et al., 2020).  

2. Mythologies 

2.1. Global optimization for detailed heat exchanger sizing 

In this work, we focus on Shell and Tube Heat Exchangers (STHEs) with plain tubes and 

single segmental baffles. The mathematical optimization model has been proposed in 

previous work (Yang et al., 2021). The geometrical variables include tube pinch Pt, tube 

number Nt, tube length L, tube inside and outside diameters Di, DO , shell inner diameter 

DSI, tube outside bundle diameter 𝐷𝑆𝐵, baffle spacing BS, baffle cut Bc, baffle number Nb, 

the number of tube passes NTP, the number of shell passes NS. Some discrete decisions 

are formulated by generalized disjunction programming, including the selection of tube 

passes, tube sizes, tube angle arrangement. These geometries are optimized for their 

impacts on heat transfer coefficients, pressure drops and heat transfer area, which is 

guided by the constraints associated with Tubular Exchanger Manufactures Association 

(TEMA) standards. The objective function is to minimize the total exchanger cost.  

Notably, global optimization plays an important role in the iterative method. Local 

optimum for individual heat exchanger design could mislead HEN synthesis solutions 

and cause convergence issues in the iterative algorithm. A case study (Yang et al., 2020) 

is tested in this work to investigate the need of global optimization. Fig.1 shows the result 

comparison of using the MINLP local solver DICOPT and global solver BARON, by 

GAMS, with 38.5 % of total exchanger cost savings from the global optimization and 

acceptable CPU time of 292 s. Consequently, the application of global optimization in 
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HED can lead to the cost of exchanger always being minimized and promoting the 

iterative process to reach convergence rapidly because of consistent corrections. 

 

F igure 1.  Comparison of problem-solving process betw een D ICO PT and B ARO N  

2.2. H EN  superstructure optimiz ation 

The mathematical model for HEN topology optimization is based on the well-known 

stage-wise superstructure (SWS) proposed by Yee and Grossmann (1990), and stages are 

introduced, in which all possible matches between hot streams and cold streams are 

optimized simultaneously. By adopting the enhanced deterministic-based approach 

proposed in the earlier work (Yang et al., 2021), a cost effective solution can be targeted 

with low computational time. The iso-thermal mixing assumed in the original SWS 

method is removed, and additional constraints are employed to model non-isothermal 

mixing. This proposed model is formulated as a non-convex MINLP problem that is 

solved by the global solver BARON/GAMS.  

2.3. Iterative algorithm  

The proposed algorithm adopts a modification of the heuristic-based decomposition 

approach proposed by Ravagnani and Caballero (2007), which integrates heat exchanger 

design model (Section 2.1) for detailed exchanger geometries, heat transfer coefficients, 

pressure drops and cost details, and the HEN superstructure approach (Section 2.2) for 

optimal HEN configurations, heat duty for each exchanger, inlet and outlet temperatures 

of each exchanger and split ratios for mass flow rate calculation. 

In this work, a correction factor for total process cost (FTPC) is introduced to correct the 

deviation of total process cost derived by multiple shell passes, LMTD correction factor 

(FT), geometries, tube and shell side pressure drops. Furthermore, convergence criteria 

are introduced to select optimal results, including the percentage differences of stream 

fouled stream heat transfer coefficient (ReHTC ) and total process cost (ReTPC) between 

that are used in HENS and obtained by HED at an individual iteration. ReHTC  and ReTPC 

are employed to reflect the stability of the iteration process. They are able to indicate how 

the corrections work in the iterative procedures and guide to generate realistic solutions, 

which is more accurate to represent the level of convergence. The tolerances of both 

ReHTC and ReTPC can be specified, for which 5% for each individual iteration seems to be 
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reasonable in our test cases. Fig.2 shows the scheme of this approach, including seven 

steps, as described: 

Step-1: Define process parameters and constant heat transfer coefficients in HENS. The 

constant heat transfer coefficients can be supplied by the program or generally assumed 

at a range from 0.5 kW/m2℃ to 1 kW/m2℃. Next, generate an initial HEN configuration 

considering stream splitting.  

Step-2: According to heat duty allocations and temperatures from the initial HEN 

configuration, optimize each heat exchanger design by solving the MINLP HED model.  

Step-3: By using HED, calculate the fouled HTC of each stream, using an average value 

of fouled tube side (shell side) HTC h𝑇𝐹 (h𝑆𝐹) from exchangers that are installed for an 

individual stream. Meanwhile, calculate the correction factor for total annual process cost 

by FTPC= TPCHE/TPCHEN. 
Step-4: Update these calculated fouled HTC and FTPC  in HENS. Solve the HENS to 

generate optimal HEN configuration. In this step, the maximum acceptable computational 

time could be specified in HENS.  

Step-5: Use MINLP HED mode to optimize each heat exchanger and calculate relatively 

errors ReHTC and ReTPC. Meanwhile, calculate the total annual cost TACHE of the HEN 

with detailed heat exchanger design. 

Step-6: Check if the relatively error ReHTC, ReTPC  are lower than the tolerance. If yes, go 

to Step-7. Otherwise, go to Step-3. 

Step-7: Check if the TACHE is higher than the current one. If yes, stop and output the 

current HEN as the optimal result. Otherwise, replace the previous HEN result and return 

to Step 3. 

 

F igure 2.  Iterative decomposition algorithm 
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3. Case study 

This case study is taken from the literature (Ravagnani and Caballero, 2007; Xiao et al., 

2019; Short et al., 2016; Kazi et al., 2021). It was solved on a computer resource Intel ® 

Core™, I7-8700 CPU, 3.20 GHz with 16 GB RAM, 6 cores, 12 processors. Global solver 

BARON in GAMS.34 was applied. Constant heat transfer coefficients of 0.888 kW/m2℃ 

are assumed for the initial synthesis. 

At the initial design, the practical consideration of multiple shells and pump operating 

cost associated with detailed HED model leads to the total process cost (TPC) to be much 

higher than that from the HENS design with constant heat transfer coefficients. Large 

stream ReHTC  mean that the assumed heat transfer coefficients need to be corrected. 

Iteratively, ReHTC  reduces gradually from iteration-1 to iteration-4, when it is less than 

the specified tolerance of 5 %. FTPC is first calculated at the iteration-1, as 2.829, then 

updated from iteration-2. From that point, the deviation of TPC between HED and HENS 

is decreased promptly under an allowed ReTPC (within 5 %). The final optimal TPC-HED 

is 2.985 times the initial TPC-HENS with assumed coefficients. Using the proposed 

approach, the best solution was found at iteration-4 with 5760 s CPU time, which brings 

77% of computational time saving compared with that demanded by Kazi et al. (2021).  

Fig.3 illustrates the optimal HEN configuration of the case study. The comparison of 

results is presented in Table 1. Compared with the best solution so far (Kazi et al., 2021), 

the proposed approach led a lower TAC with 3,620,095 $/y. The TAC saving is not 

significant, because the cost is dominated by energy cost (Total operating cost/TAC > 

0.95). But for the total process cost, 26.5 % of TPC is achieved, because considering the 

trade-off between area cost and pumps cost in heat exchanger optimization, the better 

utilization efficiency of exchanger geometries that are guided by the proposed global 

optimization, generates 58.4 % of total process pump cost saving even using the similar 

total process area.  

 

Figure 3.  Optimal HEN solution of Example 

A new decomposition approach for synthesis of heat exchanger network 
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Table 1: Results comparison 

 Short et al.  Xiao et al.  Kazi et al.  This work 

Hot utility usage (kW) 64,187 61,063 55,156 55,156 

Cold utility usage (kW) 40,299 37,175 31,267 31,267 

Total utility cost ($/y) 4,091,975 3,886,803 3,496,972 3,496,972 

Total process area (m2) 5451 10754 12,151 12,187 

The number of exchangers 22 18 38 35 

Process capital cost ($/y) 44,998 45,747 99,705 94,993 

Process pump cost ($/y) 46,099 6907 67,692 28,129 

Total process cost ($/y) 91,097 52,654 167,397 123,123 

Total annual cost ($/y) 4,183,072 3,939,457 3,664,369 3,620,095 

4. Conclusions 

This work proposed an iterative approach for the heat exchanger network synthesis with 

detailed heat exchanger sizing. Corrected stream heat transfer coefficients and process 

investment were determined by global optimization of STHE-HED through an iterative 

procedure. The proposed method shows better performance than the existing approaches, 

with 1.2 % savings of total annual cost (TAC), 58.4 % savings of pump cost and 26.5 % 

savings of total process cost. This methodology offered a time-efficient way towards a 

cost effective and practical HEN design with quick convergence, further improving the 

feasibility for solving industrial-scale problems. 

References 

M.A.S.S. Ravagnani, J.A. Caballero, Optimal heat exchanger network synthesis with the detailed 

heat transfer equipment design, Computers & Chemical Engineering 31 (2007) 1432-1448. 

M. Rathjens, G. Fieg, A novel hybrid strategy for cost-optimal heat exchanger network synthesis 

suited for large-scale problems, Applied Thermal Engineering 167 (2020) 114771. 

M. Short, A.J. Isafiade, D.M. Fraser, Z. Kravanja, Synthesis of heat exchanger networks using 

mathematical programming and heuristics in a two-step optimisation procedure with detailed 

exchanger design, Chemical Engineering Science 144 (2016) 372-385. 

S.R. Kazi, M. Short, A.J. Isafiade, L.T. Biegler, Heat exchanger network synthesis with detailed 

exchanger designs—2. Hybrid optimization strategy for synthesis of heat exchanger networks, 

AIChE Journal 67 (2021) e17057. 

T.F. Yee, I.E. Grossmann, Simultaneous optimization models for heat integration—II. Heat 

exchanger network synthesis, Computers & Chemical Engineering 14 (1990) 1165-1184. 

W. Xiao, K. Wang, X. Jiang, X. Li, X. Wu, Z. Hao, G. He, Simultaneous optimization strategies 

for heat exchanger network synthesis and detailed shell-and-tube heat-exchanger design 

involving phase changes using GA/SA, Energy 183 (2019) 1166-1177.  

Z. Yang, Y. Ma, N. Zhang, R. Smith, Design optimization of shell and tube heat exchangers sizing 

with heat transfer enhancement, Computers & Chemical Engineering 137 (2020) 106821. 

Z. Yang, N. Zhang, R. Smith, Enhanced deterministic approach for heat exchanger network 

synthesis, Computer Aided Chemical Engineering, (2021), vol. 50, pp. 833-838. Elsevier. 

 

330



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

A mathematical approach for the synthesis of a 
wastewater treatment plant using the concept of 
circular economy 
Jo Yee Hoa, Wai Teng Teea, Yoke Kin Wana*  
a Department of Chemical and Environmental Engineering, University of Nottingham 
Malaysia, Broga Road, 43500 Semenyih, Selangor, Malaysia. 

yokekin.wan@nottingham.edu.my 

Abstract 
Huge generation of waste from industrial manufacturing processes has become a concern 
to many countries especially in the world with finite resources. Among these wastes, 
wastewater generation is one of the biggest issues faced by most industrial processes as 
the treatment of these wastewaters requires different treatment stages. Consequently, 
improper treatment and direct discharge of wastewater often occurs which had 
contaminated the world’s waterways. Therefore, stricter environmental discharge 
regulations had been enforced by local government authorities. This becomes a challenge 
for new manufacturing plants in designing their wastewater treatment process to comply 
with the government regulations set while reducing environmental impacts. This paper 
presents the preliminary evaluation of a model-based decision making on wastewater 
treatment technologies selection based on the concept of circular economy. To prolong 
the natural water cycle, treated wastewater were recycled back to the manufacturing 
process which reduces freshwater consumption. A case study on semiconductor 
manufacturing process and its wastewater treatment plant is solved in this work. Based 
on the results, the synthesis of the wastewater treatment plant incorporating circular 
economy has obtained 55.83% circular economy efficiency of water being recycled back 
to the semiconductor manufacturing process. 
 
Keywords: Wastewater treatment process, Circular Economy, Mathematical model. 

1. Introduction 

Circular economy (CE) is a well-established concept in encouraging sustainable 
development initiatives. The CE mainly focuses on a perfectly balanced operation by 
promoting and utilizing renewable energy resources such as biomass, water, and solar. It 
replaces the 'end-of-life' concept by restoration and turns the goods and services into 
alternative resources with minimum waste leakage and toxic chemicals. A circular 
economy-orientated business model prioritizes reusing, refurbishing, remanufacturing, 
recycling, and repairing the waste creation after the consumption stage instead of 
discarding them into landfills (Pires and Martinho, 2019). As a result, these materials and 
products can be productively used repeatedly, thereby increasing and retaining the value 
of the products.  In this respect, this research aims to develop a preliminary decision-
making tool integrating with the concept of circular economy to prolong and sustain the 
natural water cycle. Unlike linear manufacturing process, a transition towards a circular 
economy model will maximise the circularity of water in the system which reduces the 
discharge of wastewater while minimising the use of natural resources. The circularity 
metrics can be categorised into circularity measurement indices and circularity 
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assessment tools. In this work, circularity measurement indices will be applied to directly 
determine the circularity of water for a new manufacturing plant. This way, the selection 
of wastewater treatment technologies will ensure maximise recovery of treated 
wastewater back to the manufacturing process. This work is expected to benefit industry 
sectors, policy makers and local government authorities on future sustainable 
development of new manufacturing sectors.  

2. Problem statement 

Figure 1 illustrates the problem statement of a wastewater treatment process for new 
manufacturing plants. Wastewater feed i ϵ  I from manufacturing process enters a series 
of wastewater treatment process beginning from pre-treatment stage a ϵ A, chemical 
treatment b ϵ B,  biological treatment c ϵ C and tertiary treatment d ϵ D to ensure the 
treated wastewater produced complies with local discharge regulation. In light of this, 
recycle streams are designed in these four treatment stages to maximise water reuse in the 
manufacturing company. Removal of contaminants will generate sludge water during the 
chemical treatment and biological treatment. Eventually, these sludge water will enter 
sludge treatment e ϵ E for wastewater removal before disposal of sludgecake. 

 

Figure 1: Generic superstructure of wastewater treatment process in a new 
manufacturing plant 

3. Circular economy optimization model 
The mathematical model developed in this model consist of flowrate balance, 
contaminant component balance and circular economy index formulations. By applying 
law of conservation of mass, the wastewater treatment flowrate balance and contaminant 
component balance are repetitive in each treatment stage as shown in Figure 1. Hence, 
Eq. (1) to Eq. (6) depicts a more generic set of equations to represent these formulations. 
The generic formulation appoints index t to represent preceding treatment stage, index u 
as current treatment stage, and index v as succeeding treatment stage respectively. For 
example, to formulate the equations for chemical stage b, the current index u will be 
chemical stage b (u = b), the previous index t will be preliminary treatment stage a (t = 
a) and subsequent index v will be biological treatment stage c (v = c). The same 
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formulation method is repeated for other stages. In this model, all the parameters and 
variables are represented as non-Italic and Italic, respectively.  

3.1. Flowrate of wastewater treatment process  

The flowrate balance of treatment stage u is summarised in Eq. (1) to Eq. (3). 

,
1

T
in

u t u
t

F F


                                                                 u               (1) 

in out
u uF F                                                                     u               (2) 

,
,

1

V
out ww recycle

u u v u
v

F F F


                                               u              (3) 

Where, in
uF  (m3/day) and out

uF  (m3/day) represents the inlet and outlet flowrate of 

wastewater at treatment stage u; ,t uF  (m3/day)  and ,u vF  (m3/day)  represents the flowrate 

transferred between the treatment stages; ,ww recycle
uF represents the treated wastewater from 

treatment stage u that can be recycled back to the manufacturing process. 

3.2. Contaminant component balance 

The formulation of generic component balance for contaminant g at treatment stage u 
were summarized as shown in Eqs.(4) to (7). Contaminant g refers to any wastewater 
contaminant characteristics. As shown, the mass of contaminant g entering technology u 

,
in
g uM  (kg/day) depends on the concentration of contaminant g present in the inlet stream 

of technology u, ,
in
g uC (kg/m3). At every stage of the wastewater treatment process, a 

certain mass of contaminant g will be removed from technology u, ,
removed
g uM (kg/day) 

based on the removal efficiency of technology u, ,R g u  (kg contaminant/m3 WWT). The 

mass of contaminant g discharging from technology u, ,
out
g uM  (kg/day) can then be 

calculated. The constraint equation is shown in Eq. (8) where Mstd
g is referring to the 

discharge limit set by government. 

, ,
in in in
g u g u uM C F                                                           g u              (4) 

removed in
, , ,Rg u g u g uM M                                                    g u            (5) 

, , , ,
1

V
in removed
g u g u g u v

v

M M M


                                         g u        (6) 

, , ,
out in removed
g u g u g uM M M                                                g u        (7) 

, Mout std
g u gM                                                                g u        (8) 

3.3. Circular economy efficiency index 

In this research, the concept of circular economy efficiency by Molina-Moreno et al. 
(2017) is adapted to recover treated wastewater back into the manufacturing process. The 
total recycled wastewater, ,total recycleF (m3/day) comes from treated wastewater from pre-
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treatment a, chemical treatment b,  biological treatment c and tertiary treatment d as 
shown in Eq. (9). Water consumption required by the manufacturing process, 

watercomsumptionF (m3/day) can be obtained from the total recycled treated wastewater and 
freshwater feed as illustrated in Eq. (10). To reduce freshwater consumption, circular 
economy index, wwI will be maximised as shown in Eqs. (11) and (12).  

, , , , ,

1 1 1 1

A B C D
total recycle ww recycle ww recycle ww recycle ww recycle

a b c d
a b c d

F F F F F
   

                                      (9) 

watercomsumption ,F total recycle freshwaterF F             (10) 
,

waterconsumption
100%

F

total recycle
ww F

I                                                                                                (11) 

Max wwI               (12) 

4. Case study 
Due to the increasing demand of electronic product and solar energy, the semiconductor 
industry has been expanding and increasing rapidly over the years. The manufacturing 
process of semiconductors involves large quantity of water which causes huge volume of 
wastewater being generated during the process (Huang et al., 2011). Thus, the proposed 
approach is illustrated in this research by using a local semiconductor manufacturing plant 
in Penang, Malaysia to synthesize a WWTP to maximize the recovery of treated 
wastewater from each treatment stage back to the manufacturing process. The wastewater 
discharged from the manufacturing process typically has a higher chemical oxygen 
demand (COD) (Lin and Kiang, 2003). Therefore, Figure 2 illustrates the case study 
superstructure of a wastewater treatment process in a semiconductor manufacturing plant 
consisting of high COD removal treatment technologies.  
 

 

Figure 2: Case study superstructure of wastewater treatment process in a semiconductor 
manufacturing plant 

Based on technologies selected in Figure 2, case study parameters were obtained. The 
average wastewater flowrate generated from the semiconductor manufacturing plant is 
1,012 m3/d. Table 1 summarise the case study wastewater characteristics from the 
partnered semiconductor manufacturing plant along with the local discharge regulation 
Standard A (Department of Environment Malaysia, 2010). Meanwhile, Table 2 and Table 
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3 summarises the COD removal efficiency for the case study wastewater treatment 
technologies.  

Table 1:  Case study wastewater contaminants characteristic and discharged 
regulations by Department of Environment (2013).  

 
 
 
 

Table 2: COD removal efficiency of wastewater treatment technologies (Ho et al., 2019) 

 

Table 3: Dryness of sludge cake produced by each sludge treatment technology (Faure 
Equipments, 2018). 

 
The case study is solved using the mathematical formulation developed in this research 
from Eqs. (1) to (12). These formulations and case study parameters from Table 1 to Table 
3 were coded into a commercial optimization software, LINGO version 19 and solved 
using the global solver in 5 seconds. The specifications of computer used for this case 
study were Intel ® Core ™ i7-6500U with 8 GB RAM and x64-based processor. The 
developed mathematical model is a MINLP model, consisting of 194 variables, 198 
constraints and 11 integers.  
The global optimized results consist of bar screen, DAF, MBBR, integrated multimedia 
filter and carbon filter as well as belt press as shown in Figure 3. These technologies were 
selected due to their high COD removal efficiency to maximize the recovery of treated 
wastewater. Due to the compliance to wastewater discharge regulation Standard A (COD 
level < 80ppm), wastewater that can be recovered back to the manufacturing system must 
pass through all treatment stages to achieve a justifiable COD level (28 ppm). The results 

Concentration (ppm) COD 
Semiconductor wastewater  2,285 

Discharge regulations (Standard A) 80 

 Technologies COD removal efficiency (%) 
Preliminary 
treatment 

Bar Screen 0 
Grit Removal 0 

Chemical 
treatment 

Dissolved air flotation (DAF) 65 

Biological 
treatment 

Conventional aerated filter (CAF) 85 
Moving bed biofilm reactor (MBBR) 90 
Membrane bioreactor (MBR) 90 

Tertiary 
treatment 

Multimedia filter (MMF) 0 
Carbon filter (CF) 50 
Integrated multimedia filter and 
carbon filter (MMF + CF) 

65 

Technologies Dryness (kg SS/m3) 
Filter press  25 
Belt filter press 29.9 
Centrifuge press 28.5 
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have clearly shown that the total flowrate of treated wastewater recycled back is more 
than half of the freshwater input needed for the semiconductor manufacturing process. 
Therefore, this has proven that a circular economy oriented WWTP can achieve 55.58% 
of circular economy efficiency of treated wastewater recycled by minimizing the 
wastewater generation to the environment and reduce the demand of freshwater resources 
as well as lower the cost of freshwater input.  

 

Figure 3: Synthesised WWTP for case study  

5. Conclusions 
Water scarcity is an important issue to be solved due to the rising number of water 
pollution around the world. Due to this reason, this research has incorporated the concept 
of circular economy in synthesizing a WWTP for industrial manufacturing process. This 
prominently reduces the discharge of untreated wastewater to the environment and 
decreases consumption of freshwater using the concept of circular economy. A case study 
on a local semiconductor manufacturing process is solved. By maximizing the circularity 
index of treated wastewater recycling, the results from the case study indicates an 
approximate of 45% reduction of freshwater consumption. As future work, other 
contaminant components such as BOD and TSS levels can be included to further enhance 
WWTP optimization. 
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Abstract 

Over the last decade, Reinforcement Learning (RL) has received significant attention as 

it promises novel and efficient solutions to complex control problems. This work builds 

on model-free RL, namely Q-learning, to determine optimal control policies for 

nonlinear, complex biochemical processes. We propose convex functions instead of deep 

neural networks as state-action value function approximators to reduce computational 

complexity. A convex Q-function surrogate is trained using semidefinite programming. 

The surrogate is then minimized to determine the optimal control action. This results in 

75.3% lower computational time compared with deep Q-networks. By alleviating the 

computational burden of traditional RL approximation functions, this work addresses one 

of the major obstacles for the successful implementation of RL to real-world engineering 

applications. 

Keywords: machine learning; convex Q-learning; semi-definite programming; data-

driven batch optimization; dynamic process control; 

1. Introduction 

Biochemical production generally has a higher cost than its fossil fuel counterpart (del 

Rio-Chanona et al. 2015), for this to be sustainable, production costs must be lowered.  

An important aspect of this, is to lower  cost by leveraging dynamic optimization with 

robust and effective control schemes. Yet, the dynamic optimization of highly nonlinear, 

complex real-world biochemical processes is often hindered by plant-model mismatch 

and computational intractability (del Rio-Chanona et al. 2016). Model-free 

Reinforcement Learning methods do not require an explicit model of the environment. 

They `learn’ environment dynamics through data generated by environment interaction. 

Model-free RL is categorized into value-based, policy-based, and actor-critic 

optimization methods. Value-based methods seek to maximize the sum of future rewards 

for reaching a certain state or for taking a certain action given a state. Policy-based 

methods directly optimize the policy in accordance with the sampled reward values  

(Dong et al. 2020). The combination of the two, actor-critic, learns approximations to 

value functions and policy, overcoming the challenges associated with either method. 

Chemical processes generally provide little data. Since RL algorithms are usually 

regarded as “data-hungry”, these applications call for the most data-efficient algorithms, 

namely value-based methods. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50056-7 
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Pan et al. (2020) as well as Singh and Kodamana (2020) investigate the application of 

state-action value functions within Q-learning (a model-free RL method) to the dynamic 

optimization of batch processes. Pan et al. (2020) illustrate the superior performance of 

Q-learning in navigating process uncertainties through its closed-loop feedback; they 

address the challenge of safe reinforcement learning by proposing a chance-constrained 

Q-Learning algorithm based on deep Q-networks (DQN), extending the work of  

Mowbray et al. (2021a), and Petsagkourakis et al. (2020a). This approach mitigates the 

shortcomings of previously proposed ways of handling operational and safety constraints, 

which reintroduce model dependencies (safety filter or barrier function methods), or 

achieve constraint satisfaction only in expectation (penalty-adjusted rewared functions, 

constrained Markov Decision Processes, policy projection to safety layer) (S. Huh, I, 

Yang, 2020 & J. Cho et al. 2020).  

However, DQNs are time-intensive to train, which severely hinders algorithm efficiency. 

Our work tackles this obstacle by substituting the DQNs with tractable convex functions. 

Finding safe Q-functions that are accurate and tractable is a considerable step towards the 

successful implementation of RL to real-world chemical engineering systems, and this 

work adds to this effort.   

2. Methodology 

At each iteration, data is generated which maps states x∈R^(n_x ),   controls u∈R^(n_u ) 

and the respective time step t to their respective state-action value (Q-value). Q(⋅)  denotes 

the empirical, cumulative cost required after enacting control u in state x, and is given by 

Eq. (1): 

𝑄( 𝒙, 𝒖) =  ∑ 𝑅𝑡

𝑇𝑓

𝑡
                                                                                                  (1) 

where 𝑅𝑡 denotes the cost incurred at time step t. Next, a convex approximation  

𝑄𝑐𝑜𝑛𝑣𝑒𝑥(𝒖, 𝒙;  𝜽) of 𝑄(𝒙, 𝒖) is built using a combination of convex basis functions, such 

as those in Table 1. 

To find the parameters 𝜽 including weigh coefficients of the basis functions a nonlinear 

least squares optimization problem is formulated.  Its objective function (Eq. 2) 

minimizes the error between the estimated and empirical Q-values: 

min
𝜽∈𝚯

∑  (𝑄𝑐𝑜𝑛𝑣𝑒𝑥(𝒖𝑗, 𝒙𝑗; 𝜽) − 𝑄𝑑𝑎𝑡𝑎𝑗
)

2

𝑗

                                                        (2) 

where 𝑗 is the iteration counter over all historic data points; and 𝑄𝑑𝑎𝑡𝑎 is an empirical 

estimate of the state-action value for the pair (𝒙𝑗 , 𝒖𝑗) obtained in training via Monte Carlo 

simulation of the policy (discussed subsequently) under the process model. Taking 

advantage of the structure of the problem, to ensure positive definiteness of the norm 

matrices, and to maximize solution efficiency, a semidefinite program (SDP) is 

formulated (Vandenberghe and Boyd 1996) and solved using the Python-embedded 

modelling language CVXPY (S. Diamond and S. Boyd, 2016). This procedure produces 

the convex approximation 𝑄𝑐𝑜𝑛𝑣𝑒𝑥(𝒖, 𝒙; 𝜽) of 𝑄(𝒙, 𝒖). 

To find the optimal control action at every step, the convex Q-function approximation is 

optimized: 
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𝜋∗(∙) = {
argmin   

𝒖𝒕

𝑄𝑐𝑜𝑛𝑣𝑒𝑥(𝒖𝒕, 𝒙𝒕;  𝜽)

𝒖𝒕 ϵ 𝕌 ⊆ ℝ𝑛𝑢

                                                                    (3) 

 

where subscript 𝑡 denotes the current timestep, 𝒙 and 𝒖 are state and control action at 𝑡 

and 𝕌 ⊆ ℝ𝑛𝑢 defines the constraints on controls. 

Table 1. Convex basis functions 

Function type Expression Domain 

Affine 𝑓1(𝒙) = 𝒂𝑇𝒙 + 𝑏 𝒙 ∈ ℝ𝑛𝑥 , 𝒂 ∈ ℝ𝑛𝑥, 𝑏 ∈ ℝ 

Exponential 𝑓2(𝒙) = 𝑒𝒂𝑇𝒙+𝑏 𝒙 ∈ ℝ𝑛𝑥 , 𝒂 ∈ ℝ𝑛𝑥, 𝑏 ∈ ℝ 

Powers 𝑓3(𝑥𝑖) = 𝑥𝑖
𝛼𝑖  𝛼𝑖 ≥ 1,  𝑥𝑖 ∈ ℝ+, 𝑖 = 1, … , 𝑛𝑥 

Negative entropy 𝑓4(𝑥𝑖) = 𝑥𝑖 log 𝑥𝑖   𝑥𝑖 ∈ ℝ+, 𝑖 = 1, … , 𝑛𝑥 

Negative logarithms 𝑓5(𝑥𝑖) = − log 𝑥𝑖   𝑥𝑖 ∈ ℝ+, 𝑖 = 1, … , 𝑛𝑥 

P-norm 𝑓6(𝒙) = ‖𝒙‖𝑝 𝒙 ∈ ℝ𝑛𝑥 

Quadratic over 

linear 𝑓7(𝑥𝑖 , 𝑦𝑖) =
𝑥𝑖

2

𝑦𝑖

 
 𝑥𝑖 , yi ∈ ℝ+, 𝑖 = 1, … , 𝑛𝑥 

 

Notes on implementation 

The algorithm implementation can be found in Algorithm 1. We distinguish between pre-

training (steps 1-3) and main training (steps 4-11). In pre-training, the Q-function 

approximation is fitted off-line using numerical simulations. This pre-fitted Q-function 

can then be leveraged on-line during main training to improve data collection. Our 
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approach essentially follows the typical RL pipeline, but rather than using DQNs for the 

Q-function approximation, we use convex surrogates that can be trained efficiently on 

fixed points using semidefinite programming, meaning that the controls identified are 

globally optimal given the learning approximation. 

3. Results and Discussion 

The selected case study in this paper simulates the photo-production of phycocyanin 

synthesised by Arthrosporic platensis which is a highly sought-after bioproduct. The 

dynamic system is assumed to take place in a semi-batch fixed volume fed-batch reactor 

and is set up in accordance with E.A. del Rio-Chanona et al. (2015). The two dependant 

states 𝐶𝑥 and 𝐶𝑁 represent Arthrosporic platensis’s biomass concentration in g.L-1 and 

nitrate concentration within the batch in mg.L-1. In order to control the process, light 

intensity 𝐼 in µmol.m-2.s-1 and nitrate inflow rate 𝐹𝑁 in mg.L-1.h-1 can be manipulated 

within their hard path constraints described by the continuous intervals 𝐼 ∈ [0, 300] and 

𝐹𝑁 ∈ [0,7]. To best reflect the process’ economic viability, the objective function 

maximizes the biomass product while minimizing waste product nitrate concentration. It 

also considers initial conditions and the overall cost in form of controls expended: 

 𝑅𝑡𝑓
= −100 ∗ (𝐶𝑋𝑡𝑓

− 𝐶𝑋0) + (𝐶𝑁𝑡𝑓
− 𝐶𝑁0) + ∑ ||𝒖𝒕||

𝑈𝑚𝑎𝑥

2𝑇𝑓

𝑡=0
  (4) 

𝑤𝑖𝑡ℎ 𝒖𝑡 = [𝐼𝑡 , 𝐹𝑁𝑡
]𝑇𝑎𝑛𝑑  𝑈𝑚𝑎𝑥 = [

𝐹𝑁𝑚𝑎𝑥

−2 0

0 𝐼𝑚𝑎𝑥
−2

] 

It is found that the most accurate predictions are given by the convex Q-function 

approximation as presented in Eq. (5). 
 

 𝑄𝑐𝑜𝑛𝑣𝑒𝑥(𝒖𝒕, 𝒙𝒕, 𝜽)

=  𝒙𝑡
𝑇𝑃𝒙𝑡 +  𝒖𝑡

𝑇W𝒖𝑡 +  𝒙𝑡
𝑇𝑅𝒖𝑡  −  𝒙𝑡

𝑇𝑆 log(𝒖𝑡 + 1)
−  𝒖𝑡

𝑇𝑇 log(𝒙𝑡 + 1) +  𝒒𝒙𝑡 + 𝒔 𝒖𝑡 − 𝑟                                       (5) 

 
where 𝒙𝒕∈ℝ3𝑥1, 𝐮𝐭 ∈ ℝ2𝑥1, P ∈ ℝ3𝑥3, W ∈ ℝ2𝑥2, R ∈ ℝ3𝑥2, S ∈ ℝ3𝑥2, T ∈ ℝ2𝑥3, q ∈ 

ℝ1𝑥3, r ∈ ℝ, s ∈ ℝ1𝑥2, 𝜽 = [𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝒒, 𝒔, 𝑟]. 
 
The established Q-function approximation is next optimized to determine the optimal 

control profile resulting in maximum cumulative reward. The progress of convex 

optimization is tracked and can be seen converging after 80 iterations to a stable 

maximum of -173.6 with a standard deviation of 14.8 upon convergence as depicted in 

Figure 1a. The cumulative reward generated by the last training iteration is benchmarked 

against gPROMS’ and Pyomo’s optimization of the same case study, which, in both cases, 

yields -175.17. The slight difference of 0.91 % in cumulative cost (Figure 1a) might be 

attributable to differences in numerical solvers or rounding errors. 

Lastly, the decrease in computational time by substituting the DQN utilized by Pan et al. 

(2020) with a convex Q-function is evaluated. Figure 1b tracks the computational time 

required to train the Q-function approximator versus the number of iterations. It must be 

noted that the DQN-based algorithm’s computational time is cleared of the additional 

time that its explorative steps necessitate to ease plotting and comparing results. 

Consequently, Figure 1b depicts an underestimation of the DQN-based Q-learning’s 

computational time. Still, it can be observed that our proposed algorithm consistently 

outperforms the DQN-based algorithm by a factor of around 3.6 with respect to time. 

When considering explorative behaviour, total computational time of the DQN-based Q-
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learning takes 1680 seconds over the course of conducting 100 training iterations. In 

comparison, convex Q-learning only requires 415.53 seconds for the same amount of 

training, reducing computational time by 75.3%. 

Our results suggest that convex function approximations can estimate Q-functions of 

highly nonlinear bioprocesses over continuous action spaces at similar solution quality to 

conventional dynamic optimization while requiring less computing power than DQN-

based Q-learning.  

Figure 1. a) Training plot. Convergence to optimum of cumulative cost over training 

iterations. b) Training time. Computational time of convex Q-learning vs. DQN based Q-

learning over training iteration 

4. Conclusion and F uture W ork 

In this work, an algorithm that utilizes convex function approximation for the Q-function 

in Q-learning is designed. Its generated results when applied to the photo-production of 

phycocyanin demonstrate high performance in precisely and efficiently approximating 

the Q-function as well as finding an optimal control policy even in a highly nonlinear 

environment with a continuous action space. Special focus is put on the algorithm’s 

overall efficiency as it is benchmarked against a Q-learning algorithm using deep Q-

networks optimized by evolutionary algorithms. This efficiency stems from utilizing 

convex functions as Q-function approximators which can be fitted efficiently on the 

whole replay buffer by using semidefinite programming.  

In future work, the algorithm could be further improved by automating the finding of the 

convex Q-function approximation. Secondly, state constraints could be added to the 

model to better ensure process safety and demonstrate Q-learning’s ability to learn 

uncertain systems as demonstrated by Pan et al. (2020). Thirdly, this algorithm could be 

implemented to conduct bi-level optimization to couple design and control problems or 

to couple scheduling and control problems as demonstrated by Sachio et al. (2021).  
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Abstract

This paper gives a differential dynamic programming (DDP) method for parameter-dependent
system control. Parameter dependent system appears in the chemical and biological pro-
cess engineering field, due to variable feed conditions, plant deterioration, etc. Model
predictive control (MPC) has been applied to it in various forms, but its high online com-
putation requirement makes practical application unrealistic. In contrast, DDP approach
offers a simple state feedback control policy by approximating the value function based
on the assumption of quadratic system dynamics and objectives. To handle parameter-
dependent system without online re-calculation of the value function and control policy,
parameter-dependent DDP (PDDP) method is proposed. PDDP method utilizes hyper-
state, state and parameter augmented vector, and least square (LS) parameter estimator.
Hyper-state enables PDDP method to retain the benefits of DDP method while incorporat-
ing parameter sensitivity information within its dynamics. The method was applied to a
simple discrete-time linear system and outperformed its DDP counterpart.

Keywords: Process dynamic control, Adaptive control, Optimal control, Differential
dynamic programming

1. Introduction

There has been great interest and challenge to control the systems with unknown parame-
ters in chemical and biological process engineering. Common sources of parameter change
include inaccurate estimates of model parameters and unknown aspect of the model itself
- for example, variable feed condition or plant deterioration. Both data-driven models and
first principle models require corrections using online data to resolve model plant mis-
match. The problem of model plant mismatch becomes severe if a model structure is used
more explicitly. This raised a need for an adaptive control method by [Anderson, 1985].

As a remedy, many researchers proposed model predictive control (MPC) approaches, as
well-reviewed by [Heirung et al., 2018]. With MPC, parameter estimates can be easily
applied after exploration, due to its recursive optimization structure. However, this suffers
from a high online computation load when parameter uncertainty is taken into account.

Another approach is approximate dynamic programming (ADP). Its root is in dynamic
programming (DP) which is an optimization methodology based on Bellman’s principle
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of optimality. It solves a multi-step decision-making problem by breaking it down into a
one-step problem and encoding the information in a ”reward-to-go” function, as known as
value function. The resulting optimal control action is in state-feedback format, which is
easy and fast to implement online. However, its offline computation burden suffers from
”the curse of dimensionality,” because of its backward sweep process.

ADP solves the bottleneck with value function approximation. Within a limited range
of the state space, the original optimal control problem is approximated with a known
function structure. However, in contrast to the MPC approach, the pre-computed optimal
policy of ADP is useless when parameter changes. Accordingly, the offline computation
should be implemented whenever there is a parameter change. Therefore, it is an important
issue that how to implement the newly changed parameter value in the model when it
comes to the ADP approach.

One solution is k-nearest neighbor (kNN) approximator [Lee and Lee, 2009]. This ap-
proach has proven its performance when applied to a batch bio-reactor [Byun et al., 2020].
The kNN approximation requires the Monte-Carlo search to approximate the value func-
tion. It can cover a wide range of parameter space, compensating its offline computation
cost of the Monte-Carlo search.

One solution is using quadratic programming (QP), referred to as differential dynamic
programming (DDP) method [Kobilarov et al., 2015]. DDP uses first and second-order
derivative information of system dynamics and objective function to construct an approx-
imate problem based on the Taylor expansion. This unconstrained QP problem has an
analytical closed-form solution, which is state feedback. In this extension, the parameter-
dependent differential dynamic programming (PDDP) method adopted hyper-state which
is an augmented state of system state and parameter.

This concept has been proposed for robotic system control, where the unknown parame-
ters are assumed to follow the Gaussian process [Kobilarov et al., 2015]. It provides the
optimal control concerning the estimated parameter without online re-computation. This
paper expands the application of PDDP to the step-change in parameter values with an
online estimation of the least-squares (LS) method. Numerical simulation of the method
is implemented in a parameter-dependent system of 2 by 2 linear system.

2. Background

2.1. Problem Formulation

The optimal control problem concerning parameter-dependency is formulated as below:

min
u[0:N−1]

J =
N−1∑
k=0

(∥xk − xref,k∥2Q + ∥uk∥2R) + ∥xN − xref,N∥2Qf

s.t. xk+1 = f(xk, uk, p), yk = h(xk, p) + vk, vk ∼ Σv

(1)

Throughout this paper, xk and uk denote state and input respectively at time step k. A
parameter, p, is also a variable, but it is assumed as an unknown constant for a finite time
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horizon, because its dynamical behavior is much slower than that of the state. The operator
∥·∥2X stands for the square of the ℓ2-norm with a weight matrix X , i.e. ∥a∥2X = aTXa. In
PDDP method, a parameter variable is incorporated into a hyper-state, augmented with a
state variable, z.

2.2. Differential Dynamic Programming

The DDP approximates nonlinear dynamics into a quadratic equation based on the Taylor
expansion to utilize a quadratic programming structure. As the method only requires the
local relationship between state, control input, and parameter, the second-order Hessian
terms can be neglected in practice.

δxk+1 = fx,kδxk + fu,kδuk, δyk = hx,kδxk (2)

In the above equation, fx,k, fu,k, and hx,k refer to Jacobian matrices of the function
f(xk, uk, pk) and h(xk, pk) with regard to the subscript variables at their nominal val-
ues, x̄k and ūk, respectively, and δxk = xk − x̄k.

The control cost function, J , to be minimized is separated into two terms as a stage-wise
cost, l(xk, uk), and a terminal cost, lf (xN ). Based on this control cost function, a value
function is defined as an expected sum of cost values beginning from the present time step
given the state information:

Vk(xk) = min
uk,...uN−1

N−1∑
i=k

l(xi, ui) + lf (xN ). (3)

Eq. (3) can be obtained recursively based on the Bellman optimality relation.

Vk(xk) = min
uk

[l(xk, uk) + Vk+1(f(xk, uk))] (4)

To use deviation variables, let’s set the deviation of Eq.(4) as Q(δx, δu):

Q(δx, δu) = l(x̄+ δx, ū+ δu) + V ′(f(x̄+ δx, ū+ δu))− l(x̄, ū)− V ′(f(x̄, ū)), (5)

where a subscript k is dropped to simplify a notation and V ′ = Vk+1. This notation applies
to the equations appearing from now on. As the cost function can be exactly formulated
as a quadratic form, the value function and Q function are also quadratic.

Q(δx, δu) =
1

2

 1
δx
δu

T  Q̄ QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 (6)

Now, the coefficients in Eq. (6) is recursively obtained through Eq. (5).

Qx = lx + fT
x V ′

x, Qu = lu + fT
u V ′

x, Qux = lux + fT
u V ′

xxfx

Qxx = lxx + fT
x V ′

xxfx, Quu = lu + fT
u V ′

xxfu
(7)

As a result, the optimal control input is analytically given as a minimizer of Q-function
and can be expressed as below.

u∗ = ū−Q−1
uu (Qu +Quxδx) (8)
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3. Methodology

3.1. Least Squares Parameter Estimation

Before implementing parameter-dependent control, a parameter estimation is required. In
this paper, parameter estimation is formulated as a LS parameter estimation [Englezos and

min
p̂

J =
k∑

i=0

∥vi∥2Qv
+ ∥p̂− p0∥2Qp

s.t. x̂i+1 = f(x̂i, u, p̂), i = 1, ..., k

ŷi = h(x̂i, p̂) + vi, i = 0, ..., k

(9)

where the sequence of yi and ui is an accumulated data from the initial time (i = 0) to
the current time (i = k). The variables x̂i, ŷi and p̂ are the estimated variables, when
initial value of state, x0, and parameter, p0, is given. A weighting parameter Qv = Σ−1

v ,
where Σv is given from the system of interest. The second term in the objective function,
a parameter arrival cost, gives a smoothing effect for parameter estimation.

3.2. Parameter Dependent Differential Dynamic Programming

PDDP is formulated upon the hyper-state, z, instead of the state, x, extending the DDP
method.

δzk+1 = Fz,kδzk + Fu,kδuk, δyk = Hz,kδzk (10)

Here, Fz,k, Fu,k, and Hz,k refer to Jacobian matrices of the function F (zk, uk) and H(zk)
with regard to z̄k and ūk, respectively. Since there is no assumption for parameter dynam-
ics or its uncertainty, it is assumed that the parameter value stays the same as the previous
value. Hence, it can be said:

Fz,k =

[
fx,k fp,k
0 Ip

]
, Fu,k =

[
fu,k
0

]
, (11)

where Ip stands for an identity matrix with the dimension of parameter vectors.

Then the cost function, J , from Eq. (1) is separated into two terms, stage-wise cost, L(zk)
and the terminal cost, Lf (zN ).

L(zk) = ∥xk − xref,k∥2Q + ∥uk∥2R , Lf (zN ) = ∥xN − xref,N∥2Qf
(12)

The Q function is acquired equivalently as in the DDP method, and the optimal control is
given as:

u∗ = ū−Q−1
uu (Qu +Quzδẑ). (13)

where ẑ is an estimated hyper-state from the estimator. This optimal state feedback con-
trol policy should be iteratively trained beforehand, saving Jacobian matrices and state-
feedback gains Ku,k = Q−1

uuQu and Kz,k = Q−1
uuQuz at nominal states according to

a model. For linear time-invariant systems, however, the optimal solution can be found
directly from the given dynamics.
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Figure 1: Linear system simulation result for PDDP with LS estimation

Figure 2: PDDP and DDP simulation result compared

4. Simulation Results

In this section, the efficacy of the proposed PDDP algorithm is shown with a following
simple discrete time linear system:

xk+1 =

[
0.9146 0.1665
0.2665 0.3353

]
xk +

[
0.0544 −0.0757
0.0053 0.1477

]
uk +

[
0.0405
0.0058

]
pk

yk = xk + vk, vk ∼
[
0.01 0
0 0.01

]
,

(14)

where vk is uncorrelated measurement noise. This kind of parameter deviation may oc-
cur, for example, when process inlet condition (flow rate, composition, or temperature)
changes.

With the change of parameter, PDDP with LS parameter estimation was able to success-
fully control the system as shown in Fig. 1. Also, it was compared with its DDP counter-
part which uses the same hyper-state LS estimator in Fig. 2. As a result, PDDP was able
to draw the states near the desired origin, while DDP was not.

5. Conclusions

In this paper, the solution of parameter-dependent system control was considered using an
adaptive dynamic programming approach. With the use of hyper-state, PDDP is derived
from the common DDP approach. For its application with unknown parameters, LS pa-
rameter estimation is combined. The test on a simple linear system showed that PDDP can
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utilize the estimated parameter information through a state feedback format with nearly
zero computation burden online. The works presented in this paper can be extended to
nonlinear process by linearizing the process dynamics. Also, application combined with
any other popular estimation methods such as Kalman filter is left as future work, which
will guarantee the control performance even with unknown or unmeasurable disturbances.
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Abstract 

In the process industry, air coolers are some of the main cooling equipment. The air 
cooler of the atmospheric distillation column has fixed and variable fans, and the 
cooling duty is controlled. When the controller output exceeds the operating limits, the 
number of fixed fans in operation is changed to return it within the limits. However, the 
power consumption of the air cooler is not minimized. Daiguji and Yamashita (2022) 
proposed a method for optimizing the number of fixed fans in operation to minimize the 
power consumption, while reducing the frequency of fixed-fan starts and stops. 
Unfortunately, when this optimization method is applied to an air cooler with several 
variable fans, multiple fixed fans start and stop simultaneously, excessively disturbing 
the process. This paper proposes a modified optimization method in which the fixed 
fans start or stop one at a time. The modified optimization method was applied to 
industrial process, and the results showed that the power consumption was reduced, 
compared to the actual operation. 

Keywords: Mixed-integer non-linear optimization, air cooler, optimal operation. 

1. Introduction 

Refineries and petrochemical plants have many facilities for cooling process streams. 
However, these cooling systems typically cannot be operated at the lowest cost. 
Recently, several studies have been conducted on minimizing the operating cost of 
water-cooling systems (Rubio-Castro et al., 2013; Muller and Craig, 2015; Viljoen et al., 
2018; Viljoen et al., 2020). These studies also attempted to minimize the operating costs 
of air coolers and showed good results with hybrid nonlinear model-predictive control 
(HNMPC). Zhang et al. developed a dynamic model of the cold side of the cooling 
system of a power-generation boiler and proposed a model-predictive control with the 
model-based feed-forward compensation (Zhang et al., 2019). It has been shown that 
the back pressure of the unit can be controlled to the desired setpoint, while suppressing 
the disturbance of the air temperature, by properly manipulating the rotation speed. 

The atmospheric-distillation columns are equipped with air coolers to cool the column-
overhead gas and pump-around liquids. Tower overhead air coolers are often configured 
with a combination of multiple fixed and variable-pitch fans, because the cooling duty 
must be changed, according to the annual change in air temperature, while suppressing 
the equipment cost. Some air coolers have variable-speed fans instead of variable-pitch 
fans. The air coolers are not only disturbed by air temperature changes, but also by 
process-side disturbances. To suppress these disturbances, variable-pitch fans usually 
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control the process outlet temperature or column-top pressure. When the controller 
output exceeds the variable-pitch operating range, it is necessary to start or stop the 
fixed fan to return to the operating range. This causes problems.   

One problem is that the power consumption of the fans is not minimized. 
Conventionally, a fixed fan is started or stopped, only when the controller output 
exceeds the operating range. At that time, the fact that it is designed to return to the 
operating range means that there is a choice in the number of fixed fans in operation 
required to obtain any given cooling duty. Therefore, it is possible to change the number 
of operating fixed fans to minimize the power consumption. However, frequently 
starting and stopping a fixed fan should be avoided because it causes the cooling duty to 
fluctuate and loads the process. Minimizing the power consumption of the fans, while 
considering the frequent starts and stops, is a challenge. 

Daiguji and Yamashita (2022) attempted to stabilize the control and minimize the power 
consumption of an existing air cooler of a distillation column, without process changes. 
To optimize the number of fixed fans in operation, the paper proposed a method for 
minimizing power consumption while reducing the number of fixed-fan operation 
changes, and described the results of applying the proposed method to simulation data. 

However, when the above optimization method is applied to an air cooler with several 
variable fans, which is often seen in industrial processes, another problem was found, 
where multiple fixed fans started or stopped simultaneously. In this paper, we propose a 
modified optimization method in which the fixed fans start or stop one at a time 
(Section 2). Then, the modified optimization method is applied to industrial data, and 
the results are compared with actual operation and other methods (Section 3). Finally, 
the conclusions are presented in Section 4. 

2. Method for optimizing the number of fixed fans in operation 

Daiguji and Yamashita (2022) described the results of a basic study on optimizing the 
number of fixed fans in operation to minimize the power consumption, while changing 
the number of fans less frequently under equal air-flow rates. Their study investigated a 
method for an air cooler with two fixed fans and two variable fans; however, this paper 
describes a method that can be applied to an air cooler with more variable fans. 

2.1. Fans power consumption 

According to the proportional law of basic fan characteristics, the relationship between 
the fan speed 𝜔 and power consumption W is as follows: 

𝑊ଶ

𝑊ଵ

= ൬
𝜔ଶ

𝜔ଵ

൰
ଷ

. (1) 

Therefore, the power consumption W of the air cooler is given by 

𝑊 = 𝐿ଵ𝑁𝜔ଷ + 𝐿ଶ𝑚, (2) 

where N is the number of variable-speed fans, m is the number of operating fixed fans, 
𝜔 is the speed of a variable-speed fan, L1 is the power-consumption coefficient of the 
variable-speed fan, and L2 is the power consumption of the fixed fan. The above study is 
based on the assumption of a variable-speed fan; however, even in the case of a 
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variable-pitch fan, the power consumption increases at an accelerating rate when the air-
flow rate is increased (Johnson, 1988). Therefore, the same explanation can apply. 

2.2. Optimizing the number of fixed fans in operation 

As described in Section 1, variable fans are typically used to control the process outlet 
temperature or the column-top pressure. If this control consists of a conventional single-
loop PID controller, it fluctuates significantly when the fixed fan starts or stops. In 
addition, Sen (2012) states that induction motors draw three to eight times their rated 
value during startup. This means that starting a fixed fan increases the power 
consumption. Therefore, it is necessary to consider a method to reduce the frequency of 
changing the number of fixed fans. The following penalty function is defined, using the 
elapsed time 𝑡௔ after the change in the number of fans as a variable: 

f(𝑡௔) = ൜
1 𝑡௔⁄ if changing the number of fixed fans.

0 if not changing the number of fixed fans.
 (3) 

By multiplying this penalty function by the weight 𝜆  and adding it to Eq. (2), the 
following evaluation equation 𝐽 is obtained: 

𝐽 = 𝐿ଵ𝑁𝜔ଷ + 𝐿ଶ𝑚 + 𝜆 ∙ f(𝑡௔). (4) 

Minimizing the value of this evaluation equation 𝐽 minimizes the power consumption. 
Moreover, if the number of fixed fans is repeatedly changed in a short period of time, 
the penalty function becomes large, which reduces the frequency of the changes. Even if 
the number of fixed fans changes, the cooling duty must remain constant. Assuming that 
the independent variables, other than the number of fans (e.g., air-inlet temperature), do 
not change, the cooling duty can be considered to be constant when the air-flow rate Q 
is constant. Therefore, the following constraint conditions are obtained: 

𝑄 = 𝐾ଵ𝑁𝜔 + 𝐾ଶ𝑚 = const., (5) 

where 𝐾ଵ is the air-flow coefficient of the variable fan and 𝐾ଶ is the air-flow rate of the 
fixed fan. Another constraint is that the speed of the variable fan 𝜔 must be within the 
allowable upper and lower limits, which is expressed by the following equation: 

𝜔min ≤
1

𝐾ଵ𝑁
(𝑄 − 𝐾ଶ𝑚) ≤ 𝜔max. (6) 

Furthermore, in the case of air coolers with several variable fans, which are often used 
in industrial processes, the number of fixed fans with minimum power consumption 
easily changes for disturbances of the same magnitude. Therefore, it is necessary to add 
the following constraint condition so that the fixed fans start and stop one by one: 

max(0, 𝑚௢௟ௗ − 1) ≤ 𝑚 ≤ min(𝑀, 𝑚௢௟ௗ + 1), (7) 

where 𝑚௢௟ௗ is the number of fixed fans in operation before optimization, and M is the 
number of fixed-fan facilities. Under the constraints in Eqs. (5), (6), and (7), a modified 
optimization method is proposed to find the number of fixed fans in operation that 
minimizes the result of Eq. (4). 
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Fig.1 Time-series data of the air-flow rate of the variable fans and the number of fixed fans in 
operation, collected from an industrial plant. 

3. Application example using operation data from the process industry 

In this section, we describe the results of applying the proposed method to industrial 
process data, and confirm its effectiveness by comparing it with actual operations. 

3.1. Identification of air-flow rate and power-consumption equations 

The example air cooler has eight fixed fans and eight variable-pitch fans. The fans’ 
equipment specifications state that the column-top pressure is controlled in the range of 
57.4–95.2% of the variable-fan air-flow capacity. The following equation for the air-
flow rate Q of the air cooler and the air-flow ratio q of the variable fan was obtained: 

𝑄 ∝ 8𝑞 + 𝑚, 0.574 ≤ 𝑞 ≤ 0.952, 𝑚 ∈ ℤ, 0 ≤ 𝑚 ≤ 8. (8) 

Next, the following equation for the relationship between the power consumption W 
and the air-flow capacity ratio q of the variable fan was obtained: 

𝑊 ∝ 8(8.15𝑞ଷ + 18.3𝑞) + 26.45𝑚. (9) 

3.2. Industrial-data collection 

Five-second cycle operation data were collected for three days from the output of the 
column-top pressure controller and the ON/OFF status of each fan. Based on these 
historical data and the number of fixed fans in operation, Eq. (8) was used to obtain the 
air-flow rate data of the variable fans (Fig. 1). 

3.3. Application of conventional method 

Figure 2(a) shows the results of applying the conventional method to industrial data. In 
the conventional method, when the air-flow rate of the variable fans reaches the lower 
or upper limit, the number of fixed fans is changed, such that it returns within the range. 
The results showed that the number of fixed fans changed four times in three days, 
which is the same as the actual operation. Regarding the average power consumption, 
the difference from the actual operation was less than 0.01%. 

3.4. Application of proposed method 

The optimization method proposed in Section 2 was coded in the MATLAB® 
environment using the genetic-algorithm function of the Global Optimization Toolbox 
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Optimization of an air-cooler operation in an industrial distillation column   

 
Fig.2 (a) Control response for the minimizing the frequency of changing the number of fixed fans 
(conventional method). (b) Control response of the optimization without the penalty (power-
consumption minimization). 

 (Deep et al., 2009). Figure 2(b) shows the results of applying the proposed method, 
without a penalty, to industrial data. Optimization without penalty results in the 
minimum power-consumption solution. The results showed that the air-flow rate of the 
variable fans operated to stay in the range of 47–75%, and the power consumption was 
reduced by 1.3%, on average, compared to the conventional method. However, the 
number of fixed fans changed 166 times in three days. 

Figure 3(a) shows the results of applying the proposed method with a penalty to the 
industrial data. By considering the elapsed time after starting or stopping a fixed fan, it 
was found that the air-flow rate of the variable fan was extended over a range of 38–
81% and the reduction in power consumption was 1.1%. In contrast, the change in the 
number of fixed fans was reduced to 4, and the fixed fans no longer started and stopped 
continuously within a short period of time. However, it was found that two fixed fans 
started and stopped simultaneously, causing excessive disturbances to the process. 

Figure 3(b) shows the results of applying the modified proposed method—which limits 
the number of simultaneous fixed-fan starts and stops to one—to industrial data. By 
considering the number of simultaneous starts and stops, the air-flow rate of the variable 
fan was further extended to the range of 38–88%, and the reduction in power 
consumption was 0.9%. On the other hand, the change in the number of fixed fans was 
maintained at four times, with one fan per change. 

4. Conclusions 

In this paper, a modified method for minimizing the power consumption of controlled 

   
Fig.3 Control response of the optimization with a penalty, (a) Original method. (b) Limiting the 
number of simultaneous fixed-fan starts and stops to one (proposed method). 

(a) 

(a) (b) 

(b) 
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Table 1. Comparison of controller performances 

 

Max. number of 
simultaneous 

fixed-fan starts 
or stops 

Power-
consumption 

reduction ratio 
[%] 

Number of 
fixed-fan starts 

or stops 

Actual data 1 - 4 
Conventional method 1 0.0 4 
Proposed method (modified) 1 0.9 4 
Proposed method (original) 2 1.1 4 
Power-consumption minimization 1 1.3 166 

air coolers was proposed. When the using the method to minimize power consumption, 
while reducing the frequency of changing the number of fixed fans, it is possible to start 
and stop multiple fixed fans simultaneously. Therefore, a modified method was 
proposed that limited the number of simultaneous fixed-fans changes to one. 

Next, the proposed method was applied to industrial data, and the actual operation was 
compared with the method that minimized the frequency of changing the number of 
fans (conventional method), the power-consumption minimization method, and the 
proposed method (Table 1). The results showed that the proposed method reduced the 
power consumption by approximately 1%, compared to the actual operation, although it 
was slightly inferior to the power-consumption minimization method. However, the 
number of fixed-fan starts or stops was approximately 40 times greater in the power-
consumption minimization method than in the actual operation. It was the same in the 
proposed method as in the actual operation, with a minimum of four times. Furthermore, 
the fixed fans started or stopped one at a time using the modified proposed method. 
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Abstract 
In this work, a dynamic operability mapping is developed to find an operable funnel for 
a linear time-invariant dynamic system. The existing operability mapping method to 
find this funnel is computationally expensive, which makes it unsuitable for online 
control applications. A novel two-step calculation procedure is proposed, which 
includes an offline computation of the nominal funnel by constructing a convex hull of 
the manipulated variable projections, followed by an online update that adjusts the 
funnel to an operable region based on the current state information. As a result, a 
dynamic funnel that contains all achievable outputs regardless of the process 
disturbances and measurement noises is obtained in the form of transient output 
constraints for model predictive control implementation.  

Keywords: Dynamic Operability, Linear Control, Output Constraints  

1. Introduction 
Process operability is defined as the design and control ability to achieve desired 
performance from the given available inputs regardless of the realization of the 
disturbances (Gazzaneo et al., 2020). If the operability analysis is able to be carried out 
along with the operation of a process, not only the achievable portions of the desired 
outputs are known, but also the feasible output constraints can be provided for model 
predictive control to guarantee feasibility (Lima and Georgakis, 2009). However, the 
currently available operability analysis involves an exhaustive generation of the input 
combinations, and thus this approach may quickly become intractable. 

In this paper, the achievable output sets at all values of the disturbances are formulated 
as a set of time-dependent polyhedra, which is referred to as the dynamic operable 
funnel. To avoid confusion between control theory and process operability concepts, 
external output constraints are defined here as the constraints on the output variables 
that are given by the physical nature of a process, such as thermodynamic and 
equipment’s safety limits. In the application to online model predictive control, the 
dynamic funnel provides the transient output constraints to keep the process from 
moving toward an inoperable region, and the online calculation must be done efficiently 
to assure a sufficient time for the controller to solve for an optimal path.  

In particular, the dynamic operable funnel of a linear time-invariant dynamic process is 
proven to be defined as a polyhedron. Also, the ability of the current process to move 
toward its stable operating region is quickly verified following Phase I of the simplex 
algorithm for linear programming, and the operable region in the presence of external 
output constraints can be obtained via the convex hull of suitable geometric duals with 
respect to a feasible solution (Muller and Preparata, 1978). Therefore, the remaining 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50059-2 
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challenge is constructing the dynamic operable funnel in a tractable manner. In the 
proposed framework, the funnel calculation is divided into two steps: the first step is 
computing the funnel offline before the full state information arrives; and the second 
step is updating the funnel online according to the full state information that becomes 
available. The preliminaries and concepts necessary to define the proposed approach are 
detailed next. 

2. Dynamic Operability Problem Background 
2.1. Preliminaries 

Consider the following discrete-time linear time-invariant dynamic system: 

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) + 𝐺𝐺𝐺𝐺(𝑘𝑘);  𝑥𝑥(0) = 𝑥𝑥0 (1) 

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝐶𝐶(𝑘𝑘) + 𝐷𝐷𝐷𝐷(𝑘𝑘) + 𝑣𝑣(𝑘𝑘) (2) 

in which 𝑥𝑥(𝑘𝑘) ∈ ℝ𝑛𝑛𝑥𝑥 ,𝑢𝑢(𝑘𝑘) ∈ ℝ𝑛𝑛𝑢𝑢  𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦(𝑘𝑘) ∈ ℝ𝑛𝑛𝑦𝑦  are the vectors of state variables, 
input/manipulated variables and output/controlled variables, respectively; 𝑤𝑤(𝑘𝑘) ∈ ℝ𝑛𝑛𝑤𝑤 
and 𝑣𝑣(𝑘𝑘) ∈ ℝ𝑛𝑛𝑣𝑣 are the zero-mean multivariate Gaussian distributed vectors with the 
respective positive definite covariance matrices, Σ𝑤𝑤 ∈ ℝ𝑛𝑛𝑤𝑤×𝑛𝑛𝑤𝑤 and Σ𝑣𝑣 ∈ ℝ𝑛𝑛𝑣𝑣×𝑛𝑛𝑣𝑣. The 
initial time 𝑘𝑘 = 0 is defined to be the current time instead of the time in which the 
process begins, and the initial state variables, 𝑥𝑥0, are assumed to be given by a state 
observer.  

Since 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘) are assumed to be zero-mean with Gaussian distributions, the 
states and the outputs are also multivariate Gaussian random variables with the 
respective means 𝑥̅𝑥(𝑘𝑘) and 𝑦𝑦�(𝑘𝑘). The sequences of covariance matrices for the states, 
Σ𝑥𝑥(𝑘𝑘), and the outputs, Σ𝑦𝑦(𝑘𝑘), are: 

Σ𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴Σ𝑥𝑥(𝑘𝑘)𝐴𝐴𝑇𝑇 + 𝐺𝐺Σ𝑤𝑤𝐺𝐺𝑇𝑇; Σ𝑥𝑥(0) = 0𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥  (3) 

Σ𝑦𝑦(𝑘𝑘) = 𝐶𝐶Σ𝑥𝑥(𝑘𝑘)𝐶𝐶𝑇𝑇 + Σv (4) 

When a random vector 𝑝𝑝 ∈ ℝ𝑛𝑛𝑝𝑝  is a Gaussian random vector with a mean 𝑝̅𝑝 and a 
covariance matrix Σ𝑝𝑝, its 95% highest density region, 𝐻𝐻𝐻𝐻𝐻𝐻(𝑝𝑝), is the following 
ellipsoid with the scale 𝑙𝑙𝑝𝑝2 equals to the inverse cumulative distribution function of the 
chi-squared distribution with 𝑛𝑛𝑝𝑝 degrees of freedom: 

𝐻𝐻𝐻𝐻𝐻𝐻(𝑝𝑝) = �𝑝𝑝|(𝑝𝑝 − 𝑝̅𝑝)𝑇𝑇Σ𝑝𝑝−1(𝑝𝑝 − 𝑝̅𝑝) ≤ 𝑙𝑙𝑝𝑝2; 𝑙𝑙𝑝𝑝2 = 𝐼𝐼𝐼𝐼𝑣𝑣𝜒𝜒2(95%;𝑛𝑛𝑝𝑝)� (5) 

2.2. Dynamic operability sets 

The Available Input Set at the discretized time 𝑘𝑘 (𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘) is defined as the set of all 
feasible sequences of manipulated variables from the initial time 0 to time 𝑘𝑘.  

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = �𝑢𝑢𝑘𝑘 = [𝑢𝑢(0)𝑇𝑇 ,𝑢𝑢(1)𝑇𝑇 , … ,𝑢𝑢(𝑘𝑘 − 1)𝑇𝑇]𝑇𝑇|𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢𝑘𝑘 ≤ 𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚� (6) 

The Expected Disturbance Set (𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑑𝑑) is the set of all realizations of the disturbances, 
d, at the time k. The two sources of disturbances assumed here are the 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘), 
which can take any real values due to their Gaussian distributions. Their values are 
constrained to their respective 95% highest density regions as follows: 
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𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑑𝑑 = �𝑑𝑑(𝑘𝑘) = [𝑤𝑤(𝑘𝑘) 𝑣𝑣(𝑘𝑘)]𝑇𝑇�
𝑑𝑑(𝑘𝑘)𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(Σ𝑤𝑤−1, Σ𝑣𝑣−1)𝑑𝑑(𝑘𝑘) ≤ 𝑙𝑙𝑑𝑑2

𝑙𝑙𝑑𝑑2 = 𝐼𝐼𝐼𝐼𝑣𝑣𝜒𝜒2(95%;𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣) � (7) 

The Achievable Output Set at a fixed disturbance 𝑑𝑑 (𝐴𝐴𝐴𝐴𝐴𝐴(𝑑𝑑)) is the set of all possible 
outputs at the discretized time 𝑘𝑘 given the linear system (1), (2) and the range of 
manipulated variables. A necessary condition for a process to be operable is that the set 
of achievable outputs regardless of the realizations of the process disturbances, 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, 
has to be nonempty. The 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is defined as the intersection of all achievable output 
sets at fixed realizations of the disturbance:   

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = � 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝑑𝑑(𝑑𝑑) = �𝑦𝑦(𝑘𝑘)�
(1), (2) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;
𝑢𝑢𝑘𝑘 ∈ 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘;𝑑𝑑(𝑘𝑘) ∈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑑𝑑;�

𝑑𝑑∈𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘
𝑑𝑑 

 (8) 

3. Calculation of Transient Output Constraints 
3.1. Offline computation of transient state funnel at nominal-valued disturbances  

The following assumptions are considered for the offline calculation of the dynamic 
funnel that can be later addressed in the online update: 𝑥𝑥0 = 0𝑛𝑛𝑥𝑥;𝐶𝐶 = 𝐼𝐼𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥;𝐷𝐷 =
0𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢;  𝑤𝑤(𝑖𝑖) = 0𝑛𝑛𝑤𝑤;𝑣𝑣(𝑖𝑖) = 0𝑛𝑛𝑥𝑥  ∀ 𝑖𝑖 ≤ 𝑘𝑘. The considered outputs are the predicted 
state variables before 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘) are accounted for, and the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 has the form: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = {𝑥𝑥(𝑘𝑘)|𝑥𝑥(𝑘𝑘) = 𝐵𝐵�𝑘𝑘𝑢𝑢𝑘𝑘;𝑢𝑢𝑘𝑘 ∈ 𝐴𝐴𝐼𝐼𝑆𝑆𝑘𝑘} (9) 

where 𝐵𝐵�k = [𝐴𝐴𝑘𝑘−1𝐵𝐵 𝐴𝐴𝑘𝑘−2𝐵𝐵…𝐴𝐴𝐴𝐴 𝐵𝐵]. From the definition (6), the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is a bounded 
convex polyhedron. From the formulation of (9), 𝐵𝐵�𝑘𝑘:ℝ𝑘𝑘×𝑛𝑛𝑛𝑛𝑛𝑛 → ℝ𝑛𝑛𝑥𝑥  is a linear 
transformation of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 into the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, so that the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is exactly the smallest 
convex hull that contains all the projections of the available input sequences on the state 
vector space. Additionally, for an achievable state 𝑥𝑥(𝑘𝑘) to be a vertex of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, its 
preimage, 𝑢𝑢𝑘𝑘, must be a vertex of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘. Then the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 can be computed by taking 
the convex hull of the 2𝑘𝑘×𝑛𝑛𝑢𝑢 vertices of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, which is the vector of the input 
sequence in which each element is either taken from the value of the lower bound 
𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 or the upper bound 𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑣𝑣𝑎𝑎𝑥𝑥ℎ𝑢𝑢𝑢𝑢𝑢𝑢�𝐵𝐵�𝑢𝑢𝑘𝑘|𝑢𝑢𝑘𝑘𝑇𝑇𝑒𝑒𝑖𝑖 ∈ �𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑛𝑛
𝑇𝑇 𝑒𝑒𝑖𝑖 ,𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑥𝑥

𝑇𝑇 𝑒𝑒𝑖𝑖�,∀𝑖𝑖 ≤ 𝑘𝑘 × 𝑛𝑛𝑢𝑢� (10) 

where 𝑒𝑒𝑖𝑖 = [0,0, … ,0,1,0, … ,0]𝑇𝑇 ∈ ℝ𝑘𝑘×𝑛𝑛𝑢𝑢 is a standard basis for which only the 𝑖𝑖𝑡𝑡ℎ 
location has the value of 1. An efficient approach to find the convex hull in high-
dimensional spaces is the Quickhull Algorithm (Barber et al., 1996). According to the 
Minkowski-Weyl’s Theorem, every polyhedron is identically described by its vertex 
representation and its hyperplane representation, and thus the formulation of 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 in 
(10) can be equivalently converted to a set of linear constraints using the Double 
Description Method (Fukuda and Prodon, 1996): 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = {𝑥𝑥(𝑘𝑘)|𝐻𝐻�𝑘𝑘𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑘̅𝑘} (11) 

In the simplest case of the online calculation, if the process disturbances and the 
measurement noises are not considered, the online update of the dynamic funnel can be 
established by the substitution of (11) into the state-space model (1), and the dynamic 
funnel at the current state 𝑥𝑥0 is simply: 
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𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = {𝑥𝑥(𝑘𝑘)|𝐻𝐻�𝑘𝑘𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑘̿𝑘; 𝑙𝑙𝑘̿𝑘 =  𝑙𝑙𝑘̅𝑘 + 𝐻𝐻�𝑘𝑘𝐴𝐴𝑘𝑘𝑥𝑥0} (12) 

3.2. Transient state funnel with process disturbances 

In this subsection, the interested outputs are the state variables, and the following 
assumptions are considered: 𝐶𝐶 = 𝐼𝐼𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥;𝐷𝐷 = 0𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢;  𝑣𝑣(𝑖𝑖) = 0𝑛𝑛𝑥𝑥 ,∀ 𝑖𝑖 ≤ 𝑘𝑘. The process 
disturbance sequence can be redefined as the deviation, 𝑤𝑤𝑥𝑥(𝑘𝑘), from the mean value of 
the state vector, and the 𝐸𝐸𝐸𝐸𝐸𝐸 is chosen as the 𝐻𝐻𝐻𝐻𝐻𝐻 with respect to 𝑥𝑥(𝑘𝑘): 

𝐸𝐸𝐷𝐷𝑆𝑆𝑘𝑘𝑥𝑥 = {𝑤𝑤𝑥𝑥(𝑘𝑘)|𝑤𝑤𝑥𝑥(𝑘𝑘)𝑇𝑇Σ𝑥𝑥−1(𝑘𝑘)𝑤𝑤𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑥𝑥2; 𝑙𝑙𝑥𝑥2 = 𝐼𝐼𝑎𝑎𝑣𝑣𝜒𝜒2(95%;𝑛𝑛𝑥𝑥)} (13) 

The formulation of 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 in this subsection is  

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = � 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝑤𝑤(𝑤𝑤𝑥𝑥(𝑘𝑘)) = �𝑥𝑥(𝑘𝑘)�𝑥𝑥
(𝑘𝑘) = 𝐴𝐴𝑘𝑘𝑥𝑥0 + 𝐵𝐵�𝑘𝑘𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑥𝑥(𝑘𝑘)
𝑢𝑢𝑘𝑘 ∈ 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘;𝑤𝑤𝑥𝑥(𝑘𝑘) ∈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥; �

𝑤𝑤𝑥𝑥(𝑘𝑘) ∈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘
𝑥𝑥

 (14) 

Let Σ𝑥𝑥(𝑘𝑘) = 𝑉𝑉𝑥𝑥(𝑘𝑘)𝑆𝑆𝑥𝑥(𝑘𝑘)𝑉𝑉𝑥𝑥−1(𝑘𝑘) be the eigenvalue decomposition of the covariance 
matrix Σ𝑥𝑥(𝑘𝑘). Since a basic property of any covariance matrix is positive definiteness, 
𝑉𝑉𝑥𝑥−1(𝑘𝑘) = 𝑉𝑉𝑥𝑥𝑇𝑇(𝑘𝑘) is an orthogonal matrix, and 𝑆𝑆𝑥𝑥(𝑘𝑘) is a diagonal matrix with positive 
elements. Denoting 𝑆𝑆𝑥𝑥−0.5(𝑘𝑘) to be an inverse of the square root of 𝑆𝑆𝑥𝑥(𝑘𝑘), a bijective 
mapping 𝐿𝐿 = 𝑆𝑆𝑥𝑥−0.5(𝑘𝑘)𝑉𝑉𝑥𝑥𝑇𝑇  that transforms the state vector 𝑥𝑥�(𝑘𝑘) = 𝐿𝐿𝐿𝐿(𝑘𝑘) is introduced. 
The covariance matrix of the transformed vector 𝑥𝑥�(𝑘𝑘) is: 

Σ𝑥𝑥�(𝑘𝑘) = 𝐿𝐿Σ𝑥𝑥(𝑘𝑘)𝐿𝐿𝑇𝑇 = 𝑆𝑆𝑥𝑥−0.5(𝑘𝑘)𝑉𝑉𝑥𝑥𝑇𝑇𝑉𝑉𝑥𝑥(𝑘𝑘)𝑆𝑆𝑥𝑥(𝑘𝑘)𝑉𝑉𝑥𝑥𝑇𝑇(𝑘𝑘)𝑉𝑉𝑥𝑥(𝑘𝑘)𝑆𝑆𝑥𝑥−0.5(𝑘𝑘) = 𝐼𝐼𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 (15) 

Because the covariance Σ𝑥𝑥� is an identity matrix, the proposed linear mapping 𝐿𝐿 
corresponds to a change of coordinates to transform the state vector into a standard 
Gaussian random vector, and the ellipsoid 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥 is transformed into an n-sphere 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥� 
with radius 𝑙𝑙𝑥𝑥. This provides an advantage when finding the intersection 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 of all 
achievable output sets for the disturbance realizations based on the following theorem: 

Theorem 1: Let [𝐻𝐻]𝑖𝑖 denote the 𝑖𝑖𝑡𝑡ℎ row of a matrix 𝐻𝐻:ℝ𝑛𝑛1 → ℝ𝑛𝑛2 . Given a bounded 
polyhedron in the form of 𝑃𝑃𝑥𝑥 = {𝑥𝑥 ∈ ℝ𝑛𝑛𝑥𝑥|𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙} and its image under a bounded 
translation according to an n-sphere 𝑃𝑃𝑥𝑥(𝑑𝑑) = {𝑥𝑥�|𝑥𝑥� = 𝑥𝑥 + 𝑑𝑑;𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙;𝑑𝑑𝑇𝑇𝑑𝑑 ≤ 𝑙𝑙𝑑𝑑2}, the 
intersection of all 𝑃𝑃𝑥𝑥(𝑑𝑑) is given by: 

𝑃𝑃 = � 𝑃𝑃𝑥𝑥(𝑑𝑑)
𝑑𝑑𝑇𝑇𝑑𝑑≤𝑙𝑙𝑑𝑑

2

= �𝑥𝑥�𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙; �𝑙𝑙�
𝑖𝑖

= [𝑙𝑙]𝑖𝑖 − 𝑙𝑙𝑑𝑑�[𝐻𝐻]𝑖𝑖𝑇𝑇[𝐻𝐻]𝑚𝑚  ∀ 𝑖𝑖 ≤ 𝑛𝑛2� (16) 

Proof: For each hyperplane [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ [𝑙𝑙]𝑖𝑖, the hyperplane [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ [𝑙𝑙]𝑖𝑖 − 𝑙𝑙𝑑𝑑�[𝐻𝐻]𝑖𝑖𝑇𝑇[𝐻𝐻]𝑚𝑚  is 
the parallel hyperplane shifted toward the feasible half-space by a distance of 𝑙𝑙𝑑𝑑. Thus, a 
translation of all feasible points in [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ [𝑙𝑙]𝑖𝑖 by a distance 𝑑𝑑 can only violate 
[𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ �𝑙𝑙�

𝑖𝑖
 if 𝑑𝑑 > 𝑙𝑙𝑑𝑑 . Therefore, 𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙 is the intersection of all hyperplanes [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤

[𝑙𝑙]𝑖𝑖 when the translation distance is less than or equal to 𝑙𝑙𝑑𝑑. 

Note that the disturbance effects on the state vector are the same as translating the 
achievable output set in (12) by a translation vector in 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥, and the linear mapping 𝐿𝐿 
puts the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝑤𝑤 in the form that is applicable for Theorem 1. Finally, since 𝐿𝐿 is a 
bijective mapping, the final form of the transient state funnel with process disturbances 
in the original state vector 𝑥𝑥(𝑘𝑘) is given by: 
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𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = �𝑥𝑥(𝑘𝑘)�𝐻𝐻�𝑘𝑘𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑘𝑘; �𝑙𝑙𝑘𝑘�𝑖𝑖 = �𝑙𝑙𝑘̅𝑘 + 𝐻𝐻�𝑘𝑘𝐴𝐴𝑘𝑘𝑥𝑥0�𝑖𝑖 − 𝑙𝑙𝑥𝑥�[𝐻𝐻�𝑘𝑘𝐿𝐿−1]𝑖𝑖𝑇𝑇[𝐻𝐻�𝑘𝑘𝐿𝐿−1]𝑚𝑚  � (17) 

3.3. Transient output funnel with process disturbances and measurement noises 

The output vector can be interpreted as a projection of the state variables and the 
manipulated variables at the same time step. Similarly to the previous subsection, using 
the Double Description Method, all the vertices of 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 in the state vector space can be 
found. Following the same procedure from (10) to (12), one can arrive at the achievable 
output set with process disturbances before considering the measurement noises: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘(𝑣𝑣(𝑘𝑘) = 0) = �𝑦𝑦(𝑘𝑘)|𝐻𝐻𝑘𝑘𝑦𝑦 ≤ 𝑏𝑏�𝑘𝑘� (18) 

Since the effects of the measurement noises on the outputs are the same as the 
disturbances on the state variables, a similar procedure from (13) to (17) can be 
followed with the linear mapping 𝐿𝐿𝑦𝑦 = 𝑆𝑆𝑦𝑦−0.5(𝑘𝑘)𝑉𝑉𝑦𝑦𝑇𝑇(𝑘𝑘) defined according to the 
eigenvalue decomposition of Σ𝑦𝑦(𝑘𝑘) = 𝑉𝑉𝑦𝑦(𝑘𝑘)𝑆𝑆𝑦𝑦(𝑘𝑘)𝑉𝑉𝑦𝑦−1(𝑘𝑘). The final form of the 
achievable output set is: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = �𝑦𝑦(𝑘𝑘)�𝐻𝐻𝑘𝑘𝑦𝑦 ≤ 𝑏𝑏𝑘𝑘; [𝑏𝑏𝑘𝑘]𝑖𝑖 = �𝑏𝑏�𝑘𝑘�𝑖𝑖 − 𝑙𝑙𝑦𝑦��𝐻𝐻𝑘𝑘𝐿𝐿𝑦𝑦−1�𝑖𝑖
𝑇𝑇�𝐻𝐻𝑘𝑘𝐿𝐿𝑦𝑦−1�𝑚𝑚  � (19) 

4. Numerical Example 
Consider the system given in (1), (2) with the following matrices: 

𝐴𝐴 = �   0.59 −0.43
−0.06     0.39� ;𝐵𝐵 = �0.42     1.82

2.48 −0.71� ;𝐺𝐺 = �0.52 −0.47
1.22    0.47� ;  

𝐶𝐶 = �0 1
1 1� ;𝐷𝐷 = 02×2; Σ𝑤𝑤 = �0.04 0

0 0.02� ;Σ𝑣𝑣 = 10−5 �5 0
0 1� ; 𝑥𝑥0 = �   20

−30� 
 (20)  

The prediction horizon is chosen to be 6 for illustrative purposes, and the objective is 
constructing the six achievable output sets 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 for 𝑘𝑘 = 1, … ,6. The input ranges of the 
considered 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 are −1 ≤ 𝑢𝑢1(𝑘𝑘) ≤ 1 and −2 ≤ 𝑢𝑢2(𝑘𝑘) ≤ 2. In the offline computation, 
the vertices of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, which are all combinations of 𝑢𝑢(𝑘𝑘) ∈ {[−1 − 2]𝑇𝑇 ,
[−1 2]𝑇𝑇 , [1 − 2]𝑇𝑇 , [1 2]𝑇𝑇} for all 0 ≤ 𝑘𝑘 ≤ 5, are applied to the linear state-space model 
to calculate the associated basis state vectors. The set of convex hulls of these basis state 
vectors at each time 𝑘𝑘 is the nominal 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, and the funnel of nominal state vectors 
obtained for this case is shown in Figure 1(a).  

In the online update of the dynamic funnel, at each value of 𝑘𝑘, the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is adjusted 
according to (12), and the new dynamic funnel at 𝑤𝑤(𝑘𝑘) = 0 and 𝑣𝑣(𝑘𝑘) = 0 is shown in 
Figure 1(b). To find the intersection of all 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 at different values of 𝑤𝑤(𝑘𝑘) in the 95% 
highest density region, (17) is applied, and the new 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 that takes into account 
process disturbances, 𝑤𝑤(𝑘𝑘), is shown as the dashed-edge empty polytopes in Figures 
1(c) and (d). In the next step, 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 of state vectors are projected into the space of the 
output vectors, and the convex hulls of the images at every time 𝑘𝑘 is the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 of output 
vectors, which is represented as the dashed-edge empty polytopes in Figures 1(e) and 
(f). Finally, to address the measurement noise, the hyperplanes of every 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 are 
shifted inward according to (19). The result is a funnel of output vectors that can always 
be achieved regardless of the realization of the process disturbances and the 
measurement noises by varying the constrained manipulated variables. This funnel is 
plotted with dotted-edge grey-filled polytopes in Figures 1(e) and (f). 
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Figure 1: Dynamic operable funnels. (a): Funnel of state vector considering nominal 

initial state; (b): Funnel of state vector considering actual initial state without 
disturbances; (c), (d): Adj ustment of funnel of state vectors with process disturbances; 

(e), (f): Funnels of output vectors with and without measurement noises. 

5 . Conclusions 
Dynamic operability corresponds to an output controllability measure that can be used 
to assist with the formulation of online constrained control problems (Gazzaneo et al., 
2020). However, in dynamic operability mapping, exhaustive input discretization 
methods in the reported literature quickly become intractable with the increase in 
predictive horizon length. In this work, a novel dynamic operability mapping was 
proposed in a two-step framework that allows the maj ority of the computational effort 
being performed offline. The achievable output sets at different predictive times were 
formulated as set of inequality constraints that are updated online according to the 
current full state information and uncertainty propagation. Even though the current 
framework is limited to a linear time-invariant dynamic process, the proposed theory is 
a valid basis for future work on linear time-varying and nonlinear dynamic processes. 
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Abstract 

A process under model predictive control is required to be re-identified when plant-model 

mismatch (PMM) occurs. During data acquisition for re-identification, the process is 

excited to enable accurate re-identification. However, the excitation of the process 

worsens control performance. This research proposes a new method for re-identification 

that can deal with the problem. In the proposed method, only the inputs of the transfer 

functions that have significant PMM are excited, and, at the same time, the other inputs 

are manipulated to suppress the variations of the controlled variables. The usefulness of 

the proposed method was confirmed through a simulation case study of a 3-input, 3-

output process. As a result, it was shown that the proposed method can reduce the mean 

absolute control error during data acquisition to 87% of that of an existing method without 

compromising model accuracy after re-identification. 

Keywords: Dual control; Model predictive control; Multivariate process; Plant-model 

mismatch; Re-identification 

1. Introduction 

Due to the spread of the Internet and the concept of mass customization, external demands 

on industrial processes are changing more rapidly than they were previously. Also, the 

characteristics of industrial processes change over time due to various factors such as 

degradation of catalysts or fouling of pipes. Therefore, to improve process productivity, 

a control system that adapts to the internal and external changes of the process and 

achieves optimal operation is required. One possible solution is the use of model 

predictive control (MPC). MPC can adaptively achieve optimal operation for various 

processes including nonlinear processes, time-varying processes, and processes with 

constraints. Since MPC is a model-based control method, the control performance 

depends on the prediction accuracy of the model. Therefore, it is important to maintain 

the high prediction accuracy of the model used for MPC.  

In order to prevent degradation of the prediction accuracy due to plant-model mismatch 

(PMM), re-identification of the process is required when significant PMM occurs. During 

re-identification, data containing useful information can be obtained by applying 

persistent excitation signals to the process. However, at this time, the variations of the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50060-9 
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controlled variables usually increase, and thus, the control performance will decrease. 

Therefore, there is a trade-off between the excitation level of the process and the control 

performance during data acquisition.  

In previous studies, various dual control methods using MPC have been proposed to find 

the optimal operating condition, considering this trade-off (Shouche et al., 1998; 

Aggeligiannaki and Sarimveis, 2006; Sotomayor et al., 2009; Zacekova et al., 2013; 

Gonzalez et al., 2014; Marafioti et al., 2014; Patwardhan et al., 2014; Larsson et al., 2015; 

Zheng et al.; 2018; Thangavel et al., 2018). These approaches modify the optimization 

problem of the MPC so that the excitation of the process can be achieved without 

considerable loss of control performance. Yet, these approaches still have room for 

improvement. In the modified optimization problem, all the inputs of the process are 

excited even though only a few elements of the transfer function matrix of the process 

have large PMM. The excitation of the inputs of transfer functions with small PMM will 

lead to excessive loss of control performance. Therefore, more efficient re-identification 

can be realized by exciting only the inputs of the transfer functions with large PMM. As 

far as the authors know, such a re-identification method has not yet been proposed. 

In this research, the re-identification method for multivariate processes using PMM 

information is proposed. In the proposed method, the excitation signals are applied only 

to the inputs of the transfer functions with large PMM, to avoid excessive excitation of 

the process. Furthermore, the other input variables are used to suppress the variations of 

the controlled variables. The transfer functions with large PMM can be detected using 

existing methods, such as those proposed by Badwe et al. (2009) and Kano et al. (2010). 

This allows us to obtain informative data for re-identification while high control 

performance is maintained. The validity of the proposed method is examined by a 

simulation case study of a 3-input, 3-output process.  

2. Problem setting 

In this paper, the multivariate process of interest is given as 

𝒚(𝑠) = 𝑮(𝑠)𝒖(𝑠) + 𝒗(𝑠), (1) 

where 𝒚(𝑠) = [𝑦1(𝑠),⋯ , 𝑦𝑁(𝑠)]⊤, 𝒖(𝑠) = [𝑢1(𝑠),⋯ , 𝑢𝑀(𝑠)]⊤ and 𝒗(𝑠) =
[𝑣1(𝑠),⋯ , 𝑣𝑁(𝑠)]⊤ are respectively the output, input, and noise vectors; 𝑁 and 𝑀 are 

respectively the numbers of output variables and input variables; and 𝑮(𝑠) is the 

transfer function matrix of the true process given as  

𝑮(𝑠) = [

𝐺1,1(𝑠) ⋯ 𝐺1,𝑀(𝑠)

⋮  ⋮
𝐺𝑁,1(𝑠) ⋯ 𝐺𝑁,𝑀(𝑠)

], (2) 

where 𝐺𝑛,𝑚(𝑠) is a transfer function from the 𝑚-th input 𝑢𝑚 to the 𝑛-th output 𝑦𝑛. The 

model of the process is  

𝒚̂(𝑠) = 𝑮̂(𝑠)𝒖(𝑠). (3) 

The process is controlled by MPC using Eq. (3) as the prediction model. The objective 

function in the optimization problem solved at each time step in the MPC is  
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𝐽 = ∑ ‖𝒚ref(𝑡) − 𝒚̂(𝑡)‖𝑾𝑦
2

𝑡0+𝑁P

𝑡=𝑡0+1

+ ∑ ‖𝒖(𝑡) − 𝒖(𝑡 − 1)‖𝑾𝑢
2

𝑡0+𝑁C−1

𝑡=𝑡0

, (4) 

where 𝑡0 is the current time, 𝑁P ∈ ℕ is the length of the prediction horizon, 𝑁C ∈ ℕ is the 

length of the control horizon, ‖𝒙‖𝑾
2 = 𝒙⊤𝑾𝒙, 𝑾𝑦 and 𝑾𝑢 are the weighting matrices, 

and 𝒚ref is the reference trajectory vector defined as: 

𝒚ref(𝑡) = 𝛾𝑡−𝑡0𝒚(𝑡0) + (1 − 𝛾𝑡−𝑡0)𝒚set, (5) 

where 𝒚set = [𝑦set,1,⋯ , 𝑦set,𝑁]
⊤

 is a setpoint vector, and 𝛾 ∈ [0,1] is a parameter. 

In this paper, it is assumed that at least one of the transfer functions has significant PMM. 

As well, the locations of the elements with large PMM in the transfer function matrix are 

known before data acquisition for re-identification. The following sets are used to define 

the location of the PMM: 

𝕀1:𝑀 = {1,2,⋯ ,𝑀}, (6) 

𝕄𝑛 = {𝑚 | ∃𝜔 > 0 s. t.  | 𝐺𝑛,𝑚(𝑗𝜔) − 𝐺̂𝑛,𝑚(𝑗𝜔)| > 𝜖}, (7) 

𝕄̅𝑛 = 𝕀1:𝑀 ∖ 𝕄𝑛 , (8) 

ℕPMM = {𝑛 |𝕄𝑛 ≠ 𝜙}, (9) 

where 𝐺𝑛,𝑚(𝑗𝜔) and 𝐺̂𝑛,𝑚(𝑗𝜔) are the frequency transfer functions of respectively the 

process and the model, 𝜖 is a tolerance, and 𝜙 is the empty set. 

3. Proposed Method 

In the proposed method, the data acquisition and re-identification of the process are 

performed as follows: 

1. Set ℕMPM
∗ = ℕMPM. 

2. Set 𝑛∗ = minℕMPM
∗  and remove 𝑛∗ from ℕMPM

∗ . 

3. Operate the target process using MPC which solves the optimization problem 

defined by Eqs. (10) to (13) at each time step, to obtain the input-output data 𝔻𝑛∗ =
{𝑢𝑚(𝑡), 𝑦𝑛∗(𝑡) | 𝑚 ∈ 𝕄𝑛∗, 𝑡 = 1,⋯ , 𝑇}, where 𝑇 is sample size, that is, 

min
𝒖(𝑡0),⋯,𝒖(𝑡0+𝑁C−1)

𝐽 (10) 

subject to  

𝒚̂(𝑠) = 𝑮̂(𝑠)𝒖(𝑠), (11) 

𝑢𝑚(𝑡) = 𝑢̃𝑚(𝑡), 𝑚 ∈ 𝕄𝑛∗, 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑁C − 1, (12) 

𝒖(𝑡) = 𝒖(𝑡0 + 𝑁C − 1), 𝑡0 + 𝑁C ≤ 𝑡 ≤ 𝑡0 + 𝑁P − 1, (13) 

where 𝑢̃𝑚 is an excitation signal applied to 𝑢𝑚. 

4. Using 𝔻𝑛∗, calculate the estimate 𝑠̂𝕄𝑛∗  of the sum of the outputs from the transfer 

functions with significant PMM in the 𝑛∗-th row using 
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𝑠̂𝕄𝑛∗(𝑡) = 𝑦𝑛∗(𝑡) − ∑ 𝑦̂𝑛∗,𝑚(𝑡)

𝑚∈𝕄̅𝑛∗

, 𝑦𝑛∗(𝑡) ∈ 𝔻𝑛∗, (14) 

where 𝑦̂𝑛∗,𝑚 is the estimate of the output from 𝐺𝑛∗,𝑚 and is calculated as follows: 

𝑦̂𝑛∗,𝑚(𝑠) = 𝐺̂𝑛∗,𝑚(𝑠)𝑢𝑚(𝑠), 𝑢𝑚(𝑡) ∈ 𝔻𝑛∗ , (15) 

where 𝐺̂𝑛∗,𝑚 is a transfer function model from the 𝑚-th input 𝑢𝑚 to the 𝑛∗-th output 

𝑦𝑛∗. 

5. Using the data 𝔻𝑛∗
′ = {𝑢𝑚(𝑡) ∈ 𝔻𝑛∗, 𝑠̂𝕄𝑛∗(𝑡) | 𝑚 ∈ 𝕄𝑛∗ , 𝑡 = 1, ⋯ , 𝑇}  as input-

output data, re-identify the transfer functions {𝐺𝑛∗,𝑚 | 𝑚 ∈ 𝕄𝑛∗} . 

6. If ℕPMM
∗ = 𝜙, then stop the procedure; otherwise, go back to step 2. 

The data acquisition for re-identification is performed in Step 3. Here, the inputs to the 

transfer functions with significant PMM are excited by the constraint in Eq. (12), while 

the remaining other inputs are optimized to improve control performance. Note that the 

degree of improvement in the control performance will be limited when the number of 

input variables is much smaller than that of the output variables. Steps 4 and 5 are the re-

identification steps. Note that, in Step 4, the sum of the outputs from the transfer functions 

with large PMM in the 𝑛∗-th row is estimated without using the models with large PMM.  

4. Case study 

4.1. Settings 

The target process in this paper is a 3-input, 3-output process with first-order transfer 

functions given as 

𝑮(𝑠) =

[
 
 
 
 

4.7

55𝑠+1

4.5

49𝑠+1

5.0

52𝑠+1
5.2

48𝑠+1

4.6

52𝑠+1

5.5

50𝑠+1
4.5

47𝑠+1

5.2

46𝑠+1

4.7

53𝑠+1]
 
 
 
 

.  (16) 

In this case study, the transfer function model given by Eq. (16) is used as the true process, 

and the sampling period is set to 1 s. Only the (3, 2)-entry of the transfer function matrix 

has significant PMM with a steady-state gain 50% larger in the prediction model than in 

the true process. The output noise vector is defined as 

𝒗(𝑡) = [
1−0.1551𝑞−1

1+0.8648𝑞−1 𝑤1(𝑡)
1+0.0464𝑞−1

1+0.6807𝑞−1 𝑤2(𝑡)
1+0.9650𝑞−1

1+0.5256𝑞−1 𝑤3(𝑡) ]
⊤

,  (17) 

where 𝑤𝑛(𝑡)~𝒩(0, 0.1) (𝑛 = 1,2,3), and 𝑞−1 is the backward shift operator.  

4.2. Procedure 

In this case study, the proposed method and the existing method by Shouche et al. (1998) 

were used for excitation of the process. For each excitation method, the following 

procedure was conducted 100 times with different seed values for generating 𝑤𝑛. Note 

that the M-series signals with the clock period of 5 s and amplitudes of 0.2, 0.3, 0.4, and 

0.5 were used as 𝑢̃2 in the proposed method; 9 patterns of the parameters, which affect 

excitation level during data acquisition, were used in the existing method. 
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Table 1: Parameters of the MPC 

Parameters 𝑁P 𝑁C 𝛾 𝑾𝑦 𝑾𝑢 

Values 20 s 5 s 0.8 diag(1,1,1) diag(1,1,1) 

I. Five-hundred data samples were acquired during operation using MPC with either 

the proposed method or the existing method. Here, the MPC parameters were set as 

in Table 1, and the setpoint vector was set to [0, 0, 0]⊤. The control performance in 

this step was validated using MAE, which is defined as 

MAE = ∑ (
1

𝑇
∑|𝑦𝑛(𝑡) − 𝑦set,𝑛|

𝑇

𝑡=1

)

𝑁

𝑛=1

. (18) 

II. Using the data acquired in Step I, re-identification of the transfer function with a 

considerable PMM was performed using Steps 4 and 5 of the proposed method. Here, 

the prediction error method was used as the system identification method. 

III. Five-hundred steps of the control simulation were performed to assess the 

performance of the MPC system after re-identification. Here, the setpoint vector was 

changed from [0, 0, 0]⊤  to [2, 2, 2]⊤  at 𝑡 = 1 s , and  MAE  was used as the 

performance index. 

4.3. Results 

Fig. 1 shows the relationship between the mean MAE in step I (MAE1) and step III (MAE2). 

MAE1 is smaller when the control performance during data acquisition is high, and MAE2 

is smaller when the model accuracy after re-identification is high. Therefore, we can 

achieve both higher control performance during data acquisition and higher model 

accuracy after re-identification as we move in Fig. 1 to the lower left corner. In the 

existing method, MAE2  tends to increase steeply as MAE1  decreases because the 

sufficiently information-rich data cannot be obtained at the smaller MAE1  due to the 

significant reduction of the excitation level. Therefore, the plots for the existing method 

in Fig. 1 cannot approach the lower left corner. In the proposed method, on the other hand, 

MAE2 tends to increase more gently as MAE1 decreases than in the existing method, and 

the data points of the proposed method are more closely located to the lower left corner 

of the figure than those of the existing method. Specifically, MAE1  of the proposed 

method can be reduced to 87% of the minimum MAE1 of the existing method, while 

keeping MAE2  smaller than the minimum MAE2  of the existing method. Thus, the 

proposed method can realize both higher control performance during data acquisition and 

higher model accuracy after re-identification than the existing method. 

5. Conclusions 

In this paper, a new re-identification method for multivariate processes using MPC was 

proposed. In the proposed method, only the inputs of the transfer functions with large 

PMMs are excited, and the other inputs are used for suppressing the variations of the 

controlled variables. The usefulness of the proposed method was validated using a 

simulation case study of a 3-input, 3-output process with first-order transfer functions. As 

a result and compared with the existing method, the proposed method improves the 

control performance during data acquisition by 13% while maintaining a high model 

accuracy after re-identification. As well, it is expected that the proposed method will be 

useful when it is applied to more complicated processes, such as unstable processes and 

non-minimum-phase processes. This will be confirmed in future work. 
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Fig. 1: The relationship between MAE1 and MAE2. 
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Abstract 
 In industry, process input-output data exhibit complex nonlinear dynamics. Such 
behavior must be modeled by nonlinear time series for use in model-based control, 
optimization, and monitoring. In this work, a sequence-to-sequence (StS) model was 
developed for the ASPEN Polymer Plus simulator of an industrial high-density 
polyethylene (HDPE) slurry reactor. Inclusion of attention mechanism and elastic net 
(EN) training was found to substantially improve the gain consistency and time dynamics 
of the model. The resulting model was utilized as a non-linear model predictive control 
(NLMPC) to control the hydrogen to ethylene ratio (HER) and pressure. The NLMPC 
can navigate the grade transition of the reactor as well as maintaining the steady state. 
Keywords: Sequence-to-Sequence; Attention mechanism; HDPE reactor; Grade 
transition. 

1. Sequence-to-Sequence Model 
 Chemical processes or unit operations can be described by nonlinear state-space 
models with 𝑥𝑥 and 𝑑𝑑 being the unknown state and disturbance variables, and 𝑦𝑦 being the 
observed output variables and 𝑢𝑢 being the observed input variables 
 
𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥,𝑢𝑢,𝑑𝑑),𝑦𝑦 = 𝑔𝑔(𝑥𝑥)                                          (1) 
 
 In order to utilize the above model for model predictive control, the unknown 𝑥𝑥 and 
𝑑𝑑 must be identified using past observation of 𝑢𝑢 and 𝑦𝑦 in a past window known functions 
of 𝑓𝑓 and 𝑔𝑔. For a complex chemical process such as a polymerization reactor, both the 
identification procedure and the development of physics-based models 𝑓𝑓  and 𝑔𝑔  are 
nontrivial tasks. 
 It is desirable that the model development and variable identification procedure can 
be done in a purely data-driven approach. In such an approach it is necessary to ensure 
that predictions 𝑦𝑦� of action response in a future horizon, is consistent with the actual 
process. Previously, Chou et al. (2019) employed a sequence-to-sequence (StS) model 
developed for natural language processing to establish a data-driven dynamic model for 
a distillation column. An StS (as shown in Figure 1) consists of an encoder-observer of 
gated recurrent units (GRU) with input 𝑢𝑢�𝑡𝑡−𝑖𝑖 ,𝑦𝑦�𝑡𝑡−𝑖𝑖 ,ℎ�𝑡𝑡−𝑖𝑖−1, and a hidden state output ℎ�𝑡𝑡−𝑖𝑖, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50061-0 



 Zhen-Feng J. et al. 

for ݅ = ෤௧ା௜ݑ and a decoder-predictor GRUs with input ;ܹڮ1 , ෨݄௧ା௜ିଵ, and output ݕ෤௧ା௜ ,
෨݄௧ା௜, for ݅ =  .ܪڮ1

 
Figure 1. Structure of a StS model 

 

 Various forms of similar models have been used for soft sensors (Yuan et al., 2019) 
and key variable identification (Zhou et al., 2021) to identify latent variables for a time 
series. 

2. Attention Mechanism 
 The StS structure is shown in Figure 1 leveraged information of the current hidden 
state identified at the current time ݐ. In a physical state-space model, the knowledge of 
the current unobserved variables ݔ  and ݀  is sufficient for prediction of the future. 
However, in a data-driven model, there is no guarantee that the observed hidden state ݄ 
has successfully captured such information, Hence the attention mechanism (Figure 2, 
Bahdanau et al., 2014) can be included to improve the prediction. 
 

 
Figure 2. Structure of a StS model with attention 

3. Elastic Net and Systematic Model Improvement 
 Normally the prediction loss for the training model can be given by mean absolute 
error:  

ࣦ௣௥௘ௗ =
σ ఀ೛సభಾ σ ฮ௬ො೛,೟,ವି௬෤೛,೟,ವฮಹ

೟సభವא𝒯𝒯ं
ெ×ு

                                        (2) 
 

where ݕො௣,௧,஽ and ݕ෤௣,௧,஽ are observed and predicted values of output respectively, ܪ is the 
length of decoder, 𝑅𝑅 is the number of sensor variables and the data set ܦ is the training 
set 𝒯𝒯ं.  
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 To avoid overfitting, elastic net (EN, Zhou and Hastie, 2005) included the 𝑙𝑙1 (Lasso) 
and 𝑙𝑙2 (ridge regression) norms of the network weights in the loss function with weight 
parameters of 𝜆𝜆1 and 𝜆𝜆2 
 
ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜆𝜆1 ∑ |𝑤𝑤𝑖𝑖|𝑖𝑖 + 𝜆𝜆2 ∑ 𝑤𝑤𝑖𝑖2𝑖𝑖                                         (3) 
 
 The training of such a model is done by minimizing the loss function via adjusting 
parameters 𝜆𝜆1 and 𝜆𝜆2 of weight 𝑤𝑤𝑖𝑖. The performance of the trained model is rated by the 
following combined objective function: 
 
𝒥𝒥 = 𝑅𝑅𝒱𝒱2 + 𝒢𝒢𝒱𝒱                                           (4) 
 
where 𝑅𝑅𝒱𝒱2  is the coefficient of determination of the validation set 𝒱𝒱 and 𝑦𝑦� is the average 
of observed value 𝑦𝑦�𝐷𝐷. 
 

𝑅𝑅𝒱𝒱2 = 1 −
∑ 𝛴𝛴𝑝𝑝=1𝑀𝑀 ∑ �𝑦𝑦�𝑝𝑝,𝑡𝑡,𝐷𝐷−𝑦𝑦�𝑝𝑝,𝑡𝑡,𝐷𝐷�

2𝐻𝐻
𝑡𝑡=1D∈𝒱𝒱

∑ 𝛴𝛴𝑝𝑝=1𝑀𝑀 ∑ �𝑦𝑦�𝑝𝑝,𝑡𝑡,𝐷𝐷−𝑦𝑦�𝐷𝐷�
2𝐻𝐻

𝑡𝑡=1𝐷𝐷∈𝒱𝒱
                                    (5) 

 
and the gain consistency 𝒢𝒢𝒱𝒱 of the validation set 𝒱𝒱. 
 

𝒢𝒢𝒱𝒱 =
∑ �∑ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖𝑖𝑖,𝐷𝐷

𝑇𝑇
𝑡𝑡=1𝐷𝐷∈𝒱𝒱 �𝑖𝑖∈𝒞𝒞,𝑗𝑗∈ℳ

𝑇𝑇𝒱𝒱
                                                                    (6) 

 
 where 𝒞𝒞 is the set of all controlled variables (CV) and ℳ is the set of all manipulated 
variables (MV). A dynamic gain 𝐾𝐾𝑡𝑡,𝑖𝑖𝑖𝑖  is obtained by changing a manipulated variable 
𝑢𝑢𝑗𝑗 , 𝑗𝑗 ∈ ℳ  with a value ∆𝑢𝑢𝑡𝑡,𝑗𝑗  at time instant 𝑡𝑡  and finding the change in the predicted 
output ∆𝑦𝑦�𝑡𝑡,𝑗𝑗 in the future horizon of the controlled variable 𝑦𝑦�𝑖𝑖 , 𝑖𝑖 ∈ 𝒞𝒞. 
 

𝐾𝐾𝑡𝑡,𝑖𝑖𝑖𝑖 = ∆𝑦𝑦�𝑡𝑡,𝑖𝑖
∆𝑢𝑢𝑡𝑡,𝑗𝑗

                               (7) 
 
The consistency 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖𝑖𝑖, a binary variable is given by 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝐾𝐾𝑡𝑡,𝑖𝑖𝑖𝑖〈𝐾𝐾𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖〉�                                                      (8) 

 
 where 𝐾𝐾𝑠𝑠𝑠𝑠

𝑖𝑖𝑖𝑖 is the expected steady-state gain provided by physics-based simulation or 
experience of the operator. The 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 function indicated that we are only concerned 
with the sign of the gain rather than the absolute value. This is because the sign of the 
gain is usually known based on understanding the physics of the process while predicting 
the absolute value required a lot of modeling efforts.  
 Since both 𝑅𝑅𝒱𝒱2  and 𝒢𝒢𝒯𝒯∪𝒱𝒱 are between 0 and 1, they can be summed and optimized 
without any weighting factors.  The following optimization problem can be solved by any 
global optimization procedure such as the differential evolution algorithm (DEA, Qin et 
al., 2008) to find the best solution max

𝜆𝜆1,𝜆𝜆2
𝒥𝒥  in terms of prediction accuracy and gain 

consistency. 
 Such a model should serve as an adequate model to navigate and control a process. 
In our previous work (Chou et al., 2019), we found that 𝑅𝑅𝒱𝒱2  and 𝒢𝒢𝒯𝒯∪𝒱𝒱 are not correlated 
when a simple deep neural network. The good values of 𝑅𝑅𝒱𝒱2  and 𝒢𝒢𝒯𝒯∪𝒱𝒱 can be obtained by 
using an StS model. In this work, the aforementioned procedure of using EN and 
optimization with respect to parameters of EN constitutes a systematic improvement of 
our process model. 
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4. A High-Density Polyethylene Reactor 
An ASPEN Polymer Plus dynamic model of an HDPE reactor was developed using 

the kinetic model provided by Khare et al. (2002). Sensors and controllers data of daily 
steady-state and grade transition operations were generated based on the operation of a 
local plant with varying catalyst activities. MV and CV in the HDPE polymerization 
process as shown in Table 1. The operator employed catalysts flow and hydrogen flow as 
daily MV to control the HER and pressure, The directionality of MV/CV pairs utilized 
for determining gain consistency is shown in Table 2.  
 

Table 1. List of variables 
Type Tag 
MV Flow rate of ethylene 
MV Flow rate of hydrogen 
MV Flow rate of 1-butene 
MV Flow rate of catalyst 
MV Flow rate of cocatalyst 
MV Flow rate of hexane 
MV Temperature of reactor 
CV Pressure of reactor 
CV HER of purge gas 

 

Table 2. Directionality of gain 
 

 HER Pressure 
Flow rate of 

catalyst + – 

Flow rate of 
hydrogen + + 

5. Dynamic Modelling 
The generated data were sampled at 10 minutes intervals. The window length of 

encoder and decoder horizon consists of 24, and 18 samples, or 240 and 180 minutes 
respectively; to ensure that the model can consider time delay and slow dynamic of the 
system. The data of transition between different grades are distributed to the training, 
validation, and testing data set according to the ratio of 6:2:2. There are six kinds of grade 
transition in total, five of which are assigned to the training, validation data set. The other 
is assigned to the testing data set and utilized as the indicator of grade transition 
navigation. 

Comparison of prediction accuracy and gain consistency results of the StS model and 
StS with attention mechanism (StS-ATT) model for the testing data is given in Table 3. 
Substantial improvement can be achieved by including the attention mechanism. 
 
Table 3. The prediction RMSE and R2 result of StS and StS-ATT model in the testing 
dataset. 

Model Pressure HER 𝒢𝒢𝒯𝒯ℯ 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝒯𝒯ℯ  𝑅𝑅𝒯𝒯ℯ2  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝒯𝒯ℯ  𝑅𝑅𝒯𝒯ℯ2  

StS 0.596 0.898 0.064 0.957 0.988 
StS-ATT 0.138 0.995 0.047 0.977 0.999 

  

 Figure 3 (a) shows the HER contribution plot of the hidden states at various time 
points in the past window. The contribution peaks at around 80 minutes in the past 
showing a long time characteristic time and possible time delay of the system. Figure 3 
(b) demonstrated substantial improvement in gain consistency during the optimization of 
EN parameters due to the fact that gain consistency was not included in the neural network 
parameter training. 
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Figure 3. (a)HER contribution plot of attention state in the past (b)The result of 

gain consistency and R squared at various iteration points. 

6. Grade Transition Navigation 
To demonstrate the usefulness of the dynamic input-output model developed, it is 

applied to operation navigation of grade transition of the HDPE reactor. An artificial 
intelligence model predictive control (AIMPC) algorithm was developed based on our 
StS-ATT model using the following bounded optimization: 
 

min
𝑢𝑢𝑗𝑗,𝑡𝑡+𝑘𝑘,𝑘𝑘=1⋯𝐻𝐻,𝑗𝑗∈ℳ

∑ �∑ �𝑦𝑦�𝑖𝑖.𝑡𝑡+𝑘𝑘 − 𝑦𝑦𝑖𝑖
𝑠𝑠𝑠𝑠�2𝑖𝑖∈𝒞𝒞 + 𝛼𝛼∑ �𝑢𝑢𝑗𝑗.𝑡𝑡+𝑘𝑘 − 𝑢𝑢𝑗𝑗.𝑡𝑡+𝑘𝑘−1�

2
𝑗𝑗∈ℳ �𝐻𝐻

𝑘𝑘=1

𝑠𝑠. 𝑡𝑡.
𝑢𝑢𝑗𝑗.𝑙𝑙𝑙𝑙 ≤ 𝑢𝑢𝑗𝑗.𝑡𝑡+𝑘𝑘 ≤ 𝑢𝑢𝑗𝑗.𝑢𝑢𝑙𝑙

                     (9) 

 
The DEA calculates the minimized change of manipulated variable 𝑢𝑢𝑗𝑗.𝑡𝑡+𝑘𝑘 − 𝑢𝑢𝑗𝑗.𝑡𝑡+𝑘𝑘−1 

at each point of time to make the prediction 𝑦𝑦�𝑖𝑖 closer to setpoint 𝑦𝑦𝑖𝑖
𝑠𝑠𝑠𝑠. Simultaneously, the 

manipulated variable 𝑢𝑢𝑗𝑗.𝑡𝑡+𝑘𝑘 at each point of time will be within the operating upper and 
lower limits, 𝑢𝑢𝑗𝑗.𝑢𝑢𝑙𝑙 and 𝑢𝑢𝑗𝑗.𝑙𝑙𝑙𝑙. Again the DEA is used to solve optimization and the solution 
is implemented on the ASPEN Polymer Plus dynamic model to simulate the grade 
transition. The operation changes in HER, pressure, catalyst flow, and hydrogen flow are 
shown in Figure 4(a) to (d) respectively. The blue line is the result of AIMPC and the red 
line is a manual control procedure suggested by the operator. It is found that the pressure 
is more stable than the manual control as shown in Figure 4 (b), and the operation 
navigation adjusts more quickly and amplitude is relatively stable than the manual control 
to make the HER achieve and stay on the setpoint 1 as shown in Figure 4(a). 

 
Figure 4. AIMPC with the StS-ATT (a) the H2/C2H4 ratio (b) pressure of reactor 

(c) the flow rate of catalyst (d) the flow rate of hydrogen. 
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7. Conclusion 
 In this work, the StS-ATT model is used to model the dynamics of a high-density 
polyethylene reactor without the knowledge of catalyst activity, polymerization kinetics, 
or other first principle knowledge. Furthermore, the physical consistency of the gain 
relation, which is between critical manipulated variables and sensor variables, and 
differential evolution optimization of weight parameters of L1 and L2 norm. Such 
improvement allows the application of model predictive control of grade transitions. The 
results showed that the model predictive control of grade transition using the dynamic 
model is more efficient and stable compared to manual transition based on operator 
advice. The optimized operation guidelines can be found that a much quicker transition 
can be achieved by using the model predictive control of our data-driven model. 
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Abstract 

Real time optimization has become an increasingly important subject in the chemical 
industry due to high competition. The combination of process modelling and computer 
simulation provides clear understanding to know about the improvement potential of 
the plant.  

 This paper introduces the real time optimization, and its online implementation in series 
of fixed-bed catalytic reactors process. In general, catalyst deactivation occurs in most 
of the fixed bed reactors, and optimal operation of reactor systems undergoing catalyst 
deactivation is an important economic issue. In the process of controlling the chemical 
reaction, it is necessary to change the operating conditions according to the catalyst 
activity. A system is developed to deal with the depreciating catalyst activity by using 
the concept of mathematical optimization methods that allow to calculate the optimal 
operating conditions of multiple variables simultaneously. The system consists of 3 
modules, (i) Analyser:  This module consists of steady state one-dimensional plug flow 
reactor model, which automatically receives the plant historian data as well as lab 
analysis data such as flow rate, temperature, concentration etc. to estimate the catalyst 
activity. (ii) Predictor: This module develops the empirical equation using the activity 
data from the analyser with the help of Recursive Least Square method. This empirical 
model estimates the real time catalyst activity where no process data is available. In 
general the catalyst activity is assumed to decrease at a constant rate with respect to the 
age as given by the vendor information. (iii)Optimizer: In this module the objective 
function and its constraints are defined. Minimization of objective function is carried 
out using appropriate algorithm while ensuring the product quality constraints. 

 Online implementation is carried out by connecting this system with plant historian 
data and displaying the calculated optimum conditions on the dashboard. The operators 
adjust the process conditions based on the dashboard. As a result it is determined that 
the production cost has significant reduction.   

Keywords: Control; Optimization; Operation; Digital Twin. 

1. Introduction 

Catalytic fixed bed reactors are widely used in the chemical industries, from refinery 
to the fine chemicals.  In a general chemical plant life cycle, once the plant has designed, 
constructed and started operations, the duty of the process engineer is to optimise the 
operating conditions in order to realize the maximum production with minimum 
production cost and high profits.  In order to minimize the cost, it is necessary to 
decrease the by-products formation rate and improve the yield of desired product. The 
performance of the reactor system is adversely affected by the catalyst decay. As the 
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catalyst deactivates, the performance of the reactor decreases which means conversion 
rate of raw materials decreases. A common operation strategy to increase the conversion 
is to adjust the operating condition such as temperature of the reactor to compensate the 
decrease in activity. Change in the temperature leads to change in conversion rate as 
well as the by-products formation rate. In order to optimize the process with minimum 
by-products and maximum conversion, a real time optimization model is necessary to 
simulate, understand the potential and to achieve the better economic efficiency of the 
plant. A number of variables are involved in the optimization of the fixed bed reactors, 
such as feed composition, catalyst activity, flowrates, bed temperature etc. Feed 
composition, flowrates and temperature are online measurable variables and catalyst 
activity is difficult to measure online. There has been a lot of works (Biscarri et al., 
2012 & Fuada et al., 2012) carried out on optimization of fixed bed reactors undergoing 
catalyst deactivation. But in most of the cases the catalyst activity is assumed to 
decrease at a constant rate with respect to the age as given by the vendor information. 
The vendor information is based on the ideal conditions, where as in real case, overall 
catalyst bed activity depends so many factors like porosity, historical operation 
conditions  in catalyst life such as feed flow rate, temperatures etc. 

In this article, a Digital Twin technology is proposed to deal with the optimization 
problem. A Digital Twin is a simulator that reflects the real system behaviour with 
maximum possible precession. The proposed Digital Twin estimates the overall catalyst 
bed activity in real time and based on that activity the system calculates the optimum 
conditions. This Digital Twin consist of a steady state plug flow reactor model to 
simulate the series of fixed bed catalytic reactors. The catalyst activity is estimated 
using lab analysis data such as inlet and outlet concentrations of the reactant and process 
historian data such as temperature, flowrate etc. Along with the reactor model a 
regression equation is developed to estimate the catalyst activity in the absence of lab 
data.  

2. Digital Twin Development 

In this section, detailed procedure of Digital Twin development is described. Before 
going into the Digital Twin development, brief description about the process is 
presented here. The raw materials (A & B in below equations) are passed through the 
series of fixed bed reactors and the reactants convert into the products over the catalyst. 
Along with the desired products C, undesired products (D, E, and F) are also formed 
from the reaction. Products and unreacted fluids absorbs the heat generated from the 
reaction and carry on to the next process. As shown in Figure 1, the inlet temperature 
of the reactor is controlled by manipulating the utility of heat exchanger. 

 

 A + B    → C（desired product）   + ∆H (heat)         (i) 

A + B → D（undesired product）+ ∆H1 (heat)   (ii) 

C + B → E（undesired product）+ ∆H2 (heat)   (iii) 

D + B → F（undesired product）+ ∆H3 (heat)   (iv)  
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Figure 1. Simplified process flow 

This system is configured with following 3 modules. All these modules are developed 
using python. The detailed explanation of each module are as follows. 

I. Analyser 

 This module consists of steady state one-dimensional plug flow reactor model, which 
automatically receives the plant historian data as well as lab analysis data like 
concentration etc. to estimate the catalyst activity. Algorithm for the analyser is shown 
in the Figure 2. 

Figure 2. Calculation flow chart for the Analyser 

Reactants 
in

column
R1

Products 
out

STM
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In step 1, Analyser reads the data from the Plant historian, and does all the pre-
processing like data cleaning, etc.   

In step 2, initial value for the catalyst activity is assumed in order to carry out the plug 
flow reactor calculations.  

Figure.3 Mass and Energy balance around tiny part of reactor 

In step 3 to step 7, plug flow reactor calculation is carried out by dividing the reactor 
into small parts and in each part the material & energy balance equation (v) to (vii) 
reported below are used to calculate the temperature and concentration of each 
component.  

𝐹𝑖𝑛௜ − 𝐹𝑜𝑢𝑡௜ = 𝑟௜ ∙ ∆𝑉               
(v) 

𝑟௜ = 𝐾௜ ∙ 𝑒ିቀ
ா௔೔
ோ்

ቁ         
(vi) 

𝜌 ∙ 𝐶௉(𝑇௜௡ − 𝑇௢௨௧) = 𝑄௥௫௡      
(vii) 

Where i refers to component and Ki is pre-exponential factor which is directly 
proportional to the catalyst activity and the relation is derived from the experimental 
data for each component. 𝑄௥௫௡,  CP, T are the reaction heat, density, specific heat and 
temperature respectively. 

In step 8, once the entire plug flow reactor calculation is done, the overall reactor 
conversion rate is calculated using concentration result obtained. This conversion rate 
is compared with conversion rate calculated from the lab analysis data. If both 
conversion rates are not equal then catalyst activity is updated based on the error and 
the entire calculation procedure from step 3 is repeated. If both the conversion rates are 
equal then catalyst activity is finalized and updated into the plant historian from the 
module. 

II. Predictor 

In this module, the catalyst activity data and catalyst run time is obtained from the 
plant historian. Using this data, regression equation is developed to predict the catalyst 
activity in real time when there is no lab analysis data. Coefficients of regression 
equations are estimated using recursive least square method. This coefficients are 
updated to the plant historian. 

III. Optimizer 

In this module, the objective function as well as its constraints are defined. 
Minimization of objective function is carried out using appropriate algorithm while 
ensuring the product quality constraints. 

Fin
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i
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The objective function is the value of loss in production cost which includes raw 
material loss due to undesired products and utility loss. The price of raw material and 
utility are included in the function. Process constraints such as concentration of by-
product (F) which effects quality of products are also included in the function. 

Optimization problem can be represented in the following equations 

Minimization of Objective function   f = (cost of Material loss + cost of utility loss)  (1) 

Subject to (impurities quantity)  xF <z                                               (2) 

Decision variable are temperature and flowrate for the reactor. 

Where, xF is the concentration of component F, z is the product specification (Target 
value of impurities) 

By-products formation rate is calculated from the process data such as catalyst activity, 
flowrates, temperature etc. and plug flow reactor model. Raw material loss is calculated 
from the by-product formation rate. Utility loss is calculated based on the reactor 
temperature. With help of both heat and material loss optimum operating conditions are 
derived using the optimization algorithm.   

 When coming to multivariable optimization problem, searching for global optimization 
is crucial. However, popular methods like Gradient, Newton etc. does not guarantee the 
global optima, in most of the times these methods struck in the local optima. And the 
same time it is difficult to do deterministically as it is non-linear problem.  Recently 
meta-heuristic algorithms have become a topic of interest in multivariable optimization. 
In this system, PSO (Particle Swarm Optimization) (Deng et al., 2013), one of the meta-
heuristic algorithms is used to calculate the optimum operation conditions.   

3. Online Implementation 

Figure 4. Online implementation Framework 

As shown in the Figure 4, all the modules are connected to the plant historian to receive 
the plant process data as well as lab analysis data. Each module perform their task as 
per the schedule and write back the result to the plant historian. With help of commercial 
package, dashboard (operation guidance system) is developed and the plant optimum 
operating conditions are displayed on operation guidance system. The plant operator 
adjusts the operating conditions according to the display.  
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4. Results  

In this section, optimum operating condition are compared with the conventional 
operation. In conventional operation, temperature of the reactors are determined by 
monitoring the raw materials in the exit of reactor from the lab analysis. When the raw 
material is detected in the exit of the reactor, the temperature of the reactor is increased. 
This increase in temperature leads to increase in conversion rate but at the same time it 
might decrease the selectivity. So, it is necessary to calculate the optimum temperature 
to balance conversion rate & selectivity.  

  In order to quantify the changes in the production cost with respect to catalyst activity, 
comparison of conventional operation and optimum operation is carried out. Figure 5 
shows the difference between optimum operation and conventional operation. As shown 
in the figure, in the first half of catalyst life, the production cost is same (assuming 100% 
for fresh catalyst) in both the conditions. But coming to the later half of the catalyst life, 
production cost is less in optimum operating conditions. Based on the results, optimum 
operating conditions have good impact on the economic point. This system also 
considers the real time market changes of utility and material cost.   

 
Figure 5. Comparison of conventional operating conditions and optimum operating conditions 

5. Conclusions 

Developed Digital Twin model allows to estimate the current activity of the catalyst 
and from that activity it also estimates the optimum operating conditions while ensuring 
the product quality constraints. A comparison study between conventional operation 
and optimum operation is conducted under relevant reaction conditions such as same 
catalyst volume and same inlet flowrates and concentrations. Decrease in production 
cost and increase in selectivity has achieved using this Digital Twin.  These Digital 
Twins are one of the effective method for the processes with deactivating catalyst. 
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Abstract 

Recently model predictive control has made great progress both in theory and in practical. 

To further reduce the computational load, this paper introduces a self-triggered 

mechanism in model prediction control with a decreasing prediction horizon for 

continuous-time non-linear systems subject to bounded disturbances and certain 

constraints. Under this strategy, the next updating point of the optimal control sequence 

is determined according to the current system behaviours instead of the fixed sampling 

period. Besides, a dual-mode scheme is implemented based on the terminal region. Both 

the feasibility of the algorithm and the convergence of the controlled system are proved. 

The application results on a numerical example and a practical system demonstrated the 

superiority of the proposed strategy. 

Keywords: model predictive control, self-triggered mechanism, continuous-time 

nonlinear systems, dual-mode scheme 

1. Introduction 

Model predictive control (MPC), also known as receding horizon control (Morari, 1999), 

mainly consists of prediction model, rolling optimization, and feedback correction (Ding, 

2010). Prediction model aims to show the dynamic behaviour of the controlled system in 

the future. Previous information of the system and the upcoming inputs can be used to 

obtain the prediction of the nominal system, which therefore provides the prior messages 

for the optimal algorithm. Since it is hard for the model-based prediction to match the 

actual controlled process precisely, rolling optimization is adopted. 

So far, MPC has also been extensively studied and developed in theory (Mayne, 2000) 

(Mayne, 2014). Some scholars proposed a self-triggering control strategy that adaptively 

selects the sampling interval for input affine nonlinear systems (Hashimoto, 2016). 

Different from the normal pattern of MPC, the next update instant can be pre-calculated 

based on the current information under the self-triggered mechanism (Sun, 2019). 

Therefore, the computational burden of carrying out self-triggered MPC is decreased both 

on frequency and one-shot complexity of solving the OCP with the adaptive prediction 

horizon. 

A predictive control strategy based on self-triggered mechanism is proposed for nonlin- 

ear continuous-time systems subject to external additive disturbance and constraints of 

states and inputs. In the framework of dual-mode model predictive control (Michalska, 

1993), sufficient conditions are derived to guarantee the recursive feasibility in MPC 

control mode, the convergence to the terminal region within finite time, and the stability 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50063-4 
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of the system after entering the terminal region. Furthermore, a simulation example is 

presented to verify the feasibility and effectiveness of the proposed strategy. 

The remainder of this paper is organized as follows. Section 2 gives the description of 

system model and preliminary. In Section 3, the main problems to be solved are 

introduced, and the associated strategy in MPC control mode is described. In Section 4, 

simulation results are provided. Section 5 draws the conclusions. 

2. Preliminary 

2.1. System Model 

The perturbed continuous-time nonlinear system and its nominal form are considered as: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) + 𝑤(𝑡),       𝑥(0) = 𝑥0                                                                   (1)  

𝑥̇̂(𝑡) = 𝑓(𝑥̂(𝑡), 𝑢̂(𝑡)),    𝑥̂(0) = 𝑥0                                                                                     (2)  

where 𝑥(𝑡) ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑚, and 𝑤(𝑡) ∈  𝑅𝑛 are the state, control input, and bounded 

disturbance, respectively. Required constraints are presumed as follows: 

𝑥(𝑡) ∈ 𝒳,  𝑢(𝑡) ∈ 𝒰,  𝑤(𝑡) ∈ 𝒲                                                                                   (3)  

Specifically, both 𝒳 ⊆ ℛ𝓃  and 𝒰 ⊆ ℛ𝓂  are compact sets containing the origin as an 

interior point. 𝒲 ≜ {𝑤 ∈ ℛ𝓃: ‖𝑤‖ ≤ ρ} represents the boundary of the disturbance. The 

system function 𝑓(𝑥, 𝑢)  is a twice continuously differentiable nonlinear function 

satisfying 𝑓(0,0) = 0, and is stabilizable in linearization form (Dunbar, 2007). Besides, 

it is assumed that 𝑓(𝑥, 𝑢)  is Lipschitz continuous respect to 𝑥 ∈ 𝒳  with Lipschitz 

constant 𝐿𝑓 , i.e., 

‖𝑓(𝑥1, 𝑢) − 𝑓(𝑥2, 𝑢))‖𝑃 ≤ 𝐿𝑓‖𝑥1 − 𝑥2‖𝑃                                                                       (4)  

2.2. Lemma 1 

The Gronwall-Bellman inequality in continuous-time form is introduced. If function 

β(⋅): ℛ → ℛ>0 satisfies the following inequality (Rawlings, 2017): 

μ(𝑡) ≤ α(𝑡) + ∫ β(𝑠)μ(𝑠)𝑑𝑠
𝑡

𝑎

, 𝑡 ∈ [𝑎, 𝑏] 

Then, for 𝑡 ∈ [𝑎, 𝑏], we have: 

𝜇(𝑡) ≤ 𝛼(𝑡) + ∫ 𝛼(𝑠)𝛽(𝑠) exp (∫ 𝛽(𝑟)𝑑𝑟
𝑡

𝑠

) 𝑑𝑠
𝑡

𝑎

, 𝑡 ∈ [𝑎, 𝑏] 

Moreover, if 𝛼(⋅): ℛ → ℛ is a nondecreasing function, then a more explicit conclusion 

can be drawn: 

μ(𝑡) ≤ α(𝑡) exp (∫ β(𝑠)𝑑𝑠

𝑡

𝑎

) , 𝑡 ∈ [𝑎, 𝑏]                                                                         (5) 

2.3. Lemma 2 

For the system (2)(1), within the scope that 𝑋𝑟 = {𝑥̂: ‖𝑥̂‖𝑃
2 ≤ 𝑟2}, there exists a state 

feedback 𝐾𝑥 ∈ 𝑈 such that: 

𝑑(‖𝑥̂(𝑡)‖𝑃
2)

𝑑𝑡
≤ −‖𝑥̂(𝑡)‖Φ

2                                                                                                   (6) 
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Suppose 𝐴 and 𝐵 are the linearization matrices. Given a 𝑄 > 0, 𝑅 > 0 and 𝐾 satisfying 

that λ(𝐴 + 𝐵𝐾) < 0, there is a Lyapunov equation to comply with: 

𝑃(𝐴 + 𝐵𝐾 + 𝜅𝐼) + (𝐴 + 𝐵𝐾 + 𝜅𝐼)𝑇𝑃 = −Φ 

where Φ = 𝑄 + 𝐾𝑇𝑅𝐾.The value of κ is selected to ensure λ(𝐴 + 𝐵𝐾 + κ𝐼) < 0. 

3. Description for OCP and Triggering Mechanism 

3.1. OCP 

At the triggering instant, the optimal control trajectory can be obtained by solving an 

optimal control problem as follows: 

𝑢̂
∗(𝑠; 𝑡𝑘) = arg min

𝑢̂(𝑠;𝑡𝑘)
𝐽

𝑁
(𝑥̂(𝑠; 𝑡𝑘), 𝑢̂(𝑠; 𝑡𝑘), 𝑇𝑘) 

= arg min
𝑢(𝑠;𝑡𝑘)

∫ ‖𝑥̂(𝑠; 𝑡𝑘)‖𝑄
2

𝑡𝑘+𝑇𝑘

𝑡𝑘

+ ‖𝑢̂(𝑠; 𝑡𝑘)‖𝑅
2  𝑑𝑠 

                 +‖𝑥̂(𝑡𝑘 + 𝑇𝑘; 𝑡𝑘)‖𝑃
2  

𝑠. 𝑡. 𝑥̇̂(𝑠; 𝑡𝑘) = 𝑓(𝑥̂(𝑠; 𝑡𝑘), 𝑢̂(𝑠; 𝑡𝑘)),  𝑥̂(𝑡𝑘; 𝑡𝑘) = 𝑥(𝑡𝑘) 

       𝑢̂(𝑠; 𝑡𝑘) ∈ 𝒰                                                                                                                            (7) 

      𝑥̂(𝑠; 𝑡𝑘) ∈ 𝒳𝑠−𝑡𝑘
≜ 𝒳 ⊝ 𝒯𝑠−𝑡𝑘

 

      𝑥̂(𝑡𝑘 + 𝑇𝑘; 𝑡𝑘) ∈ 𝒳𝜀 ≜ {𝑥: ‖𝑥‖𝑃
2 ≤ 𝜀2} 

𝒳𝑠−𝑡𝑘
 represents the contracted constraints at the 𝑠  instant from 𝑡𝑘 . Moreover, 𝒯𝑠−𝑡𝑘

 

denotes the deviation between the predictive state from the actual state at 𝑠. The detailed 

definition of 𝒳𝑠−𝑡𝑘
 and 𝒯𝑠−𝑡𝑘

 will be discussed below. 

3.2. Self-triggered Strategy 

At the current time 𝑡𝑘, the interval between 𝑡𝑘 and 𝑡𝑘+1 and the reduction of prediction 

horizon are defined as follows: 

𝑚𝑡𝑘
≜ 𝑡𝑘+1 − 𝑡𝑘 

𝑛𝑡𝑘
= 𝑇𝑘 − 𝑇𝑘+1 

𝑚𝑡𝑘
= 𝑚𝑖𝑛{𝑚̂𝑡𝑘

, 𝑚̌𝑡𝑘
, 𝑇𝑘}                                                                               (8)  

𝑚̂𝑡𝑘
= 𝑠𝑢𝑝{𝑚𝑡𝑘

> 0: 𝜆̅(√𝑃) ⋅ 𝜌 ⋅ 𝑚𝑡𝑘
⋅ 𝑒𝐿𝑓𝑇𝑘 ≤ 𝑟 − 𝜀}                          (9)  

𝑚̌𝑡𝑘
= 𝑠𝑢𝑝{𝑚𝑡𝑘

> 0: 𝜆̅(√𝑃) ⋅ 𝜌 ⋅ 𝑚𝑡𝑘
⋅ 𝑒𝐿𝑓𝑇𝑘 ⋅ (𝑟 + 𝜀)    

                                       + ∫ [( 𝜆̅(𝑄) ⋅ 𝜌 ⋅ 𝑚𝑡𝑘
⋅ 𝑒𝐿𝑓(𝑠−𝑡𝑘))

2
𝑡𝑘+𝑇𝑘

𝑡𝑘+1

(10)   

                            2𝜆̅(𝑄)𝜌𝑚𝑡𝑘
𝑒𝐿𝑓(𝑠−𝑡𝑘) + ‖𝑥̂∗(𝑠; 𝑡𝑘)‖𝑄

2 ]𝑑𝑠

≤ 𝜎 ∫ (‖𝑥̂∗(𝑠; 𝑡𝑘)‖𝑄
2 + ‖𝑢̂∗(𝑠; 𝑡𝑘)‖𝑅

2 ) 𝑑𝑠
𝑡𝑘+1

𝑡𝑘

} 

𝑇𝑘+1 = 𝑚𝑖𝑛{ 𝑚𝑡𝑘
, 𝑇𝑘̃} (11) 

where σ ∈ (0,1), and 𝑇𝑘̃ is defined as: 
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𝑇𝑘̃ = 𝑖𝑛𝑓{0 ≤ ℎ < 𝑇𝑘: 𝑥̂
∗(𝑡𝑘 + ℎ; 𝑡𝑘) ∈ 𝒳𝜀} (12) 

 

4. Simulation 

In this section, a cart-damper-spring system are given to verify the effectiveness of the 

proposed control scheme. The application results are compared with the conventional 

time-triggered MPC. The specific application of a cart-damper-spring system is presented 

by the following dynamics (Li, 2014): 

{

𝑥̇1(t) = 𝑥2(𝑡)

𝑥̇2(t) = −
𝜁

𝑀𝑐

𝑒−𝑥1(𝑡)𝑥1(𝑡) −
ℎ𝑑

𝑀𝑐

𝑥2(𝑡) +
𝑢(𝑡)

𝑀𝑐

+
𝜈(𝑡)

𝑀𝑐

(13) 

where 𝑥1(𝑡) and 𝑥2(𝑡) denote the location and velocity of the cart, respectively. ω(𝑡) is 

the external disturbance bounded by ‖𝑣(𝑡)‖ ≤ 0.0025. The weight of the cart is 𝑀𝑐 =

1.25𝑘𝑔 , and the stiffness of the spring is 𝜁 = 0.9𝑁/𝑚 . The damper factor is ℎ𝑑 =

0.42𝑁/𝑚. The input 𝑢(𝑡) is constrained as −0.9 ≤ 𝑢(𝑡) ≤ 0.9. The state constraint set 

is given by 𝒳 = 𝑥: ‖𝑥1‖ ≤ 0.35, ‖𝑥2‖ ≤ 1 . The stage weighting matrix 𝑄  is 𝑄 =

(
0.06 0

0 0.06
), the input weighting matrix 𝑅 is 0.001, and then the terminal weighting 

matrix can be calculated as 𝑃 = (
0.1248 0.0260
0.0260 0.0358

) . The Lipschitz constant of the 

system in (13)  is 𝐿𝑓 = 0.1703 , and the feedback matrix 𝐾  is 𝐾 =

(−1.6000 −2.3300) . The terminal parameters are presented as ε = 0.072 and 𝑟 =

0.076. The compromising factor σ is 0.12, and the initial state is 𝑥0 = (0.3 −1)𝑇. 

Fig.1 presents the state and input trajectory. Fig.2 denotes the triggered instants and 

prediction horizons at each sampling instant 𝑡𝑘. Similar to the former numerical case, the 

validity of the strategy has been shown from a drastic descension in triggering interval 

and a moderate falling in prediction horizon. 
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Figure 1: State and input trajectory for (13). 

 

 
Figure 2: Triggering instants and prediction horizons for (13). 

5. Conclusions 

In this paper, we proposed a dual-mode MPC with a self-triggered strategy and declining 

prediction horizons. First, a self-triggered algorithm was proposed. Second, the feasibility 

and stability in and out of the terminal region were analysed. In addition, within the 

terminal region, the ultimate boundary of the system states related to perturbs was 

estimated. Moreover, a sufficient condition is proposed to prevent Zeno behavior. Finally, 

simulation results were presented to show the effectiveness of the proposed algorithm. 
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Abstract 

This study compares the performance of two widely used control strategies for industrial 
systems with constraints, namely MPC and selector-based PID control. The simulation 
studies are carried out using models built from historical data provided to us for an 
industrial heat exchanger employed at a South-East Asian processing facility. The 
comparative studies specifically address the deterioration of performance for the two 
aforementioned strategies in the presence of varying degrees of valve stiction. Aspects of 
performance recovery via addition of derivative action and retuning of PI parameters for 
selector-based control are also discussed. The studies suggest that in addition to being a 
more formal and robust method to handle constraints, MPC is also able to retain its 
performance to a larger degree in the presence of stiction as compared to selector-based 
control.  

Keywords: Selector-based PID control; Heat exchanger control; Model predictive 
control; Valve stiction.  

1. Introduction 

Heat exchangers are an indispensable part of process industries owing to their major role 
in the energy efficient operation of plants. Since processes operate in the vicinity of an 
operating point (or a few such points), a heat exchanger control loop is primarily designed 
for the regulatory control of the temperatures of relevant exit streams. Proportional-
Integral-Derivative (PID) controllers are the most widely deployed controllers in the 
process industry because of their simplicity and an abundance of pre-existing tuning rules. 
However, tuning PID controllers for a heat exchanger control loop is not a trivial task 
when heat exchangers display non-linearity and time changing behavior. Additionally, 
some processes have inherent economic and safety constraints which impose bounds on 
the controlled and manipulated variables (CVs and MVs). For instance, direct 
manipulation of the hot/cold stream may be sufficient for control if it is an utility, however 
if there are constraints on both streams, bypassing is widely used in the industry (Luyben, 
2011). Despite the popularity of PID controllers, one major drawback in their 
implementation is their inability to innately accommodate the aforementioned constraints. 
In order to circumvent this problem, many industrial practitioners resort to the usage of 
ad-hoc measures like selector-based PID control. In a selector-based control framework, 
a single MV is linked with multiple CVs through different PID controllers. At a given 
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instant, all these controller outputs are fed to a selector block and the value of the MV is 
chosen based on a safety logic. Although, selector-based control is widely prevalent, 
tuning the multiple controllers acting on the same MV is not straighforward and is usually 
carried out based on the empirical knowledge of plant operators. Furthermore, this 
approach becomes very cumbersome as the number of variables increase and an attractive 
alternate is the use of multivariable controllers  such as Model Predictive Control (MPC) 
(Krishnamoorthy & Skogestad, 2020).  MPC formally encapsulates the objectives and 
constraints of a system irrespective of its size (Camacho & Bordons, 2007) and has served 
as an effective control tool across numerous disciplines over the last few decades (Lee, 
2011). Given the contrasting natures of the two aforementioned control strategies, it is 
interesting to assess their performance on industrial systems with constraints. 
Additionally, to the best of our knowledge, such a comparative assessment is scarce in 
the literature. To this end, we have conducted simulation studies comparing the 
performance and robustness of the two methods on an industrial heat exchanger in our 
forthcoming work (Kumar et al., 2021). However, it does not consider the effect of control 
valve faults on the two methodologies.  Since, valve stiction is one of the most commonly 
occurring valve faults (Choudhury et al., 2008), comparative studies specifically 
addressing the deterioration of performance for the two aforementioned strategies in the 
presence of varying degrees of valve stiction is considered in this work.  
 
The rest of this paper is organized as follows. Section 2 contains the description of the 
industrial heat exchanger considered in this study. Section 3 comprises the simulation 
studies for selector-based control and MPC in the presence of stiction for two different 
modes of operation of the exchanger. Finally, conclusions and prospective future works 
are discussed in the last section.  

2. Heat exchanger system  

The heat exchanger system considered in this study (see Figure 1) is currently employed 
at a South-East Asian processing facility. The exchanger cools a gas stream to a pre-
specified temperature by exchanging heat with a liquid stream. Under nominal operating 
conditions, the gas outlet temperature can be readily controlled via the manipulation of 
the valve at the liquid outlet. However, because of the nature of process operation, there 
is a substantial variation in the gas flow rate throughout the day. This variability leads to 
the possibility of two-phase flow on the outlets of both streams. At low gas flows, the gas 
outlet may reach its due point; whereas for high gas flows, the liquid outlet might reach 
its bubble point. As the system is not designed for two-phase flow, the employed control 
architecture needs to take these constraints into account. To this end, there is a provision 
to bypass the gas so as to avoid two-phase flow on either side. Hence, in the bypass mode, 
the system has three CVs: Gas outlet temperature (CV1), Liquid outlet temperature (CV2), 
and Combined gas outlet temperature (CV3); two MVs: Liquid valve (MV1) and Gas main 
valve1 (MV2); and three disturbance variables (DVs): Gas flow rate (DV1), Gas inlet 
temperature (DV2) and Liquid inlet temperature (DV3).  
 
In order to handle the constraints on the outlet stream temperatures, the currently 
employed control architecture uses four controllers (TICs 1-4) in unison with two 
selectors. TIC-1 controls CV1 through MV1 under nominal conditions, whereas under the  

                                                            
1 The main and bypass valves for the gas side are manipulated simultaneously by the same magnitude in opposite 
directions. Hence, they are together considered as one MV in the current control architecture.  
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Figure 1: Schematic of the heat exchanger under study 

 
bypass mode, TIC-4 controls CV3 through MV2. TIC-2 and TIC-3 both control CV2 with 
set-points 10 degrees apart through MV1 and MV2 respectively. This accounts for large 
abrupt changes in gas flow, where bypassing may not be sufficient to prevent liquid 
overheating and hence MV1 needs to be adjusted proactively. A max selector on the 
output of TICs 1 and 2 controls MV1, whereas a min selector on TICs 3 and 4, controls 
MV2. All the aforementioned information is captured in the Simulink model shown in 
Figure 2.    

3. Simulation studies  

The simulations conducted in this section are carried out using models identified, PID 
controller tuning, and MPC parameters used in Kumar et al. (2021). The models used are 
discrete state-space models (see Eqs. (1-2)) identified using an in-house developed 
multivariable identification algorithm (Schaper et al., 1994) on the historical plant data 
available to us2.  
 

𝑋௧ାଵ ൌ 𝑋௧ ൅ 𝐺𝑢௧ ൅ 𝑤௧ ሺ1ሻ 
 

𝑦௧ ൌ 𝐻𝑋௧ ൅ 𝐴𝑢௧ ൅ 𝐵𝑤௧ ൅ 𝑣௧ ሺ2ሻ 
 
For the purpose of this work, we have considered stiction only in the liquid valve (MV1) 
as it is the primary manipulated variable and is subject to more wear and tear as opposed 
to the gas valve (MV2).  Additionally, to quantify stiction, a single parameter stiction 
model as proposed by Srinivasan et al. (2005) has been used.  
 

𝑥ሺ𝑡ሻ ൌ ൜
𝑥ሺ𝑡 െ 1ሻ    𝑖𝑓 |𝑥ሺ𝑡 െ 1ሻ െ 𝑢ሺ𝑡ሻ| ൑ 𝑑

𝑢ሺ𝑡ሻ                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ሺ3ሻ 

where 𝑥ሺ𝑡ሻ and 𝑥ሺ𝑡 െ 1ሻ are the present and past MV movements, 𝑢ሺ𝑡ሻ is the present 
controller output (OP), and 𝑑 is the stiction band which is usually represented as a 
fraction/percentage of the controller output (OP) range. A non-zero 𝑑 value suggests the 
presence of stiction and its severity is directly proportional to the value of 𝑑.   
                                                            
2 Please contact the authors for detailed information on the models used in the simulations. 
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Figure 2: Exchanger model with selector-based control and stiction in liquid valve  

3.1. Simulation results for nominal mode  

We first consider the nominal mode of operation wherein only MV1 is active. For 
disturbance trends observed during a day of operation, we simulate the closed-loop 
performance of the two control strategies under the presence of 1 and 2 percent stiction. 
Additionally, since the current controllers in the selector-based strategy are PI and 
judicious addition of derivative action is recommended as one of the methods of stiction 
compensation (Patwardhan, 2014), simulation studies with PID control are also included. 
Figures 3 and 4 show the closed-loop responses3 for all the control strategies for 𝑑 ൌ 1% 
and 𝑑 ൌ 2% respectively. For all the strategies, both the outlet temperatures are at a safe 
margin from the two-phase regimes, despite the presence of stiction. The integral of 
squared errors (ISE) for CV1 using PI, PID, and MPC for 𝑑 ൌ 1% and 𝑑 ൌ 2% are 
ሾ432. 62  339.02  158.07ሿ and ሾ1116.65  1082.08  699.05ሿ respectively. It can be seen 
that MPC provides the best performance whereas addition of derivative action does lead 
to improvement in the performance of the selector-based methodology. However, since 
there is only one MV at the disposal of MPC, the performance gap with respect to 
selector-based control in the presence of stiction is not as stark as the stiction free case.  
 
3.2. Simulation results for bypass model  

Similar to the nominal mode, simulation studies were carried out for the bypass mode for 
two different levels of stiction in the liquid valve. MPC is able to keep CV3 close to the 
set-point with ISE values of 35.18 and 39.43 for 𝑑 ൌ 1% and 𝑑 ൌ 2% respectively, while 
satisfying the safety constraints on other variables (see Figure 5). It is also able to keep 
the secondary variable (MV2) at the desired opening of 100%. Selector-based control 
provides inferior performance in terms of squared error and shows a significant deviation 
from the set-point for CV3 as opposed to MPC with an ISE value of 240.67 for 𝑑 ൌ 1% as 
evident from Figure 5. For 𝑑 ൌ 2%, MV1 saturates leading to two-phase flow on the gas 
side, and the responses have been omitted for the sake of brevity. It is apparent from the 
                                                            
3 The numerical values of the controller set-points and stream temperatures have been omitted in all simulation 
studies for proprietary reasons.  
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simulation results that MPC can handle stiction without retuning any of the parameters 
whereas the selector-based methodology can be severely limited in its presence.     

4. Conclusions and future work  

In this work, we carry out comparative studies between selector-based control and MPC 
for an industrial heat exchanger with a sticky valve. Simulation studies show that 
judicious inclusion of derivative action can improve the performance of selector-based 
control in the presence of stiction; however, MPC is able to preserve its performance 
better, and one can expect its higher performance to hold, especially for more complex 
systems. Future work includes inclusion of stiction in the gas valve, exploration of 
strategies for retuning of PID controllers for multivariable systems using selectors, and 
optimization of MPC parameters for different levels of stiction.   

 
Figure 3: Performance Comparison for Nominal Mode with d=1% for Liquid Valve 

 
Figure 4: Performance Comparison for Nominal Mode with d=2% for Liquid Valve 

A comparative study between MPC and selector-based PID control for 
an industrial heat exchanger  
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Figure 5: Closed-loop responses for bypass Mode with Sticky Liquid Valve 
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Abstract 
Electrolyzers can reduce their electricity costs through demand response (DR) by 
adapting their production rate to time-varying market prices. Although the production rate 
can often be adapted rapidly, exploiting the full DR potential of an electrolyzer requires 
to consider slow temperature dynamics, leading to challenging mixed-integer dynamic 
optimization problems. In this contribution, we propose a dynamic ramping reformulation 
for real-time scheduling optimization of electrolyzers considering these slow temperature 
dynamics. Starting from a nonlinear dynamic model, the limits of the temperature 
gradient are derived to guarantee that the optimization result is feasible on the original 
model. The limits are then approximated conservatively by piece-wise affine functions 
leading to a mixed-integer linear program (MILP). Varying the number of piece-wise 
affine segments allows to explicitly balance model conservativeness against 
computational burden. We apply our reformulation to a validated alkaline electrolyzer 
model from literature. Our dynamic temperature ramping approach reduces production 
costs by 15.9 % compared to nominal operation. A quasi-steady-state optimization, which 
is restricted to production rates with steady-state temperatures in the allowed range, only 
leads to 12.8 % improvement.  The proposed formulation achieves optimization runtimes 
below one minute, which is sufficiently fast for real-time scheduling.   

Keywords: Electrolysis, Demand response, Mixed-integer linear programming 

1. Introduction 
Demand response (DR) allows consumers to reduce their electricity costs by adapting 
production rate to time-varying market-prices and ideally also stabilizes the electricity 
grid (Zhang and Grossmann, 2016). Particularly suitable for DR are electrochemical 
production processes such as chlor-alkali or water electrolysis because they can often 
adapt their production rate rapidly (Burre et al., 2020). More specifically, the time scale 
of electrochemical reactions is significantly faster than the hourly time scale typical for 
electricity prices (Simkoff and Baldea, 2020). Therefore, step changes of the production 
rate can often be assumed in electrolyzer scheduling optimization. Scheduling usually 
considers a time horizon in the order of one day. However, electrolyzers feature slow 
temperature dynamics in the order of hours (Gabrielli et al., 2016). Neglecting these slow 
temperature dynamics during scheduling, reduces the flexibility of the electrolyzer to 
steady-state-feasible production points that are limited by the minimum and maximum 
allowed temperature (Simkoff and Baldea, 2020). From a technical point of view, 
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production rates outside of the steady-state-feasible range can be applied in transient 
operation for a limited amount of time (Flamm et al., 2021). For example, the energy park 
Mainz (Germany) has a PEM electrolyzer with 4 MW nominal power that can operate at 
a peak power of 6 MW for 15 minutes if load is reduced afterwards to allow cooling 
(Kopp et al., 2017). Simkoff and Baldea (2020) consider temperature effects of a chlor-
alkali electrolyzer using dynamic optimization but replace the original nonlinear model 
with a data-driven surrogate model. On top of dynamic effects, electrolyzers have a 
minimum allowed current (Ulleberg, 1998). Consequently, the possibility to turn off the 
electrolyzer can only be considered in scheduling if discrete decisions are included, 
leading to computationally challenging mixed-integer dynamic optimization (MIDO) 
problems.  
In this contribution, we propose a mixed-integer linear programming (MILP) formulation 
for electrolyzer scheduling optimization. To this end, we consider temperature dynamics 
using a dynamic ramping approach (Baader et al., 2021). Accordingly, the limits of the 
temperature gradient are functions of the electrolyzer state. In contrast to data-driven 
surrogate models, our reformulation guarantees results that are feasible on the original 
nonlinear model. The dynamic temperature ramping reformulation is introduced in 
Section 2. In Section 3, we apply the reformulation to an alkaline electrolyzer model 
(Ulleberg, 1998) and present results in Section 4. Section 5 concludes the work.  

2. MILP Formulation for Electrolyzer Scheduling 
2.1. Assumptions 
Our reformulation is not restricted to one specific electrolyzer model. The reformulation 
only relies on a few assumptions that are typically satisfied. The main assumption is that 
the temperature 𝑇𝑇 is the only differential state. Accordingly, all other states can be 
considered in (quasi-)steady-state on the scheduling-relevant hourly timescale, which is 
often valid as electrochemical reactions typically occur on a much faster time scale. 
Further, we assume that there are two degrees of freedom in electrolyzer operation: the 
current 𝐼𝐼 and an input 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  acting on the cooling power. For instance, 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   can be the 
temperature of raw material (Simkoff and Baldea, 2020) or the flow rate of a cooling fluid 
(Ulleberg, 1998). Thus, the scheduling-relevant variables product flow rate 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, electric 
power 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, and temperature gradient 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 can be calculated as nonlinear functions of 𝐼𝐼, 

𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , and 𝑇𝑇 (Figure 1, left). For instance, in a simple model, the voltage 𝑈𝑈 is modeled as 
an empiric function of 𝐼𝐼 and 𝑇𝑇 (Ulleberg, 1998). The voltage 𝑈𝑈 is needed to calculate both 
electric power and temperature gradient. In more physically motivated models, the 
voltage also depends on partial pressures, which are determined by the mass balances 
(Gabrielli et al., 2016). As these mass balances can be assumed to be in steady state on 
the hourly time scale, the balances give a nonlinear system of algebraic equations that can 
be solved for given 𝐼𝐼, 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , and 𝑇𝑇. Thus, our assumption is still valid. Moreover, we 
assume that the nonlinear functions can be inverted for a given temperature 𝑇𝑇. More 
specifically, the input 𝐼𝐼 can be calculated as a function 𝐼𝐼 = 𝜙𝜙𝐼𝐼(𝑇𝑇,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) of temperature 
𝑇𝑇 and output 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and the input 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be calculated as a function 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝜙𝜙𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
), which additionally to 𝑇𝑇 and 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 depends on the output 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. 

Finally, the variables 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑇𝑇 are bounded by minimum and maximum values. We 
assume that step changes can be applied on the scheduling time scale to the current 𝐼𝐼 
(Flamm et al., 2021). Thus, ramping constraints on the current 𝐼𝐼 are neglected, but can be 
added in a straightforward way if necessary. 
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Figure 1: Original nonlinear model (left) and reformulation with piece-wise affine (PWA) 
function and dynamic ramping constraint in bold font (right).  

2.2. Reformulation 
In our reformulation, we directly use the scheduling-relevant variables product flow 
𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝, and temperature gradient 𝑝𝑝𝑑𝑑

𝑝𝑝𝑑𝑑
 as degrees of freedom and do not model 𝐼𝐼 and 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

explicitly, which is possible as they can be calculated from 𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 and 𝑝𝑝𝑑𝑑
𝑝𝑝𝑑𝑑

. The bounds of 
the temperature gradient depend on both temperature 𝑇𝑇 and product flow rate 𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 
(Figure 1, right). To choose these bounds, we sample the two-dimensional space given 
by the bounds of 𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 and 𝑇𝑇. For every pair (𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝, 𝑇𝑇), we first calculate the current 𝐼𝐼 
from the function 𝜙𝜙𝐼𝐼(𝑇𝑇,𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝) introduced above. Second, we calculate the true nonlinear 
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function of  𝑝𝑝𝑑𝑑
𝑝𝑝𝑑𝑑

. Subsequently, we approximate the nonlinear ramping limits 
conservatively by piece-wise affine (PWA) functions. Because of this conservativeness, 
the resulting temperature profile is guaranteed to be feasible on the original nonlinear 
model. In principle, choosing the conservative limits can be done by bivariate regression 
(Adeniran and El Ferik, 2017). However, in our case study, we observe that the true 
nonlinear limits have an almost linear dependence on the electrolyzer temperature 𝑇𝑇. This 
observation is likely transferable to other cases because the ramping limits are mainly 
temperature dependent due to the heat loss to the ambient. This heat loss is essentially 
proportional to the temperature difference between electrolyzer temperature 𝑇𝑇 and 
ambient temperature. However, the ramping limits are nonlinear in the production rate 
𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝. Thus, we set up piece-wise affine functions by dividing the range of 𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 into 
segments. In every segment, the affine functions are parametrized through an 
optimization that minimizes the distance to the nonlinear bounds. By including more 
PWA segments, the ramping limits come closer to the true nonlinear limits. However, 
also the number of binary variables increases.  
Finally, we follow the established approach to approximate the electric power 𝑃𝑃𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐  as 
affine function of 𝑛𝑛𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 and 𝑇𝑇 using linear regression (Flamm et al., 2021). Here, small 
approximation errors are acceptable as they can be compensated by adapting grid 
electricity consumption. An MILP formulation is achieved by discretizing the 
temperature evolution using orthogonal collocation on finite elements (Biegler, 2010).  

3. Case Study 
As case study, we apply our reformulation to a validated alkaline electrolyzer model 
(Ulleberg, 1998). This model uses empirical functions for the voltage and hydrogen 
production depending on current 𝐼𝐼 and temperature 𝑇𝑇. The input 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the cooling flow 
rate, and the temperature gradient 𝑝𝑝𝑑𝑑

𝑝𝑝𝑑𝑑
 can be computed as function of 𝐼𝐼, 𝑇𝑇, and 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Thus, 

the model satisfies our assumptions (compare to Subsection 2.1 and left part of Figure 1). 
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The operating range is given by minimum and maximum current density 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 40 mA
cm2 

and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 300 mA
cm2  as well as minimum and maximum temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 50 °C and 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  = 80 °C (Ulleberg, 2003). 

 
Figure 2: Left: Minimum and maximum temperature, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, maximum steady-state-
feasible current 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 , and steady-state temperature 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for minimum and maximum cooling 
fluid rate 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , and 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚. Right: Evolution of temperature 𝑇𝑇 for fixed current density 𝑖𝑖 and 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚.  

The steady-state-feasible operating region is given by 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 40 mA
cm2  and the maximum 

steady-state-feasible current density 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 144 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐2 (Figure 2, left). However, 

significantly higher currents are possible for a scheduling-relevant time. Exemplarily, if 
the temperature starts from 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 50 °C, a current density of 250 mA

cm2 can be applied 
for more than 1.5 hours until the maximum temperature is reached (Figure 2, right).  
In order to describe the temperature dynamics by PWA temperature ramping limits 
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, we divide the range of the production rate 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 into equidistant 
segments, as described in Section 2. We observe that the nonlinearities with respect to 
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are so strong that for less than three affine segments the minimum and maximum 
ramping limits overlap. We vary the number of affine segments 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 between 3 and 10 
and choose 5 segments, which give a reasonable approximation (Figure 3). 

 
Figure 3: Nonlinear and piece-wise affine (PWA) limits of temperature gradient 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 as function of 

product flow 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  for temperature 𝑇𝑇 = 80 °C and different numbers of segments 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠. 

In our numerical study, we choose a nominal production rate of 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 = 2.69 Nm
3

h
, which 

equals 80 % of the production rate achieved with the maximum steady-state feasible 
current density 𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 . Furthermore, we assume that the nominal production rate must be 
met on average over the one-day time horizon and use a recent German day-ahead market 
electricity price profile from April 2nd, 2021. We study the economic performance of our 
scheduling optimization in a simulation with the original nonlinear process model. This 
strategy allows us to check the suitability of the chosen time discretization and to verify 
that the cooling flow rate 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and the temperature 𝑇𝑇 always stay within the respective 
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bounds. We benchmark our dynamic temperature ramping approach against (i) a nominal 
operation with constant production rate 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛  and (ii) a quasi-steady-state (QSS) 
optimization that does not consider temperature dynamics and thus can only operate 
within the steady-state-feasible range. For this QSS optimization, we calculate the 
efficiency curve assuming that the electrolyzer is at the maximum steady-state-feasible 
temperature for every current (compare to Figure 2) because the efficiency increases with 
temperature. To this end, we set the cooling input 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  to zero in the simulation when 
the temperature is below the maximum allowable temperature and otherwise select 
𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  such that the temperature stays constant. All optimization problems are solved using 
gurobi 8.1.0 on an Intel Core i5-8250U processor with an optimality gap of 1 %. Only for 
the QSS benchmark, zero optimality gap is used such that our dynamic ramping approach 
is benchmarked against the optimal QSS schedule. 

4. Results 
Compared to nominal operation at constant production rate 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 , QSS optimization 
based on the steady-state-feasible region reduces electricity costs by 12.8 %. In contrast, 
our dynamic temperature ramping approach with 5 piece-wise affine segments achieves 
15.9 % cost reduction. The optimization runtime is 32 seconds. Using 3 and 10 PWA 
segments, we achieve 13.6 % in 16 s and 16.5 % in 165 s, respectively. Consequently, 
dynamic optimization increases savings by up to 29 % compared to QSS. 
Figure 4 shows the resulting operation for QSS optimization and for the dynamic 
temperature ramping with 5 segments. The dynamic temperature ramping approach 
exploits the fact that the electrolyzer can be cooled down, while it operates at low powers. 
Afterwards, production rates and electric powers can increase above the steady-state 
feasible point (see hours 2, 13, 14, and 22 in Figure 4). Interestingly, QSS optimization 
turns off the electrolyzer for 4 hours of high prices, while our dynamic ramping approach 
keeps the electrolyzer active for the complete 24 hours. The reason is that for the studied 
electrolyzer the heat transfer coefficient of the internal heat exchanger increases with the 
current 𝐼𝐼 (Ulleberg, 1998). Consequently, when the electrolyzer is active it can be cooled 
down faster and thus deeper, which allows to operate at higher powers later in hours 13 
and 14. Even if the lowest electricity price occurs at hour 15, the hours 13 and 14 show 
the highest input powers. The intuitive decision to schedule the highest power in hour 15 
is not optimal as the efficiency decreases at lower temperatures. Thus, waiting with the 
temperature ramp-up until hour 15 would lead to one more hour of operating at low 
efficiency. These complex temperature dynamics explain why our dynamic approach 
outperforms the quasi-steady-state benchmark. 

5. Conclusion 
Electrolyzers are promising demand response (DR) candidates; however, realizing their 
full DR potential requires challenging mixed-integer dynamic optimization. We propose 
dynamic temperature ramping which allows to reformulate the nonlinear dynamic model 
into a mixed-integer linear model. By conservatively approximating the limits of the 
temperature gradient, the resulting trajectory is guaranteed to be feasible on the original 
nonlinear model. Our case study considers a validated alkaline electrolyzer model and 
shows that dynamic temperature ramping reduces costs by 15.9 % compared to nominal 
operation. A steady-state optimization, which is limited to operate within the steady-state 
feasible region, only achieves 12.8 % cost reduction. Moreover, our approach allows to 
explicitly balance computational complexity against solution quality and thereby reaches 
optimization runtimes below one minute. We expect our approach to be transferable to 
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many other applications because our main assumption that the temperature evolution is 
the only dynamic relevant on an hourly timescale is typically true for electrolyzers. 
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Figure 4: Electricity price (top), simulated electric power 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (middle), and simulated temperature 
𝑇𝑇 (bottom) for quasi-steady-state (QSS) and dynamic temperature ramping (DTR) with 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = 5 
segments. The nominal input power 𝑃𝑃𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 is shown for comparison. 

References 
A. A. Adeniran, S. El Ferik, 2017, Modeling and identification of nonlinear systems: A review of 

the multimodel approach—Part 1, IEEE Transactions on Systems, Man, and Cybernetics: 
Systems, 47 (7), 1149–1159  

F. J. Baader, P. Althaus, A. Bardow, M. Dahmen, 2021, Dynamic ramping for demand response 
of processes and energy systems based on exact linearization, arXiv:2110.08137v1 

L. T. Biegler, 2010, Nonlinear programming, SIAM, Philadelphia  
J. Burre, D. Bongartz, L. Brée, K. Roh, A. Mitsos, 2020, Power-to-X: Between electricity storage, 

e-production, and demand side management, Chemie Ingenieur Technik, 92, 74–84  
B. Flamm, C. Peter, F. N. Büchi, J. Lygeros, 2021, Electrolyzer modeling and real-time control 

for optimized production of hydrogen gas, Applied Energy, 281, 116031 
P. Gabrielli, B. Flamm, A. Eichler, M. Gazzani, J. Lygeros, M. Mazzotti, 2016, Modeling for 

optimal operation of PEM fuel cells and electrolyzers, 2016 IEEE 16th International 
Conference on Environment and Electrical Engineering, 1–7  

M. Kopp, D. Coleman, C. Stiller, K. Scheffer, J. Aichinger, B. Scheppat, 2017, Energiepark 
Mainz: Technical and economic analysis of the worldwide largest power-to-gas plant with 
PEM electrolysis, International Journal of Hydrogen Energy, 42 (19), 13311–13320  

J. M. Simkoff, M. Baldea, 2020, Stochastic scheduling and control using data-driven nonlinear 
dynamic models: Application to demand response operation of a chlor-alkali plant, Industrial 
& Engineering Chemistry Research, 21, 10031-10042 

Ø. Ulleberg, 1998, Stand-alone power systems for the future: Optimal design, operation and 
control of solar-hydrogen energy systems, PhD-thesis, Trondheim   

Ø. Ulleberg, 2003, Modeling of advanced alkaline electrolyzers: A system simulation approach, 
International Journal of Hydrogen Energy, 1, 21-33 

Q. Zhang, I.E. Grossmann, 2016, Planning and scheduling for industrial demand side 
management: Advances and challenges, Alternative Energy Sources and Technologies, Ed. M. 
Mariano, Springer International Publishing, 383-414  

396



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Real-Time Optimal Operation of a Chlor-Alkali 
Electrolysis Process under Demand Response  
Erik Eschea*, Joris Weigerta, Christian Hoffmanna, Jens-Uwe Repkea  
aProcess Dynamics and Operations Group, Technische Universität Berlin, D-10623 
Berlin, Germany 
erik.esche@tu-berlin.de 

Abstract 
Real-time implementation of nonlinear model-predictive control (NMPC) for systems 
under demand response remains a challenge. Deep recurrent neural networks may serve 
as approximators for online application. Using hyperparameter tuning through Bayesian 
and Bandit optimization, deep neural networks are trained to high accuracy regarding 
testing data. An NMPC applied on an industrial chlor-alkali electrolysis example with a 
reactive distillation section is replaced by deep neural nets. The resulting approximation 
shows a perfect match to the offline NMPC using a Jordan RNN with 1 or 2 hidden layers, 
which surpasses the performance of LSTMs. 

Keywords: demand response, optimal process operation, chlor-alkali electrolysis, neural 
network. 

1. Introduction & Motivation 
Given the surge in renewable energy into electricity markets, heavy fluctuations of 
electricity prices can be observed leading to both spikes as well as infrequent negative 
prices. To balance fluctuating production and demand, demand response has become an 
important tool and opened a market worth billions of euros worldwide, for example, in 
Germany. Within the European Union, demand response involves load shedding or 
increases within seconds (FCR), minutes (aFRR), or up to quarter hours (mFRR). 
Chemical plants with direct electricity input, e.g., air separation units or electrochemical 
processes, can profit from this market. More recently, investigation of the practical 
realization of demand response in operations has started. Recurring issues are the sizable 
and fast load drops or increases with no forewarning: For FCR and aFRR, load changes 
are directly implemented by the grid operator. Given that these load changes might 
involve complete shutdown or restart of an entire plant, this is a challenge for standard 
control solutions. It is unlikely that a nonlinear model predictive controller (NMPC) with 
a full mechanistic model can be solved in real-time. For speed-up, Vaupel et al. (2020) 
proposed two different approaches to train artificial neural networks (NN) to (1) serve as 
initial guess for NMPC or (2) as basis for a control update by quadratic programming. On 
the other hand, Karg and Lucia (2019) employed deep learning to learn entire robust 
NMPCs by deep NN.  
For learning nonlinear dynamic relationships, a wide range of recurrent neural networks 
(RNN) exist. RNN feature internal feedback, i.e., outputs are passed as inputs for the next 
iteration / time step. They exist in various forms, from “fully connected” to leaner types, 
such as Elman RNN and Jordan RNN (Jordan, 1997). Long short-term memory (LSTM) 
units (Hochreiter and Schmidhuber, 1997) were developed to learn long-term effects. 
However, a recent contribution by Gonzalez and Wen (2018) noted that for some basic 
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nonlinear systems LSTM-based RNNs do not work well and combination with more basic 
RNN types are necessary for satisfactory results. At this point, RNNs are applied on 
chemical engineering examples without specific adjustment. It is unclear, which types of 
RNN are sufficient for which types of systems in chemical engineering. 
The present contribution will evaluate deep NNs as approximators for nonlinear model 
predictive control applied on continuously operated chemical processes under demand 
response. To this end, Section 2 describes the methodology that we pursue to obtain a 
representative RNN approximator of the NMPC, before Section 3 discusses the 
chloralkali electrolysis process and a subsequent reactive distillation as case study. 

2. Methodology 
For our methodology, we will assume that a suitable dynamic process model exists, which 
mimics the process behavior throughout the demand response scope. Also, a sampling is 
available with realistic scenarios given the process dynamics and the energy market. This 
entails, e.g., scheduling based on fluctuations in the electricity price.  
2.1. Optimal Process Control 
With such scheduling results and a dynamic process model, optimal control actions may 
be obtained. We assume a basic discrete-time implementation of an NMPC with a finite 
prediction horizon N focusing on tracking control, which is solved at sample time l: 

min
!!	∇$%&…&()	

Φ(𝑥*…*(), 𝑢*…*()) (1) 

𝑥*(+: = 𝑔(𝑥* , 𝑢* , 𝑑*)				∇𝑘 = 𝑙 … 𝑙 + 𝑁 − 1, (2) 

0 ≤ ℎ(𝑥*(+, 𝑢* , 𝑑*)								∇𝑘 = 𝑙 … 𝑙 + 𝑁 − 1, (3) 

𝑢, ≤	𝑢* ≤	𝑢-																	∇𝑘 = 𝑙 … 𝑙 + 𝑁 − 1, (4) 

with states xk, control inputs uk, disturbances dk, dynamic process model g, and inequality 
constraints h as well as bounds for the control inputs uL, uU. Based on the scenarios of 
step 2, the NMPC formulation may be solved offline, which yields optimal control input 
u* for current process state x and disturbances d, which contain the load changes required 
by the electricity market. 
2.2. Approximate Control Law 
Using these optimal control inputs u*, a neural net may be trained as a direct approximator 
for the nonlinear optimal controller: 

𝑢*(∗ ≈ 𝑢;*( = 𝑓(𝑥*/, 𝑢*/, 𝑑*/), (5) 

wherein f is a neural network mapping from current state estimate to approximate optimal 
control input. k+ denotes time points in the future, while k- is current and possibly past 
information. We assume that a good estimate of the current process is always available. 
A variety of structural choices are at hand for f. Here, we shall limit ourselves to RNNs 
of type Jordan and LSTM. For these, the number of neurons per layer, the number of 
hidden layers overall, and regularization parameters need to be selected. Further options 
concern the number of additional input variables, e.g., the number of past control inputs 
u to be considered and for Jordan RNNs the number of past states held internally. The 
former goes well beyond a standard NMPC application and might allow to also include 
the state estimation step as part of the controller. Choosing these hyperparameters to 

398



Real-Time Optimal Operation of a Chlor-Alkali Electrolysis Process 
under Demand Response  

obtain a suitable NN is not trivial for general nonlinear systems. This issue can be 
resolved by hyperparameter optimization: Continuous decisions may be made by 
Bayesian optimization (Frazier, 2018) and discrete decisions based on Bandit 
optimization (Dimmery et al., 2019). Both are employed through the python framework 
Ax (https://ax.dev). During the hyperparameter optimization, all decisions mentioned 
above are made – apart from the selection of RNN type and number of hidden layers (1 
up to 4), which are varied manually. The hyperparameter optimization uses the mean 
squared error (MSE) regarding the testing data as objective and runs for 50 iterations. 
Ranges for the hyperparameters are based on prior experience to values set in Table 1. 
The Jordan-type RNN is constructed in scikit-learn (Pedregosa, 2011), while Keras’ 
LSTM is used as is (https://keras.io). The time series obtained from step 2 is split into 
training (80 %) and testing (20 %) data set. For scaling of inputs StandardScaler of scikit-
learn and MinMaxScaler for outputs is used. The results of the NMPC are rearranged into 
tuples of input-output pairs with varying size depending on the hyperparameters: 

Input:	A𝑥0/& …𝑥0 , 𝑑0/& 	…𝑑0 , 𝑢0/1 	… 𝑢0/+B, Output: (𝑢;0 …𝑢;0()), (6) 

with m number of past controls, l number of past states, for current time point j. 
To train the neural net f, the MSE of the training data between u* and predicted û is 
minimized. This is amended with a weighted bias penalty term (L2 norm) for 
regularization. Adam (Kingma and Ba, 2014) is used as solver for training with a fixed 
batch size of 200 and early stopping with a tolerance of 1.0e-6 and patience of 10.  
Table 1. Ranges for hyperparameters chosen during the hyperparameter optimization. 

Hyperparameter Lower Bound Upper Bound 

Number of past controls m 1 50 

Number of past states (Jordan) l 10 50 

Number of neurons per hidden layer 10 300 

Type of activation function ReLU or tanh 

Regularization parameter (L2) 1.0e-5 10.0 

3. Case Study 
The operation under demand response of a 
chlor-alkali electrolysis (CAE) and a 
subsequent synthesis of 1,2-dichloroethane 
(DCE) from chlorine and ethene is 
investigated here (see Figure 1). While 
storage of chlorine is limited due to safety 
restrictions, DCE can easily be stored in 
large quantities. The application of demand 
response on the CAE causes a fluctuation in 
both the electrolysis as well as the reactive 
distillation section producing DCE. 
Particularly, operation of the DCE under heavy fluctuations of the chlorine stream from 
the CAE is a challenge. The combined reaction and distillation section of the DCE is 
modeled with a typical tray-based formulation with a special focus on dynamic load 
changes (Hoffmann et al., 2020).  

Figure 1. Simplified flowsheet of case study. 
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Figure 2. Mean squared error (MSE) of the testing data per output and overall, for Jordan RNN 
(Jd.) and LSTM with 1 up to 4 hidden layers. 

Hoffmann et al. (2021) developed a framework to obtain realistic load profiles for the 
CAE-DCE process under demand response. A 200-hour profile computed with their 
framework will serve as a basis for the subsequent case study here. The profile contains 
load changes of up to 30 % due to either aFRR or mFRR. 
3.1. Optimal Process Control 
The NMPC formulation described by Eq. (1)-(4) contains an objective ensuring the 
adherence to the required DCE purity in the outlet of the reactive distillation section. The 
model consists of the complete dynamic reactive distillation as described in (Hoffmann 
et al., 2020). As inequality constraints strict ramp restrictions on the changes of the control 
variables are implemented to ensure technical feasibility. A more detailed discussion may 
be found in (Hoffmann, 2021). The prediction horizon N is set to 45 minutes as the slow 
mFRR contains ramps lasting 15 minutes. By solving the NMPC problem with the 
electricity market profile as disturbance d, optimal control inputs u* are obtained. 
3.2. Approximate Control Law 
With the NMPC results, a set of neural nets is trained with 1 to 4 hidden layers of type 
Jordan and LSTM. Here, we focus on the main inputs of interest for the control of the 
DCE: The chlorine stream stemming from the CAE represents the market signal and is 
regarded as an external disturbance (In 1). The state of the DCE is overall captured by the 
current level in the reflux drum (In 2), the liquid level in the column bottom (In 3), and 
the concentration of DCE in the product stream (In 4).  
Table 2. Training results of the neural nets with two hidden layers of type Jordan and LSTM. 

Hyper-
parameters 

Jordan RNN (2 hidden layers) LSTM (2 hidden layers) 

Out 1 Out 2 Out 3 Out 4 Out 1 Out 2 Out 3 Out 4 

m 46 47 39 43 46 43 49 37 

l (Jordan) 27 7 10 44 - - - - 

Neurons 53/115 26/126 128/102 23/257 30/115 86/64 147/88 18/193 

Activation ReLU tanh ReLU ReLU ReLU tanh ReLU ReLU 

Reg. (L2) 5.3e-3 2.5e-3 1.1e-2 2.0e-3 3.7e-5 5.8e-5 3.7e-5 2.1e-4 
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Figure 3. Scaled profiles of the four input variables in the testing data.  

The most important control actions on the process are the ethylene dosing (Out 1), the 
auxiliary column cooling (Out 2) to remove some of the heat of reaction at the bottom, 
the product flow (Out 3), and the reflux from the reflux drum (Out 4). Results of 
hyperparameter optimization and training are shown in Figure 2, which states the MSE 
regarding the testing data per output. For the Jordan RNN with a single layer, the error 
per output is small and an order of magnitude smaller than for the LSTM. With 2 or more 
hidden layers, the error decreases further, although the improvements become negligible. 
Given the increase of the MSE for 2 hidden layers, the further results for LSTM are 
omitted here. In Table 2, further details are given on Jordan RNN and LSTM with two 
hidden layers: All hyperparameters are chosen within the specified ranges. Strong 
variations can be observed with respect to the specific regularization for the various 
outlets here. Similarly, the choice in activation function appears to lean towards ReLU, 
although output 2 favors tanh. The number of neurons here is high, but common compared 
with available publications.  
3.3. Quality of the Approximation 
To evaluate the quality of the prediction, the testing data will be further examined. 
Figure 3 shows the testing data for the four input variables named above. Observe that 
the plots show an interval of 17 hours and the profiles in the minute range are smooth. 
Figure 4 focusses at a two-hour interval marked in Figure 3 and shows the results for 
Jordan RNN and LSTM with one and two hidden layers respectively. All four trained 
models can follow the trajectory computed by the NMPC.  

 
Figure 4. Scaled profiles of the four output variables. Close-up of a two hour interval of the 
testing data with the results of Jordan RNN and LSTM with one and two hidden layers (HL).  
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However, the Jordan RNNs manage to follow the slightest control actions of the NMPC, 
so much so that the testing data disappears behind the plot of the Jordan RNN with two 
hidden layers. Overall, using the Jordan RNN instead of the original NMPC would here 
lead to almost no approximation error and the suboptimality is nearly unquantifiable with 
respect to the solution accuracy of the NMPC itself. 

4. Conclusions & Outlook 
Direct application of NMPC particularly on fast and highly nonlinear systems remains a 
challenge. Using offline computation based on realistic demand response scenarios, 
optimal control trajectories can be computed offline and learned to high accuracy by 
neural nets. Particularly, Jordan RNNs with two or more hidden layers show a great 
adaptability in this regard. Using hyperparameter optimization during training greatly 
eases the effort to obtain suitable NNs. It appears that the learned approximate control 
law may be applied in real-time to replace slow NMPCs.  
Several issues remain to be solved in future work, ensuring the reliability of neural nets 
beyond the operation window they were originally trained on is always a point of 
contention. More advanced techniques beyond more extensive sampling are needed, 
which ensure feasibility of the approximated NMPC results throughout.  

5. Acknowledgements 
The authors acknowledge the financial support by the Federal Ministry of Economic 
Affairs and Energy of Germany in the project ChemEFlex (project number 0350013A). 

References 
D. Dimmery, E. Bakshy, J. Sekhon, 2019, Shrinkage Estimators in Online Experiments, arXiv:  

1904.12918v1 
P.I. Frazier, 2018, A Tutorial on Bayesian Optimization, arXiv: 1807.02811v1 
J. Gonzalez, Y. Wen, 2018, Non-linear System Modeling Using LSTM Neural Networks, IFAC-

PaperOnLine, 51, 13, 485-489 
S. Hochreiter, J. Schmidhuber, 1997, Long Short-term Memory, Neural Computation, 9, 8, 1735-

1780 
C. Hoffmann, J. Weigert, E. Esche, J.-U. Repke, 2020, Towards demand-side management of the 

chlor-alkali electrolysis: dynamic, pressure-driven modeling and model validation of the 1,2-
dichloroethane synthesis. Chemical Engineering Science, 214, 115358. 

M. Hofmann, R. Müller, A. Christides, P. Fischer, F. Klaucke, S. Vomberg, G. Tsatsaronis, 2021, 
Flexible and economical operation of chlor-alkali process with subsequent polyvinyl chloride 
production, AiChE Journal, DOI: https://doi.org/10.1002/aic.17480 

M.I. Jordan, 1997, Serial Order: A Parallel Distributed Processing Approach, Neural-Network 
Models of Cognition, 121, 471-495 

B. Karg and S. Lucia, 2019, Learning-based approximation of robust nonlinear predictive control 
with state estimation applied to a towing kite, 18th European Control Conference (ECC), 16-
22, doi: 10.23919/ECC.2019.8796201 

D.P. Kingma, J. Ba, 2014, Adam: A Method for Stochastic Optimization, arXiv: 1412.6980v9 
F. Pedregoas, G. Varoquaux, A. Gramfor, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. 
Perrot, E. Duchesnay, 2011, Scikit-learn: Machine Learning in Python, Journal of Machine 
Learning, 12, 85, 2825-2830 

Y. Vaupel, N.C. Hamacher, A. Caspari, A. Mhamdi, I.G. Kevrekidis, A. Mitsos, 2020, 
Accelerating nonlinear model predictive control through machine learning, Journal of Process 
Control, 92, 261-270 

402



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Explicit Multi-Objective and Hierarchical Model 

Predictive Control 

Styliani Avraamidoua*, Iosif Pappasb,c, Efstratios N. Pistikopoulosb,c 

aDepartment of Chemical and Biological Engineering, University of Wisconsin-

Madison, Engineering Drive, Madison, WI 53703, United States 
bTexas A&M Energy Institute, Texas A&M University, Address, College Station, TX 

77800, United States 
bArtie Mc Ferin Department of Chemical Engineering, Texas A&M University, Address, 

College Station, TX 77800, United States 

avraaamidou@wisc.edu 

Abstract 

Model predictive control (MPC) problems can involve multiple, often conflicting 

objectives, including economic performance, tracking accuracy, disturbance rejection, 

safety, or environmental criteria. Each of these objectives can be used to design different 

MPCs that will have different input trajectories and consequently different operational 

behaviours in closed-loop operation. Various approaches have been proposed in the open 

literature for the development of multi-objective model predictive controllers in an effort 

to combine some of the objectives. Multiple objectives can also be ranked in a hierarchy, 

where every control level in the hierarchy is controlling a subset of the overall control 

variables, by manipulating a subset of the overall control variables, resulting in 

hierarchical model predictive controllers. This work utilizes multi-parametric 

programming to generate both multi-objective and hierarchical explicit model predictive 

controllers. A case study on a combined stirred tank reactor with two competing 

objectives, an economic and a tracking objective, is used to illustrate the developed 

control strategies. The results of this study clearly indicate the effect of the different 

control strategies on the operation of the reactor. 

 

Keywords: Model Predictive Control; Multi-Parametric Programming; Multi-level 

Optimization; Multi-Objective Optimization; Explicit Control. 

1. Main Text 

The optimal operation of a system can involve multiple, often conflicting objectives, due 

to the complexity of the problems that are studied. These objectives that need to be 

optimized include economic performance, safety, or environmental criteria. In the context 

of operational optimization through process control, various approaches have been 

proposed in the open literature in an attempt to incorporate these objectives 

simultaneously in the development of optimal control policies. One approach is multi-

objective model predictive control (MOMPC), where in two of these strategies the 

different objectives can be added and combined into a single objective, known as the 
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weighted sum method (Fairweather et al. 2012), or objectives can be part of the constraint 

set, known as the ε-constraint approach (Zavala, 2005; Bemporad et al. 2009).   

Another approach that can be used for the consideration of multiple objectives in a control 

scheme is to rank the objectives in a hierarchy, where every control level in the hierarchy 

is controlling a subset of the overall control variables, by manipulating a subset of the 

overall control variables (Avraamidou and Pistikopoulos, 2017; Katebi and Johnson, 

1997). Figure 1 illustrates both aforementioned approaches for the consideration of 

multiple objectives in discrete-time optimal control problems, where 𝑢1 and 𝑢2 are the 

set of manipulated variables, and 𝑦1 and 𝑦2 are the set of control variables. 

MPC strategies require the solution of the optimization problem at every control time 

step, making the use of most multi-objective or hierarchical solution methods 

challenging. To this end, this work proposes the use of multi-parametric programming to 

generate both multi-objective and hierarchical explicit MPCs. More specifically, 

assuming that there exist two or more control objectives described by linear or convex 

quadratic functions, we develop multi-parametric based approaches for the derivation of 

i) the explicit Pareto front of MOMPC, and ii) the explicit solution of HMPC. The 

MOMPC problem is reformulated into a multiparametric programming problem (Pappas 

et al. 2021a), which can then be exactly solved using state-of-the-art algorithms (Pappas 

et al. 2021b), while the HMPC problem is reformulated into a multiparametric multi-level 

programming problem, which can be exactly solved using the algorithms proposed in 

(Avraamidou and Pistikopoulos, 2019a).  

The following section focuses on the formulation and solution method for the MOMPC, 

while section 2 focuses on the formulation and solution method of the HMPC. In section 

3, a case study on a reactor with two competing objectives, an economic and a tracking 

objective, is used to illustrate the two developed control strategies. The results of this 
study indicate the effect of the two strategies and their applicability for the optimal 

operation of the stirred tank reactor. 

2. Multi-Objective Model Predictive Control Structure  

2.1. Problem Formulation 

Consider problem (1) where 𝑞 objectives need to be simultaneously minimized by 

manipulating the inputs, 𝑢𝑖, to calculate the states, 𝑥𝑖, and outputs 𝑦𝑖, at time step 𝑖. The 

process model is a discrete linear state-space model described by the matrices 𝐴, 𝐵 and 𝐶 

and a prediction horizon of 𝑁 steps along with a terminal set 𝑋 are assumed. 

Figure 1 Optimal Controller structures for the incorporation of two objectives for the control of a 

process system: a) Mutli-objective optimization approach (weighted sum) - MOMPC, b) 

Hierarchical Optimization Approach – HMPC.  
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min
𝑢𝑖

     ∑ 𝑓𝑗(𝑥, 𝑢)

𝑞

𝑗=1

  

s. t. 𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖  

 𝑦𝑖 = 𝐶𝑥𝑖  (1) 

 𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈  

 𝑢𝑖
𝐿 ≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑈  

 𝑥𝑁 ∈ 𝑋  

2.2. Solution Strategy 

The first step in the proposed solution approach is to reformulate the multi-objective MPC 

problem in to an ε-constraint problem, following the approach presented by Pappas et al. 

2021a, where the reformulated problem is solved using multi-parametric programing 

while treating the initial states of the system and the ε variables as parameters. 

3. Hierarchical Model Predictive Control Structure 

3.1. Problem Formulation 

min
𝑢1

      𝑓1(𝑥, 𝑢)  

s. t. min   
𝑢2

𝑓2(𝑥, 𝑢)  

 ⋮  

 s. t.  min
𝑢𝑞

  𝑓𝑞(𝑥, 𝑢)  

 s. t. 𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 (3) 

  𝑦𝑖 = 𝐶𝑥𝑖   

  𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈  

  𝑢𝑖
𝐿 ≤ 𝑢𝑖 ≤ 𝑢𝑖

𝑈  

  𝑥𝑁 ∈ 𝑋  

3.2. Solution Strategy 

To solve this multi-level optimization problem, the algorithm proposed by Avraamidou 

and Pistikopoulos 2019a and 2019b is utilised. The proposed algorithm transforms the 

multi-level optimization problem into a series of single-level optimization problems by 

solving the lower level problems multi-parametrically while treating the states and upper 

level variables as parameters.  

4. Case-study: Continuous Stirred Tank Reactor 

4.1. System Definition 

Consider a non-isothermal continuously stirred tank reactor (CSTR), adopted from 

(Kazantzis and Kravaris, 2000), where the following reaction occurs 

2𝑁𝑎2𝑆2𝑂3 + 4𝐻2𝑂2  → 𝑁𝑎2𝑆𝑂3𝑂6 + 𝑁𝑎2𝑆𝑂4 + 4𝐻2𝑂 (4) 

The reactants and the products of the above components are represented by A and B and 

C, D and E respectively. It is assumed that stoichiometry is preserved in the reactor at all 

times and hence the reactants are fed to the reactor through a feedstock stream at 

concentration CA,in and CB,in, for A and B respectively, at a ratio CB,in:2 CA,in, flowrate F, 
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and temperature Tin. The CSTR is assumed to have a constant liquid hold-up. A jacket 

provides energy to or from the reactor. 

It is desired that the outlet concentration and temperature of the controlled variables of 

the CSTR. The inlet concentrations and temperature are varying between 0.9 and 1.2 

mol/L, and 275 to 295 K respectively, and can be considered as measured disturbances. 

The inlet dilution rate (
𝐹

𝑉
) and the coolant temperature 𝑇𝑗 can be manipulated by the 

control system and are therefore considered as manipulated variables. The inlet 

concentration and temperature are treated as measured disturbances. 

4.2. Controller Development – PAROC Framework 

To develop the control system for the CSTR defined above, the PAROC framework 

(Pistikopoulos et al. 2015) was followed. 

4.2.1. High-fidelity Model 

As a first step a high-fidelity model (5-6) was developed by applying first principles and 

standard modelling assumptions (constant density and heat capacity, Arrhenius rate, etc.). 

The details of the model can be found in (Kazantzis and Kravaris, 2000). 

𝑑𝐶𝐴

𝑑𝑡
=

𝐹

𝑉
(𝐶𝐴,𝑖𝑛 − 𝐶𝐴) − 2𝑘(𝑇)𝐶𝐴

2 (5) 

𝑑𝑇

𝑑𝑡
=

𝐹

𝑉
(𝑇𝑖𝑛 − 𝑇) + 2

(−Δ𝐻)𝑅

𝜌𝐶𝑝

𝑘(𝑇)𝐶𝐴
2 −

𝑈𝐴

𝑉𝜌𝐶𝑝

(𝑇 − 𝑇𝑗) (6) 

where 𝑘 = 2𝑘0 exp (−
𝐸

𝑅𝑇
).    

4.2.2. Model Approximation 

Due to the dynamic nature of the system and its nonlinear components, the original model 

is linearized around the steady-state of [
𝐶𝐴,𝑠

𝑇𝑠
] =  [

0.076
376.270

]. Subsequently the linear 

system ordinary differential equation is discretized using a discretization step of 1 second 

assuming zero order hold. Consequently, the model is a now a discrete time-invariant 

state-space model. Here we are also using the variables in deviation form for the inputs 

and the outputs (e.g. 𝐶̂𝐴 =  𝐶𝐴 − 𝐶𝐴,𝑠). 

4.2.3. Controller Formulation 

Four different control strategies were implemented. The first controller is a classic explicit 

MPC controller with the tracking objective formulated in (7). 

Tracking Objective: 

min
𝐹
𝑉,
̂

𝑇̂𝑗

[𝐶𝐴𝑁
𝑇̂

𝑁
] 𝑃 [𝐶𝐴𝑁

𝑇̂
𝑁

]
𝑇

+ ∑ [𝐶𝐴𝑖
𝑇̂

𝑖
] 𝑄 [𝐶𝐴𝑖

𝑇̂
𝑖
]

𝑇

+ [
𝐹

𝑉

̂

𝑖
𝑇̂

𝑗 ,𝑖

] 𝑅 [
𝐹

𝑉

̂

𝑖
𝑇̂

𝑗,𝑖

]

𝑇𝑖=𝑁−1

𝑖=1

  (7) 

406



Explicit Multi-Objective and Hierarchical Model Predictive Control  

The second controller is an explicit 

economic MPC with the same constraints 

as the first controller but with objective (8). 

Economic Objective: 

min
𝐹
𝑉
̂

∑ [
𝐹

𝑉

̂

𝑖

] 𝑉 [
𝐹

𝑉

̂

𝑖

]
𝑇𝑖=𝑁−1

𝑖=1

  (8) 

The third controller is a multi-objective 

economic and tracking controller 

(MOMPC) with both objectives (7) and (8) 

in its objective function., while the last 

controller is a bi-level controller (HMPC) 

with the economic objective (8) on the 

upper level optimization problem and the 

tracking objective (7) on the lower level 

optimization problem. The constraint set 

for both the MOMPC and HMPC 

controllers is identical to the two single 

objective controllers.  

The two single level explicit controllers 

were solved through POP toolbox, whereas 

the MOMPC and HMPC were solved as 

described in sections 2 and 3 respectively. 

The parameters for all optimization 

problems consist of the states, the 

measured disturbances, the previous 

control action and the output set-point. The 

prediction horizon was set to 2. The pareto 

front resulting from the MOMPC controller 

is presented in Figure 2. 

4.3. Closed-loop Validation 

The last step is the closed-loop validation 

to evaluate the performance of the designed 

controllers. The inputs and results of this 

step are presented in Figures 3 and 4.  

5. Conclusion 

We presented two multi-parametric based 

approaches for the incorporation of 

multiple objectives in model predictive 

control. A simple CSTR system, with both economic and set-point tracking objectives 

was used to illustrate the effectiveness of the proposed approaches. The resulting explicit 

controllers were able to effectively reject disturbances and maintain the system at the 

given set-points according to their objectives. 

Figure 3 Process Disturbances  

Figure 4 Process Output 

Figure 2 Pareto front of the MOMPC 

Figure 4 Process Output 
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Abstract 
Explicit model predictive control is an established strategy to calculate the model-based 
optimal control decisions for a process system, while alleviating the computational cost 
of repetitively solving an optimization problem online. Since models are not ideal 
representations of the original processes and due to a potentially necessary approximation 
of the original model for computational efficiency reasons, the optimal solution of the 
explicit model predictive control problem is based on an imperfect model. Hence, the 
aforementioned model discrepancy and the presence of unmeasured disturbances 
facilitate uncertainty that can result to undesirable process behaviour or infeasibility. In 
this work, a strategy that derives the explicit solution of a robust model predictive control 
problem with a single multiparametric formulation is exhibited. The proposed approach 
is founded on the successive robustification of the constraint set of the problem, 
eliminating the risk of constraint violation, and hence guaranteeing feasibility of closed-
loop operation. The benefits of the presented methodology are demonstrated through a 
linear quadratic regulator problem of an uncertain system. 

 

Keywords: Model Predictive Control; Robust Optimization; Multiparametric 
Programming 

1. Introduction 
Model predictive control (MPC) is the established paradigm for the advanced control of 
multivariable systems, extensively studied and applied by both the academic and 
industrial communities (Mayne, 2014). In its most encountered form, an MPC problem is 
a convex quadratic mathematical optimization problem, whose solution is the optimal 
vector of inputs to regulate the operation of a system. Assuming a finite prediction horizon 
and a discrete time-invariant linear model, a performance index is minimized to calculate 
the optimal behavior of the underlying model. Subsequently, only the first control input 
is applied to the system and the horizon is shifted forward by one step. This procedure is 
repeated for each sampling time, when new measurements (or estimates of theirs) are 
made available, facilitating an implicit feedback policy. Explicit MPC refers to the 
approach of deriving exactly the same optimal vector of inputs, but in an explicit manner. 
Instead of repetitively solving an optimization problem, the optimal decisions are 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50068-3 
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expressed analytically (explicitly) by treating the MPC problem as a multiparametric 
optimization problem. By solving multiparametric optimization problems, the optimal 
solution of the studied problem is provided as a function of the vector of its uncertain 
parameters, based on its location at the uncertainty space (critical regions). In the case of 
MPC, the states are part of the uncertainty vector. The benefits of the explicit solution 
are, i) the online computational cost of calculating the solution of the problem is 
substantially reduced by substituting solving an optimization problem with a function 
evaluation, ii) a complete analysis of the uncertainty (state) space is available a priori, as 
well as its impact on the solution of the control problem, and iii) the explicit nature of the 
solution allows for the solution of nested optimization problems. These properties are of 
particular importance for control applications which are not equipped with the 
computational power to solve optimization problems online (Pappas et al., 2021). 
 
Robustness is a fundamental element in process control and refers to the ability of the 
controller to handle uncertainty, and especially unmeasured uncertainty. Since MPC is a 
model-based control strategy, the quality of the solution is based on the considered model. 
Nevertheless, process models are not ideal representations of the real system which is to 
be regulated. In addition, an approximation of the original model is typically required, 
since the latter is comprised — in many cases — by a large-scale system of differential 
and algebraic equations that is computationally challenging to be solved online. Finally, 
the operation of processes includes unmeasured disturbances which affect real-time 
operations. All of the above sources of uncertainty lead to the undesirable or even 
infeasible behavior of the plant in closed-loop. For this reason, robust MPC strategies 
have been proposed to deal with this issue (Kouvaritakis and Cannon, 2016). 
 
Robust explicit MPC aims to derive the explicit solution of the MPC problem by 
additionally guaranteeing that all sources of uncertainty are taken into account, and at 
least feasibility is satisfied. In this respect, multiple research efforts have been contributed 
that tackle the case where the uncertainty source is added to the future prediction (additive 
uncertainty) and the case where the future prediction is multiplicatively affected by it 
(multiplicative uncertainty).  Sakizlis et al. (2004) included constraints in the design phase 
of the controller that guarantee that for the worst case of the additive uncertainty, the 
system is feasible. Bemporad et al. (2003) proposed a min-max approach where the 
solution is found for problems with a linear objective function and linear constraints for 
multiplicative uncertainty. Kouramas et al. (2013) tackled the case of explicit MPC 
problems with a quadratic objective function, linear constraints, and multiplicative 
uncertainty by employing dynamic programming and robust optimization. More recently, 
Oberdieck (2016) demonstrated that dynamic programming can be avoided and extended 
it to hybrid systems by performing projections of the feasible space into the future. This 
projection operation was achieved my solving a multiparametric linear programming 
problem. An open question in the robust explicit MPC field is how can the robust solution 
of an explicit MPC problem with a quadratic cost, linear constraints, and multiplicative 
uncertainty be developed, by using a single multiparametric optimization formulation. 
 
In this contribution, an algorithm that solves the aforementioned challenge is presented. 
We formulate a suitable robust control invariant set, successively robustify the 
constraints, and incorporate linear manipulations to formulate a single multiparametric 
problem. We solve the optimization program, and as a result, the implementation of the 
robust policy hedges against the presence of uncertainty and manages to regulate the 
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system. The remainder of this paper is organized as follows: Section 2 describes the 
problem formulation, while in Section 3 we present the proposed approach. In Section 4 
we demonstrate the benefits of the strategy while in Section 5, we conclude. 

2. Problem Formulation  
Consider a linear discrete time dynamic model of the following form: 
 
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘                                                                                                          (1) 
 
where 𝑥𝑘 ∈ ℝ𝑚  and 𝑢𝑘 ∈ ℝ𝑛 are the state and control input vectors respectively at time 
instant 𝑘, and are multiplied by the matrices 𝐴 ∈ ℝ𝑚𝑥𝑚 and 𝐵 ∈ ℝ𝑚𝑥𝑛 . Instead of 
considering that the system matrices are constant, in this study we assume that the model 
is uncertain and described by box uncertainty. Specifically: 
 
 𝐴 = 𝐴0 + Δ𝐴               (2) 
 
𝐵 = 𝐵0 + Δ𝐵                (3) 
 
Δ𝐴 ∈ 𝔸 =  {Δ𝐴 ∈ ℝ𝑚𝑥𝑚|−𝜖𝛼|𝐴0| ≤ Δ𝐴 ≤ 𝜖𝛼|𝐴0|}           (4) 
 
Δ𝐵 ∈ 𝔹 =  {Δ𝐵 ∈ ℝ𝑚𝑥𝑛|−𝜖𝛽|𝐵0| ≤ Δ𝐵 ≤ 𝜖𝛽|𝐵0|}                        (5) 
 
𝐴0 and 𝐵0 are the nominal matrices of the model, while Δ𝐴 and Δ𝐵 is their uncertain 
component. This element-wise deviation from the nominal matrix value is prescribed by 
the matrices 𝜖𝛼 and 𝜖𝛽 which are of equivalent dimensions to 𝐴0 and 𝐵0. The 
consideration of box uncertainty allows for its description through halfspace 
representation, and hence avoids the performance of vertex enumeration which would 
have been the case if a general polytopic uncertainty set was considered (Oberdieck, 
2016). Assuming a prediction horizon 𝑁, the following robust explicit linear quadratic 
regulator problem (LQR) problem can be formulated:  
 

 
                                           
 
                                                 (6) 
 
 
 
 

whose objective is to find the explicit control inputs, 𝑢(𝑥), that will drive the system to 
the origin in the presence of the uncertainty. The weights on the states and inputs are 𝑄𝑅 ∈
ℝ𝑚𝑥𝑚 and 𝑅 ∈ ℝ𝑛𝑥𝑛 respectively, while 𝑃 ∈ ℝ𝑚𝑥𝑚 is the terminal cost matrix derived 
from the solution of the discrete-time algebraic Riccati equation. The states at the end of 
the prediction are required to belong to the terminal set 𝑇 (Blanchini, 1999). 

3. Methodology 
The methodology presented in this section has the goal of ensuring feasibility of the 
uncertain system. Specifically, the first step of our approach is to derive the robust 

min
𝑢0,…,𝑢𝑁−1

 𝑥𝑁
𝑇𝑃𝑥𝑁 +  ∑ 𝑥𝑘

𝑇𝑄𝑅𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘

𝑁−1

𝑘=0

 

𝑠. 𝑡. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 
 𝑥𝑘 ∈ 𝑋 

 𝑢𝑘 ∈ 𝑈 
𝑥𝑁 ∈ 𝑇 
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counterpart of problem (6), which requires the successive robustification of the state 
constraints of the formulation. Assume that the state constraints for the first timestep are 
expressed as: 
 
𝐺𝑥1 ≤ 𝑔           (7) 
 
𝐺(𝐴𝑥0 + 𝐵𝑢0) ≤ 𝑔         (8) 
 
The robust counterpart of the above constraint is: 
 
𝐺𝐴0𝑥0 + 𝜖𝛼|𝐺||𝐴0||𝑥0| + 𝐺𝐵0𝑢0 + 𝜖𝛽|𝐺||𝐵0||𝑢0| ≤ 𝑔     (9) 
 
The nonlinearity introduced from the absolutes values is addressed by introducing the 
artificial variables 𝑧0 and 𝑣0, along with their corresponding box constraints: 
 
𝐺𝐴0𝑥0 + 𝜖𝛼||𝐺||𝐴0|𝑧0 + 𝐺𝐵0𝑢0 + 𝜖𝛽|𝐺||𝐵0|𝑣0 ≤ 𝑔     (10) 
−𝑧0 ≤ 𝑥0 ≤ 𝑧0  
−𝑣0 ≤ 𝑢0 ≤ 𝑣0  
 
By following the proposed robustification scheme, all constraints are successively 
robustified for the length of the prediction horizon. That enforces state constraint 
satisfaction until – and including – the 𝑁𝑡ℎ step of the horizon. Moreover, the system 
states are required to enter the invariant set at the 𝑁𝑡ℎ horizon step, hence the system 
feasibility thereafter is also ensured. In summary, at each robustification step, an artificial 
variable for each state and control input is introduced. This challenge is addressed by 
eliminating the state artificial variables through the Fourier-Motzkin (FM) elimination, 
which allows for removal of the artificial variables. As an example, assume that 𝑎𝑖,𝑗 are 
scalar coefficients and that 𝑎1,2 ≥ 0 and that 𝑎2,1 ≤ 0 : 
 
𝑎1,1𝑥0 + 𝑎1,2𝑧0 + 𝑎1,3𝑢0 + 𝑎1,4𝑣0 ≤ 𝑔1     (11) 
𝑎2,1𝑥0 + 𝑎2,1𝑧0 + 𝑎2,3𝑢0 + 𝑎2,4𝑣0 ≤ 𝑔2     (12) 
 
That can be rewritten as 
 
𝑧0 ≤ 1

𝑎1,2
(𝑔1 − 𝑎1,1𝑥0 − 𝑎1,3𝑢0 − 𝑎1,4𝑣0)     (13) 

𝑧0 ≥ 1
𝑎2,1

(𝑔2 − 𝑎2,1𝑥0 − 𝑎2,3𝑢0 − 𝑎2,4𝑣0)                    (14) 

 
Consequently, the variable 𝑧0 can be eliminated by combining the two expressions: 
 

1
𝑎2,1

(𝑔2 − 𝑎2,1𝑥0 − 𝑎2,3𝑢0 − 𝑎2,4𝑣0) ≤ 1
𝑎1,2

(𝑔1 − 𝑎1,1𝑥0 − 𝑎1,3𝑢0 − 𝑎1,4𝑣0) (15) 

 
However, the drawback of the FM elimination is the introduction of additional inequality 
constraints in the problem. Hence, after applying the FM algorithm, we eliminate the 
unnecessary inequality constraints by solving a linear programming problem to check 
redundancy. As a result, a robustified version of problem (6) is derived and is solved with 
state-of-the-art multiparametric optimization algorithms. We note that the proposed 
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approach is applicable to mixed-integer linear models too have recently shown to play an 
important role in model building for explicit MPC applications (Katz et al., 2020). 

4. Results 
Consider an uncertain system of form (1), adopted from (Kouramas et al., 2013). The 
nominal matrices of the system are 𝐴0 = [1 1

0 1] and 𝐵0 = [0
1]. It is assumed that these 

nominal matrices can deviate from their nominal value by 20% (i.e. 𝜀𝛼 = 𝜀𝛽 = 0.2). The 

horizon of the problem is 𝑁 = 2, while the cost matrices are 𝑄𝑅 = [1 1
0 1], 𝑅 = 0.01 and 

𝑃 =  [2.62 1.63
1.63 2.64]. The formulation is solved using the approach presented previously. 

The problem has eighty two critical regions and is simulated in closed-loop for a constant 
and random value of the model. The controller can stir the system to the origin. 

 
Figure 1: Closed-loop simulation of the system for a random but constant value of the 
system matrices. 
 
As a next step we generate multiple scenarios of the matrices which are randomly altered 
at each time step of the closed-loop simulation. The system is regulated for all of them, 
achieving the control objective of driving the system to the origin. 

 
Figure 2: The map of optimal solutions along with closed-loop simulations of the 
system for multiple scenarios where the values of the matrices are randomly altered. 
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As expected, the robustification of the constraints forces the system to remain feasible 
for all different scenarios, while having the benefit of the explicit form of the solution.  

5. Conclusions 
In this work, we presented an algorithm to solve robust explicit MPC problems. Our 
approach is based on the successive robustification of the constraints of the problem 
which along with the terminal set guarantee the feasibility of the system in closed-loop. 
Additionally, we eliminated the complexity introduced by using the FM elimination 
algorithm and redundancy checks to remove variables and constraints respectively from 
the problem formulation. We demonstrated our findings on a numerical MPC case study 
where we exhibited that the system can be driven to the original for any arbitrary bounded 
value of the uncertainty. Our next steps include the analysis of the conservativeness of 
the solution stemming from the robustification. 
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Abstract

Many large-scale multi-input multi-output systems are treated as a combination of single-
input single-output systems in reality. At such times, interference from input signals not
focused on work as disturbances. For observable disturbances, feed-forward controllers
are effective to reject the influence. On the other hand, many data-driven controller tuning
schemes are proposed for feed-back controllers. The schemes require not any mathemati-
cal models of controlled systems but only operating-data like input and output. This paper
proposes a data-driven tuning scheme of feed-forward controllers. Existing data-driven
scheme tunes feed-back controller at the same time as the feed-forward controller. In con-
trast, the proposing scheme only designs the feed-forward controller. By this feature, it is
easy to guarantee stability of the control system. Effectiveness of the proposing scheme is
verified by a simulation example.

Keywords: process control, disturbance rejection, feed-forward controller

1. Introduction

Most large-scale processes are multi-input multi-output (MIMO) systems. However, the
processes are often treated as a group of single-input single-output (SISO) systems because
it is difficult to design suitable controllers for a MIMO system. By focusing each SISO
system, interference from other SISO systems can be regarded as disturbances. Therefore,
disturbance rejection is very important in large-scale process control.

Feed-back controller like PID controller is often employed to realize set-point tracking,
and some parameters tuning methods are proposed. Among them, data-driven tuning
methods are actively researched. Typical methods are iterative feed-back tuning (IFT)
which uses repeated experiment proposed by Hjalmarsson et al. (1998), fictitious refer-
ence iterative tuning (FRIT) which uses only off-line optimizations proposed by Soma et
al. (2004). The methods can tune controller without any system parameters. Effectiveness
of the schemes are verified for experiments. For example, Nakamoto (2003) and Kano et
al., (2011) apply IFT and extended-FRIT methods to processes respectively.

Feed-back controllers can improve performance not only set-point tracking but also dis-
turbance rejection. However, it is impossible to reject influence of disturbance perfectly
when controlled process has time-delay shown in Alagoz et al. (2015). In addition, the

http://dx.doi.org/10.1016/B978-0-323-85159-6.50069-5 



Y. Ashida et al.

longer the time-delay are, the larger influence of disturbance are. To solve this problem,
feed-forward controllers are often employed like Elso et al. (2013). When disturbance can
be observable, the feed-forward controller can reject influence of disturbance completely.

The objective of this paper is to propose a data-driven design method of the disturbance
rejection feed-forward controller. In the proposing method, not both feed-back and feed-
forward controllers but only feed-forward controller is tuned. Sometimes, control-loop
becomes unstable by tuning feed-back controller. Therefore, designing only feed-forward
controller is safer than designing both controllers. In addition, FRIT method is employed
to determine controller parameters. In the FRIT method, an evaluation function to be
minimized is derived directly from tracking error signal. Thus, the evaluation function
of FRIT and tracking error have close connection. Effectiveness of the proposing design
method is checked by a numerical example.

2. Design Scheme of Disturbance Rejection Controller

2.1. Feed-forward Controller

This research assumes a control system as shown in Figure 1. r(t), u(t), y(t), and ν(t)
denote reference, input, output, and unknown noise signals respectively. Additionally,
d(t) denotes trigger signal of disturbance.

𝐺௥(𝑧
ିଵ)

𝐺ௗ(𝑧
ିଵ)

𝐶ௗ(𝑧
ିଵ)

−

+

+

+

𝑦(𝑡)𝑟̃(𝑡)

𝑑(𝑡)

𝑢(𝑡)

𝑢ௗ(𝑡)

𝐶௥(𝑧
ିଵ)

𝑢௥(𝑡) 𝑦௥(𝑡)

𝑦ௗ(𝑡)

−+

𝜈(𝑡)

Figure 1: Block diagram of the proposing control system.

Aim of this research is to design disturbance rejection controller Cd(z
−1). Feed-back

controller Cr(z
−1) is assumed to exist, and proposing design method does not touch the

controller. This is because it is easy to ensure stability of control system and to employ the
method to industries. Controlled system Gr(z

−1) and disturbance system Gd(z
−1) are

Gr(z
−1) =

Br(z
−1)

Ar(z−1)
z−kr , (1)

Gd(z
−1) =

Bd(z
−1)

Ad(z−1)
z−kd , (2)
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Figure 2: Conceptual diagram of the proposing FRIT method.

where Ar(z
−1), Br(z

−1), Ad(z
−1), and Bd(z

−1) are

Ar(z
−1) = 1 + ar1z

−1 + · · ·+ arnaz
−rna, (3)

Br(z
−1) = 1 + br1z

−1 + · · ·+ brnbz
−rnb, (4)

Ad(z
−1) = 1 + ad1z

−1 + · · ·+ adnaz
−dna, (5)

Bd(z
−1) = 1 + bd1z

−1 + · · ·+ bdnbz
−dnb. (6)

When Cd(z
−1) is designed as

Cd(z
−1) = Gd(z

−1)Gr(z
−1)−1, (7)

influence of d(t) is rejected from y(t). To realize the controller, kd ≥ kr must be hold.

2.2. Data-driven controller tuning

Soma et al.(2004) proposes data-driven controller tuning named fictitious reference itera-
tive tuning (FRIT) to tune feed-back controllers for set-point tracking. This paper extends
FRIT method for designing disturbance rejection feed-forward controller Cd(z

−1). Con-
ceptual diagram of proposing FRIT is shown in Figure 2.

ε(t) denotes error as ε(t) = y(t)−Gm(z−1)r̃(t), thus minimizing ε(t) means minimizing
control error between reference trajectory and control output directly.

Assuming that one-set of operating-data u(t), y(t) and d(t) has been obtained, and closed-
loop transfer functions with d(t) = 0 is set as Gc(z

−1). When Eq.(7) holds, influence of
d(t) is neglected from y(t), and y(t) can be expressed as y(t) = Gc(z

−1)r̃(t). Therefore,
ε(t) becomes zero when Gm(z−1) and Gc(z

−1) are identical. By using these relations,
proposing FRIT determines Cd(z

−1).

In Figure 2, u(t) is calculated as

u(t) = Cr(z
−1)r(t)− Cr(z

−1)y(t)− Cd(z
−1)d(t). (8)

Based on Eq.(8), fictitious reference signal r̃(t) is defined as

r̃(t) := y(t) + Cr(z
−1)−1

{
u(t) + Cd(z

−1)d(t)
}
. (9)

Data-driven Design of a Feed-forward Controller for Rejecting
Measurable Disturbance
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Therefore, ε(t) is expressed as

ε(t) = y(t)−Gm(z−1)
[
y(t) + Cr(z

−1)−1
{
u(t) + Cd(z

−1)d(t)
}]

. (10)

From the previous discussion, suitable Cd(z
−1) can be obtained by minimizing the fol-

lowing cost function J :

J :=

N∑
i=1

ε(i)2, (11)

where N denotes size of operating-data.

The following two sets of optimization variables can be considered in Eq.(10).

1. Cd(z
−1) and Gm(z−1),

2. Gr(z
−1) and Gd(z

−1).

The first approach directly determines controller Cd(z
−1) and closed-loop model Gm(z−1).

Although ideal Cd(z
−1) of Eq.(7) and closed-loop Gc(z

−1) both include Gr(z
−1), first

approach determines both of them independently. In contrast, the second approach de-
termines controlled system and disturbance transfer function. From controlled system
Gr(z

−1) and known Cr(z
−1), Gm(z−1) is easily calculated, and Cd(z

−1) is also calcu-
lated using Gr(z

−1) and Gd(z
−1) by Eq.(7). Although it looks system identification, this

is still data-driven tuning because minimized error is not modeling error but control error
ε(t). This paper employs the second approach.

3. Numerical examples

Simulations of this section was executed as Figure 1. Gr(z
−1), Gd(z

−1), and Cr(z
−1)

were set as

Gr(z
−1) =

0.0004821z−1 + 0.0004648z−2

1− 1.895z−1 + 0.8958z−2
z−30, (12)

Gd(z
−1) =

0.002415z−1 + 0.002332z−2

1− 1.9000z−1 + 0.9003z−2
z−50, (13)

Cr(z
−1) =

0.02− 0.01z−1

∆
. (14)

In addition, unknown noise was introduced as

v(t) =
0.004988z−1

1− 0.995z−1
ξ(t), (15)

where ξ(t) is a Gaussian white noise with zero mean and 3.02 variance.

Initial operating-data which was obtained with Cd(z
−1) = 0 is shown as Figure 3. It is

clear that controlled output is affected by disturbance.

Next, the following Gr(z
−1) and Gd(z

−1) were obtained by the proposing method. For
minimization of J , fminunc function of MATLAB R2021a software was employed. The
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Figure 3: Initial operating-data with Cd(z
−1) = 0.

function uses quasi-Newton method with bfgs algorithm for optimization. Time-delays
were given as known parameters.

Gr(z
−1) =

0.0086z−1

1− 0.9923z−1
z−30, (16)

Gd(z
−1) =

0.0448z−1

1− 0.9962z−1
z−50. (17)

Even though Gr(z
−1) and Gd(z

−1) are both second order systems, they are modeled as
first order systems in this simulation.

Figure 4 shows the result using Cd(z
−1) calculated by the proposing method. Upper figure

shows that proposing method mostly rejected influence of disturbance. Shown as lower
figure, input signal quickly changed after varying disturbance signal. As a result, influence
of disturbance was canceled before appearing to the output. Gr(z

−1) and Gd(z
−1) are

second order systems, and unknown noise is added. Therefore, the proposing scheme is
considered effective for some uncertain elements.

4. Conclusions

This paper has proposed a design method of feed-forward disturbance rejection controller.
FRIT method has been employed to tune the controller. A feature is to tune not feed-
forward and feed-back controllers but only feed-forward controller. Effectiveness of propos-
ing scheme has been verified by a numerical example. It is considered that proposing
scheme is effective for system with some uncertain elements.

Measurable Disturbance
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Figure 4: Control result with Cd(z
−1) calculated by the proposing method.
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Abstract

In this paper, we study the optimal operation of heat exchanger networks with stream
splits. In particular, we extend previous approaches on the unconstrained optimization of
the system to the constrained case, with temperature constraints on each flow branch, and
with changing disturbances so that the set of optimally active constraints changes during
operation. The simplest way to achieve optimal operation when some of the constraints
are active, is to control the constraints to their limiting value, known as active constraint
control. For the remaining unconstrained degrees of freedom, we propose to control lin-
ear combinations of the gradient as self-optimizing controlled variables. To automatically
switch between the different active constraint regions, we use classical advanced control
elements such as selectors, thereby achieving optimal operation using only the temperature
measurements as feedback in different active constraint regions. The performance of the
proposed feedback optimizing control structure for the heat exchange network is compared
with the traditional model-based real-time optimization using simulations. In the presence
of structural plant-model mistmach, we show that our proposed approach performs op-
timally for all disturbances, while traditional real-time optimization fails to converge for
some cases, as the optimization problem becomes infeasible depending on the estimated
disturbances.

Keywords: process control, optimal operation, self-optimizing control, applications

1. Introduction

In the context of optimal operation of process systems, the choice of controlled variables
plays a vital role, as it will dictate how efficiently a process can operate without interfer-
ence of higher layers (Skogestad, 2000). The ideal design of a supervisory control layer
would result in a structure that is able to operate optimally under constant setpoints. This
concept is known as self-optimizing control, and recent developments aim for systematic
choice of control objectives (Krishnamoorthy and Skogestad, 2019). A known challenge
in supervisory layer design is the change in optimally active constraints during operation,
which can be caused by changes in disturbances that affect process objectives. When that
happens, reconfiguration of the controlled structure is usually desired to minimize the op-
erational losses. If that does not happen, interactions with the higher optimization layer
become stronger, as the sensitivity of the optimal setpoint values with relation to the chang-
ing disturbances is high when there are no changes in the control structure. Krishnamoor-
thy and Skogestad (2019) discusses the handling of changes in active constraints through

http://dx.doi.org/10.1016/B978-0-323-85159-6.50070-1 
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feedback control, without the solution of online optimization problems, by selector-based
control structures. This approach is to be evaluated in this work, compared to the solution
of real-time optimization (RTO) problems, which can be problematic in the presence of
model-plant mismatch.

2. Case study modeling

The case study considered in this work consists of three heat exchangers in parallel, see
Figure 1. Each exchanger has its own source of hot fluid, such that the cold fluid is split and
sent to the exchangers, and the operational goal is to maximize the outlet temperature of
the cold fluid, subject to constraints related to the maximum temperature in the individual
exchangers.

UA1

UA2

UA3

α2

α1

wh,1, Th,1

Th,1e

Th,2e

Th,3e

wh,2, Th,2

wh,3, Th,3

w0, T0

T1

T2

T3

T

Figure 1: Heat exchanger network scheme

In addition to the mass and energy balances, an additional relation is necessary for calcu-
lating the total exchanged heat in each equipment, Qi. The analytic solution, assuming
constant heat capacities and countercurrent flow, is given by Eq.(1).

Qi = UAi ∆TLM,i (1)

In this equation, ∆TLM,i represents the logarithmic mean of temperature differences in-
side the heat exchanger. Although exact, this model presents some numerical challenges,
especially when the heat capacities are too close, or when the temperature differences as-
sume opposite signs during iteration. A simplified linear version of this model makes use
of the arithmetic mean of temperature differences, ∆TAM,i, and for this model, simple
analytic expressions for the gradient can be derived (Jäschke and Skogestad, 2014).

The steady-state optimization problem considered for the optimal operation of this system
can therefore be written as:
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min
α

J = −T

s.t. gi = Ti − Tmax ≤ 0, i = 1, 2, 3
(2)

3. Proposed control structure

The optimal operation of heat exchanger networks has been extensively studied by Jäschke
and Skogestad (2014) for the unconstrained case. In this case, the gradient Ju to be driven
to zero can be approximately written in terms of the Jäschke temperatures. For the con-
strained case, however, the set of controlled variables need to change so that optimal op-
eration is achieved. Given that the active constraints gA are effectively controlled, there
are still unconstrained degrees of freedom that need to be used for optimal operation. As
proven by Krishnamoorthy and Skogestad (2019), we can find the additional controlled
variables as a linear combination of the gradient such that the necessary conditions of op-
timality are satisfied. These correspond to c = NTJu, where N is the nullspace of the
gradient of the active constraints with relation to the inputs, ∇ugA, at the optimal point.
This procedure results in a set of controlled variables per region, defined by the respective
set of active constraints.

For this case study, there are 7 feasible operating regions, one of which is fully uncon-
strained, 3 being partially constrained (one active constraint per region), and the remaining
being fully constrained (two active constraints per region). The case with all 3 constraints
being active is infeasible with the available degrees of freedom, and will therefore not be
considered. The fully unconstrained region can be optimally operated by controlling the
plant gradient to zero, and the fully constrained regions are optimally operated through
active constraint control. For the optimal operation in the partially constrained regions,
the combinations of the gradient to be controlled in addition to the active constraints are
given in Table 1.

Active constraint NT

g1
[
0 1

]
g2

[
1 0

]
g3

[
− 1√

2
1√
2

]
Table 1: Linear combinations of gradient per active constraint

The next step for the design of a simple control structure is defining the pairing between
manipulated and controlled variables, and the switching between active controllers. In
the current case study, there are 2 manipulated variables and 3 constraints, which means
that the constraints cannot be assigned to one specific input if optimal operation over all
regions is desired. Therefore, at least one of the constraints needs to be controlled by
multiple inputs.

Based on this reasoning, this work proposes an adaptive control structure to deal with all
possible active constraint regions. The full control structure, showing the logic blocks and
controllers, is presented in Figure 2. and the pairing between manipulated and controlled

Active Constraint Regions
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variables is summarized in Table 2. All presented controllers have integral action, so that
steady-state offset is eliminated.

Process

𝑇𝑇1

𝑇𝑇2

𝑇𝑇3
𝛼𝛼2

𝐽𝐽𝑢𝑢

max

min

𝐾𝐾11

𝑇𝑇1
𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾12

𝑇𝑇3
𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾13

𝑆𝑆𝑆𝑆 = 0

1 0

𝐾𝐾21

𝑇𝑇2
𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾22

𝑇𝑇3
𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾23

𝑆𝑆𝑆𝑆 = 0

− 1
2

+ 1
2

𝐾𝐾24

𝑆𝑆𝑆𝑆 = 0

0 1

maxmin

𝛼𝛼11 𝛼𝛼1

==

0 1

Figure 2: Proposed adaptive control structure

α1 α2 (T1 inactive) α2 (T1 active)

T1 T2 T2[
1 0

]
Ju

[
0 1

]
Ju

[
0 1

]
Ju

T3

[
− 1√

2
1√
2

]
Ju T3

Table 2: Proposed adaptive pairing for all operating regions

4. Simulation results and discussion

The control structure previously presented is now evaluated in closed-loop simulation face
to changing disturbances. Figure 3 shows the simulation results, where all 7 possible
regions are explored. As the process itself is considered to be at steady state at all times,
the dynamics of the system is fully attributed to the tuning of the controllers. Operation
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in the fully constrained regions is optimal at steady state, whereas there is some deviation
from the optimal conditions in the partially constrained and unconstrained regions. This is
due to the estimation of gradients by Jäschke temperatures, which does not fully represent
the plant model, but gives a reasonable estimate for control, so that low operational loss is
achieved.

Figure 3: Simulation of region-based control structure using Jäschke temperatures

These results are compared with a traditional RTO implementation, see Figure 4. This
implementation consists of a two-step approach, with disturbance estimation followed by
model-based constrained optimization. The system converges in few iterations, with sim-
ilar steady-state behavior to the region-based control structure. The unconstrained and
partially constrained regions suffer from deviations from the true optima, due to model-
plant mismatch, and the converged state is quite similar to that of the region-based control
structure. This is to be expected, as Jäschke temperatures represent the gradient informa-
tion extracted from the model used in the RTO framework.

In the RTO simulation, a curious undesired behavior is observed. From t = 40, in the fifth
simulated region, the system converges to an infeasible point. This happens because the
disturbance estimation step returns parameter values that make the optimization problem
infeasible, meaning that there are no inputs that satisfy all constraints on the model with
the given parameters, even if the estimation step returns parameters that agree with the
plant measurements. Some workarounds are therefore deemed necessary for the effective
implementation of the RTO strategy, such as the adaptation of the optimization problem
itself, based on the estimation of gradients from the true plant (Marchetti et al., 2009).

5. Conclusion

In this work, we extended previous work on the optimal operation of heat exchanger net-
works to the constrained case, where the ideal self-optimizing variables known as Jäschke

Optimal Operation of Heat Exchanger Networks with Changing 
Active Constraint Regions
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Figure 4: Simulation of steady-state RTO with model-plant mismatch

temperatures cannot be applied to every operating condition. Instead, control of the active
constraints becomes necessary for optimal operation, and the challenge lies in deciding au-
tomatically what are the best controlled variables during operation. This has been achieved
with the use of selectors, with steady-state performance comparable to a traditional model-
based RTO implementation. With the proposed control implementation, one avoids the
solution of online optimization problems, which can be problematic, as highlighted by the
presented results. However, the simultaneous use of the presented tools is encouraged, so
that near-optimal operation is achieved in the faster timescales, and optimization tools can
correct for mismatches under more careful evaluation of the results.
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Abstract

The paper provides a method for Iterative Feedback Tuning (IFT) for regulatory control
systems. The IFT estimates the gradient of a prescribed cost criterion using collected data.
However, the original approaches require special experiments for gradient estimate. The
proposed method makes it possible to estimate the sensitivity function that leads to the
gradient estimate from regulatory control data. The proposed approach uses two sets of
regulatory control data. The first one is used for rough estimate of the sensitivity function.
Then, the second data are used for the correction of the estimation error of the sensitivity
function. A numerical example shows that the proposed method can optimize the cost
criterion even in the case where the identifiability condition does not hold.

Keywords: Iterative feedback tuning, Regulatory control systems, Sensitivity function

1. Introduction

The Iterative Feedback Tuning (IFT), which was originally initiated by Hjalmarsson (1998),
is a data-driven controller parameter tuning method that achieves optimal control param-
eters by way of parameter updating laws using gradient estimates for a prescribed cost
criterion. While the original IFT requires a special experiment for gradient estimate, the
present work concerns a gradient estimation method using regulatory control data. How-
ever, the methods discussed in Kammer (2000) required a certain plant test for estimating
sensitivity functions. The method in Masuda (2019) sometimes brings numerical prob-
lems in the derivation of gradient estimates. Therefore, the paper provides an estimating
method for sensitivity functions leading to the gradient estimate. The proposed approach
uses two sets of regulatory control data. The first one is used for the estimation of plant
and disturbance model. Then, after calculating a sensitivity function using the estimated
plant model, the estimation error is compensated by using the second regulatory control
data. The effectiveness of the proposed approach is shown through a numerical example.

2. IFT for regulatory control

2.1. Process description and regulatory control Systems

Consider the following process model described by

y(t) = G(q)u(t) +H(q)w(t), (1)

http://dx.doi.org/10.1016/B978-0-323-85159-6.50071-3 
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where q is a shift operator, i.e. qky(t) = y(t + k). u(t) and y(t) are process input and
output signals at discrete time instant t. w(t) is zero mean white noise with the variance
σ2
w. The process model G(q) and the disturbance model H(q) are expressed as

G(q) =
B(q−1)

F (q−1)
, H(q) =

C(q−1)

D(q−1)
, (2)

B(q−1) = b0 + b1q
−1 + · · ·+ bnb

q−nb , (3)

F (q−1) = 1 + f1q
−1 + · · ·+ fnf

q−nf , (4)

C(q−1) = 1 + c1q
−1 + · · ·+ cnc

q−nc , (5)

D(q−1) = 1 + d1q
−1 + · · ·+ dnd

q−nd , (6)

where nb，nf，nc，and nd are the orders of B(q−1)，F (q−1)，C(q−1)，and D(q−1),
respectively. It can be supposed that the disturbance model H(q−1) is a stable, mini-
mum phase, and bi-proper rational function without loss of generality, so both the zeros of
C(q−1) and D(q−1) lie in a unit circle in the complex plane.

The present work deals with the regulatory control system with the the following feedback
controller K(q)

K(q) =
X(q−1)

Y (q−1)
(7)

X(q−1) = x0 + x1q
−1 + · · ·+ xnx

q−nx , (8)

Y (q−1) = y0 + y1q
−1 + · · ·+ yny

q−ny , (9)

where nx and ny are the orders of X(q−1) and Y (q−1), respectively. The process input
signal is calculated as u(t) = −K(q)y(t). As for the controller K(q), the paper considers
the case where the parameters of the numerator are tuning parameters for control perfor-
mance improvement. Hence, the paper represents the controller K(q) in the following
parametrization.

K(q,ρ) = φ(q)Tρ, (10)

ρ =
[
x0 x1 · · · xnx

]T
, φ(q) =

[
1

Y (q−1)
q−1

Y (q−1) · · · q−nx

Y (q−1)

]T
,

(11)

where φ(q) is a basis vector that specifies controller structures and ρ is a controller pa-
rameter vector, which will be tuned for control performance improvement.

The assumptions of the present work are as follows.

(A1) The parameters of the process G(q) and the disturbance model H(q) are unknown,
but the order of the numerators and the denominators, nb，nf，nc，and nd are
known.

(A2) The controller structure is predetermined. Namely, φ(q) and the dimension of pa-
rameter vector nx is assumed to be given beforehand.

(A3) Two different controller parameters that stabilize the closed-loop system for the pre-
scribed controller structure are attainable, and the closed-loop output implemented
by the stabilized controller parameters can be collected for a certain interval.
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2.2. Control objective

The control objective of the present work is the disturbance attenuation for the regulatory
control systems. To this end, the present work will reduce the problem into the optimiza-
tion problem minimizing the cost criterion.

J = Jy + λJu, λ > 0, Jy = E

[
1

T

T∑
t=1

y(t)2

]
, Ju = E

[
1

T

T∑
t=1

u(t)2

]
, (12)

where E [·] represents the expectation operator. However, the present work employs the
IFT approach for controller parameter tuning, which tunes the controller parameters every
T steps by using collected process output signals at the corresponding interval. Hence, the
paper updates the controller parameters in order to decrease the following cost criterion at
every interval instead of the minimization of Eq.(12).

J (i) = J (i)
y + λJ (i)

u , λ > 0, J (i)
y =

1

T

(i+1)T∑
t=iT+1

(
y(i)(t)

)2

, J (i)
u =

1

T

(i+1)T∑
t=iT+1

(
u(i)(t)

)2

,

(13)

where i = 0, 1, 2, · · · is trial numbers, and y(i)(t) and u(i)(t) are the process output and
input signals when the controller parameters ρ(i) is implemented. The objective of the
paper is to provide a way how the controller parameters ρ(i) are tuned so that the cost
criterion Eq.(13) is decreased at every interval iT + 1 ≤ t ≤ (i + 1)T, i = 0, 1, 2 · · ·
under the assumption (A1), (A2), and (A3).

3. Controller parameter tuning via IFT

3.1. Gradient estimate

In order to achieve the control objective, the present work estimates the gradient of the
cost criterion Eq.(13) from the collected data. The following is the gradient of the cost
criterion at the i-th trial.

∂J (i)

∂ρ(i)
=

∂J
(i)
y

∂ρ(i)
+ λ

∂J
(i)
u

∂ρ(i)
, (14)

∂J
(i)
y

∂ρ(i)
=

2

T

T∑
t=1

y(i)(t)
∂y(i)(t)

∂ρ(i)
,

∂J
(i)
u

∂ρ(i)
=

2

T

T∑
t=1

u(i)(t)
∂u(i)(t)

∂ρ(i)
(15)

In Eq.(15), ∂y(i)

∂ρ(i) and ∂u(i)

∂ρ(i) are calculated as

∂y(i)

∂ρ(i)
= − φ(q)T

K(q,ρ(i))
Tf (ρ

(i))y(i)(t),
∂u(i)

∂ρ(i)
= −φ(q)TSf (ρ

(i))y(i)(t), (16)

where Sf (ρ
(i)) is the sensitivity function, and Tf (ρ

(i)) is the complementary sensitivity
function represented as

Sf (ρ
(i)) =

1

1 +G(q)K(q,ρ(i))
, Tf (ρ

(i)) = 1− Sf (ρ
(i)) (17)

of Sensitivity Function
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From Eq.(14), Eq.(15), and Eq.(16), it follows that if the sensitivity function Sf (ρ
(i)) is

estimated from the collected data y(i)(t), iT +1 ≤ t ≤ (i+1)T , the gradient ∂J(i)

∂ρ(i) could

be estimated. Therefore, the next section shows how the sensitivity function Sf (ρ
(i))

could be estimated.

4. Estimate of sensitivity function

As shown in the assumption (A3), it is assumed that two different controller parameters
stabilize the closed-loop, and each closed-output are collected. The subsection considers
the case where one set of controller parameters are the i-th trial controller parameters
ρ(i), and another set of controller parameters are the controller parameters ρc for the
correction of the estimate of the sensitivity function. The proposed estimation method
firstly estimates the sensitivity function using the collected data y(i)(t), iT +1 ≤ t ≤ (i+
1)T implemented by the controller parameters ρ(i). Then, the estimate of the sensitivity
function is corrected by using the collected data yc(t), tc + 1 ≤ t ≤ tc + T implemented
by the controller parameters ρc. tc is a certain starting time instant for the data collection
of yc(t). The detail procedure is as follows.

4.1. Rough estimate of sensitivity function

This stage roughly estimates the sensitivity function and the disturbance model in the
case of the controller parameters ρ(i). Let θ̂ denote the estimated plant and disturbance
model parameter vector, and let H̃(q, θ̂) and S̃f (θ̂,ρ

(i)) denote the estimated disturbance
model and the estimated sensitivity function, respectively. The proposed method does not
require the preciseness of each estimate of the sensitivity function and the disturbance
model. Meanwhile, suppose that the proposed method successfully estimates the product
of sensitivity function and disturbance model. The request will hold because time series
analysis of the collected data y(i)(t) would lead to the estimates of H̃(q, θ̂)S̃f (θ̂,ρ

(i)).

Additionally, Gevers (2009) proves that the prediction error method makes the request
hold even in the case where the identifiability condition does not hold. Hence the esti-
mated disturbance model and the sensitivity function can be parametrized by a bi-proper,
minimum phase, stable rational function ∆(i)(q).

H(q, θ∗) = H̃(q, θ̂)∆(i)(q), Sf (θ
∗,ρ(i)) = S̃f (θ̂,ρ

(i))∆(i)(q)
−1

, (18)

where the θ∗ is the true parameters of the disturbance model. The next step determines
the ∆(i)(q) so that the roughly estimated sensitivity function becomes close to the true
sensitivity function Sf (θ

∗,ρ(i)).

4.2. Correction of the roughly estimated sensitivity function

The step uses the the collected data yc(t) implemented by the controller parameters ρc. Let
the controller and the sensitivity function using ρc be defined as K(ρc) and Sf (θ

∗,ρc),
respectively. By cancellation of the process model G(q) between the Sf (θ

∗,ρc) and
Sf (θ

∗,ρ(i)), the following equation can be derived.

Sf (θ
∗,ρc)−1 = 1 +

(
Sf (θ

∗,ρ(i))−1 − 1
) K(ρc)

K(ρ(i))
(19)
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Now, note that the prediction error for the collected data yc(t) can be represented as

εc(t,θ) = H(q, θ∗)−1Sf (θ
∗,ρc)−1yc(t). (20)

Hence, using Eq.(18), the prediction error Eq.(20) can be expressed as

εc(t, θ̂) =H̃(q, θ̂)∆(i)(q)

(
1 +

(
S̃f (θ̂)

−1∆(i)(q)− 1
) K(ρc)

K(ρ(i))

)
yc(t). (21)

The ideal ∆(i)(q) that leads to the true sensitivity function minimizes the prediction er-
ror Eq.(21). Thus, the optimal ∆̂(i)(q) is obtained so that the mean square error of the
prediction error Eq.(21) is minimized. Namely, ∆̂(i)(q) can be described as

∆̂(i)(q) = arg min
∆(i)(q)

1

T

T∑
t=1

εc(t,θ)2 (22)

Finally, the corrected sensitivity function can be obtained as

Ŝf (θ
∗,ρ(i)) = S̃f (θ̂,ρ

(i))∆̂(i)(q)
−1

(23)

5. Numerical Example

Consider the following process model and disturbance model.

G(q) =
0.3q−1

1− 0.45q−1
, H(q) =

1− 0.75q−1

1− 1.2q−1 + 0.36q−2
(24)

The proposed method was applied to the numerical example. We set the time interval
T = 5000, the variance of white noise is σ2

w = 1. The controller structure is nx = 1
and φ(q) = 1

1−0.8q−1 . Hence, the controller is parametrized as K(q, ρ) = φ(q)ρ. Note
that the orders of the process model, the disturbance model, and the controller are nb =
1, nf = 1, nc = 1, nd = 2, nx = 0, ny = 1, and the identifiability condition does not
hold. i.e. max (nx − nf , ny − nb) = 0 < 2 = nd. Hence, the prediction error method
does not estimate the true model. In the numerical example, the first controller parameter
ρ(0) = 1.8 was used. On the other hand, as the controller parameter for the correction of
the sensitivity estimates ρc = 1.5 was used. The rough estimate of the sensitivity function
was calculated using the estimated process and disturbance model parameters. Since the
identifiability condition does not hold, the estimated parameter remains bias error. Hence,
the rough estimate also remains bias error. Fig.1 shows the comparison results. From
the figure, we can see that the proposed method successfully corrects the estimate of the
sensitivity function. Fig.2 and Fig.3 show how the cost criterion and controller parameter
varies by applying the gradient of corrected estimate and rough estimate. From the figures,
it follows that the proposed method works effectively.

6. Conclusions

The paper proposed IFT for regulatory control systems by way of estimating sensitivity
functions. The numerical example showed that the proposed method can optimize the cost
criterion even in the case where the identifiability condition does not hold. The further
theoretical analysis remains open problems.

This work was partly supported by JSPS KAKENHI Grant Number 19K04456.
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Figure 1: Sensitivity function oftrue model, corrected estimate, and rough estimate

Figure 2: Cost criterion in case of corrected
estimate and rough estimate

Figure 3: Controller parameter in case of
corrected estimate and rough estimate
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Abstract 

To date the realization of processes following the principles of Green Chemistry is still 

challenging due to their novelty, unknown properties of applied feedstocks and solvents, 

or unidentified system phenomena. Process operation and control is impeded by high 

system dynamics and unknown behavior. To enable early-stage realization of such 

“green” processes, optimal process control and especially dynamic real-time optimization 

(D-RTO) is advised. However, for implementation on real processes key requirements on 

model adequacy, measurement sufficiency, and robustness must be fulfilled. This is 

investigated for a reactive liquid multiphase system. Based on identified critical 

challenges, a tailored D-RTO framework is developed and tested using mini-plant opera-

tions. Results indicate greatly improved process operation and reaction performance. 

Keywords: Microemulsions, Real-Time Optimization, Multi-Rate State Estimation, 

Catalysis, Mini-Plant Operation. 

1. Introduction and Motivation 

With an increasing need for sustainability, Green Chemistry processes considering, e.g., 

new synthesis paths for renewable feedstocks and the application of reactants, solvents, 

or additives with low environmental impact are strived for. However, large-scale 

industrial application of (continuous) production processes are still impeded by the 

complexity of novel component systems, unknown thermodynamics, and challenging 

process control (Ivanković, 2017). Developed methods in process systems engineering 

(PSE) are considered as enabler and assist process development (Mitsos et al., 2018) and 

operation (Müller et al., 2017; Rafiei and Ricardez-Sandoval, 2020). Their application 

depends on the specific challenges arising from the process and requirements for a robust 

implementation of suitable PSE methods, which need to be tailored based on a systematic 

approach. Such a procedure is outlined within this contribution for the realization of a 

novel “green” process concept for the hydroformylation of long-chained oily substrates 

in microemulsion systems and demonstrated for continuous mini-plant operations. 

Surfactant-based microemulsions offer beneficial properties in providing large interfacial 

areas for contacting aqueous catalyst solutions with oily substrates in a reactor and a 

thermomorphic phase separation behavior allowing for product separation and recycling 

of catalyst and surfactant using simple gravity settlers. However, process operation of 

such systems using standard automation usually fails due to the complex phase separation 

behavior and immeasurable states (Illner et al., 2016). Hence, a systematic analysis is 

conducted to identify critical operation challenges and collect sufficient information on 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50072-5 
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the system behavior. This enables the tailored development of a D-RTO framework based 

on multi-rate state estimation and dynamic optimization, while systematically considering 

key requirements such as suitable process models, measurability of plant states, and 

communication structures. With regard to process industry, a real-life application of D-

RTO was tested using long-term mini-plant runs of up to 200 h, aiming for stable and 

continuous operation of the crucial phase separation and optimal reaction performance. 

2. System Information and Technical Application 

As example system the long-chained 1-dodecene, the surfactant Marlipal® 24/70, and an 

aqueous catalyst solution from the rhodium precursor (CAS: 14874-82-9) and Sulfo-

XantPhos are used to form a microemulsion. The hydroformylation reaction network with 

the product tridecanal and possible by-products is found in (Pogrzeba et al., 2019). 

2.1. Separation Behavior of the Microemulsion System 

Microemulsions are mixtures of oil, water, and an amphiphile, which are characterized 

by complex rheology and phase separation behavior. Several phase states (1, 2, 2, 3) are 

possible (Figure 1), developing surfactant-rich emulsion phases and highly pure excess 

phases (oil or water). The separation dynamics show a distinct minimum of the separation 

time for the three-phase region, making it the sole feasible operation region. 

Figure 1: Schematic isothermal Gibbs triangles for microemulsion system. Phases are labeled according to the 

continuous liquid. Figure adapted from (Sottmann and Stubenrauch, 2009). 

2.2. Mini-Plant Configuration 

For testing microemulsions as green and superior reaction media, a mini-plant is operated 

by our group at Technische Universität Berlin. Following Figure 2, a CSTR is used for 

emulsification of catalyst solution, surfactant, and substrate. With addition of syngas, the 

reaction is conducted at 15bar and 90°C. Phase separation into up to three liquid phases 

is then carried out in a gravity settler holding a flow sight glass and three phase drains.  

Figure 2: Simplified sketch of the mini-plant at TU Berlin consisting of reactor, settler, and recycles. 

The reaction product is syphoned off from the top-most liquid phase, while the rest is 

recycled into the reactor. Plant automation is realized with Siemens PCS7 using an OPC 
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server-client structure for data communication (OPC Foundation, 2021), while reaction 

tracking is done via offline gas chromatography (GC). Additional information on safety 

measures, automation layers, and analytics can be found in (Illner, 2020). 

2.3. Operational Challenges and Requirements for D-RTO Application 

Successful plant operation depends on efficient control of the phase separation, which is 

complicated by the complex phase behavior of microemulsions. A systematic analysis of 

relevant influences regarding sensitivity on phase separation operation, measurability, 

and controllability is deployed (Illner, 2020). This reveals small and dynamically shifting 

operation regions (due to concentration shifts by recycling and reaction) and an 

unmeasurability of relevant concentrations (surfactant). To support plant start-up and to 

enable continuous operation with an optimal reaction performance, D-RTO is considered 

based on a review of existing methods and initial case studies. Here, state estimation is 

deployed to adapt the state of a process model to current plant measurements before 

calculating control trajectories by dynamic optimization. However, real-life application 

of D-RTO faces several theoretical and practical requirements, which have to be fulfilled 

for the given process (Biegler and Zavala, 2009; Bonvin and Srinivasan, 2013): 

R1: A suitable model describing influences of relevant disturbances, feasible operation 

regions (plant optimum), and (active) process constraints is required. It needs to be twice 

continuously differentiable and of fast and reliable convergence behavior. 

R2: State and optimality of the plant need to be quantifiable, which requires availability 

of specific measurements and sensitivity of the objective function regarding model states. 

R3: By consequence, it needs to be verified that the problem formulation of D-RTO for 

the plant is robust with respect to model or measurement uncertainty. 

R4: Weights in objective functions of estimators and optimizers demand tuning. 

R5: A suitable communication structure between state estimation, optimization, 

distributed control systems (DCS), and additional analytics is required for data handling. 

R6: State estimation needs to treat different sampling rates, as valuable but rare 

concentration measurements (gas chromatography) are mandatory to be incorporated.  

R7: The D-RTO framework should allow for re-initialization after operator interactions, 

as unexpected events can occur, which might be out of the model’s scope. 

3. Model Development and D-RTO Framework 

Cornerstone for the application of D-RTO on the mini-plant for the hydroformylation of 

1-dodecene in microemulsions systems is a suitable dynamic process model, describing 

all relevant phenomena in the system (R1-R3). Key element is a model-based description 

of the three-phasic separation of the microemulsion, possible phase changes (constrain 

feasible operation region) and the derivation of a soft-sensor for otherwise inaccessible 

concentration information. Based thereon, a D-RTO framework is built to track and 

optimize plant operation using DCS, offline GC, and soft-sensor information. 

3.1. Dynamic Mini-Plant Model 

A dynamic model of the full mini-plant system, including relevant tanks, actuators, and 

available measurements is set up based on first principles and aiming for representing 

plant states from fully empty to continuous operation. Of special interest are the reactor 

and the settler model. The former considers a mechanistic reaction network for the 

hydroformylation reaction, which is systematically adapted to incorporate influences of 

the microemulsion on the reaction (Pogrzeba et al., 2019). A power-law formulation for 
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reaction enhancement by the surfactant concentration and a twice continuously 

differentiable selectivity switch (sigmoidal function) have been implemented (Illner, 

2020). Regarding the settler unit, one suffers from the lack of profound thermodynamic 

descriptions of microemulsions (VLLLE model). For plant operation, it is however 

mandatory to track and describe the desired three-phase state, constrain it from shifting 

into undesired states, and obtain concentration information on all present phases 

(feedback on reaction via recycle). To achieve this, a polynomial surrogate model is 

derived from lab experiments, connecting experimental inputs (integral concentration 𝑥𝑖 
and temperature 𝑇) with composition 𝑥𝑖

𝑃ℎ𝑎𝑠𝑒 and volume fraction 𝜙𝑃ℎ𝑎𝑠𝑒 of each existing 

phase. This enables the formulation of a soft-sensor working on 𝜙𝑃ℎ𝑎𝑠𝑒 and 𝑇 to predict 

the otherwise inaccessible concentrations of surfactant and water (Illner, 2020): 

𝑥𝑖
𝑃ℎ𝑎𝑠𝑒 , 𝑥𝑖 = 𝑔(𝑇, 𝜙𝑃ℎ𝑎𝑠𝑒) (1) 

The soft-sensor is a vital element for enabling D-RTO since it enables observation of the 

plant state using state-estimation, while also optimality conditions become tractable (R2). 

The separation model is then implemented into a settler unit model holding multiple liquid 

hold-ups and three fixed phase drains. Twice continuously differentiable sigmoidal 

functions are deployed to enable switching of the outlet flow composition according to 

the present phase at the respective outlet. The whole process model is available as DAE 

system or fully discretized via MOSAICmodeling (Esche et al., 2017). 

3.2. D-RTO Framework 

The structure of the developed D-RTO scheme is given in Figure 3. As a first step, moving 

horizon (state-)estimation (MHE) is chosen due to its superior features in handling 

nonlinearities and constraints (Weigert et al., 2018). As a special feature, multiple sampl-

ing rates are considered (R6). The MHE continuously provides estimates based on fast 

measurements (temperature, flow, level), which are updated on a second layer, whenever 

slow but valuable concentration measurements are available (2 to 4 h). Deployed 

objective functions for both layers are structured as in Eq. (2) and contain matrices 𝑃, 𝑄, 

and 𝑅 to weight arrival cost of estimates 𝑧, measurements 𝑦, and process noise . 

Figure 3: Graphical representation of interaction between state estimator, optimizer, and plant. 

Convergence of the MHE is found to be sensitive to the choice of respective weights and 

online tuning is advised, if largely differing operation modes are considered (R4). Given 

a state estimate at t2, a future plant state t3 is simulated based on the available control 

trajectory applied on the plant. This way, feasible initials for optimization are obtained. 
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The dynamic optimization considers feed and recycle flows, reactor and settler 

temperature, and product flow as manipulables and yields trajectories of controller 

setpoints for a horizon of 4 h based on an economic objective function considering the 

product stream and penalties for catalyst loss. In parallel, MHE continuously captures the 

plant’s state and re-optimization is triggered on larger estimated deviations. The efficient 

interaction of MHE, optimizer, analytics, and the plant is realized by an OPC UA-based 

server client structure, allowing each tool to directly communicate with the DCS. 

min
𝑧,𝜉

∑∆𝑧𝑇𝑃−1∆𝑧 + ∆𝑦𝑇𝑅−1∆𝑦 + ∆𝜉𝑇𝑄−1∆𝜉 (2) 

4. Case Study 

D-RTO application was tested for long-term mini-plant runs of more than 200 h each. 

Pre-calculated (gPROMS) optimal trajectories ensured a stable operation throughout the 

critical start-up phase and provided suitable initials for the D-RTO framework. The latter 

was used to successfully stabilize continuous operation, as shown in Figure 4. For the 

shown horizons, conversion, product yield, and selectivity are stabilized on high levels, 

while the optimizer takes action on adaption of reaction conditions in the reactor. This 

resulted in further increase of the product selectivity (track optimality, R2) and successful 

phase separation operation in the desired three-phase state (purity of 99.5 % of oily 

compounds in oil phase obtained). Hence, an overall (optimal) reaction performance with 

a yield of 38 % and a product selectivity of 92 % was obtained. Both values are in perfect 

agreement with reference lab-scale experiments. Furthermore, online applicability of the 

D-RTO scheme is proven. For the given horizon of 4 h, feasible solutions were obtained 

within 72 min (e.g., horizon 1: state estimation - 735 CPU seconds; optimization - 3535 

CPU seconds) given a maximum of 120 min for calculations and result implementation. 

However, convergence behavior significantly depends on the choice of the solver and its 

parameters. Here, CONOPT is preferred due to superior handling of high nonlinearities. 

Figure 4: D-RTO application on the mini-plant. Left: Reaction conversion 𝑋 and product yield 𝑌. Right: Product 

selectivity 𝑆𝑃𝑟𝑜𝑑𝑢𝑐𝑡 and regio-selectivity 𝑆𝑛/𝑖𝑠𝑜. Two application horizons with trajectories from state estimation 

(SE) and optimization (Opti) compared to measurement data (Meas). 

5. Conclusion and Outlook 

D-RTO is ideally suited to assist the realization of complex liquid multiphase systems as 

reaction media. However, key challenges for application are identified in providing 

suitable model structures, measurement availability and accuracy. This is demonstrated 

for a complex reactive multiphase system and handled with a first-time implementation 

of a phase separation model for microemulsions, as well as a soft-sensor for unmeasurable 

D-RTO as Enabler for Green Chemical Processes – Systematic Application

and Challenges in Reactive Liquid Multiphase Systems 
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model states. Based on this, a tailored D-RTO framework is successfully tested using 

mini-plant operation runs over 200 h each. However, future work is required on the task: 

how to systematically derive adequate models including phenomena relevant for the 

desired process, online tuning procedures for weights of state-estimator and optimizer 

formulations, as well as the incorporation of uncertainty.  
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Abstract 

The PID controller is widely used, and several methods have been proposed for choosing 

the controller parameters to achieve good performance. The controller tuning problem is 

set up as a semi-infinite program (SIP), with the integrated squared error (ISE) or the H∞ 

norm of the frequency domain error function (|𝐸(𝑠)|∞) as the objective function, and H∞ 

constraints for robustness and noise attenuation. Previous authors considered discrete 

points to enforce the H∞ constraints, however this is an outer approximation that does not 

guarantee a feasible point. When a feasible point can be found, it may require multiple 

iterations with a finer and finer discretisation. Here, the SIP is solved using a global 

optimisation algorithm. Several numerical experiments show that the proposed 

formulation converges quickly (<10 seconds) and gives sensible controller tuning values 

without the need to apply expert knowledge to the tuning problem. These results suggest 

that this is an attractive method for automated controller tuning.  

Keywords: Controller tuning; Global Optimisation; Process Dynamics and Control; 

Semi-infinite Programming 

1. Introduction 

The PID controller has found widespread use in industry and there are many methods in 

the literature to tune PID parameters. Typically, tuning involves a trade-off between 

rejecting disturbances and robustness to uncertainty (Åström and Hägglund, 2006).  

Finding parameters by trial and error is time-intensive, which has led to the formulation 

of tuning rules, e.g. the Ziegler-Nichols tuning rule and SIMC, see Åström and Hägglund 

(2006) for an overview. An alternative to tuning rules, is to find controller parameters by 

solving an optimisation problem. Optimisation-based tuning is a powerful tool, especially 

when system complexity, non-standard parameterisations, or requirements on 

performance and robustness mean that tuning rules are ill-suited (Grimholt and 

Skogestad, 2018; Åström and Hägglund, 2006).  

 

Balchen (1958) presented the first “modern” formulation of the PID optimisation 

problem, that explicitly included a performance and robustness trade off. Since then, 

various authors have proposed different formulations, see e.g. Soltesz et al. (2017). Here, 

we place constraints on the H∞ norm of transfer functions, i.e. the constraints should be 

satisfied for all considered frequencies (𝑤 ∈ Ω ⊂ ℝ+), which means there are an infinite 

number of constraints (Grimholt, and Skogestad, 2018; Soltesz et al. 2017).   
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Previous authors (Grimholt, and Skogestad, 2018; Soltesz et al. 2017) discretised the 

frequencies to form a finite problem, e.g., Grimholt, and Skogestad (2018) used 10 000 

points. This is an outer approximation that does not guarantee a feasible point. It also 

raises the problem of how to select the discretisation frequencies. If we consider the PID 

tuning problem as one in which the constraints must be satisfied, then this means that 

multiple iterations with a finer discretisation or the use of expert knowledge to choose a 

good prior discretisation may be necessary. 

In this work we use the global optimisation algorithm proposed by Djelassi and Mitsos 

(2017) to solve the semi-infinite PID tuning problem. This algorithm iteratively solves 

discretised subproblems, where at each iteration a new discretisation point is added at the 

frequency that results in the largest constraint violation at the incumbent solution. To 

facilitate the global optimisation algorithm, we use an objective function in the frequency 

domain. Initial results show that the proposed formulation converges in reasonably quick 

computation times (<10 seconds) and gives sensible controller tuning values without the 

need to apply expert knowledge to the tuning problem. 

 

1.1. System 

We consider the closed loop 

linear system in Figure 1, 

with disturbances at the plant 

input and output (du and dy), 

and noise (𝑛) entering the 

system at the measurement 

output. The system is 

represented by the following 

transfer functions (Åström 

and Hägglund, 2006): 

𝑆(𝑠) =
1

1 + 𝐺(𝑠)𝐾(𝑠)
,          𝑇(𝑠) = 1 − 𝑆(𝑠),                𝑇𝐹(𝑠) = 𝑇(𝑠)𝐹(𝑠),  

𝐺𝑆(𝑠) = 𝐺(𝑠)𝑆(𝑠),                𝐾𝑆(𝑠) = 𝐾(𝑠)𝑆(𝑠),            𝐾𝐹𝑆(𝑠) = 𝐾(𝑠)𝐹(𝑠)𝑆(𝑠), 

where 𝑠 is the complex frequency (𝑠 = 𝑖𝑤), and 𝑆(𝑠) and 𝑇(𝑠) are the sensitivity and 

complementary sensitivity functions, respectively. Here, we consider the case of pure 

error feedback (𝐹 = 1). The controller error, 𝐸, is the difference between the measured 

output (𝑦) and setpoint (𝑦𝑠): 

−𝐸(𝑠) = 𝑦 − 𝑦𝑠 = 𝑆(𝑠)𝑑𝑦 + 𝐺𝑆(𝑠)𝑑𝑢 − 𝑇(𝑠)𝑛. (1) 

In this work we consider PID controllers that are parameterised in the linear form: 

𝐾(𝑠) = 𝑘𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠, (2) 

where 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 are the tuning parameters. In this form the optimiser can selected a 

PID subtype, e.g. setting 𝑘𝑑 to zero yields a PI controller. 

 

Figure 1. Block diagram of closed loop system. K(s) is the 

controller, G(s) is the process and F(s) is the filter. 
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1.2. Objective  

We wish to pick control parameters that minimise the error after some disturbance. 

Various performance indices have been proposed, with the most widely used measure 

being the integral absolute error (IAE): 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)|
∞

0

𝑑𝑡. (3) 

This formulation requires the error function in the time domain (𝑒(𝑡)). Finding the time 

domain error function generally involves explicit simulation or taking the inverse Laplace 

transform. Balchen (1958) proposed the use of a performance index in the frequency 

domain that approximates the IAE. The rationale behind the approximation is that 

|𝑒(𝑡)| = 𝑒(𝑡)
|𝑒(𝑡)|

𝑒(𝑡)
, where if 𝑒(𝑡) is oscillatory then the fraction defines a square wave. 

The IAE can then be approximated by introducing a sine wave with free parameters 𝑤 

and 𝑎, that are chosen to maximise the integral, i.e. reduce the approximation error. This 

allows one to write the objective in the frequency domain: 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑡)|
∞

0

𝑑𝑡 ≈ max
a,w

∫ 𝑒(𝑡)sin (𝑤𝑡 + 𝑎)
∞

0

𝑑𝑡 (4) 

= max
𝑤

|𝐸(𝑖𝑤)| = |𝐸(𝑠)|∞ = 𝐻𝐼𝐸,  

where |⋅|∞ is the H∞ norm. For convenience, we shall refer to this as the H-infinity error 

(HIE). The HIE is bounded by the integral error (IE) and IAE: 𝐼𝐸 ≤ 𝐻𝐼𝐸 ≤ 𝐼𝐴𝐸. If the 

system is well-dampened, then 𝐼𝐸 ≈ 𝐻𝐼𝐸 ≈ 𝐼𝐴𝐸. Using Parseval's theorem, the integral 

squared error can be (exactly) represented in the frequency domain: 

𝐼𝑆𝐸 =  ∫ 𝑒(𝑡)2
∞

0

𝑑𝑡 =
1

𝜋
∫ |𝐸(𝑖𝑤)|2𝑑𝑤

∞

0

. (5) 

1.3. Robustness 

We enforce robustness by constraining the maximums in the sensitivity and 

complementary sensitivity functions MS and MT, where 

𝑀𝑆 = |𝑆(𝑖𝑤)|∞,                          𝑀𝑇 = |𝑇(𝑖𝑤)|∞.     

The magnitude of MS and MT, describe the sensitivity of the system to process uncertainty 

or change, e.g., MS gives the worst-case amplification of a disturbance and, on a Nyquist 

plot, is the distance from the loop transfer function to the point (-1,0).  

 

Constraining the magnitude of MS and MT defines circles on the Nyquist plot that the loop 

transfer function must lie out of. A combined sensitivity constraint can be defined that 

covers both excluded regions. For 𝑀 = 𝑀𝑆 = 𝑀𝑇 , this constraint is a circle on the Nyquist 

plot with centre (C, 0) and radius R given by (Åström and Hägglund, 2006): 

𝐶 =  −
2𝑀2 − 2𝑀 + 1

2𝑀2 − 2𝑀
,                               𝑅 =  −

2𝑀 − 1

2𝑀2 − 2𝑀
.  
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1.4. Noise attenuation 

It is also desirable to limit control usage due to noise. This can be performed by bounding 

the noise amplification ratio, 
𝜎𝑢

2

𝜎𝑛
2 , where 𝜎𝑢

2 and 𝜎𝑛
2 are the variances of the control and 

noise respectively.  Let 𝜙𝑛(𝑤) be the unknown spectral density of the (unclassified) 

noise, and 𝑄 be the transfer function from noise to the control signal (𝑄 = −𝐾𝐹𝑆, see 

Figure 1). The following inequality holds (Soltesz, et al. 2017): 

𝜎𝑢
2 ≤ |𝑄|∞

2 𝜎𝑛
2. (6) 

Thus, the constraint |𝑄|∞ ≤ 𝑀𝑄 conservatively constrains the noise amplification ratio. 

This inequality can be written in the form: 

|𝐾𝐹(𝑖𝑤)| − 𝑀𝑄|1 + 𝐿(𝑖𝑤)| ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (7) 

where Ω defines the range of frequencies considered.  

1.5. Optimisation problem 

Semi-infinite programs are optimisation programs with a finite number of variables, and 

an infinite number of constraints. In the PID problem we have an infinite number of 

constraints as the constraint must hold for all considered frequencies (𝑤 ∈ Ω ⊂ ℝ+). The 

optimisation problem for some performance index (PI) in the frequency domain is: 

min
𝑘𝑝,𝑘𝑖,𝑘𝑑

𝜂  (8.a) 

𝑃𝐼(𝑖𝑤) − 𝜂 ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (8.b) 

𝑅2 − |𝐶 − 𝐿(𝑖𝑤)| ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (8.c) 

|𝐾𝐹(𝑖𝑤)| − 𝑀𝑄|1 + 𝐿(𝑖𝑤)| ≤ 0,        ∀𝑤 ∈ Ω ⊂ ℝ+, (8.d) 

where the constraints are explicitly parameterised by the frequency. 

2. Numerical examples 

This work is coded in Julia and with the use of the global optimisation package EAGO.jl 

(Wilhelm and Stuber, 2020), GLPK (Makhorin, 2008), IPOPT (Wächter and Biegler, 

2006), and the JuMP modelling language (Dunning, et al. 2017).  

2.1. First order process with time delay 

Consider the system from Grimholt and Skogestad (2018) with transfer functions: 

𝐺(𝑠) =
exp(−𝑠)

𝑠 + 1
                                     𝐹(𝑠) =

1

0.001𝑠 + 1
 

To compare with the published results, we use the same weighted cost of the error from 

a step disturbance in 𝑢 and 𝑦: 𝜂 =
1

1.56
𝐻𝐼𝐸𝑑𝑦 +

1

1.42
𝐻𝐼𝐸𝑑𝑢. We enforce constraints on the 

sensitivity and complementary sensitivity with  𝑀𝑆 = 𝑀𝑇 = 1.3 and only consider 

frequencies 𝑤 in the interval  [0.01 100]. No constraint is used for the input usage.  
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The optimiser finds the parameters [0.51, 0.54, 0.23] in 2.6 seconds, with the Nyquist 

plot shown in Figure 2a. This closely matches the reported solution of [0.52, 0.53, 0.22], 
despite the use of HIE instead of the IAE (Grimholt, and Skogestad, 2018).  

 

For comparison, introducing a constraint on input usage (𝑀𝑄 = 1.0) and using the 

combined circle constraint gives the control parameters [0.32 0.28 and 0.01], with the 

Nyquist plot shown in Figure 2b. 

 

2.2. Third order process with inverse response 

Consider the system process transfer functions: 

𝐺(𝑠) =
1 − 0.2𝑠

(𝑠 + 1)3
, 𝐹(𝑠) = 1. 

We consider a constraint on the maximum combined sensitivity (≤ 1.3) and error 

function 𝐸(𝑠) = 𝐺𝑆(𝑠)𝑑𝑢. We consider frequencies in the interval  [0.01 100], and 

bounds on controller parameters of 0.0 and 2.0. 

 

The optimisation is performed with HIE and ISE as the objective, giving parameters of 

[1.58, 1.00, 1.73] and [1.54, 1.05, 1.87] respectively, in less than 5 seconds each. The 

system response using the HIE parameters is shown in Figure 3.  

 

2.3. Discussion 

Despite the potential for HIE to go to zero, this did not occur in the above examples. 

Numerical experiments have shown that this generally occurs with oscillatory systems or 

large upper bounds on the control parameters and no constraint on input usage. Providing 

good bounds on the control parameters (e.g. by using a tuning rule) can improve the speed 

of optimisation. If the bounds could ensure that the control system is well-dampened, then 

𝐻𝐼𝐸 ≈ 𝐼𝐴𝐸. The proposed SIP formulation can be readily extended to other linear fixed-

order controllers.  

 

 

(a) (b) 

Figure 2: Nyquist plots of first order process with time delay. Left plot has constraints on maximum 

sensitivity and complementary sensitivity. Right plot has constraints on combined sensitivity and 

noise attenuation. 
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3. Conclusions 

We demonstrate that the robust PID tuning problem can be formulated and solved as a 

semi-infinite program, entirely in the frequency domain, using the HIE or ISE as objective 

functions. Robustness is enforced via H∞ constraints on the sensitivity and complementary 

sensitivity functions, or an H∞ constraint on the combined sensitivity. Control usage is 

restricted via an H∞ constraint on the noise amplification ratio. On a range of systems, 

sensible controller parameters were found, typically in less than 10 seconds. Potential 

further work could include an extension to multiple output systems, or other controllers. 
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Figure 3: Step response and Nyquist plot for third order process with inverse response. 

HIE is used as the objective with no constraint on input usage. 
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Abstract 
Reinforcement Learning (RL) has generated excitement within the process industries 
within the context of decision making under uncertainty. The primary benefit of RL is 
that it provides a flexible and general approach to handling systems subject to both 
exogenous and endogenous uncertainties. Despite this there has been little reported 
uptake of RL in the process industries. This is partly due to the inability to provide 
optimality guarantees under the model used for learning, but more importantly due to 
safety concerns. This has led to the development of RL algorithms in the context of ‘Safe 
RL’. In this work, we present an algorithm that leverages the variance prediction of 
Gaussian process state space models to a) handle operational constraints and b) account 
for mismatch between the offline process model and the real online process. The 
algorithm is then benchmarked on an uncertain Lutein photo-production process against 
nonlinear model predictive control (NMPC) and several state-of-the-art Safe RL 
algorithms. Through the definition of key performance indicators, we quantitatively 
demonstrate the efficacy of the method with respect to objective performance and 
probabilistic constraint satisfaction.  

Keywords: Safe Reinforcement Learning; Optimal Control; Dynamic Optimization; 
Bioprocess Operation; Machine Learning 

1. Introduction  
There are two main drivers for the development of (nonlinear) model based controllers 
within the context of the process industries. The first of those is how best to account for 
the expression of model uncertainties and account for the various scenarios in decision 
making. The second of the drivers is inspired by the conceptualisation behind the 4th 
Industrial Revolution and pertains to the best use of data from the ongoing process to 
inform control decisions. The primary approaches to these drivers within the academic 
community exist in the form of stochastic (as well as scenario and robust) variants of 
(nonlinear) model predictive control (sNMPC), learning model predictive control (L-
MPC) and Reinforcement Learning (RL) (and various hybrids). In this work, we further 
investigate the application of RL for online optimization of (bio)chemical processes.  

RL has gained traction within the community for its ability to identify an approximately 
optimal control policy for a Markov decision process (MDP) independently of explicit 
assumption regarding the underlying process dynamics or the way in which process 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50074-9 
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uncertainty is propagated. This is because RL instead learns a control policy (or a 
functionalisation of it) via trial and error of various control strategies. This process of 
interaction, and general policy iteration, ultimately enables the learning of an 
approximately optimal policy. The major benefit of RL over the other avenues discussed 
is that the other avenues are dependent upon identification of a closed form, finite 
dimensional description of the underlying system and the associated uncertainties. This 
is not the case in RL, and enables the flexible expression of a wide range of  process 
uncertainties even when the model structure is nonlinear or nonsmooth. RL also has the 
ability to address the desire to account for process data from the real process. 
Conceivably, policies could either be updated online or from batch to batch using 
conceptually similar algorithms to those used in offline policy learning.  

Despite the apparent potential of RL, there has been few reported incidents of deployment 
to the process industries. This is primarily because of the inability of RL to naturally 
handle constraints within the MDP framework and the potential for errors introduced 
from process-model mismatch to propagate through the control function when it is 
deployed to provide control on the real process. Use of a model is however absolutely 
required for initial policy learning due to the expense and potential safety issues arising 
from conducting the RL process online from scratch. The framework for identifying RL 
policies is elucidated by Figure 1.  

 
Figure 1: Demonstration of the A) Framework for RL policy training and deployment, B) 
Considerations for satisfaction of constraint sets and accounting for process model mismatch. 

Recent works have addressed the handling of constraints via translation of the concept of 
constraint tightening as founded in the domain of SMPC (Pan et al., 2021). Other works, 
based in the domain of offline or batch RL, have considered the development of 
algorithmic mechanisms to account for learning from a finite and stationary dataset or an 
approximate process model. A dominant idea in this domain is that of pessimism, which 
in practice is a mechanism to bias the policy away from regions of the model or data 
manifold characterised by high epistemic uncertainty (i.e. areas of the domain where there 
is little information) (Yu et al., 2020). However, few works have considered the 
development of algorithms that consider both factors (Brunke et al., 2021). In this work, 
we present an algorithm that considers precisely this joint problem of constraint 
satisfaction and mismatch (known as Safe RL), through the integration of a Gaussian 
process state space models as the offline process model, as well as the concepts of 
constraint tightening and pessimism to handle joint chance constraints and mismatch, 
respectively. The method is demonstrated on a fed-batch Lutein photo-production 
process, which is both highly nonlinear and uncertain. The benchmarks consist of state-
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of-the-art safe RL algorithms and NMPC (which represents the best case deterministic 
method). 

2. Methodology  
In this work we assume that the system concerned is Markovian and expresses uncertain 
process dynamics, such that discrete time process evolution may be described as follows: 

𝒙𝒙𝑡𝑡+1 = 𝑓𝑓(𝒙𝒙𝑡𝑡 ,𝒖𝒖𝑡𝑡 , 𝒔𝒔𝑡𝑡) (1) 

where 𝒙𝒙 ∈ 𝕏𝕏 ⊆ ℝ𝑛𝑛𝑥𝑥 are states; 𝒖𝒖 ∈ 𝕌𝕌 ⊆ ℝ𝑛𝑛𝑢𝑢 are control inputs from a given control set; 
𝒔𝒔 ∈ 𝕊𝕊 ⊆ ℝ𝑛𝑛𝑠𝑠 are realisations of process uncertainty termed generally to describe various 
sources of uncertainty; and, 𝑡𝑡 ∈ {0, … ,𝑇𝑇} is a discrete time index within a discrete time, 
finite horizon. We would like to solve the following chance constrained problem: 

𝑃𝑃(𝜋𝜋𝑐𝑐) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ max

πc
𝔼𝔼𝜋𝜋𝑐𝑐 ��𝑅𝑅𝑡𝑡+1

𝑇𝑇−1

𝑡𝑡=0

�

𝒙𝒙0 ∼ 𝑝𝑝(𝒙𝒙0)
𝒙𝒙𝑡𝑡+1 = 𝑓𝑓(𝒙𝒙𝑡𝑡 ,𝒖𝒖𝑡𝑡 , 𝒔𝒔𝑡𝑡)
𝒖𝒖𝑡𝑡 ∼ 𝜋𝜋𝑐𝑐(𝒖𝒖𝑡𝑡|𝒙𝒙𝑡𝑡)

𝒖𝒖𝑡𝑡 ∈ 𝕌𝕌𝑡𝑡

𝑃𝑃 ��𝒙𝒙𝑡𝑡 ∈ 𝕏𝕏�𝑡𝑡

𝑇𝑇

𝑡𝑡=0

� ≥ 1 − 𝛼𝛼

∀ 𝑡𝑡 ∈ {0, … ,𝑇𝑇} 

 (2) 

where 𝜋𝜋𝑐𝑐(𝒖𝒖𝑡𝑡|𝒙𝒙𝑡𝑡) defines a conditional probability density function, that provides a 
distribution over controls given observation of  state; 𝕏𝕏�𝑡𝑡 = �𝒙𝒙𝑡𝑡 ∈ ℝ𝑛𝑛𝑥𝑥 ∶ 𝐴𝐴𝑗𝑗𝑇𝑇𝒙𝒙𝑡𝑡 − 𝑏𝑏𝑗𝑗 ≤ 0,

∀ 𝑗𝑗 ∈ �1, … ,𝑛𝑛𝑔𝑔�� is the set of states that satisfy a given affine (𝐴𝐴𝑗𝑗 ∈ ℝ𝑛𝑛𝑥𝑥 and 𝑏𝑏𝑗𝑗 ∈ ℝ)  
constraint set at a given time index; 𝛼𝛼 = (0,1] is the probability allowed for violation of 
the constraint set for all time indices; 𝑝𝑝(𝒙𝒙0) defines the initial state distribution; and, 
𝑅𝑅𝑡𝑡+1 ∈ ℝ defines a scalar cost, provided by a function, 𝑅𝑅:𝕏𝕏 × 𝕌𝕌 × 𝕏𝕏 → ℝ, that ranks 
process evolution with respect to control objectives.  

Conventional RL algorithms identify a policy, 𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜋𝜋𝔼𝔼𝜋𝜋[∑ 𝑅𝑅𝑡𝑡+1𝑇𝑇−1
𝑡𝑡=0 ] and do not 

naturally handle constraints. In this work, we are concerned with identifying a policy, 𝜋𝜋𝑐𝑐, 
that also satisfies a joint constraint set, with a given probability 1 − 𝛼𝛼, that may be defined 
by the implementation.  

To handle this, we propose to translate the concept of constraint tightening (Valdez-
Navarro and Ricardez-Sandoval, 2019) to tighten the constraint set, such that we can 
reformulate our probabilistic expressions into deterministic surrogates. The tightened 
constraint set is expressed as 𝕏𝕏�𝑡𝑡 = �𝒙𝒙𝑡𝑡 ∈ ℝ𝑛𝑛𝑥𝑥 ∶ 𝐴𝐴𝑗𝑗𝒙𝒙�𝑡𝑡 + 𝜀𝜀𝑗𝑗,𝑡𝑡 − 𝑏𝑏𝑗𝑗 ≤ 0, ∀ 𝑗𝑗 = {1, … ,𝑛𝑛𝑔𝑔�, where 
𝜀𝜀𝑗𝑗,𝑡𝑡 ∈ ℝ is a constraint tightening mechanism (known as a backoff) specific to both time 
index and constraint, and 𝒙𝒙� ∈ ℝ𝑛𝑛𝑥𝑥 is the nominal process state. The idea of the backoff is 
to essentially back the nominal state away from the constraint boundary to allow for 
process variation. Explicit, closed form expressions for the backoffs may be derived from 
the Cantelli-Chebyshev inequality. Together, with Boole’s inequality, this enables us to 
decompose the probability of constraint satisfaction across the various constraints, and 
identify the backoffs required by the following: 
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𝜀𝜀𝑗𝑗,𝑡𝑡 = �
1 − 𝜄𝜄𝑗𝑗
𝜄𝜄𝑗𝑗

�𝐴𝐴𝑗𝑗𝑇𝑇Σ[𝒙𝒙𝑡𝑡]𝐴𝐴𝑗𝑗  (3) 

where Σ[𝒙𝒙𝑡𝑡] is the finite variance of the system state at time index 𝑡𝑡 and 𝜄𝜄𝑗𝑗 = 𝛼𝛼/𝑛𝑛𝑔𝑔   is the 
probability with which one may allow for violation of constraint 𝑗𝑗. This enables 
formalisation of the tightened constraint set. Solving for this enables the satisfaction of 
the joint chance constraints with desired probability. In this work, we parameterise both 
𝒙𝒙� and Σ[𝒙𝒙] of the state by a Gaussian process state space model. Expressions for both 
may then be obtained in closed form, providing deterministic expressions of the constraint 
set that can be incorporated into a penalty function. Additionally, we incorporate Σ[𝒙𝒙] to 
penalise exploitation of the regions of the state space characterised by high epistemic 
uncertainty (this is the mechanism for pessimism).  In short, what we propose here is to 
identify an optimal constrained policy that maximises a penalty function in expectation:  

𝜋𝜋𝑐𝑐∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜋𝜋𝔼𝔼𝜋𝜋 ��𝑅𝑅𝑡𝑡+1 − 𝑡𝑡𝑎𝑎(ζΣ[𝒙𝒙t+1]
𝑇𝑇−1

𝑡𝑡=0

) − 𝜅𝜅‖[𝐴𝐴𝑇𝑇𝒙𝒙�𝑡𝑡+1 + 𝝐𝝐𝑡𝑡+1 − 𝒃𝒃]−‖2� (4) 

where ζ ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 is a diagonal matrix; 𝜅𝜅 ∈ ℝ is a large real value; 𝐴𝐴 = �𝐴𝐴1, … ,𝐴𝐴𝑛𝑛𝑔𝑔�; 𝒃𝒃 =

�𝑏𝑏1, … , 𝑏𝑏𝑛𝑛𝑔𝑔�
𝑇𝑇
and 𝝐𝝐𝑡𝑡 = �𝜀𝜀1,𝑡𝑡 , … , 𝜀𝜀𝑛𝑛𝑔𝑔,𝑡𝑡�

𝑇𝑇
. In practice, the Cantelli-Chebyshev backoffs 

identified are typically conservative, so we propose to tune them by a set of multipliers 
𝝃𝝃 ∈ ℝ𝑛𝑛𝑔𝑔. This problem is an expensive black box optimization and so we deploy use of 
Bayesian optimization (BO) to identify the multipliers. At a given iterate 𝑖𝑖 of optimization 
the backoffs are defined, Ξ𝑖𝑖 = {𝝃𝝃𝑖𝑖𝝐𝝐𝑡𝑡}𝑡𝑡=1:𝑇𝑇. The objective for BO, 𝐽𝐽𝐵𝐵𝐵𝐵, is formalised: 

𝝃𝝃∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝝃𝝃 𝐽𝐽𝐵𝐵𝐵𝐵 = �𝐺𝐺𝜋𝜋𝑐𝑐∗ − 𝛽𝛽𝜎𝜎𝜋𝜋𝑐𝑐∗� exp(−𝑐𝑐𝑐𝑐) (5) 

where 𝑐𝑐 ∈ ℝ, 𝛽𝛽 ∈ ℝ are constants; 𝑐𝑐 = �𝐹𝐹𝐿𝐿𝐵𝐵 − (1 − 𝛼𝛼)�2, where 𝐹𝐹𝐿𝐿𝐵𝐵 is a robust statistic 
evaluating the probability of joint chance constraint satisfaction; 𝜎𝜎𝜋𝜋𝑐𝑐∗ = Σπc∗  [∑ 𝑅𝑅𝑡𝑡+1𝑇𝑇−1

𝑡𝑡=0 ] 
is the variance of the returns with respect to the process objective; 𝐺𝐺𝜋𝜋𝑐𝑐∗  =
 𝔼𝔼𝜋𝜋𝑐𝑐∗[∑ 𝑅𝑅𝑡𝑡+1𝑇𝑇−1

𝑡𝑡=0 ] is the expected returns with respect to the process objective. The statistic, 
𝐹𝐹𝐿𝐿𝐵𝐵, is a statistically robust sample approximation of probabilistic constraint satisfaction. 

 
Figure 2: Figurative description of the algorithm proposed. In practice, we propose the use of 
Gaussian process based Bayesian Optimization. 

3. Case Study  
3.1. A Fed-batch Lutein Photo-production process 

To demonstrate the methodology, we propose the use of a computational study involving 
a fed-batch Lutein photo-production process, which was first detailed in Del Rio-Chanona 
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et al. (2017) and described by a set of nonlinear ordinary differential equations (ODEs). 
We direct the interested reader to that paper for more information on the underlying 
system and parameter values.  

3.2. Case Study Design and Benchmarks 

Additional to the parameter values detailed by the original work, we assume the presence 
of 5% parametric uncertainty on the point estimates provided. We then leverage the 
availability of the uncertain, mechanistic model (that is equivalent to Eq. 1) and 
conceptualise that it represents the real system. Description of the case study follows: a) 
generate a dataset (that in practice could be available from e.g. design of experiments) by 
sampling the uncertain mechanistic model with space filling control trajectories, b) 
deploy the methodology described by building a GP state space model with the dataset 
and identify a policy through the framework detailed by Figure 1, c) deploy the policy 
identified to optimize the real uncertain process (model) and d) benchmark the 
performance against NMPC, first order constrained optimisation in policy space 
(FOCOPS) (Zhang et al.,2021), the model-based offline policy optimization (MOPO) 
algorithm (Yu et al., 2020), and the conservative offline model based policy optimization 
(COMBO) algorithm (Yu et al., 2021). The first two benchmarks represent the best case 
deterministic method, and a state-of-the-art constrained RL method, respectively. The 
latter two represent state-of-the-art offline (batch) RL methods that are designed to 
account for mismatch. In all RL benchmarks, constraints were handled by incorporating 
deterministic expressions for the original constraint sets into a penalty function (i.e. they 
were treated as hard constraints) within the GP state space model.  

3.3. Process Constraints, Objective and Key Performance Indicators  

The objective of process operation is productivity maximisation. The control inputs, 𝒖𝒖 =
[𝐼𝐼0,𝐹𝐹𝑖𝑖𝑖𝑖], are the incident light intensity to the reactor, and the nitrate inflow rate and they 
are bounded. The path constraint set is defined by Eq. 6. The set defined represents 
constraints on the maximum concentration of biomass 𝑐𝑐𝑥𝑥 (g/L), the minimum nitrate 
concentration and the ratio between biomass and Lutein concentration. The desired 
probability of constraint violation, 𝛼𝛼 = 0.01. The process objective is provided by Eq. 7. 

𝐴𝐴 = �
1 0 −1.67
0 −1 × 10−3 0
0 0 1

�  ,   𝑏𝑏 = �
2.6

0.15
0
� (6) 

𝑅𝑅𝑡𝑡+1 =  �𝒅𝒅
𝑇𝑇𝒙𝒙𝑡𝑡+1 − 𝛥𝛥𝒖𝒖𝑡𝑡𝑇𝑇𝑪𝑪𝛥𝛥𝒖𝒖𝑡𝑡
−𝛥𝛥𝒖𝒖𝑡𝑡𝑇𝑇𝑪𝑪𝛥𝛥𝒖𝒖𝑡𝑡

    𝑖𝑖𝑓𝑓 𝑡𝑡 = 𝑇𝑇 − 1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (7) 

 
where 𝑇𝑇 = 6, 𝒅𝒅 = [0,−0.001, 4]𝑇𝑇, Δ𝒖𝒖𝑡𝑡 = 𝒖𝒖𝑡𝑡 − 𝒖𝒖𝑡𝑡−1, 𝒙𝒙 = [𝑐𝑐𝑥𝑥, 𝑐𝑐𝑁𝑁, 𝑐𝑐𝐿𝐿]𝑇𝑇 and 𝐶𝐶 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑([0.16, 8.1 × 10−5]). Key performance indicators include 𝐹𝐹𝐿𝐿𝐿𝐿,𝐹𝐹𝑆𝑆𝑆𝑆 and 𝐺𝐺𝜋𝜋𝑐𝑐∗ . 

4. Results and Discussion  
The results from validation of the control policies identified by each respective method 
over 500 Monte Carlo simulations on the real uncertain process model are outlined by 
Table 1.  

Safe Chance Constrained Reinforcement Learning for Batch Process 
Optimization and Control  
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Table 1: Results from benchmarks and method proposed (SCCPO) in online optimization of the 
real uncertain process 

Method Sample approx. of 
probability of constraint 
satisfaction, 𝐹𝐹𝑆𝑆𝑆𝑆 

Robust approx. of 
probability of constraint 
satisfaction, 𝐹𝐹𝐿𝐿𝐿𝐿 

Fulfilment of process 
operational objective, 
𝐺𝐺𝜋𝜋𝑐𝑐∗ . 

NMPC  0.12 0.148 11.58 +/- 4.07 
MOPO 1.0 1.0 10.98 +/- 0.072 
COMBO 1.0 1.0 10.69 +/- 0.070 
FOCOPS 1.0 1.0 13.11 +/- 0.090 
SCCPO 1.0 1.0 14.17 +/- 0.095 

The results demonstrate the ability of the method proposed to handle both constraints and 
mismatch. This is especially reinforced by the relative performance to NMPC, where the 
model is exactly the same as the uncertain real process and the only difference that exists 
is the presence of parametric uncertainty in the real process. All RL benchmark methods 
(MOPO, COMBO, FOCOPS) handle constraints with the desired probability. It is thought 
that this arises due to the implementation of a backoff as introduced through a) the 
pessimism term, 𝑡𝑡𝑡𝑡(ζΣ[𝑥𝑥t+1]), present in MOPO and FOCOPS, and b) the nature of the 
conservative mechanisms as present in COMBO. However, it should be noted that the 
action of these mechanisms is not specific to any given constraint, which may go some 
way to explaining the conservative control performance.

5. Conclusions 
In this work, we have presented an algorithm that handles both operational constraints 
and process model-mismatch for the deployment of RL policies for the online 
optimization of uncertain, nonlinear fed-batch process systems. The algorithm has been 
benchmarked against best case deterministic methods in the form of NMPC and state-of-
the-art safe and offline RL methods. The performance was demonstrated to be 
competitive if not advantageous relative to the benchmarks proposed.  
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Abstract 

With the increasing digitalization of industrial production processes and the quest for 

maximizing the synergies through more integrated operations, there is an increasing need 

also to automatize the decision making. In terms of scheduling, problems are becoming 

larger and need to consider more aspects making both the modeling and the solution of 

the resulting problems cumbersome. Suitable methods to deal with these problems 

include, e.g., simplifying the problem as necessary to speed up the optimization (i.e., 

balancing the optimality and solution speed where possible), using heuristics to support 

faster solution, deploying simulation tools to predict the values of most complex 

variables, using decomposition methods to divide the problem into smaller subproblems, 

and a rich mixture of all of the above. This paper discusses various approaches to support 

optimization by using machine learning and related challenges in implementing them. 

Keywords: scheduling, machine learning, hybrid models, efficiency 

1. Introduction 

The topic of combining machine learning (ML) with optimization, foremost the 

combinatorially complex mixed integer linear programming (MILP) problems, has many 

facets and has recently received increasing attention in the literature. In its simplest form, 

the focus can lie either on modeling or on the solution procedure. In modeling, the main 

target is to reduce the workload of a modeler – or the large, often experimental, efforts in 

parameter tuning that is coupled with complex analysis. In solving complex problem 

related to scheduling, the main target is either to reduce the size of the search space or 

provide more guidance (similar to strong branching) while traveling through the search 

tree. An inspiring and insightful view into artificial intelligence (AI) and chemical 

engineering is provided by Venkatasubramanian (2019), who also highlights the 

challenges of reasoning and explainability of ML-based decisions. 

Production scheduling problems are often modeled and solved as MILP problems, at least 

partially, as this provides a framework to systematically embed problem-specific 

constraints and facilitates solving the models by state-of-the-art solvers. Theoretically, 

scheduling problems are NP-complete (Garey et al., 1979) for generic approaches in 

finding the shortest-length (makespan) schedule, as well as minimizing the mean-flow 

time. When focusing on MILP approaches (Méndez et al., 2006), the main complexities 

are related to the combinatorial space arising from the large number of binary decision 

variables that stem both from the assignment (yes/no) and sequencing (before/after) 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50075-0 
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decisions involved in scheduling. Often, the sequencing decisions are more complex 

especially in continuous-time approaches due to the typically deployed big-M constraints 

that in general show poor relaxation characteristics. 

As scheduling problems typically lie in between the control (local) and business 

(enterprise) layers, they need to adopt some characteristics from both worlds. Lower-level 

decisions need to ensure the feasibility of operations by taking into account sometimes 

complex equipment-related choices – or even such a simple task to avoid simultaneous 

overlaps of multiple jobs in a producing equipment. Business decisions may also be 

complex to model in practice due to the multitude of conditions that may impact the 

scheduling. One example can be found in scheduling of power generation units, where 

both the dispatching of electricity and providing electricity reserves to account for sudden 

losses of generation must be procured with different pricing schemes. In other scheduling 

problems, complex modeling tasks may apply when estimating highly non-linear 

processes, equipment degradation, taxation, or inventory policies. Thus, there are 

potential challenges both in the modeling and solution of scheduling problems that may 

be improved by using ML-based methods. 

Figure 1 shows a rough overview of the procedure where the original problem data is first 

transformed into a scheduling model using both domain knowledge (here we assume also 

including the standard well-known model structures), as well as process data and ML to 

create data-driven model components. Second, the resulting model is passed onto the 

solution procedure, which typically deploys mathematical programming (e.g., Branch & 

Bound or Branch & Cut) or evolutionary methods (e.g., genetic algorithms). The solution 

procedure can be supported either by heuristics to speed up the solution process, leading 

to a local optimum or a good starting point, or ML-based decision support. In this paper, 

we focus on the latter. In the following, we discuss both the modeling (Section 2) and 

solving aspects (Section 3) of using ML to enhance scheduling. 

 

Figure 1. Main options for using ML in formulating and solving large MILP problems 

2. Modeling 

For the efficient modeling of complex constraints based on e.g., experimental or 

simulated data, machine learning based tools have been proposed, such as ALAMO 

(Wilson and Sahinidis, 2017) to derive automatically generated constraints, where the 

accuracy between the observed points and the resulting model equations is optimally 

balanced with the resulting numerical complexity. As opposed to typical parameter 

estimation schemes, the ALAMO approach also selects the structural constraint 

components. This approach can be very efficient when the order of the resulting equations 

is low. However, good linear representations, necessary for MILP models, may be 

difficult to identify. Other aspects to consider are whether there is enough data available 

for a reliable result or whether the existing equations can directly be mathematically re-

formulated or approximated through piece-wise linear functions or over/under-

SolutionSolution procedure (e.g. B&B)Scheduling model

Domain knowledge

Data / ML

Heuristics

ML

Problem data
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estimators. Also, if the domain is well-defined and scope relatively narrow, alternative 

self-written codes may well support the modeling by benefiting from the existing ML 

toolkits. The main idea of ML-supported modeling is to reduce the sometimes significant 

and error-prone engineering efforts that can occupy highly-trained personnel on routine 

tasks, which could be better handled if automated. The challenge, on the other hand, is to 

identify the use cases where domain expertise can be reliably generated by a system that 

mainly builds on already existing data – leaving very little room for creative approaches, 

should a new and unexpected operational situation take place. One option could be 

whether the ML tool would be able to identify its own capability limitations and notify 

an operator/planner about a situation that is out of its designed scope.  

Already before the increased attention on ML, the concept of surrogate models has been 

utilized also for scheduling (Bhosekar and Ierapetritou, 2018) and recently also 

methodologies have been used to effectively utilize the data available for more accurate 

modeling (Shi and You, 2018). The number of related activities is increasing, indicating 

that there are still significant opportunities ahead on this research avenue. 

3. Solution efficiency 

Apart from the modeling step, probably even more efforts have been made in expediting 

the solution procedures of large and complex problems. Such approaches comprise 

methods to reduce the combinatorial complexity; in scheduling applications this typically 

leads to reducing the number of binary variables through pre-fixing the values of some of 

these or adding constraints that relate the values of different variables to each other 

(falling into the category of tightening constraints). When using rigorous MILP models 

for scheduling, this can also be achieved through analyzing the LP-relaxation, based on 

which one can derive e.g. variable lower bounds for the remaining MILP problem (Castro 

et al., 2020). This method can be performed per instance and can provide a significant 

reduction in solution time, as efficient cuts are added to the original MILP model. Other 

decomposition approaches have been suggested e.g. in Terrazas-Moreno and Grossmann 

(2011). If, on the other hand, there are sufficiently large data sets available, one can also 

use AI (Venkatasubramanian, 2019), or more specifically, ML to efficiently single out 

some decision options that either should be always selected (i.e., fixing related binary 

variables to one) or systematically excluded (i.e., fixing binary variables to zero). 

Here we cannot dive into individual case studies but some related results are reported in 

Harjunkoski et al. (2020), where several options to speed up the solution of large-scale 

MILP problems are discussed. If sufficient data is available, e.g. in the paper industry 

case described by Mostafaei et al. (2020), one can use machine learning to dynamically 

generate more accurate (up-to-date) scheduling parameters such as change-over times for 

a grade-change in papermaking using machine learning over a large set of production 

data. Having access to multiple years of operational data also poses the challenge of how 

to balance between the recent and past data instances (often referred to as the forgetting 

factor), in order to ensure that the estimates remain accurate and are responsive for 

possible changes in the process. Apart from the scheduling parameters, one can also use 

the above data to eliminate product sequences that do not appear in the process history – 

these might be either unpractical or costly and have therefore not been selected by skilled 

operators. The approach results in a fraction of possible sequences, making intractable 

problems solvable. In short, instead of selecting from all possible sequences, the 

optimization focuses only on those that have been applied in the past. 
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In the presence of equipment degradation, it may be complex to decide whether a unit 

needs to be maintained or replaced – decisions that are often represented by binary 

variables. Having good statistical data at hand, it may be possible to either enforce, as 

well as exclude possible maintenance actions for components that with a very high 

certainty can be expected to fail or not to fail before the next planned maintenance stop 

(Ikonen et al., 2020a). Thus, instead of using a single instance as a basis of knowledge, 

as is done in the case of analyzing the problem through its LP-relaxation or specific 

decomposition schemes, the use of advanced AI/ML-techniques for creating more generic 

decision-making patterns can be a very efficient way of reducing the combinatorial 

complexity of the problem.  

The above approach results in models where the variable bounds are tightened or fixed 

before the solution of the problem. There are many other avenues reported in the 

literature. One of the very interesting approaches focuses on trying to deploy several 

approaches to collect more understanding of the problem and the structure of its search 

tree in order to reduce the complexity and in a way learn to solve a problem in a better 

way (Xavier et al., 2019). This is especially promising for problems that are solved over-

and-over-again with little variations and also involves implementing machine learning 

into the Branch & Bound (or Branch & Cut) tree search. There exists already a platform 

ECOLE (Provoust et al., 2020) for supporting the research in doing this. Commercial 

solver providers are already exploring and equipped with similar capabilities, e.g. the 

optimization provider Gurobi has done quite a bit of investigations on this and 

implemented some ideas (see reference on https://www.gurobi.com). Also, IBM CPLEX 

uses ML to automatically decide whether to use some algorithmic choices in solving 

quadratic optimization problems (reference https://developer.ibm.com). It is certain that 

this research challenge is going to be addressed by many researchers in the next years. 

Recently, some research groups have investigated how to enhance process scheduling by 

reinforcement learning (Sutton and Barto, 2018). Hubbs et al. (2020a) examines the use 

of deep reinforcement learning in process scheduling. Another option is to deploy 

reinforcement learning at a higher level. Ikonen et al. (2020b) propose a framework where 

a reinforcement learning (RL) agent is trained to decide the timing of rescheduling 

procedures, select the scheduling algorithms to be used (e.g., MIP or heuristic) and 

estimate the time budget needed for the optimization. The Python-based library OR-GYM 

(Hubbs et al., 2020b) provides test environments for developing reinforcement learning 

algorithms to address operations research problems. 

4. Main Challenges 

As the problem space is very broad, the challenges are manifold so here we highlight only 

a few: 

 

1. Data. Using machine learning in supporting optimization requires the presence 

of sufficient and high-quality data. In any of the above approaches a successful 

application must get hold on sufficient – often business critical – data, which 

often limits the work to company-internal exercises, hindering experts from the 

outside to get involved. Because of this, there are unfortunately almost no open 

data-sets available from the process industries. Possible tampering with the data 

may be difficult to detect and without dedicated domain experts, the 

interpretation of data may be close to impossible.  
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2. Automated modeling. Even if there exist well-documented model alternatives 

the modeling of scheduling problems is often almost an “art”, while combining 

physical/business/operational requirements in a way that meets the company 

policies. It should be well considered which part of this can be automated 

without compromising any of the company objectives. 

3. Algorithmic complexity. As mathematical modeling alone is often complex, 

adding another layer of ML makes it even more difficult to manage without good 

support. Today, there are limited number of experts that can master both 

disciplines and targeted training efforts are needed to ensure sufficient in-house 

knowledge. 

4. Deployability. So far, purely ML-based approaches are able to handle mainly 

“routine tasks”, where a human operator would need to react fast and perform a 

limited number of actions. How to widen the scope of ML is still open but a 

balanced mixture of e.g. ML and MILP could be one way to increase this 

capability. 

5. Balancing multiple objectives. The strength of mathematical optimization is to 

be able to mix various objective components and balance them through given 

weights also in highly varying conditions. As ML alone may not be able to do 

this, the combination with optimization technologies can be very useful. 

 

A relatively recent approach of Physics-informed neural networks (PINNs) reported e.g. 

in Raissi et al. (2019) provides an interesting approach of combining the use of data for 

learning with existing models of physical and biological systems and allows to benefit 

from the vast amount of existing prior knowledge that are not utilized in most common 

ML-methods. Encoding such structured information into a learning algorithm results in 

amplifying the information content of the data that the algorithm sees, enabling it to 

quickly steer itself towards the right solution and generalize well even when only a few 

training examples are available. 

5. Conclusions 

The topic of combining machine learning to support or complement mixed integer linear 

programming in solving scheduling problems is extremely interesting and has many 

possible avenues for successful applications. It is, however, important to have realistic 

expectations and start by working on tangible problems, where the benefits can be 

observed and quantified. Simultaneously, it would be important to create sufficiently 

large, shared datasets for development and comparison of different approaches. Through 

continued research, new discoveries can without doubt be made and some form of 

collaborative approaches will likely very soon become the future standard for the efficient 

and successful solutions of complex scheduling problems, once the major challenges have 

been overcome.  
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Abstract 

In this work, a novel hybrid algorithm integrating knowledge-guided GA and sequence-

based mixed-integer linear programming (MILP) model is proposed for scheduling of 

industrial multipurpose batch plants. The computational results demonstrate that the 

proposed hybrid algorithm can generate the optimal solutions within 5 minutes for all 

tested industrial-scale examples. It can generate the same or better solutions using less 

computational effort than the existing methods. 

Keywords: Scheduling; Multipurpose batch plants; Hybrid algorithm; Genetic algorithm 

1. Introduction  

Multipurpose batch plants have shared facilities and product-specific processing steps, 

whose flexibility provides industrial application prospect but poses challenges on 

scheduling. A plethora of mixed-integer linear programming (MILP) models have been 

proposed, including time-grid-based and sequence-based formulations (Harjunkoski et al., 

2014). Their capabilities for small-size problems are well established. However, they may 

fail to solve industrial-scale problems because appropriate number of time points is 

unknown a priori and feasible solutions are hard to yield in short time frames. Although 

various decomposition approaches (Nishi et al., 2010) have been attempted, large 

computational efforts are still inevitable to obtain near optimal or optimal solutions. 

Genetic algorithm (GA) is widely embraced to address industrial-scale problems 

(Woolway and Majozi, 2018) because it can generate good-quality solutions quickly with 

strong global search capability and inherent parallelism. However, GA is at disadvantage 

in solution optimality. Han and Gu (2021) showed that worse solutions were obtained for 

some large examples than MILP models, although computational effort could be 

significantly reduced. The hybrid algorithm combining advantages of GA on fast 

convergency and mathematical programming on solution optimality may eliminate 

limitations of a single algorithm and solve challenging large-scale problems.  

In this work, we propose a hybrid algorithm integrating GA and the sequence-based MILP 

model to generate near-optimal or optimal solutions for industrial-scale scheduling 

problems. The computational results show that the proposed algorithm can solve large-

size problems to optimality within 5 minutes and yield the same or better solutions within 

shorter computational time compared to the existing MILP methods. Also, the hybrid 

framework has better performance on both computational effort and optimality than GA 

and the sequence-based MILP model. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50076-2 
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2. Sequence-based MILP formulation 

We define three binary variables including 𝑋𝑖𝑚𝑖′𝑚′ , 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 , and 𝑧𝑖𝑚 . Specifically, 

𝑋𝑖𝑚𝑖′𝑚′  equals 1 if batch m of task i is performed before batch 𝑚′ of task 𝑖′ on one unit. 

𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 equals 1 when batch m of task i is transferred earlier or simultaneously than 

batch 𝑚′ of task 𝑖′ for storage vessel of state s. 𝑧𝑖𝑚 is 1 if batch 𝑚 of task 𝑖 is performed. 

A task having multiple processing units is split into different tasks. Batches of a task 

should be processed in sequence, as Eq.(1). 

𝑧𝑖𝑚 ≤ 𝑧𝑖(𝑚−1)    ∀𝑖, 𝑚 > 1                        (1) 

𝑋𝑖𝑚𝑖′(𝑚′+1) ≥  𝑋𝑖𝑚𝑖′𝑚′   ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑚, 𝑚′ < 𝑀        (2) 

𝑋𝑖(𝑚−1)𝑖′𝑚′ ≥ 𝑋𝑖𝑚𝑖′𝑚′    ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑚 > 1, 𝑚′        (3) 

𝑋𝑖𝑚𝑖′𝑚′ + 𝑋𝑖′𝑚′𝑖𝑚 ≥ 𝑧𝑖𝑚 + 𝑧𝑖′𝑚 − 1 ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 < 𝑖′, 𝑚, 𝑚′                 (4) 

Eq.(2) ensures that if batch 𝑚 of task 𝑖 is processed before the batch 𝑚′ of a task 𝑖′ on a 

unit 𝑗, then this batch 𝑚 must also be processed before the batch (𝑚′ + 1) of task 𝑖′. If 
batch 𝑚′ of task 𝑖′ is processed after the batch 𝑚 of task 𝑖 on a unit 𝑗, then this batch 𝑚′ 

must be processed after the batch (𝑚 − 1) of task 𝑖, as Eq.(3). Eq.(4) tells the sequential 

relation between any two batches of two tasks in the same unit. Batch size 𝑏𝑖𝑚 is bounded 

by the maximum 𝐵𝑖
𝑚𝑎𝑥  and minimum 𝐵𝑖

𝑚𝑖𝑛 capacity, as indicated in Eq.(5).  

𝐵𝑖
𝑚𝑖𝑛 ∙ 𝑧𝑖𝑚 ≤ 𝑏𝑖𝑚 ≤ 𝐵𝑖

𝑚𝑎𝑥 ∙ 𝑧𝑖𝑚  ∀𝑖, 𝑚                  (5) 

The duration of a batch is ensured by Eq.(6), where 𝑎𝑖 and 𝛽𝑖 are fixed and variable terms 

in the processing time, respectively. If a state 𝑠 is subject to zero-wait (𝑠 ∈ 𝐒𝑍𝑊), the 

duration is exactly equal to the processing time in Eq.(7). Sequencing constraints for the 

same task and different tasks in a unit are given in Eq.(8) and Eq.(9). 

𝑇𝑖𝑚
f ≥ 𝑇𝑖𝑚

b + 𝑎𝑖 ∙ 𝑧𝑖𝑚 +  𝛽𝑖 ∙ 𝑏𝑖𝑚   ∀𝑠 ∈ 𝐒\𝐒𝑍𝑊, 𝑖 ∈ 𝐈𝑠
𝑃 , 𝑚                            (6) 

𝑇𝑖𝑚
f = 𝑇𝑖𝑚

b + 𝑎𝑖 ∙ 𝑧𝑖𝑚 +  𝛽𝑖 ∙ 𝑏𝑖𝑚   ∀𝑠 ∈ 𝐒𝑍𝑊, 𝑖 ∈ 𝐈𝑠
𝑃 , 𝑚         (7) 

𝑇𝑖(𝑚+1)
b ≥ 𝑇𝑖𝑚

f     ∀𝑖, 𝑚 < 𝑀          (8) 

𝑇𝑖′𝑚′
b ≥ 𝑇𝑖𝑚

f − 𝐻 ∙ (1 − 𝑋𝑖𝑚𝑖′𝑚′)  ∀𝑗, 𝑖 ∈ 𝐈𝑗 , 𝑖′ ∈ 𝐈𝑗 , 𝑖 ≠ 𝑖′, 𝑚, 𝑚′        (9) 

𝑇𝑖𝑚𝑠
s  is defined as the transfer time of batch m of task 𝑖 ∈ 𝐈𝑠 into or out from the storage 

vessel of state 𝑠. Eq.(10) enforces the transfer time of batch 𝑚 of task 𝑖 ∈ 𝐈𝑠
𝑃 producing 

state 𝑠 into storage equals its finish time 𝑇𝑖𝑚
f . The start time (𝑇𝑖𝑚

b ) of batch 𝑚 of task 𝑖 
consuming state 𝑠 is equal to the transfer time out from the storage. Sequence constraints 

on storage for batches of the same tasks and different tasks are given by Eqs.(12-13). Sets 

𝐒𝑃, 𝑺𝑅 and 𝑺𝑖𝑛 indicate product, raw material and intermediate state, respectively. 

𝑇𝑖𝑚𝑠
s = 𝑇𝑖𝑚

f     ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠
𝑃 , 𝑚              (10) 

𝑇𝑖𝑚𝑠
s = 𝑇𝑖𝑚

b     ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠
𝐶 , 𝑚                     (11) 

𝑇𝑖(𝑚+1)𝑠
s ≥ 𝑇𝑖𝑚𝑠

s     ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑚 < 𝑀                    (12) 

𝑇𝑖′𝑚′𝑠
s ≥ 𝑇𝑖𝑚𝑠

s − 𝐻 ∙ (1 − 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠)               ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖′  (13) 

Eqs.(14-16) are formulated to enforce precedence of batches in different tasks on storage, 

which are similar to Eqs.(2-4). When two tasks can be processed in the same unit and 
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related to the same state 𝑠, sequence relations for their batches keep consistent on unit 

and storage, as formulated in Eq.(17).  

𝑋𝑆𝑖𝑚𝑖′(𝑚′+1)𝑠 ≥ 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠   ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑖′ ∈ 𝐈𝑠, 𝑖 ≠ 𝑖′, 𝑚, 𝑚′ < 𝑀 (14) 

𝑋𝑆𝑖(𝑚−1)𝑖′𝑚′𝑠 ≥ 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠   ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑖′ ∈ 𝐈𝑠, 𝑖 ≠ 𝑖′, 𝑚 > 1, 𝑚′ (15) 

𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 + 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠 ≥ 𝑧𝑖𝑚 + 𝑧𝑖′𝑚′ − 1  ∀𝑠 ∈ 𝐒𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑖′ ∈ 𝐈𝑠 , 𝑚, 𝑚′, 𝑖 < 𝑖′  (16) 

𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 = 𝑋𝑖𝑚𝑖′𝑚′     ∀𝑗, 𝑠 ∈ 𝑺𝑖𝑛 , 𝑖, 𝑖′ ∈ 𝐈𝑠 ∩ 𝐈𝑗 , 𝑚, 𝑚′, 𝑖 ≠ 𝑖′ (17) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠  is introduced to monitor batches 𝑚′ transferred before batch 𝑚 of different 

tasks in Eqs.(18-20) or the same tasks by Eq.(21). It equals to 𝑏𝑖′𝑚′ if batch 𝑚′ of task 𝑖′ 
is transferred before or at the same time as batch 𝑚 of task 𝑖. Otherwise, it equals to 0. 

Parameter 𝜌𝑖,𝑠 is the fraction for task i to produce (𝜌𝑖,𝑠>0) or consume (𝜌𝑖,𝑠<0) state s. The 

inventory level in storage is calculated by Eq.(22), being positive and smaller than the 

maximum storage capacity 𝑆𝑇𝑠
𝑚𝑎𝑥  after any transfer. Eq.(23) enforces total amount 

transferred for batches must satisfy storage limitation, where In0𝑠 is the initial inventory.  

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 ≤ 𝐵𝑖′
𝑚𝑎𝑥 ∙ 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠 ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖′ (18) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 ≥ 𝑏𝑖′𝑚′ − 𝐵𝑖′
𝑚𝑎𝑥 ∙ (1 − 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠) ∀𝑠 ∈ 𝑺𝒊𝒏, 𝑖, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖 (19) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 ≤ 𝑏𝑖′𝑚′  ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖, 𝑖′ ∈ 𝐈𝑠, 𝑚, 𝑚′, 𝑖 ≠ 𝑖′ (20) 

𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠 = 𝑏𝑖′𝑚′ ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑚, 𝑚′ < 𝑚 (21)  

0 ≤ ∑ ∑ 𝜌𝑖′𝑠𝐶𝐵𝑖𝑚𝑖′𝑚′𝑠𝑚′𝑖′∈𝐈𝑠
+ 𝜌𝑖,𝑠𝑏𝑖𝑚 + In0𝑠 ≤ 𝑆𝑇𝑠

𝑚𝑎𝑥 ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑚 (22a,b) 

0 ≤ ∑ ∑ 𝜌𝑖𝑠 ∙ 𝑏𝑖𝑚𝑚𝑖∈𝐈𝑠
+ In0𝑠 ≤ 𝑆𝑇𝑠

𝑚𝑎𝑥  ∀𝑠 ∈ 𝑺𝑖𝑛  (23) 

For the objective of minimizing makespan (MS), demand constraints are given in Eq.(24). 

Makespan must exceed the finish and transfer time of all batches. 

∑ 𝜌𝑖𝑠 ∙ ∑ 𝑏𝑖𝑚𝑚𝑖∈𝐈𝑠
𝑃 ≥ 𝐷𝑠 ∀𝑠 ∈ 𝐒𝑃 (24) 

𝑀𝑆 ≥ 𝑇𝑖𝑚
f  ∀𝑖, 𝑚 (25) 

𝑀𝑆 ≥ 𝑇𝑖𝑚𝑠
s  ∀𝑠 ∈ 𝑺𝑖𝑛 , 𝑖 ∈ 𝐈𝑠, 𝑚 (26) 

We fix some variables for two batches of the same task by Eq.(27) because these two 

batches must be performed in sequence. The variables in Eq. (28) control the state 

inventory being positive and lower than storage capacity. As there are always abundant 

raw materials and infinite storage for products, the related variables are fixed as zero.  

𝑋𝑖𝑚𝑖𝑚′ = 1; 𝑋𝑖𝑚′𝑖𝑚 = 0; 𝑋𝑆𝑖𝑚𝑖𝑚′𝑠 = 1; 𝑋𝑆𝑖𝑚′𝑖𝑚𝑠 = 0;𝐶𝐵𝑖𝑚𝑖𝑚′𝑠 = 0 ∀s, 𝑖, 𝑚′ > 𝑚(27) 

𝑋𝑆𝑖𝑚𝑖𝑚′𝑠 = 0, 𝐶𝐵𝑖𝑚𝑖𝑚′𝑠 = 0, 𝑇𝑖𝑚𝑠
s =0 ∀𝑠 ∈ (𝐒𝑃 ∪ 𝑺𝑅), 𝑖, 𝑚, 𝑖′, 𝑚′ (28) 

3. Genetic algorithm 

A knowledge-guided GA is designed to generate good-quality solutions in short time 

frames. A three-part chromosome 𝑐 = (𝑐𝑃, 𝑐𝑈 , 𝑐𝑅) is constructed to represent a solution 

for a given problem. Elements 𝑐𝑛
𝑃 ∈ [1, 𝑃] are ordinal numbers of products, thus the 

sequence in 𝑐𝑃 indicates production sequence of products. 𝑐𝑈 covers assigned units for 

batches of tasks that have multiple feasible units. Here, one position of 𝑐𝑈 corresponds to 
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one batch of a task and the element 𝑐𝑛
𝑈 ∈ [1, 𝐉𝑛] decides the assigned unit j. 𝑐𝑛

𝑅 ∈ [0,1] is 

used to determine if the latest processed task is repeated. 𝑐𝑅 is introduced to influence the 

sequence of tasks that are processed to produce different batches of products. 

1 2 2 1 1 2   1 2 1 1 1 2   0 1 1 1 0 0 

cP                                                                cU                                                                 cR  

Fig. 1 An example of the designed chromosome 

The fitness value of the chromosome is evaluated based on Makespan for the schedule, 

which is synthesized by decoding. The decoding algorithm works as follows. It steps 

iteratively through cP to produce products until demand requirements are met. While 

producing a product for one batch, any involved task would be performed if its produced 

material is insufficient. Assigned unit for batch of task is determined by cU, and latest 

performed task would be repeated when its corresponding element in cR is 1. A heuristic 

rule ‘earliest starting strategy’ is adopted to start tasks as early as possible. As states are 

subject to finite or no intermediate storage, inventory level of storage must be monitored 

and checked at the start and finish times while processing tasks. In GA, the roulette wheel 

method is adopted to select parents who would be subjected to two-point crossover and 

two-point mutation. A knowledge-based search (Zheng and Wang, 2018) is incorporated 

to adjust sequence and assignment of child chromosome based on experiential possibility.  

4. Hybrid algorithm 

The proposed hybrid algorithm is illustrated in Figure 2. The number of feasible solutions 

transmitted from GA to MILP is 𝑃𝑠𝑖𝑧𝑒 ∙ 0.01, where 𝑃𝑠𝑖𝑧𝑒 is the population size of GA.  

 
Fig. 2 The proposed hybrid solution algorithm 

The strategies used to fix binary variables in the MILP model are described as follows. 

First, the batches of a task that can be processed in only one unit are fixed to be 1. That 

is 𝑧𝑖𝑚 = 1. Second, tasks i and 𝑖′ denote one task processing in different units (𝑗 ∈ 𝐉𝑖, 𝑗′ ∈

𝐉𝑖′), and batch m of task i is performed at 𝑇𝑖𝑚
b  on unit j. If unit 𝑗′ from time 𝑇𝑖𝑚

b  to (𝑇𝑖𝑚
b +

𝑎𝑖 + 𝛽𝑖 ∙ 𝐵𝑖
𝑚𝑎𝑥) is idle, batch m is potential to be divided into multiple batches performed 

on different units, implying 𝑧𝑖𝑚 and 𝑧𝑖′𝑚′, where batch 𝑚′ of task 𝑖′ is not performed in 

the solution of GA, would be optimized in MILP. Otherwise, 𝑧𝑖𝑚 = 1 . Third, the 

precedence between batches of tasks, whose batch information is fixed in the first two 

steps, on a processing unit in the solution of GA are used to fix 𝑋𝑖𝑚𝑖′𝑚′ . 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 is 

partially fixed by enforcing batch 𝑚′ of task 𝑖′ ∈ 𝐈𝑠
𝐶  starts after batch m of task 𝑖 ∈ 𝐈𝑠

𝑃 

providing required state for batch 𝑚′  (i.e., 𝑋𝑆𝑖𝑚𝑖′𝑚′𝑠 = 1). Also, batch 𝑚′  of task 𝑖′ 
finishes before batch m of task i whose produced state is consumed by batch 𝑚′ to ensure 

inventory level of state s lower than maximum storage capacity (i.e., 𝑋𝑆𝑖′𝑚′𝑖𝑚𝑠 = 1).  
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5. Computational Results 

Seven examples from the literature are solved to illustrate the capability of the proposed 

hybrid algorithm. While Examples 1-3 are from He and Hui (2010), Examples 4-7 refer 

to the Kallrath example I9, I11, I14, and I15 from Vooradi and Shaik (2012). Examples 

1, 2, and 3-7 are small-, medium- and industrial- scale examples, respectively. GA is 

implemented in MATLAB 2020 and the MILP model is solved using GAMS 33.2 on an 

AMD Ryzen™ 9 3900X 3.8 GHz, 48 GB RAM, running Windows 10. All examples are 

also solved using the MILP models of Vooradi and Shaik (2012) and Velez et al. (2015), 

denoted as VS2012 and VM2015.  

The computational results are provided in Table 1, where N is the number of event point 

required, Gap is the relative gap, and H denotes the time horizon. A competitively 

efficient algorithm is perceived to find smaller Makespan (MS) or take shorter 

computational time (CPU). From Table 1, it can be seen that the proposed hybrid 

algorithm can obtain smaller MS using less CPU time for most examples, compared to 

VS2012. This can be attributed to the strong global search capacity of the first-stage GA 

in our model, finding good-quality solutions quickly for industrial-scale problems with a 

large number of binary variables. The proposed algorithm leads to generate the same 

global optimum for all examples, as those obtained by VM2015. In our work, sufficient 

population size and reproduction at the first stage and solutions transmitted to the second 

stage are required even for simple problems to explore global searching space and reach 

optimal areas. The CPU time thus is longer than that from VM2015 for small-scale 

Examples 1-2, but it is still accepted for industrial application. For industrial-scale 

examples 3-7, much less computational effort is required. The CPU time is reduced by an 

order of magnitude for Examples 3 and 5. 

Table 1. Computational results from the proposed hybrid algorithm and the existing methods  

Ex 

VS2012 VM2015 Hybrid algorithm 

N MS Gap  CPU (s) H MS CPU (s) MS CPU (s) 

1 22 37 - 45.2 60 37 0.8 37 3.1 

2 65 109 1.4% >3600 110 108 11.0 108 61.0 

3 131 229 5.6% >3600 219 217 3298.0 217 250.3 

4  11 33 3.1% >3600 60 32 13.2 32 12.1 

5  12 40 - 1856.3 60 39 103.9 39 18.7 

6  10 36 - 56.3 60 36 50.6 36 9.6 

7  23 58 17.3% >3600 60 52 93.9 52 58.2 

The computational results from the hybrid algorithm with GA and the sequence-based 

MILP model are compared in Table 2. The average MS (denoted as Avg) and the standard 

deviation (denoted as SD) of MS in 50 runtimes are calculated. Although the hybrid 

algorithm and GA can find identical optima using similar computational time, the hybrid 

algorithm outperforms GA due to smaller average MS and more stability (i.e., smaller 

SD), implying the generation of the global optimum with higher probability. This can be 

attributed to the integration of the MILP model to further improve quality of feasible 

solutions from GA. The sequence-based MILP model obtains near-optimal solutions for 

Examples 4-5 and 7. However, it cannot find any feasible solution (denoted as NA) for 
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Examples 2-3 in 1 hour, whilst the hybrid algorithm can find the optimal solution within 

5 minutes because the majority binary variables at the second stage have been fixed.  

Table 2. Comparative results for hybrid algorithm and single algorithms  

Ex 

GA Sequence-based MILP Hybrid algorithm  

MS Avg SD CPU(s) MS Gap CPU(s) MS Avg SD CPU(s) 

1 37 37.1 0.2 2.6 37 0 1845 37 37.0 0 3.1 

2 108 108.2 0.4 51.6 NA - >3600 108 108 0 61.0 

3 217 217.3 0.5 169.1 NA - >3600 217 217.2 0.4 250.3 

4 32 32.2 0.5 25.1 34 35.3% >3600 32 32.1 0.3 12.1 

5 39 39.2 0.4 53.5 40 30.0% >3600 39 39.1 0.2 18.7 

6 36 36.1 0.3 16.4 36 26.7% >3600 36 36.0 0 9.6 

7 52 52.4 0.7 87.3 60 33.3% >3600 52 52.1 0.4 58.2 

6. Conclusions 

In this work, a hybrid algorithm combining GA and the sequence-based MILP 

formulation is proposed for scheduling multipurpose batch process. The computational 

results have demonstrated the capability of the proposed algorithm to solve large-size 

problems, showing that the same or better optimal solutions can be obtained with 

dramatically decreased computational time compared to the existing methods. In addition, 

the hybrid algorithm is superior to the sequence-based MILP model and GA. 
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Abstract 

In this work, a deep reinforcement learning-based solution approach for the unit 
commitment of power generation resources in energy systems with intermittent 
renewable energy resources and uncertain loads is presented. Real-world unit 
commitment problems are plagued with uncertain parameters introduced by the 
possibility of forecast errors or equipment failure that may negatively impact the power 
supply. It is imperative to develop a robust and computationally tractable framework to 
provide cost-effective commitment decisions. In the proposed solution technique, 
temporal and spatial correlational structures of uncertainties present in the system are 
captured with a neural network function approximator. The proposed solution technique 
is able to capture the temporal and spatial correlational structure of uncertainties present 
in the system. A causal policy is obtained which relies only on previously observed 
wind power and demand forecasts along with forecast errors. We conduct computational 
experiments on the IEEE 39-bus test case to demonstrate the effectiveness of the 
proposed solution strategy and improvement over existing unit commitment solution 
techniques. The proposed deep reinforcement learning-based solution strategy 
demonstrates effective computational performance and a reduction in operating costs 
over deterministic and stochastic approaches.  

Keywords: Unit Commitment, Deep Reinforcement Learning, Machine Learning 

1. Introduction 

Unit commitment (UC) is one of the widely used optimization models in the power 
industry for scheduling and dispatch of electric power generation resources (Padhy, 
2004). The UC problem is NP-hard and is challenging to solve as its size increases 
(Tseng, 1996). Real-world UC problems are plagued with uncertain parameters caused 
by the possibility of forecast errors or equipment failure (Håberg, 2019). Forecast 
uncertainty can affect solution quality and causes service interruptions (Ning et al., 
2019, 2022). A more price-responsive demand and high penetration of wind power pose 
new challenges to the UC problem (Qiu et al., 2021), thus stressing the need for an 
effective methodology that produces robust UC decisions in the presence of real-time 
uncertainty (Shang et al., 2019). Several formulations of the UC problem have been 
previously proposed in terms of different uncertainty representations and solution 
techniques (Abujarad et al., 2017). Stochastic optimization techniques suffer from high 
computational costs while robust approaches may yield solutions that are too 
conservative (Zheng et al., 2014). Therefore, it is imperative to develop a more robust 
and computationally tractable framework as compared to other stochastic optimization 
approaches that provide more cost-effective commitment decisions. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50077-4 
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Machine learning offers a powerful alternative to solving this scheduling 
optimization problem (Ning and You, 2019), especially on handling uncertainty. UC 
problems can also be formulated under a dynamic programming framework for 
decision-making in multiple stages (Pang & Chen, 1976). There have been attempts to 
solve stochastic UC problems with reinforcement learning (RL) techniques, including 
the use of deep neural networks as function approximators (Jasmin et al., 2016). In this 
paper, we propose a deep reinforcement learning (DRL) based technique for the 
effective solution of the UC problem under demand and wind power uncertainty. The 
proposed scheduling technique is capable of capturing the causal nature of uncertainties 
present in the system with deep neural networks. To demonstrate the applicability and 
efficiency of the proposed DRL-based solution approach, we conduct computational 
experiments with the IEEE 39-bus test case. The obtained solutions are also compared 
with UC solutions obtained using deterministic approaches that use point forecasts for 
demand load and wind power generation along with other stochastic approaches. 

2. MDP Formulation and Safety 

We formulate the UC problem as a Markov decision process (MDP). At any time step t 
on any given day, the day-ahead point forecast predictions for demand load and wind 
power are available. The net load, defined as the difference between total electrical load 
and total wind generation power, is denoted by and is considered for 

energy balance. The resulting net load forecasts are obtained accordingly. The 
uncertainty associated with net load is captured by defined as the ratio of forecast 

error to net load forecast. Along with historical net load forecasts , historical 

uncertainty realizations , and current forecast , the commitment, startup, and 

shutdown decisions at the previous stage also constitute the system state. To decouple 
the state variables from multiple stages, additional state variables are introduced at each 
stage t, and are denoted by  and . These state 

variables store the historical account of startup and shutdown decisions for a duration of 
minimum up and down-times, respectively. The system’s state for all generators is 

then fully described by the tuple The action space 

for the MDP includes the commitment decisions zit accompanied by the startup and 
shutdown decisions, uit and vit, respectively. Prediction for the net load forecast error 
uncertainty denoted by is also considered as an action variable. The estimated net 

load can then be calculated as . The safe exploration of UC decisions is 

performed by solving the optimization problem denoted by in (1)-(7) which 

guarantees operational constraint satisfaction in UC. Minimum up and down-time 
constraints are reformulated to use the additional state variables and , and are 

given by Eq. (4) and (5).  
  (1) 

  (2) 

   (3) 
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  (4)                

 (5)  

   (6)  

  (7)  

Selection of control actions is followed by the realization of forecast error ratio 
uncertainty . Based on the observed net load, the commitment decisions can be 

updated to minimize incurred costs, which is consistent with UC as a multistage 
decision-making problem. To meet actual net load requirements, fast-start generators 
can be potentially turned ON or OFF, leading to additional startup or shutdown costs. 
The objective is to minimize such costs by selecting the control actions. To achieve this, 
we seek to maximize the reward in (8) with Cu defined in Eq. (9). The maximum 
achievable reward at any timestep t is zero. The optimal control actions required to meet 
actual net load requirements also constitute the next state st+1. The additional state 
variables are updated using transition dynamics shown in Eqs. (10) and (11). 

                                                             (8)     

                                            (9) 

                                           (10)  

                                           (11) 

3. Actor-Critic Method for Policy Learning 

    A deterministic policy that estimates net load forecast error ratio is considered here, 
which also serves to obtain control actions through safely exploring the constrained 
decision space. The forecast errors are independent of the system states like power 
dispatch and commitment decisions. So, the policy is considered to be a function of 
system states consisting of net load forecasts, current forecast, and previous uncertainty 
realizations, as shown in Eq. (12). 

                                                                  (12)    

    The DRL agent is trained using an off-policy actor-critic algorithm. Due to the 
deterministic nature of the policy and the continuous action space spanned by it, an 
actor-critic algorithm based on DDPG is used (Lillicrap et al., 2015). Both actor and 
critic are implemented using deep neural networks and can be parameterized by the 
networks’ weights and biases. The architectures of the parameterized actor and critic 
can be denoted as  and , respectively.  is a feed-forward deep 

neural network with two fully connected layers with 32 and 16 hidden units with a 
rectified linear unit (ReLu) activation. A linear activation is used for this final layer 
since the errors may have negative values. Similarly, the critic  uses the historical 
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UC decisions , previous commitment decisions , as input, along with the 

predicted forecast errors  and time-state Tr. All the above state and action variables 

are concatenated and fed to a feed-forward deep neural network. The deep neural 
network consists of three fully connected layers with 32, 32, and 16 units, each 
following a ReLu activation. A single output is then obtained by adding a layer with a 
single neuron with linear activation that corresponds to the Q-value. 
 

 
Fig 1. a) Actor-critic based algorithm for policy learning with conservative policy iteration to 
predict forecast errors, b) average cumulative returns obtained at each episode during policy 
learning and c) costs incurred by the system operator for starting additional generating units due 
to insufficient dispatch by the committed units 

    In order to perform soft updates in conservative policy iteration, we also initialize 
copies of actor and critic as targets denoted as and . Typically, 

exploration in DDPG is performed by generating noise by sampling from a correlated 
normal distribution. Parameters of this normal distribution must be carefully chosen for 
effective performance. To bypass this restriction, an alternate approach based on the 
epsilon-greedy strategy is employed. In epsilon-greedy, forecast error ratio estimates are 
selected randomly with a probability of , also termed as exploration rate. is 

randomly sampled from a normal distribution  where the parameters and

are obtained by fitting historical values of forecast error ratios at tth hour of the day to a 
normal distribution. The commitment and startup/shutdown control decisions are 
obtained through safely exploring the decision space without violating any constraint 
imposed by the estimated net load. This is followed by solving with the 

observed net load. The transitions are stored in a replay buffer R of a fixed size. To train 
the actor and critic networks, we randomly sample a batch of transitions B from the 
replay buffer. The pseudo-code of the algorithm is provided in Fig. 1a. 
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4. Case Study: IEEE 39-Bus System 

We consider an IEEE test system to demonstrate the applicability of the proposed DRL-
based approach. We use historical demand data from NYISO for both learning and 
evaluation purposes. Both hour-ahead load forecasts and actual loads in various zones in 
New York are extracted from the historical data. The Eastern Wind Integration dataset 
provided by National Renewable Energy Laboratory (NREL) consists of hour-ahead 
wind power forecasts for simulated wind farms. A real-time dispatch process is 
simulated to validate the viability of the proposed DRL-based solution approach. The 
training process for the DRL agent is conducted in an episodic manner with episodes of 
length 24 hourly timesteps and converges in approximately 150 episodes. The length of 
the horizon for historical values that constitute the state is set to 12. The reward curves 
can be visualized in Fig. 1b, where the average cumulative returns over the length of the 
horizon are plotted. We conduct UC and economic dispatch simulations for each day of 
five consecutive months. The daily average costs are reported in Table 1 for each 
solution technique. The daily costs reported for the deterministic approach and DRL-
based approach are the actual incurred real-time costs. Costs incurred with the DRL-
based approach are considerably lower than the upper bounds provided by the SDDiP 
algorithm. SDDiP is a sampling-based variant of Bender’s decomposition typically used 
for scenario decomposition techniques to solve the stochastic UC problem. Optimal 
costs of operation obtained with perfect uncertainty information can be used to compute 
the gap between the lower bound and the obtained solution. An average optimality gap 
of 6.65% is observed with the DRL-based solution for UC. 

Table 1. Daily average costs obtained by different approaches for the IEEE 39-bus system 

 Perfect 
knowledge 

($) 

Deterministic 
approach 

($) 

SDDiP 
($) 

DRL 
($) 

September 380,966 404,326 426,592 403,792 
October 402,485 432,194 442,540 430,969 

November 396,632 424,512 440,353 423,378 
December 401,738 430,380 445,365 429,449 

January 397,962 425,625 439,851 424,593 

 
    Since the goal of the DRL agent is to minimize excess penalty costs, the DRL 
approach is expected to produce minimum penalties by committing appropriate units 
capable of satisfying the observed load requirements. A representation of the penalties 
and their frequency for the month of January is shown in Fig. 1c. The costs incurred by 
the system operator for starting additional units to meet net load requirements are 
significantly higher than excess costs incurred by the DRL approach. Low penalties are 
eventually responsible for lower total operating costs with the DRL approach as 
compared to the deterministic approach. From the penalty costs, their frequency, and 
observed commitment status of generators, it can be inferred that the trained DRL agent 
is able to anticipate appropriate forecast error uncertainties and yields UC decisions that 
can satisfy net load requirements without starting additional units. 

5. Conclusion 

    In this paper, we proposed a DRL-based scheduling approach for the UC problem 
under demand and wind power uncertainty. This involved formulating the UC problem 
as an MDP and maximizing cumulative rewards by the actor-critic algorithm. A trained 
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actor that predicts the net load forecast error ratios was obtained by training the DRL 
agent. Here, both actor and critic networks were parameterized by deep neural 
networks. Zero violation of any operational constraint in the UC problem is also 
guaranteed by our proposed approach. The efficiency of the proposed approach was 
evaluated on the IEEE 39-bus test system. Evaluation of the trained policy on the real-
world load and wind power forecast data resulted in a reduction of penalty costs of 
commitment of additional units as well as a substantial overall cost saving with the 
proposed DRL-based scheduling approach. 
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Abstract 
The field of Reinforcement Learning (RL) has received a lot of attention for decision-
making under uncertainty. Lately, much of this focus has been on the application of RL 
for combinatorial optimisation. Recent work has showcased the use of RL on a single-
stage continuous chemical production scheduling problem. This work highlighted the 
potential of RL for optimal decision-making under uncertainty in the paradigm of 
(bio)chemical production scheduling. However, this novel approach is yet to be tested in 
the context of parallel unit operations and batch processing systems. In this work, we 
outline a framework for the use of RL to handle single-stage parallel, batch production. 
In particular, we incorporate elements such as uncertainties in the model data, limited 
batch size, sequencing constraints, and uncertainties in processing times and product 
demand, which make for a substantially harder problem. To handle the presence of 
precedence or succession constraints, by taking inspiration from approaches such as 
generalised disjunctive programming, we propose a novel methodology that identifies 
transformations of the control set available to the RL at each control interaction. Given 
that production typically operates under standard operating procedures, such 
transformations can be identified by logic. The efficacy of policy synthesis via 
evolutionary RL methods is benchmarked against mixed integer programming. The 
results of this study provide further support for the use of RL in online scheduling. 

Keywords: Reinforcement Learning; Combinatorial Optimization; Production 
Scheduling; Machine Learning. 

1. Introduction 
The production scheduling of (bio)chemical processes is a major field of process systems 
engineering research. The foundational developments in the area from the 1980s – 2010s 
focused on the development of efficient, rigorous, finite dimensional mathematical 
models for use in optimization. The contributions made by Kondili et al. (1993) and 
Pantelides (1994), formed basis for the general description of production scheduling 
problems via discrete time and continuous time mixed integer programming (MIP) 
formulations on the basis of various network models of the scheduling problem. 
Additionally, due to the practical difficulties in solving mixed integer nonlinear models, 
typical MIP models that are developed are linear or are dependent upon linearizations of 
nonlinearities. Further drivers of the field include the development of robust optimization 
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models and innovative frameworks in the context of reactive (online) scheduling that aim 
to update the process schedule as uncertainties are realised. Despite the developments 
made to date in the field, in practice many production schedules are generated (in real 
plants) by teams of schedulers who rely upon their working knowledge and available 
heuristic rules, with relatively little reliance upon the rigorous mathematical models 
proposed by academia (Harjunkoski et al., 2014) . This is due to a) the complexities of 
obtaining finite dimensional models robust to the underlying uncertainties that are 
computationally tractable online, and b) difficulties in accurately estimating suitable 
uncertain parameters (i.e. sets or probability distributions descriptive of them). 

In an attempt to handle the challenges mentioned, recent works have investigated the use 
of Reinforcement Learning (RL) in the context of (bio)chemical production scheduling 
(Hubbs et al., 2020a). RL promises to remedy the challenges previously discussed by a) 
providing reactive, uncertainty aware scheduling decisions via inference (i.e. prediction 
of scheduling decisions from a function) and shifting the computational load offline, and 
b) providing basis for the use of a greater range of models and descriptions of the 
underlying uncertainty. However, the application of RL to (bio)chemical production 
scheduling has been relatively limited. In the novel study provided by Hubbs et al. 
(2020a), the authors consider the sequencing of tasks on a single unit, in a single-stage 
continuous chemical production problem. The work demonstrates results that are 
competitive with stochastic and deterministic reactive MILP approaches. 

Despite the promise of RL, it is yet to be demonstrated on case study with the type of 
complexity in decision-making seen in a real plant (globally). In this work, we consider 
the development of a methodology for the use of RL in a parallel, single-stage batch 
(bio)chemical production scheduling study with multiple units and various sources of 
uncertainty. We present a methodology based on a discrete time transcription of the 
production scheduling problem, although it is possible to use a continuous time (event-
based) approach. Due to the presence of sequencing constraints derived from standard 
operational procedures (SOPs), the problem is complex. To mitigate the demands of 
learning a feasible policy through the reward function, we propose to aid the control 
selection by identifying nonlinear transformations of the prediction based on the SOPs 
stated in case study. This reduces the demands of learning through a reward signal alone. 
Such an approach has been previously studied, where transformations have instead been 
learned (Bamford and Ovalle, 2021). A similar idea is exploited in generalised disjunctive 
programming (GDP). 

2. Methodology 
In this work, we assume that there is a Markov decision process (MDP) that well 
represents the problem of scheduling single-stage batch operations in parallel in a 
(bio)chemical production plant. Specifically, we assume that there is: a set of states, 𝒙𝒙 ∈
𝕏𝕏 ⊆ ℝ𝑛𝑛𝑥𝑥, that make the problem fully observable; a set of available control inputs 𝒖𝒖 ∈
𝕌𝕌 ⊆ ℤ𝑛𝑛𝑢𝑢 that may be selected; a reward function, 𝑅𝑅:𝕏𝕏 × 𝕌𝕌 × 𝕏𝕏 → 𝑅𝑅𝑡𝑡+1 ∈ ℝ, that ranks 
process evolution with respect to control objectives; and, a probabilistic description of 
process evolution, such that: 

𝒙𝒙𝑡𝑡+1 = 𝑓𝑓(𝒙𝒙𝑡𝑡 ,𝒖𝒖𝑡𝑡 , 𝒔𝒔𝑡𝑡) (1) 

where 𝑡𝑡 ∈ {0, … ,𝑇𝑇} is a discrete time index and the process is considered to evolve over 
discrete time horizon; and, 𝒔𝒔 ∈ 𝕊𝕊 ⊆ ℝ𝑛𝑛𝑠𝑠 is a realization of (general) process uncertainties.  
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Operationally, there is a constraint set, 𝕌𝕌�𝑡𝑡 ⊂ ℤ𝑛𝑛𝑢𝑢, that defines the available tasks or jobs,  
that may be scheduled in a given unit, 𝐿𝐿 ∈ {1, … ,𝑛𝑛𝑢𝑢}, at any given time index. This can 
be derived from standard operating procedures (SOPs) that define the viable sequencing 
of operations in units, requirements for unit cleaning and maintenance periods, 
requirements for orders to be processed in campaigns (i.e. multiple batches consecutively 
if the order size is greater than maximum batch size of a unit) and that these batches must 
finish before another job or task is assigned to a given unit. Given the scheduling problem 
that we consider in this work adheres to a discrete time transcription, in essence, we are 
solving the following discrete time, finite horizon stochastic optimal control problem: 

𝑃𝑃(𝜋𝜋𝑐𝑐) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧max

πc
𝔼𝔼𝜋𝜋𝑐𝑐 ��𝑅𝑅𝑡𝑡+1

𝑇𝑇−1

𝑡𝑡=0

�

𝑋𝑋0 ∼ 𝑝𝑝(𝒙𝒙0)
𝒙𝒙𝑡𝑡+1 = 𝑓𝑓(𝒙𝒙𝑡𝑡 ,𝒖𝒖�𝑡𝑡, 𝒔𝒔𝑡𝑡)
𝒖𝒖𝑡𝑡 = 𝜋𝜋𝑐𝑐(𝒖𝒖𝑡𝑡|𝒙𝒙𝑡𝑡)
𝒖𝒖𝑡𝑡 ∈ 𝕌𝕌�𝑡𝑡 ⊆ ℤ𝑛𝑛𝑢𝑢  
∀ 𝑡𝑡 ∈ {0, … ,𝑇𝑇}

 (2) 

where 𝑋𝑋0 ∈ 𝕏𝕏 is a random variables described by the initial state distribution, 𝑝𝑝(𝒙𝒙0); and, 
𝜋𝜋𝑐𝑐(𝒖𝒖𝑡𝑡|𝒙𝒙𝑡𝑡) is a conditional probability mass function over controls, given the current state. 
In RL practice, the aim is to learn a functionalization of the policy, 𝜋𝜋𝑐𝑐(𝒖𝒖𝑡𝑡|𝒙𝒙𝑡𝑡;𝜃𝜃), where 
𝜃𝜃 ∈ ℝ𝑛𝑛𝜃𝜃 . Conventionally, the functionalization is chosen to be nonlinear and suited to 
end-to-end learning, such that neural networks are often favoured. Selection of control 
inputs to the system (conditional to the state) are then provided by inference and learning 
of the optimal policy parameters, 𝜃𝜃∗ ∈ ℝ𝑛𝑛𝜃𝜃, are learned through the reward function, 𝑅𝑅, 
and general policy iteration algorithms. Two points are worth noting here that provide 
basis for the methodology subsequently presented: a) the MDP framework does not 
naturally handle the hard constraints imposed by 𝒖𝒖𝒕𝒕 ∈ 𝕌𝕌�𝑡𝑡, and b) Eq. 2 formulates control 
inputs (decisions) as integer values that identify the allocation of a given task or job in a 
unit at a given time index. We explore how best to handle these two issues in the 
following. 

Handling the constraints imposed on control selection in classical problems such as 
dynamic optimization of fed-batch processes with continuous control spaces (with upper 
and lower bounds) is often implicit (i.e. use of an activation function over the ANN output 
layer naturally places upper and lower bounds on control selection). In this class of 
problem the structure of the constraints on the control space is different and arises from 
SOPs. Given SOPs are typically defined logically (as in sequencing constraints), one can 
identify an additional transformation of the set of available controls, 𝕌𝕌, at each control 
interaction, 𝑡𝑡, based on the current state of the plant and the SOPs themselves. This 
functional transformation is denoted, 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆:𝕌𝕌 × 𝕏𝕏 → 𝕌𝕌� and is assumed non-differentiable. 

The conventional approach to select discrete control decisions from a function is either to 
a) predict the conditional probability density of each control explicitly in the output of the 
policy functionalisation, or b) predict the state-action value of each control in the output 
of the policy functionalization (this then enables the generation of a conditional 
probability mass function according to e.g. 𝜖𝜖 – greedy policies). However, these 
approaches scale poorly with the number of orders and units common to scheduling 
problems. A more intelligent approach is instead to predict a real value in a continuous 
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latent space, 𝑤𝑤 ∈ 𝕎𝕎, and then transform that prediction to a corresponding discrete 
control decision, 𝒖𝒖𝑡𝑡. This is a common approach in recommender systems. The 
transformation could either be guided by the state-action value of the 𝑘𝑘 nearest integer 
controls, or could be a deterministic rounding policy (i.e. the nearest integer function), 
denoted 𝑓𝑓𝑟𝑟:𝕎𝕎→ 𝕌𝕌, as demonstrated (implicitly) in Hubbs et al. (2020b). Both 
transformations are non-differentiable.  

Assuming the constraint set, 𝕌𝕌�, at each control interaction can be identified, the rounding 
policy can be defined in this work as 𝑓𝑓𝑟𝑟:𝕎𝕎→ 𝕌𝕌�, which enables selection of controls that 
explicitly satisfy the constraint set. In the case one is unable to identify 𝕌𝕌� absolutely via 
𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆, one can penalise violation of those constraints not handled innately by incorporating 
a deterministic expression for the constraint violation into a penalty function, 𝜑𝜑:𝕏𝕏 × 𝕌𝕌 ×
𝕏𝕏 → ℝ, (this is trivial if the constraint is neither subject to uncertain parameters, 𝒔𝒔 ∈ 𝕊𝕊, 
nor soft). A figurative description of the algorithm proposed is provided by Figure 1.  

 
Figure 1: Figurative description of A) the handling of constraints on the control inputs via logical 
expression, as well as method of control selection, B) shows control selection in more detail. 

Due to the problem posed, and the structure of the control space, this work uses 
evolutionary RL. Here, the exploration-exploitation paradigm is moved directly to the 
parameter space - removing reliance on first order gradients indicative of directions for 
policy improvement and mitigates the potential for policies to get stuck in local optima 
as well as instability in training. This is particularly likely using conventional policy 
optimization, given a) directions to improve policy parameters are estimated from the 
state distribution induced under the policy and b) in this work small changes in the policy 
parameters have potential to drastically alter the state distribution induced. 

3. Case Study 
To demonstrate the ideas presented in the methodology we work from the case study 
presented in Cerdá et al. (1997). In this work, the authors present a continuous time MILP 
model for the optimization of a single stage, parallel batch production environment (based 
on the state-task network representation). The problem definition is provided in Cerdá et 
al. (1997) and we refer the reader there for more details, however uncertain modifications 
are detailed by Table 1. It is of note that the methodology applies when uncertainty is 
derived from set based descriptions too. The problem is transcribed from a continuous 
time to a discrete time formulation (for RL) and to ensure the two are comparable, all 
processing times and cleaning times, are modified so that their greatest common factor is 
equivalent to the discrete time interval, Δ𝑡𝑡, used to define the time grid. In this work, Δ𝑡𝑡 =
0.5 days and the modified case study data is provided by Table 2. Here we demonstrate 
the methodology with 𝐽𝐽 = 8 orders and 𝑇𝑇 = 200 (corresponding to 100 days). Due to the 
nature of the scheduling problem and the simulation-based methodology proposed, the 
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underlying simulation model used to generate the following results is both non-smooth 
and dependent on logic. 
Table 1: Definition of the uncertain process parameters 

Description Descriptive distribution 
A due date, 𝜏𝜏𝑖𝑖 for each customer order is uncertain, but has been 
estimated via a nominal value of 𝜏𝜏̅𝑖𝑖 days from the start of the 
horizon. The variable 𝜏𝜏𝑖𝑖  is realized two days before delivery  

𝜏𝜏𝑖𝑖 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜏𝜏̅𝑖𝑖) 

The processing time, 𝑝𝑝𝑖𝑖𝑖𝑖, of task 𝑖𝑖 in a unit 𝑙𝑙  is subject to 
uncertainty but has a nominal value in days, 𝑝̅𝑝𝑖𝑖𝑖𝑖  

𝑝𝑝𝑖𝑖𝑖𝑖 ∼ 𝑈𝑈�𝑝𝑝𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿 , 𝑝𝑝𝑖𝑖𝑖𝑖𝑈𝑈𝐿𝐿 � 
𝑝𝑝𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿 = max(0.5, 𝑝̅𝑝𝑖𝑖𝑖𝑖 − 0.5) 

𝑝𝑝𝑖𝑖𝑖𝑖𝑈𝑈𝐿𝐿 = 𝑝̅𝑝𝑖𝑖𝑖𝑖 + 0.5 

Table 2: Detail of the modified parameters from the original case study to enable comparison 
between the two time transcriptions. All other parameters are the same as the original study. 

 Cleaning Time (days) between preceding task, 𝑖𝑖, and 
successor task, 𝑗𝑗   

Nominal Processing Time 
(days) of task 𝑖𝑖  

Task, 𝑗𝑗  Unit 
Task 𝑖𝑖 1 2 3 4 5 6 7 8 1 2 3 4 
1  - - - - - 0.5 - - 2.0 - - - 
2 - - 1.0 - - - - - - - 1.0 - 
3 1.0 0.5 - - - - 0.5 - 1.0 - 1.0 - 
4 - - - - 0.5 - - - - 1.5 - - 
5 - - - 0.5 - 0.5 1.0 0.5 - 1.5 - 1.0 
6 1.5 - 0.5 0.5 - - - - 2.5 2.0 - - 
7 - 2.0 - - 1.0 - - 0.5 - - 1.0 1.5 
8 - - - - - - 1.5 - - - - 2.0 

In practice, we are unable to explicitly identify  𝕌𝕌�𝑡𝑡 explicitly. Instead, we are only able 
to identify 𝕌𝕌�𝑡𝑡, where 𝕌𝕌�𝑡𝑡 ⊂ 𝕌𝕌�𝑡𝑡. The constraint not handled innately through 𝑓𝑓𝑟𝑟 is that a 
given task cannot be processed in more than one unit at the same time.  Given, the 
objective of the scheduling function is to minimise tardiness in orders and makespan, we 
can declare the following penalty function (reward) and propose to use particle swarm 
optimization (PSO) to maximise it: 

 𝜑𝜑𝑡𝑡+1 = ∑ 𝑟𝑟𝑡𝑡+1,𝑖𝑖
𝐽𝐽
𝑖𝑖=1 + 𝑚𝑚− 𝜅𝜅‖𝐶𝐶‖2 (3) 

where 𝐶𝐶 = [[𝑐𝑐1]−, … , [𝑐𝑐𝐼𝐼]−] ∈ ℤ𝑛𝑛𝑢𝑢; 𝑐𝑐𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙∈𝐿𝐿 − 1, where 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℤ2 is a binary 
variable indicating whether task 𝑖𝑖 is scheduled in unit 𝑙𝑙 at time 𝑡𝑡;  [𝑣𝑣]− = max(0, 𝑣𝑣); 𝜅𝜅 =
250 ∈ ℝ++ is a penalty weight; 𝑟𝑟𝑖𝑖 = −1 ∈ ℝ− is a penalty for the tardiness of an order 
(i.e. where 𝜏𝜏𝑖𝑖 < 𝑡𝑡𝑓𝑓𝑖𝑖 ); and, 𝑚𝑚 = −1 ∈ ℝ− is a penalty per discrete time step. Key 
performance indicators are 𝐺𝐺𝜋𝜋𝑐𝑐 = 𝔼𝔼𝜋𝜋𝑐𝑐[∑ 𝜑𝜑𝑡𝑡𝑇𝑇

𝑡𝑡=1 ] and 𝜎𝜎𝜋𝜋𝑐𝑐 = Σ[∑ 𝜑𝜑𝑡𝑡𝑇𝑇
𝑡𝑡=1 ]0.5. 

4. Results and Discussion 
To first benchmark the performance of the RL approach, we analyse the optimality of the 
solution policy found under a nominal model, which essentially corresponds to the 
generation of a schedule offline (i.e. for a deterministic reality). We find that the RL is 
able to obtain the same score under the objective function as the original MILP model for 
the case when there is no finite release time and when there is (i.e. 𝜑𝜑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = −62 and 
𝜑𝜑𝑅𝑅𝑅𝑅 = −65). Now, we turn our attention to benchmarking the method when uncertainties 
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are present. The results are detailed by Table 3. We conduct 8 experiments investigating 
the potential of RL to handle process uncertainty and benchmark to a shrinking horizon 
MILP approach, which uses the nominal data (corresponding to 𝑝̅𝑝𝑖𝑖𝑖𝑖 and 𝜏𝜏𝑖̅𝑖𝑖𝑖). 

Table 3: Results of online optimization of the production schedule for RL and MILP approaches. 
The more positive 𝐺𝐺𝜋𝜋𝑐𝑐  the better (as the RL problem is posed as a maximization). 

Exp 
No. 

Due Date 
uncertainty 

Processing time 
uncertainty 

Release 
Times 

RL (𝐺𝐺𝜋𝜋𝑐𝑐+/- 𝜎𝜎𝜋𝜋𝑐𝑐) MILP (online) 
(𝐺𝐺𝜋𝜋𝑐𝑐+/- 𝜎𝜎𝜋𝜋𝑐𝑐) 

1 False True False -61.9 +/- 4.4 -63.3 +/- 4.4 
2 False True True -66.0 +/- 4.9 -66.3 +/- 4.9 
3 True False False -66.8 +/- 8.7 -70.1 +/- 9.6 
4 True False True -73.8 +/- 10.7 -73.6 +/- 10.3 
5 True True False -67.4 +/- 10.9 -71.6 +/- 11.3 
6 True True True -75.3 +/- 11.5 -75.1 +/- 11.7 

From Table 3, it is clear that the RL approach proposed is competitive with the MILP 
benchmark proposed in Cerdá et al. (1997). In fact, the RL outperforms the MILP 
approach in 4 out of the 6 experiments. It is thought the benefits arise from the ability of 
RL to explicitly consider uncertainty. Furthermore, in this study the RL approach is 150 
times computationally cheaper to identify a reactive scheduling decision online. 

5. Conclusions 
In alignment with the drivers for production to become more distributed, flexible and 
reactive to realisations of real world uncertainty, we have demonstrated the application 
of RL for the online optimization of single-stage, parallel batch (bio)chemical production 
scheduling. We show that the approach is competitive with online MILP approaches, but 
has the benefit of significant computational savings online. Future work will consider: 
the application to a larger plant; transcription to a continuous time model; application to 
multi-stage processes with resource constraints; and, integration into a framework that 
provides certainty for operators. 
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Abstract 

The integration of scheduling and control leads to large scale optimization problems 

whose monolithic solution is challenging. In this paper we propose an adaptive muti-cut 

algorithm to solve the integrated optimization problem to global optimality in reduced 

time. The reduction of the CPU time is achieved via the addition of multiple cuts and 

the adaptive addition/removal of cuts based on the executed schedule. We apply the 

proposed approach to a continuous system and analyze its computational performance.  

Keywords: Control; Optimization; Operation 

1. Main Text 

Fast changing economic environments render the traditional sequential decision-making 

strategy suboptimal. The integration of scheduling and control is considered a 

promising avenue to improve the economic performance of process systems by 

considering simultaneously decisions at both time scales [Daoutidis et al., 2018]. Closed 

loop scheduling, i.e. modification of the schedule in response to production changes or 

disturbances is also essential to guarantee its feasibility and optimality during real time 

operation [Zhuge and Ierapetritou, 2012, Risbeck et al., 2019]. The implementation of 

such a closed loop approach is limited by the computational complexity of the problem. 

The key difficulty arises due to the nonlinear behavior of process systems, which leads 

to nonconvex, large scale optimization problems whose real time solution is 

challenging. Different approaches have been proposed to address this issue. In one 

approach, surrogate models have been used to approximate the dynamic behavior of the 

system [Pattison et al., 2017] and the cost associated with the execution of processing 

tasks [Charitopoulos et al., 2019, Chu and You, 2013]. The solution time can also be 

improved by exploiting the structure of the problem using decomposition based solution 

algorithms [Chu and You, 2015]. However, these methods cannot always guarantee 

global optimality due to the nonconvexity of the problem. In this work we propose an 

adaptive multi-cut decomposition based algorithm for integrated closed loop scheduling 

and control for multiproduct continuous systems. The proposed algorithm is based on a 

hybrid multi-cut Generalized Benders Decomposition (GBD) algorithm proposed by 

Mitrai and Daoutidis (2021). In this approach the integrated problem considers 

simultaneously all the transitions between the products for all the slots and the cost 

associated with the dynamic transitions between the products is approximated using 

cuts. The solution of this problem provides the production sequence and the state and 

manipulated variable profiles to be implemented. The integrated problem is resolved to 
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compensate for updated process information (the values of the state variables of the 

system, the time horizon, the inventory level, product demand and price, etc.). In order 

to accelerate the solution of the integrated problem at different time points, we propose 

the adaptive addition/removal of cuts. Specifically, the cuts added at previous time 

points are incorporated directly in the solution of the problem, only for the transitions 

that can possible occur. This adaptive approach leads to a reduction in computational 

time and thus enables fast rescheduling as necessary. We apply this approach to a 

continuous stirred tank reactor and analyze the ability of the proposed approach to 

handle disturbances at both the scheduling and control level.  

2. Problem formulation and decomposition 

2.1. Scheduling problem 

We will assume that 𝑁𝑝 products must be produced over a time horizon 𝐻 which is 

discretized into 𝑁𝑠 slots. We define variable 𝑊𝑖𝑘 ∈ {0,1} which is equal to 1 if product 𝑖 
is produced in slot 𝑘 and zero otherwise, and variable 𝑍𝑖𝑗𝑘 ∈ {0,1} which is equal to 1 if 

a transition occurs between products 𝑖 and 𝑗 in slot 𝑘 and 0 otherwise. The logic 

constraints are: 

∑ 𝑊𝑖𝑘𝑖 = 1 ∀ 𝑘  (1) 

𝑍𝑖𝑗𝑘 ≥ 𝑊𝑖𝑘 + 𝑊𝑗,𝑘+1 − 1 ∀ 𝑖, 𝑗, 𝑘 ≠ 𝑁𝑠  (2) 

The starting and ending time in slot 𝑘 are 𝑇𝑘
𝑠 (𝑇1

𝑠 = 𝑇0) and 𝑇𝑘
𝑒  (𝑇𝑁𝑠

𝑒 = 𝐻)  respectively. 

The production time of product 𝑖 in slot 𝑘 is Θ𝑖𝑘, the transition time in slot 𝑘 is 𝜃𝑘
𝑡 . The 

timing constraints are the following: 

𝑇𝑘
𝑒 = 𝑇𝑘

𝑠 + ∑ Θ𝑖𝑘𝑖 + 𝜃𝑘
𝑡   ∀𝑘 ≠ 𝑁𝑠  (3) 

𝑇𝑘+1
𝑠 = 𝑇𝑘

𝑒   ∀𝑘 ≠ 𝑁𝑠  (4) 

Θ𝑖𝑘 ≤ 𝑊𝑖𝑘𝐻 ∀𝑖, 𝑘  (5) 

The amount of product 𝑖 manufactured and stored in slot 𝑘 is 𝑞𝑖𝑘 and 𝑆𝑖𝑘 respectively. 

The demand of product 𝑖 is 𝑑𝑖 , the production rate is 𝑟𝑖 and the amount of product 𝑖 sold 

in slot k is 𝑆𝑖𝑘. The production constraints are 

𝐼𝑖𝑘 = 𝐼𝑖𝑘−1 + r𝑖  Θik − 𝑆𝑖𝑘   ∀𝑖, 𝑘, 𝑘 > 1  

(6) 
𝑆𝑖𝑁𝑠

≥ 𝑑𝑖  ∀ 𝑖. 

2.2. Dynamic model  

The dynamic behaviour of the system is described by a set of ordinary differential 

equations 𝑥̇ = 𝐹(𝑥, 𝑢), where 𝑥 are the state variables, 𝑢 are the manipulated variables 

and 𝐹 are vector functions. These equations are discretized using the method of 

orthogonal collocation on finite elements. We consider simultaneously all the transitions 

and define 𝑥𝑖𝑗𝑓𝑐𝑘
𝑛  and 𝑢𝑖𝑗𝑓𝑐𝑘

𝑚  as the value of state 𝑛 and manipulated variable 𝑚 for a 

transition from product 𝑖 to product 𝑗 in slot 𝑘, finite element 𝑓 and collocation point 𝑐. 

Finally, we define 𝜃𝑖𝑗𝑘 as the transition time for a transition from product 𝑖 to 𝑗 in slot 𝑘, 

and the discretized equations are  
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𝑥𝑖𝑗𝑓𝑐𝑘 = 𝐹𝑑(𝑥̇𝑖𝑗𝑓𝑐𝑘 , 𝑢𝑖𝑗𝑓𝑐𝑘 , 𝑥0𝑖𝑗𝑓𝑘 , 𝜃𝑖𝑗𝑘) ∀ 𝑛, 𝑖, 𝑗, 𝑓, 𝑐, 𝑘  

(7) 𝑥0𝑖𝑗1𝑘 = 𝑥𝑖
𝑠𝑠, 𝑥𝑖𝑗𝑁𝑓𝑒𝑁𝑐𝑝𝑘 = 𝑥𝑖

𝑠𝑠 ∀ 𝑖, 𝑗, 𝑘  

𝑢𝑖𝑗11𝑘 = 𝑢𝑖
𝑠𝑠 , 𝑢𝑖𝑗𝑁𝑓𝑁𝑐𝑘 = 𝑢𝑗

𝑠𝑠 ∀ 𝑖, 𝑗, 𝑘  

where 𝑥𝑖
𝑠𝑠, 𝑢𝑖

𝑠𝑠 are the steady state values of the state and manipulated variables for 

product 𝑖 and 𝐹𝑑 denote the discretized equations.  

2.3. Integrated problem 

The objective function of the integrated optimization problem is Φ1 − Φ2, where 

Φ1 = ∑ (𝑃𝑖𝑘𝑆𝑖𝑘 − 𝐶𝑖𝑘
𝑜𝑝

𝑞𝑖𝑘 − 𝐶𝑖𝑛𝑣𝐼𝑖𝑘)𝑖𝑘 − ∑ 𝐶𝑖𝑗
𝑡𝑟𝑍𝑖𝑗𝑘𝑖𝑗𝑘    

Φ2 = ∑ 𝑍𝑖𝑗𝑘𝑎𝑢 (∑ 𝑁𝑓𝑒
−1𝑡𝑖𝑗𝑓𝑐𝑘

𝑑 Λ𝑐𝑁𝑐
(𝑢𝑖𝑗𝑓𝑐𝑘 − 𝑢𝑗

𝑠𝑠)
2

𝑓𝑐 )𝑖𝑗𝑘 = ∑ 𝑍𝑖𝑗𝑘𝑎𝑢𝑓𝑖𝑗𝑘
𝑑𝑦𝑛

𝑖𝑗𝑘 .  

𝑃𝑖 , 𝐶𝑖
𝑜𝑝

 are the price and operating cost of product 𝑖, 𝐶𝑖𝑛𝑣 is the inventory cost, 𝐶𝑖𝑗
𝑡𝑟 is 

the transition cost from product 𝑖 to 𝑗 and 𝑎𝑢 is a weight coefficient. Finally, the 

transition time for each slot and period depends on the transitions that occur and we 

define 𝜃𝑖𝑗𝑘 as the transition time from product 𝑖 to 𝑗 in slot 𝑘 (the lower bound is the 

minimum transition time 𝜃𝑖𝑗
min) and the following equations are added:  

𝜃𝑘
𝑡 = ∑ 𝜃𝑖𝑗𝑘𝑍𝑖𝑗𝑘𝑖,𝑗  ∀ 𝑖, 𝑗, 𝑘 ≠ 𝑁𝑠  (8) 

The goal of the optimization problem is to maximize Φ1 − Φ2 subject to Eq. 1-8. 

3. Decomposition based solution algorithm 

In this section we present the hybrid multi-cut GBD algorithm [Mitrai and Daoutidis, 

2021]. Analysis of the structure of the problem via Stochastic Blockmodeling [Mitrai et 

al., 2021] reveals a hybrid core-community structure. The scheduling constraints/ 

variables form the core and the variables/constraints associated with the dynamic 

optimization problems are assigned in communities. The core and the communities are 

connected via the transition times 𝜃𝑖𝑗𝑘 . Given the structure of the problem, we define 

𝜙𝑖𝑗𝑘 as the value function of a transition from product 𝑖 to 𝑗 in slot 𝑘, and the dynamic 

optimization problem for this transition can be written as: 

𝜙𝑖𝑗𝑘(𝜃𝑖𝑗𝑘) = minimize 𝑓𝑖𝑗𝑘
𝑑𝑦𝑛

subject to   𝑔𝑖𝑗𝑘
𝑑𝑦𝑛

≤ 0 (𝐸𝑞.  7), 𝜃̂𝑖𝑗𝑘 = 𝜃𝑖𝑗𝑘 ∶  𝜆𝑖𝑗𝑘  (9) 

where 𝜆𝑖𝑗𝑘 is the Lagrange multiplier and is equal to the negative of the subgradient of 

𝜙𝑖𝑗𝑘  for 𝜃𝑖𝑗𝑘  = 𝜃̅𝑖𝑗𝑘. The optimization problem can be written as [Geoffrion, 1970] 

maximize Φ1 − ∑ 𝑍𝑖𝑗𝑘𝜂𝑖𝑗𝑘𝑖𝑗𝑘   

(10) 
subject to  𝐸𝑞.   1 − 6, 8,  𝜂𝑖𝑗𝑘 ≥ 𝜙𝑖𝑗𝑘

𝑣 − 𝜆𝑖𝑗𝑘
𝑣 (𝜃𝑖𝑗𝑘 − 𝜃̅𝑖𝑗𝑘

𝑣 )  ∀𝑖, 𝑗, 𝑘, 𝑣 ∈ 𝒱 (Eq. 11)   

We will follow a hybrid multicut GBD approach to solve this problem. The master 

problem is a Mixed Integer Nonlinear Program solved with Gurobi [Gurobi, 2021] and 

the subproblems, which are nonlinear programs solved with IPOPT [Wachter and 

Biegler, 2006], are the dynamic optimization problems only for the transitions that 

occur. Since 𝜂𝑖𝑗𝑘 approximates the transition from product 𝑖 to 𝑗 in slot 𝑘, this 

approximation will also be valid for other slots. Hence in each iteration, Eq. 11 for a 
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given 𝑖, 𝑗 is added for all slots. We refer the reader to [Mitrai and Daoutidis, 2021] for a 

detailed explanation of the algorithm.  

4. Adaptive multicut algorithm 

The solution of the above problem will provide the production sequence, production 

times and dynamic transition profiles of the states and manipulated variables. We will 

assume that at some time 𝑡 a disturbance affects the system and the value of the state 

variable is 𝑥̅ (the predicted value from the initial schedule is 𝑥), the demand is 𝑑 and the 

inventory of product 𝑖 is 𝐼𝑖
0. At this point a modified integrated problem must be solved. 

Specifically, the time horizon is 𝐻 − 𝑡 since the system was following the initial 

schedule during the first 𝑡 hours. Also, at time 𝑡 different amounts of each product have 

been produced, hence the initial inventory if product 𝑖, 𝐼𝑖
0, can be nonzero. Finally, in 

the first slot two transitions can occur. The first is a transition from 𝑥̅ to the steady state 

of the new product 𝑖 (𝑥𝑖
𝑠𝑠) that will be manufactured in the first slot. Once 𝑥 = 𝑥𝑖

𝑠𝑠, 

product 𝑖 will be produced and then a transition will occur between product 𝑖 produced 

in slot 1 and product 𝑗 produced in slot 2. In order to model this problem, we will define 

a binary variable 𝑍̂𝑖 which is equal to 1 if a transition occurs from the intermediate state 

𝑥̅ to product 𝑖 and 0 otherwise. We also define 𝜃̂𝑖 as the transition time for the 

aforementioned transition. In order to model the transition in this slot we add the 

following constraint: 

𝑍̂𝑖 = 𝑊𝑖1 ∀𝑖  (12) 

Based on the above constraint a transition from the intermediate state to the steady state 

of product 𝑖 is performed only if product 𝑖 is manufactured in the first slot. We also 

define 𝜂̂𝑖 as the approximation of the value function 𝜙̂𝑖 for the transition from the 

intermediate state to the steady state of product 𝑖. Given these variables, the transition 

time in the first slot is given by the following constraint: 

𝜃1
𝑡 = ∑ 𝑍̂𝑖 𝜃̂𝑖𝑖 +  ∑ 𝑍𝑖𝑗1𝜃𝑖𝑗1𝑖𝑗   (13) 

Overall the optimization problem is: 

maximize Φ1 − ∑ 𝑍𝑖𝑗𝑘𝜂𝑖𝑗𝑘𝑖𝑗𝑘 − ∑ 𝑍̂𝑖 𝜂̂𝑖i   (14) 

subject to  𝐸𝑞. 1 − 6,8, 12, 13,  𝜂̂𝑖 ≥ 𝜙̂𝑖
𝑣 − 𝜆̂𝑖

𝑙 (𝜃̂𝑖
𝑙 − 𝜃̅̂𝑖

𝑙)  ∀𝑙 ∈ ℒ    

where 𝜆̂𝑖
𝑙  is the optimal Lagrangean multiplier for the equality constraint 𝜃̂𝑖  = 𝜃̅𝑖 and 𝑙 

denotes the iteration number. The hybrid multicut GBD can be used to solve the above 

problem once a disturbance affects the system. In order to reduce the CPU time further 

we propose an adaptive solution approach, where for the solution of the integrated 

problem at time 𝑡 we add all the cuts evaluated in the previous iterations for the 

transitions that can occur. This strategy leads to a reduction in the CPU time, since 

fewer iterations are necessary. However, we must note that the cost associated with the 

transition from the intermediate state must be approximated every time the integrated 

problem is solved.  
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Figure 1   Concentration and inlet flowrate profiles 

for the nominal and implemented schedule 

Figure 2 Gantt chart for the initial and 

updated schedules 

5. Case study 

We will assume that the system is an isothermal CSTR where an irreversible reaction 

occurs 3𝐴 → 𝐵, and the dynamic behaviour is described by the following equation  

 
𝑑𝑐

𝑑𝑡
=

𝑄

𝑉
(𝑐𝑓𝑒𝑒𝑑 − 𝑐(𝑡)) − 𝑘 𝑐(𝑡)3, where 𝑐 (𝑚𝑜𝑙/𝐿) is the concentration, 𝑄 (𝐿/ℎ𝑟) is 

the inlet flowrate (manipulated variable) and 𝑉, 𝑐𝑓𝑒𝑒𝑑 , 𝑘 are the reactor volume, inlet 

concentration and reaction constant respectively. First we solve the integrated problem 

(Eq. 10) to obtain the initial schedule. The optimality gap tolerance is set to 1%. The 

hybrid multi-cut GBD algorithm solves the problem in 13 CPU seconds and the 

production sequence is 2 → 1 → 3 → 4 → 5, the value of the objective function is 7.5 

105 and the production results are presented in Fig. 2.   

Table 1 Operating conditions and economic data, scheduling horizon 𝐻 = 24 

Product 𝑐𝑠𝑠 𝑄𝑠𝑠 Prod. rate Demand Price 𝐶𝑜𝑝 
𝐶𝑡𝑟/10 

1 2 3 4 5 

1 0.24 200 150 600 200 13 0 10 6 12 15 

2 0.2 100 80 550 160 22 15 0 5 8 10 

3 0.3 400 278 600 130 35 20 15 0 10 15 

4 0.39 1000 607 1200 110 29 90 10 12 0 10 

5 0.5 2500 1250 2500 140 25 15 10 15 14 0 

 

First we will consider a case where after 4 hours of operation, the demand of product 4 

changes from 1200 to 1500. At this point, 320 mol of product 2 have been produced and 

the length of the time horizon is 20 hours. Using the adaptive algorithm the integrated 

problem (Eq. 14) is solved in 1.8 CPU seconds, the value of the objective function is 7.1 

105 and the updated schedule is presented in Fig. 2 (Update 1). In this case, the value of 

the objective function is lower, compared to the initial schedule, since more time is 

dedicated to the production of product 4. Solving the problem hybrid multi-cut GBD 

algorithm requires 20 CPU seconds. In this case the adaptive algorithm reduces the 

CPU time by 91 %.  

Next, we will assume that after 7.4 hours, a disturbance in the inlet concentration causes 

the concentration in the reactor to be equal to 0.33 mol/l. At this point, the demand of 
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product 2 is satisfied and the associated cuts are not considered. The integrated problem 

is solved in 17 CPU seconds using the adaptive algorithm, the optimal sequence is 3 →
1 → 4 → 5 (Fig. 2 Update 2) and the value of the objective function is 4.2 105. In this 

case the CPU time is higher than the previous case since the transition from the 

intermediate state to the different products must be approximated. Also, the value of the 

objective function is reduced since more time is spent in transitions. Solving the 

problem with the hybrid GBD multi-cut algorithm requires 33 CPU seconds.  Finally, 

after 9.1 hours of operation the concentration in the reactor is 0.35 (the nominal value is 

0.3), the order of product 4 is cancelled, the demand of product 3 changes to 650 and 

additional 50 mol of product 2 are ordered. The adaptive algorithm solves the problem 

in 9.6 CPU seconds and the production sequence is 3 → 1 → 2 → 5 (Fig. 2 Final 

schedule). The hybrid GBD algorithm requires 20 CPU seconds. The profiles of the 

concentration and inlet flowrate for the initial and final schedule are presented in Fig. 1. 

6. Conclusions 

The real time solution of integrated optimization problems is computationally 

challenging. In this paper, we propose an adaptive multi-cut algorithm which can solve 

the integrated optimization problem in reduced computational time via the adaptive 

addition/removal of cuts, which approximate the cost associated with dynamic 

transitions between products. We consider disturbances in both the control and 

scheduling and we show that the proposed approach can update the schedule in order to 

guarantee optimality and feasibility. In the future we intend to apply this algorithm to 

more complicated continuous systems and batch systems.  
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Abstract 

Life cycle assessment (LCA) and technoeconomic analysis (TEA) are essential tools for 

evaluating biorefinery performance and designing cost-effective and environmentally 

friendly supply chains. However, biorefinery operations often suffer from significant 

temporal and spatial uncertainties, including raw material supply and product demands. 

This work uses stochastic programming and multi-period planning to design a cost-

efficient modular biorefinery supply chain under uncertain demand and material supply. 

Next, the proposed model is used to design and evaluate modular biorefinery performance 

in the Baltimore-Wilmington-Philadelphia region. Moreover, the optimization result 

illustrates the seasonal variability of biomass-based product emission due to 

demand/supply uncertainty, which cannot be captured by the conventional LCA 

uncertainty analysis. 

Keywords: Biorefinery, modular production, supply chain optimization, stochastic 

programming, life cycle assessment 

1. Introduction 

The use of cheap and abundant biomass feedstocks in chemical production is established 

as a promising alternative to cut greenhouse gas emissions of the chemical industry 

[Ulonska et al., 2018]. However, biomass feedstocks are often complex mixtures with a 

considerable amount of lignin, cellulose, and hemicellulose. Thus, the biomass 

conversion facilities often adopt the so-called biorefinery strategy to use a combination 

of different reaction units and generate multiple products from each feedstock component. 

A superstructure optimization framework is commonly used to select the appropriate 

feedstocks, operating conditions, conversion technologies, and facility locations from the 

numerous alternatives [You and Wang, 2011].  

Nevertheless, parameters used in the biorefinery design often come with considerable 

uncertainties, such as availability of feedstocks, volatile prices, and experimental yields 

with intrinsic variations [Baral et al., 2019]. Ignoring such uncertainties often leads to 

suboptimal or infeasible design [Li et al., 2011]. On the other hand, uncertainty analysis 

also plays an essential role in LCA. However, most of the LCA uncertainty analyses are 

limited to sensitivity analysis or the semi-quantitative Pedigree method. The LCA 

Pedigree approach starts with rating the data reliability, completeness, temporal 

correlation, geometric correlation, and further technological correlation using indicator 

scores from 1 to 5. These scores are then transformed to uncertainty factors between 1 to 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50080-4 
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2 before being assigned as the geometric standard deviation for uncertain parameters, 

such as the raw material usage [Ciroth et al., 2016]. Although the Pedigree method is a 

good indicator of data quality, encoding qualitative assessment descriptions into 

probability distributions inevitably suffers from subjectivity [Henriksson et al., 2015]. 

Recently, technology choices under parameter uncertainties have been modeled in 

consequential LCA with optimization tools when multiple technologies exist for 

manufacturing the same product [Kätelhön et al., 2016]. Nevertheless, this model uses 

the arithmetic mean of each linear programming problem's solution for LCA calculation, 

which is less effective than the stochastic programming with recourse actions in capturing 

the actual supply chain behavior and corrective actions when facing uncertainties 

[Sahinidis, 2004].  

As a promising strategy for biomass supply chain design, modular manufacturing has 

demonstrated excellent cost reduction potential and extra supply chain flexibility under 

uncertainties of biomass feedstock availability [Allman et al., 2021]. It has also been 

shown to benefit from the economy of numbers that reduce capital investment  [Bhosekar 

et al., 2021]. 

This work utilizes the two-stage stochastic programming and rolling horizon formulation 

to design a distributed biorefinery supply chain under demand and supply uncertainties. 

To enhance the process's flexibility, the expansion and movement of modular biomass 

conversion units are permitted after the initial installation at each production site [Allman 

et al., 2021]. In addition to the optimal design, the proposed stochastic programming 

model also provides quantitative insights into the uncertainties of economic and 

environmental performance using only historical data, which has the potential to replace 

the Pedigree methods for LCA uncertainty evaluation. 

2. Modular Biorefinery Supply Chain Model 

2.1. Stochastic programming formulation of distributed biorefinery supply chain 

The expansion and module's movement at each site are modelled by the following 

conservation equation (1): 

𝒏𝒋,𝒎,𝒕 = 𝒏𝒋,𝒎,𝒕−𝟏 + 𝒛𝒋,𝒎,𝒕 + ∑ (𝒗𝒋′,𝒋,𝒎,𝒕−𝟏 − 𝒗𝒋,𝒋′,𝒎,𝒕−𝟏)𝒋′∈𝑱′   

 

(1) 

where m is the module types for process units; 𝑛𝑗,𝑚,𝑡 is the number of unit m at production 

site j during time period t; 𝑧𝑗,𝑚,𝑡 is the newly purchased m units at time t at the same site; 

𝑣𝑗,𝑗′,𝑚,𝑡−1 is the number of modules moved from site j to j' at time t-1. The material flow 

in and out of the process site follows the mass balance equation (2). 

∑ 𝑸𝒋,𝒘,𝒑,𝒕𝒘∈𝑾 = ∑ ∑ 𝒄𝒐𝒏𝒗𝒇,𝒑 ∙ 𝑸𝒔,𝒋,𝒇,𝒕𝒇∈𝑭𝒔∈𝑺   

 

(2) 

where 𝑄𝑠,𝑗,𝑓,𝑡 is the flowrate of feedstock f from supplier s to site j during time t; 𝑐𝑜𝑛𝑣𝑗,𝑝 

is the conversion of product p using feedstock f; 𝑄𝑗,𝑤,𝑝,𝑡 the flowrates of product p from 

site j to warehouse w. The production activity cannot exceed the total installed capacity 

at site j, which is shown in equation (3). 

∑ ∑ 𝑸𝒔,𝒋,𝒇,𝒕𝒋∈𝑱𝒔∈𝑺 ≤ ∑ ∑ 𝒄𝒎 ∙ 𝒏𝒋,𝒎,𝒕𝒎∈𝑱𝒋∈𝑱   

 

(3) 

where 𝑐𝑚 is the maximum capacity of unit m. The inventory balance is equation (4). 
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𝑰𝒘,𝒑,𝒕 = 𝑰𝒘,𝒑,𝒕−𝟏 + ∑ 𝑸𝒋,𝒘,𝒑,𝒕𝒋∈𝑱 − ∑ 𝑸𝒘,𝒓,𝒑,𝒕𝒓∈𝑹   

 

(4) 

where 𝐼𝑤,𝑝,𝑡 is the inventory of product p at warehouse w during time t;  𝑄𝑤,𝑟,𝑝,𝑡 is the 

flowrates of products from warehouse w to market r during time period t, respectively. 

The objective function is the total expected costs in equation (5): 

 𝜻 = ∑ ∑ 𝒒𝒎 ∙ 𝒏𝒋,𝒎,𝟎𝒎∈𝑴𝒋∈𝑱 + 𝔼[ ∑ ∑ ∑ (∑ 𝒓𝒋,𝒋′,𝒎 ∙ 𝒗𝒋,𝒋′,𝒎,𝒕𝒋′∈𝑱′𝒋∈𝑱 𝒎∈𝑴𝒕∈𝑻 + 𝒐𝒎 ∙

𝒙𝒋,𝒎,𝒕 + 𝒒𝒎 ∙ 𝒛𝒋,𝒎,𝒕) + ∑ ∑ ∑ ∑ 𝒉𝒋,𝒔 ∙ 𝑸𝒔,𝒋,𝒇,𝒕𝒋∈𝑱𝒔∈𝑺𝒇∈𝑭𝒕∈𝑻 + ∑ ∑ ∑ 𝒃𝒓,𝒑 ∙𝒓∈𝑹𝒑∈𝑷𝒕∈𝑻

𝑩𝒓,𝒑,𝒕 + ∑ ∑ ∑ (∑ 𝒉𝒋,𝒘 ∙ 𝑸𝒋,𝒘,𝒑,𝒕 + ∑ 𝒉𝒘,𝒓 ∙ 𝑸𝒘,𝒓,𝒑,𝒕𝒓∈𝑹 + 𝒈𝒘,𝒑 ∙ 𝑰𝒘,𝒑,𝒕) 𝒋∈𝑱𝒘∈𝑾𝒑∈𝑷𝒕∈𝑻 ]  

(5) 

where 𝑞𝑚 is the capital cost and 𝑜𝑚 is the operating cost of module m; 𝑟𝑗,𝑗′ ,𝑚 is the cost 

of moving unit m from site j to j'; ℎ𝑗,𝑠 , ℎ𝑗,𝑤 , and  ℎ𝑤,𝑟  are the transportation costs of 

feedstocks from supply s to site j, product from site j to warehouse w and to market r; 

𝑔𝑤,𝑝 is the inventory holding cost of product p at warehouse w and 𝑏𝑟,𝑝 is the backorder 

cost for product p at market r; 𝐵𝑟,𝑝,𝑡 is the unmet demand for product p at market r during 

time t, which is calculated by equation (6). 

𝑩𝒓,𝒑,𝒕 =  𝜹𝒓,𝒑,𝒕 − ∑ 𝑸𝒘,𝒓,𝒑,𝒕𝒘∈𝑾   

  

 

(6) 

where 𝛿𝑟,𝑝,𝑡 is the uncertain demand of product p at market r during t. 

2.2. Life cycle assessment for each scenario of the stochastic programming 

Using a cradle-to-gate LCA system boundary, carbon sequestration during plant growth, 

the emission of production activity, transportation, and upstream emission of backorder 

are included. Since multiple products are often generated in the biorefinery, the "avoided 

burden" approach is adopted to account for the credits of by-products by calculating the 

emissions of their production in standalone processes and deducting them from the initial 

emission [Anastasopoulou et al., 2020]. The total emission of the biorefinery supply chain 

is given by equation (7). 

𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏 =  ∑ ∑ ∑ (∑ 𝜶𝒋,𝒋′,𝒎 ∙ 𝒗𝒋,𝒋′,𝒎,𝒕𝒋′∈𝑱′𝒋∈𝑱𝒎∈𝑴𝒕∈𝑻 + 𝜷𝒎 ∙ 𝒙𝒋,𝒎,𝒕) +

∑ ∑ ∑ ∑ 𝜽𝒔,𝒋 ∙ 𝑸𝒔,𝒋,𝒇,𝒕𝒋∈𝑱𝒔∈𝑺𝒇∈𝑭𝒕∈𝑻 + ∑ ∑ ∑ 𝜼𝒓,𝒑 ∙ 𝑩𝒓,𝒑,𝒕𝒓∈𝑹𝒑∈𝑷𝒕∈𝑻 +

∑ ∑ ∑ (∑ 𝜽𝒋,𝒘 ∙ 𝑸𝒋,𝒘,𝒑,𝒕 + ∑ 𝜽𝒘,𝒓 ∙ 𝑸𝒘,𝒓,𝒑,𝒕𝒓∈𝑹 ) −𝒋∈𝑱𝒘∈𝑾𝒑∈𝑷𝒕∈𝑻

∑ ∑ ∑ 𝜼𝒓,𝒑′ ∙ 𝜹𝒓,𝒑′,𝒕𝒓∈𝑹𝒑′∈𝑷′𝒕∈𝑻    

  

 

(7) 

where 𝛼𝑗,𝑗′,𝑚 is the emission of moving module m from j to j’; 𝛽𝑚 is the gate-to-gate 

emission of modular m occurring at production stage; 𝜃𝑠,𝑗, 𝜃𝑗,𝑤, 𝜃𝑤,𝑟 are the emissions 

when transporting feedstocks f or product p from supplier s to site j, from site j to 

warehouse w, and from warehouse w to market r; 𝜂𝑟,𝑝′ is the cradle-to-gate emission of 

the by-product p' bought from market r to satisfy the unmet demand. 

2.3. Case study of distributed modular biorefinery operation 

The aforementioned model is then applied to a case study of designing distributed 

biorefinery supply chain in the Baltimore-Wilmington-Philadelphia area, which covers 6 

counties in Pennsylvania, 4 counties in Maryland and the New Castle County in 

Delaware. Figure 1 listed the structure and location of the supply chain containing 7 

supply regions, 7 processing sites, 3 warehouses, and 3 market locations. 
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Figure 1. a) structure of modular biorefinery supply chain. b) suppliers, production sites 

(blue), warehouses, and markets (red) for the case study. 

The supply of corn stover, poplar and willow are based on the regional biomass supply 

data [Langholtz et al., 2016]. The temporal variation in biomass supply is also considered 

as corn is harvested only from August to November in these three states, while poplar and 

willow are more stable sources of feedstocks throughout the year. As for the biomass 

conversion systems, three scales of process units (1.2 kt/y, 2.4 kt/y, and 6 kt/y) for two 

biomass conversion technologies are available. The molten salt hydrate (MSH) units 

convert biomass feedstocks to furfural, 5-hydroxymethylfurfural (HMF), and lignin, 

while the reductive catalytic fractionation (RCF) units further utilize lignin to produce 

pressure-sensitive adhesives (PSA). The yields of the above technologies are extracted 

from the Aspen Plus simulation (Aspen Tech, Burlington, MA). 

The functional unit of LCA is chosen as 1 kg of PSA supplied to the market. Then, 

background data of transportation and upstream emissions come from the Ecoinvent v3.3 

database and literature results [Athaley et al., 2019, Wernet et al., 2016]. The capital and 

operating costs are based on the Aspen Plus simulation and technoeconomic analysis for 

MSH and RCF technologies [Athaley et al., 2019, Bhosekar et al., 2021]. The 

optimization model is implemented in GAMS 33.1 and cplex 12.10 solver on a computer 

with Intel Xeon E-2274G CPU @ 4.00GHz 32 GB RAM. 

3. Results and discussion 

When the weights of conversion units are high, the number of modules at each site 

increases monotonically over time through capacity expansion (left of Figure 2). This 

increase is more pronounced after September when the demand for chemicals rises and 

the supply of corn stover emerges. However, the movement of process unit between 

processing sites is not observed since the moving cost of heavy modules is relatively high 

s. On the other hand, when the weights of MSH units are low (right of Figure 2), they are 

moved around frequently, which accounts for the decrease of Cecil County's MSH units 

in May and October. 

 
Figure 2. Number of all MSH units in four sites [ a) heavy units, b) light units]. 
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The rolling horizon approach implements the first-stage decisions (module moving, 

expansion, production, transportation, and inventory management) to minimize the 

expected supply chain cost of all generated future scenarios [Bhosekar et al., 2021]. The 

predicted costs and GWPs of these possible scenarios in the next period (the shaded area 

in Figure 3) are compared to the actual cost and GWP of the implemented action (solid 

lines in Figure 3). The rolling horizon approach underestimated the unmet demand in the 

next stage, especially before September, when the supply of biomass feedstocks is tight. 

Thus, the actual realization of the cost and GWP of purchasing PSA from the market 

(solid lines in Figure 3) is higher than the center of the predicted uncertainty ranges. 

Figure 3. a) predicted 95% confidence interval of uncertain scenarios’ cost (orange) and 

actual cost after uncertainty realization (red line); b) predicted 95% confidence interval 

of GWP (green) and actual GWP after uncertainty realization (black line).  

In September, a large quantity of corn stover supply appears as the corn stover is 

harvested. More units are added and moved to the sites near the corn stover supply so that 

as much demand is met as possible. Since buying PSA from conventional oil-based 

chemical plants for the unmet demand is both expensive (backorder cost) and has high 

greenhouse gas emission, there is a sudden drop of costs and GWPs when most of the 

demand is fulfilled with increased production capacities in September. This result 

demonstrates the flexibility of the distributed modular biorefinery to address the uncertain 

and shifting supply through gradual expansion and reallocation, rather than overdesigning 

the capacity in the first place.  

Moreover, the traditional Pedigree method applied to LCA is not capable of translating 

the demand and supply uncertainties into probability distributions because they only 

indirectly affect the material flows. Therefore, it cannot illustrate the GWP changes 

throughout the year due to differences in biomass supply. Nevertheless, the proposed 

stochastic programming method naturally chooses the appropriate supply chain decisions 

under each scenario, accurately reflecting GWP’s response to supply and demand’s 

seasonal variation. Consequently, the empirical distribution of bio-based PSA production 

emission could then be used as the uncertain input for other LCA studies. 

4. Conclusions 

In this work, a two-stage stochastic programming model is used to design a distributed 

biorefinery supply chain that produces value-added chemicals from poplar, willow, and 

corn stover. Historical supply data are utilized to build the multiperiod scenarios in a case 

study that contains 3 biomass feedstocks, 7 supply regions, and 3 markets. Next, rolling 
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horizon approach is utilized to design the supply chain with minimal expected cost. Not 

only is this model able to design and evaluate the economic and environmental 

performance of the modular biorefinery supply chain, but also the emission in each 

scenario of the stochastic programming provides valuable LCA uncertainty information. 

The LCA uncertainty evaluated in this manner uses actual historical data and represents 

the rational selection of suppliers and technologies, providing the empirical foundation 

of uncertainty that the traditional Pedigree method is weak in [Ciroth et al., 2016]. 
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Abstract

This contribution deals with the development of an integer linear programming (ILP)
model and a solution strategy for a two-stage industrial formulation plant with parallel pro-
duction units for crop protection chemicals. Optimal scheduling of this plant is difficult,
due to the number of units and operations that must be scheduled while at the same time a
high degree of coupling between the operations is present. The problem is further compli-
cated by the presence of optional intermediate storage that leads to alternative branches in
the processing sequence of the products. The presented approach is compared to previous
ones, namely a mixed-integer linear programming- and a constraint programming-based
one. The ILP-based approach exhibits vastly superior computational performance, while
still achieving the same solution quality.

Keywords: Batch Process Scheduling, Integer Linear Programming, Decomposition

1. Introduction

The increasing competition on the global market in addition to varying customer demands
necessitates an increase in the efficiency and flexibility of production processes. Batch
processes offer this kind of flexibility in the case of demand-driven production. A key com-
ponent to the efficiency of such batch processes is optimal scheduling, i.e., the allocation
of limited resources to manufacture several products over a given time horizon. Schedules
should be generated in a fast and reliable manner to adapt to varying customer demands.
Furthermore, schedules should try to optimize some criterion, e.g., minimizing produc-
tion time or maximizing profit. These requirements for scheduling can be addressed by
optimization methods, like integer and mixed-integer programming. Optimization models
can include various constraints that describe the production process while simultaneously
optimizing a scheduling objective. The main bottleneck of most optimization models in
production scheduling is the computation time. This issue can be handled by applying
decomposition techniques, where the scheduling problem is solved in an iterative manner
(Elkamel et al., 1997). A straightforward decomposition approach is the iterative schedul-
ing of batches or orders. The realization of the decomposition then mainly depends on the

http://dx.doi.org/10.1016/B978-0-323-85159-6.50081-6 
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Figure 1: Schematic representation of the industrial formlation plant (Yfantis et al., 2019).

model structure, e.g., whether the model represents time through a time grid (Yfantis et al.,
2019) or through precedence relations (Elekidis et al., 2019). In this contribution an effi-
cient integer linear programming model for an industrial formulation plant is presented. A
decomposition approach is employed, where orders are scheduled in an iterative fashion,
while considering decisions from previous iterations. The solution approach is evaluated
on an industrial-scale case study.

2. Indutrial Formulation Plant

The industrial formulation plant is schematically depicted in Figure 1. It can be divided
into three parts, the formulation lines, the filling stations, and the buffer tanks. The plant
operates in a sequential manner. Intermediate products are produced in the formulation
lines and then filled into their final containers by the filling stations. The buffer tanks serve
to decouple the two production stages. All sections of the plant are connected by a transfer
panel. Each formulation line consists of a raw material pre-processing line, in which the
preparation of active ingredients and solvents takes place, and several identical standard-
ization tanks. After the pre-processing, a batch mixing operation takes place in one of the
standardization tanks. The standardization tanks are always utilized to their full capacity,
i.e., overproduction can occur. As a single pre-processing line feeds multiple standardiza-
tion tanks, only one batch can start processing in each formulation line at each time point.
Furthermore, each order can only be processed on a subset of available formulation lines.
After a minimum standardization time, the intermediate product can be filled by a filling
station. However, intermediate storage in the standardization tank or in an available buffer
tank is also possible. The filling stations operate in a continuous manner, i.e., without an
internal storage. A connected standardization or buffer tank is continuously drained by the
filling station with an order and station dependent flowrate. Each filling station can only
process a subset of available orders. After an operation finishes in any piece of equipment,
a sequence dependent changeover time must elapse before the start of the next operation.
The filling stations constitute a bottleneck of the process, as they cannot operate during
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the night shift, unlike the formulation lines, which operate continuously during the entire
time horizon. The scheduling task consists of allocating the batches of the different orders
to the standardization tanks and the subsequent filling operations to the filling stations
while minimizing the total production time of the schedule. The buffer tanks can be used
to decouple the two production stages, while accounting for constraints on the maximum
capacity of the tanks. The case study has been investigated by Yfantis et al. (2019) and
Klanke et al. (2021b). In the former work, mixed-integer linear programming (MILP) was
employed together with a decomposition strategy, and a problem instance identical to the
one examined in this paper was solved for a scheduling horizon of one week. In Klanke et
al. (2021b) the same problem instance was solved by combining constraint programming
(CP) and a moving-horizon strategy, outperforming the previous MILP formulation. Fur-
thermore, different case studies for the same formulation plant were solved in Klanke et
al. (2021a) using a heuristics-assisted genetic algorithm.

3. Solution Approach

3.1. Integer Linear Programming Model

In this section, the proposed integer linear programming model is presented. Since the
model is very complex, this sections only focuses on some key constraints and variables,
as well as on the objective function. The goal is to schedule the set of orders I on the
available machines J . The machines are divided into the standardization tanks of the
formulation lines J FL and the filling stations J FS. The machines that can process order i
are denoted by Ji. The available buffer tanks are modeled by the set B. The time horizon
is discretized into equidistant time points T . Some of the key constraints are shown in
Eq. (1) - (6). The binary variable Rijt indicates that a batch of order i is released from
standardization tank j at time t. Eq. (1) guarantees the satisfaction of demand Di, where
capj is the batch size in tank j. The binary variable is set to one once the tank has been
emptied. This is modeled by Eq. (2), where Efill

ijj′t is a binary variable indicating the end
of filling of a batch of order i from standardization tank j by filling station j′ at time t
and Refijbj′t is a binary variable indicating a refilling of this batch into buffer tank b, in
order to later be filled by filling station j′. A batch can be stored inside a standardization
tank prior to its release. Intermediate storage of a batch of order i in standardization
tank j at time t is indicated by the binary variable Lijt. This variable is updated by Eq.
(3), where Eijt is a binary variable representing the end of a standardization operation,
Sfill
ijj′t models the start of a filling operation from standardization tank j by filling station

j′. When a standardization tank j is processing a batch of order i at time t the binary
variable Xijt is active. It is updated through the starting (Sijt) and ending (Eijt) binary
variables in Eq. (4). Processing in the filling station is modeled by similar constraints.
An important aspect of the scheduling problem is the modeling of the buffer balances.
Instead of modeling stored quantities in the buffer tanks, Eq. (5) models the time intervals
necessary to empty buffer tank b, containing order i by filling station j, if filling starts
at time t through the integer variable Iibjt. This variable is updated at every time step,
using the parameter pijj′ , which is equal to the number of time points needed to fill a
batch of order i from standardization tank j′ by filling station j and the binary variable
Yibjt, indicating that an order i is filled from buffer b by filling station j at time t. Eq.
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(6) ensures that the buffer level does not exceed its maximum capacity by considering an
upper bound on the required filling time. Further constraints include the changeovers in
the different machines, modeled in a similar fashion to Eq. (4), also using binary variables
for their start, end, and processing. The processing times are modeled by linking the binary
variables for the start and end of an operation through their time indices. The objective
of the optimization problem is modeled by Eq. (7). In the first term the starting and end
times of the filling operations are minimized. The remaining terms serve to minimize idle
times, which occur in a makespan minimization due to multiple symmetric solutions. The
second term penalizes the use of the buffer tanks. The scaling parameter wij is equal to
the mean filling time of batches of order i by filling station j. The third term discourages
intermediate storage in the standardization tanks if it is unnecessary.∑
t∈T

∑
j∈J FL

i

Rijt · capj ≥ Di, ∀i ∈ I (1)

Rij,t+1 =
∑

j′∈J FS
i

Efill
ijj′t +

∑
b∈B

∑
j′∈J FS

i

Refijbj′,t+1, ∀i ∈ I, j ∈ J FL
i , t ∈ T \{|T |} (2)

Lij,t+1 = Lijt + Eijt −
∑

j′∈J FS
i

Sfill
ijj′,t+1 −

∑
b∈B

∑
j′∈J FS

i

Refijbj′,t+1,

∀i ∈ I, j ∈ J FL
i , t ∈ T \{|T |} (3)

Xij,t+1 = Xij,t + Sij,t+1 − Eijt, ∀i ∈ I, j ∈ J FL
i , t ∈ T \{|T |} (4)

Iibj,t+1 = Iibjt +
∑

j′∈J FL
i

Refij′bj,t+1 · pijj′ − Yibjt, ∀i ∈ I, b ∈ B, j ∈ J FS
i (5)

Iibjt ≤ capibj , ∀i ∈ I, b ∈ B, j ∈ J FS
i , t ∈ T (6)

min
1

2
·
∑
i∈I

∑
j∈J FL

i

∑
j′∈J FS

i

∑
t∈T

(
Efill

ijj′t + Sfill
ijj′t

)
+

∑
i∈I

∑
b∈B

∑
j∈J FS

i

∑
t∈T

1

wij
· Yibjt · t

+
∑
i∈I

∑
j∈J FL

i

∑
t∈T

Lijt (7)

3.2. Decomposition

Due to its size and complexity the model cannot be solved in a monolithic fashion. To
generate feasible schedules in a time efficient manner an order decomposition approach,
similar to Yfantis et al. (2019), is employed. The orders are scheduled iteratively while
preventing overlaps through constraints. These infeasible allocations can easily be iden-
tified since each machine possesses an active binary variable at each time point where an
operation is being performed, instead of just using a single binary variable for the start
of an operation. The night shifts of the filling stations are modeled in a similar way. In
contrast to the approaches in Yfantis et al. (2019) and Klanke et al. (2021b) no batch de-
composition is needed, as the model can schedule orders that consist of a large number of

490



Figure 2: Gantt chart of the schedule generated with the proposed ILP-based approach.

batches efficiently. Furthermore, no two-step optimization approach is necessary, as the
operations are already shifted to the left through the chosen objective function. Lastly,
the time horizon is shifted to the end of the next day from the current makespan. If the
subproblem is infeasible the time horizon is shifted by an additional day until a solution is
found.

4. Results

The presented ILP-based solution approach was evaluated on the case study presented in
Yfantis et al. (2019) and Klanke et al. (2021b). The setup consists of 7 formulation lines,
each containing 3 standardization tanks, 8 filling stations and 5 buffer tanks. In total, 20
orders of different quantities, resulting in 78 batches are scheduled. A time horizon of
one week, divided into 1-hour intervals, is considered. The solution approach was imple-
mented in the programming language Julia (Bezanson et al., 2017). The ILP was solved
using Gurobi on a Desktop PC (AMD Ryzen 5 3600 6-Core Processor @3.6 GHz). The
subproblems were all solved to a 0 % optimality gap. The generated Gantt chart is depicted
in Figure 2. It represents the batches on each standardization tank of the formulation lines,
separated by the black solid lines, the filling stations, and the buffer tanks. Furthermore,
the night shifts of the filling stations are illustrated as black regions. A makespan of 133 h
is obtained, which is equal to the results obtained by the previous solution approaches.
However, the benefit of the proposed ILP-based approach can be seen in the required
computation time (cf. Table 1). The superior performance of the ILP model is further un-
derlined by the fact, that no batch-based decomposition is needed. Instead, only an order
decomposition is performed, so that a single subproblem can require scheduling a large
number of batches, which would render it intractable for the previous approaches. The
computation time is further enhanced by the lack of a two-step optimization approach,
due to the chosen objective function, which results in fewer idle times than a makespan
minimization. The superior performance can be attributed to the multiple active binary
variables for a given schedule. In the MILP-based approach of Yfantis et al. (2019) binary
variables only indicate the start of an operation, resulting in far less active binary variables.
The tightly constrained active binary variables of the ILP aid the search procedure of the
solver.

An Improved Optimization Model for Scheduling of an Industrial Formulation
Plant based on Integer Linear Programming
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Table 1: Comparison between different solution approaches for scheduling of the industrial
formulation plant.

Model MILP CP ILP
(Yfantis et al., 2019) (Klanke et al., 2021b)

Makespan 133 h 133 h 133 h
Computation Time 38 min 23 min 51 s

5. Conclusion and Outlook

This work presented a novel ILP-based formulation for the scheduling of an industrial
formulation plant. In contrast to previous approaches, the model only employs integer
variables, which greatly enhances its computational performance. Instead of minimizing
the makespan, an objective function that discourages idle times is formulated, eliminat-
ing the need for a two-step optimization approach. The structure of the model enables a
monolithic optimization without running into memory limitation issues. However, then
the solution times are prohibitive for a real application. Nevertheless, in future work a
monolithic optimization can be performed on specialized hardware to provide a reference
for the decomposition approaches and other solution methods.
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Abstract 

Carbon capture, utilization and storage (CCUS) is one of the most promising 
technologies for mitigating anthropogenic CO2 emissions. The deployment of CUUS 
typically requires heavy capital investments that need to be offset by the benefits of 
carbon utilization. Carbon dioxide enhanced oil recovery (EOR-CO2) consists on 
injecting large quantities of CO2 into mature oil reservoirs to boost hydrocarbon 
recovery. It is one of the most effective ways to bring economic viability to CCUS 
projects, also providing the means for the geological sequestration of CO2. The planning 
of CCUS coupled to EOR comprises interrelated decisions aiming to maximize oil 
production and CO2 sequestration. In this work, we propose a novel optimization 
approach to allocate CO2 from capture sources to oil fields according to their potential, 
and determine how these reservoirs should be developed over time. To this end, we seek 
for the optimal design of pipeline networks, as well as the injection plan in each 
reservoir according to the CO2 availability. The results show that the coordinated 
operation of EOR-CO2 in several oil reservoirs is crucial to the success of a CCUS 
project. An illustrative case study of 3 reservoirs and 2 sources (power plants) is 
presented. The production strategy yields up to 40% reduction in carbon emissions from 
the power plants and a positive net present value of 74 million USD in five years.  

Keywords: EOR, Supply Chain, Carbon Dioxide, Optimization, CCUS, MINLP 

1. Introduction 

Greenhouse gas emissions (GHG) are expected to have their second largest increase in 
history due to global economies recovering from the COVID pandemic (IEA, 2021). 
Reducing CO2 emissions is an indispensable requirement to achieve the goals of the 
Paris Agreement (2015), and carbon capture, utilization and storage (CCUS) systems 
are the most promising option to meet the targets. CCUS refers to the set of techniques 
to capture large amounts of CO2 emissions from flue gas of fossil power plants and 
industrial processes, to subsequently transport CO2 to utilization points, and finally 
guarantee its permanent sequestering. Although CCUS systems have been recognized 
for decades as one of the most promising technologies in the pursuit of net-zero 
emissions, progress has been relatively slow due to economic drawbacks (Nuñez and 
Moskal, 2019). Carbon dioxide enhanced oil recovery (EOR-CO2) is a production 
technique consisting on injecting large quantities of CO2 into mature oil reservoirs to 
extend their economic lifespan. CO2 facilitates the displacement of the residual oil that 
remains trapped after primary and secondary production by reducing interfacial and 
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surface tension, swelling oil, decreasing viscosity and improving mobility ratio (Lake, 
1989). Moreover, EOR-CO2 provides an efficient path for permanently sequestering 
massive amounts of GHG. Numerous studies conclude on the capability of EOR- CO2 
to achieve net zero (and even negative) emissions (Cuéllar and Azapagic, 2015). 
So far, EOR-CO2 has allowed large-scale, economic deployment of CCUS (Mavar et 
al., 2021). Nevertheless, proper planning of CCUS-EOR projects is required to address 
the allocation of CO2 over time, the design of CO2 pipeline networks, and the balance 
between maximizing oil recovery and GHG sequestration. Several contributions related 
to CCUS design and EOR planning have been published in recent years, although none 
of them tackle both problems in an integrated manner (Tapia, 2018). Turk et al. (1987) 
present one of the first formulations for the optimal allocation of CO2, assuming a fixed 
economic value for its use. Middleton and Bielicki (2009) propose a mixed integer 
linear model (MILP) for the design of CO2 capture and sequestration networks, setting a 
target value for the amount of CO2 to store. Tan et al. (2013) present a multiperiod 
MILP to find the best matches between sources and sinks, accounting for injection rates 
and time windows. Tapia et al. (2016) solve the optimal allocation of CO2 between a 
power plant and multiple reservoirs by means of a general scheduling framework. A 
fixed decreasing production yield is assumed, with no more details on the reservoir 
depletion behavior. On the other hand, forecasting production is a key feature for the 
development of optimization models. Capacitance Resistance Models (CRM) predict 
the fraction of the flow injected into a well that is conveyed to another well, from 
historical data (Yousef et al., 2005). Coupling CRM and fractional flow models allows 
high-level optimization of the reservoir development and preliminary assessment of the 
field production. Eshraghi et al. (2016) propose different heuristic approaches to 
establish the best injection strategy for a set of wells in a reservoir. Tao and Bryant 
(2015) take advantage of CRM to optimize CO2 sequestering in an aquifer accounting 
for different injection rates. In 2021, Presser et al. combine CRM and a fractional flow 
approach to optimize polymer flooding production strategies in mature oil fields.  
In this work, we propose the first mathematical programming approach to optimally 
plan the design and development of CCUS-EOR projects in an integrated fashion. 
Decisions addressed by the model include the allocation of CO2 from sources to EOR 
reservoirs, pipeline network design and oil field development strategies. An illustrative 
case study is presented to show the potential of the tool and draw conclusions. 

 

Figure 1 – (a) Layout and distances between sources S and reservoirs R. (b) Distances 
between nodes and intermediate points SP. (c) Best configuration found.  
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2. Problem Statement 

The problem addressed in this work can be stated as follows: Given n CO2 sources (e.g., 
power plants) venting flue gas at a certain rate, m depleted reservoirs to be developed 
through CO2-EOR, potential locations for CO2 pipelines (see Figure 1), reservoirs 
characterization in terms of selectable wells to be operated, forecasted decline curves 
and connectivities between the wells; we aim to optimally determine: (a) the allocation 
of CO2 flows between sources and reservoirs, (b) the pipeline network design, (c) the 
wells to be operated as injectors and producers in each field, (d) the timing for operating 
each of these wells, and (e) the CO2 injection rates in order to maximize the net present 
value of the CCUS-EOR project. The objective function accounts for the benefits from 
crude oil sales, as well as from CO2 sequestration.  

3. Mathematical Formulation 

The formulation integrates two well-known reservoir prediction models: CRM and 
Gentil fractional flow (GFF) (Gentil, 2005). CRM allows for the characterization of the 
reservoir by assigning connectivities and time constants to every pair of wells based on 
history matching, while GFF assesses the production decline for each producer with 
respect to the cumulative injection of CO2 reaching its drainage volume through a semi-
empirical power-law function. We assume that connectivities and time constants have 
been inferred from secondary production, and the decline curve for each producing well 
is also known. The mathematical formulation is based on the set t ∈ T representing time 
periods (typically semesters or years). Let s ∈ S stand for CO2 sources (e.g., power 
plants) with a known maximum supply rate co2rs,t (Mt/y), and r ∈ R be reservoirs for 
EOR-CO2 exploitation. Elements p ∈ P represent pipes of different diameters and flow 
capacities, and sp ∈ SP stand for intermediate points between s and r where pipelines 
can be joined or branched. Finally, sc ∈ SC account for production schemes, comprising 
subsets of active injection wells i and producers j in reservoir r.  
Eqs. (1) to (4) calculate the volume of CO2 received by well j from the injection in well 
i, according to the selected production scheme and connectivities. Parameter fsi,j,sc stands 
for the connectivity between i and j under production scheme sc. The 0-1 variable 
xscr,sc,t equals 1 if sc is the scheme selected for time t in reservoir r (0 otherwise).  

𝑄𝑅𝐸 ௜,௝,௧ = ∑ 𝑄𝐼𝑁𝐽′ ௜,௧,௦௖  𝑓𝑠௜,௝,௦௖௦௖∈ௌ஼೔,ೕ
   ∀𝑟, 𝑖 ∈ 𝐼௥ , 𝑗 ∈ 𝐽௥ , 𝑡        (1) 

𝑄𝐼𝑁𝐽′௜,௧,௦௖ ≤ ∑ 𝑐𝑜2𝑟௦,௧௦   𝑥𝑠𝑐 ௥,௦௖,௧           ∀𝑟, 𝑠𝑐, 𝑖 ∈ 𝐼௥ ∩ 𝐼௦௖, 𝑡  (2) 

∑ 𝑄𝐼𝑁𝐽′௜,௧,௦௖௦௖∈ௌ஼೔
= 𝑄𝐼𝑁𝐽௜,௧                    ∀𝑟, 𝑖 ∈ 𝐼௥ , 𝑡  (3) 

∑ 𝑥𝑠𝑐௥,௦௖,௧ ≤ 1௦௖∈ௌ஼                                     ∀𝑟, 𝑡   (4) 

For simplicity, if under the production scheme sc a producing well is inactive, flows are 
proportionally redistributed among the remaining wells, as in Eq. (5). Connectivity 
factors are defined in advance and can be adjusted following any other criterion.  

𝑓𝑠௜,௝,௦௖ = 𝑓௜,௝ ∑ 𝑓௜,௝௝∈௃ೞ೎
⁄                      ∀𝑟, 𝑖 ∈ 𝐼௥ , 𝑗 ∈ 𝐽௥  (5) 

According to DFF, the productivity of each producing well decreases as a function of 
the cumulative volume of CO2 received in its drainage volume, as modelled by Eqs. (6) 
and (7). CGIAi,t is a continuous variable accounting for the cumulative amount of CO2 

that has reached the drainage volume of j up to time t, 𝐹௝,௧
௢  stands for the fraction of oil 

in the production flow, and 𝑄 ௝,௧
௢  is the oil production rate from j during time step t.  
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𝑄𝑇𝑅௝,௧ = ∑ 𝑄𝑅𝐸௜,௝,௧௜∈ூೝ
  ;        𝐶𝐺𝐼𝐴௝,௧ ≥ 𝐶𝐺𝐼𝐴௝,௧ିଵ + 𝑄𝑇𝑅௝,௧           ∀𝑟, 𝑗 ∈ 𝐽௥ , 𝑡 (6) 

𝐹௝,௧
௢ ≤

ଵ

ଵାఈೕ  ஼ீூ஺ೕ,೟
ഁೕ

         ;        𝑄௝,௧
௢ ≤ 𝐹௝,௧

௢   𝑄𝑇𝑅௝,௧                                  ∀𝑟, 𝑗 ∈ 𝐽௥ , 𝑡 (7) 

Eq. (8) identifies the conversion of well i from production to injection mode at time t 
through the binary ycvi,t. Note that the values of xpri,t and xinji,t can be directly 
calculated from xscr,sc,t (the selected production scheme). 

𝑦𝑐𝑣௜,௧ ≥ 𝑥𝑖𝑛𝑗௜,௧ − 𝑥𝑝𝑟௜,௧ିଵ                  ∀𝑟, 𝑖 ∈ 𝐼௥ , 𝑡  (8) 

The supply of CO2 to active reservoirs depends on injection decisions. Eq. (9) shows 
how CO2 demand can be met from the selected sources (PCO2r,t) or from recycling 
(RCO2r,t), as in Eq. (10). In these volume balances, recr computes the proportion of the 
non-oil production stream that can be reconditioned and reinjected. 

∑ 𝑄𝐼𝑁𝐽௜,௧௜∈ூೝ
≤ 𝑃𝐶𝑂2௥,௧ + 𝑅𝐶𝑂2௥,௧            ∀𝑟, 𝑡     (9) 

𝑅𝐶𝑂2௥,௧ ≤ 𝑟𝑒𝑐௥൫∑ 𝑄𝑇𝑅௝,௧௝∈௃ೝ
− 𝑄௝,௧

௢ ൯            ∀𝑟, 𝑡      (10) 

Connecting sources with reservoirs through pipelines is a model decision, allowing for 
the allocation of CO2 flows. The reservoirs can be fed directly from the sources or 
through intermediate nodes, as in Eq. (11). Eqs. (12) to (14) stand for the selection of 
pipeline diameters/capacities (pslp) for the links s-r, sp-r and s-sp, respectively. Finally, 
Eq. (15) imposes the volume balance at the intermediate nodes. 

𝑃𝐶𝑂2𝑟,𝑡 = ∑ 𝐷𝐶𝑂2𝑠,𝑟,𝑡𝑠∈𝑆𝑟
+ ∑ 𝐼𝐶𝑂2𝑠𝑝,𝑟,𝑡𝑠𝑝∈𝑆𝑃𝑟

             ∀𝑟, 𝑡    (11) 

𝐷𝐶𝑂2௦,௥,௧ ≤ ∑ 𝑝𝑠𝑙௣௣∈௉ 𝑦𝑠𝑟௦,௥,௣                                            ∀𝑠, 𝑟, 𝑡 (12) 

𝐼𝐶𝑂2௦௣,௥,௧ ≤ ∑ 𝑝𝑠𝑙௣௣∈௉ 𝑦𝑠𝑝𝑟௦௣,௥,௣                                       ∀𝑠𝑝, 𝑟, 𝑡 (13) 

𝐹𝐶𝑂2௦,௦௣,௧ ≤ ∑ 𝑝𝑠𝑙௣௣∈௉ 𝑦𝑠𝑠𝑝௦,௦௣,௣                                      ∀𝑠, 𝑠𝑝, 𝑡 (14) 

∑ 𝐼𝐶𝑂2𝑠𝑝,𝑟,𝑡𝑟∈𝑅 = ∑ 𝐹𝐶𝑂2𝑠,𝑠𝑝,𝑡𝑠∈𝑆                                        ∀𝑠𝑝, 𝑡 (15) 

Where ysrs,r,p, ysprsp,r,p  and yssps,sp,p are 0-1 variables. On the other hand, Eq. (16) 
estimates the amount of CO2 produced in the sources that is not used for EOR, and 
therefore is economically penalized in the objective function.   

∑ 𝐷𝐶𝑂2௦,௥,௧௥ + ∑ 𝐹𝐶𝑂2௦,௦௣,௧௦௣ + 𝐶𝑂2𝑉௦,௧ = 𝑐𝑜2𝑟௦,௧         ∀𝑠, 𝑡     (16) 

The objective of this mixed integer nonlinear programming (MINLP) model seeks to 
maximize the net present value (Eq. 17), where r is the discount rate. Incomes (INCt) 
are determined by the oil prices times the predicted production over t, adding credits for 
CO2 sequestering. In turn, capital investments (CAPEXt) comprise drilling and 
completion costs for new wells, conversion and shut-in charges. We also include a fixed 
term (SCAPEX) for pipeline and EOR facilities construction at the initial time. 
Operating expenditures (OPEXt) involve injection and production costs for active wells, 
CO2 acquisition, pumping, conditioning and recycling, and produced flows carrying and 
processing charges. Finally, we add a penalty cost term for not using CO2 from sources 
(SPEXt). Note that by Eqs. (6) and (7), the MINLP yields a nonconvex relaxation. 

Max 𝑧 = ∑  (1 + 𝑟)௧ିଵ(𝐼𝑁𝐶௧ − 𝐶𝐴𝑃𝐸𝑋௧ − 𝑂𝑃𝐸𝑋௧ − 𝑆𝑃𝐸𝑋௧)௧ − 𝑆𝐶𝐴𝑃𝐸𝑋  (17) 
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4. Results 

An illustrative case study is proposed to show the capabilities of the model. Two 
sources, three reservoirs and four potential split points are addressed, as shown in 
Figure 1. For clarity, only some distances are presented although all other connections 
are also possible. The arrangement of wells in each reservoir and their connectivities are 
displayed in Figure 2. Each of the potential producing wells has a pair of parameters 𝛼௝  
and 𝛽௝ defining how fast oil productivity declines. Regarding CO2 sourcing and network 
design, three pipeline sections are assessed, with transportation capacities ranging from 
2 to 8 kt/day. The time horizon is discretized into 10 semesters. Oil price is assumed to 
increase over time and CO2 acquisition costs are expected to decrease due to scalability 
and expertise in the capture and conditioning process. CO2 recycling rates are set to 
50%, 60% and 45% for reservoir 1, 2 and 3, respectively.  

 
Figure 2 – Arrangement of wells in each reservoir and connectivity coefficients.  
 
The nonconvex MINLP model is implemented in GAMS and solved through DICOPT, 
using CONOPT4 and CPLEX for NLP and MIP subproblems respectively. The model 
comprises 4,561 eqs, 1,417 0-1 vars and 2,231 cont. vars. The algorithm reaches a 
solution amounting to 74 MMUSD as NPV in 25 minutes of CPU. Given that DICOPT 
does not guarantee the global optimality, a tailored MILP relaxation is proposed to 
estimate the optimality gap. This relaxation yields results 10% higher than the solution 
obtained with DICOPT. The results of the source allocation and supply chain design are 
shown at the right of Figure 1. The best-found configuration suggests that S1 must 
supply the three reservoirs simultaneously through the splitting point SP2, while S2 
should only feed R3 through a mainline of capacity pl3. Another mainline of capacity 
pl3 connects S1 with SP2, while two pipes pl1 connect SP2 with R1 and R2, and a pipe 
of capacity pl2 feeds R3. In addition, the development strategies for injectors and 
producers for each of the reservoirs are presented in Figure 3. This figure shows that the 
most promising production schemes are exploited earlier, requiring less CO2 for high 
production, while the wells with high potential but low initial connectivity (e.g., I3 in 
R2) are isolated to increase flow to them over the end of the horizon. Other schemes 
with good potential but higher CO2 requirements are also tapped in later periods. 

5. Conclusions 

A novel MINLP formulation has been developed for the integration of CO2 supply and 
EOR production planning decisions for the optimization of CCUS-EOR initiatives. 
Results suggest that the coordinated planning of several reservoirs is critical for the 
economic viability of these projects. The simultaneous optimization of production 
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strategies may allow exploiting the most promising regions of each reservoir with no 
need to delay the start of EOR projects by restricting themselves to the need for rigid 
supplies. The model also facilitates the evaluation of large-scale CCUS systems 
involving multiple sources and sinks in a generalized framework, providing further 
guidance on the environmental impacts of the initiatives. Results for an illustrative case 
show an economic benefit of 74 MMUSD, using and finally sequestering 40% of CO2 
emissions from the sources (43 Mt of CO2 over 5 years). Finally, accounting for the 
possibility of delaying investments in processing facilities in future works may bring 
further economic benefits to the strategies. In addition, addressing uncertainties of oil 
and CO2 prices and the productive behaviour of the wells is another possible extension.    

 
 Figure 3 – Injection rate strategy and expected production in the best solution found. 
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Abstract 

An expressive constraint programming (CP) formulation has been proposed to address 
the scheduling problem of a make-and-pack process. The resulting CP model is able to 
consider the typical processing stages of food industries in an integrated fashion, while 
capturing many features found in the industrial practice. The proposed CP formulation 
has been extensively tested and compared with other existing approaches. The results 
have shown that the model can efficiently solve medium and large-scale problem 
instances with multiple constraining features. The examples that have been solved show 
that the proposed formulation is computationally efficient  

Keywords: Production scheduling; Constraint programming; Multiproduct Multistage 
Semicontinuous Processes; Make-and-Pack; Food industry. 

1. Introduction 

The production scheduling of multiproduct multistage semicontinuous facilities is 
addressed in this contribution. Many food production processes have three main stages: 
(i) processing of raw materials into intermediate products, (ii) storage of these 
intermediate products, which may require an additional operation (e.g., fermentation, 
aging), and (iii) packing of the final products. In consequence, in such processing 
facilities, batch and continuous operations interplay in the manufacturing route, leading 
to a semicontinuous production mode. In particular, the short term scheduling problem 
of a real-world multistage food process previously studied by other authors (Kopanos et 
al., 2011; 2012)  is considered in this work. The process being tackled is derived from a 
real-world ice-cream production facility, which was originally introduced by Bongers 
and Bakker (2006). In many food processing plants, scheduling just focuses on the 
packing units for which an efficient schedule is sought. Once such agenda is obtained, it 
is propagated upstream to the other processing stages. However, such approach is only 
appropriate when there is a unique bottleneck in the process and it is associated to the 
packing stage units, independently of the product mix. Unfortunately, this assumption is 
not always valid. Therefore, it is necessary to address the scheduling problem of all the 
processing stages in an integrated fashion, leading to a defying problem, whose 
combinatorial complexity increases significantly with the number of products and their 
demands (higher number of batches), as well as the consideration of changeover times. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50083-X 
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2. Methodology 

Constraint Programming (CP) techniques have been successfully applied to scheduling 
problems by the Process Systems Engineering (PSE) community. Most approaches have 
been devoted to the scheduling of multiproduct multistage batch plants (Novara et al., 
2016), leaving aside semicontinuous processes. An expressive constraint programming 
formulation has been proposed to address the challenging problem described in the 
previous paragraphs. The resulting CP model is able to consider the typical processing 
stages of food industries in an integrated fashion, while capturing many features found 
in the industrial practice. The proposal is based on the ILOG-IBM OPL language and 
the CP Optimizer, which are embedded within the CPLEX Optimization Studio (IBM 
ILOG, 2013). 

3. CP model 

Sets/Indexes. B/b: batches to be produced. Bp/-: batches of products p. Cp/c: possible 
campaigns of product p. P/p: products to be manufactured. S/s: processing stages. Sa/-: 
subset of aging/storage stages. Sp/-: subset of production stages. U/u: equipment units. 
Us/us: set of units belonging to stage s, s = Card(S) 

Parameters. �ℎ�������	
���u,p,p’: changeover time between products p and p’ in 
unit u. maxAgingTp: maximum aging time for product p. cleaningTime: final cleaning 
time. ptp,u:  processing time required by a batch of product p in unit u. 

Variables. campaignp,us,c: interval variable that spans over all the processing tasks that 
belong to a campaign c of product p carried out in unit us that belongs to the packing 
stage. campaignSequs: sequence variable defined for each unit us belonging to packing 
stage. It represents an ordering of campaign interval variables associated with u. Each 
interval variable in this sequence is characterized by a type that is equal to the campaign 
product. stTaskb,s: interval variable that represents the processing of batch b at stage s. 
taskb,u: interval variable representing the execution of batch b in unit u. taskSequ: 
sequence variable capturing the ordering of the taskb,u activities that take place in unit u.  

Constraints. Constraint (1) prescribes that each batch must be assigned to just one 
processing unit at each stage; i.e. just one instance of taskb,u will be part of the schedule 
and its interval will be the same of stTaskb,s. Constraint (2) works in s similar way 
regarding the tasks of the last stage, which are executed under a campaign mode. 


���	���������
����,�, ����� ∈ ���	�����,��, ∀� ∈  , ∀� ∈ ! (1) 


���	���������
����,�, ����� ∈ ��, � ∈ "#�	�����,�,$�,
∀� ∈  , � = ��	&�!� (2) 

Constraints (3) and (4) establish appropriate timing relationships between the first two 
adjacent tasks associated with any batch b. They synchronize the start of the first 
manufacturing stage, which is a continuous one, with the beginning of the second stage, 
which is a batch aging and storage activity. 

���	�
�!��	�������,�, �����,�'�,
∀� ∈  , ∀� ∈ �(, ∀�) ∈ �(' , � ∈ !*, �) ∈ !�, �) = � + 1 (3) 
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Similarly, constraints (5) and (6) synchronize the finishing of the storage/aging activity 
and the packing one, prescribing that both must end at the same time, i.e. when the 
packaging task has already consumed all the material. 

��&
�-�&������,�, �����,�',$�, ∀� ∈  , ∀� ∈ �(, ∀�) ∈ �(' , ∀� ∈ !�,
	� ∈ "#, �) = ��	&�!� (5) 

e�&
�-�&���
����,�, ��
����,�'�, ∀� ∈  , ∀� ∈ !�, �) = ��	&�!� (6) 

Constraint (7) prescribes that the duration of each processing task depends on the unit 
assigned to it. 

��.��/������,�� = *�#,� ∙ *	�������/������,��,
∀* ∈ 1, ∀� ∈  2 , ∀� ∈ �(, ∀� ∈ !* (7) 

For storage/aging tasks, limits on their duration must be imposed. A batch should 
remain in aging vessels a minimum processing/aging time, captured by Expression (8), 
and no longer than its corresponding shelf-life, which is represented by constraint (9). 

��.��/������,�� ≥ *�#,� ∙ *	�������/������,��,
∀* ∈ 1, ∀� ∈  2 , ∀� ∈ �(, ∀� ∈ !� (8) 

��.��/������,�� ≤ ��5
����
# ∙ *	�������/������,��,
∀* ∈ 1, ∀� ∈  2 , ∀� ∈ �(, ∀� ∈ !� (9) 

Constraints (10) to (13) capture the campaign operation mode of the last stage, where 
any packing activity 	�����,��,$  must be part of a campaign. The variable 
���*����#,��,$ 	represents a campaign c associated with product p in unit us belonging 
to the packing stage. By resorting to the span CP construct, expression (10) ensures that 
each packing task associated with a campaign of a certain product p takes place within 
the spanning interval of such campaign. 

�*������*����#,��,$ , ����� ∈  2�	�����,��,$�,
∀* ∈ 1, ∀� ∈ "#, ∀�� ∈ �� , � = "�	&�!� (10) 

Expression (11) enforces all the campaign variables associated with a given unit not to 
overlap with each other. 

�6���	��*����*����!�7���, ∀�� ∈ ��, � = "�	&�!� (11) 

In addition, constraint (12) prescribes that if the interval variable �����,��,$	 
representing the packing task of batch b in unit us, associated with the campaign c, is 
included in the solution, the corresponding interval variable representing the packing 
campaign has to be included too. 

*	�������/������,��,$� ≥ *	�������/����*����#,��,$�,
∀* ∈ 1, ∀� ∈ "#, ∀� ∈  2 , ∀�� ∈ ��, �	 = "�	&�!� (12) 
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Constraint (13) avoids overlapping the execution of tasks in any unit u and 
simultaneously inserts the corresponding changeover time between consecutive tasks 
assigned to the unit. 

�6���	��*�����!�7� , �ℎ�������	
���#,#',��, ∀� ∈ �, ∀*, *′ ∈ 1 (13) 

Constraints (14) and (15) reduce the search space and improve the computational 
performance of the formulation by removing mathematical symmetries. For each unit u, 
if more than one batch that belongs to a given product p, is assigned to it, those batches 
must be processed following an increasing id number sequence. 

���	� �/6	�!��	�������,� , �����',��,
∀� ∈ �(, ∀� ∈ !�, ∀�, �) ∈  2 , �) = � + 1, � ≠ ��	&��� (14) 

���	� �/6	�!��	����
����,�, ��
����',��,
∀� ∈ !�, ∀�, �) ∈  2 , �) = � + 1, � ≠ ��	&��� (15) 

Expression (16) represents the objective function to be minimized, which is makespan. 
The expression adds a final cleaning time which must be performed in the packing lines. 

��5 :��&�/���
����,��; + ��������
���, ∀� ∈  , ∀� ∈ ! (16) 

4. Results 

The proposed model has been tested by means of the well-known case-study originally 
introduced by Bongers and Bakker (2006). In addition, a comparison with the results 
reported by Kopanos et al. (2012) has been made. 
The process corresponds to an ice-cream production facility, which manufactures eight 
different products, named A to H. The plant layout is depicted in Fig. 1. As seen, it has 
three stages: (i) processing of raw materials into intermediate products, (ii) storage and 
aging of these intermediate products, and (iii) packing of the final products. At the first 
stage only one manufacturing line is available. The second stage has six vessels and the 
last one has two packing lines. At stage 1 and 3 sequence dependent changeover 
activities must be considered. Changeovers at stage 2 are negligible; however, minimum 
and maximum aging times must be considered at this stage. Finally, to improve the 
efficiency of the last packing stage, a campaign operation mode must be enforced in it. 
In order to test the CP formulation 20 different problems instances (P.01 to P.20) of this 
case study have been solved, varying the number of batches needed to fulfil increasing 
product demands. In fact, from problems P.01 to P.20, the number of batches raises 
from 70 to 180. The examples were solved on a computer having 16 GB of RAM 
memory and AMD Ryzen 3 3200G processor. Optimal solutions were reached in 13 out 
the 20 instances with low computational effort (29 to 734 seconds of CPU time) and 
only 7 good quality suboptimal solutions were reached. A limit of 3600 s of CPU time 
was imposed.  
Table 1 presents the values of the objective function that were obtained by means of this 
proposal and the ones that were reported by Kopanos et al. (2012). It can be seen that in 
nine instances better values have been reached and in two cases the same values have 
been obtained. The worst quality solution that was reached has a makespan value that is 
only 0.23% greater that the corresponding optimal solution. 
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Fig. 1. Manufacturing process that corresponds to the case study under consideration. 

Table 1. Objective function values obtained by means of this proposal and the ones of Kopanos et 
al. (2012). 

 Solution Approach 
Instance Proposed CP Model MIP-R* MIP BasB* 
P.01 120.28 120.33 120.33 
P.02 119.48 118.17 118.17 
P.03 131.62 131.48 131.48 
P.04 142.07 142.10 142.10 
P.05 149.65 149.66 149.66 
P.06 152.88 152.34 152.34 
P.07 162.50 161.47 161.47 
P.08 171.35 171.37 171.37 
P.09 176.23 175.82 175.82 
P.10 187.75 187.75 187.75 
P.11 191.18 191.25 191.25 
P.12 206.42 206.42 206.42 
P.13 202.67 201.76 201.76 
P.14 223.55 223.56 223.56 
P.15 224.68 224.71 224.71 
P.16 222.58 222.06 222.06 
P.17 238.48 238.04 238.04 
P.18 251.98 251.49 251.49 
P.19 260.45 260.52 260.52 
P.20 291.72 291.75 291.75 
Bold numbers represent the best value of the objective function corresponding to each instance. 
 
Fig. 2 depicts the Gantt diagram corresponding to the largest problem instance, having 
180 batches. 
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Fig. 2. Gantt diagram corresponding to problem instance P.20. 

5. Conclusions and future work 

Until now, most constraint programming models addressing industrial scheduling 
problems have focused on batch plants. In this contribution, an efficient CP model was 
developed to address the scheduling problem of make-and-pack plants, in which batch 
groupings into campaigns are considered in the last packing stage. It was applied to 
twenty instances of a case study, corresponding to an ice cream producer company, 
ranging from 70 to 180 batches. Despite the significant increase in the number of 
batches (157%), the performance of the model did not degrade because the rise of the 
number of variables was limited (138%). A comparison with the results reported by 
Kopanos et al. (2012) has been made, which allows concluding that the model is 
competitive. Future work will include the extension of the proposal to consider more 
complex industrial processes. In addition, the stochastic nature of certain variables, such 
as the processing rates/times, will be taken into account. 
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Abstract 

A first contribution of this paper is an overview of the research efforts and contributions 

over several decades in the area of scheduling maintenance optimization for decaying 

performance dynamic processes. Following breakthrough ideas and implementation in 

the area of heat exchanger networks for optimal scheduling of cleaning actions subject to 

exchanger surface fouling, these concepts were transferred successfully to the area of 

scheduling catalyst replacement actions in catalytic reactor networks. This necessary 

overview leads to the main, second contribution aimed with this work: its application to 

restorative maintenance scheduling in the area of RON regeneration actions planning, as 

well as point to new areas where this approach can be fruitfully applied to and extended 

into in the near future – particularly enhancing model descriptions that include general 

types of planning uncertainty. The effectiveness and efficacy of the approach is 

demonstrated computationally in this work. 

Keywords: maintenance scheduling optimization, decaying performance processes, 

multistage optimal control, bang-bang optimal control, reverse osmosis networks. 

1. Introduction 

Modern engineering systems and manufacturing processes are nowadays very complex, 

with the demand for integration and multitasking processing being an ever-increasing 

trend so as to facilitate flexible manufacturing over multiple products, increase efficiency, 

reduce costs and environmental impact, as well as to secure safe operation. Production 

facilities thus involve numerous interactions and dependencies between components, and 

operate in highly dynamic environments. The operation of processes with decaying 

performance over time gives rise to challenging modelling and optimization problems. 

As the performance degrades over time, process shutdown for unit cleaning (reverse 

osmosis networks (Saif et al. 2019), heat exchanger networks (Al Ismaili et al. 2019)) or 

catalyst changeovers (catalytic processes) (Adloor & Vassiliadis, 2021) must be planned 

to restore it. 

In order to avoid this, parallel processing lines are used to manufacture the products. This 

set up can improve the flexibility of the production process by allowing the shut-down of 

one unit for cleaning purposes, while the remaining units continue to meet the products’ 

demand. While this maintenance action does improve the product yield, there are negative 

impacts associated with this operation, such as loss of production time, or energy and 

labour costs to restore the performance (Adloor & Vassiliadis, 2020). This leads to a 

trade-off to be addressed for each unit: while frequently cleaning results in high 
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production rates, large maintenance costs and loss in production occur. This trade-off can 

be optimally managed by developing maintenance schedules that specify the optimum 

units to be used and the optimal use time of each unit in the parallel set up, over a fixed 

time horizon. The schedule may also be required to fulfil a constraint that no two units 

undergo cleaning action at the same time due to production requirements or labour and 

equipment availability (Al Ismaili et al. 2018).  

Additionally, it is also necessary to identify the optimal operating conditions, as well as 

to ensure that the maintenance schedule and the process operation are tailored to produce 

an adequate inventory of product to effectively meet varying demand across the time 

horizon, while also avoiding excessively high storage costs. An integrated execution of 

all these decisions in an optimal manner can greatly minimise the negative effects of the 

performance decaying process, and thereby maximise the profit (Adloor & Vassiliadis, 

2020). 

The following sections present an overview of research efforts and contributions over 

several decades in the area of scheduling optimization for decaying performance dynamic 

processes, with particular focus on RON regeneration, as well as new areas of application 

and extension.  

2. Maintenance scheduling of decaying performance processes 

Two approaches are commonly employed in dealing with the maintenance scheduling 

(Santamaria & Macchietto, 2018): 

a) Optimal scheduling problem, with binary decision variables associated with the 

operating states of the units (cleaning/operating) and the timing and sequencing 

of the task. The problem is combinatorial in nature and it is typically addressed 

using (pseudo-)steady-state models. 

b) Dynamic optimal scheduling problem involving differential-algebraic equations 

(DAEs). In this case, the result is a (mixed-integer) nonlinear programming 

problem, but offers the flexibility of accommodating various types of models 

(Assis et al., 2015). 

Furthermore, the accuracy of the process models used is of paramount importance. 

Rigorous models, capturing the full representation of the physical phenomena can be 

computationally expensive for a large-scale scheduling problem. Yet, inadequately 

describing the physics of the process may affect the validity of the obtained maintenance 

schedules, and the result may end up being useless for practical application (Van 

Horenbeek et al. 2010).  

In the following, the underlying scheduling problem is reformulated as a dynamic 

multistage optimization (optimal control) model, and cast in a form that promotes bang-

bang type solutions for the control variables associated with restorative action periods. 

This bang-bang behaviour is entirely equivalent to having a Boolean variable (integer, 

binary) within an otherwise smoothly represented dynamic optimisation model. 

This approach has been successfully applied for solving maintenance scheduling 

problems for HENs (Al Ismaili et al., 2018) and catalytic reactor networks (Adloor & 

Vassiliadis, 2020). Furthermore, it has enabled reliable inclusion of process uncertainty 

to be included realistically in the resulting models (Al Ismaili et al., 2019; Adloor & 
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Vassiliadis, 2021). In the following, the application of the approach on the maintenance 

scheduling of a RON will be demonstrated as an original contribution of this work. 

3. Maintenance scheduling of reverse osmosis networks (RONs) 

Reverse osmosis (RO) is a well-established technology for water desalination. A 

commercial RO desalination system consists of seawater intake, seawater pre-treatment, 

main RO separation and post-treatment sections, which include several RO passes with 

auxiliary equipment, e.g., high-pressure pumps, energy recovery, etc. (Saif et al. 2019). 

 

Figure 1: Reverse osmosis network considered 

 

For the case study, a RON with 2 stages of 3 individual modules, with a total of 6 RO 

units, illustrated in Figure 2, is considered. Each RO unit has a membrane area, 𝐴 of 152 

m2 and a permeate recovery ratio of 0.65. The RON processes a total flowrate of 5,004 

m3/h of sea water, with a salt content of 34,800 ppm. Other parameters for the RON 

operation (e.g., membrane permeability decay constant – 𝛾, solute transport parameters, 

initial water permeability, etc.) are taken from See et al. 2004. 

3.1. Mathematical model 

The decay in the unit’s performance is defined as: 

−
𝑑𝐾𝑖

𝑑𝑡
= 𝑌𝑖 ∙

𝐾𝑖

𝛾
  𝑖 = 1, … , 6     (1) 

Where 𝐾 = the membrane permeability [kg m-2], 𝑌 = a binary variable, equal to 1 if the 

RO unit is in operation or 0 if the unit is in cleaning action, and 𝑖 = the RO module 

number. 

The flowrates of the RO module inlet streams, 𝐹 are determined from the total flowrate, 

𝐹𝑡𝑜𝑡𝑎𝑙, as follows: 

𝐹𝑖 =
1

3
∙ 𝑌𝑖 ∙ 𝐹𝑡𝑜𝑡𝑎𝑙  𝑖 = 1, … , 3     (2) 

𝐹𝑗 =
1

3
∙ 𝑌𝑗 ∙ 𝑅𝑘  𝑗 = 4, … , 6 𝑘 = 1, … , 3   (3) 

Where 𝑅 = reject flowrate [m3 day-1]. 

The permeate flowrate, 𝑃𝑖  is determined based on the permeate recovery ratio from: 
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𝑃𝑖 = 𝑌𝑖 ∙ 𝛼 ∙ 𝐹𝑖        (4) 

Where 𝛼 = the permeate recovery ratio. 

The concentration of the permeate, 𝐶𝑃,𝑖 is calculated based on the solute transport 

parameter, D, the pressure drop, ∆𝑃 and the osmotic pressure, ∆𝜋 as: 

𝐶𝑃,𝑖 =
𝐷∙𝐶𝐹,𝑖

𝛤∙𝐾𝑖∙(∆𝑃𝑖−∆𝜋𝑖)
       (5) 

Where 𝛤 = the membrane geometry correction factor, and 𝐶𝐹 = the concentration of the 

RO module inlet stream. 

The pressure drop over a RO module is determined as: 

∆𝑃𝑖 = 𝑌𝑖 ∙ (
𝑃𝑖

𝐴∙𝛤∙𝐾𝑖
+ ∆𝜋𝑖)   𝑖 = 1, … , 6   (6) 

The scheduling of the maintenance actions is defined as an optimisation problem having 

as decision variables the binary variables 𝑌𝑖. The objective function to be optimised is the 

total cost of operating the RON, calculated as: 

𝐽 = 𝐼𝑛𝑐𝑜𝑚𝑒𝑆𝑎𝑙𝑒 − 𝐶𝑜𝑠𝑡𝐶𝑙𝑒𝑎𝑛𝑖𝑛𝑔 − 𝐶𝑜𝑠𝑡𝐸𝑛𝑒𝑟𝑔𝑦    (7) 

With the income from permeate sales determined as: 

𝐼𝑛𝑐𝑜𝑚𝑒𝑆𝑎𝑙𝑒 = 𝑐𝑜𝑠𝑡𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒 ∙ ∑ 𝑃𝑖𝑖   𝑖 = 1, … , 6   (8) 

The cost of cleaning as: 

𝐶𝑜𝑠𝑡𝐶𝑙𝑒𝑎𝑛𝑖𝑛𝑔 =  𝑐𝑜𝑠𝑡𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 ∙ 𝑁𝐶𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑𝑠     (9) 

And the energy cost: 

𝐶𝑜𝑠𝑡𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑐𝑜𝑠𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 ∙
∑ 𝐹𝑖∙∆𝑃𝑖𝑖

𝜂𝑝𝑢𝑚𝑝
     (10) 

Where 𝜂𝑝𝑢𝑚𝑝 = pump energy efficiency. 

The cost of electricity is assumed equal to 0.30 € kWh-1, the cost of the cleaning action is 

100 € unit-1 cleaning action-1, while the permeate is sold at 0.48 € m-3. The dynamic model 

of the RON presented above is implemented as a multiperiod simulation model, with a 

planning horizon equal to 26 weeks. This long planning horizon has been selected to even 

out economic effects. The optimization is implemented using a heuristic penalty scheme, 

to enforce binary values or the controls. A multiple start policy with 50 cycles is 

considered in order to determine the spread of the local solutions. 

3.2. Results and discussion 

The optimisation problem is implemented in Python v3.8 and solved on an Intel Core i7-

8550U CPU @1.80GHz, 16.0 GB RAM. The minimize solver from scipy.optimize is used. 

Both linear and nonlinear constraints are implemented. The CPU time is 163.97 minutes. 

Out of the 50 multiple start cycles considered, 13 were successful (an optimal solution is 

found), with the value of the objective between €7.275 and €7.565 million. From the 

results in Figure 2 it can be observed that each of these solutions is being obtained more 
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than once, hence the advantage of using the multiple start policy in identifying a better 

solution. 

 

Figure 2: Local minima for the successful optimization cycles 

 

Figure 3: Cleaning schedule for the RON 

The best point, with a value of the objective function of €7.565 million. The resulting 

maintenance schedule is presented in Figure 3. For most of the heat exchangers, there is 

no cleaning action near the start and at the end of the operating horizon, a similar 

behaviour observed by Al Ismaili et al. (2018) for HENs. This is because there is very 

little incentive to increase the cleaning cost further. 

The number of cleaning actions varies between 7 (for RO module 3) and 9 (RO modules 

1,2, 4, and 5). This could indicate that these modules are more important in the network. 

4. Future directions for maintenance scheduling optimization 

The maintenance scheduling of RONs can be further investigated to account for 

uncertainty in the sensor data regarding equipment degradation. Furthermore, 

comparisons with similar studies using mixed-integer formulations should be considered. 

The optimal control approach for scheduling maintenance and production can be further 

applied to other similar processes with decaying performance, such as biopharmaceutical 

manufacturing under performance decay (Liu et al. 2014) or chromatography-based 

processes (Vieira et al. 2017). Parallel production lines able to process multiple feeds and 

Maintenance scheduling optimization for decaying performance nonlinear

  dynamic processes
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produce multiple products should be investigated as well, to overcome the combinatorial 

nature of the mixed-integer methodology (Adloor & Vassiliadis, 2020). 

5. Conclusions 

This work provides an overview of the optimal control approach for scheduling 

maintenance of decaying performance processes. An original case study of RONs is 

presented to illustrate the application of this procedure, based on the formulation of the 

scheduling task as a multistage mixed-integer optimal control problem, considering a 

dynamic model of the process. The requirement for an integer variable handling solution 

algorithm (e.g., Branch-and-Bound) is not needed, although it is not always possible to 

ensure the necessary condition that each resulting case will exhibit such bang-bang 

behaviour.  

Nonetheless, for significant portions of the observed solution profiles, over many 

applications over the course of years, it has been observed that mild penalization heuristic 

schemes work sufficiently well and very reliably over a multitude of published case study 

solutions.  
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Abstract 

Fouling degrades the overall efficiency of the heat exchanger networks (HENs), 

which results in a significant economic loss. The mitigation of fouling in an operational 

HEN is carried out by optimizing the cleaning schedules of the heat exchangers. Although 

such approach can save costs, it is subjected to the exact implementation of the optimal 

cleaning schedule. Usually, the small and medium-scale process industries face 

difficulties in implementing such solutions due to limited resources, which forces them 

to rely on suboptimal cleaning schedules, such as postponing or avoiding few cleaning 

tasks. This work addresses this gap by optimizing the cleaning schedule considering the 

maintenance resource limitation. Our approach considers a mixed-integer linear 

programming (MILP) based optimization considering groupings of heat exchangers 

based on their spatial locations for ease of maintenance The proposed formulation is 

applied on a HEN with linear and asymptotic fouling, with and without cleaning cost. The 

results show that the approach can prevent a considerable economic loss, which would 

incur due to suboptimal cleaning schedules due to resource limitations. 

Keywords: Heat exchanger network, fouling, cleaning schedule, MILP, maintenance 

constraints 

1. Introduction 

The HENs are present in almost all process industries, such as oil refineries, 

pulp, paper mills, sugar factories, etc. (Trafczynski et al., 2021). Such networks are 

mainly employed to recover the waste energy from hot process outlet streams to the cold 

process inlet streams in the process plant. As the operation progresses, the foulant in the 

streams starts depositing in the heat exchangers. The thermal conductivities of the foulant 

are usually lower than the material of construction of the heat exchangers; thus, their 

deposition results in reduced heat transfer rates. Moreover, the cross-sectional areas in 

the heat exchangers also reduce due to foulant deposition, increasing the pressure drops. 

Overall, the fouling affects thermal and hydraulic efficiencies of the HENs. Extra 

pumping power and utility consumption are required to compensate for this efficiency 

reduction, resulting in substantial economic loss. In 2015, the total cost of fouling in 
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preheat trains in US refineries was reported to be about $2.26 billion (Coletti et al., 2015). 

Thus, fouling mitigation is essential to prevent such huge economic losses. 

Generally, fouling in HENs is mitigated at two levels: (1) at the design or retrofit 

stage, where the heat exchanger geometries and HEN structures are optimized to 

minimize foulant deposition; (2) At the operational stage, where mass flowrates and heat 

exchanger cleaning schedules are optimized to reduce the additional utility and cleaning 

costs. The current work is focused on the existing networks; hence falls under the latter 

type. Several studies in this category formulate it as an optimization problem, considering 

the operating variables and cleaning activities as continuous and binary variables, 

respectively. The independent and simultaneous consideration of the variables in the 

optimization framework results in nonlinear programming (NLP) and mixed-integer 

nonlinear/linear programming problems(MINLP/MILP). Several authors have 

formulated the optimization of cleaning schedules as MINLP and MILP problems 

(Georgiadis et al., 2000, Smaili et al., 2002). Optimization based on simultaneous 

consideration of cleaning schedules and flow distribution has also been studied 

(Santamaria and Macchietto, 2020). Although these studies have shown the potential to 

save costs due to fouling, the saving is only possible with effective implementation of the 

obtained solutions. However, the small and medium-scale process industries usually face 

difficulties in implementing optimal solutions due to limited resources such as low 

maintenance budgets (Wang, 2016). Therefore, they tend to follow a suboptimal cleaning 

schedule by skipping or postponing the cleaning of heat exchangers, which results in 

higher utility consumption. Thus, obtaining the optimal cleaning schedules considering 

maintenance resource constraints is necessary. To our knowledge, no fouling mitigation 

studies have evaluated these limitations. 

This work addresses the described gap by modelling the cleaning schedule of 

HENs with maintenance resource limitations. The heat exchangers in HENs can be either 

grouped based on similarities of the type of cleaning required, such as mechanical and 

chemical methods, or based on their spatial locations for ease of maintenance. This work 

proposes an MILP formulation for cleaning of HENs considering heat exchanger groups. 

The grouping is modelled using linear constraints. Next, we describe the MILP 

formulation used.   

2. MILP problem formulation description 

The HEN is modelled by the digraph method, where the edges are streams (𝑠), and 

vertices are process equipment (𝐸). The set of streams(𝑠) is divided in the subset of cold 

streams (𝑐𝑠) and hot streams (ℎ𝑠) . The set of equipment is divided into subsets of supply 

units (𝑆𝑢𝐸), demand units (𝐷𝑢𝐸), heat exchangers (𝐻𝑥𝐸), mixers (𝑀𝑥𝐸), splitters (𝑆𝑝𝐸) 
and an additional heater (𝐻𝑒𝐸) . The overall operating time is discretized into sub-

periods, denoted by τ. Following is a brief discussion about the constraints and objective 

functions: 

a) Mass balance constraints: The mass flow rates in each stream (𝑚𝑠) are assumed to 

be constant during the operational. The mass balance in the network is simulated 

based on the Equations (18) to (23) from Assis et al. (2013). 

b) Energy balance constraints:  

o The energy balance across all the equipment is simulated as per Equations 

(26) to (31) from Assis et al. (2013).  

o The heat transfer across the heat exchangers are modelled by lumped-

parametric model of 𝑃 − 𝑁𝑇𝑈 method as follows: 
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𝑃ℎ𝑥,𝜏(1 − 𝑦ℎ𝑥,𝜏)𝑇ℎ𝑥,𝜏
𝑐,𝑖 + (1 − 𝑃ℎ𝑥,𝜏)(1 − 𝑦ℎ𝑥,𝜏)𝑇ℎ𝑥,𝜏

ℎ,𝑖 − 𝑇ℎ𝑥,𝜏
ℎ,𝑜 = 0 (1) 

𝑇ℎ𝑥,𝜏
𝑐,𝑖 − 𝑇ℎ𝑥,𝜏

𝑐,𝑜 − 𝐶𝑅ℎ𝑥,𝜏(𝑇ℎ𝑥,𝜏
ℎ,𝑖 − 𝑇ℎ𝑥,𝜏

ℎ,𝑜 ) = 0 (2) 

where, 𝑃ℎ𝑥,𝜏 is the heat exchanger effectiveness parameter in the interval (𝜏), based on 

the number of transfer units (𝑁𝑇𝑈ℎ𝑥𝑣,𝜏). 𝐶𝑅ℎ𝑥,𝜏 is ratio of heat capacity of the flowrates. 

𝑦ℎ𝑥,𝜏 is binary variable, representing state of the heat exchanger: 𝑦ℎ𝑥,𝜏=1denotes cleaning 

and 𝑦ℎ𝑥,𝜏=0 denotes under operation. 𝑇ℎ𝑥,𝜏
𝑐,𝑖

 , 𝑇ℎ𝑥,𝜏
𝑐,𝑜

 and 𝑇ℎ𝑥,𝜏
ℎ,𝑖

 , 𝑇ℎ𝑥,𝜏
ℎ,𝑜

 are inlet and outlet 

temperatures of cold and hot streams in the heat exchangers (ℎ𝑥) in 𝜏 interval, 

respectively. It can be observed that equation (1) contains the terms 𝑦ℎ𝑥,𝜏𝑇ℎ𝑥,𝜏
𝑐,𝑖

 and 

𝑦ℎ𝑥,𝜏𝑇ℎ𝑥,𝜏
ℎ,𝑖

, which are bilinear, which are linearized using a set of linear inequalities 

(Floudas, 1995). Also, 𝑃ℎ𝑥,𝜏 is a nonlinear function of thermal resistance due to fouling 

(𝑅𝑓ℎ𝑥,𝜏). Thus, 𝑃ℎ𝑥,𝜏 introduces fouling in the energy balance through Equation (1). It is 

to be noted that, both the cold and hot streams across the heat exchangers are bypassed 

during their cleaning.  

c) Incorporation of fouling: We consider linear and asymptotic nature of fouling based 

on the following respective equations: 

𝑅𝑓ℎ𝑥,𝜏 = 𝐾ℎ𝑥 ∗ 𝜏                          (3) 

𝑅𝑓ℎ𝑥,𝜏 = 𝑅𝑓ℎ𝑥
∞ (1 − exp−𝜏/Γ)                          (4) 

where, 𝐾ℎ𝑥, 𝑅𝑓ℎ𝑥
∞  and Γ are the fouling parameters with appropriate units.  

d) Objective function: It is sum of the additional utility cost and cleaning cost of each 

heat exchanger in network, as follows: 

 

𝑓𝑜𝑏𝑗 =∑
𝑚𝑠𝐶𝑝𝑠
𝜁

𝜏𝑓

𝜏=1

(𝑇𝑡𝑎𝑟𝑔 − 𝑇𝜏,𝑠′) + ∑ ∑𝐶ℎ𝑥𝑦ℎ𝑥,𝜏

𝜏𝑓

𝜏=1

𝑛

ℎ𝑥=1

                          (5) 

where 𝑇𝑡𝑎𝑟𝑔 is the target temperature, 𝑠′ is the target stream and 𝐶ℎ𝑥 is the cleaning cost 

of each heat exchanger. 𝜁 is the efficiency of the heater. 𝑓𝑜𝑏𝑗 is the overall cost, which 

has to be minimized by the optimization formulation by providing an optimal cleaning 

schedule using the proposed MILP formulation. Following section demonstrates a case 

study based on proposed MILP approach. 

3. Case study  

In this section, we apply MILP optimization formulation explained in section (2) 

on a HEN, shown in Fig.1 (Assis et al. 2013). It consists of four supply units, four demand 

units, six heat exchangers, four flow splitters, four mixers and a fired heater. All the heat 

exchangers have heat transfer area of 400 𝑚2 and the overall heat transfer coefficient of 

maintenance constraints
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253 𝑊/𝑚2 in the clean condition. The overall heat transfer rates in each heat exchangers 

is 4.44 𝑀𝑊. The cold and hot fluids are flowing through the tubes and shell sides, 

respectively. The split fractions in each of the splitter is 0.5. The nominal temperature of 

the stream entering fired heater is 97.06℃. Heater provides additional energy in case if 

this temperature falls below its nominal value due to fouling or if any heat exchanger is 

taken offline for cleaning. The cost of utility, supplied to the heater is assumed to be 

0.01 £/𝑘𝑊ℎ with 75% efficiency.  

Two cases of linear and asymptotic fouling depositions based on Equations (3) 

and (4) are considered here. Further, two scenarios in each of the fouling cases are 

considered. In one, the cleaning cost of the heat exchanger is neglected, while in another, 

it is considered £ 4,000 per cleaning. Thus, four scenarios are generated as follows: 

a) Scenario 1: Linear fouling with cleaning cost 

b) Scenario 2: Linear fouling without cleaning costs 

c) Scenario 3: Asymptotic fouling with cleaning cost 

d) Scenario 4: Asymptotic fouling without cleaning cost 

An operational period of 12 months is considered in each scenario. The 

optimization formulation described in the section (2) is applied in all the scenarios. The 

obtained schedules for three scenarios (except scenario 3) are shown in Fig.2. Scenario 3 

does not have the cleaning schedule for any heat exchanger. The overall costs incurred in 

each scenario are tabulated in Table 1. It can be observed that the number of cleanings in 

the scenarios considering cleaning costs is less than the scenarios without cleaning costs. 

Also, the costs in the scenarios with linear fouling are lower than those with asymptotic 

fouling. It is to be noted that, the optimization in scenario 3 denotes no cleaning of any 

heat exchanger. 

𝐻 1 𝐻  𝐻  

𝐻  𝐻 5 𝐻 6

𝑆𝑝1

𝑆𝑝 𝑆𝑝 𝑆𝑝 

𝑀𝑥 𝑀𝑥 𝑀𝑥 

𝑀𝑥1𝑆𝑢1

𝑆𝑢 𝑆𝑢 𝑆𝑢 

𝐷𝑒 𝐷𝑒 𝐷𝑒 

 00 𝑘 /𝑠
 0℃

 100  /𝑘 𝐾

50 𝑘 /𝑠
1 0℃

 500  /𝑘 𝐾

50 𝑘 /𝑠
151.1℃

 500  /𝑘 𝐾

50 𝑘 /𝑠
17 . ℃

 500  /𝑘 𝐾

𝐻𝑒1 𝐷𝑒1

Figure 1: Schematic of the HEN used in the case study (adopted from Assis et al., 2013) 
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Table 1: Costs in various scenarios in optimal and suboptimal conditions 

Scenarios 
Cost with optimal 

schedule without group (£) 

Cost with suboptimal 

schedule (£) 

Cost with optimal 

schedule with group (£) 
Saving, % 

1 90,643 91,110 90,716 84.4 

2 80,500 82,145 81,433 43.3 

3 1,49,560 1,49,560 1,49,560 - 

4 1,44,400 1,44,450 1,44,850 88.9 

As discussed in section (2), the maintenance teams in the process industries may 

not consistently implement the obtained optimal cleaning schedules due to resource 

limitations. They may end up skipping or postponing the cleaning of a few heat 

exchangers, resulting in suboptimal cleaning schedules resulting in higher costs. One of 

the approaches to tackle this problem is to group the heat exchangers based on the 

similarity of type of foulant being deposited in the heat exchangers or the locations of the 

heat exchangers. By grouping the heat exchangers, the maintenance team can easily 

perform the cleaning activities, following the optimal schedule obtained. For the 

considered network, we assume that the heat exchangers 𝐻 1 to 𝐻   and 𝐻   to 𝐻 6 

are spatially located near each other. Thus, two groups based on their locations are defined 

as follows: 

a) Group 1: 𝐻 1 − 𝐻   

b) Group 2: 𝐻  − 𝐻 6. 

The maintenance team can perform cleaning of multiple heat exchangers if they belong 

to a same group. Whereas, the cleaning activities would get postponed or skipped if the 

multiple heat exchangers from different groups are in the cleaning schedule. It can be 

seen from Fig. 2 that 𝐻 1 and 𝐻   have to be cleaned simultaneously in 7th month for 

scenario 1. However, they belong to different groups. If cleaning of these heat exchangers 

is postponed by a month, it may result in higher cost of £ 91,110 due to sub-optimality 

(The cost for optimal cleaning schedule is £ 90,6  ). Whereas, if optimization is carried 

out with defined groups, the obtained schedule allows the maintenance team to clean the 

heat exchangers based on their limitations. The cost in this case is £ 90,716, which 

reduces the economic loss by 8 .  %, comparing the suboptimal schedule. All the other 

scenarios show a similar observation.  

     𝐻 5 6 7 8

1

1

2

3

2

4

5

6

5 6 7 8 4 5 6 7 8 9 10

Scenario 1 Scenario 2 Scenario 4
Months Months Months

Optimal cleaning schedule

Grouped cleaning schedule

Sub optimal shifting of cleaning schedule

Figure 2: Cleaning schedule for scenarios 1, 2 and 4 without grouping, with grouping and 

with resource constraints. 

Cleaning schedule for heat exchanger networks subjected to
maintenance constraints
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4. Conclusion and future work 

Fouling in operational HENs is tackled by optimizing the mass flow distribution 

and cleaning schedule of the heat exchangers using MINLP or MILP frameworks. 

However, implementations of obtained optimal solutions is dependent on the limitations 

of the maintenance teams, particularly in the small and medium scale industries. This 

paper takes into account the maintenance resource limitations while considering the HEN 

cleaning optimization problem.  

We formulate the problem using the MILP approach. Further, we obtained the 

optimal cleaning schedule in a HEN with six heat exchangers under various scenarios of 

linear and asymptotic fouling, with and without cleaning costs. We assume additional 

constraints of grouping the heat exchangers as per their spatial locations. Our results 

reveal that the proposed approach can prevent a considerable economic loss due to 

possible sub-optimal cleaning schedule, which are commonly followed by the 

maintenance teams due to resource limitations. 

In future, we are planning to extend the proposed methodology to larger 

networks, where multiple grouping is possible. Apart from locations, the grouping will 

be also carried out based on fouling type, as different foulants require different cleaning 

methods.  
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Abstract 

The global climate crisis is expected to reshape the energy generation landscape in the 

coming decades. Increasing integration of non-dispatchable renewable energy resources 

into energy infrastructures and markets creates uncertainty as well as new opportunities 

for flexible energy systems. To conduct proper economic evaluation of flexible energy 

systems, such as integrated energy systems (IES), advancements in modelling of market 

interactions, such as bidding, is crucial. This work presents a shortcut algorithm which 

uses two mixed integer linear programs to compute dispatch schedules (e.g., hourly power 

production targets) that are constrained by the resource’s bid information and 

characteristics (e.g., minimum up and down times) based on historical locational marginal 

price (LMP) data. The proposed algorithm is approximately 100 times faster and uses 

orders of magnitude less data than a full production cost model (PCM). We find the 

shortcut simulator recapitulates generator dispatch signals for the Prescient PCM with 

approximately 4% error for the RTS-GMLC test system. 

Keywords: Electricity Generation, Energy Markets, Integrated Energy Systems, 

Multiscale Simulation 

1. Introduction 

Governments around the world have pledged to lower their carbon emissions in 

response to climate change. Incorporating more variable renewable energy (VRE) 

sources, such as wind and solar, into power systems is critical to meet these goals. While 

VRE resources have many benefits such as low to zero emissions and operating costs, 

their unpredictable nature is challenging for electric grid operations. They increase price 

variability (Seel et al. 2018) and create strong incentives for more flexible energy 

generation and consumption. Using historical market price data, Dowling et al. 2017a 

showed that energy systems can more than double their profits by participating in faster 

market timescales. Many new promising technologies, including integrated energy 

systems (IES) which exploit the synergy between multiple technologies (e.g., renewables, 

nuclear, fossil-based with CO2 capture, energy storage) by tightly coupling them into 

single systems (Arent et al. 2021) can provide flexibility to enhance grid reliability and 

resilience with high VRE utilization. But properly valuing the flexibility of these new 

technology concepts requires analysis that directly considers interactions between IESs 
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and energy markets. Traditional energy system value metrics, such as levelized cost of 

electricity (LCOE), do not capture the value created in the market (Dowling et al. 2017b). 

Wholesale energy markets coordinate the generation and consumption of 

electricity from an increasingly diverse set of technologies. The markets set energy prices 

in a two-settlement system: a day-ahead market (DAM) to meet forecasted demand and 

a balancing real-time market (RTM) for fast adjustments. Market participants, providing 

energy generation or ancillary services (various reserves or frequency regulation), can 

interact with the market via self-scheduling or bidding. A resource that self-schedules 

creates its own power generation schedule over its preferred planning horizon and is 

subject to the cleared market price. In contrast, bidding requires participants to submit a 

set of power-price pairs to the independent service operator (ISO). The power-price pairs 

reflect the resource’s marginal costs and generation flexibility to the ISO. With all the 

submitted bids, generation is scheduled by optimizing the bids and clearing the market in 

order of cost. Once enough generation has been scheduled to meet forecasted energy 

demand for the considered horizon (following day for DAM or following hours for RTM), 

the locational marginal price (LMP), or price per MWh produced, is set by the highest 

cost resource to clear the market. Ela et al. 2014 found self-scheduling, although popular 

for market-based technoeconomic analysis, results in lower profits than bidding. Despite 

this fact, much of the current technoeconomic analysis of novel, more flexible energy 

concepts are done via self-schedule and their value may not be fully estimated. 

Bids submitted by generators enable flexibility in the system’s power output and 

schedule, and with more flexibility, the market has more options to meet ever-increasing 

demand. Therefore, for the technoeconomic analysis of flexible energy system concepts, 

simulating their market performance while bidding is essential. But this evaluation 

requires models to predict energy dispatch calculated from resource bids. Unfortunately, 

Production Cost Models (PCMs), which mimic market clearing by ISOs, are ‘data-

hungry’; they require knowledge of all generation resources in the grid, network topology, 

demand, and renewables forecasts, etc. Much of this required data is private or protected, 

which makes PCMs challenging to use for economic evaluation. 

To address this challenge, we propose a shortcut algorithm to estimate dispatch 

schedules for individual market participants, requiring only generator characteristics, bid 

curves, and historical LMPs. Figure 1 shows the three-step process, which includes 

solving two mixed integer linear programs (MILP). To evaluate the proposed method, we 

simulate a single generator in the open-source RTS-GMLC data set (“GridMod/RTS-

GMLC") over a month-long horizon using a rolling-horizon algorithm. The resulting 

dispatch is then compared to results from conducting a full market clearing using the 

open-source Pyomo-based PCM Prescient (“Prescient”). 

Figure  SEQ Figure \* ARABIC 1: hortcut market simulator  Figure 1: Shortcut Market Simulator Process 
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2. Methods 

Figure 1 summarizes the proposed shortcut market simulator algorithm. The 

input data are: 𝜋ℎ
𝑟𝑒𝑎𝑙 , historical LMPs; piecewise “bid curve”, a set of power, 𝐵ℎ𝑙 , and 

price, 𝜋ℎ𝑙 , pairs that communicate the total operational costs for the generator; and, 

technical characteristics including minimum and maximum power output, uptime and 

downtime constraints, and ramping limits. The latter are used in the thermal generator 

MILP model adapted from Arroyo and Conejo (2000) and Carrión and Arroyo (2006). 

The MILP optimization problems shown in Figure 1 are described below. The full 

simulation can be conducted in one-shot or using a rolling horizon algorithm. The rolling 

horizon algorithm solved a 24-hour horizon subproblem (from hour 0 to hour 23), saving 

the results of the first timestep, fixing that timestep, and solving another 24-hour horizon 

beginning at the next hour (from hour 1 to hour 24 with hour 1 fixed). 

2.1. Sets and Variables 

All equations in the MILP models are indexed over 2 sets: set ℎ ∈ 𝐻 represents 

the timesteps in the horizon and set 𝑙 ∈ 𝐿 represents the points on the bid curve, or each 

individual power-price pair. The MILP models include five sets of decision variables. 

Variable 𝑝ℎ represents the power output of the generator and time h. Variable 𝐵ℎ 

represents the bid power (bound by the lookup dispatch algorithm) for the generator at 

time h. Both 𝑝ℎ, and 𝐵ℎ are continuous variables. The remaining three variables are 

discrete: 𝑦ℎ represents the on/off state of the generator at timestep h (0 is off, 1 is on), 

𝑦ℎ
𝑆𝑈 represents if the generator is starting up at timestep h, and 𝑦ℎ

𝑆𝐷 represents if the 

generator is shutting down at timestep h.  

2.2. Lookup Dispatch Algorithm 

The lookup dispatch algorithm compares the LMP, 𝜋ℎ
𝑟𝑒𝑎𝑙 , to the generator’s bid 

curve prices, 𝜋ℎ𝑙 , at each timestep of the horizon (the bid curves may be either static, i.e., 

time-invariant, or indexed by time). The algorithm sets upper and lower bounds, 𝐵ℎ and 

𝐵ℎ, on the bid power at that timestep, 𝐵ℎ, according to where on the bid curve the LMP 

falls. If the LMP is larger than the highest price on the bid curve, the generator has low 

marginal costs and has cleared the market for that timestep, therefore will be constrained 

to maximum power output,𝑃𝑚𝑎𝑥. If the LMP is lower than the lowest point on the bid 

curve, the generators marginal costs are higher than electricity price at that timestep, so 

the generator is constrained to either shutdown (zero power output) or operate at 

minimum power,𝑃𝑚𝑖𝑛. If the LMP falls between two points on the bid curve, the dispatch 

of that generator is expected to fall between the associated power values of those points 

(𝐵ℎ𝑙 ≤ 𝐵ℎ ≤ 𝐵ℎ(𝑙+1)).  

2.3. MILP Optimization Problem 

After the bid power bounds are set, a multiobjective optimization problem is 

solved for the final dispatch of each generator: 
 

min ∆ (1a)  

max 

∑𝜋ℎ
𝑟𝑒𝑎𝑙𝑝ℎ⏟    
𝐴

− (𝜋ℎ
0𝐵ℎ

0)𝑦ℎ⏟      
𝐵

−∑𝜋ℎ
𝑙 𝛿ℎ𝑙

𝑁

𝑙=1⏟      
𝐶

− 𝑐𝑆𝑈𝑦ℎ
𝑆𝑈

⏟    
𝐷ℎ∈𝐻

 (1b) 

 

s.t. 𝐵ℎ ≤ 𝐵ℎ ≤ 𝐵ℎ   ∀ℎ (1c)  

519



 N. Cortes et al. 

 

∆= ∑|𝑝ℎ − 𝐵ℎ|

ℎ∈𝐻

   (1d) 

 

 0 ≤ 𝛿ℎ𝑙 ≤ 𝐵ℎ𝑙 − 𝐵ℎ(𝑙−1)  ∀ℎ, 𝑙 (1e)  

 

𝑝ℎ = 𝑃
𝑚𝑖𝑛𝑦ℎ +∑𝛿ℎ𝑙    

𝑁

𝑙=1

∀ℎ (1f) 
 

 

∑|𝑝ℎ − 𝐵ℎ|

ℎ∈𝐻

≤ ∆∗ + 𝜀   (1g) 

 

 

The first objective function Eq.(1a) minimizes the sum of deviations for the generator, ∆. 

The second objective function Eq.(1b) maximizes the revenue of the generator over the 

entire horizon. Term A represents the profit from the final dispatch, term B represents the 

minimum operating costs which are represented by the first point on the bid curve, term 

C is a linear representation of the bid curve of the generator, and term D is the start-up 

cost (this term is zero if generator is not starting up at timestep h i.e. 𝑦ℎ
𝑆𝑈 = 0) It is 

constrained by Eq.(1c), bounds on the bid power for each timestep, and Eq.(1d), the 

definition of deviation between final dispatch, 𝑝ℎ, and bid power, 𝐵ℎ. The continuous 

auxiliary variable 𝛿𝑗ℎ𝑙 is a linear correction for the piecewise bid curve. Eq.(1e) and 

Eq.(1f) describe the variable’s behavior, which allows the selection of the proper segment 

of the piecewise bid curve when 𝜋ℎ𝑙  is increasing in l, i.e., the piecewise cost curve is 

convex. The thermal generator model also adds constraints to the problem and includes 

all the discrete decisions for the generator (whether it is on/off, starting up, or shutting 

down at each timestep). To solve the problem, objective functions are solved using 

lexicographic ordering, placing full priority on Eq.(1a) first, then optimizing with the 

second objective. To ensure the minimum deviation value is enforced in the second 

objective, constraint Eq.(1g) is added to constrain the deviation between the optimized 

first objective, ∆∗, and a small number 𝜀 (approximately 10-2). 

3. Results and Discussion 

To test the shortcut market simulator algorithm, we analyze a single node from 

the RTS-GMLC data set named “Adams”. One month of the node’s dispatch was 

simulated using a rolling horizon algorithm. The historical LMPs came from a full market 

clearing simulation in Prescient. The dispatch results from the shortcut simulation and 

Prescient were then compared. Problems M1 and M2 were formulated in Pyomo (Hart et  

al. 2017) and solved using Gurobi. The optimization problem contained 194 variables 

(122 continuous, 72 binary) for the 24-hour sub problem solved during the rolling 

horizon. The total 31-day shortcut market simulator algorithm took ~532 seconds. In 

small-scale tests, we found the shortcut market simulator algorithm was approximately 

100-times faster than conducting a full market clearing in Prescient.  

Comparing the results of Prescient with the shortcut simulation revealed the 

accuracy of our proposed approximation. Figure 2 (left) shows the generator dispatch 

schedules from the shortcut simulator (solid line) and Prescient (dotted line) for one 

quarter of the 31-day rolling horizon case study (hours 186-372). Only three time periods 

in this portion of the simulation, circled in red, show differences in the dispatch profiles. 

When analyzing the points where the shortcut simulator’s dispatch did not match 

Prescient’s dispatch, we observed two main trends. First, the shortcut simulator heavily 
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favors the upper bound on bid power, set in the lookup dispatch step. Second, because 

Prescient makes unit commitment decisions (start-up/shut-down) in the DAM, the 

shortcut simulator finds different unit commitment while considering RTM prices. Figure 

2 (right) shows a 3D parity plot, demonstrating the frequency of timesteps that match 

exactly. Approximately 67% of the dispatch points match within <1 MW. Overall, the 

shortcut simulator predictions had approximately 4% error in cumulative power output 

(summed over the entire horizon) as compared to Prescient. 

4. Conclusions and Future Work 

The case study provides initial validation of the proposed shortcut simulator to 

approach dispatch schedules using only historical LMPs, bid curves, and generator 

characteristics. Coupled with market participation optimization formulations (e.g., 

Dowling, 2017a), this can enable new approaches to estimate the economic performance 

of new technologies such as integrated energy systems when participating in markets. 

Ongoing work includes analysing all nodes of the RTS-GMLC dataset to further 

benchmark the accuracy of this proposed method including alternate MILP formulations. 

Moreover, the proposed shortcut simulator can be used to improve the realism of 

technoeconomic evaluations by considering bidding, the dominant mode to participating 

in markets, instead of the common self-schedule assumption.  
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Abstract 
A scheduling model is proposed to schedule order transactions and manufacturing 
operations in the order-to-cash process of a digital supply chain. The proposed model is 
compared to scheduling models that focus on either the order transactions or the 
manufacturing operations. The advantage of the integrated approach is found in the 
accuracy of the solutions attained, whereas the purely transactional model is found to be 
suboptimal, and the production scheduling model is found to be infeasible under certain 
circumstances. An illustrative example is presented where the integrated model is shown 
to increase both the system revenue (60% increase) and order-fulfilment (100% increase), 
compared to the transactional model. The production scheduling model is shown to be 
infeasible and overestimate the system revenue. 

Keywords: Scheduling, Business Processes, Supply Chain. 

1. Introduction 
With the advent and widespread drive towards digitalization in the fourth industrial 
revolution, a clear opportunity has emerged for a more holistic approach to supply chain 
management. This endeavour requires reimagining supply networks as systems that unite 
physical, information, and financial flows, with multiple interactions across the enterprise 
where material, data, humans, and intelligent agents interact in a coordinated fashion 
(Büyüközkan and Göçer, 2018). Within the PSE community, Laínez and Puigjaner (2012) 
have called for an integrated approach to Supply Chain Management (SCM), with a shift 
from operations-based decision support systems to decision frameworks that integrate 
operational, financial, and environmental models.  

In the last two decades, research has begun to respond to these trends and address this 
need for integration. One such study in this space is that of Guillen, et al. (2006), who 
present a planning/scheduling model for a chemical supply chain that integrates process 
operations and financial decisions. This work highlights the value obtained when 
financial and material flows are integrated in the scheduling decisions. However, their 
approach does not consider information flows in the supply chain, which is an area that 
has not received much attention. Information flows are captured in business processes, 
which model the transactions that occur on requests to the system involved. In supply 
chain, these requests can be external customer orders, such as in the order-to-cash process, 
or replenishment orders, such as in the procure-to-pay process. Scheduling events in 
business processes has been studied by the computer science and information systems 
communities (Xu, et al., 2010). The business process scheduling done in these works 
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targets purely transactional business processes, such as banking processes that are 
executed in the cloud (Hoenisch, et al., 2016). However, when physical goods are 
involved, such as in material procurement or physical goods sales, the associated business 
processes become tightly coupled with the material flows in the system. Although 
scheduling business processes in this context has not received much attention, their close 
integration with physical flows is critical in chemical supply chains, where business 
processes like the order-to-cash process depend on the availability of inventory and the 
manufacturing of goods. 

The scheduling of business process transactions in supply chain has been the focus of 
previous work by the authors. In their prior work, scheduling models have been applied 
to optimize the performance of the order-to-cash business process in a digital supply chain 
(Perez et al. 2020; 2021). However, the models have been applied primarily to the 
information flows in the supply chain and represent any physical processes as nodes in 
the transactional process network with a lumped processing time. The goal in this work 
is to extend what has been done previously by integrating a batch chemical manufacturing 
scheduling model with the order fulfilment supply chain model. The aim is to provide a 
more complete and accurate view of the supply chain by coupling material flows from 
chemical processing with the information flows from business processes. Thus, this work 
takes a step forward in the development of holistic decision support systems for digital 
supply chains.  

2. Problem Statement 
The order-to-cash business process manages the sequence of transactions that occur when 
a customer places an order. At each step, one or more agents is capable of performing 
certain transaction on an order. These agents can be human agents (e.g., planner, freight 
forwarder, customer service representative) or digital agents (for automated steps). 
Agents can be dedicated to a specific transaction, or they can be flexible such that they 
can perform transactions at different steps in the business process.  

 
Figure 1. Illustrative order fulfilment process in a chemical supply chain 

Consider the illustrative example in Figure 1, which shows a simplified customer order 
fulfilment process with five business transactions and one manufacturing step. The credit 
check step is a representation of many things that could hold or delay an order from being 
released to manufacturing. The invoice creation, shipment document creation, and 
manufacturing steps can be performed in parallel. Two agents are available to perform 
the five transactions on the orders as indicated in Figure 1. The manufacturing node can 

Agent 1
1 h

Agent 1
1 h

Agent 1
1 h

Start
Create Sales

Order
Run Credit

Check

Send Invoice

Finish

Manufacture

Create
Shipment

Documents

Agent 2
1 h

Plant

Issue Goods

Agent 2
1 h

524



Scheduling of Material and Information Flows in the Manufacturing of  

   
Chemicals for the Order-to-Cash Process of a Digital Supply Chain

represent a batch chemical plant as the one in Kondili, et al. (1993), shown in Figure 2. 
The plant flowsheet involves a heating step, three reaction pathways, and a purification 
step to produce products P1 and P2 from raw materials A, B, and C. The main equipment 
in the batch plant includes a heating vessel with 100 kg capacity, two reactors with 50 
and 80 kg capacities, and a distillation column (still) with 200 kg capacity. Intermediate 
storage tanks include a 100 kg tank for hot A, a 150 kg tank for BC, a 200 kg tank for 
AB, and a 100 kg tank for E. Raw material and final product storage are uncapacitated. 
Processing times are indicated next to each transaction in Figure 1 and each 
manufacturing step in Figure 2. 

 
Figure 2. Flowsheet for batch chemical plant 

 
Figure 3. State-Task Network representation for the integrated model 

3. Mathematical Model 
The process can be modelled as purely transactional, as shown in Figure 1, by viewing 
the manufacturing node as a transactional step with a fixed processing type for each 
product type (4 h for P1 and 6 h for P2). Alternatively, from a purely plant operations 
standpoint, the system can be modelled using the flowsheet in Figure 2, adding a 2 h delay 
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after an order enters the system and a 1 h delay after a batch of product is produced to 
account for the first two and last order transactions, respectively. A third option, the 
proposed approach, is to model the system holistically, accounting for the order 
transactions and the detailed chemical plant model as shown in Figure 3. In this approach, 
the stochiometric amount of each raw material for each order quantity is made available 
when the credit check step is completed. Producing one unit of P1, requires one unit of 
A, 0.75 units of B, and 0.75 units of C. Produce one unit of P2, requires 0.59 units of A, 
0.44 units of B, and 0.66 units of C. For each of the three modelling approaches, a State-
Task Network (STN) model (Shah, et al., 1993) is used to schedule the system events.  

The objective function of the optimization models is to maximize the revenue as indicated 
by the first term in Eq. (1). For the purely physical model (plant model) and the integrated 
model (transactions + plant model), a small 𝜖𝜖 penalty (10−4) is assigned to the binary task 
triggering variables for the plant tasks (heating, reactions, and separation) to force the 
optimizer to favour fewer large batches over many small batches. The margin (revenue) 
for each order is modelled as a monotonically decreasing piecewise linear function. Eq. 
(2) gives the upper bound on the order margin (𝑧𝑧𝑜𝑜), where 𝑇𝑇𝑜𝑜

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the time that order 𝑜𝑜 
is fulfilled, and 𝑚𝑚𝑖𝑖,𝑜𝑜 and 𝑏𝑏𝑖𝑖,𝑜𝑜 are the slope and intercept parameters for each linear 
function 𝑖𝑖. The discontinuity in the order margin function occurs at the order due date 
(𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑), where a penalty is assessed because of backordering (𝑚𝑚1,𝑜𝑜 ⋅ 𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑏𝑏1,𝑜𝑜 ≥ 𝑚𝑚2,𝑜𝑜 ⋅
𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑏𝑏2,𝑜𝑜). The fulfilment time, 𝑇𝑇𝑜𝑜

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, is constrained by Eq. 3, where 𝐷𝐷𝑜𝑜,𝑡𝑡 is a binary 
variable used to indicate that order 𝑜𝑜 was completed at time 𝑡𝑡 and leaves the State-Task 
Network (external consumption term in the state balance). Backordering is governed by 
the binary variable 𝐵𝐵𝑜𝑜 as shown in Eq. 4. Eq. 5 forces unfulfilled orders to have zero 
revenue. 𝐹𝐹𝑜𝑜 is a binary variable that indicates if an order was fulfilled within the 
scheduling horizon, as shown in Eq. 6. The disjunctions in Eq. (2) and Eq. (5) are 
reformulated using Big-M constraints.  

max�𝑧𝑧𝑜𝑜
𝑜𝑜

− � � �𝜖𝜖 ⋅𝑊𝑊𝑘𝑘,𝑟𝑟,𝑡𝑡
𝑡𝑡𝑟𝑟∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (1) 

�
¬𝐵𝐵𝑜𝑜

𝑧𝑧𝑜𝑜 ≤ 𝑚𝑚1,𝑜𝑜 ⋅ 𝑇𝑇𝑜𝑜
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑏𝑏1,𝑜𝑜

� ⋁ �
𝐵𝐵𝑜𝑜

𝑧𝑧𝑜𝑜 ≤ 𝑚𝑚2,𝑜𝑜 ⋅ 𝑇𝑇𝑜𝑜
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑏𝑏2,𝑜𝑜

�     ∀𝑜𝑜 (2) 

𝐷𝐷𝑜𝑜,𝑡𝑡 ⋅ 𝑡𝑡 ≤ 𝑇𝑇𝑜𝑜
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     ∀𝑜𝑜, 𝑡𝑡 (3) 

𝐵𝐵𝑜𝑜 = 1 − � 𝐷𝐷𝑜𝑜,𝑡𝑡
𝑡𝑡≤𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑
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𝐹𝐹𝑜𝑜 = �𝐷𝐷𝑜𝑜,𝑡𝑡
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4. Illustrative Example 
In the illustrative example depicted in Figure 1, five orders are generated with random 
due dates and order margin parameters. Orders 2, 3, and 4 are for material P1, and orders 
1 and 5 are for material P2. The demand of each material is also sampled randomly with 
a mean of 25 kg. A scheduling horizon of 15 h is used. The three modelling approaches 
(purely transactional with lumped plant processing times, purely physical plant model 
with upstream and downstream delays, and the integrated model) are implemented in 
JuMP 0.21 (Julia 1.6), using CPLEX 20.1 as the optimizer on a PC with an Intel i7, 1.9 
GHz processor with 24 GB of RAM. CPLEX is allowed to access all 8 threads. The 
problem is relatively small (approximately 1,400 binary variables, 290 continuous 
variables, and 4,200 constraints for the integrated model), and solves within 1 s or less.  

Figure 4 shows the results for each of the three scheduling approaches. The limitations of 
the purely transactional or purely physical models are seen in the results obtained. The 
purely transactional model ignores the integration of physical flows, making it 
suboptimal. Because intermediate AB, which is required to produce P2, is a by-product 
of P1 and P2, the time to produce P2 can be decreased when a batch of P1 has already 
been produced or is being processed alongside an order for P2. On the other hand, the 
purely physical model ignores the resource constraints on the transactional side, 
producing an infeasible schedule. The infeasibility arises from the fact that there are not 
enough agents to perform the first two steps on each order in the first 2 hours of the 
schedule. Thus, the production of intermediates for all orders cannot begin at t = 2 h. 
Furthermore, the model assumes that there are enough agents to issue goods once they 
are ready, which overestimates the system revenue as not all orders can be fulfilled 
immediately after the material is produced. In contrast, the integrated model finds the 
optimal schedule which fulfils 80% of the orders in the 15 h horizon, accounting for both 
agent availability and process integration at the plant.  

Task Key:
T01 = Create Order; T02 = Credit Check; T03 = Send Invoice; T04 = Shipment Docs
T05 = Manufacture; T06 = Goods Issue; T07 = Heating; T08 = Reaction 1
T09 = Reaction 2; T10 = Reaction 3; T11 = Separation

Transactional: Revenue = $1.63; On-time = 2/5; Fulfilled = 3/5; SUBOPTIMAL

Integrated: Revenue = $2.58; On-time = 4/5; Fulfilled = 4/5; OPTIMAL
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5. Conclusions 
An STN-based scheduling model is proposed to schedule orders in the order-to-cash 
process of a chemical supply chain. The information flows in the order-to-cash process 
are integrated with the physical flows of the manufacturing facility. An illustrative 
example is given, in which the model that integrates the transactional and the material 
flows is shown to attain a 60% improvement in terms of revenue over the model that 
lumps the material flows in a single manufacturing node. The integrated model also 
doubles the number of orders fulfilled in the scheduling horizon. The manufacturing-only 
model that lumps the initial order transactions and the goods issue step, is shown to yield 
infeasible schedules in a make-to-order system when the transactional steps are resource 
constrained. The infeasibility demonstrated in the illustrative example is indicative of 
actual circumstances encountered in industrial supply chains.  The lack of rigorous 
coordination between manufacturing scheduling and order processing often leads to 
telephone calls and email exchanges between the scheduler and customer service 
representative to ultimately resolve conflicts between their respective domains. The 
proposed modelling approach is a first attempt to integrate the different flows involved in 
a digital supply chain. Future work will include adding financial flows (accounting 
ledger), and extending the material flows to those in a multi-echelon supply network. 
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Abstract 

The polymerization section is an essential link in the production process of PVC, and the 

quality of its scheduling tasks directly affects the benefits of the enterprise. Given the 

scheduling optimization problems of unreasonable allocation of tasks and low efficiency, 

an improved estimation of distribution algorithm (IEDA) is proposed in this study to 

minimize the maximum completion time. The elitism strategy and the binary search 

strategy are employed to improve the global search ability and the solution speed of the 

estimation of distribution algorithm (EDA). Then the effectiveness of the proposed 

algorithm is verified in a case. The result of comparison demonstrates that compared 

with the EDA, the maximum completion time of the 3×5SP problem solved by the IEDA 

is reduced by 1.31% on average, and the speed of convergence is accelerated, which 

verified the accuracy and effectiveness of the IEDA in solving the scheduling problem 

of the PVC polymerization section. 

Keywords: Process systems; Estimation of distribution algorithm; Polymerization; PVC; 

Scheduling optimization 

1. Introduction 

Polyvinyl chloride (PVC) is made of vinyl chloride monomer polymerization. The 

polymerization section is an imperative link. It is essential to develop a scientific and 

reasonable scheduling scheme to make full use of existing resources, and improve the 

economic benefits of enterprises. 

PVC polymerization section is a batch production with large-scale and high complexity 

processes. How to optimize the solution of its model and improve the efficiency has 

attracted more attention. Wang et al. (2016) established the whole process model of PVC 

production, proposed an optimal decomposition algorithm based on hierarchical division, 

and decomposed the complex MINLP problems into MILP and NLP problems for solving. 
Gao et al. (2017) introduced a planning optimization model based on piecewise linear 

approximation to process the nonlinear characteristics in actual production, reducing the 

complexity of the model and improving the solving efficiency. However, it becomes 

difficult for the exact solution based on mathematical programming to adapt to the 

demand for the rapid solution with the increase of solution scale in the actual production 

environment. The EDA is a commonly used heuristic approach in project scheduling and 

related areas (Zhou et al., 2021). Research reveals that EDA breaks the pattern of 

traditional optimization algorithms, avoids premature convergence that frequently occurs 
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in overcoming complex optimization problems, and has strong chain learning ability and 

evolutionary orientation. Therefore, it is of practical significance to solve the problem of 

PVC scheduling using EDA. 

In this paper, the scheduling model of the PVC aggregation section is firstly described, 

and several strategies are proposed to improve EDA. Then, the IEDA is applied to the 
scheduling optimization problem to minimize the maximum completion time. Finally, a 

case is provided for analysis. 

2. Scheduling model of PVC polymerization section 

2.1. Modeling hypotheses  

1) The number of polymerization reactors, PVC grades, and orders are known, 

each polymerization reactor can process any grade of PVC. 

2) Each polymerization reactor can only produce PVC of the same grade in the 

same batch. 
3) The same polymerization reactor can produce different grades of PVC within a 

scheduling period, the kettle and other operations should be cleaned when 

switching between different grades of PVC, resulting in waiting time. 

4) The polymerization reaction time depends on the factors such as PVC grade and 

catalyst, temperature and pressure in the polymerization reactor. 

2.2. Mathematical model 

(1) Optimization objective 

Assuming that the completion time on the j-th polymerization reactor is 𝑇𝐸𝑗 , the 

mathematical description of the optimization objective to minimize the maximum 

completion time T is: 

𝑇 = 𝑚𝑖𝑛( 𝑚𝑎𝑥( 𝑇𝐸𝑗))                                                  (1) 

(2) Constraints 

𝑇𝐸𝑗 = ∑ 𝑇𝐻𝑗,𝑖1,𝑖2
+ ∑ 𝑇𝑃𝑗,𝑖 , 𝑖 ∈ 𝑀𝑃                                        (2) 

𝑇𝑃𝑗,𝑖 = 𝑁𝑗,𝑖 × 𝑇𝑗,𝑖                                                          (3) 

∑ 𝑁𝑗,𝑖
𝑛
𝑗=1 = 𝑐𝑒𝑖𝑙 (

𝐷𝑖

𝐹𝑆×𝛼𝑖
)                                                (4) 

𝑇𝑆𝑗,𝑖 = 𝑇𝐻𝑗,𝑖1,𝑖2
+ 𝑇𝐶𝑗,𝑖1

                                                 (5) 

𝑇𝐶𝑗,𝑖 = 𝑇𝑆𝑗,𝑖 + 𝑇𝑃𝑗,𝑖                                                      (6) 

𝑁𝑗,𝑖 ≥ 0, 𝐷𝑖 ≥ 0, 𝑇𝑆𝑗,𝑖 ≥ 𝑇𝐶𝑗,𝑖1
, 𝑇𝐶𝑗,𝑖 > 0, 𝑖 ∈ 𝑀𝑃                             (7) 

Eq.(1) presents the minimum completion time; Eq.(2) expresses the completion time 

constraint; Eq.(3) presents the polymerization time; Eq.(4) indicates the feed times 

constraint; Eq.(5) describes the constraints on the start time and end time of 

polymerization of the same grade in one polymerization reactor; Eq.(6) indicates the 

polymerization completion time; Eq.(7) describes the constraints on the number of 

feeding times, the total quantity of PVC of each grade in the order, and the start and end 

time of polymerization reactor processing. 
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3. Improved estimation of distribution algorithm 

3.1. Improvement strategy 

3.1.1. The elitism strategy  

In the EDA, the proportion of selected dominant groups is fixed, which easily leads to 

local optimality. The number of dominant groups is adjusted based on the elitism strategy 
to more accurately express the information of solution space. Specifically, the individuals 

are sorted according to the fitness value; then the minimum value 𝑟𝑚𝑖𝑛  and maximum 

value 𝑟𝑚𝑎𝑥 of the ratio of the number of dominant population 𝑁 to the total number of 

individuals in the population are set. Besides, 𝑀 denotes the population size, 𝐼 refers to 

the current iteration number, and 𝐾 is the total iteration number. 𝑁 is updated as: 

𝑁 = 𝑀 × (𝑟𝑚𝑖𝑛 + (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛) × 𝐼/𝐾)                                      (8) 

3.1.2. Constructing probability model  

The probability model was constructed in the following way to better describe the 
distribution of PVC production of different grades on the polymerization reactor. Suppose 

there are M individuals in the population, and N dominant individuals are selected to 

construct the probability model matrix P according to the fitness value function. Then, 

the feeding times of each grade of PVC in each polymerization reactor in dominant 

individuals are counted. The probability model matrix P is expressed as: 

           (9) 

Where, 1 ≤ 𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛 , 1 ≤ 𝑘 ≤ 𝑁 ; 𝑏𝑖,𝑗,𝑘  represents the polymerization 

matrix code of the 𝑘-th individual in the dominant population, the feeding times of grade 

i PVC on the j-th polymerization reactor. The updating mode of P is shown in Eq.(10). 

, , ,
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1
( 1) (1 ) ( )

N
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i j i j i j
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p g p g C
N

 
=

+ = − +                                     (10) 

Where, 𝑝𝑖,𝑗(g) represents the probability matrix of the g-th generation, binary variable 

𝐶𝑖,𝑗
𝑘  takes the value one when grade i PVC in the k-th individual is produced on the j-th 

polymerization kettle. β represents the learning rate of P, and the value is adaptive, as 

shown in Eq.(11), in which 𝑎1 and 𝑎2 are set to 0.7 and 0.4, respectively. 

1 2 max( )a a g g = −                                                   (11) 

3.1.3. Binary search strategy 

The binary search strategy is adopted to update individuals, so as to improve the breadth 

of algorithm search and the speed of convergence. The specific process is detailed as 

follows. 
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Firstly, the probability model matrix P and individual coding matrix B are constructed 

according to Eq.(12). 

               (12) 

Where, 𝑝𝑖,𝑗  represents the probability of polymerization production of grade 𝑖 PVC in 

the 𝑗-th polymerization reactor. The higher the probability value is, the more likely it is 

to choose this polymerization reactor for production, and the more the polymerization 

quantity is. And 𝑏𝑖,𝑗  indicates the number of feeding times of grade 𝑖 PVC in the 𝑗-th 

polymerization reactor. 

Secondly, the maximum and minimum values corresponding to the 𝑖-th column of matrix 

B and matrix P and polymerization kettle number are determined. Finally, individual 

updates according to whether the PVC quantity corresponding to the individual and the 

distribution mode of the polymerization kettle comply with the combination mode 

described by the probability model. 

3.2. IEDA 

The steps for solving the PVC production scheduling problem are described as follows. 

1) The initial population was randomly initialized using a coding method based on 

the sequence of aggregation and feed times. 
2) The fitness value of each individual in the population was calculated according 

to the PVC production scheduling mathematical model. 

3) The individuals with higher fitness values were selected to form the dominant 

group following the elitism strategy. 

4) The probability matrix of different grades of PVC produced in different 

polymerization reactors was constructed depending on the dominant group 

obtained in step 3. 

5) The coding mode of individuals in the population was transformed into 

aggregation matrix coding, and the binary search strategy was adopted to 

perform individual updating. 

6) If the set number of iterations is reached, end the iteration, output the optimal 

individual and decode; otherwise, turn to step 2. 

4. Case analysis 

An actual industrial case study was conducted using MATLAB R2017b programming 

with the PVC polymerization section process as the research object to further verify the 

performance of IEDA. Experimental environment: Intel(R) Core(TM) i5-8400 CPU, 

2.80GHz processor, 8.00GB memory, operating system Win10. 

4.1. Case parameters 

Two examples are selected: one is scheduling optimization problem of 3 polymerization 

reactors with 5 grades of PVC (3×5PS), the order is {700, 950, 1500, 1100, 500}; the 
other is scheduling optimization problem of 4 polymerization reactors with 3 grades of 

PVC (4×3PS), the order is {700, 1100, 680}. 
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4.2. Analysis of simulation results 

Simulation experiments were conducted to verify the effectiveness of IEDA in solving the 

PVC scheduling problem. Genetic algorithm (GA), particle swarm optimization (PSO) 

and estimation of distribution algorithm (EDA) were used for simulation comparison 

experiments. Their parameters are set as follows: the maximum number of iterations of 

the algorithms is 1000, the population size is 300, the mutation probability of GA is 0.09, 

and the crossover probability is 0.7. The two learning factors of PSO are 1.62, and the 

inertial weights are 0.5 and 0.8, respectively. 

Table 1 presents the maximum (𝑇𝑚𝑎𝑥) , minimum (𝑇𝑚𝑖𝑛) , average (𝑇𝑎𝑣𝑔)  completion 

time, relative value (R) of IEDA to EDA and standard deviation (𝛿) of completion time 

(T) obtained through 20 experiments conducted by the algorithms under two examples. 

Table 1  Optimization results of the algorithms 

cases algorithms T𝑚𝑎𝑥 T𝑚𝑖𝑛 T𝑎𝑣𝑔 R δ 

4×3PS 

GA 192.3 187.5 189.61 -- 1.268 

PSO 190.6 187.1 188.17 -- 1.026 

EDA 185.3 180.4 183.76 -- 1.137 

IEDA 183.6 179.3 181.45 1.25%↓ 1.015 

3×5PS 

GA 401.4 399.1 399.35 -- 0.494 

PSO 402.1 400.7 401.28 -- 0.473 

EDA 398.5 397.0 397.88 -- 0.445 

IEDA 393.3 391.7 392.66 1.31%↓ 0.389 

As revealed in Tables 1, the completion time obtained by IEDA are shorter than those 

obtained by other algorithms in the comparative experiments, besides, as another 

important evaluation index of algorithm performance, the standard deviation of IEDA is 

lower than others, which demonstrates that IEDA has better convergence ability and 

solution stability. 

With the purpose of directly reflecting the superiority of IEDA in optimal solution and 

convergence speed, the average convergence curves of GA, PSO, EDA and IEDA for 

solving 3×5PS scheduling optimization problems 20 times were drawn, as illustrated in 

Figure 1. 

 

Fig.1 Optimization curves of the algorithms when solving 3×5PS problem 

Optimization of Maximum Completion Time of Polymerization Section Based on 
 Improved Estimation of Distribution Algorithm
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The convergence curves of the algorithms in Figure 1 suggest that after several iterations, 

the optimal solution solved by IEDA is superior to other algorithms, and the convergence 

speed and accuracy of IEDA are superior to EDA.  

The Gantt chart corresponding to the optimal solution obtained by IEDA in 20 

experiments is exhibited in Figure 2. Regarding the convenience of representation, a slash 
'/' and two groups of numbers before and after are used in the Gantt chart to indicate the 

PVC grade to be polymerized on each polymerization reactor and the feeding times. 

 

Fig.2 Optimal scheduling result of 3×5PS solved by IEDA algorithm 

The analysis of completion time, evolution curve, and Gantt chart demonstrates that IEDA 

is superior to GA, PSO and EDA in terms of stability, convergence speed and accuracy, 

optimization performance, and comprehensive performance in solving PVC production 

scheduling problems. This verifies the effectiveness of IEDA in optimizing PVC 

production scheduling problems. 

5. Conclusions 

In this paper, a mathematical model of scheduling optimization problem of the PVC 
polymerization section is established, and IEDA is proposed to minimize the maximum 

completion time of polymerization. The results of the comparison of algorithms reflect 

that IEDA has higher convergence speed and optimization ability. Furthermore, as a 

general strategy, IEDA is applicable for the solution of PVC whole process production 

model and other similar process industries scheduling problems. 
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Abstract 
In this work, a simulation-optimization strategy is applied to a benchmark scheduling 
problem from the pharmaceutical industry, as published by Kopanos, et al. (2010). The 
optimization is performed by a meta-heuristic using a commercial Discrete Event 
Simulation software as the schedule builder (simulation-optimization approach). Our 
work is motivated by commonly encountered real world scenarios where detailed 
simulation models of the production processes are available and can be used to validate 
and evaluate the schedules in the presence of many, often non-standard constraints. 
Moreover, the effort for re-modelling and for the maintenance is reduced by using the 
available simulator. The meta-heuristic applied here is an Evolutionary Algorithm and we 
discuss different variants of the encoding of the problem. It is demonstrated that for 
regular objectives the performance is similar to the tailored MILP-based solution strategy 
of Kopanos et al. (2010) where a two-stage decomposition strategy is employed.  
 
Keywords: Batch Production Scheduling, Pharmaceutical Industry, Simulation-
Optimization, Meta-heuristics, Evolutionary Algorithm, Discrete Event Simulation. 

1. Introduction 
Simulation-optimization (SO) is a versatile tool for the solution of planning and 
scheduling problems. In industrial practice, often simulation models of different degrees 
of accuracy are available from the plant design stage and/or used as a tool in operations 
for example to validate delivery promises and to determine bottlenecks. Some tools can 
represent complex constraints of the execution of the orders, include maintenance, the 
availability of personnel, feedstock and packing materials and the like. Also stochastic 
effects as e.g. disturbances or varying processing times can often be included. Usually 
such tools are implemented as Discrete Event Simulators (DES) where rules for the 
execution of the production can be implemented flexibly. Such simulators enable the end-
user to model the production processes in detail and therefore to validate production 
schedules with respect to constraints which are difficult to formulate otherwise. The 
models that are built for commercial DES software are typically maintained by the 
industrial end users, which provides flexibility with respect to changing rules, constraints, 
recipes or even the set-up of the plant in an intuitive manner. If such a simulation is 
available for a given plant or process, it is often desired by the user to use it also for 
planning and scheduling purposes beyond manual generation of plans or schedules and 
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testing them in simulations. As the models do not conform to a specific mathematical 
formalism, combining simulation by the DES for the execution and performance 
evaluation of the schedules with meta-heuristics for schedule generation is an obvious 
approach. Clearly, this does not provide provably optimal or near-optimal solutions.  
In contrast, mathematical programming (MP) provides exact solutions with performance 
guarantees. It can be applied even to large-scale problems (Harjunkoski, et al., 2014) but 
often the problem size and complexity leads to unacceptably long computation times or 
large optimality gaps.  This issue is usually dealt with in a semi-heuristic manner, i.e. by 
employing decomposition approaches that exploit the problem structure in a tailored 
manner, generating sub-problems with reduced numbers of degrees of freedom. These 
sub-problems can be solved faster and their solutions are then combined to yield the 
solution of the full problem (Klanke, et al., 2021, Georgiadis, et al., 2019). MP yields 
solutions with a measure of optimality and the problems can be solved deterministically 
to proven optimality. However, as soon as decomposition approaches are used, a measure 
of optimality usually also is not provided, as only the optimality gaps of the sub-problems 
are known, but not the optimality gap of the final solution. In addition, the quality of the 
solutions depends on the heuristics that are employed to perform the decomposition, e.g., 
the assignments of orders to sub-problems in case of order-based decomposition. A major 
disadvantage of MP solutions is the need for expert knowledge to formulate the problem 
at hand and to maintain the models which is far less intuitive than parameterizing a DES. 
In related work, a SO approach based on the same commercial simulator 
(Klanke, et al., 2021) was applied to a complex industrial make-and-pack scheduling 
problem for which no solutions from exact optimization approaches were available. In 
this work, we address the well-studied problem from Kopanos, et al., (2010), a large-scale 
benchmark batch scheduling problem from the pharmaceutical industry, to investigate the 
quality of the solutions obtained with the SO approach in comparison to those obtained 
from  the tailored MP formulation in Kopanos, et al., (2010). There a two-step MILP 
decomposition strategy was proposed and the authors stated that “[…] a comparison of 
the solution method with elaborated metaheuristics would be of great interest.” The 
remainder of this contribution is structured as follows: We start by giving a short 
overview of the case study and its key features in Section 2. Then, in Section 3, we 
introduce our methodology, including the representation of solutions and the genetic 
operators. In Section 4, we present the results of our approach for regular objectives and 
compare them with those obtained by Kopanos, et al. (2010). Additionally, we present 
and discuss results with our proposed approach for the non-regular Weighted Lateness 
objective where timing decisions had to be added to our approach. In the last Section we 
conclude our findings and present an outlook. 

2. Case Study 
The case study addressed in this work is taken from Kopanos, et al., (2010). It is a 
multiproduct batch plant with 17 units (machines) that are organized in 6 stages. The 
problem, which is a variant of a hybrid flow shop problem, comprises 12 instances that 
vary in the number of orders, the objectives, and in the storage policy. The features of the 
problem include limited product-unit flexibility, machine-dependent processing times, 
sequence-dependent changeover times, and product-specific recipes, meaning that certain 
jobs are not processed on some of the available stages.  
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This paper considers three problem instances with 30 orders, unlimited intermediate 
storage (UIS), and the objectives Makespan (Cmax), Overall & Changeover Cost 
(O.&C.C.) and Weighted Lateness (W.L.), which are minimized. The objectives are 
defined as 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max�𝐶𝐶1, . . ,𝐶𝐶|𝐼𝐼|� [ℎ] (1) 

𝑂𝑂. &𝐶𝐶.𝐶𝐶 = 𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 + Σ𝑖𝑖∈𝐼𝐼 𝑐𝑐𝑐𝑐𝑖𝑖  [ℎ], with  𝜔𝜔 = 0.9 ⋅ 103   (2) 

𝑊𝑊. 𝐿𝐿. = 𝛴𝛴𝑖𝑖∈𝐼𝐼 𝛼𝛼𝐸𝐸𝑖𝑖 + 𝛽𝛽𝑇𝑇𝑖𝑖  [ℎ], with 𝛼𝛼 = 0.9 and 𝛽𝛽  4.5   (3) 

𝐶𝐶𝑖𝑖  denotes the completion time of job 𝑖𝑖, 𝑐𝑐𝑐𝑐𝑖𝑖  denotes the sum of all changeover times 
multiplied with a sequence dependent impact factor associated with job 𝑖𝑖, and 𝐸𝐸𝑖𝑖 and 𝑇𝑇𝑖𝑖  
denote the earliness and the tardiness of job 𝑖𝑖.  

3. Methodology 
In this section, a generic solution approach that works without decomposition of the 
problem is presented. We first focus on the regular objectives Cmax and O.&C.C..  
Our solution method uses modular representations for the different degrees of freedom 
that can be adapted according to the problem at hand. The case study has three generic 
degrees of freedom: the allocation of jobs or rather of their operations to units, the 
sequences of operations on units, and the timing of the operations. Our approach uses 
separate strings for all decisions similar to the approach presented in Chen, et al., (1999), 
to maintain flexibility in the choice of the representation. To reduce the search space, 
heuristics can replace some of these decisions. We tested different combinations of 
representations for the sequencing and the allocation. Encoding timing decisions 
explicitly was not necessary for the regular objectives, Cmax and O.&C.C., because no 
improvements of the solution quality can be obtained if delays in the starting times of 
operations are included. 
3.1. Encodings 
For the two objectives Cmax and O.&C.C., an encoding of the sequences and, depending 
on the applied strategy, an encoding of the allocation to units is used. 
To keep the dimension of the search space manageable, the global sequence of orders, i.e. 
a single sequence 𝜋𝜋 =  (𝜋𝜋1, . . . ,𝜋𝜋|𝐼𝐼|) permuting the set of jobs 𝑖𝑖 ∈ 𝐼𝐼, which is imposed on 
all stages, is employed. In the simulation, this sequence is decoded by the DES software 
by processing the jobs in the order of appearance in the global sequence 𝜋𝜋. Consequently, 
the sequences of operations on each stage are tightly coupled, i.e., if job 𝑖𝑖 follows 𝑖𝑖′ on 
unit M01, i' cannot finish before 𝑖𝑖 if they follow the same recipe and are therefore 
processed on the same units. However, as shown in (Kopanos, et al., 2010), in the 
schedule for the 30-product case, minimizing Cmax under UIS-policy, better solutions can 
be obtained when the sequence of operations on the same units are swapped within two 
consecutive stages. However, encoding individual sequences for all stages 𝑆𝑆, would 
increase the search space significantly and lead to the need of a much larger number of 
calls of the simulator by the EA. 
Two different ways to decide on the allocation of jobs to units were investigated. One 
option is to determine the allocation dynamically during the simulation using a rule that 
is implemented in the simulator such that the highest-priority operation is allocated to and 
executed by the machine that first becomes idle, and started as soon as it becomes idle, 
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leading to non-delay schedules. So the unit on which an operation is processed in each 
stage is determined by an EST heuristic.  
In the second option, the allocation encoding assigns to every operation 𝑜𝑜𝑖𝑖 ∈  𝑂𝑂𝑖𝑖  of a  
job 𝑖𝑖 a unit 𝑢𝑢𝑠𝑠 ∈ 𝑈𝑈𝑠𝑠 in the corresponding stage 𝑠𝑠 ∈ 𝑆𝑆. The allocation encoding 𝛼𝛼 ⊂  𝑂𝑂 ×
 𝑈𝑈 therefore is a partial relation of the set of all operations 𝑂𝑂 = ∪𝑖𝑖∈𝐼𝐼 𝑂𝑂𝑖𝑖  and the set of all 
machines in all stages 𝑈𝑈 ∈∪𝑠𝑠∈𝑆𝑆 𝑈𝑈𝑠𝑠. 
Employing these encodings two optimization strategies are obtained: Strat1, where the 
global sequence and the allocation are optimized simultaneously and Strat2, where the 
global sequence is optimized and the EST heuristic is used for the determination of the 
allocation during the simulation.  
Weighted lateness is a non-regular objective where timing decisions are important, 
because the objective value is non-decreasing with the completion time of the scheduled 
jobs (Baker and Scudder, 1990). For the W.L. minimization, a simple heuristic 
improvement strategy was used for pre- and post-processing of the EA solutions. Prior to 
the optimization, the jobs were sorted according to their earliest due dates. The number 
of possible job permutations is still very high, because many jobs share the same due date. 
In a simple repair step, each operation on the last stage was delayed if it was early and 
the delay would not increase the tardiness of a following job. 

3.2. Genetic operators 
The parent and survivor selection operators are identical to those that were used in 
Klanke, et al. (2021), i.e. a rank-based parent selection and a rank-based/elitist survivor 
selection. In the latter operator, a fixed percentage of the best individuals are guaranteed 
to survive, while all remaining individuals are chosen via rank-based selection. 
Parameters for which the values are not stated explicitly in this work are also chosen as 
in Klanke, et al. (2021). 
For the allocation chromosome, the Point Mutation operator that randomly picks an 
operation 𝑜𝑜 and assigns it to a new unit of the same stage, and a Uniform Crossover 
operator that iterates over all products and stages and assigns a new unit, either from 
parent P1 or parent P2, with equal probability, is used. 
As the mutation operator for the global sequence chromosome, we employ the 
Permutation Mutation operator from Eiben and Smith (2015) that cuts a sub-sequence of 
random length and permutes its elements before reinsertion into the chromosome. As the 
crossover operator, the Cycle Crossover, as reported in Larranga, et al. (1996) is used.   

4. Results 
In this section the solutions obtained by Strat1 and Strat2 are presented. The optimization 
was run on an i7-7700K Intel CPU under Windows 10 for approx. 2.5 h of computational 
time. As schedule builder, the commercial software INOSIM 13.0 which, on average, 
took about 2.5 seconds for a single fitness evaluation, is used. Within a computational 
time budget of 2.5 h, by parallelization of the fitness evaluation of all individuals of the 
same generation, in total 3040 evaluations could be performed per problem instance. The 
results of our approach are presented in Table 1 together with the results from Kopanos, 
et al. (2010), where the computation time was limited to 1 h. This led in some instances 
to non-feasible solutions for the monolithic approach (see O.&C.C. in Table 1 in 
Kopanos, et al. (2010)). The solutions found by the two-step MILP decomposition 
approach in Kopanos, et al. (2010), the construction (MILP decomp. 1st Step) and the 
improvement (MILP decomp. 2nd Step), serve as a benchmark for the strategies proposed 
in this paper. The runs for Strat2 were repeated several times to evaluate the 
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reproducibility of the solution. Strat1 could barely reach the solution quality of the MILP 
monolithic approach for all three objectives, whereas the second strategy Strat2 
outperformed the 1st step solution in Kopanos, et al. (2010), and leads to a solution quality 
between the 1st and 2nd step solutions of the MILP decomposition approach. The best 
solution that was observed with Strat2 for the Makespan objective came very close to the 
2nd step MILP solution. For the O.&C.C. objective, the best solution was slightly better 
than the 1st step solution from the decomposition approach. For the W.L. the best run led 
to a value of 47.22 h, which was reduced to 37.07 h after the repair step. Clearly here a 
tailored improvement strategy is needed. 

Table 1: Results of the EA and MILP approaches for the 30 batches case from Kopanos, 
et al. (2010). 𝜇𝜇1 =  5, 𝜆𝜆2 = 40 and 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔  3 = 600 

Solution Approach Makespan [h] O.&C.C. [h] W.L. [h] 
MILP monolithic 34.81 - 428.15 
MILP decomp. 1st Step 28.51 66.16 48.16 
MILP decomp. 2nd Step 26.56 62.91 19.09 
Strat1 (Alloc. + Seq. Enc.) 35.02 77.49 693.71 
Strat2 (EST + Seq. Enc.)4 27.90 ± 1.17 66.17±0.57 47.78±0.51  
Best result from Strat2 26.72 65.59 47.22 
After repair step - - 37.07 
1Number of children, 2Population size, 3Number of generations, 4Mean and standard deviation 
of three runs 

5. Summary, Conclusion and Outlook 
In this work, we investigated the potential of a simulation-optimization approach, 
combining an EA and DES, for a benchmark scheduling problem, from the 
pharmaceutical industry.  
Our proposed approach benefits from the use of existing models and only encodes the 
essential degrees of freedom, while the detailed schedules are built by the simulation 
system. This has the advantage that all constraints that are implemented in the simulator 
are respected by the solution so the resulting schedule is executable to the best of the 
available knowledge of the processes in the plant.  
For the case study under consideration, the allocation and the sequence degree of freedom  
were encoded explicitly (Strat1), or only the global sequence of jobs was encoded and 
the allocation was determined heuristically by the simulator (Strat2). The encoding of 
only the global sequence together with the heuristic allocation provided better results due 
to the smaller search space of the EA. For the three investigated objective functions, the 
best results are between the 1st and 2nd step solutions of the benchmark approach. From a 
practical point of view, the solution quality can be considered as sufficient and the small 
differences are outweighed by the advantages of the simulation-based approach of 
intuitive modelling, re-use of models and the ability to implement and modify all kinds 
of constraints in the execution of the schedule. For the W.L. objective, the optimization 
of a global sequence of the orders turned out to be insufficient. Here a tailored second-
stage solution is needed where the allocation and sequencing decisions on the stages are 
considered explicitly. 
The computation time of the detailed simulation models of a commercial simulation 
environment is significantly higher than that needed for computing a solution with a 
simple job-shop model due to the larger overhead that is caused by the possibility to 
implement more detailed models. It can be reduced significantly by a parallelization of 
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the fitness evaluation. In our case, in a time span of 2.5 h the EA generated results that 
are similar to those obtained by the MILP decomposition approach for the Makespan 
objective.  
Overall, the combination of a detailed discrete-event simulation and an evolutionary 
algorithm is attractive from an industrial point of view because of the flexibility to 
implement non-standard features in the simulation model, the fact that the modelling is 
more intuitive and the model can be modified and maintained by plant personnel. For 
timing-related objectives and large problem sizes, further work on suitable refinement 
strategies is needed. 
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Abstract 
Maintaining high throughput with consistent quality is challenging in industrial cream 
cheese plants since batch fermentation time varies. However, determining the batch 
duration right from the batch start time is challenging. This makes the scheduling of this 
plant difficult. The characteristics of the plant, the main process challenges, and the 
resulting framework, which included adaptive modelling and scheduling, are presented. 
 
Keywords: Cream cheese fermentation, Batch Scheduling, Online pH prediction 

1. Introduction 
Fermentation batches are challenging to schedule due to the high inherent biological 
variability. Batch fermentations are common in various industries such as food, chemical, 
and pharmaceutical processing; therefore, much work has been carried out to schedule 
such systems. Harjunkoski et al., (2006) worked on scheduling a copper plant. Raw 
materials variation affected the reaction time, which made the plant operation 
challenging. Reaction modelling with raw material changes was used in a mixed-integer 
formulation for scheduling of the overall production process. Scheduling of penicillin 
fermentation was studied in Lau et al., (2003). However, the authors did not consider the 
batch variation, and a nominal batch processing time was used in their scheduling 
formulation. Baldo et al., (2014) presented a scheduling solution for a beverage plant in 
the brewing industry. They use a constant fermentation time which is much longer than 
the mean values for the scheduling time, however the fermentation time variation was not 
addressed. Their schedule significantly reduced the process throughput. Additionally, the 
fermentation liquid product could be stored in tanks for several days.  
 
In cream cheese plants the variation of batch duration affects the downstream continuous 
production rate and quality. Furthermore, the fermentation curds cannot be stored for a 
long time since over acidification degrades the quality. To avoid batch interferences 
during cooking, engineers in industry set up the fermentation scheduling with a long 
buffer time between two fermentation vats. This assures quality; however, the production 
rate is reduced significantly. Better scheduling of batches can decrease their variation by 
reducing possible interferences between batches due to variations of their duration. A new 
framework is presented in this work that provides a primary schedule with updating each 
batch durations predicted by a fermentation model at each time step. This schedule was 
updated in real-time by using an adaptive model that predicted the batch duration along 
with the fermentation when enough measurements were available. A mixed-integer linear 
(MILP) programming optimization was formulated for real-time scheduling of the vats 
filling and draining. The constraints of the plant regarding the filling, draining, and 
cleaning of the vats were considered. The best configuration for scheduling was 
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determined to minimize the cost and waste and improve the continuous operation of the 
plant. 

2. Methodology 
2.1. Scheduling framework 
 
As Figure 1 (A) shows, the downstream and upstream units connected to vats are ideally 
in continuous operation. The objective is to schedule vats to maintain continuous 
operation while considering filling, draining, and cleaning constraints, and varying batch 
duration. As shown in Figure 1 (B), only one vat can be drained or filled at any time due 
to the draining and filling line architecture. Both filling and draining take 2 hours. After 
reaching the desired pH, batches should be cooked immediately to stop the fermentation. 
If one batch’s pH reaches the desired value and the draining line is used by another vat, 
the batch can be cooled in the buffer tank and drained later. However, this will cause more 
energy consumption and extra cost for the plant. Therefore, interference between batches, 
as explained in the above example, should be avoided. These are two significant 
constraints that are considered in the optimization formulation. After the batch is drained, 
it should be cleaned for future usage. Dairy plants use the Cleaning in Place (CIP) term 
for cleaning. The CIP time also varies since it is monitored online and can be stopped 
based on CIP measurements. For this study we used a constant CIP value that was 
suggested by the plant. 

 
Figure 1. Unit operations: (A) Process flow diagram, (B) Vat operating conditions: filling shown 
by  and , draining shown by     and      , and  CIP shown by       . 

The batch duration (the time required to reach the desired pH from the beginning of the 
batch) varies due to disturbances such as milk components changing from season to 
season due to cow nutrition and weather conditions. This makes the scheduling of vats a 
challenging task. A mixed-integer optimization has been applied for solving this 
scheduling problem. The scheduling routine is shown in Figure 2. When all vats are 
available, scheduling is carried out for all of them. The key problem is what batch duration 
time should we use?  As mentioned before, batch duration varies. To deal with this 
problem, a default value is used first as the initial batch duration. The default value can 
be defined by engineers based on historical batch duration data. Different default values 
may impact the scheduling performance. Therefore, three default values, 12, 13 and 14 
(hours), are investigated in this paper. After filling up the first batch, measurements from 
the batch beginning up to a specific time can be used in the pH prediction model to 
estimate the time for reaching the desired pH.  This is important in the plant as the desired 
pH should be obtained at the end of batch draining, affecting the quality of the end-
product. The updated batch duration will be used to reschedule the batches. Rescheduling 
will be repeated whenever enough data is available for determining the duration for each 
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batch. The time needed to collect enough data for the pH prediction model and predict 
the actual batch duration can consequently affect the scheduling performance. The 
optimal estimate of the initial value of the batch duration is determined by evaluating the 
scheduling performance discussed in Section 3. 

 

 
Figure 2. Scheduling framework 

 
2.1.1  pH prediction model 
 
Ebrahimpour et al., (2021) studied the application of white, black, and grey box models 
for cream cheese pH prediction. A reliable pH prediction model was achieved by applying 
neural networks to pH dynamics. Additionally, a grey box model developed by Li et 
al. (2021) was discussed. Estimated biomass with measurements along the fermentation 
can make this model adaptive and improve the prediction. Both models can be used in the 
scheduling framework for cream cheese pH prediction. 
2.1.2 Scheduling formulation 

The operating conditions of the batch units were defined by two variables ,u tW and ,u tY as 
shown in Table 1. The processing (fermentation) duration was defined between filling 
start time and the end of CIP. Variables ,u tB , ,u tF , ,u tE , ,u tD ,and ,u tG  were used for 
distinguishing different occasions.  The formulation and the details of the variables are 
given below.  

, , 1 ,u t u t u tC C W−= +                                                   0, :u U t T t t∀ ∈ ∀ ∈ >                               (1)           
 

, , 0 ,( )*(1 )u tt u t F u tC C T T B− ≤ − −     , , ( 1)...min( 1, )u Fu U t T tt t t P T∀ ∈ ∀ ∈ ∀ ∈ + + −       (2) 

, , 1
uu t u t PC C −− ≥                                                   0, : uu U t T t T P∀ ∈ ∀ ∈ ∀ ≥ +              (3) 

, , 1u t u tW Y+ ≥                                                                          ,u U t T∀ ∈ ∀ ∈                                      (4)                                                 

, 1 , , , 1 ,u t u t u t u t u tY W Y Y W− −− ≤ ≤ +                                          0, :u U t T t t∀ ∈ ∀ ∈ >                      (5) 

, ,
, , 1 , 2

u t u t
u t u t u t

W Y
W Y B−

+
− ≤ ≤                                              ,u U t T∀ ∈ ∀ ∈                             (6) 

, ,FDu t t u tF B+ =                   ,u U t T∀ ∈ ∀ ∈    (7) , ,BDu t u tE B=              ,u U t T∀ ∈ ∀ ∈   (8) 

, ,DDu t u tD E=                           ,u U t T∀ ∈ ∀ ∈    (9) , ,CIPDu t u tG D=           ,u U t T∀ ∈ ∀ ∈  (10)                 

, ,
1
( ) 1
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u t u t
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0T : start of the solution horizon 

FT : end of the solution horizon 

uP : batch duration for batch unit u in U 
U : domain of batch units 1…number of 
batch units 
T : total time horizon from 0T to FT  

,u tE = 1: if batch unit u starts draining a 
batch at time t, 0 otherwise (Boolean 
variable) 

,u tC : the number of batches and unit 
idle periods from time 0T to t (integer 
variable) 

u : batch unit number 
t : time at any instant 

,u tB = 1: if batch unit u starts filling a 
batch at time t, 0 otherwise (Boolean 
variable)  

,u tF = 1: if batch unit u finishes filling at 
time t, 0 otherwise (Boolean variable) 

,u tG = 1: if batch unit u is doing CIP at 
time t, 0 otherwise (Boolean variable) 

,u tD = 1: if batch unit u finishes draining 
at time t, 0 otherwise (Boolean variable) 

Equations (1)-(12) explanation: 
Eq. (1): At any time, t, if a batch starts on a batch unit, u, or the unit is idle, a counter is 
incremented 
Eqs. (2)-(3): Batch cycles times must be longer than the specified value 
Eqs. (4)-(6): Boolean relationships for ensuring the feasibility (the Table 1 condition) 
Eq. (7): Batch filling time duration specification; FDt  is the filling duration 
Eq. (8): Batch complete time (from start time to reaching the desired pH) 
Eq. (9): Batch draining time duration specification; DDt is the draining duration 
Eq. (10): Batch cleaning time duration specification; CIPDt is the cleaning duration 
Eq. (11): Batches filling constraint; only one vat can be filled at any time 
Eq. (12): Batches draining constraint; only one vat can be drained at any time 
The objective function maximizes the started vats which is equivalent to maximizing Y 
and W for all u vats at any time t. 

Max                   
0

, ,
1

FTU

u t u t
u t T

W Y
= =

+∑∑                                                                                 (13) 

Table 1. Operating conditions of a batch unit 
Variable Start filling a batch Processing a batch Unit is idle Infeasible 

,u tW  1 0 1 0 

,u tY  1 1 0 0 

3. Results 
The batch duration varies in the industrial case due to disturbances such as milk 
composition variation and bacteria activity. Since the batch duration cannot be predicted 
at the beginning of the batch, a default initial batch duration was assumed to schedule the 
vats. Three default batch durations (12, 13 and 14 hours) were selected for testing the 
impact of default batch duration on the scheduling performance. As soon as enough data 
was measured, the scheduling would be updated by the predicted fermentation time from 
the pH prediction model discussed in Section 2.1.1. The effect of updating time on the 
scheduling was tested by considering the pH prediction model output availability 5 and 8 
hours after the batch start time. 
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3.1. Industrial scale scheduling 
 
Batch duration data from a real cream cheese plant was used for testing the scheduling 
framework performance. The duration times of 20 batches in the sequence were used, 
which took approximately 70 operating hours in the plant. As shown in Figure 2, when 
all the vats are available, scheduling was carried out for all the vats. 
 
As mentioned in previous sections, the batch duration cannot be determined before 
batches start. The initial batch duration in the scheduling algorithm was assumed to be a 
fixed value at the beginning of all batches run. For obtaining the best initial value, 
scheduling was applied to the industrial batch duration data. Scheduling was carried out 
by considering the default batch duration as 12, 13, and 14 hours. The initial batch 
duration was updated by the predictions from the pH prediction model. The pH model 
prediction output was assumed to be available 8 hours after the batch start time. The 
updated batch duration was used to update the scheduling of the vats. 
 
Table 2 summarizes the scheduling results with different initial batch durations for five 
vats. The performance of the scheduling framework was studied by comparing three 
indicators - idle time, number of cooled batches, and number of waste batches.  Idle time 
is the summation of hours in which the draining line is not in operation. This time should 
be minimized in the plant as continuous operation and consequently high throughput is 
desired. The number of cooled batches represents the draining interference of two batches 
when one is cooled and drained later. Wasted batches happen when more than two batches 
draining coincidence happens. One of the batches can be cooled at such a time, but the 
other one is wasted. 

Table 2. Scheduling results with different initial default batch duration 
Batch duration Idle time (h) Cooled batches Wasted batches 

12 22 3 1 
13 20 4 1 
14 24 4 2 

 
Table 3. Scheduling results with different update availability 

Update availability Idle time Cooled batches Wasted batches 
At 5 h 17 2 0 
At 8 h 22 3 1 

 
Table 2 shows that the 12 hours initial batch duration led to less cooled and wasted 
batches. This means that more energy and money are saved in the plant.  However, the 
draining line idle time is more than 13 hours batch duration.  The selection between the 
initial batch duration options should be made based on the plant’s production, economic, 
and quality objectives. Without rescheduling, the idle time, number of cooled and wasted 
batches were 24 h, 4 and 3 respectively which shows the importance of rescheduling in 
improving the performance. 
 
Figure 3 shows an example of the scheduling framework performance for the five vats 
with an initial batch duration of 12 hours. The top part of the Figure indicates the results 
for an initial batch duration of 12 hours for all vats at the batch start time. The scheduling 
update was carried out after determining the batch duration by pH prediction model. The 
bottom part of the Figure shows the actual batch duration. The vat filling time was 
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updated after time step 13 according to the actual batch duration determined by the pH 
prediction model. 
Scheduling performance can be improved by providing the batch duration prediction 
earlier.  This has been studied by providing the batch predictions 5 and 8 hours after the 
batches start scheduling with the initial batch duration estimate of 12 hours. Table 3 shows 
that the earlier update of the scheduling using the pH prediction model outputs can 
decrease the idle time, and the number of cooled and wasted batches. This will improve 
the scheduling performance in terms of energy, economy, and quality. 
 

 
Figure 3. Scheduling of vats before (top) and after (bottom) the update.  is the initial batch 

duration,  is the actual batch duration,  is the filling,  is draining,  is CIP 

4. Conclusions 

Scheduling cream cheese fermentation is challenging since batch duration varies. This 
work presented a scheduling framework that included an online pH prediction model 
along with MILP formulation. Online lactose and lactate measurements improved the pH 
prediction, which was achieved by reconciling the states. The formulation used the model 
output to reschedule the primary schedule, which was obtained by assuming a default 
initial batch duration. The framework performance was tested by scheduling 20 batches 
in sequence. Results showed that using 12 h as the default initial batch duration with batch 
prediction updating 5 hours after the fermentation started led to the minimum wasted and 
cooled batches.  
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Abstract 

The U.S. petrochemicals industry has been strongly influenced by the shale hydrocarbon 
boom commenced more than a decade ago. Newly available resources and emerging 
technologies spurred research focused on new pathways and technologies for producing 
chemicals. The adoption and deployment of these technologies by the manufacturing 
industry is driven by the need to minimize costs while meeting demand for chemical 
products. However, cost minimization is a unilateral objective that may conflict with 
other societal, environmental or economic goals and constraints. Motivated by this, in this 
paper we study the optimal configuration of the U.S. petrochemicals industry by 
considering both economic and environmental objectives. Our work is based on a 
comprehensive model representing the U.S. industry as a whole, and on multi-objective 
optimization problem formulations that allow us to elucidate the trade-off between 
economic costs and net carbon loss. A Pareto-optimal set of solutions is obtained and a 
comparison between the two extreme cases is performed. 

Keywords: Sustainability; Chemical manufacturing; Supply chain; Network modeling 

1. Introduction 

Advances in hydraulic fracturing and horizontal drilling have led to significant growth in 
the U.S. petrochemicals industry. Oil and gas production have rapidly increased in the 
U.S., particularly from shale formations (U.S. Energy Information Administration, 
2021a). An important consequence of the shale hydrocarbon boom has been the increased 
production of natural gas liquids (NGLs), which are often abundant in shale gas. NGLs 
are composed of ethane, propane, n-butane, isobutene and small amounts of less volatile 
hydrocarbons, molecules that are valuable feedstocks for chemical manufacturing 
(Siirola, 2014). The increase in the availability of shale gas and associated NGLs has thus 
provided a unique opportunity to expand the U.S. chemical manufacturing industry. In 
this paper, we aim to study optimal directions for this historic industry expansion, 
considering a trade-off between economic and environmental objectives. 
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We consider this industrial sector at the level of the entire United States, and use a 
computational model that comprises several hundred of the highest-volume chemicals 
and a library of hundreds of potential technologies for producing and processing them 
(DeRosa and Allen, 2016; Skouteris et al., 2021). The model is formulated as a 
superstructure that allows for determining the optimal configuration of the industrial 
sector by solving an optimization problem to minimize a given industry-wide objective, 
subject to material balance constraints as well as supply limitations and demand 
requirements. The solution of the optimization problem determines the optimal 
production levels for each process technology, as well as material flows in the network. 
In this paper, we consider two industry objectives: production cost minimization and 
minimization of carbon loss (e.g., as CO2 emissions).  In determining carbon loss, both 
feedstock carbon and the carbon cost of energy used are considered.  

2. Background and Problem Definition 

Optimization-based network superstructure models of chemical manufacturing originated 
in the work of Stadtherr and Rudd (1976), and many variations of this approach, with 
various focuses, have appeared since.  Cost minimization is a commonly used industry 
objective in such studies and can be used to determine an optimal network configuration 
(i.e., the technologies in the superstructure that have nonzero utilization). In recent work 
(Skouteris, et al., 2021), we developed a nonlinear, cost-based industry model that 
propagates cost and price changes within the network as new technology is introduced. 
However, there are other objectives that may affect industry behavior, such as safety and 
environmental performance, leading to the use of multi-objective optimization.  For 
example, Fathi-Afshar and Yang (1985) focused on the effect of gross toxicity in process 
selection and how it conflicts with the minimization of cost for the industry. Similarly, 
Chang and Allen (1997) studied trade-offs between chlorine usage and industry costs.  
Here we will use an industry network model with multi-objective optimization to study 
trade-offs between cost minimization and carbon usage. 

In the network model, the industry is represented as a directed graph, where chemical 
processes are the nodes and the edges correspond to material and utility flows. The data 
for the model (e.g., process stoichiometries and costs) have been obtained from the IHS 
2012 Process Economic Yearbook (IHS Markit, 2012). The model used in this work 
involves 887 processes, 892 materials and 7 utility types, aiming to represent the bulk 
petrochemicals industry, including polymer products, in the United States. The 
methodology can also be used to study the chemical industries in other countries or even 
different industrial networks within the U.S., provided that the data are adjusted 
accordingly. The core model consists of balance equations for all materials, and supply 
and demand constraints.  The balance equations for every material i are of the form: 

𝐹𝑖 + ∑ 𝑎𝑖,𝑗𝑋𝑗𝑗 − 𝑄𝑖 = 0 (1) 

where 𝐹𝑖 is the exogenous flow rate of material i as a primary raw material into the 
network, 𝑎𝑖,𝑗 is the input-output coefficient for i in process j (positive if i is produced, 
negative if i is consumed, and unity if i is the main product), 𝑋𝑗 is the utilization level of 
process j (in terms of flow rate of main product), and 𝑄𝑖  is the exogenous flow rate of 𝑖 
as a final product out of the network. The supply and demand constraints are: 

0 ≤ 𝐹𝑖 ≤ 𝑆𝑖  (2) 

𝑄𝑖 = 𝐷𝑖 ≥ 0 (3) 
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where 𝑆𝑖 and 𝐷𝑖  are specified exogenous raw material supply and final product demand 
rates for i, respectively.   

Two objective functions for optimizing the industry behavior are considered.  The first 
objective is minimization of total processing cost (equivalent to maximization of profit 
since output is fixed by Eq. (3)):  

min
𝑋𝑗,𝐹𝑖

𝐶 = ∑ 𝐶𝑗𝑋𝑗𝑗   (4) 

where 𝐶𝑗  is the net unit cost of process 𝑗 (cents/lb of main product), including raw 
materials and utility costs, fixed capital investment depreciated over a 10-year period, and 
other fixed operating costs.  The second objective is net carbon loss: 

min
𝑋𝑗,𝐹𝑖

𝐿 = ∑ 𝐹𝑖𝑤C,𝑖𝑖 + ∑ 𝑤C,𝑘 ∑ 𝑢𝑘,𝑗𝑋𝑗𝑗𝑘 − ∑ 𝑄𝑖𝑤C,𝑖𝑖   (5) 

Here, 𝑤C,𝑖 is the weight fraction of carbon in material i, 𝑤C,𝑘 is the carbon cost per unit of 
utility k, and 𝑢𝑘,𝑗 is usage of utility k per unit of production from process j. To determine 
𝑤C,𝑘 we consider the actual carbon content of an energy-equivalent amount of natural gas. 
This means that, for example, 1 kWh of electricity (equivalent to 3412 BTUs) is assumed 
to have the same carbon content as 3412 BTUs of natural gas. Information on the energy 
content of utilities used is taken from the U.S. Energy Information Administration 
(2021b). The first term in Eq. (5) represents the feedstock carbon input to the industry, 
the second term the carbon cost of utilities used, and the last term the carbon outputs 
(constant here due to fixed industry output). Thus, L represents the industry-wide loss of 
carbon (e.g., as CO2 emissions).  As formulated here, the carbon loss function L does not 
consider the possible generation of energy, and thus a carbon credit, by a production 
process.  An alternative formulation for L that accounts for energy production can be 
considered and will be the subject of our future research.  Both objective functions are 
linear so the underlying problem is a linear program (LP).  Here we use these two 
objectives to consider a multi-objective optimization problem. We seek to determine the 
Pareto optimal set for this problem using the weighted sum and ε-constrained methods.  

3. Solution Strategies 

The LP problem defined above was first solved separately with each individual objective 
to obtain the two single-objective optimal configurations, indicating that the two 
objectives are indeed in conflict. To obtain Pareto optimal solutions using the weighted 
sum method, the two functions were scalarized into a single objective by assigning each 
function a defined weight; the weights are then varied to obtain a set of Pareto-optimal 
solutions: 

min
𝑋𝑗,𝐹𝑖

𝑓 = 𝑤1
𝐶

𝐶∗ + 𝑤2
𝐿

𝐿∗,   with 𝑤1 + 𝑤2 = 1          (6) 

Here each objective function has also been scaled using the minimum values 𝐶∗ and 𝐿∗ 
obtained by solving the two single-objective LPs. 

Additional Pareto-optimal solutions were generated using the ε-constrained method, in 
which the LP is solved for one objective, while bounding the other objective through an 
additional constraint: 
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min
𝑋𝑗,𝐹𝑖

𝐶  (7) 

s. t.  𝐿 ≤ 𝜀1,    where  𝐿∗ ≤ 𝜀1 ≤ 𝐿0 

or alternatively: 

min
𝑋𝑗,𝐹𝑖

𝐿  (8) 

s. t.  𝐶 ≤ 𝜀2,    where  𝐶∗ ≤ 𝜀2 ≤ 𝐶0 

Here 𝐶0 and 𝐿0 correspond to the value each objective function takes when the other 
objective is minimized. Varying 𝜀1 and 𝜀2 within their given ranges will result in several 
additional Pareto-optimal solutions. 

4. Case Study 

Proceeding as described above, we found the optimal industry configurations for the two 
conflicting objectives defined by Eqs. (4) and (5), and determined the Pareto-optimal 
front, namely the set of non-inferior solutions for the multi-objective problem. 

The Pareto front is shown in Figure 1. Here, point A represents the optimal industry 
configuration when minimizing the total production cost as a single objective, regardless 
of the carbon loss. This point corresponds to a minimum total production cost of 187 
billion dollars per year and is accompanied by a carbon loss of 90.6 billion lbs per year. 
Similarly, point C represents the optimal configuration when minimizing the net carbon 
loss as a single objective, without considering the total production cost. At this point, the 
minimum net carbon loss is 62.8 billion lbs per year, requiring a total production cost of 
258 billion dollars per year. All other Pareto-optimal solutions between these two extreme 
cases represent trade-offs between minimizing production cost or carbon loss, based on 
the varying importance levels given to each objective. An overall trade-off can be 
determined by comparing the two extreme solutions. In moving from point A to C to 
achieve the minimum carbon loss, the total industry production cost increases by 
approximately 37%, while moving in the opposite direction to achieve the minimum 
production cost, the net carbon loss increases by approximately 42%. 

Point U in Figure 1 refers to the utopia point, which is an ideal solution corresponding to 
the minimum values found for both objectives, but which never can be reached for these 
two conflicting objectives. Ideally, though, it is desirable that the Pareto front be as close 
as possible to the utopia point.  In this case, the closeness to U will depend on the 
“steepness” of the slope of the Pareto front in the vicinity of point C and the “flatness” of 
the slope in the vicinity of point A.  We note that moving leftward from point A, 
significant reductions of the net carbon loss can be obtained with only small increases in 
the production cost.  Similarly, moving downward from point C, significant reductions of 
the production cost can be obtained with only small increases in the carbon loss. 

The changes that occur in moving along the Pareto front stem from changes in the industry 
network configuration. Here we highlight some of the most important changes observed 
between the extreme points, A and C.  At point C, there is high production of methanol 
from natural gas, which is then used for producing olefins, such as ethylene and 
propylene. In contrast, at point A, propylene is produced from naphtha, and ethylene is 
produced from propane and ethane by steam cracking. Also, there is significantly higher 
production of ethylene at point C and its downstream usage differs between the two 
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extreme points. In both cases, ethylene is used for the production of 1-butylene, polyolefin 
elastomer, EPDM rubber, ethylene dichloride ethylene/vinyl alcohol barrier resin, 1-
hexene, polyethylenes, vinyl acetate-ethylene copolymer and vinylidene chloride. 
However, at point A, ethylene is also used for the production of ABS resin, methyl 
methacrylate, polystyrene, ethylene glycol and vinyl chloride, whereas it is used for 
production of ethanol, ethylene oxide and styrene at point C.  These changes take place 
gradually throughout the network, as we move along the Pareto front. Consider, for 
example, point B, which is obtained from the weighted sum method when equal 
importance is given to both objectives. Here, ethylene is produced from a combination of 
steam cracking and methanol-to-olefins processes, with the production rates of these two 
types of processes being about the same. A similar behavior can be observed for several 
other chemicals in the network. 

 
Figure 1: Pareto front and utopia point for the multi-objective optimization problem.   
 
Comparing the amount and type of feedstock carbon that the industry network utilizes in 
each case is also of interest. Specifically, at point A, when production cost is the sole 
driving force behind the optimal industry configuration, a higher amount of feedstock 
carbon is utilized, compared to point C, when lost carbon content is the sole driving force. 
Moreover, feedstocks with lower carbon weight fraction see increased importance at point 
C.  This leads to a situation at point C in which there is little loss of feedstock carbon, 
with the carbon loss function L being dominated by the carbon cost of utilities.  In 
contrast, at point A, the contributions of feedstock carbon loss and utility carbon cost to 
L are roughly the same. This suggests that there may be environmental benefits to 
prioritizing efficient raw material usage, even if that means more usage of energy utilities. 
This observation will be reinforced as energy utilities are increasingly decarbonized. 
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5. Conclusions 

In this work, we used a superstructure network model of the U.S. refining and chemical 
manufacturing industry, and formulated a multi-objective linear program with two 
conflicting objectives, total industry production cost and net industry carbon loss. The 
model was first solved for each objective separately, and then the weighted sum and ε-
constraint methods were employed to obtain the Pareto-optimal set of solutions. Moving 
along the Pareto front towards the minimum carbon loss point causes a number of 
structural changes in the industry network, notably a shift towards natural-gas-derived 
methanol used for production of olefins.  Results also suggest that there may be 
environmental benefits to prioritizing efficient raw material usage, even if that means 
more usage of energy utilities, especially as these utilities can be and will likely become 
increasingly decarbonized. 
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Abstract

The long-term impact of global warming and the resulting climate crisis, brought about by human-induced emis-
sion of greenhouse gases, is an imminent environmental concern. The Paris Agreement aims to limit global tem-
perature rise to below 2° C over pre-industrial levels, to curb this impact. Meeting this limit necessitates reaching
carbon neutrality by 2050, which imply no net transport of carbon dioxide to the atmosphere. The chemical process
industry along with associated manufacturing industries such as iron and steel, cement and aluminum contributes
significantly towards global carbon dioxide emissions. Mapping the precise routes of Carbon mobilization is the
first step towards establishment of a sustainable, circular and Carbon neutral chemical industry. There exist no C
flow models for aforementioned energy intensive industries. Current published literature also does not account for
C mobilized to meet the energetic needs of global chemical processes. They also do not account for the emissions
offset by material exchange between different production processes. In this work, we develop a steady state model
of Carbon flow through chemical process and associated industries. Our model traces the flow of carbon from
fossil feedstock, to energy carriers and chemical intermediates, and finally valuable products, by-products and
emissions. This model makes use of process data, life-cycle inventories models developed by existing studies on
the chemical and petrochemical industries, government databases, greenhouse gas emissions data and economy
models . Fundamental laws like mass and energy balance are used in conjunction with stoichiometric calculations
to estimate missing data and reconcile incorrect data. We represent this model as a Sankey Diagram to better
facilitate visualization of the process network and identify scope of process improvement. We elaborate how this
model helps the placement of process alternatives such as use of renewables, electrification, green hydrogen and
carbon capture and storage in the value chain. These alternatives can be highly energy intensive, requiring a large
amount of “net zero” electricity to function. The dependence of renewably sourced electricity on land area avail-
ability necessitates its efficient use. Thus, the integration of fossil alternatives in the model paves the path for their
targeted and optimal usage towards decarbonization.

Keywords: Decarbonization, Modelling, Supply chain, Sustainability

1. Introduction

As global average temperature continues to rise and predictions for climate change turn more grim with every
new assessment, closing the global anthropogenic carbon (referred to as ”C” from here on) cycle has become
more important than ever. Reducing the production of materials for consumption, infrastructure and healthcare in
the face of a rising global population, or bringing about drastic reduction in consumptive behaviour overnight, is
unlikely. Therefore, focussing on emissions reduction while still maintaining production volumes (or establishing
a circular economy of materials) may arguably have better payoffs in the immediate future.

The efficiency (yield or selectivity) of conventional chemical processes cannot be increased indefinitely. Thus,
there is a minimum C emission associated with all products. Any further reduction requires us to choose alternate
pathways or retrofit mitigation technologies to conventional pathways. Many innovative technologies have been
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developed to leverage both these options. [8, 7, 1, 10] The general idea behind carbon neutral technologies is
to limit CO2 emissions to the atmosphere. With prices of renewable electricity dropping steadily, electrically
powered emerging technologies show promise in competing with incumbent routes of production. Examples of
such processes include electrochemical means of converting CO2, that would otherwise be emitted to the atmo-
sphere,to value added chemicals, or electrification ofH2 production. While renewables and emerging technologies
may lower emissions to their credit, their usage does not absolve industries of all environmental concerns. C cap-
ture itself might increase energy needs of a process enough, to offset its C credits. Renewables also raise issues of
waste management of noble materials, land use concerns. Thus, the application of these technologies needs to be
weighed in with its tradeoffs to guide policymaking.

Attempts at large scale, sector-wide decarbonization imply the implementation of alternate low carbon pathways
wherever possible, and C capture from exhaust gases elsewhere. This naturally requires a thorough knowledge of
C flows, sources and sinks. A superficial knowledge of emissions from the chemical industry is not very useful
in this regard. The contribution of different processes, pathways and fuels is needed to target processes with the
highest decarbonization potential. The US EPA traces a majority of US greenhouse gas (GHG) emissions back to
the transportation sector, followed closely by electricity generation and industrial sectors. Many existing works
break down these emissions across manufacturing and process industries. These diagrams however, suffer from
various inadequacies of their own. The diagram developed by Lawrence Livermore National Lab uses data from
the US Energy Information Administration (EIA) and does not distinguish between different processes in the
industrial sector. [3] The diagram by Global Climate and Energy Project (GCEP) at Stanford, while much more
detailed still lumps all chemicals into one node and does not provide any insight into the individual consumption
or emission of processes.[9, 2] The mass flow balance on the process network in the chemical industry developed
by Levi et al. while comprehensive, does not have information on the energetic needs of these processes. Finally,
there is a distinct need for and lack of distinction between the direct and indirect C requirements of a process.
The decarbonization potential of a process changes significantly depending on whether C is required as feedstock
for the process, or simply for its energy or heating needs. This insight is valuable and missing from the current
literature.

The current major scientific efforts in this field focus on development of decarbonization technologies. How-
ever, this reductionist approach may have rebound effects, whereby increase in consumptive behaviour offsets
the marginal benefits of emissions reduction, and may hinder the longer scale goals of establishing a circular,
sustainable chemical industry which is still carbon neutral. For example, attempts at electrification of ammonia,
source hydrogen from electrolytic processes and attempt to electrify the operation of Haber Bosch process, to
avoid releasing carbon dioxide as a co-product of fossil sourced hydrogen. A superficial analysis may reveal the
abatement of a large fraction of greenhouse gad emissions when such production routes are taken. However, as we
see in the results of our work, other processes like methanol, urea and acetic acid production are dependent on this
carbon monoxide for their feedstock. Decarbonizing these sectors thus becomes much harder. This insight is easy
to miss in traditional reductionist thinking and may lead us to grossly overestimating the emissions reduction. This
incites the need of development of more holistic models which will accurately reflect the dependence of different
processes in the network and avoid chances of shifting impacts and inadvertently increasing the environmental
burden. In this work, we build a model that captures the co-dependence of different processes and outline a proto-
col for resolving the feedstock and utility C needs of the chemicals and material industries, while distinguishing
between different processes and pathways of production.

2. Methodology

This model traces most conventional processes centering the chemical industry. We outline the C flows in the
feedstock, product as well as that associated with energy requirement of the process. For all cases, we begin with
a process description and a stoichiometric model of the ideal process. Yield and selectivity data collected from
published surveys of operational plants lets us calculate realistic values of feedstock. Energy data is estimated
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from specific energy consumption (SEC) values or from life-cycle data. C content of these material and energy
flows is then determined. Finally, we put these intensive flows into global perspective using production tonnage
of each material. [11, 12] These calculations are demonstrated below for methyl alcohol.

Synthesis CO + 2H2 → CH3OH (1)
Coal/Oil POX CHn +H2O → CO + n+2

2 H2 (2)
NG SMR 2CHn +O2 → 2CO + nH2 (3)

WGS CO +H2O → H2 + CO2 (4)
RWGS H2 + CO2 → CO +H2O (5)

SMR to methanol 2CHn + n−2
3 CO2 +

8−n
3 H2O → 4+n

3 CH3OH (6)
POX to methanol 2CHn +O2 +

4−n
3 H2O → 2+n

3 CH3OH + 4−n
3 CO2 (7)

To estimate feedstock requirement of methanol production, we use chemical synthesis route as shown in Eq.(1).
The feedstock for methanol synthesis are sourced from syngas. Syngas can be generated by steam methane
reforming of natural gas or coal gasification or partial oxidation of oil, as shown in Eq.(2) and Eq.(3) respectively.
The kind of fossil feedstock used, determines the ratio of CO and H2 in syngas. This ratio can be corrected by
water gas shift or reverse water gas shift reactions for direct use in the synthesis process, depending on which gas
is in excess. This is illustrated in Eq.(4) and Eq.(5). The value of ‘n’ can be approximated as 0.456 for coal, 1.873
for oil and 3.951 for natural gas. Thus, while syngas produced from coal and oil have excess CO and need to be
subjected to water gas shift, NG sourced syngas is lean in CO and is followed up with reverse water gas shift. The
final equations for methanol production, combining syngas generation, WGS/RWGS and methanol synthesis can
be represented as Eq.(6) for NG and Eq.(7) for coal/oil.[6]

As can be observed from Eq.(6) and (7), the SMR/POX reactions coupled with WGS/RWGS reactions have two
sources of C flows. The first is associated with the fossil feedstock requirement and the second is process emissions
of CO2. The coal/oil POX process emits CO2 which is released to the atmosphere. On the other hand, the NG
SMR process consumesCO2 which we assume is sourced from ammonia plants nearby. Ammonia plants use only
H2 from syngas mixture. Thus, CO, which is generated as co-product of this H2, can be separated and oxidized,
according to Eq. (4), to provide feedstock to the methanol plants.

We assume an efficiency of 0.99 for the synthesis route (ηs) and 0.861 (NG), 0.808 (oil) and 0.76 (coal) for
syngas generation steps (ηc). [6] Thus, the yield data along with stoichiometric information lets us calculate
feedstock demand and C input thereof for methanol generation. [6] These calculations for process C of methanol
are elucidated in Table 2 .

For energy requirement, we consider specific energy consumption (SEC) data for different feedstocks. Methanol
generated from NG SMR has an SEC of 24 GJ/ton whereas partial oxidation of coal or oil lead to an energy con-
sumption of 13.9 GJ/ton methanol. [5] To estimate the emissions associated with energy use, emisson coefficients
associated with each fuel are used. The final calculations are shown in Table 3.

Feedstock CO2 input ηc ηs n Actual feed Actual CO2
CHn

CH3OH
CO2

CH3OH
kg

kgCH4O
kg

kgCH4O

Coal 6
2+n − 4−n

2+n 0.76 0.99 0.456 1.26 -2.004
Oil 6

2+n − 4−n
2+n 0.808 0.99 1.873 0.84 -0.763

Natural Gas 6
4+n

n−2
4+n 0.861 0.99 3.951 0.44 0.396

SEC for feedstock use Feedstock fraction Emissions for energy use Energy fraction
GJ

ton CH3OH % kg CO2
MJ %

Coal 24 20.5 0.091 50
NG 13.9 71 0.013 50
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Finally, these intensive product flow calculations are scaled up for global production tonnages. Currently, the
annual production capacity of methanol stands at 102 million metric tonnes. [4] Of this, we estimate 71% is
sourced from natural gas derived, 8.5% from oil derived and the remaining from coal derived syngas. [6] The
flows are scaled accordingly and thus we arrive at the total C flows associated with fulfilling the global demand of
methanol. The treatment of process C follows a protocol illustrated by Levi et al. [6]

3. Results and Discussion

Fig 1 shows the mobilization of C in feedstocks for manufacture of major chemicals. All flows shown here
correspond to mass units of C. Their relative values are scaled by their annual global production capacities i.e.
the flows are extensive in nature. Therefore, in this case, the production tonnage and specific C consumption
both dictate magnitude of the flows. Process flows resulting in output of C flows are shown to be released to the
environment. Unreacted reactants or leakages are grouped together in a separate category as “loss”.

The diagram starts with fossil resources like crude oil, natural gas and coal. Refining processes yield primary
hydrocarbons like olefins, aromatics, cyclic compounds and alkanes. Transformative reactions alter the relative
production of these compounds. For example, toluene hydrodealkylation (THD) and toluene disproportionation
(TDP) convert toluene to xylenes and benzene, ethylene and butene get converted to propylene via metathesis, and
propane on dehydrogenation produces propylene. Alongside, we also show the synthesis of urea and methanol.
The next stages show the production of platform chemicals like cumene, acrylonitrile, caprolactam, phenol, ethy-
lene glycol, terephthalic acid, vinyl chloride monomer, acetic acid, formaldehyde etc from hydrocarbons. This is
followed by production of polymers like polyethylene, polypropylene, polyvinyl chloride, polyethylene tereph-
thalate, polystyrene etc. Finally, we track the end uses of some of these polymers to their major products. The
diagram shows a large amount of C embodied in products used by the packaging industry, consumer goods and so
on.

Large volume polymers like polyethylene, polypropylene, PET sequester C through their long half lives whereas
C embodied in solvents such as acetone, ethylene glycol, toluene are either incinerated or disposed off. While
attempts to circularize use of such stable plastics is underway, efforts can be made to source their feedstock C
from non-fossil sources. While captured C or biogenic C can replace their fossil counterpart for use as feedstock,
substituting the hydrogen or energy requirement of such processes presents a formidable task. Since captured C
is only available as CO2, it does not have any value as fuel. While the diagram itself only represents C flows, co-
product flows are captured in process models. This information is indispensable in searching for lower C pathways
of production.

We also observe a significant amount of process loss, throughout the industry. This can be attributed to unconverted
reactants or inefficient separation of products. When the consumption of process and energy C are compared, we
see emissions distributed similarly across both categories. This points to the vast decarbonization potential of the
chemicals industry whereby energy can be alternately sourced from non emitting resoources.

4. Conclusions

Visualization of the C Flow model points us to the industries with greatest C footprint and the best ways to retrofit
decarbonization technologies to these specific cases. This model is a stepping stone towards possibly answering
bigger questions about the deep decarbonization of the chemicals industry. The data used in this model, can be
used in conjunction with data on emerging technologies to optimize the economics and electricity demand of a
decarbonized chemical industry. Additionally, the need for innovation and the direction in which it is needed
may also be investigated. Eventually, the need for a policy change to support and affect the shift to decarbonized
technologies can be supported with models such as this one. Thus, this model is a foundation in the vision of a
sustainable, circular and C neutral chemical industry.
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Figure 1: Flow of Fossil C through the Chemical Industry for in 2018 (in million metric tonnes of C)
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[7] Hélène Pilorgé, Noah McQueen, Daniel Maynard, Peter Psarras, Jiajun He, Tecle Rufael, and Jennifer
Wilcox. Cost Analysis of Carbon Capture and Sequestration of Process Emissions from the U.S. Indus-
trial Sector. Environmental Science & Technology, 54(12):7524–7532, jun 2020.

[8] Giulia Realmonte, Laurent Drouet, Ajay Gambhir, James Glynn, Adam Hawkes, Alexandre C. Köberle, and
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Abstract 

This contribution provides an optimization-based decision support model of biomass to 

biofuels supply chain (BBSC) in order to offer optimal strategic decisions and tactical 

plans in the entire supply chain. This model is designed for long-term planning studies, 

in that it is utilized to optimize the Ethiopian BBSC over a 20-year horizon. Moreover, a 

comprehensive LCA is conducted on the BBSC by broadening the assessed impact 

categories adverse to most of the previous economic-environment models, which 

considers only one type of impact.  To this end, through the LCA method and ecocost 

approach, an effort is made here to evaluate the environmental impacts associated with 

different biomass preprocessing technologies (drying and size reduction, mechanical and 

solvent extractions), biorefinery technologies (biochemical and thermochemical 

conversions, and homogeneous and heterogeneous transesterification) and material 

transportations along the BBSC. Since this planning problem relies on two objective 

functions, namely, profit and ecocost, a set of optimal solutions are generated to come up 

with the best compromise solution between the two antagonistic objectives.  

Keywords: Biomass-to-biofuel supply chain (BBSC), economic-environment 

optimization, life cycle assessment, long-term planning. 

1. Introduction 

Over the last decade, biofuels are of rapidly growing interest in Ethiopia for reasons of 

saving foreign currency, export earning, job creation and greenhouse gas mitigation. 

However, the implementation of biomass-to-biofuel projects is in its infancy despite there 

is abundant biomass availability in the country [1]. Moreover, the existing infant biomass-

to-biofuel supply chain (BBSC) is not carried out in a sustainable manner. This is majorly 

associated with the numerous economic and environmental challenges along the supply 

chain. Therefore, policymakers and other actors in the biofuel sector require a framework, 

which supports them to make scientifically valid and sustainable strategic decisions and 

tactical planning.  
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These days, numerous process systems engineering tools have been developed to assist 

decision making in the design and plan of various supply chains, of which optimization-

based mathematical models take the largest share [2]. Based on the model outputs, 

recommendations had been forwarded for political decision-makers as well as for 

potential investors. Several strategic-tactical level models are formulated with objectives 

of maximizing economic and environmental benefits of supply chain in general and 

BBSC in particular. However, the models developed so far are not comprehensive and 

realistic enough to be applied at national level for long term planning of the biofuel sector. 

Some of the drawbacks include addressing the BBSC in a partial way (focusing on either 

upstream or midstream or downstream activities), dealing only on one type of biofuel 

product in a single supply chain and focusing on a one-year planning period. Moreover, 

the environmental concern in most of the previous studies emphasis on global warming, 

greenhouse gas (GHG) emissions and fossil energy consumption [3]. Nevertheless, these 

are not the only environmental impacts generated from the lifecycle of biofuel supply 

chain, which results in the importance of broadening the impact categories considered 

while dealing BBSC.  

Henceforth, to address the limitations stated above, this work provides a comprehensive 

optimization-based decision support model in order to design and plan both bioethanol 

and biodiesel supply chain over a long-term. The objective of the model relies on both 

economic and environmental aspects, in that it aims to maximize the profit and minimize 

the ecocost of the BBSC. The model is applied to the real case of Ethiopia to offer optimal 

strategic and tactical decisions along the BBSC over 20-years horizon. Moreover, this 

study tries to make a comprehensive LCA along the supply chain of corn stover-, 

molasses-, and bagasse-based bioethanol and jatropha-, and castor-based biodiesel by 

broadening the assessed impacts. The impacts considered in this study are broadly 

classified into four; namely, carbon footprint (global warming potential), ecosystem 

(acidification, eutrophication and fresh water aquatic ecotoxicity potentials), human 

health (fine dust, human toxicity and photochemical oxidants potentials) and resource 

scarcity (metal and water scarcity, fossil fuel depletion and waste generation potentials). 

2. Methodologies 

2.1. Life cycle environmental assessment 

The LCA method, which consists of goal and scope definition, life cycle inventory, and 

impact assessment, is considered in this work to analyze the BBSC impact on the 

environment. The LCA is applied herein is from biomass supplier (farm) gate to biofuel 

market. The BBSC stages considered in this work include biomass feedstocks 

transportation and preprocessing, preprocessed biomasses transportation, biofuels 

production and transportation. The technologies considered to preprocess bioethanol 

feedstocks is drying and size reduction, whereas mechanical and solvent extraction 

technologies are considered to preprocess the biodiesel feedstocks. Furthermore, the two 

biorefinery technologies considered for bioethanol production are biochemical and 

thermochemical conversions. Besides, homogeneous and heterogeneous base-catalyzed 

transesterification technologies are considered for biodiesel production. One ton of raw 

or prepocessed biomass is taken as the functional unit for this study. The life cycle 

inventory, which quantifies the amount of raw materials and product as well as energy 

requirements, of each biomass preprocessing and biofuel production (biorefinery) 

technology are estimated based on previous works. The GHG and other criteria pollutant 

emissions for the different technologies by taking into account each type of biomass and 
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preprocessed biomass are obtained from the GREET model. On the other hand, previous 

researches are used to estimate the GHG and other criteria pollutants emissions from 

vehicles used in transporting materials along the supply chain, i.e., Euro II trailer truck 

and Euro III tanker truck for transportation of solid and liquid materials respectively. 

Then, based on the emission, inventory and utility consumption data, the impacts of all 

activities of the BBSC on the environment is analyzed through the ecocost method. This 

method is developed based on the marginal prevention costs needed to control the 

negative impact of toxic emissions. The total ecocost of a product or activity is the sum 

of ecocosts natural resources depletion, ecosystem, human health and carbon footprint 

during its life cycle. 

2.2. Model formulation 

The intention of this study is to provide a comprehensive mathematical model of BBSC, 

which includes all the principal supply-chain components upstream and downstream of 

the biorefineries. This model is designed for long-term planning studies, in that it is 

utilized to optimize the Ethiopian BBSC over a 20-year horizon. To account the whole 

BBSC behavior, the problem is designed as a spatially explicit, multi-product, multi-

feedstock, multi-period, and multi-echelon MILP modeling framework. The model 

considers yearly and monthly time periods. The design mechanism is perceived as a 

multi-objective optimization problem that intends to maximize the profit and minimize 

the ecocost of the BBSC. The profit as illustrated in equation (1) is calculated by taking 

into account the cash inflow (total annual revenue) and cash outflows (total annual cost 

and investment cost) in a specific year. Moreover, the total ecocost is given as the sum of 

the ecocosts of biomass preprocessing, biofuel production and material transportation, as 

indicated in equation (2). 

𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ ([
1

(1 +  𝑖𝑟)𝑦
 (𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑦 − 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑦)]) 

𝑌

𝑛=1

 (1) 

Where ir is the discount rate 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑐𝑜𝐶𝑜𝑠𝑡 = ∑[ 𝐸𝑐𝑜𝑐𝑜𝑠𝑡 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  𝑦 +  𝐸𝑐𝑜𝑐𝑜𝑠𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  𝑦
𝑦

+ 𝐸𝑐𝑜𝑐𝑜𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑦 ] 

(2) 

Moreover, constraints and mass balances that needs to be fulfilled at each stage of the 

BBSC are formulated, including: supply and demand satisfaction, inventory balance, 

production amount, binary and non-negativity decision variables, and storage and weight 

capacity constraints. The expected output of the model refers to strategic decisions in the 

BBSC, which includes the network configuration, capacity, technology, and location of 

the biorefineries and preprocessing units as well as the capacity and location of 

distribution centers. Moreover, optimum decisions related to annual production, 

inventory, and transportation of materials along the BBSC are expected results of the 

model. The model is described on [4]. 

2.3. Case Study 

The developed model in this study is applied to the real case of Ethiopia. All the 

assumptions taken and detail technical and economic data of the case study are available 

on [4]. These data include biomass feedstocks availability and purchasing price, biofuels 
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and coproduct demand and selling price, investment and production costs as well as 

storage and processing capacities of each BBSC components, conversion factors of each 

candidate technology, transportation distance between different zones of the country and 

transportation cost of materials in the supply chain. 

2.4. Solution method for multi-objective optimization  

The MILP model was solved using the ILOG CPLEX solver. The antagonistic nature 

between the economic and environmental objectives was solved using the following 

procedure. First, the profit was maximized to obtain the resulting optimal profit (upper 

bound of profit) and the ecocost value (upper bound of ecocost). Second, the ecocost was 

minimized to obtain the resulting profit value (lower bound of profit) and the optimal 

ecocost (lower bound of ecocost). Then, the profit was maximized 10 times by 

constraining the ecocost in different ranges between the lower and upper bound. 

Similarly, the ecocost was minimized 10 times by constraining the profit in different 

ranges between the lower and upper bound. To this end, a set of efficient solutions ware 

generated. 

3. Result and Discussion 

3.1. Environmental impact 

Based on the GREET outputs, utility consumption data and inventory analysis, the 

environmental impacts (ecocost) associated with biomass preprocessing, biofuel 

production and material transportation are calculated. The ecocosts associated with 

biomass preprocessing via drying and size reduction, mechanical and solvent extraction 

are depicted in Figure 1. Similarly, Figure 2 presents the ecocosts of bioethanol and 

biodiesel production via biochemical or thermochemical conversion, and homogenous or 

heterogeneous transesterification.  

 

Figure 1: Ecocosts of carbon footprint, ecosystem, human health and resource scarcity for 

preprocessing corn stover and bagasse using drying and size reduction (left) and for preprocessing 

jatropha and castor using mechanical and solvent extraction (right) 

In the drying and size reduction unit, ecocosts of human health and resource scarcity are 

significant among others as there is considerable fine dust emission during size reduction 

of the feedstocks and the requirement of energy by the hammer mill. Due to the higher 

energy demand in mechanical and solvent extraction, the resource scarcity ecocost is 

significant in these two preprocessing technologies compared with other ecocost types.  
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Figure 2: Ecocosts of carbon footprint, ecosystem, human health and resource scarcity for corn 

stover-, molasses- and bagasse-based bioethanol production using biochemical and 

thermochemical conversion (left) and jatropha oil-, and castor oil-based biodiesel production 

using homogeneous and heterogeneous base-catalyzed transesterification (right) 

Biochemical and thermochemical conversions are the highest ecocost contributor 

compared with the other activities due to the highest GHG, specifically CO2, emission 

generated from the two processes, in which the latter technology contributes more. 

Similar to the bioethanol technologies, the carbon footprint ecocost of biodiesel 

producing technologies (homogeneous and heterogeneous transesterification) are the 

most significant ones because of their higher energy requirement that is fulfilled by fossil 

fuel combustion, which is responsible for emission of CO2 and other criteria pollutants.  

The significant amount of CO2, NOx, CO and VOC emissions from the vehicles, 

especially in the Euro II trailer truck, has resulted in a considerable contribution of 

ecocosts of human health, ecosystem and carbon footprint on the total ecocost.  

3.2. Multi-objective optimiz ation results 

Each run of the MILP model had 1,348,768 constraints and 2,404,604 continuous 

decision variables of which 174 were binary variables. Optimal solutions were found 

between 58.42-102.42 minutes on an Intel 2.60-GHz processor. The set of solutions 

generated to show the tradeoff between the two objectives of the BBSC are depicted in 

Figure 3. 

 

Figure 3: Set of solutions for profit maximization vs ecocost minimization 
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3.3. Optimum strategic decisions 

The optimum solution (Solution C of Figure 3) promotes molasses and jatropha as the 

only biomass feedstock to address the bioethanol and biodiesel demand of Ethiopia in the 

next 10 and 5 years respectively, which is then joined by the other biomass feedstocks. 

Moreover, the optimal solution does not promote any drying and size reduction unit for 

the first 10 years and solvent extraction technology is mainly preferred to preprocess the 

biodiesel feedstocks in the entire planning period. Most of the preprocessing units are 

located proximate to the feedstock supply centers although not necessarily in the same 

zones. Regarding the biorefinery, the installation of biochemical refineries is proposed to 

attain the required amount of bioethanol production in the next 10 years, which is joined 

by thermochemical refineries after a decade. The locations proposed to build the 

biochemical refineries are in zones where sugar industries are available and the capacities 

are driven by the molasses availability. Besides, the model prescribes heterogeneous-

transesterification refineries installation throughout the planning period for producing 

biodiesel. 

4. Conclusions 

To provide optimal strategic decisions and tactical plans of biomass to biofuels supply 

chain (BBSC), this study aims to develop an optimization-based decision support model. 

It is a long-term planning model with objectives of maximizing both economic and 

environmental benefits. The model is utilized to optimize the Ethiopian BBSC over a 20-

year horizon. Unlike to previous researches, a number of environmental impact categories 

are considered to assess the impact of the BBSC on the environment. The addressed 

impact categories include carbon footprint, human health, ecosystem and resource 

scarcity potential of the BBSC. To this end, all these impacts are evaluated on each 

activities of the supply chain (biomass preprocessing, biofuel production and material 

transportation) by taking the type of biomasses and technologies into consideration. The 

results have indicated that biofuel production via biochemical or thermochemical 

conversions is the highest environmental impact contributor in case of bioethanol supply 

chain. Contrary, in supply chain of biodiesel, the highest impact is generated from 

biomass preprocessing using mechanical or solvent extraction. Since this planning 

problem relies on two objective functions, namely, profit and ecocost, a set of optimal 

solutions are generated to come up with the best compromise solution between the two 

antagonistic objectives.  
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Abstract 

The refinery supply chain management is critically important. It covers three highly 

correlated sub problems: the front-end crude-oil management sub problem (CM), the 

refinery manufacturing sub problem (RM), and the multi oil-product pipeline distribution 

sub problem (MOPD). By coordinating the management and operations of the three sub 

problems, it can greatly minimize the operating cost of the entire supply chain.  In this 

paper, a continuous-time and continuous-volume based general integrated optimal 

MINLP scheduling framework for holistic refinery supply chain covering the crude-oil 

management, the refinery manufacturing, and the multi oil-product pipeline distribution 

has been developed (CM&RM&MOPD). The objective is to minimize the total operating 

cost subject to various constraints such as operating rules, product specifications, 

inventory limits, delivery constraints, and oil-product demands at each oil depot. The 

efficacy of the developed CM&RM&MOPD model has been demonstrated by a large-

scale case study.  

Keywords: Integrated scheduling, MINLP, Holistic refinery supply chain, Crude-oil 

unloading and transferring, Refinery manufacturing, Pipeline distribution. 

1. Introduction 

The refinery supply chain management is critically important to the oil industry. It 

contains three subsystems as shown in Figure 1, starting from the crude-oil vessels 

unloading at ports to the oil-product exported to local consumer markets. Specifically, the 

first subsystem includes crude-oil unloading from vessels to storage tanks, transferring 

crude-oil to charging tanks, blending, and feeding to crude distillation units (CDUs); the 

second subsystem involves the refinery manufacturing process, including major refinery 

processing units such as crude distillation, catalytic reforming, fluid catalytic cracking, 

hydrocracking, delayed coking, hydrotreating, gas fraction, alkylation, hydrogen pooling, 

blending, as well as sulfur recovery facilities; the third subsystem is about refinery oil-

product distribution, which consists of inventory management at the refinery product tank 

farm, multi oil-product pipeline transportation, as well as oil-product receiving, 

exporting, and inventory management at different depots.  The three subsystems are 

highly correlated. According to Chima (2007), each subsystem should respond quickly to 

the exact demand of its downstream customers, protecting itself from problems with 

suppliers, and buffering its operations from both demand and supply uncertainty. Thus, 

by coordinating the management and operations of the three subsystems can greatly 

maximize the potential benefit margin of the entire refinery supply-chain.  There exists a 

lot of works explicitly and deeply exploited and studied these subsystems separately, e.g., 

some for the front-end crude-oil management (Zhang and Xu, 2015; Qu et al., 2019), 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50094-4 
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some for oil-product pipeline distribution (Cafaro and Cerdá, 2010; Yu et al., 2020), and 

some works have simultaneously considered the first two subsystems (Yang et al., 2020; 

Xu et al., 2017). However, few studies addressed these three sub systems simultaneously. 

Guyonnet et al. (2009) studied the simplified crude oil unloading, production planning, 

and distribution sub models on a tactical decision level by solving each part in a sequential 

push or pull manner, where the planning horizon is discretized into a day or a week. 

Generally, systematic studies for the integrated scheduling the holistic refinery supply 

chain are still lacking.   
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Figure 1. The studied scope of this study. 

In this paper, a general integrated optimal scheduling model for the crude-oil 

management, the refinery manufacturing, and the multi oil-product pipeline distribution 

has been developed (CM&RM&MOPD).  It consists of five sub-models: (i) a crude-oil 

management (CM) sub-model including the crude-oil unlading, transferring, and 

charging CDUs; (ii) a refinery manufacturing (RM) sub-model covering all major 

refinery processing units; (iii) a joint sub-model coupling the CM sub-model and its 

downstream RM sub-model; (iv) a new multi oil-product pipeline distribution (MOPD) 

sub-model that considers comprehensive handling measures for oil transmix including 

downgrading, blending, and distillation operations; and (v) a joint sub-model coupling 

the upstream RM and the downstream MOPD.  The developed CM&RM&MOPD model 

is a large-scale continuous-time and continuous-volume based MINLP model, where the 

objective is to minimize the total operating cost subject to various constraints such as 

operating rules, product specifications, inventory limits, delivery constraints, and oil-

product demands at each oil depot.   

2. CM&RM&MOPD model 

The detailed CM sub-model is remodeled from a previous study (Zhang and Xu, 2014); 

the RM sub-model is based on the study of Xu et al. (2017); while the MOPD sub-model 

involves the comprehensive TM handling measures and tanks inventory management is 

based on the MOPD sub-model development (Yu et al., 2020) with modest modifications. 

Due to the limited space, more detailed model equations and assumptions could be 

referred to these three corresponding articles.   
 

2.1. CM&RM joint sub-model 

Equation (1) is employed to mathematically connect the CDU charging amount at the 

front-end CM outlet and the RM inlet. For example, the CDU charging amount at the CM 
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outlet during time event one (n=1) will be equal to the CDU charging amount at the RM 

inlet during the injection of the first new slug (i=i0+1) into the downstream pipeline.  

, , ( , , ),   ,1 ,

                               , ,

c new

i c untFed F unt c n i I n N

n the order of new slug i c C unt DU

=    

=  

 
(1) 

2.2. RM&MOPD joint sub-model 

Sub-models RM and MOPD are materially linked through the mass balance of refinery 

storage tanks as shown in Eq. (2).  Once the new slug ii is fed into the pipeline, Eq. (2) 

will calculate the leftover inventory of the refinery storage tank containing the oil product 

p (Invpii,p,rst), which is equal to the previous inventory after feeding slug ii-1 (Invpii-1,p,rst) 

plus the amount of oil product produced by refinery during the time period of feeding 

new slug ii (Bldpii,p), and minus the amount of oil product injected into the pipeline during 

the same time period (Fedpii,p).  Eq. (3) constraints both the lower and upper bound of the 

refinery storage tanks.  

, , 1, , , , ,   , ,   new

ii p rst ii p rst ii p ii pInvp Invp Bldp Fedp ii I p P rst RST−= + −    
 

(2) 

, , , ,, , ,   , ,   
ii p rst ii p rst

lo up new

ii p rstInvp Invp Invp ii I p P rst RST     
 

(3) 

2.3. Objective function 

The objective function of the CM&RM&MOPD model is to minimize the total process 

cost, which is defined in Eq. (4).  It contains three main items representing the cost for 

the three sub problems, specifically, the first item Cost_CM represents the total CM sub-

problem cost, the second item Cost_RM represents the total RM sub-problem cost, while 

the third item Cost_MOPD represents the total MOPD sub-problem cost. 

( ) ( ) ( ) min _  _  _ _Holistic CM RM MOPDCost Cost Cost Cost= + +
 

(4) 

3. Case study 

The scope of the scheduling problem consists of (i) three single-parcel vessels carrying 

their respective crudes, one single docking berth, four storage tanks, four charging tanks; 

(ii) a refinery plant processing two types of crudes and producing four blending oil 

products and four corresponding refinery storage tanks; (iii) one long-distance pipeline 

connected to four oil depots; (iv) each depot has two storage tanks for each oil product; 

and (v) the farthest depot along the pipeline has nine additional storage tanks, including 

two product-rich transmix tanks for storing rich-product of each type of oil product (i.e., 

eight tanks) and one well-mixed tank storing well-mixed ic-TMs. 

3.1. Computational performance and economic analysis 

Based on our study, the developed CM&RM&MOPD model has been programmed with 

GAMS v25.1.2 and implemented on Intel 3.4 GHz Windows PC with 16.0 GB memory.  

The optimization solver DICOPT (based on the extensions of the outer-approximation 

algorithm) is adopted to solve the MINLP problems (Duran and Grossmann, 1986), where 

CPLEX and CONOPT4 are employed as the sub solvers for MIP and NLP sub problems, 

respectively. The problem size and results of economic and computational performance 

are summarized in Table 1. Note that the objective only considers the utility cost and 
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various operating cost, while other costs like crude-oil purchasing cost, labor, 

maintenance, and royalties are not considered.   

Table 1. Economic and computational performance results for the CM&RM&MOPD case 

Problem Size and Solution Efforts 

No. of constraints 25,552 No. of binary var. 3,698 

No. of continuous var. 16,132 Non-zeros 107,878 

Optimality Gap 0.001% CPU time (s) 2,038 

Economic Results (k$) 

Total cost (objective) 281,471.68 MOPD sub-problem cost 226,911.55 

CM sub-problem cost 430.54 Blending credit -771.25 

RM sub-problem cost 54,129.59   

3.2. Results of crude-oil management scheduling 

The CM scheduling results is shown in Figure 3, where the numbers above bars represent 

transferred crude-oil volumes (Mbbl). Various filling patterns indicate the source 

units/facilities of crude-oils; while different colors denote specific time events when 

operations occur.  Small solid black schedule bars represent the RPST time (Xu et al. 

2017). Overall, four time events are employed for the CM scheduling.  The first blue bar 

in the figure, for example, it means at time event 2, a total volume of 1,000 Mbbl crude-

oil is transferred from parcel 1 to storage tank 2 from day 0 to day1.1. As shown, two 

refinery CDUs have received different types of crude blends from charging tanks at 

different time events. Thus, a RPST time is located between any pair of time events. 
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Figure 3. Scheduling result by considering the RPST time. 
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3.3. Results of refinery manufacturing scheduling 

The scheduling results of the RM sub-problem are presented in Figures 4. It displays the 

production profiles of the blended oil products, where the colour of the 3-D column 

represents the scheduling time duration.  The overall inventory based on the holistic 

scheduling are constrained within their capacity constraints.   

 
Figure 4. Production profiles of refinery blending product. 

3.4. Results of multi oil-product pipeline distribution scheduling 

The Gantt charts for the scheduling results of MOPD sub-problem is shown in Figure 5.  

The filling color of bars and arrows represents the type of oil product. The solution values 

of injected oil-product type, volume, and time duration are marked near the patterned 

horizontal arrows at the pipeline inlet.  A recycling operation and the recycled volume of 

an ic-TM at the farthest depot are specifically denoted by a bent arrow with a volume 

value.  The ic-TMs inside the pipeline during scheduling are represented by short and 

slash-patterned bars.  The delivery operations and delivered volumes of oil products to 

corresponding depots are denoted by vertical arrows and values above. 

4. Conclusions 

In this paper, a continuous-time and continuous-volume based general integrated optimal 

scheduling framework for holistic refinery supply chain covering the crude-oil 

management, the refinery manufacturing, and the multi oil-product pipeline distribution 

has been developed. The objective is to minimize the total operating cost subject to 

various operating constraints. It can simultaneously provide optimal solutions for crude-

oil vessels unloading, transfer connections, timings, and volumes; refinery unit 

operations, production profiles; oil-product inventory management at refinery and depots, 

oil slug movement profiles inside pipeline, as well as oil-product discharging strategies 

from pipeline to multiple tanks at different depots. 
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Abstract 

As supply chains evolve from local trading entities to global physical and virtual markets, 

today’s organizations are privileged with enhanced access to unprecedented opportunities 

in volume, variety, deliver time, transportation mode, of resources and goods. However, 

given today’s level of interdependence of these entities that permits reduced mismatches 

in their processes, such organizations are more susceptive to disruptions in their networks. 

Over the past decades, global economies have experienced several crises induced by 

irrepressible circumstances that are either human-influenced, such as geopolitical 

conflicts and cyber-attacks, or provoked by nature, such as natural disasters and pandemic 

outbreaks. Hence, organizations have been placing substantial emphasis on supply chain 

resilience (SCR), with the objective of mitigating the impact of unforeseen risks on their 

supply chains, logistics, and their subsequent consequences on cost control and revenue 

maximization. Conventional SCR relied on increased safety stock levels, partial order 

allocations, supplier’s diversifications, among others. On contrary, next generation of 

resilient supply chain operations can be reached by the digital transformation of its 

elements into the SCR modeling and control. The objective of this paper is twofold. First, 

it introduces the role of the digital transformation, advanced analytics, automation, and 

augmentation of the SCR with the support of cyber-physical systems and security (CPSS) 

solutions from the industry 4.0 age. Second, it provides a structured view  on artificial 

intelligence (AI) and internet of things (IoT) technologies, aiming to establish a robust, 

timely, and successful digital supply chain resilience (DSCR). We believe the discussion 

provided and provoked herein will aid organizations towards addressing proper digital 

capabilities for achieving higher levels of visibility and control, enhanced revenues, 

reduced costs, and improved supply chain resilience augmented by the power of 

digitalization, automation, and artificial intelligence. 

Keywords: Supply chain management, digital transformation, digital supply chain 

resilience, artificial intelligence, internet of things. 

1. Introduction 

The prerequisites of efficient business management are not limited to human and financial 

resources and their supporting ecosystem. Instead, organizational survival and success 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50095-6 
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are underpinned by supply chain resilience (SCR), which encompasses the abilities to 

predict, avoid, contain, manage, recover from, and eventually alleviate adverse impacts 

of continuous disruptions and uncertainties (Melnyk et al., 2014). Previous literature has 

predominantly addressed the conventional supply chain efficiency (SCE) strategies 

involving multiple sourcing, partial order allocation, and extra inventory stocks (Tang, 

2006; Vanany et al., 2009). Although the aforementioned strategies could have been 

sufficient to manage organizational risks in the previous decades, limiting the current 

organizational resilience toolbox to SCE strategies may lead to incurring losses due to a 

lack of no costly responsiveness to sudden events. Schreckling et al. (2017) highlight that 

for most industries, regardless of the field, location, and application, it is fundamental to 

advance towards enhanced digital transformation capabilities to interconnect entities and 

levels of the supply chain (ELSC). Agrawal (2018) emphasizes that digital transformation 

is not a choice in the current world of globalization, but it is imperative for all industries 

to find synergies of a collection of companies’ segments and avoid the pitfalls of 

segregated ELSC. Most scholars addressed SCE and SCR in isolation, while few works 

have acknowledged their interconnected nature. In contrast, the distinctive approach of 

Dolgui et al. (2020) provides a concise differentiation of SCE and SCR and elaborates on 

their interconnections with digital supply chain (DSC) and sustainable supply chain 

(SSC), as illustrated in Figure 1, which shows the main strategies of the DSC, SCR, SSC, 

and SCE interplays. Although Dolgui et al. (2020) offer an efficient representation of the 

interconnectedness of these supply chain (SC) frameworks, it is noteworthy to mention 

that most previous works have not addressed their correlation. 

 

Figure 1. The reconfigurable supply chain network (adapted from Dolgui et al., 2020). 

The main contributions of this work rely on addressing a multi-domain supply chain, 

which involves the interconnectedness of SCE, SCR, DSCE, and DSCR. We emphasize 

that DSCR elements must be embedded in the organization processes throughout its 

suppliers-input-process-outcome-customer (SIPOC) workflows. This ensures optimum 

preparedness to build enhanced: i) resistance against disruptions by employing avoidance 

and containment strategies; and ii) recovery capabilities by stabilizing and returning to 

the pre-disruption and pre-disturbance performance levels.  

Early publications on SC have predominantly focused on SCE, whereas concepts of SCR 

have only recently been addressed and studied. Researchers have primarily addressed the 

impact of digitalization in the supply chain as SCE and later focused on its influence as 

SCR; therefore, most of the research is found in the SCE domain. Literature indicates a 
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significant evolution in the supply chain research over the past decades, primarily because 

of the fast expansion of global markets and their associated opportunities and threats. 

However, DSCE and DSCR remain to be premature research areas where significant 

opportunities exist. The digital transformation of companies must be augmented with the 

relevant resilience and associated optimality that involve automation and digitalization of 

business processes to capture the status of the ecosystems and provide the necessary 

scalability and evolution into optimized and automated operations and controls (Menezes 

et al., 2019a). Gartner (2018) predicts that in 2022, 85% of all artificial intelligence 

projects are expected to fail due to data inconsistencies, inappropriate algorithms, and 

inefficient human capital. Hence, there is a fundamental need for a robust roadmap of 

digital transformation towards a supply chain resilient state. 

2. Stages towards the digital transformation 

2.1. First stage: SIPOC (suppliers-input-process-outcome-customer) integration 

The first stage of any digital transformation project demands a detailed gap analysis that 

considers the overall SIPOC processes and interdependencies, whereby the current digital 

standpoint, desired ultimate organization status, and project milestones are identified. 

Hence, the strategic macro-level visions and operational micro-level requirements should 

be carefully envisioned, discussed, and outlined to allow future scalability and 

straightforward implementation. This should be ideally performed in a cross-

departmental fashion and under strong sponsorship from top leadership to achieve a 

company-wide project environment. Similarly, the success of digital transformation 

projects requires critical factors, including competent human capital, adequate technology 

selection, efficient implementation, top management sponsorship, sufficient training and 

incentives for technology adoption, enterprise resources planning (ERP) integration 

capabilities, optimizing on-premise versus cloud storage, adequate data migration and 

protection, robust cybersecurity policies and infrastructure, clear KPI’s with margins-of-

error and escalation mechanisms and strategies for minimizing staff resistance to changes. 

The aforementioned factors are summarized by Bascur (2020) in three distinct domains, 

namely: a) people, b) business processes, and c) adopted technologies, whereby the 

importance of creating a digital transformation environment is highlighted as well. These 

three domains are considered the corner stones for the digital transformation success 

triangle and are required to provide optimal results. 

2.2. Second stage: SIPOC autonomy 

Once the digital transformation roadmap is established, agile organizations can use the 

aforementioned approach to combine their knowledge of economy, finance, technology, 

market dynamics, and business resilience. This provides efficient capabilities for handling 

continuous risks and uncertainties and progressively enhancing business resilience 

measures with the support of cyber-physical systems and security (CPSS) solutions. 

Throughout the transformation process, organizations need to acknowledge the 

interconnection of DSCR with the capabilities provided by artificial intelligence (AI) and 

the Industrial Internet of Things (IIoT). However, DSCR is expected to be as reliable as 

its weakest Industry 4.0 components. Hence, the concept of IIoT ecosystem 

trustworthiness is fundamental at all levels within digital ecosystems. Sharma et al. (2020) 

categorize an IIoT ecosystem into four interconnected layers, as illustrated in Figure 2, 

encompassing the internet, devices, support, and applications. The trustworthiness of any 

IIoT ecosystem depends on the proper and continuous functioning of all layers to enable 
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the sensors to acquire information correctly. Information is transferred through the 

internet in a timely and holistically fashion. The support layer efficiently receives and 

decodes it to allow the application layer to display, process, and present it on the 

associated user interface for an appropriate decision-making process. We propose the 

addition of a fifth layer, which is integrated to the other layers towards decoding and 

converting data and information into a decision-making process. 

  

Figure 2. Four-layer architecture of IIoT ecosystem (adapted from Sharma et al., 2020). 

The growth of connected IIoT devices is expected to generate increasing amounts of data, 

emphasizing the high need for a better-managed cybersecurity infrastructure that shields 

data integrity (IDC, 2019). This highlights the importance of adopting a regular reviews 

and PDCA (Plan-Do-Check-Act) cycles to continuously ensure data reliability and 

efficient decision-making. Rocher et al. (2019) adopts this concept and argues that cyber-

physical systems should be continuously evaluated to ensure their reliability. The digital 

ecosystem vulnerability is further amplified whenever the instantaneous SCA (Sense-

Calculate-Actuate) cycle is used (Menezes et al., 2019b). This becomes especially critical 

as the IIoT transforms into the state of AoT (Automation-of-Things). The ecosystem 

automatically manages the operation by sensing, calculating, and actuating more 

intelligently and autonomously, without human intervention, within seconds or minutes, 

depending on the business and industry applications. Such technologies provide 

capabilities to identify opportunities of (re-) designing and (re-) implementing supply 

chains to improve the production state within an online closed-loop fashion (Franzoi et 

al., 2021). The massive potential explains the increasing global spending on IIoT, 

estimated to surpass 1 trillion US dollars in 2023 (IDC, 2020). Hence, digital 

transformation in supply chains is expected to provide further insights beyond intrinsic 

knowledge and historical experience, which can be enhanced by ubiquitous visibility and 

connectivity among relevant systems.  

3. Continuous evolution towards the digital supply chain resilience 

Organizations are not more myopic to the importance of continuous evolution for the 

complete digital transformation on their supply chains. They rely on continuously 

exploring new advanced solutions and alternatives that could deliver higher reliability, 

reduced costs, higher efficiency, enhanced resilience, etc. For example, customers have 

been satisfied with monitoring of the geographical locations of their shipments a decade 

ago, but now they are able to monitor the shipments location, temperature, humidity, and 
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visually. The IoT devices of a decade ago had to undergo many challenges of limited 

battery life, expensive data transfer charges, harsh weather, among other. While today’s 

equipment and advances in technologies have eased these challenges. The fast-paced 

environment of our Society 5.0 and Industry 4.0 leads to sudden innovation changes, in 

which today’s state-of-the-art technology shall soon become obsolete. Hence, 

organizations are encouraged to continuously transform and evolve their digital 

capabilities in their supply chains to avoid being among the 40% expected to fade away 

in their processes (Schreckling et al., 2017).  

4. Conclusions 

The development and continuous evolution of digital supply chain resilience is 

fundamental for today’s organizations survival and success. DSCR and its prerequisites 

of digital transformation and automation success relies on three cornerstones related to 

human capital, business processes, and adopted technologies. In the human capital realm, 

the relevant stakeholders responsible for designing, implementing, and managing the 

digital transformation should be up to date with state-of-the-art technologies and 

continuously explore new inventions and trends. It is imperative to introduce training and 

incentive strategies for employees with the objective of enhancing employees’ 

technological literacy and adoption rates within an organization. In the business processes 

realm, it is a must to conduct a detailed gap analysis of the organizational business 

requirements that serves the organization strategic vision, in an agnostic perspective that’s 

receptive to innovative solutions and new methodologies with the objective to create an 

efficient SIPOC that meets the customer requirements, reduces costs, and maximizes 

revenues. The drawback of ignoring the business processes of the digital transformation 

triangle yields a mere digitalization project without tangible digital transformation. In the 

adopted technologies realm, it is critical to explore the organizational digital and 

technological requirements that meet the previously established business processes 

substantiated by SIPOC reviews and structured analysis of the right technologies, ERP, 

licenses, implementation, data storage, right cybersecurity measures, among others. This 

is crucial for building future technology scalability, enhancing efficiency, thereby 

decreasing costs, and increasing revenues. The above-mentioned success triangle 

supports digital supply chain resilience as it results in enhanced preparedness for 

achieving resistance against disruptions and disturbances (by employing avoidance and 

containment strategies) and recovery capabilities (by stabilizing and returning to the pre-

disruption/disturbance performance). Nevertheless, AI and IoT ecosystems 

trustworthiness levels remain an imperative accompanying factor to be carefully 

considered. A key objective of augmenting organizational SCR with the SCA and AoT 

capabilities is to enhance real-time visibility, responsiveness, and control. However, there 

are multiple risks of malfunctions, cyber-attacks, and power failures, severely hindering 

reliability, robustness, and reliability. Hence, rigorous and continuous reviews and 

upgrades are required to ensure optimum results of DSCR technological elements. A 

multi-domain supply chain involving the SCE, SCR, DSCE, DSCR, and their 

interconnectedness are addressed herein, where DSCR elements are embedded in the 

organizational processes throughout SIPOC workflows. The proposed discussion guides 

the implementation of enhanced digital transformation capabilities towards better 

organizational visibility and control, and more efficient operations.  
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Abstract 
Many studies are being conducted to develop methods for the conversion of biomass 
into useful chemicals. To exploit the results from these studies and realise a biomass-
based chemical industry, an appropriate supply chain system must be designed. It is 
therefore necessary to select the best factory locations and reaction pathways as well as 
derive the best operational strategy. When biomass is used as feed stock, seasonal 
variations in the amount of available biomass induces variations in the amount of 
materials flowing in the system. Thus, several thousands of variables and equations are 
involved in such design problems. In this study, different elements in supply chain 
networks were classified into four types according to the feature of their mathematical 
representations: storage, conversion, transport, and utility models. This abstraction 
enabled us to model a wide class of supply chain networks in a unified framework. An 
optimal design system for a supply chain system based on this concept was 
implemented as a web system.  

Keywords: biomass, supply chain, seasonal variation, optimisation. 

1. Introduction 
Biomass has been attracting a significant amount of attention as a raw material for the 
chemical industry. There are several substances that can be chemically extracted or 
synthesised from biomass, and synthetic methods for various substances starting from 
biomass are currently being developed (Serrano-Ruiz et al., 2010, Gérardy et al., 2020). 
If a system capable of producing high-value chemical substances can be implemented, 
the dependence of the chemical industry on petroleum resources can be reduced, 
thereby contributing to the building of a sustainable society highly based on renewable 
resources. 

When implementing a technology for the conversion of biomass to chemical products, it 
is necessary to construct an optimal supply chain network starting from obtaining raw 
materials to the production and delivery of the products. The network should be 
designed by considering the characteristics of the area to which the network is to be 
implemented. This is due to the characteristics of chemical production systems that 
utilise biomass as a raw material. Because biomass is widely dispersed in an area, it is 
necessary to optimally select the location of the processing factories. The amount of 
available biomass varies seasonally. For a biomass-based energy system, there is only 
one product, that is, energy. However, for a chemical production system, multiple 
products with different prices and demands must be manufactured. It is therefore 
necessary to select the optimal reaction pathways from many possible alternatives. The 
reuse of waste energy and heat should also be considered. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50096-8 



 

Several researchers working in the field of biomass supply chain formulate the design 
problem as an MILP and solve it using optimisation software. By using a superstructure 
of the supply chain network covering all possible factory locations, reaction pathways, 
and transport of materials, the design problem can be described as an MILP. However, 
the number of variables and formulas that appear in MILP often exceeds thousands 
because there are several types of substances and seasonal fluctuations that must be 
considered. Even a small modification of the problem, such as the incorporation of new 
reaction techniques or changing the candidate location of the factory, requires a 
significant amount of effort. However, to implement a biomass-based manufacturing 
process for chemicals, various case studies must be conducted to evaluate the impact of 
any possible variations in the conditions. However, because the formulation and 
modification of the optimisation problem is extremely time-consuming, it is only 
possible to conduct several case studies. 

In this study, we aimed to develop a technology that will enable us to formulate the 
optimisation problem quickly and subsequently derive the optimal design of a biomass 
supply chain network. Any change in the superstructure, number of reactions, and 
substances can be easily reflected in the system. In this presentation, we report on the 
key to the modelling method and the development of a web system based on this 
modelling approach.  

2. Assumptions during model development 
The following assumptions were made in the creation of the supply chain model. 

・Each chemical substance whose state changes due to drying, chipping, and packaging 
is treated as a substance different from the one that has not undergone processing. 

・ To consider seasonal fluctuations, the target period is divided into Nt terms, and the 
change in the stored amount of a substance is calculated for each term. 

・ Only one substance can be stored in one storage. 

・ Only one type of substance can be transported via one transportation means at a time.  

・ Each utility is treated as a substance that cannot be stored. 

3. Generalised representation of the supply chain elements  
Several different types of operations are involved in the synthesis of chemical products 
from biomass in a supply chain. These operations are typically biomass harvesting, 

Table 1 Four generalised elements in the supply chain network 
Elements Function Usage
Conversion Convert substance or

utility to different ones
Chemical conversion, drying,
chipping, separation and
purification, packaging

Storage Store substance according
to the difference in the
incoming and outgoing
flow rates.

Storage of substance

Transport Transfer substance from a
storage to another

Transport, harvesting, product
despatch, waste disposal

Utility Supply or recover utilities Supply, reuse, purchase and
sale of utility
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chipping, drying, storage, various reactions, transportation, sale, waste disposal, and 
purchase of utility. First, we considered the mathematical characteristics of these 
elements and classified them into four types, as presented in Table 1. 

The elements included in a single category can be represented using a common 
mathematical model. The conversion model changes one substance or utility into 
another substance or utility and can be expressed by the following mathematical 
formula: 

 
( ) ( )ri ri ri rii i

r R t p P t=∑ ∑  (1) 

Rri(t) and Pri(t) are, respectively, the consumption and production rates of the raw 
material or utility i in the converter r in the period t, and rri and pri are the stoichiometric 
coefficients. Chipping or drying does not change the chemicals, but because it is 
assumed that these operations are treated as producing different substances, they can be 
expressed in this model. 

The storage model is expressed using the following equation. 

 ( ) ( ) | ( ( ))| | |
( ) ( 1) ( ) ( ) ( )s s ri s ri s y s y i sr s r s y s

S t S t R t P t Y tδ= − − + +∑ ∑ ∑  
(1) 

Ss(t) is the amount of substance in storage s at the end of period t. The substance stored 
in storage s is represented by i(s). The second and third terms on the right side are the 
rate of increase or decrease of the substance i(s) by the converter r connected to the 
storage s. The fourth term is the speed at which the substance enters and exits by means 
of transportation y, and δy|s is +1 when y is brought into storage s and -1 when y is 
removed. 

The transport model solely expresses the amount of transportation Yy(t) that occurs in y. 
For transport, it is usually necessary to define the start and end points; however, there 
are certain exceptions. Transportation with no defined starting point represents the 
external inputs to the supply chain network, such as biomass harvesting and electricity 
purchases. On the contrary, transportation without an endpoint represents the emission 
of a substance outside of the system, either as a product to be sold or as a waste that is 
discharged. For product dispatch, the cost associated with it is expressed as a negative 
value. Another rule for a transportation model is that it must always be connected to a 
storage model. 

As stated in Section 2, a utility is treated as a substance that cannot be stored. A utility 
model is defined as a combination of storage and transport models to model the 
handling of a utility in a biomass supply chain system. The storage model is expressed 
by Eq. (2); however, Ss(t) is always zero. Transportation models are used to express the 
purchase and sale of utilities. 

Furthermore, in the conversion, storage, and transport models, the cost of operation is 
expressed as a function of the conversion rate, amount of storage, and transfer rate. For 
conversion and storage, the capital cost of the equipment is modelled as a function of 
the maximum capability.  

579



 

4. Concept of site and path 
By combining the abovementioned four elements, the design problem of a general 
biomass supply chain network can be easily modeled. In large optimisation problems, 
however, the superstructure network tends to be very complex owing to the large 
number of nodes and edges. Notably, in such problems, several candidate sites exist for 
factory locations, all of which have identical reaction networks. Therefore, in this study, 
the concept of site was introduced. In a single site, the reaction pathways can be defined 
using conversion, storage, and utility models; however, no transport models can be in it. 

Several different types of substances are involved in a supply chain network; therefore, 
given a pair of sites, it must be possible to transport several substances between them. 
Those transport models have common origin and destination sites. A path was defined 
as a collection of such transport models. This path can be considered as a road 
connection between the two sites. 

5. Formulation of the optimisation problem 
The objective function of the supply chain optimisation problem is defined as the total 
annual cost of operation. The cost includes the depreciation cost of the equipment, in 
addition to the cost required for biomass collection, transportation, conversion, storage, 
and utility. The sale of products is subtracted from this cost. The optimisation variables 
are the transport rate, conversion rate, storage amount, and so on. Because the problem 
was formulated based on the superstructure, the selection of factory location and 
reaction pathways is possible with this framework. 

Because the storage model connects the conversion and transport models, the 
mathematical formulation of the entire problem can be performed automatically when 
all the necessary information is collected. The conversion model consists of only 
stoichiometric relations and cost formulas. The transport model only expresses the cost 
mathematically. The storage model can be described using a mathematical formula to 
calculate the balance between the reaction and transport rate associated with it. Thus, 
using the concept of the four generalised elements, we can easily generate the 
mathematical equations for the optimal design of the biomass supply chain network. 
Because the equations can be obtained automatically from the collected data, this 
approach is expected to be a powerful tool in the development of optimal designs of 
systems involving several substances and reaction pathways and showing complex 
seasonal variations.  

6. System development  
To design a supply chain network capable of manufacturing chemical products from 
biomass, it is necessary to collect data from different industries such as agriculture and 
forestry, chemical industry, transportation industry, trading companies, and local 
governments. Because the amount of data to be collected is enormous, it is inefficient if 
a single person performs this task of collecting data and then providing it into the 
system. Therefore, a supply chain optimisation system was built as a system on a web, 
to ensure that anyone who owns the data for the supply chain design can enter them 
directly into the system. Figures 1-3 show an example of the browser screen of this 
system. 
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The configuration of the superstructure can be input by a GUI on a web browser. The 
first step is to define the substances and the available conversion technologies. Then, a 
network of sites and paths is drawn (Figure 1). For each site, the reaction network is 
entered using the conversion, storage, and utility models (Figure 2). Transport models 

Figure 1 Example of the network comprising consisting of sites and 
paths (texts are in Japanese) 

Figure 2 Example of the reaction path network in a site drawn using 
conversion, storage, and utility models. (texts are in Japanese) 

 

Figure 3 Example of graphical representation of the optimisation results. (texts are 
in Japanese) 
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should then be defined for each path. The results can also be viewed using the GUI 
(Figure 3). In this system, the mathematical formulas representing each model are 
automatically generated based on the input data, and the optimisation problem is 
defined as MILP. The problem is solved using the lp_solve or IBM CPLEX software. 
The data and results are secured in the mysql database. Further, multiple problems can 
be handled by this system.  

A case study was conducted to address the hypothetical supply chain design problem. 
The network establishment and data inputs were completed in two hours. The problem 
involved the use of 4626 variables and 4680 constraints. The optimisation calculation 
was completed within 10 s. 

7. Conclusions 
Four generalised elements for modelling the superstructure of a supply chain network 
were proposed. A web-based optimisation system was constructed based on this concept. 
The mathematical expression of the optimisation problem was automatically generated 
from the input data of the design problem. The impact of the developed system was 
demonstrated via a case study. 

We plan to utilise this proposed system to design a biomass supply chain system for 
Yokote City in Japan, where abundant forest biomass exists. Since the proposed 
elements can also be used to model a wide range of supply chain networks, we plan to 
apply it to other problems, such as the evaluation of a resource recycling system and in 
the design of carbon-negative societies. 
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Abstract 
We present a methodology for the optimal integration of crude management (CM) and 
refinery-petrochemical (RP) planning operations. The physical coupling between both 
CM and RP optimization subproblems is via the flow rate, physical-chemical properties, 
and composition of the crude blends. For a given economic cost of the crude blends, 
which either provides a selling price for CM or a purchase price for RP, both subproblems 
can maximize their profits independently. But failure to integrate these two subproblems 
can create an imbalance between crude supply and demand. Optimizing CM and RP 
operations simultaneously entails the solution of large-scale, nonconvex quadratically-
constrained quadratic programs (MIQCQPs). We apply a spatial Lagrangean 
decomposition algorithm to tackle these MIQCQPs and demonstrate it on a full-scale 
industrial facility. The results show that Lagrangean decomposition can outperform 
commercial global solvers BARON and ANTIGONE when applied to the monolithic 
MIQCQP. The Lagrangean decomposition can also reduce the optimality gap faster than 
with a clustering decomposition algorithm, leading to optimality gaps below 5% within 1 
hour of CPU time. 

Keywords: Lagrangean decomposition; nonconvex; planning; logistic. 

1. Introduction  
Integrated operations of petrochemical plants and crude oil refineries are more resilient 
to volatility of the hydrocarbons market than independent businesses for petrochemical 
commodities and fuel production. Such integration can be achieved by the exchange of 
by-products or intermediate streams from the refinery that are transformed into added-
value products at the petrochemical units. Some by-products from petrochemical 
processes can also improve fuel quality at the refinery side. The refinery can provide part 
of the natural gas required by steam crackers and the petrochemical side can supply part 
of the hydrogen required by hydrotreating processes (Ketabchi, et al., 2019). Recently, 
deterministic global optimization and Lagrangean decomposition have been applied to 
short-term planning of integrated refining and petrochemical operations (Li, et. al, 2016; 
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Zhao, et. al, 2017; Uribe-Rodríguez, et. al, 2020), formulated as large-scale, nonconvex 
quadratically-constrained quadratic programs (MIQCQPs).  

Herein, we investigate a spatial Lagrangean decomposition-based algorithm to solve such 
MIQCQPs. This problem is challenging for the following reasons: i) Compared to 
previous studies, a wider range of crudes are considered, which differ in terms of volume, 
quality, and cost; these crudes are transported by pipelines or river fleet, depending on 
their geographic location and can be blended to fulfill the volume and quality needs of 
the crude distillation units (CDUs). ii) Product demands are set for a large variety of fuels 
and petrochemical commodities. iii) Process units can be operated in exclusive or non-
exclusive campaigns. iv) Higher connectivity between units and intermediate streams is 
considered in the process network. All these features lead to MIQCQPs with thousands 
of bilinear terms. Recently, Uribe-Rodríguez et al., (2020) tackled this problem with a 
deterministic global optimization approach based on process clustering decomposition 
(CL). Results for several scenarios have produced better incumbent solutions and smaller 
optimality gaps than BARON and ANTIGONE, but the optimality gap remains high for 
certain scenarios (11% on average). Therefore, a spatial Lagrangean decomposition-
based algorithm is developed to further enhance solution quality and reduce the optimality 
gap. 

2. Methodology 
The monolithic short-term planning problem for the integrated refinery-petrochemical 
facility can be cast as the following MIQCQP: 

𝑧∗: = max	𝑓"(𝑥, 𝑦)  
s. t. 𝑓#(𝑥, 𝑦) ≤ 0	∀𝑚 ∈ {1,… ,𝑀}  

𝑥 ∈ [𝑥$ , 𝑥%] ⊆ ℝ&
' , 𝑦 ∈ {0,1}(  

(P) 

 
where 𝑥 are the non-negative continuous decision variables and 𝑦 the binary decision 
variables used to select process operating conditions. The objective function and the 
constraints are furthermore quadratic in 𝑥 and linear in 𝑦: 𝑓#(𝑥, 𝑦):=
∑ 𝑎)*#𝑥)𝑥* + 𝐵#𝑥 + 𝐶#𝑦 + 𝑑#(),*)∈/$! ∀𝑚 ∈ {0,… ,𝑀}. 𝐵𝐿# is an (𝑖, 𝑗)-index set 
defining the bilinear terms 𝑥)𝑥*, while  𝑎)*#, 𝑑#, 𝐵# and 𝐶# are parameters.  Problem P 
can also describe optimization problems appearing in business units of the facility, 
subproblems that can be solved independently for a given economic incentive. 
 
In the context of refinery operations, problem P exhibits a block structure, which makes 
it amenable to Lagrangean decomposition (Pinto, 2000). Figure 1 shows the material and 
economic flows between crude management (CM) and the refinery-petrochemical (RP) 
plant, which includes refinery (REF), petrochemical (PTQ) and fuel blending (FB) 
operations. CM includes the operations involved in the selection, transportation, blending 
and allocation of the crudes. CM buys crude oil from different sources (domestic or 
import) and sells crude blends to the refinery. CM maximizes profit by buying cheap 
crude oil on the market, minimizing the transportation cost, and producing crude blends 
to be sold at a price 𝜆0 that is a function of their quality. The transformation of crude oil 
in RP involves operations such as crude oil fractionation at the CDUs, naphtha, jet, diesel 
and gas oil hydrotreating, gas oil catalytic cracking, etc. RP maximizes its profit by 
buying enough quantity of good-quality crude blends from CM at a cheap price (𝜆0), 
without being concerned about delivering costs. 
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Figure 1. Subproblems derived from P. 

2.1. Reformulation of problem P 
 
Let the index set 𝑋 denote the complicating variables (appearing in the mass balance 
check point in Figure 1) that are shared between subproblems 1 (CM) and 2 (RP). Problem 
P’ is made equivalent to P (Guignard and Kim, 1987; Grossmann, 2021) after duplicating 
such variables and adding the constraints 𝑥12 = 𝑥13	∀𝑒 ∈ 𝑋. Notice that the cost and 
constraints are also partitioned over the two subproblems. The reformulated problem P’ 
is now amenable to Lagrangean decomposition. 

𝑧∗: = max	K∑ 𝑓")(𝑥) , 𝑦))3
)42 L                                                                

 s. t.		𝑓#"
) (𝑥) , 𝑦)) ≤ 0	∀𝑖 ∈ {1, 2},𝑚) ∈ {1,… ,𝑀}    
𝑥12 − 𝑥13 = 0	∀𝑒 ∈ 𝑋  

(P’) 

 
2.2. Lagrangean relaxation of problem P’ 
 
A Lagrangean relaxation (Guignard, 2003; Guignard and Siwhan, 1987) LRl of problem 
P’ is created by transferring each constraint 𝑥12 = 𝑥13 into the objective function, 
multiplied by a Lagrangean multiplier 𝜆1 (unrestricted in sign). 
 

𝑧5$6∗: = max	K∑ 𝑓")(𝑥) , 𝑦))3
)42 + ∑ 𝜆1(𝑥12 − 𝑥13)1∈7 L  

  s. t. 𝑓#"
) (𝑥) , 𝑦)) ≤ 0	∀𝑖 ∈ {1,2},𝑚) ∈ {1,… ,𝑀}  

(𝐋𝐑𝛌) 

 
2.3. Decomposition of 𝑳𝑹𝝀 

For fixed values of 𝜆1, problem 𝐋𝐑𝛌 can be decomposed into 2 parametric subproblems 
of type 𝐋𝐃𝛌𝒊 , which can be solved independently. The optimal value 𝑧5$;∗ is equal to 
𝑧5
2,$;∗ + 𝑧5

3,$;∗ and provides an upper bound 𝑈𝐵 on the optimal value 𝑧∗ of problem P. 
To obtain the tightest relaxation possible, 𝜆1 is updated by means of an iterative 
procedure. Herein, we adopt the hybrid method by Grossmann and co-workers (Mouret 
et al., 2011; F Oliveira et al., 2013; Yang et al., 2020) for updating the Lagrange 
multipliers, which is based on a subgradient method, cutting plane approach, trust-region 
method and volume algorithm. Note that the solutions from these subproblems provide 
good quality initial points to solve the monolithic problem P as well. 
 

PTQCM REF
𝜆𝑢 , 𝜆𝑢,𝑝

𝑄𝐹𝑢𝐶𝑀 𝑄𝐹𝑢𝑅𝐸𝐹

FB

𝑢 = 𝐶𝐵1, … , 𝐶𝐵8 Economic flow Mass exchange Mass balance check point

𝑃𝐹𝑢,𝑝𝐶𝑀 𝑃𝐹𝑢,𝑝𝑅𝐸𝐹
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𝑧5
),$;∗: = max	 U𝑓")(𝑥) , 𝑦)) + ∑ ∑ 𝜆1𝑥1)1∈7

3
*4)&2 − ∑ ∑ 𝜆1𝑥1)1∈7#"

)<2
*42 V  

s. t. 𝑓#"
) (𝑥) , 𝑦)) ≤ 0	∀𝑚) ∈ {1,… ,𝑀}  

(𝐋𝐃𝛌𝒊 ) 

 

3. Case study 
The refinery-petrochemical facility produces several grades of gasoline, diesel and fuel 
oil, and a set of petrochemical processes for providing BTX, polyethylene, propylene, 
waxes, and specialty solvents. These commodities mostly supply the Colombian market, 
with only a small part being exported. A domestic petroleum production equal to 297 
kbbl/day is assumed, involving 17 types of crude oil distributed over 8 geographical 
regions. The refinery can also import 7 types of crude, with up to 15 kbbl/day per crude. 
The total refining capacity is 248 kbbl/day and the logistic system for crude and 
commodities comprises 4 river fleet routes and a system of 9 pipelines. The refinery-
petrochemical facility is composed of 60 industrial plants, represented by about 125 
models. Crude mixing and fuel blending is done in a tank farm, modelled as 30 additional 
units. The complete model of the system leads to a MIQCQP model with 6975 equations, 
35104 nonlinear terms, 9592 continuous and 279 discrete variables. The linking variables 
between both subproblems in the Lagrangean decomposition algorithm correspond to the 
flowrate and qualities of the 𝑢 ∈ 𝑈=6/ = {𝐶𝐵1,… , 𝐶𝐵8} crude streams fed to the CDUs. 
Flowrates 𝑄𝐹0=> and 𝑄𝐹06?@ are traded between CM and RP at the market price 𝜆0. 
Multipliers 𝜆0,' are penalty costs associated with the 𝑝 = 1,… ,3 crude blend qualities 
𝑃𝐹0,'=> and 𝑃𝐹0,'6?@. In total, 57 Lagrange multipliers distributed into flowrates (8), bulk 
properties (24), and crude blend composition (25) are considered. 

We define a minimum throughput to the RP of 100 kbbl/day, and set default values for 
the Lagrange multipliers (𝜆0 = 0, 𝜆0,' = 0) at the start of the algorithm. At zero crude 
blends cost, the RP profit is about 11.4 MUSD/day, whilst CM loses 3.5 MUSD/day (the 
income from selling crude blends is zero), leading to an upper bound (UB) of 7.9 
MUSD/day. CM chooses to make 100 kbbl/day of CB7, with 20 API, 1.13 %wt sulfur 
content and 2.70 mg KOH/g crude oil. These features indicate that CB7 is a heavy, sour, 
and acidic crude oil with poor qualities for processing at the RP. In contrast, and because 
it is not paying for the crude blends, RP chooses to include all eight crudes in the basket, 
leading to a total refinery capacity of 203 kbbl/day. The crude oil throughput to the RP 
has 32 API, 0.66 %wt sulfur content and 1.25 mg KOH/g crude oil, much more suitable 
to process at the CDUs than the crude blend produced by CM. 

The values of the Lagrange multipliers are updated at each iteration (Figure 2) aiming at 
tightening the relaxation bound on P. The objective function value for the CM 
subproblem increases (not necessarily monotonically) until reaching its maximum at 
iteration 17. At that point, CM supplies 240 kbbl/day of a crude basket composed by 
crude blends CB3 (11%), CB4 (2%), CB5 (10%), CB6 (19%), and CB7 (58%). It can be 
viewed as a medium crude blend (26 API), with 0.96 %wt sulfur content and 1.92 mg 
KOH/g crude oil. Likewise, the objective function for the RP subproblem decreases 
because of the increase in the cost of the crude blends. At iteration 17, the RP throughput 
is about 137 kbbl/day, with CB1 (23%), CB2 (18%), CB3 (20%), CB5 (18%), CB6 (3%), 
CB7 (17%) and CB8 (2%). Compared to iteration 1, the RP requires a crude blend with a 
lower mg KOH/g crude oil (0.53) and keeps the same figures for API and sulfur content. 
From iterations 18 to 37, the changes in the objective function of CM and RP are steadier. 
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decomposition, BARON and ANTIGONE, in terms of profit, optimality gap and 
computational runtime.  
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Abstract

Recently, there has been increased discussion about the potential of green ammonia as a
carbon-free fuel for maritime transportation. If deployed at scale, the demand for ammonia
from the shipping industry would be immense such that significant new investments had to
be made in green ammonia infrastructure, including entire supply chains of new production
sites and ammonia refueling ports. In this work, we develop an optimization model for the
design of such a green ammonia supply chain. The proposed model integrates a large set
of decisions, including the location of production plants and refueling ports, operational
decisions related to green ammonia production using renewable energy, and ship routing
decisions. This results in a complex mixed-integer linear programming formulation, which
we apply to an illustrative case study to demonstrate its potential to address the given
supply chain design problem.

Keywords: sustainability, green ammonia, maritime transportation, offshore wind

1. Introduction

Ammonia is one of the most produced commodity chemicals, and as the basis for most
nitrogen fertilizers, it has been a key enabler for the sustained global population growth
since the invention of the Haber-Bosch process. In recent years, ammonia has come under
increased scrutiny due to the high carbon intensity of the conventional production process,
and there have been various efforts in making its production more sustainable. One way
to achieve this is to use renewable electricity to produce hydrogen via electrolysis and
nitrogen via air separation and then react both chemicals to form ammonia. Ammonia
that is produced in this manner is considered green. Green ammonia does not only have
the potential to decarbonize fertilizer manufacturing, but can also be used as a carbon-free
energy carrier [MacFarlane et al., 2020, Palys et al., 2021]. As such, it holds the promise
to improve sustainability in multiple sectors. One exciting prospect is the use of ammonia
as a marine fuel [de Vries, 2019]. The International Maritime Organization (IMO) has
declared the goal of reducing the international shipping sector’s annual greenhouse gas
emissions by at least 50% compared to 2008 by 2050, which requires the use of alternative,
less carbon-intensive fuels. Green ammonia is an ideal candidate as it does not cause any
CO2 emissions, neither in its production nor when it is combusted. In addition, it is sulfur-
free, which ensures compliance with new IMO regulations.

http://dx.doi.org/10.1016/B978-0-323-85159-6.50098-1 



H. Wang et al.

In this work, we consider the design of green ammonia supply chains specifically for mar-
itime transportation. For this purpose, we develop an optimization model that incorporates
the production and distribution of green ammonia and its use as a marine fuel. Notably, in
addition to ammonia produced on land, we also consider green ammonia that is produced
on the open ocean using offshore wind. In our recent study [Wang et al., 2021], we have
shown the techno-economic feasibility of such green offshore ammonia plants, which pro-
vide a means of harnessing wind energy far from the mainland. Here, such plants can
further serve as offshore refueling stations, which would allow ships to carry less fuel
when embarking on their trips across the ocean. This supply chain analysis aims to de-
termine the optimal locations of ammonia production plants and refueling stations while
considering the routing and scheduling of ship fleets as well as the production and storage
of green ammonia. We propose a mixed-integer linear programming (MILP) formulation
and apply it to an illustrative case study that demonstrates the main features of the model.

2. Mathematical Formulation

We consider a network consisting of a set of ports (including locations on the ocean) M
and a set of ship fleets V where each fleet is defined by its origin and destination ports
and the amount of cargo to be shipped. Each fleet can be split into multiple subfleets (or
splits) that can travel on different routes. We consider a set of time periods T and adapt the
arc-load continuous-time maritime inventory routing formulation proposd by Agra et al.
[2017] to model the decisions associated with the routing of the subfleets. In the following,
we briefly describe the main constraints of the proposed model.
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Figure 1: Illustration of the arc-load continuous-time formulation.

Figure 1 provides an illustration of the arc-load formulation. Here, each node is defined
by a pair (i,m) representing port i visited the mth time (by any subfleet). We define a
binary variable ximjnvk that equals 1 if split k of ship fleet v travels from node (i,m) to
node (j, n). Eq. (1) states that the sum of the split fractions, uvk, for each fleet has to be
1. The binary variable hvk equals 1 if fleet v is split. The binary variable wimvk equals
1 if split k of fleet v visits port i at order m. Eqs. (3) and (4) state that each port visit
and path traveled can be taken by one split only, and Eqs. (5)-(7) ensure that a port visit
of a split only exits if the split exists, where zimvk equals 1 if (i,m) is the terminal node
visited by split k of fleet v. Eq. (8) ensures that all fleets travel from their origin ports to
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their destination ports, where set O contains all origin and destination ports of fleet v.∑
k∈K uvk = 1 ∀ v ∈ V (1)

hvkU
min
v ≤ uvkU

tot
v ≤ hvkU

max
v ∀ v ∈ V, k ∈ K (2)∑

v∈V
∑

k∈K wimvk ≤ 1 ∀ (i,m) ∈ SA
v (3)∑

v∈V
∑

k∈K ximjnvk ≤ 1 ∀ (i,m, v, k) ∈ SX
v (4)∑

(i,m)∈SA
v
wimvk ≥ hvk ∀ v ∈ V, k ∈ K (5)∑

(j,m)∈SA
v
xO
jmvk = hvk ∀ i ∈ I, v ∈ V : Xiv = 1, k ∈ K (6)∑

m∈M zimvk = hvk ∀ i ∈ I, v ∈ V : Ziv = 1, k ∈ K (7)∑
m∈M wimvk = hvk ∀ v ∈ V, (i,m) ∈ SA

v : (i, v) ∈ O, k ∈ K (8)

Eqs. (9)-(14) are additional routing constraints. The binary variable xO
jmvk equals 1 if

(j,m) is the first node visited by split k of fleet v, as stated in Eq. (9). Eqs. (10) and
(11) are the flow conservation constraints. Eq. (12) ensures that a port visit is recorded by
wimvk, and Eq. (13) guarantees that at most one fleet visits node (i,m), where yim equals
1 if port visit (i,m) is taken by a fleet, and the visiting order is constrained by Eq. (14).∑

n∈M xinjmvk = xO
jmvk ∀ i ∈ I, v ∈ V : Xiv = 1, k ∈ K (9)

wimvk −
∑

(j,n)∈SA
v
xjnimvk = 0 ∀ v ∈ V, (i,m) ∈ SA

v : Xiv = 0, k ∈ K(10)

wimvk −
∑

(j,n)∈SA
v
ximjnvk = 0 ∀ v ∈ V, (i,m) ∈ SA

v : Ziv = 0, k ∈ K(11)

wimvk ≥ xO
imvk, wimvk ≥ zimvk ∀ v ∈ V, (i,m) ∈ SA

v :, k ∈ K(12)∑
v∈V

∑
k∈K wimvk = yim ∀ (i,m) ∈ SA

v (13)

yi,m−1 − yim ≥ 0 ∀ (i,m) ∈ SA
v : m > 1(14)

Eqs. (15)-(19) are the ship fuel inventory constraints. Eqs. (15) and (16) compute the ship
fuel level, limvk, for each subfleet when it departs from port visit (i,m). Here, γvTij is the
fuel consumption rate for fleet v that travels from port i to j, and f̄jnvk is the total amount
of fuel that split (v, k) receives from port visit (j, n). The binary variable gimvkt equals 1
if split (v, k) visits (i,m) at time t; only then refueling can take place.

− C̄vk(1− ximjnvk) ≤ limvk + f̄jnvk − γvTijximjnvkuvk − ljnvk

≤ C̄vk(1 − ximjnvk) ∀ (i,m, j, n) ∈ SX
v , k ∈ K (15)

− C̄vk(1− xO
jnvk) ≤ lOvk + f̄jnvk − γvT

O
jvx

O
jnvkuvk − ljnvk

≤ C̄vk(1 − xO
jnvk) ∀ (j, n) ∈ SA

v , k ∈ K (16)

f̄imvk =
∑

t∈T fimvkt ∀ v ∈ V, (i,m) ∈ SA
v , k ∈ K (17)

fimvkt ≤ M biggimvkt ∀ v ∈ V, (i,m) ∈ SA
v , t ∈ T , k ∈ K (18)

gimvkt ≤ wimvk ∀ v ∈ V, (i,m) ∈ SA
v , t ∈ T , k ∈ K (19)
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Eqs. (20)-(25) are the scheduling constraints where tEim and tEimvk denote the arrival and
departure time of visit (i,m) for split (v, k), respectively. The parameters TQ

i , TS
i , TO

iv ,
and T̄ are the time required to load one unit of fuel at port i, the time to prepare to refuel,
the time required to travel from the origin to port i, and the length of the time horizon,
respectively. Eq. (20) states that the waiting time at port (i,m) can only be nonzero if the
port is visited. Eq. (21) ensures that a fleet can only arrive at the next port after its previous
port visit is completed. Eqs. (22) and (23) constrain the time for arrival and departure to
and from port (i,m). The disjunction in Eq. (24) states that the arrival and departure times
of two consecutive port visits are determined according to the visiting order.

tEimyim ≥ tAim +
∑

v∈V
∑

k∈K TQ
i f̄imvk +

∑
v∈V

∑
k∈K TS

i wimvk(1− Ziv)(1−Xiv)

∀ (i,m) ∈ SA
v (20)

tEim + Tij − tAjn ≤ 2T̄ (1− ximjnvk) ∀ v ∈ V, (i,m, j, n) ∈ SX
v , k ∈ K (21)∑

v∈V
∑

k∈K TO
ivx

O
imvk ≤ tAim ≤ |H|yim ∀ (i,m) ∈ SA

v (22)

tEim ≤ |H|yim ∀(i,m) ∈ SA
v (23)

∣∣yim + yi,m−1 ≤ 1
∣∣ ∨

∣∣∣∣∣∣∣∣
yim = yi,m−1 = 1

tAi,m−1 ≤ tAim
tEi,m−1 ≤ tEim

tEi,m−1 + TBiyim ≤ tAim

∣∣∣∣∣∣∣∣ ∀ (i,m) ∈ SA
v (24)

∑
(i,m)∈SA

v
gimvkt ≤ 1 ∀ v ∈ V, k ∈ K, t ∈ T (25)

Eqs. (26)-(28) are the port inventory constraints. The ammonia inventory level at port i at
time t is denoted by sit, Pit is the production rate at port i in time period t, and qijt is the
amount of ammonia transported from port i to j in time period t.

sit = si,t−1 + Pit −
∑

v∈V
∑

k∈K
∑

m∈M fimvkt

−
∑

j∈J (qijt − qjit) ∀ i ∈ I, t ∈ T (26)
si,|T | ≥ si0 ∀ i ∈ I (27)
si,t ≤ Qi ≤ Qmax

i ∀ i ∈ I, t ∈ T (28)

Eqs. (29)-(32) are the ammonia production constraints. The binary variable oit equals 1 if
ammonia is produced at port i in time period t, pi and ri equal 1 if port i is an ammonia
production site and refueling station, respectively. The production rate Pit is bounded by
the ammonia plant’s capacity Ci which is bounded by the maximum plant capacity. The
production rate is a function of wind speed, ωit, and the plant capacity.

oit ≤ pi ∀i ∈ I, t ∈ T (29)
0 ≤ Pit ≤ Ci ≤ Cmax

i oit ∀i ∈ I, t ∈ T (30)
Pit = f(ωit, Ci, oit) ∀i ∈ I, t ∈ T (31)
qijt ≤ pi, qijt ≤ rj ∀ i ∈ I, j ∈ I, t ∈ T (32)

592



Green Ammonia Supply Chain Design for Maritime Transportation

Finally, the disjunction in Eq. (33) links the routing constraints with the production and
inventory constraints. The overall problem can be formulated as an MILP.


tAim ≤ t ≤ tEim
wimvk = 1
gimvk = 1


 ∨


¬

[
tAim ≤ t ≤ tEim
wimvk = 1

]

gimvk = 1


 ∀(i,m) ∈ SA

v , k ∈ K (33)

3. Computational Case Study

The objective is to minimize the overall cost, which includes both the capital and operating
costs. The capital cost includes the cost of constructing the green ammonia production
plants and refueling ports while the operating cost consists of the costs for producing,
storing, and transporting ammonia as well as the cost of operating the ship fleets. In our
case study, we consider two proxies for the shipping cost: travel time and fuel cost.

As shown in Figure 2a, we consider a network of six ports and two ship fleets, where one
fleet has to transport cargo from Port 1 to Port 6 while the other one has to travel from
Port 2 to Port 5. Ammonia can be produced at every port; however, Port 3 is assumed to
be a location on the open ocean where wind speeds are significantly higher and steadier
[Possner and Caldeira, 2017]. As a result, the cost of producing ammonia at Port 3 is
lower than at the other locations. With a time horizon of 30 days (each day being one
time period), we optimize the system for two cases. In Case 1, we apply a penalty on the
total travel time, assuming that the operating cost of shipping and the opportunity cost of
delivering more cargo mainly depend on the travel time. In Case 2, we only consider fuel
cost as a proxy for shipping cost.
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Figure 2: (a) Optimal routing decisions in Cases 1 and 2. Ports are depicted as grey nodes,
grey dashed lines indicate the origin and destination ports. The blue arcs depict the optimal
routes in Case 1 while the green and orange arcs represent the optimal routes in Case 2. (b)
Ammonia production and refueling schedule and the resulting inventory profile at Port 3
in Case 2. Positive values indicate production while negative values indicate consumption.

Figure 2a shows the optimal routing decisions in both cases. In Case 1, the optimal route
for each fleet is to simply go directly from its origin to its destination (blue arcs), which
indicates that the shipping cost as a function of the travel time outweighs the benefit of
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producing ammonia at a lower cost at Port 3. In Case 2, the optimal route for each fleet
involves stopping at Port 3 to refuel since part of the objective is to reduce fuel cost. Also,
in this case, we see that all cargo is transported from Port 1 to Port 6 using one trip (orange
arc), while two trips are required to transport all the cargo from Port 2 to Port 5 (green
arcs). The reason is that, to reduce capital cost, the optimal solution suggests building an
ammonia plant at Port 3 with a capacity that is not large enough to fuel the entire fleet that
travels from Port 2 to Port 5. Hence, the fleet has to be split into two subfleets that arrive
at Port 3 for refueling at different times. Figure 2b shows the optimal ammonia production
and refueling schedule at Port 3. One can see that the three subfleets arrive at the port for
refueling at different times such that there is enough time between two visits to replenish
the ammonia inventory.

4. Conclusions

In this work, we considered the design of supply chains for the production of green am-
monia and its use as a marine fuel in the shipping industry. This required the integration
of maritime inventory routing and production scheduling decisions into a facility location
formulation, which gives rise to a complex MILP model. We applied the proposed model
to an illustrative case study, which demonstrates the model’s ability to achieve solutions
that optimally balance the costs of investment, shipping, and ammonia production. Future
work will focus on the development of efficient solution algorithms that allow us to solve
large-scale instances and draw conclusions about the potential benefit of green ammonia
as a sustainable marine fuel at the industrial scale.
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Abstract 

In the last years, the increase in energy demand along with depletion in the production of 
oil wells has driven the search of alternative energy sources. In addition, these sources 
must be renewable, in order to contribute to the solution of the climate change problem. 
Therefore, different alternatives have been proposed and evaluated to satisfy global 
energy demand. Among them, biomass has received higher attention due its availability, 
which places it as the third energy source, after crude and oil fuels. Particularly, the 
agricultural residues represent an option to obtain different biofuels, with the possibility 
to reduce between 78-94% greenhouse emissions by its use. Moreover, the integration of 
this kind of residues in new supply chains economies contributes to its valorisation, 
adding an economic benefit to its origin crop. Thus, it is necessary to evaluate the 
feasibility of using these biofuels, along with their environmental impact. Hence, this 
work was optimized the supply chain for the production of solid fuels from different 
agriculture residues along with its integration into the electric power grid; as a case of 
study, it was considered the agriculture residues generated in Mexico and its electric 
power grid. Results show that is possible to generate 140,673,599 GJ, and at the same 
time achieve a reduction of 20% of CO2 emissions. 

Keywords: Solid biofuels, optimization, supply chain, environmental impact. 

1. Introduction  

Due to the current increase in energy demand around the world, different bio-energy 
sources have received higher attention, being biomass waste one of the most promising 
sources (Schawarzböck et al., 2016). In this way, agro-industrial sector contributes 
different kinds of residual biomass, which are derived from all the operations or activities 
involved in the supply chains involved. In this context, agriculture industrial waste can 
be classified into four main groups (Kumar-Chhetri et al., 2020):  

 Crop cultivation waste (stalk, silk, stem, seed, pod, root, weeds, etc.) 
 Food loss/waste (edible and non-edible or unprocessed food, spoiled food, etc.) 
 Industrial food processing waste (husk, seed, bagasse, fruit, peel, rind, etc.) 
 Livestock rising aqua/microbial culture waste (excreta and carcasses dead cell, 

waste-water, etc.)  
Particularly, crop cultivation waste impacts the environment due to these residues are 
mostly burned in the fields or put into landfills, being used only a lower percent as fodder. 
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Therefore, some works have focused on finding the optimal alternative to add value to 
these kinds of residues; highlighting that these kinds of residues are a promising raw 
material in biofuels processes production (Martínez-Guido et al., 2019). According to 
Debnath & Babu (2019) biofuels can be produced from different types and forms of 
biomass and residual biomass. Particularly, agricultural residues have an attractive 
potential to be used raw material in pellets (solid biofuel) production supply chains (Tauro 
et al., 2018), incorporating the advantages as overcome the issue with a lower energy per 
volume unit, easy management, transportation, handling cost, storage, and a better 
economic efficiency relation in comparison with liquid biofuels (Theppitak et al., 2020). 
Therefore, the pellets are part of the current renewable alternative sources for electric 
generation (Sandberg et al., 2019); however, nowadays only a few studies have been 
focused on the use of pellets obtained from agricultural and into electric power grids, 
incorporating this process as an agriculture residues revalorization strategy (Martínez-
Guido et al., 2019). Hence, in this work is proposed the use of different agricultural 
residues (obtained from diverse Mexican crops), which nowadays doesn’t have any use 
of the market, as raw material for pellets production. Moreover, the possible supply chain 
configuration to use these solid biofuels into the electric power grid of México is also 
analysed.  

2. Problem statement 

According to Kaza et al. (2018), around the world are generated almost 2.01 billion 
tonnes/y of solid wastes, and it is expected that this volume increase by 40% by 2050. 
Particularly, Mexico contributes with approximately 72,172 tonnes of agricultural 
residues per year (ANBIO, 2020); this residual biomass is constituted by chemical 
compounds of high value as cellulose, hemicellulose and lignin (Santiago del Rosa et al., 
2018). However, as Pradhan et al. (2019) indicated these kinds of residues are left in the 
fields or even burned, mainly in developing countries. Therefore, the use of these residues 
as raw material for the pellets production could be a strategy with diverse benefits, such 
as the dependence on oils reduction, fuels with lower emissions, avoid the scarcity of 
conventional fuels, and, at the same time, to promote the circular economy. The goal in 
agriculture residues pelletization is to produce a cheaper and sustainable biofuel with the 
capacity to satisfy the Mexican electric energy demand. However, is not possible to take 
into consideration the pellets integrations in all the national electric power plants, due to 
the available technology in each electric plant; thus, for the analysis only 62% of national 
demand was considered. Hence, the design, planning and scheduling of a new supply 
chain for the integration of these kinds of residues into the electric power grid involving 
the economic, social, and environmental aspects is required (See Figure 1). Therefore, the 
optimal design could offer a win-win situation where both agriculture residues 
management and energy security issues are achieved, which is demonstrated through a 
case study of the electricity supply chain in Mexico. 

Figure 1. Agro-residues revalorization. 
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3. Methodology  

As it was mentioned before, the proposed approach was performed using the current 
situation of the Mexican electrical energy demand as a case study. In this way, agricultural 
residues from the 18 crops (i), shown in Table 1, were analyzed in terms of seasonal 
availability and flux production in the 32 states (k) that constitute Mexico; since it would 
be wrong to take into consideration a constant flow of residues throughout the year.  

 
Table 1. Agriculture residues considering in this work 

 
Hence, using Eq. (1) was possible to calculate the flow of residues of each crop produced 

����,�,�
��� � per week (w), biomass flux is directly linked with the respective parameter, 

yield of ton of residue per a ton of crop cultivated ���,�,�
����� and the area used for the 

harvesting ���,�,�
�����. 

���,�,�
��� = ��,�,�

���� ∗ ��,�,�
����

, ∀ � ∈ �, � ∈ �, � ∈ �  (1) 

 
Considering the agriculture residues availability, these can be collected in each harvesting 
site and transported to the pelletization plant. The installation of the pelletization plant is 
considered for each state in Mexico; however, the decision of the existence is constrained 
by the installation cost, and the residues availability in each state, a binary variable was 
used to identify in which states are installed a pelletization plant. This binary variable 

���,�
�� � is multiplied by the fixed installation cost ����,�

����, a value that added to the 

variable cost ����,�
���� multiplied by the process flow capacity ����,�

�����, gives the total 

installation cost of each pelletization plant ����,�
�����.  

���,�
���� = ���,�

��� ∗ ��,�
�� + ���,�

��� ∗ ���,�
����, ∀ � ∈ �, � ∈ �  (2) 

With the flux of pellets ����,�,�
��� � obtained in each installed plant, is possible to produce 

electricity in each selected power plant, and satisfy the electrical energy demand in each 

state ����,�
�����; however, if a state doesn’t have enough solid biofuel, hence the 

conventional fuel ����,�,�
��� � is used to satisfy the required rest, as is described by Eq. (3).  

���,�
���� = ∑ ���,�,�

��� ∗ ���
����

� + ∑ ���,�,�
��� ∗ ���

����
� , ∀ � ∈ �, � ∈ �     (3) 

In order to obtain the optimal supply chain configurations, the proposed mathematical 
model included residues collection, transportation, transformation, and pellet distribution 
balances as mathematic equations. Additionally, equations as economic balances and 
emissions balances were proposed. Consequently, optimal solutions were obtained 
having as multi-objective function the CO2 emissions and total cost minimization, and 
the social impact maximization, as is described in Eq. (4).  

�� = ��� ���
����, ��� ����, ��� ���    (4) 

Therefore, multi-objective problem was codified at GAMS platform and solved using the 
ε constraint method (Diwekar, 2010), in which one of the objective functions is optimized 

Agave Broad Beans Coffee bean Kidney beans Peanut Sorghum 
Banana Chickpea Cotton Lentil Rice Sugar Cane 
Barley Cocoa Fodder Oats Sesame Wheat 

power grids
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using the others objectives functions as constrains, leading to finding the extreme solution 
at the feasible region. Afterward, the rest of the objective functions are optimizing under 
the same criteria. In this way, were analyzed five different scenarios, for each solution 
(scenario) the model calculates 608 discrete variables, 513,774 continuous variables 
under 68,718 constraints. The CPU execution time per assay was 2.265 seconds in an 
Intel 336 processor running at 2.40 GHz with 8 GB of RAM memory, using CPLEX as 
the solver.  

4. Results 

Mainly results obtained from the five scenarios analyzed are shown in Table 2. 
Particularly, scenario A represents the solution with the lower amount of CO2 emissions 
in comparison with the rest of the solutions, even in comparison with the current situation 
of electricity production in Mexico. In this way, according to SENER (2016) the supply 
of 62% of national electric energy demand in Mexico (using only conventional fuels as 
energy sources) involves the release of 114,911,336 ton CO2/y; hence, solution A 
represents 22.15% of emissions reduction, while the emissions in solution E are 6.58% 
lower in comparison with the current situation. Therefore, a reduction from 7,561,165-
25,452,860 ton CO2/y is possible to achieve if the agriculture residues revalorization is 
carried out. However, to achieve any of these percent’s of emissions reduction is required 
money investment. As it is possible to notice in Table 2, scenario A needs the major 
investment (approximately 428,734,538 USD); nevertheless, for all the obtained solutions 
80% of the total cost is given by the production cost, which is constituted by the 
pelletization plant installation and the transformation costs. In this way, the highest cost 
makes sense due that currently there are not any pelletization plant installed in Mexico; 
moreover, in solution A 32 new plants are installed to satisfy 62% of the national 
electrical energy demand. The 20% of the total money invested is given by transportation 
costs and taxes added to the new economic activity.  
 

Table 2. Mainly results obtained in the different scenarios analyzed 
                          Difference with scenario A (%) 
 A B C D E 
Invested money (USD/y) 428,734,538 -1.525 -4.261 -4.444 -4.574 
Human development 
index (% of invested 
money) 

12.96 -2.022 -6.420 -9.568 -11.574 

Emissions (ton CO2/y) 89,451,365 +7.69 +12.63 +16.29 +20.01 
 
On the other hand, as it is shown in Table 2, the installation of 32 new industrial plants 
focused on solid biofuel production (scenario A) requires the higher investment; 
nonetheless, in this scenario is obtained a social benefit, which is represented by the 
money invested in social security, education and per-capita income variables which has 
a direct impact on the human development index. In this way, due that a new economic 
activity is developed; hence, new employees and as consequence new salaries are created, 
salaries to which taxes are deducted. Additionally, a taxes deduction over the new 
implanted industries is considered. So, from all the deducted taxes is possible to take into 
consideration a new national flux of money invested to human development activities; in 
this context, scenario A achieves 12.96% more invested money than that considered in 
the current national situation, while scenario E is possible to achieve only 1.38% more 
invested money.  
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Table 3 shown the economic comparison with the current conventional fuels used in the 
Mexican power grid; as it is possible to notice, each tone of pellets is 38% more expensive 
than the carbon prices (the cheaper conventional fuel alternative). However, in 
comparison with the Gas LP (the expensive conventional fuel alternative) and fossil 
diesel, each tone of pellets is 96% and 95% cheaper, respectively. In this way, according 
to Olguin-Muciel et al. (2020) the biofuel’s potential is directly linked with the cost-
competitively with conventional fuels; hence, this argument is achieved when pellets are 
compared with diesel and gas but is not reached with carbon. On the other hand, CO2 
emissions per MWh generated by the pellets are 20% higher than emissions released by 
the use of gas LP (conventional fuel with lower CO2 emissions); but pellets emissions are 
36% and 27% lower in comparison with the emissions generated by the use of diesel 
(conventional fuel with higher CO2 emissions) and carbon, respectively. Nevertheless, 
emissions listed in Table 3 for conventional fuels do not take into consideration the CO2 
emitted by the extraction of the fuels, only are quantified the emissions released by the 
combustion (use); the reported CO2 emissions by the use of pellets take into consideration 
all the emissions generated in the complete life cycle.  
 

Table 3. Economic and emissions comparison 
Energy source USD/ton CO2 ton/MWh produced 

Carbon 34 0.603 
Diesel 1,275 0.692 
Gas 1,398 0.352 

Pellets 55 0.44 
 
In the CO2 emissions context, transportation activities in the pellets supply chain represent 
the process with the higher released emissions. In solution A, biomass transportation and 
pellets distribution contribute with 88% of the total generated emissions, while in scenario 
E these activities contribute with 68% of total emissions. Similarly, the pellets production 
release 10% of the total emissions in scenario A, while in scenario E this activity 
contributes with only 7%. However, in scenario E 20% of the energy sources used to 
satisfy the 62% of electrical energy demand comes from conventional fuels; therefore, 
24% of the total emissions in this solution are given by the combustion of conventional 
fuels, while in scenario A the 62% of electricity national demand is satisfied only with 
pellets.  

5. Conclusions  

Agriculture residues revalorization throughout pellets production is a green alternative 
that can be used in the Mexican electricity grid, satisfying almost 62% of national 
electricity demand. Additionally, residues transformation into solid biofuel is an 
alternative to reduce dependence on fossil fuels under a circular economy development, 
having beneficial impact on the human development index. Fuel pellets production supply 
chain is a complex system due to all the activities involved to achieve the process goal; 
hence, the use of the mathematical model approach allows to obtain different system 
configurations, which results in attractive solutions from the economic, social, and 
environmental points of view. 

Optimal agriculture residues revalorization as a biofuel alternative in electric 
 power grids

599



  

Acknowledgements  

Financial support provided by Secretaría de Educación Pública (SEP), through grant 
PRODEP-UAQ/332/19, for Sergio Iván Martínez-Guido is gratefully acknowledged. 

References  
ANBIO-National Atlas of Biomass, 2018, Atlas Nacional de Biomasa. Available on: 

https://dgel.energia.gob.mx/ANBIO/ 

D. Debnath, S. Babu, 2019, Biofuels, Bioenergy andk Food Security; Technology, Institutions and 
Policies, first ed., ELSEVIER, London, United Kindong 

E. Olguin-Muciel, A. Singh, R. Cable-Villacis, R. Tapia-Tussell, H.A. Ruiz, 2020. Consolidated 
Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop 
Residues: An Overview, Agronomy, 10, 1834 

E. Sandberg, J.G. Kirkerud, E. Tømborg, T.F. Bolkejø, 2019, Energy system impacts of grid tariff 
structures for flexible power to district heat, Energy, 168, 772-781 

N. Santiago-De La Rosa, G. González-Cardoso, J de J. Figueroa-Lara, M. Gutiérrez-Arzaluz, C. 
Octaviano-Villasana, I.F. Ramírez-Hernández, V. Mugica-Álvarez, 2018, Emission factors of 
atmospheric and climatic pollutants from crop residues burning, Journal of the Air & Waste 
Management Association, 68, 849-865 

P. Pradhan, P. Gadkari, A. Arora, S.M. Mahajani, 2019, Economic feasibility of agro waste 
pelletization as an energy option in rural India, Energy Procedia, 158, 3405-3410 

R. Kumar-Chhetri, N. Aryal, S. Kharel, R. Chandra-Poudel, D. Pant, 2020, Current Developments 
in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy, 
first ed., ELSEVIER, Amsterdam, Netherlands (Chapter 5) 

R. Tauro, C.A. García, M. Skutsch, O. Masera, 2018, The potential for sustainable biomass pellets 
in México: An analysis of energy potential, logistic cost and market demand, Renewable and 
Sustainable Energy Reviews, 82, 380-389 

S. Kaza, L. Yao, P. Bhada-Tata, F. Van-Woerden, 2018, What a waste 2.0: A Global snapshot of 
solid waste management to 2050, World Bank Group, Available on: 
https://openknowledge.worldbank.org/handle/10986/30317 

S. Theppitak, D. Hungwe, L. Ding, D. Xin, G. Yu, K. Yoshikawa, 2020, Comparison on solid 
biofuel production from wet and dry carbonization processes of food wastes,  Applied Energy, 
272, 115264 

S.I. Martínez-Guido, I.M. Ríos-Badrán, C. Gutiérrez-Antonio, J.M. Ponce-Ortega, 2019, Strategic 
planning for the use of waste biomass pellets in Mexican power plants, Renewable Energy 130, 
622-632 

SENER “Energy Secretary” México, 2016, Development program of the national energy system. 
https://www.gob.mx/cms/uploads/attachment/file/98308/PRODESEN-2016-2030_1.pdf, 
(accessed on February 2020). 

T. Schwarzböck, H. Rechberger, O. Cenic, J. Fellner, 2016, Determining national greenhouse gas 
emissions from waste-to-energy using the Balance Method, Waste Management, 49, 263-271 

U. Diwekar, 2010, Introduction to Applied Optimization, Second ed, Springer, 10.1007/978-0-387-
76635-5 

 S. I. Martínez-Guido et al.600



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Global Supply Chain Optimization for COVID-19 Vaccine 

under COVAX initiative 
Katragadda Apoorvaa, IA Karimia* and Xiaonan WANGb* 
aDepartment of Chemical and Biomolecular Engineering, National University of 

Singapore, Singapore 117585 Singapore 
b Department of Chemical Engineering, Tsinghua University, Beijing 100084, China 

wangxiaonan@mail.tsinghua.edu.cn 

Abstract 

After the onset of the COVID-19 pandemic, World Health Organization (WHO) launched 

COVAX in April 2020 to bring together countries and vaccine manufacturers and provide 

innovative and equitable access to COVID-19 vaccines. We developed a global supply 

chain model to optimize the production of the vaccines and allocation to different 

countries worldwide. The global COVID-19 vaccine supply chain of COVAX should be 

resilient to various disruptions and risks. In this work, we develop an optimization model 

with risk mitigation strategies to determine the procurement of vaccines from production 

centers and distribution to different countries when the supply chain is subjected to 

various disruptions. Our case study demonstrates how different risk mitigation strategies 

would enable COVAX to meet the demand amid multiple disruptions. It indicates that it 

is feasible to meet the vaccine demand and help participating countries overcome the 

global pandemic. 

 

Keywords: add three to five keywords here. 

1. Introduction 

The only way to overcome the ongoing pandemic and achieve herd immunity is to 

vaccinate people worldwide. After the accelerated vaccine development, several vaccines 

have been approved globally. However, to overcome the challenge of coordinating the 

procurement and distribution of vaccines globally, the COVAX initiative was set up. It is 

co-led by WHO, Gavi (an organization that works towards getting people from 

developing countries vaccinated), and Coalition for Epidemic Preparedness Innovations 

(CEPI), a Gates Foundation-funded project that aims to make more vaccines available 

during an outbreak, was setup. Under the COVAX initiative, funding from rich countries 

was supposed to pool to invest in multiple vaccine development to increase the chances 

of effective vaccine development and approval. In addition, the funding was intended to 

provide vaccines for poorer countries. COVAX initiative handles the procurement and 

distribution of COVID-19 vaccines without discriminating between participating 

countries based on income [1] (Figure 1). However, after the approval of several COVID-

19 vaccines, the global delivery has been successful but limited to rich countries. Due to 

unprecedented demand for vaccines, there has been a shortage of vaccines to the COVAX 

initiative as the rich countries procured vaccines through bilateral deals. [2]. COVAX 

deliveries have been hindered but slowly accelerating. COVAX has been making efforts 

to address and mitigate various risks. Therefore, optimizing the supply chain under 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50100-7 
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various uncertain disruptions is crucial to minimize the overall cost and utilize the 

resources best. 

Stochastic supply chain optimization has been studied to optimize the supply chains of 

vaccines in the past. However, a recent study [3] reported a lack of existing academic 

publications on vaccine supply chain resilience. Few papers have been published partially 

addressing the challenges for the COVID-19 vaccine supply chain [4,5]. To account for 

the potential disruptions of vaccine production and delivery, we establish a stochastic 

model to capture different scenarios and minimize the overall cost. The objective function 

also has a term quantifying the supply chain's resilience. This work first provides insights 

into various setbacks faced by the COVAX facility in section 2. Section 3 describes the 

mathematical model in detail, and the solution for optimistic deterministic cases and 

scenarios with various disruptions are presented in section 4. Finally, the conclusion and 

future work is mentioned in Section 5. 

 

Figure 1. The schematic of the COVAX facility involves vaccine procurement and global 

distribution. 

2. Challenges faced by COVAX 

To achieve the objectives of COVAX, they made investments for the development of 

several vaccines during the development phase and then signed deals with various 

manufacturers to deliver vaccines once approved. Once the vaccines are procured, 

COVAX is responsible for transporting the vaccines from the manufacturing center to the 

Countries' central hub. However, even after the successful approval of the vaccines, 

COVAX has failed to meet its objectives. Since its launch, it has been subjected to various 

setbacks, and the most crucial ones are as follows: 1) Production facilities are not adhering 

to the promised doses. For example, COVAX depended mainly on the Serum Institute in 

India for vaccines for 2021 (~50%). The second wave of COVID-19 in India resulted in 

a halt in the supply of doses to COVAX [6], 2) Lack of transportation capacity and various 

transportation disruptions: With the unprecedented demand for vaccines, available 

transportation capacity is not enough. In addition, when the rich countries came forward 

for donation, the freight and storage had to be taken care of by the COVAX [7], 3) 

Vaccine nationalism: Rich countries have procured the vaccines, and none are left for the 

low- and middle-income countries under the COVAX facility. After 18 months of the 
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launch of the COVAX initiative, 98% of people in low-income countries remain 

unvaccinated [8]. 

3. Problem Statement 

This paper considers a two-echelon production-distribution network for vaccine 

distribution under COVAX. The COVID-19 vaccine delivery from the manufacturer to 

the country's central hub is carried through direct shipment to the point of use without 

any distribution centers in the middle. As part of the initiative, there are various 

manufacturers 𝑚, manufacturing set of vaccines 𝑣 and delivering them to different 

countries 𝑐 in the world through transportation links (TLs) using storage containers type 

𝑠 based on the storage requirements of vaccines. The risk mitigation strategies for 

different disruptions are as follows: 1) In case of a risk involved with the production 

facility, we employ two mitigation strategies: a) More investment should be made in 

scaling up the production capacity. If the production capacity is reduced, investment 

should be made to restore the capacity for the next round of allocation. In addition, instead 

of ordering the exact amount initially, COVAX should have a deal for extra doses as a 

buffer, b) Streamline the donation process:  Coordinate with rich countries and plan the 

delivery of the vaccines. Rich countries are wasting several million unused doses. 

COVAX should tap into these countries and sign deals for donations. In other words, 

putting efforts to connect donating countries (backup nodes) when the primary 

manufacturer is not available. These mitigation strategies will help deal with the above-

mentioned (Section 2) challenges with the procurement of doses. During the disruption 

in the cold chain transportation of the vaccines or sudden requirement of transportation 

fleet when a country agrees to donate, the COVAX facility should employee backup, i.e., 

3PL, to take care of the vaccine distribution. This would ensure that the facility is prepared 

for the transportation of vaccines without any capacity constraints, would also enable that 

no vaccines are damaged during transport, and ensure that the donations are well-

received. 

4. Supply chain optimization 

Decision-making in vaccine production and allocation is formulated as a mixed-integer 

linear programming (MILP) model. The objective functions and constraints are 

mentioned in table 1. The objective function is divided into two parts: one corresponding 

to minimizing the design costs based on pre-disruption decisions, and the second is the 

cost during expected worst-case after the realization of the disruptions. The worst case is 

incorporated in our model via the conditional Value at Risk (cVaR) measure. Stochastic 

optimization aims to minimize the total cost. Pre-disruptions design costs include 

establishing transportation links with the fleet and investment in procurement, such as 

signing more deals with donors to scale up the production capacity and contracting 3PL 

as backup transportation. The second part of the objective function is the expected worst-

case cost, including transportation costs, storage costs, vaccine procurement costs, and 

recovery costs for restoring production and transportation capacities after disruptions. 

The optimization constraint includes capacity constraints, supply-demand balance, and 

other logical constraints. (Eq 6 – 9, Table 1). 

COVAX initiative
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5. Case study 

We have considered the demand for nine countries (India, Pakistan, Nigeria, Mexico, 

Ethiopia, Egypt, DRC, Iran, and Thailand), 50% of COVAX demand. The vaccine 

portfolio of 9 vaccines is also considered. These vaccines broadly fall into four categories 

(Figure 1). The vaccines differ in price per dose, the number of doses per person, storage 

requirement, and production sites where each vaccine is produced. The production centers 

are fixed based on the deals with the vaccine manufacturers. Various costs such as storage 

cost, transportation per unit distance, and selling price of vaccines are fixed and taken 

from literature. However, few costs such as contracting 3PL, cost of restoration of 

production capacity, and setting up a contract between a production center and a country 

for vaccine delivery are assumed. Through our case study, we want to demonstrate the 

effectiveness of our model over the basic model employed by the COVAX facility 

currently. The production and transportation capacities are subjected to various 

disruptions and are expressed in the percentage of available capacity. We define four 

independent scenarios for production and transportation disruptions each i.e., 100%, 80%, 

60% and 40% capacities. Therefore, we have a total of 4^4 = 64 scenarios, each with an 

equal probability of occurrence. The demand for each country is fixed at 20% of its 

population, which was the goal of COVAX in 2021 [1].   

6. Results 

Evaluating the deterministic base supply chain model without any risk mitigation  

strategies: First, we optimized the base supply chain model without risk mitigation 

strategies. We have solved the problem for the ideal (optimistic) scenario which COVAX 

had expected. Under the ideal scenario, all the deals with the manufacturers are delivered 

without any delay and the transportation is not subjected to any disruptions. Then we 

optimized the model for the actual situation faced by the COVAX facility, accounting for 

all the production and transportation disruptions. Results demonstrate how the supply 

Table 1. Mathematical model formulation as designed for the optimization 

problem 
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chain model failed when subjected to disruptions. This is validated by the fact that 

COVAX is far behind in fulfilling its objectives. Based on the results, it was found that 

these disruptions have led to around 64% of the unmet demand (Figure 2b). Based on the 

deals made by the facility, the allocation results indicate that countries are served by more 

than one production center. The allocation is not only based on the transportation and 

storage cost but based on the selling price of the vaccines. Vaccines provided to the AMC-

funded countries are cheaper than the ones provided to the self-funding countries. On the 

other hand, the cost distribution indicates that vaccine cost is the main contributing factor 

compared to other costs (Figure 2a). 

 

5.2 Evaluating the performance of our model for the 2021 case study: We have 

successfully demonstrated the performance of our model as 100% demand is met and the 

cost is optimized (Table  2). Results support the claim that the vaccine demand can be 

met by having well-coordinated donations as backup production centers, restoring the 

production capacity after disruption, and having deals for buffer doses. We also studied 

the effect of disruption on different costs and found out that disruptions lead to an increase 

in the overall cost (Table  2). However, which cost factors will increase is not certain and 

is subjected to the nature of disruption. The cost distribution is illustrated in Figure 3. As 

we see that the major cost driver is the cost of vaccines, followed by the 3PL 

transportation cost. This is because 3PL handles the transportation of donations from 

various countries. Surprisingly, the results also demonstrate that the optimized cost for 

our model is only 13% higher than the ideal scenario. This proves that the COVAX 

facility does not have to spend a lot of extra money to meet the demand, rather should 

focus on coordinating and procuring donations effectively.    

 

  

Figure 3. Cost distribution for our supply chain model for actual scenario of 2021 case 

study 

Figure 2. a) Cost distribution for basic supply chain model for optimistic scenario 

and actual case, b) The demand satisfied under each scenario. 
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Table 1. Optimization results of scenarios considering various disruptions. 

7. Conclusions 

The case study of 2021 has been used to study the performance of our supply chain model. 

Through our proposed model, we demonstrated that different risk mitigation strategies 

are crucial in order to successfully deliver the vaccines worldwide. In the absence of such 

measures, it is observed that the demand is not met, and the low- and middle-income 

countries are suffering the most. To handle various disruptions, a two-stage scenario-

based MILP s programming model is presented. Scaling up the production facilities, 

coordinating donations, contracting 3PL to manage sudden transportation requirements 

are considered as the mitigation (i.e., resilience-enhancing) strategies. Furthermore, the 

COVAX facility also should invest in restoring the disrupted capacitates. The model 

demonstrates how COVAX could have battled various challenges it faced during 2021, 

and these strategies should be employed for 2022 to effectively deliver the vaccines to all 

the countries. Future work is to use this model and determine the strategies that COVAX 

should adopt for 2022 to meet the delivery promises. The future work is to forecast the 

dynamics of the virus in different countries through compartmental modeling and 

determine the vaccine demand to attain herd immunity and use our model to plan the 

production and distribution of the vaccines.  
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Abstract 

Liquefied Natural Gas (LNG) is a convenient way of storing and transporting natural 

gas. Traditionally, LNG is traded via Long Term Contract (LTC) signed between the 

suppliers and the customers. But recently share of the spot market has increased 

significantly.  This makes the development of a suitable delivery strategy of LNG 

shipments complex for the supplier. Therefore, the supplier develops an annual schedule 

of delivery for the upcoming year known as the Annual Delivery Program (ADP). In 

this paper, we present an ADP planning problem for an LNG supplier. A mixed-integer 

linear programming (MILP) model is developed with the objective to minimize the cost 

of delivering LNG shipments.  

  

Keywords: Liquefied Natural Gas, Annual Delivery Program, Scheduling, Mixed 

Integer Linear Programming   

1. Introduction 

The demand for natural gas is increasing rapidly due to environmental considerations. 

However, transportation of natural gas from producing regions to customers around the 

world via pipelines is economically unattractive. Therefore, natural gas is liquefied to -

162 °C at atmospheric pressure to form Liquefied Natural Gas (LNG), making it 

convenient for storage and transportation. Traditionally, LNG is traded through Long 

Term Contract (LTC) signed between supplier and customer. But due to an increase in 

the number of suppliers and customers around the world, a spot market for LNG trade 

has emerged in recent years.  

LTCs guarantee supply security to the customers but they do not offer flexibility due to 

the presence of strict clauses in the contract (Shahrukh et al.,2021). Ensuring customer 

satisfaction and their reliability on the supplier in future is crucial. This motivates the 

supplier to come up with a strategy of delivering LNG shipments to its customers at the 

accepted delivery dates throughout the planning horizon. In order to plan for the LNG 

shipment deliveries, the supplier creates an Annual Delivery Program (ADP). An ADP 

is the list of scheduled voyages with information about the long-term contract served, 

ships nominated to serve the contracts, customer terminals nominated to receive 

delivery, date of ship loading etc. In this paper, we present an ADP planning problem 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50101-9 
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with an objective to create an ADP which satisfies customers’ demands at minimum 

cost. 

1.1. Literature Survey  

The ADP planning problem has been thoroughly studied in the literature. Stålhane et al. 

(2011) developed a Mixed Integer Programming (MIP) formulation and a construction 

and improvement heuristic (CIH) to solve the problem. Rakke et al. (2011) developed a 

rolling horizon heuristic (RHH) for creating ADPs. Andersson et al. (2010) solved two 

problems, one for a supplier of LNG and one for a vertically integrated company. 

Mathematical models for each problem are presented, and solution methods are 

discussed, but the computational results are not given. Mutlu et al. (2015) presented an 

ADP planning problem that allowed split delivery for delivering LNG shipments. The 

proposed model was computationally very expensive to solve. So, they proposed an 

efficient vehicle routing heuristic (VRH) which gave cost-effective solutions and 

outperformed commercial optimizers.  

Generally, ADP planning problems in literature have focused on inventory and berth 

management at the supplier’s terminal. They have considered that the supplier can 

deliver only one grade of LNG to a customer. These models are unable to satisfy 

customers’ demands as they allow under-supply. Therefore, in this paper, we present a 

MILP model for the ADP planning problem considering inventory and berth 

management at the customer terminals, allowing the supplier to produce and deliver 

multiple grades of LNG and satisfying customer’s demands with a reasonable over-

supply. 

2. Problem Description 

The ADP planning problem has a supplier of LNG. The supplier produces multiple 

grades of LNG at a variable production rate. The supplier serves multiple LTC 

customers. Every customer has a slot-wise demand for one or more than one grade of 

LNG. When the supplier delivers more than the demand, the customer is said to be 

over-supplied. The supplier is penalized for over-supplying the customer and ensures 

that the over-supply is minimal. The supplier owns a heterogeneous fleet of ships. The 

supplier takes decisions regarding the determination of the production rate of every 

LNG grade and scheduling of the fleet. Scheduling of fleet involves taking decisions 

regarding loading and maintenance of ships. Loading of a ship takes place at a berth of 

the supplier terminal. Maintenance of ships is carried out at a maintenance terminal 

located near the supplier terminal. After maintenance, the ship undergoes a purge and 

cool down operation at the berth of the supplier’s terminal. The objective of the problem 

is to create an ADP to satisfy the customer demands at minimum cost. The cost incurred 

by the supplier in delivering LNG shipments is the sum of transportation and penalty 

cost.   

The sets of LTC customers, ship capacities in the heterogeneous fleet, planning horizon, 

initial inventory at the supplier and customer terminals, minimum and maximum 

storage capacities at the supplier and customer terminals, minimum and maximum 

production rates for each grade of LNG are known. Transportation time, slot wise 

demand at all customer terminals, time window and duration of maintenance, 

transportation cost of ships in $ per slot and penalty in $ per m3 of oversupply to a 

customer are also known. 
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3. Mathematical Model 

3.1. Modelling inventory and berth management at the customer terminals 

The proposed model for ADP planning problem considers inventory and berth 

management at the supplier terminal, production of multiple LNG grades, over-supply 

and maintenance of ships. These aspects were modelled based on the models developed 

by Andersson et al. (2010), Rakke et al. (2011), Stålhane et al. (2011) in literature. But 

models in literature do not consider inventory and berth management at the customer 

terminals and delivery of multiple grades of LNG. For modelling inventory and berth 

management, we consider a set of customer terminals LTC (LTC = 1, 2, ...C) with every 

terminal having demand for one or multiple grades of LNG. 𝐷𝑡𝑔𝑐  is the slot-wise 

demand of grade 𝑔 LNG at customer 𝑐’𝑠 terminal. Inventory for every grade of LNG is 

stored in separate storage tanks. At every customer terminal 𝑐 inventory level in storage 

tanks is monitored for every grade 𝑔 at the end of every slot 𝑡 and is denoted by 𝐼𝑐𝑔𝑡. 

So, inventory balance at customer terminals is written as follows: 

𝐼𝑐𝑔𝑡 =  𝐼𝑐𝑔(𝑡−1) − 𝐷𝑡𝑔𝑐 + ∑ 𝐶𝑣 . 𝑥𝑐𝑔𝑣(𝑡−𝑇𝑇𝑐𝑣−1)

𝑣∈𝑉

   ∀ 𝑐 ∈ 𝐿𝑇𝐶, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (1) 

 

where 𝑥𝑐𝑔𝑣𝑡 is equal to 1 if ship 𝑣 loads at the start of slot 𝑡 to serve customer 𝑐 having 

demand for grade 𝑔 LNG and 𝐶𝑣 is the capacity of ship 𝑣 in m3 

The inventory of each grade of LNG must be maintained between the minimum and the 

maximum storage capacities of the terminal. This is ensured by writing the following 

constraint: 

𝐼𝑐𝑔
𝑚𝑖𝑛 ≤  𝐼𝑐𝑔𝑡 ≤ 𝐼𝑐𝑔

𝑚𝑎𝑥         ∀  𝑐 ∈ 𝐿𝑇𝐶, 𝑔 ∈ 𝐺,  𝑡 ∈ 𝑇 (2) 

 

The entire fleet of ships is divided into Q-Flex and Q-Max ships based on their 

capacities. Q-Flex and Q- Max ships are allotted different berths for unloading at the 

customer terminal. Now every customer terminal has a fixed number of berths available 

for unloading of ships. So, the number of ships unloading in every slot should not 

exceed the number of berths available at the customer terminal. This is called as the 

berth capacity constraint and is modelled as follows: 

∑ ∑ 𝑥𝑐𝑔𝑣(𝑡−𝑇𝑇𝑐𝑣−1)

𝑣∈𝑄𝐹𝑔∈𝐺

≤ 𝐵1𝑐     ∀ 𝑐 ∈ 𝐿𝑇𝐶,  𝑡 ∈ 𝑇 (3) 

 

∑ ∑ 𝑥𝑐𝑔𝑣(𝑡−𝑇𝑇𝑐𝑣−1)

𝑣∈𝑄𝑀𝑔∈𝐺

≤ 𝐵2𝑐     ∀ 𝑐 ∈ 𝐿𝑇𝐶, 𝑡 ∈ 𝑇 (4) 

Here 𝑄𝐹 and  𝑄𝑀 are the set of Q-Flex and Q-Max ships in the heterogeneous fleet and 

𝐵1𝑐  and 𝐵2𝑐  are the number of berths available for unloading of Q-flex and Q-max 

ships at customer terminal 𝑐 respectively.  
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Every ship can serve a single customer in a given voyage. We call this the regular 

delivery constraint. It is modelled as follows: 

∑ ∑ ∑ 𝑥𝑐𝑔𝑣𝑘

𝑡+2𝑇𝑇𝑝𝑣+1

𝑘=𝑡
𝑔∈𝐺𝑐∈𝐿𝑇𝐶

≤ 1       ∀ 𝑝 ∈ 𝐿𝑇𝐶, 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (5) 

 

Whenever the supplier delivers LNG more than the customer’s demand, the customer is 

said to be oversupplied. Oversupply of grade 𝑔 LNG for customer 𝑐 is denoted by 𝑜𝑠𝑐𝑔  

and is modelled as follows: 

 

𝑜𝑠𝑐𝑔 =  ∑ ∑ 𝐶𝑣 . 𝑥𝑐𝑔𝑣(𝑡−𝑇𝑇𝑐𝑣−1)

𝑡∈𝑇𝑣∈𝑉

 − ∑ 𝐷𝑡𝑔𝑐

𝑡∈𝑇

   ∀  𝑐 ∈ 𝐿𝑇𝐶, 𝑔 ∈ 𝐺 (6) 

 

Over-supply should be non – negative. This is ensured by the following constraint:  

  

𝑜𝑠𝑐𝑔 ≥ 0   ∀  𝑐 ∈ 𝐿𝑇𝐶, 𝑔 ∈ 𝐺  (7) 

 

3.2. Objective Function 

The objective is to minimize the cost incurred by the supplier in delivering LNG 

shipments to its customers over the planning horizon. The cost incurred by the supplier 

is the sum of transportation cost and penalty cost.  𝐶𝑅 is the transportation cost of ships 

in $ per slot, 𝑇𝑇𝑐𝑣 is the one-way transportation time in slots required for ship v to reach 

customer 𝑐’𝑠 terminal, 𝑃 is the penalty in $ per m3 of oversupply to the customer. Then 

the objective function is formulated as follows: 
 

 𝐶𝑜𝑠𝑡 = ∑ ∑ ∑ ∑ 𝐶𝑅 ∗ (2𝑇𝑇𝑐𝑣 + 1) ∗ 𝑥𝑐𝑔𝑣𝑡

𝑡∈𝐻𝑣∈𝑉𝑔∈𝐺𝑐∈𝐿𝑇𝐶

 

               + ∑ ∑ 𝑃 ∗ 𝑜𝑠𝑐𝑔
𝑔∈𝐺𝑐∈𝐿𝑇𝐶

 

 

(8) 
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4. Results  

4.1. Illustrative Example 

The example presented in this section considers a supplier of LNG serving two LTC 

customers. The supplier has a heterogenous fleet of 12 ships. The supplier produces two 

grades of LNG, namely Lean LNG (LNGL - G1) and Rich LNG (LNGR – G2). The 

production rate of each grade of LNG is known and varies between known limits. The 

supplier serves 2 LTC customers. In this example, we have taken that customer 1 (C1) 

has demand for both the grades, customer 2 (C2) has demand for LNGL only. The 

planning horizon is of 60 days. The entire planning horizon is divided into 60 uniform 

slots having a duration of 1 day. The duration for both loading and unloading of ships at 

the supplier and customer terminals is considered as 1 slot. The chartering rate 

considered for evaluating the transportation cost for delivering LNG is $ 80,000 per 

slot. The penalty per m3 of oversupply is taken as $25.The transportation and penalty 

cost incurred by the supplier over the planning horizon is $37,760,000 and $1,79,000, 

respectively. The supplier delivers total 15 LNG shipments out of which 10 shipments 

are delivered to C1(5 shipments of LNGL and 5 shipments of LNGR) while 5 

shipments are delivered to C2. Table 1 shows the ship schedule obtained by solving the 

illustrative example. The production rate for both the grades of LNG is almost constant 

over the planning horizon. The supplier operates at the upper limit of production rate for 

LNGL (G1) and then operates at the lower limit while for LNGR (G2) it almost 

operates at the lower limit. The supplier is able to satisfy the LTC customers demand 

with less than 1 % oversupply. The percentage over-supply for C1 for LNGL and 

LNGR is 0.2 % and 0.13%, respectively and that for C2 for LNGL is 0.67 %. The LNG 

shipment deliveries are fairly evenly spread over the planning horizon, which maintains 

the inventory at the customer terminals within the operational limits. 

 

Table 1:Table giving the ship schedule for both the customers over the planning horizon 

Customer  Grade of LNG Ship Number Loading Slot  Volume of 

Shipment (m3) 

C1 LNGR 12 1 259,789 

C2 LNGL 8 1 181,454 

C2 LNGL 11 3 252,597 

C1 LNGL 9 4 237,919 

C1 LNGR 10 5 244,826 

C1 LNGR 4 6 157,154 

C2 LNGL 7 11 173,859 

C1 LNGL 5 15 163,395 

C1 LNGL 6 28 168,550 

C2 LNGL 8 32 181,454 

C1 LNGR 1 37 138,270 

C2 LNGL 12 39 259,789 

C1 LNGL 11 41 252,597 

C1 LNGR 10 42 244,826 

C1 LNGL 9 44 237,919 

 

Optimal Liquefied Natural Gas (LNG) Annual Delivery Program
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4.2. Computational Results  

The illustrative example was implemented in IBM ILOG CPLEX Optimization Studio 

12.10.0 on a Dell Workstation with Intel(R) Xeon(R) Silver 4114 CPU@2.20 GHz with 

32 GB RAM. While solving the example, we have considered a relative convergence 

criterion of 0.5 % with a global time limit of 86,400 seconds. Also, we have considered           

Depth First Search (DFS) as the node selection strategy and enabled solution polishing 

after a relative gap of 10 %. It took 31.82 seconds to solve the 2-month example with a 

relative gap of 0.47 %. The example had 3,668 binary and 490 continuous variables, 

3,578 constraints, and the optimal cost obtained was $ 37,939,000. 

5. Conclusions 

In this paper, we present an ADP planning problem for a supplier of LNG. The 

objective of the problem was to develop a ship schedule which would satisfy LTC 

customers’ demand at minimum cost. In this regard, a mixed integer linear 

programming (MILP) model is developed. ADP planning problems in literature did not 

focus on inventory and berth management at the customer’s terminal which may lead to 

the violation of customer inventory resources which in effect will lead to a change in the 

developed ADP. Hence, our model reduces the probability of this change in ADP by 

considering customer inventory and berth availability. This consideration of resources at 

customer terminals also leads to a reduction in oversupply as compared to models 

proposed in the literature. Reduction in oversupply reduces the penalty cost incurred by 

the supplier. These incentives of our model are explained by solving an illustrative 

example, and the computational results of the example are also reported. In the future, 

we aim to develop an ADP considering spot market sales along with LTCs.  
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Abstract 

Upgrading waste to recovered resources requires a (chemical) transformation process. 

Thus, waste transformers, waste providers and potential customers of such added-value 

resources, are essential actors in the game of circular economy. Hence, this work 

presents a decision-making framework addressing the definition and solution of multi-

leader-follower games to find bargaining outcomes between these actors. The potential 

of the approach is illustrated through the case of a transformer who operates a pyrolysis 

process producing char, oil and gas fractions from plastic waste. A novel process model 

is used to aid the agents in making informed decisions. Results reveal that satisfactory 

natural bargaining outcomes may not exist in the interaction between the agents. Hence, 

the need of an authority altering the rules of the game and ensuring win-win situations is 

stressed.   

Keywords: Plastic Waste; Pyrolysis; Game Theory; Surrogate Model; Decision-Making  

1. Introduction 

Rethinking waste products as suboptimally allocated resources is an essential part of 

sustainable development. Taking advantage of this unused potential to enable circularity 

in the supply chains often needs a waste transformer that performs the upgrading of 

wastes to added-value materials. Multiple objectives need to be considered accordingly. 

However, the fact that these objectives represent agents that are competing and making 

decisions based on their individual profit cannot be overlooked. Thus, the PSE 

community has adopted Game Theory as a powerful complement to multi-objective 

optimization and derive realistic bargaining outcomes (Avraamidou et al., 2020). 

This work studies the bargaining process between a Waste Provider (WP), a Waste 

Transformer (WT) and a set of potential customers, and develops a strategy to obtain 

satisfactory situations in which no objective can be improved by unilaterally changing a 

decision. To that end, multi-leader-follower games (Aussel and Senvsson, 2020) are 

defined and solved through their corresponding bi-level optimization problems (Beykal 

et al., 2021).  

Thus, this work proposes (1) a general modelling framework for finding “equilibrium” 

bargaining outcomes in which waste transformers are integrated to extend the lifespan 

of a product (resource) or to close a supply chain and (2) a process model for the 

pyrolysis process for plastic conversion. The latter is related to the case study, dealing 

with the conversion of plastic waste into added-value products. The knowledge captured 

in this model discloses the existence of satisfactory bargaining outcomes between the 

waste transformer and its customers under some restricted conditions. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50102-0 
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Figure 1. Bargaining interaction between the considered stakeholders in this work: 

Waste Provider (WP), Waste Transformer (WT) and customers.  

2. Problem Statement 

The problem and system boundaries considered in this contribution are illustrated in  

Fig. 1 and can be summarized as follows. Given: 

• A Waste Provider (WP) producing, collecting and/or pre-treating plastic waste 

• A Waste Transformer (WT) that has the technology and facilities for processing 

waste into added-value resources (e.g. the WT is willing to buy the pre-treated 

plastic waste and transform it into valuable products such as char, oil and gas) 

• A set of customers (CUST) that buy the products produced by the WT 

• A set of alternative strategies that can be taken by each of these agents. 
 

Find optimal strategy sets of the agents and bargaining outcomes. All agents intend to 

maximize an economic objective. Here, two sequential Stackelberg competition 

scenarios are considered that, once solved, yield optimal pricing strategies and 

operational schemes. The pricing strategy, if existent, can be understood as the 

“equilibrium cost” of plastic waste and added-value products, which is conditioned by 

the process model of the WT and the market conditions.  

3. Bargaining Game 

The bargaining between WT, WP and customers is expressed as multi-leader follower 

games. A general form of the corresponding bi-level structure is given below: 

max
𝑥

𝑓𝑖
𝑙𝑒𝑎𝑑𝑒𝑟(𝑥, 𝑦)    

(OP1) 
s.t. 𝑔𝑖

𝑙𝑒𝑎𝑑𝑒𝑟(𝑥, 𝑦) ≥ 0          𝑖 ∈ 𝐼𝑙𝑒𝑎𝑑𝑒𝑟𝑠 

                       𝑦 𝑠𝑜𝑙𝑣𝑒𝑠 max
𝑦

𝑓𝑗
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦)  

    s.t.    𝑔𝑗
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑥, 𝑦) ≥ 0 𝑗 ∈ 𝐽𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 

The objective function of the WP is the maximization of its own profit: 

𝑓𝑊𝑃 = 𝑚̇𝑊𝑎𝑠𝑡𝑒
𝑊𝑃 ∙ 𝐶𝑊𝑎𝑠𝑡𝑒 (1) 

With 𝑚̇𝑊𝑎𝑠𝑡𝑒
𝑊𝑃  being the mass bought by the WT and 𝐶𝑊𝑎𝑠𝑡𝑒 the price of the waste 

proposed by the WP. The objective function of the customers can be similarly expressed 

through the maximization of the savings over buying from the market: 

𝑓𝑘
𝐶𝑈𝑆𝑇 = 𝑚̇𝑘 ∙ (𝐶𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 − 𝐶𝑘)                                 𝑘 = customers (2) 

Where 𝑚̇𝑘 is the amount of product the WT sells to the customers and 𝐶𝑘 is the price 

proposed by the customers. Since the amount 𝑚̇𝑘 depends on 𝐶𝑘, the customers must 

strategize on how to choose a price that maximizes their benefit.  

614



The Waste-to-Resource Game: Informed Decision-Making for Plastic Waste Transformers    

Finally, the objective of the WT is expressed as the maximization of its revenue: 

𝑓𝑊𝑇 = 𝑚̇𝑊𝑎𝑠𝑡𝑒
𝑊𝑃 ∙ (∑ 𝜂𝑘 ∙ 𝐶𝑘

𝑘

− 𝐶𝑊𝑎𝑠𝑡𝑒
𝑊𝑃 ) (3) 

Here, 𝜂𝑘 is the conversion of plastic waste into added-value products 𝑘. Utility costs 

(electricity, pumping …) could be included. The limits on the decision variables 

(strategies) and other constraints are stated in 𝑔𝑖/𝑗 (𝑥, 𝑦). The possible leader-follower 

relations in this three-actor system are summarized in Tab. 1. 

Table 1. Bargaining games constellation 

Game Leader Follower Type 

1.1 WT WP Single-Leader Single-Follower (SLSF) 

1.2 WP WT Single-Leader Single-Follower (SLSF) 

2.1 WT CUST Single-Leader Multi-Follower (SLMF) 

2.2 CUST WT Multi-Leader Single-Follower (MLSF) 

4.  Pyrolysis Model 

For each case (i.e. for each different WT considered), a specific model for the 

transformation process will be required. This model may be available or may need to be 

developed. The particular case study addressed in this work corresponds to the chemical 

upcycling of plastic waste through a pyrolysis process. There are only few models that 

describe the pyrolysis of plastic waste and those that are available are often limited to a 

single set of operating conditions. The distribution of pyrolysis products strongly 

depends on key operating conditions like the residence time and reaction temperature 

(Miandad et al., 2016). This allows the plant operator to change the operating conditions 

to maximize the expected value of the product portfolio.  

The pyrolysis process model developed herein extends the one presented by Fivga and 

Dimitriou (2018) through the incorporation of temperature and residence time 

dependent product yields in the reactor model. The reactor is assumed to be a fluidized 

bed reactor that can vary the residence time 𝑡𝑅 and reaction temperature within some 

limited bounds by manipulating the recycle stream and the furnace operating conditions. 

A cyclone acts as solid separator to obtain the char product. The non-recycled gaseous 

product is cooled down to 25 ºC to obtain the oil and gas products. Part of the gas 

product is burned in a furnace to supply the heat of reaction, so no external fuel is 

needed to drive the reaction. 

 In order to be able to evaluate the economic objective function of the WT it is 

necessary to quantify how much char, oil and gas is produced (𝜂𝑘). Experimental data 

for the non-catalytic conversion of polyethylene (PE) waste was taken from Quesada et 

al. (2019). The authors report oil and char yield of experiments performed at 15 

different temperature, residence time and heating rate combinations. Based on this data, 

a set of metamodels is trained to predict oil and char yields at the non-measured 

conditions. It is found that Gaussian Process Regressor (GPR) models and second- and 

third-degree polynomials exhibit desirable prediction and interpolation capabilities, 

exceeding those of the ANFIS and second-degree polynomials considered by Quesada 

et al. (2019).  

For a fixed mass flow 𝑚̇𝑝𝑙𝑎𝑠𝑡𝑖𝑐  the oil and char products can be directly calculated from 

the yield correlations 𝜂𝑐ℎ𝑎𝑟(𝑡𝑅 , 𝑇) and 𝜂𝑜𝑖𝑙(𝑡𝑅, 𝑇) described by the trained metamodels. 

Note, that the heating rate dependence has been omitted here due to the small influence  
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Figure 2. Char, oil and gas yield response surfaces (3rd degree polynomials).  

on the yields. A similar correlation for the gaseous product has been obtained from 

repeated simulation of the flowsheet at different operating conditions. See Fig. 2 for the 

response surfaces. 

By fixing the reference enthalpy of the plastic inlet, it is imposed that at nominal 

operating conditions (500 ºC, 80 min) the heat of reaction equals 1316 kJ/mol (Fivga 

and Dimitriou, 2018). Following the same authors’ example, it is assumed that the 

pyrolysis product can be sufficiently well represented by carbon and six selected 

hydrocarbons in the range of C2-C30. Then, a first-order decomposition (Eq. 4) was 

assumed and the kinetic constants were fitted to include the reported compositions. 

Plastic 
𝑘1
→ n-C30 

𝑘2
→ n-C25 

𝑘3
→ n-C18 

𝑘4
→ n-C14 

𝑘5
→ n-C8 

𝑘6
→ C2 (4) 

By doing so, a lookup table for the reactor outlet composition is obtained correlating the 

pyrolysis product composition with the temperature and residence time. 

5. Case Study 

We consider an operational problem of a plant that has been designed for treating 4 t/h 

of municipal PE plastic waste. The amount bought by the WT is not part of its strategy. 

The bounds on the prices proposed by the WP are lower bounded (𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑙𝑜𝑤 ) by the cost 

that he would usually pay/receive for treating its waste and upper bounded (𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑢𝑝

)  by 

the cost of virgin PE or the revenue of the highest value product of the WP. The prices 

that can be proposed by the customers are bounded (𝐶𝑘
𝑙𝑜𝑤/𝑢𝑝

)  by some lower bound that 

is subject of investigation (> 0 €/kg) and the market price of the virgin raw material. To 

illustrate the effect of different (ratios of) values of the products we arbitrarily chose 

their market prices to be equal at 1 €/kg. The operational limits of the WT (𝑇, 𝑡𝑅) stem 

from the range used to train the metamodels (450 – 550 °C, 40 – 120 min) and can be 

justified by the kinetics of the reaction and technical limitations of the reactor. 

6. Results and Discussion 

The bi-level problems can be solved through various approaches such as multi-

parametric programming or data-driven optimization (Beykal et al., 2021). Since the 

complexity of the problem strongly depends on the configuration and constraints 

considered, here, different strategies are used for each game.  

The solutions to games 1.1 and 2.1 are straightforward: The follower’s problem (WP 

and customers) comprise a linear problem with box constraints on the decision variable 

which can be substituted by its KKT optimality conditions. Since the follower has no 

conjecture about the leader’s decision, its safest bet is to decide on the price that would 

maximize its objective for a fixed 𝑚̇𝑖. In the case of the WP this limit is the market 

price raw plastic price 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑢𝑝

 and for the customers the low bound 𝐶𝑘
𝑙𝑜𝑤  (see Tab. 3).  
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Figure 3. (left) Customer objectives depending on unilateral changes of proposed prices at 𝐶𝑘
𝑙𝑜𝑤= 

0.1 €/kg. (right) Customers do not improve their objectives by deviating from 𝐶𝑘
𝑙𝑜𝑤=0.936 €/kg. 

It has to be acknowledged that these solutions cannot be considered satisfactory. The 

WT would not buy the waste plastic at the same price as virgin plastic and it would also 

not sell the products for 0 €/kg.  

When changing the role of the leader and the follower (WT as follower), it is assumed 

that the leader has full knowledge about how the follower will react to its decisions. In 

the case of game 1.2 this knowledge does not add any additional value to the bargaining 

since we assume that the exchanged mass is fixed and not part of the follower’s 

strategy. As a result, the WT has no way of influencing the WP’s decision, leading him 

to choose again the highest possible price. Neither game 1.1 nor 1.2 yield satisfactory 

bargaining outcomes. A potential authority setting rules or redirecting taxes and/or 

incentives could resolve this situation (e.g. by introducing an incentive that stems from 

the avoided cost of municipal waste treatment).  

In the case of game 2.2 the knowledge of the customers about the WTs reaction can be 

exploited by them to make an informed decision on the price that they propose. Fig. 3 

(left) illustrates how changing the proposed price influences the agent’s objective. It can 

be seen that when every agent proposes the same price (0.1 €/kg) the WT will operate at 

those conditions with the overall highest yield (least amount of gas burned). This 

situation favours the gas customer. However, the oil and char customers can react by 

proposing a slightly higher price that convinces the WT to operate at different 

conditions and produce more oil or char respectively. 

The bi-level game was reformulated into an NLP problem following the description by 

Leyffer and Munson (2010) and solved using BARON in GAMS. Not all properties 

(e.g. convexity of follower’s problem) are fulfilled to qualify the solution as an 

equilibrium point. Thus, a numerical test has been conducted. It is found that, due to the 

specific characteristics of the WT production process (model), a strict mathematical 

equilibrium point only exists when the lower bound (𝐶𝑘
𝑙𝑜𝑤) is forced to be ≥ 0.936 €/kg 

for all agents. In this situation, any bid from the char or oil customers will not improve 

their objective despite the WT changing its operating conditions (𝐶𝑘
∗) (Fig 3. (right)). 

Table 2. Summary of equilibrium solutions in the studied bargaining games. 

Game Leader Follower 

1.1 𝑇𝑜𝑝𝑡 , 𝑡𝑅
𝑜𝑝𝑡

= 𝑓(𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑢𝑝

) 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑢𝑝

 

1.2 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑢𝑝

 𝑇𝑜𝑝𝑡 , 𝑡𝑅
𝑜𝑝𝑡

= 𝑓(𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑢𝑝

) 

2.1 𝑇𝑜𝑝𝑡(𝐶𝑘
𝑙𝑜𝑤), 𝑡𝑅

𝑜𝑝𝑡
(𝐶𝑘

𝑙𝑜𝑤) 𝐶𝑘 = 𝐶𝑘
𝑙𝑜𝑤 

2.2  𝑇𝑜𝑝𝑡(𝐶𝑘
𝑒𝑞∗

), 𝑡𝑅
𝑜𝑝𝑡

(𝐶𝑘
𝑒𝑞∗

)  𝐶𝑘 = 𝐶𝑘
𝑒𝑞∗

 (Fig 3) 
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This points again towards the need of an authority that sets the initially arbitrarily 

defined bound (𝐶𝑘
𝑙𝑜𝑤) to this “forced equilibrium” bound. The solution could be 

regarded as satisfactory from all agents’ points of view: The WT can sell its recovered 

added value products at a price slightly below the market price of virgin or fossil-

sourced materials while the customers win by paying less than the market price.  

Table 2 summarizes the results of the studied case. These results are conditioned by the 

underlying process model and market assumptions and can be very different for other 

cases (e.g. different chemical recycling process, recovery of used solvents …). 

7. Conclusions 

The presented work introduces a general bargaining framework between waste 

transformers, waste providers and customers of the added-value materials. Applying this 

framework to a chemical recycling of waste plastic case study reveals that one-to-one 

bargaining between a waste provider and a waste transformer leads to outcomes that are 

not acceptable for either of the agents. The interaction between waste transformer and 

customers neither yields acceptable results if the customers choose their minimum 

acceptable price too ambitiously. Both situations point towards the need of an authority 

that sets the rules of the games so that win-win situations are enforced, despite the 

agents’ effort to maximize their own profit. The knowledge captured in the proposed 

WT’s process model enables the determination of a reasonable lower bound on the 

customers’ pricing strategies. Future work should explicitly consider such an authority 

in the modelling framework. Moreover, this authority should follow strategies that focus 

not only on economic but also environmental and social sustainability.  
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Abstract 

Carbon dioxide removal technologies are expected to play a decisive role in meeting the 

target of 1.5 °C, yet their broad sustainability implications remain unclear. Among those, 

bioenergy with carbon capture and storage (BECCS) has attracted growing interest, as it 

can remove CO2 while providing energy. This study presents an optimization approach 

to design and evaluate BECCS supply chains based on absolute sustainability criteria. We 

analyze the solution to a minimum cost scenario removing 0.61 GtCO2 in the European 

Union, assessing the impacts with the Environmental Footprint method and interpreting 

the results using the planetary boundaries linked to the United Nations Sustainable 

Development Goals. We find that BECCS could indeed be implemented within the safe 

operating space but would consume large amounts of global ecological shares due to 

burden-shifting on some categories. 

Keywords: bioenergy with carbon capture and storage, supply chain, optimization, 

planetary boundaries, Sustainable Development Goals. 

Introduction 

The IPCC pathways that limit the global temperature rise by 2100 to well below 2 °C 

above pre-industrial levels indicate that a large deployment of negative emissions 

technologies and practices (NETPs) is required to compensate for the emissions from 

hard-to-abate sectors (IPCC, 2018). 

Bioenergy with carbon capture and storage (BECCS) has been identified as the most 

promising nature-based NETPs because it contributes to CO2 removal (CDR) while 

providing a clean, reliable energy source. BECCS, defined as the coupling of bioenergy 

production with carbon capture and storage (CCS) (Canadell and Schulze, 2014), has 

been extensively studied in the literature from a techno-economic standpoint. 

From an environmental perspective, BECCS has proven to have the capacity to be 

implemented at a large scale and contribute substantially to achieving the CDR required 

to meet the Paris Agreement goal. Nevertheless, it depletes resources such as water and 

land (Heck et al., 2018), ultimately competing with food production (van Vuuren et al., 

2018). The severity of these impacts can be assessed following a life cycle assessment 

(LCA) approach. However, standard LCA studies lack reference values to interpret the 

results and, consequently, they provide limited insights into the broad implications of 

deploying NETPs at a large scale.  

In recent years, absolute sustainability assessments based on LCA principles were put 

forward to quantify impacts relative to the planet's carrying capacity. Such methods are 

based on the planetary boundaries (PB) concept (Rockström et al., 2009), which defines 

a set of biophysical limits of the Earth system that should never be surpassed to operate 

our planet safely. Recently, Sala et al. (2020) built on existing literature to map 16 
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indicators of the Environmental Footprint (EF) method to five Sustainable Development 

Goals (SDGs). Despite sustainability assessments are emerging in the literature, 

especially for what concerns supply chains (SCs) (Mota et al., 2013 and 2017, Barbosa-

Póvoa, 2009), their application to CDR technologies is at the very beginning. 

In this contribution, we quantify the performance of BECCS on five SDGs, previously 

studied by qualitative approaches alone (Honegger et al., 2020 for CDR options in general 

and Smith et al., 2019 for land-based solutions in particular). 

Methods 

In a previous work (Negri et al., 2021), we presented a highly detailed BECCS SC model 

(NETCOM, Negative Emissions Technologies COoperative Model) that identifies the 

optimal SC configuration in the European Union (EU) for a net global yearly CDR target 

retrieved from Peters and Geden (2017). The model includes all EU Member States as of 

2018 (28) and assumes full cooperation among the countries to meet the climate target. 

Following a life cycle optimization approach, the model optimizes costs, emissions and 

impacts on the Recipe 2016 endpoints. The input data are given specifically for the five 

echelons of the SC included in NETCOM, connected by transportation. They comprise 

unitary costs, crop yield and carbon intensities, physical limits for biomass cultivation 

and growth, and environmental impacts.  

Here we enlarge the scope of a cost-driven optimization in NETCOM to include a set of 

metrics that evaluates the impact of deploying BECCS on the PB linked to five SDGs, 

providing a more detailed picture of the implications of deploying CDR at a large scale 

on sustainable development. Yet, the model is still a linear programming, which 

guarantees a global optimum solution.  

Figure 1 provides a sketch of the updated NETCOM. This mathematical model consists 

of mass and energy balances at each stage of the SC and calculates the total cost, 

emissions and life cycle impacts.  

 

 

 

Figure 1. Structure of the NETCOM model. Input data, equations, solver, and outputs included in 

the model. 
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To this end, we quantify the total impact on a set of LCA metrics k connected to the PBs 

and five SDGs, summing up the impacts of all the activities in the SC. Each of them is 

determined by multiplying an ecovector defined for every activity with the corresponding 

functional unit, as shown in Eq.(1). 

eimpk = ∑ fui IMPik

i

 ∀ k ∈ K (1) 

where eimpk is the total environmental impact of the BECCS SC on metric k, calculated 

as the sum of each activity i characterized by its functional unit (fui). The ecovector IMPik 

denotes the impact per unit of activity i in each metric k, calculated by implementing a 

full LCA of the activity in SimaPro v.9.0.0.48.  

We refer to the original work (Negri et al.) for detailed information about NETCOM. In 

the analysis presented hereafter, we update the cost of CO2 transportation via pipeline to 

$ 3.60/tCO2/250 km from Budinis et al. (2018).  

Eq.(1) provides the impact of the SC, which needs to be evaluated relative to the global 

carrying capacity (i.e., safe operating space). Sala et al. provided life cycle impact 

assessment-based limits referred to the EF method. The human health-related limits, 

namely human cancer and non-cancer effects, particulate matter and ionizing radiation, 

depend on the population and have been updated for 2018. In order to assess the impact 

of BECCS in the EU, we downscale the global limits by applying an egalitarian-based 

sharing principle, similarly to Wheeler et al. (2020), obtaining shares of the safe operating 

space for EU (PBEU). Then, the transgression level (tlk) of the SC on the metric k is 

calculated as in Eq.(2). 

tlk =
eimpk

PBk
EU  ∀ k ∈ K 

(2) 

Later, the transgression level is incorporated into the original optimization model's 

objective function, which includes mass balances, capacity constraints, and other techno-

economic and environmental equations of the BECCS SC for each EU country.  

The problem, comprising 756,298 variables and 712,381 equations, was solved in GAMS 

35.1 with CPLEX on an Intel CoreTM i7-10510U machine at 1.80 GHz and 16 GB RAM 

running Windows 10. 

Figure 2. Heat map of the feedstock distribution in the EU-28 countries. The light grey cells 

represent no use of the corresponding biomass type in that country. Straw, woody and forest 

residues dominate, while only Miscanthus is selected among the energy crops available. 
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Results  

We ran NETCOM to minimize the total cost of the SC subject to a minimum net removal 

of 0.61 GtCO2. The minimum cost is 74 billion Euros, with the CDR constraint being 

active. The largest cost contributions include biomass combustion (58 %), transportation 

(13 %) and pelleting (10 %). The latter two are also the main contributors to the SC 

emissions, each one accounting for 30 % of the total amount. The net electricity 

production is 511 TWh, which accounts for the energy penalty associated with the CCS 

system at the biomass combustion stage. Here we do not integrate BECCS in the EU 

energy system; therefore, the electricity generation is considered in the functional unit 

together with the annual CO2 removal.   

The total feedstock is 562 Mt of biomass, consisting of 88 % of residues (straw cereals, 

woody and forest) complemented by the energy crop Miscanthus. The latter is cultivated 

in Bulgaria, Germany and Romania, taking up only 8 % of the total land available in the 

EU due to its high carbon content (%C in wet biomass) and higher yield compared to 

other crops. The feedstock distribution is visualized in the heat map in Figure 2. The 

optimal SC is centralized in Bulgaria and Poland. The solution is driven by the local costs, 

computed using the purchasing power parity metric, which stand below the European 

average. The biomass is firstly transported from most EU countries to Bulgaria and 

Poland mainly by train and, for what concerns the latter, also by ship. At these locations, 

the biomass is converted into pellets and then combusted. The CO2 captured at the power 

generation plants is then distributed in the EU via pipeline and injected in suitable storage 

sites (depleted carbon fields or aquifers). The transportation of biomass from the land to 

the processing site and the CO2 pipeline network are given in Figure 3.  

The total impact on the metrics linked to the SDGs is obtained by summing up the impacts 

in Eq.(1) of the activities modeled in the entire supply chain. Then, we compare the 

performance of the SC with respect to the safe operating space assigned to the EU (PBEU). 

We find that none of the PBs is transgressed in the EU, but significant burden-shifting 

occurs when reducing climate change impacts, as shown in Figure 4. Notably, respiratory 

inorganics (particulate matter) is the most critical impact, occupying roughly 50 % of the 

EU safe operating space. Non-cancer human health also shows a 17 % of the EU 

threshold. The negative implications on these categories can be mainly attributed to the 

pelleting activity and transportation, which were already identified as hotspots in Negri 

et al. by performing a standard LCA analysis. We recall that the model relies primarily 

on residues feedstock, leading to low impacts on water consumption and land use 

Figure 3. Links of transportation by train, by ship and CO2 by pipeline among countries in the 

optimal supply chain. Intra-country connections are not represented. 
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categories. Nonetheless, eutrophication freshwater also presents a non-negligible burden-

shifting, with 14 % of the PBEU occupied.   

Contextualizing the results from an SDGs perspective, we find that improving climate 

action (SDG 13) worsens good health and wellbeing (SDG 3) due to respiratory 

inorganics and non-cancer human health effects. Similarly, life below water (SDG 14) 

worsens due to the impact on eutrophication freshwater. Lastly, the most considerable 

contributions affecting life on land (SDG 15) are land erosion and resource use, minerals 

and metals. 

Conclusions 

Here we studied the broad implications of deploying BECCS at a large scale on 

sustainable development. The minimum cost solution of a BECCS supply chain in the 

European Union was sought using the NETCOM optimization model, which was 

enlarged in scope to include planetary boundaries-based metrics. The total cost amounted 

to 74 billion Euros for a net removal of 0.61 tCO2 in one year, without considering the 

credits from a net electricity production of 511 TWh. The optimal solution relies on 

residues and a centralized supply chain. The environmental assessment showed that the 

BECCS supply chain could operate within the safe operating space. Yet, delivering 

negative emissions to mitigate climate change inevitably exacerbates other indicators. 

This is particularly evident in the case of respiratory inorganics, where the BECCS supply 

chain took half of the share allocated to the European Union. Note that this safe operating 

space should be shared among all economic activities, such as chemical production and 

the energy sector, which raises concerns about the feasibility of BECCS at a large scale. 

Additionally, given that the yearly CO2 target is reached using biomass residues, future 

research should investigate more ambitious removal and different types of feedstock, 

which could eventually lead to the transgression of the safe operating space. When 

looking at the effect on the Sustainable Development Goals, negative emissions benefited 

climate action (SDG 13) at the expense of good health and wellbeing (SDG 3) and life 

below water (SDG 14). Overall, this work shows that impacts should be quantified from 

Figure 4. Total impact of the BECCS supply chain on the planetary boundaries considered. At the 

top we group the impacts per corresponding SDG according to Sala et al. 
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a life cycle perspective and considering absolute limits to interpret the results from a 

global sustainability viewpoint.  
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Abstract 
While demand for plastic increases because of its broad application base, the negative 
environmental consequences of plastic production must be minimized through effective 
value chain design. Plastic production creates GHG emissions, and its inadequate disposal 
can generate water or air pollution. Plastic packaging makes up over 40 percent of all 
plastic made, and within that category, plastic grocery bags have been a focal point for 
reduction of impacts. This paper explores the types of innovations needed to make 
grocery bags more circular, i.e., increased recycling and reuse. In similar studies, 
researchers have used one type of model or theoretical frame to address the question, such 
as life cycle assessment or economics. In this paper, we use the multi-disciplinary 
approach of convergence science to address this question. We consider a baseline scenario 
involving single-use plastic grocery bags, and then explore alternatives from the 
perspectives of life cycle assessment (LCA), policy, economics, and supply chain 
management. Integration of these perspective highlights the necessary interdependency 
of circular innovations needed to bring about systemic improvement. 

Keywords: Plastic; Packaging; Sustainability; Circular Economy; Recycling 

1. The need for more circular grocery bags 
Society calling for the plastic economy to be more circular by reducing plastic usage and 
reusing or recycling the plastic that we consume (Ellen MacArthur Foundation, 2017). 
Plastics posea particularly significant circular economy challenge given their 
pervasiveness. Plastic production creates GHG emissions (Zheng & Suh, 2019), and its 
inadequate disposal can pollute local water sources and generate air pollution (Verma et 
al., 2016). These externalities can be mitigated by establishing a more circular economy 
for plastics, but less than 10 percent of plastic of all plastic ever produced has been 
recycled and data on plastic reduction and reuse efforts are scarce (Geyer et al., 2017). 
   
Among different plastic products, plastic packaging constitutes 42 percent of plastic 
production and 47 percent of the plastic waste stream (Ritchie, 2018). Less than 20 
percent of plastic packaging is recycled globally, the rest is either landfilled, incinerated, 
or leaked. Our previous research has identified seven different classes of circular-
economy innovation: polymer design and production, packaging design, packaging reuse, 
packaging disposal, waste collection and sorting, waste treatment, and recycled content 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50104-4 
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use. An eighth type, policy, is added and may have implications at any of the value chain 
stages (Hafsa et al., 2020). 
 
The question remains, which innovations will be most impactful or necessary to make the 
plastic packaging value chain more circular? In many similar studies, researchers have 
used one type of model or theoretical frame to address the question, such as life cycle 
assessment or economics. In this paper, we use the multi-disciplinary approach of 
convergence science to address this question.  
 
To scope our research, we will apply this research question to the domain of grocery bags. 
We consider a baseline scenario involving single-use plastic grocery bags, and then 
explore alternatives, including different materials. We will use the following lenses to 
address the research question, and then synthesize by identifying common themes and 
disciplinary differences. 
• Life cycle assessment (LCA) will be used to model the environmental trade-offs 

between different types of grocery bag materials, and the impact of different levels 
of reuse and recycling (Thakker and Bakshi, 2021). 

• Policy analysis will be used to identify the regulatory and market mechanisms that 
have been used to reduce grocery bags’ negative impacts and assess the effectiveness 
of these policies. 

• Economic analysis will be used to assess the downstream market for recycled plastic 
grocery bags, which will vary by plastic type and attributes as well as region of the 
market. 

• Supply chain management research will be used to understand the opportunities and 
constraints concerning the logistics of plastic bag collection, recycling, and 
remanufacturing. 

2. Baseline model 
The model that underlies our analysis is shown in Figure 1 (Thakker and Bakshi, 2021). 
At the top left, plastic feedstock is extracted, processed, and manufactured into grocery 
bags of four different possible plastic types: high density polyethylene (HDPE), low 
density polyethylene (LDPE), polypropylene (PP), or bioplastic polylactic acid (PLA). 
These are distributed to consumers (households) and may be one-use or multi-use. They 
are then collected either through waste management (trucks) or consumers (cars), and a 
certain number of bags are assumed lost to the environment. Then they are transported to 
a material recovery facility (MRF) where they are either landfilled; chemically recycled 
via pyrolysis; incinerated for energy; or segregated for composting, recycling, or 
upcycling to plastic lumber or cement clinker. This model has three decision points: 
which material portfolio to choose, how to collect the bags, and how to treat bags at end 
of life. From a system standpoint, one can use bag design to increase the number of uses 
per bag; policy and consumer education to incentivize more flow of bags into appropriate 
recovery channels; technologies at waste processing that minimize environmental 
impacts, especially related to energy use; more infrastructure to handle increased volume 
of flow through recycling channels; and more efficient production processes to make the 
bag itself.   
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waste managers with diverse measures that include prescribed product design 
specifications, taxes, subsidies, bans, quotas, awareness campaigns, and extended 
producer responsibility (EPR) programs, wherein producers individually or collectively 
subsidize the cost of managing the final disposition of their products. A substantial body 
of empirical literature—and indeed much theoretical literature—has been developed 
around these topics, and several reviews can be consulted (e.g., Abbott, 2019).  

Taxes on plastic carrier bags have been implemented by at least 30 countries spread across 
all habitable continents and are often coupled to campaigns to promote the adoption of 
reusable bags. While taxes can be assessed at the producer level, they typically take the 
form of levies that are either imposed upon or voluntarily adopted by retailers, who may 
pass the fees on to consumers at the point of sale. Programs vary in the cost of the fee, its 
frequency, and on what thickness of bag it is assessed. An oft-cited example of a popular 
and successful levy program is the Irish PlasTax, which was originally levied in 2002 and 
led to use reduction on the order of 90% and marked decreases in plastic bag litter 
(Convery, 2007).  

Bans are equally ubiquitous and appear to be more common than taxes in Africa, 
Australia, and the US. These can take several forms, but outright bans on plastic bags at 
point-of-sale appear most common (United Nations Environment Programme, 2018). 
Often these bans permit thicker bags, which are presumed reusable, and there are frequent 
exemptions for certain uses, such as wrapping fresh meat. Soft bans also exist where 
consumers only receive bags when they specifically request them. Another type of ban is 
the landfill ban that prohibits the disposal of plastic waste in landfills—a type of ban that 
has become popular in many northern European and Scandinavian countries 
(Steensgaard, 2017).  

Perhaps the most concise statement of the effectiveness of various policy interventions 
for reducing the environmental impacts of plastic carrier bags is provided by the IMF: 
“No single policy approach is ideal for all contexts, and regulatory and economic 
instruments can serve as complements as well as substitutes” (Matheson, 2019). The 
available data seem to support the effectiveness of bans and taxes on plastic bag use at 
reducing their consumption, litter, and waste.  

5. Economics 
The economic incentives to collect and process used grocery bags must be sufficient to 
overcome the default of simply disposing them in landfill. For other types of products or 
packaging materials, such a metal or paper fibre, the economic incentives are high, in that 
recovering the material is so much less expensive than the cost of making it anew; in other 
words, recycled content is less expensive than virgin content. There are also functional 
requirements – the recycled content must be of high enough quality that it can meet the 
engineering needs of its use. Finally, recycled content is more valuable if it has fewer 
impurities 

These desired objectives are not well met by the current plastic recycling market. In part 
because of the pandemic and in part due to a reduced cost of petroleum – the feedstock 
most often used to make virgin plastic – plastic recycling prices for some types of plastics 
became inverted in 2021. Data was collected from the publication Plastic News, and in 
June 2021, the price of virgin HDPE in the U.S. was around 85 cents per pound, while 
scrap clear HDPE was 110 cents per pound. On one hand, this does increase profit per 
pound to companies in the recycling stream. However, the much lower cost of purchasing 
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virgin HDPE leads to less use and demand for recycled HDPE, so overall profits decline 
as volumes decrease. 

Our LCA studies suggest that because of HDPE’s larger environmental impact, a more 
sustainable portfolio would consist of either PP and LDPE bags or PLA bags. 
Unfortunately, these solutions run up against economic constraints. PP and LPDE are 
both materials where recycled content costs less than virgin content, as expected. 
However, their recovery is so low that it is a disincentive to communities to collect it. In 
the U.S., PP has historically been collected curbside, but the poor recycling value has 
caused many cities to stop collection. 

Economics also do not currently support a move to PLA bags. Until there is broad 
infrastructure to separate and collect compostable material, too many compostable bags 
would end up in recycling bins, thus acting as a contaminant, and reducing the margins 
associated with collecting recyclable material. 

6. Supply chain management 
Modern waste management systems are designed and operated on the basis that large 
volumes need to be collected and aggregated to take advantage of strong economies of 
scale. Large capital investments are required for infrastructure, and the impact of the 
large, fixed cost is reduced as volume of waste managed increases. On the revenue side, 
especially for plastic recycled content, margins are small, so large volumes must be 
amassed to waste management businesses to make sufficient total profit. 

There is also a conflict between the material pathways that LCA modelling prescribes and 
the constraints that supply chain management issues pose with prescribed materials. 
Because of the relatively higher rate that HDPE is collected curb side in the US, compared 
to LDPE and PP, the latter suffer from the need to aggregate even greater volumes of 
recycled content, which leads to increasing logistics costs and environmental impact. 
Plastic in general, and LDPE specifically, are also less attractive to material handling 
companies such as warehouses because the value of the recycled content relative to its 
physical footprint is poor. Per tonne, it takes up more volume in the truck or warehouse 
but has less value per storage unit. 

7. Conclusion 
In conclusion, as one would expect in any complex system, there is no single or dominant 
optimal solution. LCA modelling demonstrates that different stakeholders, represented 
by different utility or objective functions, will assess different circular solutions and 
material pathways in different ways. Maximizing circularity will not necessarily 
minimize environmental impacts or direct material costs. Likewise, the optimality of 
many solutions depends on a bundle of innovations to be implemented. For example, the 
attractiveness of PLA based solutions increases as we have more composting 
infrastructure available.  

When we combine multiple disciplinary perspectives to this problem, we further highlight 
the trade-offs that exist between any decision pathways. LCA modelling suggests that PP 
and LDPE may be strong alternatives to HPDE for grocery bag. But economic and supply 
chain analysis suggest that because of recycled HDPE’s larger price per tonne, it may still 
be a better solution for companies in the recycling sector. Policy analysis suggests that 
there are pre-competitive mechanisms that can yield either consumers or manufacturers 
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to be more committed to collecting recyclable packaging, but that the success of such 
policy mechanisms may be different for different packaging applications, formats, 
material types, and regions. We encourage other scholars and practitioners to bring an 
interdisciplinary lens when exploring solutions for a more circular economy.  

In this study, we developed a proprietary LCA optimization model to examine the impact 
of different circular innovations, and then qualitatively examined whether other 
perspectives aligned with or contradicted the conclusions from the LCA model. In the 
future, the LCA model can be expanded to take these additional dimensions (e.g., 
economics, policy) directly into account within the computational model. 
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Abstract 

Several wrong human actions have compromised future generations leading to growing 

concerns on environmental and social issues. As a result, the industry became aware of 

the need to integrate these concerns into its decision-making process. This is crucial 

within the process supply chains (that deal with process design with the aim of converting 

raw materials into final products), due to the type of process and products that they deal 

with. Though, quantifying both environmental and social impacts of the supply chain is 

not easy and understanding their units is challenging, particularly for decision-makers. In 

this way, this work intends to develop an optimization-based decision support tool that: 

i) models possible decisions taken throughout the supply chain, while considering 

demand uncertainty; ii) translates both environmental and social impacts of the supply 

chain into the same monetary unit so as to optimize the design and planning of economic, 

environmental, and social performances of the supply chain in the same unit. Considering 

that decision-makers are used to dealing with money when managing their supply chain, 

this innovative decision-support tool simplifies the decision-making process as all supply 

chain performances are quantified in an understandable monetary unit, which can 

constitute an asset to inform decision-makers. This innovative decision support tool is 

validated considering a real case study of a process supply chain. 

Keywords: Sustainable supply chain; Design and planning; Optimization; Monetization; 

Uncertainty. 

1. Introduction 

All companies want to improve their supply chain (SC) as only through its effective 

management is it possible to obtain beneficial results for the company. Furthermore, in 

the current situation of great competition among companies, an optimized management 

of the SC is essential for complete customer satisfaction. In this scenario the main focus 

of companies ceased to be exclusively an economic performance, but environmental and 

social issues are very important to the proper functioning of SCs. In fact, the integration 

of the three pillars of sustainability (i.e., economic, environmental, and social) in the SC 

management has become essential (Barbosa-Póvoa et al., 2018). The World Commission 

on Environment and Development recognized sustainable SCs as a form of optimizing 

customer value and reach a market’s competitive advantage. However, SC management 

concerning sustainable and effective goals is challenging, particularly when its design 

and planning are considered. Considering that sustainability involves a focus on the 
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economic, environmental, and social performance, the most challenging are the ones 

associated with environmental and social quantification. In fact, the economic 

performance of the SC has been evaluated by decision-makers for a long time and is the 

one that they find it most easy to understand. On the other hand, environmental and social 

performances are not easily perceived by decision-makers, and its quantification often 

does not help this understanding. Thus, monetization can help in understanding these 

abstract impacts, as it allows to translate environmental and social impacts into monetary 

units, which facilitates the perception of the value of these abstract impacts in the SC and 

can facilitate the management of decision-making. It is also important to highlight that 

besides studying SC economic and social impacts, the major focus of this work will be 

on environmental aspects as they are truly critical within the process SC. This paper 

presents a MILP that accounts for the economic, environmental, and social concerns in 

the same objective function by monetizing both environmental and social impacts and 

considering demand uncertainty. 

2. Environmental and social monetization methodologies 

Regarding the environmental impacts’ assessment, it appears that the life cycle 

assessment (LCA) is the most used methodology in the literature. LCA is composed by 

four main phases. The first one includes the goal and scope definition, where the context 

of the study is set out. The second phase is related to inventory analysis, which involves 

creating flows’ inventory from and to nature for a system. The third step is the life cycle 

impact assessment (LCIA) phase that aims to evaluate the significance of potential 

environmental impacts based on the life cycle inventory flow results. However, this is a 

critical phase, where decision-makers must assign weights to factors, which may not be 

easy for most decision-makers. In addition, there is many environmental quantification 

methods, which also makes it difficult to choose the best one to use. Among the methods 

that exist, it appears that some of them quantify environmental impacts in abstract units 

or scores, while others monetize them. Monetizing means quantifying the impact in 

monetary units. Although there are many methods capable of translating environmental 

impacts into money, the European Commission (2010) considers EPS 2000 to be a very 

adequate and complete method when compared to other LCIA methods, having its 

uncertainties fully specified (Steen, 2000).  The fourth phase is the life cycle interpretation 

that allows the identification, quantification, check and evaluation of the information 

from the LCA results. 

Considering the social impacts’ quantification, many works related to sustainable SC 

focus mainly on the environmental pillar while neglecting the social one. In fact, social 

performance of the SC has been the least explored one, which resulted in a relevant 

research gap in this area. In this set, companies have difficulties to assess and quantify 

their social performance (Beske-Janssen, Johnson, and Schaltegger 2015). Generally, 

social indicators are associated with safety, health, human rights, community initiatives, 

child labour, labour issues, and employment benefit. Global Reporting Initiative (GRI) 

identified labour practices and decent work, human rights, society, and product 

responsibility as important categories in the social component. It is important to mention 

that there is no consensus in the scientific community, particularly when defining social 

indicators. In this way, the identification of the suitable social indicators to be applied 

within the SC and its quantification is urgent to support the decision-making process. For 

this reason, translating social impacts into monetary units so that they are easily 
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understood by decision-makers can be an important contribution to explore these research 

gaps. 

3. Problem description and model characterization   

This problem considers a generic SC that includes the flow of suppliers in which raw 

materials are sent to factories and the final products are obtained. Final products can move 

to warehouses or directly to markets. At markets, the end-of-life products can be 

recovered and sent to warehouses or directly remanufactured in factories. Given the 

possible set of locations of SC entities, production and remanufacturing technologies, 

possible transportation modes between entities, and products within the SC, the main 

objective is to obtain the SC network structure, supply and purchase levels, entities’ 

capacities, transportation network, production, remanufacturing and storage levels, 

supply flow amounts, and product recovery levels, to maximize profit and social 

performance, while minimizing environmental impact. To solve this problem a MILP 

model was developed, which is based on da Silva et al. (2020). This model was extended 

to also consider the impact of SC social performance. Eq. (1) represents the first objective 

function, which is the maximization of the expected economic, environmental, and social 

performances of the SC, namely the expected net present value (eNPV), the expected 

social impact (eSoImpact), and the expected environmental impact (eEnvImpact). The 

economic performance is assessed through the eNPV (represented by Eq (2)), which is 

obtained through the sum of each node’s probability multiplied by the discounted cash 

flows (CFNt) in each period t and for each node N at a given interest rate (ir). These CFNt 

are obtained from de net earnings (difference between incomes and costs). There are 

several costs included, namely raw material costs, product recovery costs, 

production/remanufacturing operating costs, transportation costs, contracted costs with 

airline or freight, handling costs at the hub terminal, inventory costs, and labour costs. In 

addition, for the last time period, it is considered the salvage values of the SC (FCIγ). The 

environmental performance is assessed through the eEnvImpact (represented by Eq. (3)), 

LCA is performed on the transportation modes and on entities installed in the SC 

boundaries, using EPS 2015. The Life Cycle Inventory is retrieved from the Ecoinvent 

database (through SimaPro 8.4.0 software). The LCA results are expressed in 

Environmental Load Units (ELU) and used as input data (ei) in Eq. (3), particularly in the 

environmental impact of transportation (first term), and entity (second term). Moreover, 

considering that the main focus of European Commission is to bet on promoting job 

creation and regional development, the social performance here considered is represented 

by Eq. (4), where 
𝐿𝑃𝑟𝑜𝑑𝑡

𝐺𝑃𝑟𝑜𝑑𝑡
 corresponds to the ratio between labour productivity and global 

productivity; 𝐺𝐷𝑃𝑖  is the gross domestic product of a country or sector where the SC is 

inserted; 𝛼𝑖  represents an impact regional factor, which can assume different values 

according to the intended purpose of the study; and 𝑌𝑖 is a binary variable (which returns 

1 if entity 𝑖 is opened). Global productivity is given by 𝐺𝑃𝑟𝑜𝑑𝑡 = ∑
𝐺𝐷𝑃𝑗

𝑁𝐸𝑚𝑝𝑙𝑗
𝑗  and labour 

productivity is given by 𝐿𝑃𝑟𝑜𝑑𝑡 = ∑ ∑
€𝑝𝑟𝑜𝑑𝑖𝑗

𝑁𝑤𝑜𝑟𝑖𝑗
𝑗𝑖  where j is a given country or sector where 

the SC is inserted; GDPj corresponds to the gross domestic product of a country or sector 

j where the SC is inserted; and 𝑁𝐸𝑚𝑝𝑙𝑗  is the number of people employed in country or 

sector j where the SC is implanted and 𝑁𝑤𝑜𝑟𝑖𝑗  is the number of workers that the company 

or the SC owns. The model also considers several constraints regarding mass balance, 
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capacity, transportation, and technology (for more details, please see da Silva et al. 

(2020)). 
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4. Case study 

The model is applied to a chemical components’ producer located in Lyon, France (Silva 

et.al., 2020). The company’s suppliers are local and placed in Lyon. It supplies three main 

markets that are in different European countries: Portugal, France, and Germany. France 

is the market that owns the highest percentage of company’s sales (38.9%), followed by 

Germany (33.7%), and Portugal with 27.4% of company’s sales. Considering the 

willingness of the company's decision-makers to expand its SC, to three new markets 

(Ireland, Spain, and Canada), the company wants to know what changes could result from 

this expansion in financial terms. Currently, transportation is only performed by road, 

namely by truck. However, with the expansion, there is the need to combine road 

transportation with air and sea transportation modes. Regarding company’s 

characterization, it is important to mention that it sells three different types of chemical 

products (fp1, fp2, fp3) that can be sold within the chemical industry and to other 

industries. In the current production, three technologies (pr1, pr2, pr3) are used that 

produce respectively products fp1, fp2, and fp3. Furthermore, end-of-life products can be 

recovered and remanufactured into final products. This work accounts for product’s 

demand uncertainty through a 

stochastic approach since this 

method allows the discretization of 

stochastic data over the time 

horizon and can be adjusted during 

the planning horizon. A scenario 

three was considered (Figure 1), 

where node N characterizes a 

possible state and the arcs 

represent the evolutions it may 

have. Each node has a specific 

probability and a path from the root 

to a leaf node represents a scenario.  

4.1. Results 

Initially, the model was solved 

considering each objective 

function individually, which means 

that the three goals are considered 

Figure 1- Scenario tree - values for probability and 

demand (D) variation are represented 
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separately. In addition, the three goals were also analysed within the same function (single 

objective function). Thus, four cases are studied to understand the results obtained with 

the proposed approach: 

• Case A: analyses the case-study results that represents the optimal economic 

performance as major goal; 

• Case B: analyses the case-study results that represents the optimal social 

performance as major goal; 

• Case C: analyses the case-study results that represents the optimal environmental 

performance as major goal, evaluated through EPS; 

• Case D: analyses the case-study results that represent the optimal trade-off 

between social, environmental, and economic performances.  

As a result, the values for the total expected net present value, social impact, and 

environmental impact obtained in each case are shown in Table 1.  

Table 1 Outcomes for the economic, social, and environmental impacts. 
Obj. 

Function 

Case A Case B Case C Case D 

Max eNPV Max eSoImpact Min eEImpact  Max (eNPV + eSoImpact 

- eEnvImpact) 

eNPV 1.5203x109 € 1.4905x109€ 1.1979x109 € 1.5098x109 € 

eSoImpact 8.1700x10-12€ 3.1150x10-11€ 1.6100x10-11€ 5.2567x10-12 € 

eEImpact 1.0149x109 € 1.1057x109€ 9.3470x108 € 9.8220x108 € 

 

Regarding the results, it is noted that case A is associated with the biggest value for eNPV, 

which arises from the fact that its objective function is maximized, while returns the 

lowest social benefit. Case B considers the maximization of the social performance and 

has the highest value for eSoImpact that corresponds to 3.1150x10-11€ and the lowest 

value of economic performance. In contrast, case C that consider the minimization of the 

eEImpact (assessed through EPS method) has the lowest eNPV value and an expected 

environmental impact that corresponds to 9,3470x108 €. Finally, case D that considers 

the three performances simultaneously, which is only possible thanks to the social and 

environmental impacts’ monetization process. It can be seen that global profit is 

decreased in 1 million euros when comparing cases A with D, but the impact of 

environment increased by nearly 32.7 million euros that can only be accomplished by 

using the single objective approach. On the other hand, the value achieved for social 

performance in case D, is between the values of case A and B. Furthermore, it is possible 

to note that global profit improved further than 300 million euros between cases C and D, 

whereas the impact of environment is worst at nearly 48 million. In other words, with the 

aim of maximizing the global profit, the single objective approach allows to improve 

3.33% in environmental performance and to improve 55% in the social performance, 

while ENPV only decreases 0.7%. Table 2 shows SC design decisions considering the 

results depicted in Table 1 for case D. Additionally to the existent factory, one new factory 

is installed. The results also show that there is the need to expand the existing capacity by 

opening new warehouses. Regarding suppliers’ allocation, all factories are supplied by 

all suppliers, which results from the balance between the lower costs of raw materials and 

fewer transportation costs. Regarding transportation, the truck with more capacity 

(Truck2) is preferred in all cases since this has a lower environmental impact. In terms of 

intermodal transportation, sea option is preferred, while air transportation is not used.  

Process Sustainable Supply Chain: integrating monetization strategies

 in the design and planning

635



 C. da Silva et al. 

 

Table 2 Supply chain network structure for case D 
Allocation of suppliers Closest suppliers supply all factories plus Bremen supplier 
Factories Lyon and Galway 
Warehouses Lyon 

Production 

The majority of fp1 production is in the current factory 
The majority of fp2 production is shared between factories 
Most production of fp3 is in the opening factories 

Remanufacture 
Most of rp1 is in the existing facility (around 70%) 
rp2 and rp3 are only performed in the existing facility 

Technologies Alternative one is preferred for fp1 and fp2 in the opening factories 

Inventory 

fp1 43% in Lyon and 57% in Galway 
fp2 65% in Lyon and 35% in Galway 
fp3 30% in Lyon and 70% in Galway 

Transportation Road: 8 trucks; Air: Not adopted; Sea: Adopted 

5. Conclusions 

This study intended to develop a decision support tool for the design and planning of a 

generic SC, where the economic, environmental, and social performances are considered 

under uncertainty on the product's demand. Economic performance is assessed by using 

the expected NPV. In addition, environmental performance was evaluated through the 

LCA methodology. Considering the social performance, job creation was the indicator 

considered in our first social approach. This analysis was only possible due to the 

monetization, which was able to quantify both environmental and social impacts in a 

monetary unit. This allowed to include in the same objective function the economic, the 

environmental and the social impacts. Moreover, from the analysis made, it was clear that 

results are influenced by social and environmental impacts, and this proves the 

importance of considering these issues in solving real-life problems. For future work, 

further research should be done on this topic to better explore monetization approaches 

to be a reliable alternative to evaluate environmental and social impacts. Also, an 

extension of this work should consider different social indicators and a more 

comprehensive study of uncertainty to conclude on its adequacy even better. 
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Abstract 
Thousands of configurations exist for multicomponent distillation, making it laborious 
to use standard process simulators for identifying which among this plenitude are 
energy-efficient for a given separation. Shortcut models quickly screen the wide search 
space, but their development has been limited by various obstacles. In this work, we 
overcome three challenges: assumptions of constant relative volatilities and constant 
molar overflow, and utilizing heat integration. We incorporate our solutions into an 
optimization formulation and subsequently demonstrate its ability to identify energy-
efficient and heat-integrated configurations on a case study. We also demonstrate how 
process intensification can be used to raise the value of the selected configuration. 

Keywords: Multicomponent Distillation; Optimization; Process Synthesis; Process 
Intensification. 

1. Introduction 
Ubiquitous in the chemical and petrochemical industries, distillation is a staple unit 
operation in the separation of various mixtures such as crude petroleum, air, natural gas 
liquids, alcohols, and aromatics. However, these separations come with substantial 
energy expenses which have a by-product of greenhouse gas emissions. Therefore, it is 
of vital importance to identify new distillation arrangements with lower energy 
consumption for separations. 

For multicomponent separations, there is a vast search space of configurations possible. 
For example, 6,128 configurations exist for separating just five components in a mixture 
(Shah and Agrawal, 2010). A systematic analysis (with optimization) and comparison is 
required to determine which of these are energy-efficient for a given separation. But 
performing such an analysis in a standard process simulator is impractical due to the 
computational challenges of optimizing with the complex thermodynamics and 
exorbitant time spent in evaluations (Madenoor Ramapriya et al., 2018). Hence, we use 
a simplified model for energy optimization to quickly screen through the vast search 
space of configurations, identifying a handful of candidates for further analysis in the 
process simulator. 

Although several simplified models exist for distillation in the literature (Caballero and 
Grossmann, 2006; Nallasivam et al., 2016; Tumbalam Gooty et al., 2018; Ryu and 
Maravelias, 2020), they make various assumptions which, while granting them 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50106-8 
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computational simplicity, limit their accuracy. For example, the Underwood method 
(Underwood, 1948) is often used to estimate the minimum reflux in columns. However, 
the method was derived based on two vital assumptions, constant relative volatilities 
(CRV) and constant molar overflow (CMO), which do not hold for many real 
separations. Moreover, these models face computational difficulties incorporating 
important elements of process flowsheets. For example, heat integration (the re-use of 
heat) is invaluable for energy reductions. However, its feasibility checks can hamper 
global optimization when complex equations are used to calculate temperatures. In this 
paper, we present our solutions to the aforementioned limitations and demonstrate the 
optimization formulation in which they have been incorporated to identify energy-
efficient and heat-integrated distillation configurations. We also demonstrate process 
intensification techniques to improve the attractiveness of the chosen configuration. 

2. Optimization Model 
2.1. Base Model 

First, we describe the base model of Nallasivam et al. (2016), upon which we have 
incorporated our advances. Implemented in a nonlinear program, it determines the 
minimum vapor duty (sum of the reboiler vapor duties) of regular-column (n columns 
for n-component separation) distillation configurations. It employs assumptions of ideal 
and zeotropic mixtures, CRV, and the standard McCabe-Thiele assumptions (which 
result in CMO). Each configuration is uniquely identified by the set of streams present. 
Columns with multiple feeds are modelled as a collection of pseudo-columns for the 
split of each feed stream. These pseudo-columns are stacked vertically, with the 
common products of adjacent splits being withdrawn as sidedraws.                                                                                                                                                                                                                                                                                                                               

The variables in the base model are component and vapor flowrates of each stream and 
column section, and the Underwood roots of each split. Mass and vapor balances are 
applied at the product and feed ends of each stream. The Underwood method 
(Underwood, 1948) is utilized to constrain minimum vapor flows in columns and ensure 
feasible component distributions in sloppy splits. The vapor flowrate of a stream is 
constrained according to its nature, viz., associated with a heat exchanger, sidedraw, or 
thermally coupled. 

2.2. Estimating Better Relative Volatilities 

The relative volatility of component 𝑖, 𝛼!, is a measure of how this component 
distributes between the phases of a vapor-liquid equilibrium (VLE) compared to the 
heaviest component 𝑛 in the mixture. When 𝛼! are constants (the direct result of the 
CRV assumption), the following equation (written to predict vapor composition, 𝑦!, 
from liquid composition, 𝑥!) is sufficient to characterize the VLE. 

𝑦! =
"!#!

∑ ""#"#
"$%

  (1) 

But in general, component relative volatilities vary with the specifications of the 
mixture, i.e., composition, temperature, and pressure. For this reason, CRV (and thereby 
the above simplified VLE) has been viewed as a poor assumption in distillation models. 
However, even if the physical values of relative volatilities vary widely, there can exist 
constant mathematical values which capture these variations. Instead of the common 
perception that Eq.(1) is only valid for ideal mixtures, we advocate interpreting it as a 
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surrogate VLE. 𝛼! are then to be determined by parameter estimation, so that this 
surrogate VLE best approximates the true VLE (Anderson & Doherty, 1984). 

The method we propose for estimating 𝛼! is as follows (Mathew et al., 2020). Generate 
a systematic spread of VLE training data in 𝑥! and 𝑦!, by considering each component 
to be either lean or rich, as well as the pressure to be low or high. Then regress 𝛼! in 
Eq.(1) via non-linear least squares. This yields values for 𝛼! which can capture the VLE 
through Eq.(1), and therefore be employed in methods assuming CRV, such as the 
Underwood method, while accounting for the variations in relative volatilities. 
2.3. Relaxing Constant Molar Overflow 

CMO is valuable in shortcut models as it simplifies complex energy balances over 
enthalpy into simple linear balances over vapor and liquid flowrates. A critical 
requirement for CMO is that all components have the same latent heat of vaporization, 
𝜆!. However, 𝜆! can have a wide spread in many separations, such as for crude oil. To 
account for different latent heats, researchers such as Mole (1950) have derived the 
following simple variable transformation from molar variables to latent heat variables 
(LH) for component flowrate (𝑓), total flowrate (𝐹), and composition (𝑧). 

𝑓!%& = 𝑓!𝜆! ,					𝐹%& = 𝐹∑ 𝑧'𝜆'(
')* ,						𝑧!+, =

-!.!
∑ -"."#
"$%

	  (2) 

The benefit of this particular transformation is that, when the different latent heats are 
accounted for, the resulting model written in latent heat variables is mathematically 
equivalent to the usual CMO model in molar variables. Thus, the transformation allows 
us to implicitly account for different latent heats but while retaining the computational 
simplicity of the CMO equations. We applied the above transformation in our 
formulation to not only relax the CMO assumption but also determine the minimum 
heat duty of configurations, which is a more accurate proxy for energy consumption 
than vapor duty which the base model determines. 
2.4. Heat Integration to Reduce Energy Consumption 

One opportunity for heat integration in distillation is to transfer heat from the condenser 
of one column to the reboiler of another. Such a heat transfer is allowed only if the 
temperature of the source (condenser) is greater than that of the sink (reboiler). This 
implies that temperatures would need to be calculated during optimization while 
checking for feasible heat integrations. However, such checks can hamper convergence 
to global optimality when complex thermodynamic equations are used. To address this, 
we developed a shortcut criterion for feasibility of heat integration (Mathew et al., 
2021). 

Using Raoult’s and Dalton’s laws for partial pressures, along with Eq.(1), we derived a 
new metric (pressure-scaled pseudo relative volatility, 𝜌) that monotonically decreases 
with temperature. Therefore, we utilize 𝜌 as an inverse proxy for temperature which is 
computationally cheaper to calculate during optimization. The shortcut criterion is 
shown below. 𝜌 is first calculated, in Eq.(3), for each stream at its bubble and dew 
points, using only component relative volatilities (𝛼!), composition (𝑧!), and pressure 
(𝑃). Then, heat transfer (𝑄) is permitted via Eq.(4) only if 𝜌 of the condensing stream 
(𝑐) is less than that of the boiling stream (𝑏), implying that the condensing stream is 
hotter than the boiling stream. 

Distillation Configurations
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Table 1: Feed data for case study. Feed is saturated liquid at 1 atm. 

 Components 
A B C D E 

Species Benzene Toluene Ethylbenzene p-Xylene o-Xylene 
Feed Flowrate,  
𝑓 (kmol/h) 30 30 5 5 30 

Relative Volatility 
𝛼 5.61 2.43 1.25 1.17 1 

Latent Heat 
𝜆 (kJ/mol) 30.0 32.5 34.7 34.9 35.7 

 

𝜌/0/ = *
1
∑ 𝛼'𝑧'(
')* ,					𝜌234 = 3𝑃∑

-"
""

(
')* 4

5*
		  (3) 

𝑄5	𝜌6/0/ − 𝜌7/0/7 ≤ 0,					𝑄5	𝜌6234 − 𝜌72347 ≤ 0  (4) 

3. Case Study 
We now demonstrate our formulation on a five-component aromatics separation, with 
feed data shown in Table 1. We solved our shortcut model for each of the 6,128 
different regular-column configurations possible for this separation (Shah and Agrawal, 
2010), while considering heat integration opportunities and allowing column pressures 
to vary between 1 atm and 2 atm. 

The configuration in Figure 1(a) was predicted to have the least heat duty of 1.82 MW 
among all the configurations optimized. It uses two heat integrations of condenser 
(filled circle) of stream CD supplying heat to the reboiler (hollow circle) of stream 
CDE, and condenser C supplying heat to reboiler DE. To make these heat integrations 
feasible, columns 1 and 2 are operated at the feed pressure of 1 atm while columns 3 
and 4 are operated at higher pressures of 1.4 atm and 2 atm respectively. 

To improve the structural attractiveness of this configuration, we apply a variety of 
transformation techniques which fall under the broad umbrella of process intensification 
(PI) (Jiang and Agrawal, 2019). First, we horizontally consolidate columns I and II into 
a single shell with a vertical partition in between, forming a dividing wall column 
(DWC) (Agrawal, 2001; Madenoor Ramapriya et al., 2018b). Then, the three column 
shells are vertically consolidated into a single shell (I-II, III, then IV), with the heat 
integrations performed internally using multi-effect technology (Agrawal, 2000). 

The final configuration is shown in Figure 1(b). An important feature of the 
transformation techniques we employed is that they maintain thermodynamic 
equivalence. Thus, the process-intensified configuration in Figure 1(b) has the same 
least heat duty of 1.82 MW as that of Figure 1(a) but with greater structural 
attractiveness. We remark that the configuration performs a five-component separation 
in a single shell. It is a triple-effect column, with the topmost column being a DWC. 
The vapor-split at the bottom of the partition in this part can be indirectly controlled via 
pressures in the condensers of A and B. Thus, this type 2 DWC is more operable 
compared to the conventional type 1 DWC where the partitions lie in the middle of the 
shell (Chen and Agrawal, 2020). 
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Abstract 

In the early stages of process design, the design space is enormous, often requiring 

simplified models that are based on conventional unit operations with their inherent 

strengths and limitations. In this paper, we present a novel conceptual framework and a 

synthesis methodology applied to a specific design problem featuring an equilibrium-

limited reaction or a separation that can benefit from the introduction of a reactive 

separating agent to use intensified technologies following the success of reactive 

distillation. Two case studies (related to lactic acid and dimethyl ether production) 

illustrate the application of the synthesis methodology, and the outcomes are verified 

with conceptual design studies reported in the literature.  

Keywords: Process synthesis; Reactive distillation; Process intensification; Feasibility 

methodology; Fluid separations 

1. Introduction 

Chemical industries face multiple challenges due to the increasing competitiveness, 

tighter regulations, and more stringent technical, commercial, safety and environmental 

requirements. Conventional process synthesis and design approaches to serve chemical 

industries generally apply established unit operations that are continuously challenged 

to reach new targets. Also, the increase in computing power has benefited the 

development of complex superstructure optimization methods combining synthesis and 

design simultaneously and including economic and sustainability indicators. As a result, 

the increased complexity requires numerous assumptions to simplify the models and 

often neglect important characteristics of the system that may impact process design at 

later stages. On the other hand, understanding a chemical system is crucial in the early 

stages of process design, for example, during flowsheet development. 

Therefore, this work focuses on a much smaller subset of the design problem and 

proposes a methodology for early-stage process design to quickly evaluate advanced 

reactive distillation technologies that incorporate additional intensification features to 

reactive distillation (RD). These advanced RD technologies can be applied to 

equilibrium-limited reactive systems in the liquid phase or fluid separations that can 

benefit from the introduction of a reactive separating agent (RSA) to facilitate the 

separation. Decision making for process synthesis is guided by high-level questions 

about the chemical system of interest, which can be answered by knowing basic 

thermodynamic properties and kinetic data and using experience or experts’ knowledge 

from conventional RD applications.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50107-X 
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2. Advanced reactive distillation technologies  

The technologies included in the scope of the synthesis methodology were developed 

following the success of RD by evaluating additional intensification features to expand 

the operating window and find potential new applications. The technologies included in 

this study are reactive dividing-wall column (R-DWC), catalytic cyclic distillation 

(CCD), reactive internally heat-integrated distillation (R-HIDiC), reactive high-gravity 

distillation (R-HiGee), and membrane-assisted reactive distillation (MA-RD). Figure 1 

illustrates the key features of the five technologies included in the scope of this study 

and highlights their advantages compared to RD.  

3. Research approach, conceptual framework and scope  

3.1. Research approach  

Kiss et al. (2019) noted that advanced RD technologies have not reached maturity due 

to the lack of robust methods and tools for process design and simulation, process 

dynamics and control, lack of pilot and industrial tests, and because of practical 

challenges related to ease of implementation. However, the range of applications of 

conventional reactive distillation is well established for equilibrium-limited reaction 

systems that have been studied on a laboratory, pilot or industrial scale (Luyben, 2013; 

Skiborowski, 2018). The ongoing research and developments about advanced 

distillation technologies (Kiss, 2013) and the knowledge and understanding of various 

chemical systems – feed and product specification, kinetics, phase equilibria, catalysts 

and operating conditions – are the basis for the decision-making methodology that aims 

to include advanced RD technologies in the early stages of process design.   

 

Figure 1. Main features of the five advanced reactive distillation technologies 

644



Synthesis of Advanced Reactive Distillation Technologies: Early-stage 

3.2. Conceptual framework and scope  

The methodology aims to be general enough to cover a wide range of equilibrium-

limited reaction systems and their characteristics relevant to large-scale industrial 

applications (e.g., azeotropes, impurities and trace components, difficult separations). 

These characteristics are often simplified in laboratory-scale investigations, such as 

considering pure feeds, a large amount of solvent, and not accounting for the type of 

utilities needed. As a result, these characteristics usually lead to the need for multiple 

processing steps. However, intensified technologies that combine reaction and 

separation may overcome these challenging characteristics resulting in more compact 

and efficient processing units.  

Figure 2 shows the conceptual framework of the decision-making methodology 

proposed in this work, which prompts high-level questions to the user to know the 

chemical system better. These questions can be answered given the thermodynamic 

properties and the kinetic parameters. The most common sources of information are also 

indicated.  

Thermodynamic property data of pure compounds and mixtures include process stream 

compositions (feeds and products), basic physical properties and phase equilibrium 

information. These data can be easily gathered from databases and handbooks, from 

experiments or robust equations of state and activity coefficient models.  

 

Figure 2. Conceptual framework for the synthesis of advanced reactive distillation technologies 

Assessment Based on Thermodymanic Properties and Kinetics
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The kinetic parameters of the main reaction must be carefully identified along with 

relevant side reactions that are often neglected in the conceptual design phase. For 

example, a parallel reaction can compete with the main reaction (consuming a reactant), 

or a series reaction can consume a product. Therefore, potential side reactions and their 

impact must be thoroughly understood at early stages because neglecting them can drive 

the decision-making process towards infeasible designs that may not be able to handle 

or overcome such complexities.  

Information about thermodynamic properties and kinetics parameters can guide 

selection, but decisions also need to take into account constraints imposed by materials 

(i.e., catalysts, materials of construction) and methods (e.g., laboratory experiments). 

The materials constraint accounts for the chemicals used, the catalyst (functions, 

robustness against deactivation, thermal and mechanical performance, availability for 

large scale applications), and the materials used for vessels, column internals, 

membranes, and fluid handling system. The methods constraint includes laboratory 

procedures to evaluate kinetics or mixture behavior, or methods to conduct equipment 

sizing especially when severe conditions are required: operating pressure and 

temperature, moving parts, corrosive environment, or abrasive materials.  

4. Decision-making methodology applied to two case studies  

The high-level questions shown in Figure 2 are the backbone of the decision-making 

methodology. These questions firstly address the feed composition and the expected 

products and by-products, considering dilution, trace components and impurities. The 

next set of questions refers to the operating conditions: operating pressure and the range 

of temperatures expected. The next step deals with the reactions identified in the 

system. The forward reaction rate constant of the main reaction is evaluated at 363.15 K 

to categorize its rate as relatively slow, average, or fast. Side reactions are then 

evaluated according to the source of the reactants: from the feed stream, which can 

drive parallel reactions; or from the main reaction products, which can trigger a series 

reaction. Finally, the mixture behavior is evaluated by understanding the phases present 

and the existence of azeotropes.  

We illustrate the application of the decision-making methodology in two case studies. A 

brief introduction about each chemical system allows the high-level questions to be 

answered. In each case study, relevant decision points that guide the technology 

selection are examined, along with an excerpt of the decision-making flowchart.  

5. Results and discussion  

5.1. Concentration and purification of lactic acid  

The feed consists of a pre-treated fermentation broth that contains lactic acid (LA) 

(30 % wt.), succinic acid (5 % wt., reactive impurity), and a large amount of water. The 

design problem involves separating water and other acid impurities to obtain food-grade 

LA (88 % wt.). We introduced a reactive separating agent (RSA), methanol, to promote 

the esterification LA to produce methyl lactate and water with a heterogeneously 

catalyzed equilibrium-limited reaction of the type A + B ⇌ C + D. Succinic acid also 

reacts to produce succinates. Once the heavier succinates are removed, the reverse 

hydrolysis reaction is promoted by providing sufficient water in the liquid phase to 

obtain LA on specification and free from the impurity.  
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Relevant answers used in the decision-making flowchart are that the feed is diluted 

(Q1);  the streams identified are product, by-product, excess water, and the RSA (Q2);  

the operating pressure should be sub-atmospheric to avoid thermal degradation (Q8);  

the existence of parallel side reaction from the impurity in the feed (Q7);  the existence 

of homogenous mid boiling azeotropes (Q5), which are presented in an excerpt of the 

decision-making flowchart in Figure 3a.  

The main outcomes are that a preconcentration step is required to remove excess water. 

Among the advanced RD technologies evaluated, the R-DWC is deemed suitable due to 

the number of outlet streams required, the side reaction by-products and the presence of 

mid-boiling azeotropes that can be consumed in the reactive sections. In addition, R-

HIDiC and CCD are discarded because of their limitations to operate under vacuum. 

These outcomes were supported with conceptual design studies about thermally coupled 

configurations (Kim et al., 2017) and a dual R-DWC (Pazmiñ o-Mayorga et al., 2021), 

which demonstrated energy savings compared to a conventional RD.  

5 .2 . Production of dimethyl ether ( DM E)  

A feed of pure methanol reacts to produce water and dimethyl ether (99.5% mol). 

Conventional DME production requires high temperatures and pressures and several 

unit operations. The design problem involves a heterogeneously catalyzed liquid-phase 

reaction of the type A ⇌ B + C.  

The main characteristics driving decisions for technology selection are illustrated in 

Figure 3b. The reaction rate constant is relatively slow in the framework of RD 

applications (Q9), the presence of a small two-phase liquid region (Q6) and the absence 

of azeotropes (Q5).  

 

Figure 3. Excerpt of the decision-making methodology and outcomes a) lactic acid purification b) 

dimethyl ether production  

Synthesis of Advanced Reactive Distillation Technologies: Early-stage 
Assessment Based on Thermodymanic Properties and Kinetics
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The technologies deemed suitable for DME production are CCD as larger holdups allow 

longer residence times suitable for the relatively slow reaction. The absence of 

azeotropes enables the application of R-DWC and CCD without risking the purity of the 

outlet streams. However, the existence of a small two-phase region suggests that 

auxiliary equipment may be needed to remove water, such as a membrane. These 

outcomes were demonstrated with the conceptual design study of an R-DWC that 

showed energy saving compared with conventional RD (Kiss and Suszwalak, 2012). 

Also, DME production in a CCD has been studied at the conceptual level (including a 

patent), indicating that higher purities can be achieved with fewer stages and a lower 

vapor flow rate (Pătruţ et al., 2014; Kiss et al., 2015).  

6. Conclusions 

This work showcases a decision-making methodology for the synthesis of advanced RD 

technologies using chemical system data that can be easily obtained at early stages 

during flowsheet development. The highlights are the inclusion of novel intensified 

technologies that are often dismissed in traditional process design settings, the use of 

thermodynamic properties and kinetic parameters of the chemical systems and a set of 

heuristics from recent research about RD and advanced distillation. The methodology is 

demonstrated in two case studies. The results of published studies verify the outcomes 

of the methodology. A more detailed description of the methodology is under 

preparation with further case studies to evidence its range of applicability. 
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Abstract 

In the past two decades, natural gas flaring and venting have increased due to the lack of 

transforming or transportation infrastructure in emerging shale-gas-producing regions. 

To reduce carbon emissions and wastage of shale resources, we recently reported 

several innovative flowsheets for natural gas liquid (NGL) to liquid fuel processes on a 

small scale near the wellhead (Chen et al., 2021). These processes consist of a direct 

shale gas dehydrogenation reactor followed by an oligomerization reactor. In this work 

we perform thermodynamic analysis on both dehydrogenation and oligomerization 

reactors and demonstrate the benefits of our proposed processes over other processes 

alternatives. This study also provides a systematic procedure for the synthesis of 

economically attractive processes for small scale shale gas valorization. 

Keywords: shale gas, natural gas liquid, process intensification 

1. Introduction 

Shale gas is a promising energy resource and chemical feedstock for the transition 

period towards a sustainable economy and has the potential to be a carbon source for the 

long term. However, huge amount of shale gas at remote shale gas basins is directly 

flared (Fisher et al. 2019) due to the lack of infrastructure to transport the gas from well 

heads to the central processing plant. To avoid long distance transportation, it is 

essential to convert shale gas to value-added and easily transportable products on site at 

a distributed scale. Liquid fuel with high market value and large market demand, such 

as gasoline and diesel are our target products. Unlike current shale gas process where 

large scales are preferred, simple and intensified processes with least processing steps 

and least pieces of equipment are favoured for remote shale plays. 

Natural gas liquids contained in shale gas are especially of our interest since they are 

comparably easier to activate and transform to liquid products. While conventional 

shale gas processing usually follows a hierarchy of “Front-end Separation, NGL 

activation, NGL upgrading” (He and You 2014), we recently showed that a new process 

hierarchy of “NGL activation, NGL upgrading, Back-end separation” has significant 

advantages for small scale installation (Chen et al., 2021a). In this work, we carry out a 

systematic analysis of the proposed process hierarchy to illustrate its benefits and 

provide an evolution procedure from the conventional process to the novel processes.  

Our process designs evolve from NGL co-processing (Ridha et al., 2018) wherein the 

NGL mixture after recovery is directly activated and upgraded to liquid fuel, to 

switched NGL activation and recovery, wherein the NGL recovery step takes place after 

the NGL activation step. Finally at the backend NGL recovery step, where the NGL 

recovery step takes place after the NGL has been upgraded to liquid fuel. A two-step 

conversion of NGL to liquid hydrocarbons via dehydrogenation followed by 
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oligomerization is used as an example to show how these innovative process designs 

evolve. We synthesize process configurations corresponding to each step in the 

evolution and illustrate the merits and shortcomings of each configuration through 

thermodynamic analysis on both dehydrogenation and oligomerization reactors. Higher 

yield of liquid products, fewer processing steps, reduced numbers of equipment pieces 

and elimination of energy and capital-intensive units can be achieved. The 

intensification of these processes would benefit the modularization of shale gas plants 

and make it possible for onsite distributed production of liquid hydrocarbons for remote 

shale locations. 

2. Base Case Flowsheet 

 
Figure 1: Process I: NGL co-processing proposed by Ridha et al. (2018) 

We start with Process I (NGL co-processing) synthesized by Ridha et al., as depicted in 

Figure 1. In the configuration, the dry and sweet shale gas first goes through a CH4/C2+ 

separation to separate CH4 from natural gas liquids. The CH4/C2+ separation unit is a 

conventional cryogenic demethanizer (Getu et al., 2013). NGL in this stream is then 

preheated and sent to the catalytic dehydrogenation unit wherein a portion of NGL is 

converted to their corresponding olefins. The effluent stream is sent to a hydrogen 

separation unit for hydrogen removal and then the oligomerization unit wherein olefins 

are converted into longer chain molecules which are liquid in the ambient state. The 

separation between C5+ liquid and light hydrocarbons (C2-C5) in stream is performed in 

a simple two-flash system. In process I (NGL co-processing), NGL and its 

corresponding olefins are directly sent to the oligomerization reactor without paraffin-

olefin separation, and a much simpler separation between C5+ liquid and light 

hydrocarbons is employed. This design is already much simpler than the conventional 

shale gas process (He and You, 2014).  

 

However, the configuration in Figure 1 is still not economically attractive for a 10 

million standard cubic feet per day (MMSCFD) small scale plant at the gas gathering 

station, due to the following reasons: 1) The front-end separation consists of a series of 

energy intensive and costly unit operations, especially the cryogenic demethanizer, 2) 

The catalytic dehydrogenation reactor has limited conversion and selectivity, and 3) 

There are significant C2+ losses at multiple locations of the flowsheet, including the 

hydrogen membrane, CH4/C2+ separation, and purge stream. In section 3, we will 

perform a systematic analysis on the dehydrogenation and oligomerization to show how 

we overcome these drawbacks step by step.  
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3. Systematic Analysis and Evolution of Process Configurations 

We perform a thermodynamic analysis on the dehydrogenation reactor in Figure 1. 

There are two state-of-the-art methods for dehydrogenation: thermal dehydrogenation, 

and catalytic dehydrogenation. Catalytic dehydrogenation is operated at a relatively low 

temperature, usually below 700 0C and has a high selectivity towards olefins. For 

example, propane catalytic dehydrogenation is a widely used process for propylene 

production. Thermal dehydrogenation, on the other hand, is operated at a higher 

temperature and has a low selectivity due to cracking. A good example of this is steam 

cracking for olefin production. Although there are multiple efforts in literature studying 

catalytic ethane dehydrogenation (Dai et al., 2021), this technology is not suitable for a 

simple plug flow reactor due to equilibrium limitation. Figure 2 shows the equilibrium 

conversion for a pure ethane feed at different operating conditions. Equilibrium 

conversion curves show that the maximum conversion of ethane is only around 40% at 

700 0C and 1 bar. The equilibrium conversion marks the highest conversion possible, 

while in a real catalytic dehydrogenation reactor, the conversion tends to be lower than 

this value. To achieve a higher conversion, one can either operate the reactor at a lower 

partial pressure or at a higher temperature. However, when operated at a higher 

temperature, thermal dehydrogenation is already fast enough and there is no need for the 

catalyst. The conventional ethane steam cracker only has a residence time of 0.2s and 

practitioners must quench the effluent stream to stop side reactions (Karimzadeh et al., 

2009). Further decreasing the total pressure of the reactor results in vacuum operation, 

which is also not a good idea for hydrocarbon reactions. While ethane catalytic 

dehydrogenation may be incorporated in an advanced reactor design, such as membrane 

reactor to overcome the equilibrium conversion limit (Champagnie et al., 1992), 

complex reactor designs are not suitable options for small scale installation due to 

limited capital expenditure.  

 

 

Figure 2: Sensitivity analysis over the dehydrogenation and oligomerization reactors. a) Ethane 

conversion as a function of operating temperature at different operating pressures, and b) C6+ 

production rate (kg/h) at different temperatures and pressures in the oligomerization reactor. 

To achieve high conversion, thermal dehydrogenation is the only option to keep a 

simple reactor design. The conventional steam cracker is usually operated at 850 0C 

with 1:3 mass ratio of water to hydrocarbon in the cracker. The partial pressure of 

hydrocarbons in the steam cracker is around 1 bar, which indicates around 85% 
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conversion in Figure 2. In the steam cracking system, steam serves as an inert to 

decrease the partial pressure of hydrocarbons. However, steam cracker contains a 

complex system for steam generation, preheating, and post-reaction dehydration, which 

is also not suitable for small scale installation. 

 

To overcome the thermodynamic as well as economic challenge, it is essential to 

identify an alternative inert in the system which could decrease the partial pressure of 

hydrocarbons without introducing additional complexity to the process design. CH4, 

which is already mixed with the NGL in the shale gas from a well and a byproduct in 

the ethane thermal dehydrogenation becomes the perfect choice. Rather than separating 

CH4 before dehydrogenation, leaving CH4 in the feed to the reactor significantly 

simplifies the entire process. Process II (Switched NGL recovery and activation), the 

switched NGL recovery and activation, is a process containing such a process sequence 

(Figure 3). In this configuration, the dry and sweet shale gas is directly sent to thermal 

dehydrogenation unit and the CH4/NGL separation takes place after the thermal 

dehydrogenation step. For a Bakken shale gas containing 57.8% CH4, 20.0% C2H6, 

11.4% C3H8, and 5.1% heavier components, when the total pressure of the reactor is 2 

bar, the partial pressure of NGL components is only 0.6 bar, leading to a higher 

conversion and selectivity towards olefins. 

 

Furthermore, the conventional steam cracker is followed by a demethanizer to remove 

CH4, which is produced in the steam cracker as a byproduct. This demethanizer is a 

duplication of the front-end demethanizer, resulting in increased capital cost. In Process 

II (Switched NGL recovery and activation), the repeated demethanizer is now 

eliminated (Figure 3). The C2+ loss in this configuration is also significantly reduced 

because this process does not have a H2/NGL separation and a purge stream as in 

Process I (NGL co-processing), which could be the sources of C2+ loss. 

 

Figure 3: Process II: process configuration with switched NGL recovery and activation 

We can further switch the CH4/NGL separation unit and oligomerization unit. CH4 and 

H2 in the oligomerization reactor serve as thermal mass to somewhat mitigate the 

temperature increase and as a result, less reactor beds are needed for the process (Chen 

et al., 2021a). However, it results in reduced partial pressure of olefins, leading to a 

decreased conversion. Again, we performed a sensitivity analysis on the oligomerization 

reactor at different temperatures and pressures. The analysis is performed for a 1000 

kg/h pure ethylene feed, using RGibbs model in Aspen Plus and assuming olefins from 

C2 to C20 are produced. From the analysis, we observe that the C6+ yield is a weak 

function of pressure. At an operating temperature of 200 0C ~ 300 0C, almost all 

ethylene is converted to C6+, even if operated at a low pressure. This analysis confirmed 

( p g)
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that it is beneficial to further switch the order between the CH4/NGL separation unit and 

oligomerization reactor. 

 

Figure 4 shows Process III (Backend separation) wherein the oligomerization takes 

place before any separations, and it is denoted as back-end NGL recovery configuration. 

In this configuration, objective of the separation task is to separate the effluent stream 

from the oligomerization reactor into three streams, a gaseous stream containing H2, 

CH4, N2 which could be further treated in a membrane separation unit to obtain pipeline 

natural gas, a recycle stream sent back to the dehydrogenation reactor, and a liquid 

hydrocarbon product stream containing C6+. An absorption column using a portion of 

the liquid product stream as the absorbent is used for the separation of CH4 and NGL. 

Readers may refer to Chen et al.’s work for detail description of this process. This 

backend separation system is much simpler and less costly than the conventional front-

end demethanizer. The reason being that, as all the separations are performed together 

in the end, the separation task could become easier, and synergies could be identified 

among all separations. In Process III (Backend separation), if we denote the feed stream 

as ABC, in which A is H2, CH4, N2, B is C2-C5 hydrocarbons, C is C6+ liquid 

hydrocarbons, then the separation in Process III (Backend separation) could be 

perceived as sloppy separation A/ABC and ABC/C. While in Process I (NGL co-

processing) and II (Switched NGL recovery and activation), all the separations are sharp 

separations. The sloppy separations could be less energy intensive than the sharp 

separations, with the only penalty of slightly increasing the recycle ratio.  

 

Figure 4: Process III: our process configuration with backend separation (Chen et al., 2021a) 

From the simulations and thermodynamic analysis results above, we can conclude 

several general principles for process synthesis and intensification: when a feed mixture 

contains inert components and has constituents that are also created in downstream 

processing, which must be separated downstream, then one should carefully evaluate 

the merit of (1) avoiding upstream separation of the constituents from the feed mixture, 

and (2) arranging the processing sequence so the duplication of separation between any 

two components is avoided, (3) arranging the process sequence for the maximum 

thermodynamic benefits and (4) arranging most of the separations next to each other 

and identifying synergies among them. Furthermore, potential advantages of the inert in 

the feed for the downstream endothermic reactions, which are unfavoured according to 
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the Le Chatelier’s principle, should be carefully explored against the increase in the cost 

due to an increase in the equipment size. Using these principles, we recently proposed 

an efficient and cost-effective process for propylene and ethylene production from shale 

gas (Chen and Agrawal, 2021b).  

4. Conclusions 

In this work, we described a series of processes for shale gas valorization at remote 

shale gas basins evolving from NGL co-processing (Ridha et al., 2018) wherein the 

NGL mixture is directly activated and upgraded to liquid fuel. However, we switched 

NGL recovery and activation steps and used the CH4 present in the shale gas as inert for 

the NGL dehydrogenation step. Finally, unconverted NGLs and methane are separated 

in one simple separation step after conversion of olefins to liquid fuel. We performed 

sensitivity analysis on both dehydrogenation and oligomerization reactors and revealed 

the effects of operating pressure and temperature over the performance of the reactor. In 

terms of this, we made decisions whether to switch the order between separations and 

reactions and demonstrated that the backend NGL recovery process has advantages over 

the other two previous methods and hence more suitable for small scale installation. We 

also summarized several general principles for process intensification which could be 

potentially applied to other reaction-separation networks.  
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Abstract 

Cyclohexanol is regarded as an important raw material to produce many useful chemicals 

such as hexanedioic acid, hexamethylenediamine, and caprolactam. However, it’s 

production usually leads to high energy consumption. Traditional technologies include 

three routes: oxidation of cyclohexane, hydrogenation of phenol and direct hydration of 

cyclohexene. Avoiding the risk of explosion and a low price of raw material, the direct 

hydration of cyclohexene route is selected in this paper. To enhance the energy efficiency, 

a novel heat-pump-assisted reactive distillation process (HPRD) is proposed and 

simulated through AspenPlus. The discharge compressor pressure is optimized to be 3.2 

bar to minimize the cost. For purposes of comparison, two conventional processes, 

aqueous-phase-refluxed reactive distillation with a stripper (ARDS) and organic-phase-

refluxed reactive distillation with a stripper (ORDS), are also simulated and optimized 

through sensitivity analysis. All these three processes are evaluated through energy and 

economic analysis. The results show that the ORDS process saves the total energy and 

annualized cost by 15% and 12%, respectively, compared with the ARDS process, while 

the heat-pump-assisted process realizes a significant energy saving of 65% and achieves 

33% reduction in total annualized cost, demonstrating a high economic feasibility. 

Keywords: Cyclohexene to cyclohexanol; Direct hydration; Reactive distillation; Heat-

pump; Process optimization. 

1. Introduction 

Cyclohexanol, as an important intermediate chemical, has been widely used in the 

production of hexanedioic acid, hexamethylenediamine, caprolactam and many more. 

These chemicals are the main raw materials for producing polymers such as Nylon 6,6 

and Nylon 6. Therefore, cyclohexanol is usually a raw material in huge demand in the 

chemical industry and receives much attention in terms of their synthesis approaches and 

catalysts research. One of the main traditional routes for cyclohexanol production is the 

direct hydration of cyclohexene, overcoming the risk of explosion and high cost, has been 

identified as the main research direction for cyclohexanol production. 

The direct hydration method allows cyclohexene contacting with water by an additive 

reaction to produce cyclohexanol. However, the reaction occurs in the liquid phase, and 

the immiscibility of cyclohexene and water leads to a low conversion rate. What’s more, 

the equilibrium reaction would also result in low production efficiency. In order to reduce 

energy consumption, reactive distillation, as one of the technologies for process 
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intensification, has been applied in previous studies. The production rate of cyclohexanol 

could achieve a significant increase through the continuous removal, breaking the 

limitation of equilibrium reaction and promoting the reaction to the forward direction. 

Chen et al. (2014) proposed a reactive distillation process making full use of liquid-liquid 

splitting of the binary cyclohexanol-water azeotrope. Ye et al. (2014) introduced a side 

reactor configuration. Both strategies could achieve significant energy-efficiency and 

cost-saving. Although direct cyclohexene hydration as an alternative has been suggested, 

overall process simulation and evaluation as well as detailed analysis of energy and 

economic aspects are still scarce. To improve the energy efficiency, some novel 

technologies such as heat pump, extractive distillation and different flowsheet 

configurations with different phase reflux options could also be considered. 

In this work, a novel heat-pump-assisted reactive distillation process (HPRD), combining 

two technologies: reactive distillation and vapor recompression (VRC) heat pump, is 

proposed for direct hydration cyclohexene to cyclohexanol, thus allowing a significant 

reduction of the energy requirements for cyclohexanol purification. The process is 

simulated with rigorous AspenPlus modules. For a comprehensive comparison, two 

conventional reactive distillation processes with different phase reflux options (aqueous 

and organic phase), ARDS (aqueous-phase-refluxed reactive distillation with a stripper) 

and ORDS (organic-phase-refluxed reactive distillation with a stripper) are also 

simulated. All these three processes are evaluated by energy and economic analysis. 

2. Problem Statement 

As a useful material for surfactant production and other industrial utilization, 

cyclohexanol (NOL) should have a minimum purity of 99 wt%, but this specification 

requires high energy consumption, leading to a large energy penalty. Using aqueous-

phase-refluxed reactive distillation (RD) with a stripper, owing to the enhanced 

equilibrium conversion and full use of liquid-liquid separation, the energy requirements 

could be reduced by 46.76% from 2603 kJ/(kg NOL) to 1386 kJ/ (kg NOL) (Ye et al., 

2014). However, the energy and economic costs needed for cyclohexanol production are 

still considerably high, especially when taking into account the price gap between 

cyclohexane and cyclohexanol. To address this issue, we integrate a heat-pump into the 

top of the RD-column because, conceptually, less energy would be needed in the reboiler 

through heat integration, compared with the conventional reactive distillation process. 

Also, the objective is to confirm previously published results with another 

thermodynamic model as well as the integrated heat-pump design by studying different 

integration schemes. 

3. Reaction kinetics and phase equilibrium model 

The parameters of kinetic models are obtained from Sun et al., (2021). The reaction of 

direct hydration of cyclohexene (ENE) with water to produce cyclohexanol (NOL) is 

given by Eq. (1) and the kinetic equation for this reaction is given by Eq. (2): 

 

 

(1) 
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(2) 

Where, r is reaction rate in mol/(L s gcat), m is mass of the catalyst in g, T is temperature 

in K, CENE is water concentration mol/L, CW is the concentration of water mol/L, CNOL 

is the concentration of NOL mol/L.Rgis the ideal gas constant, 8.314 J/(mol.K). It is 

assumed that the catalyst occupies half of the total hold of each reactive tray, and 90% of 

the tray area is considered as the active area to consider the space for downcomer. The 

column diameter is obtained from Column Internals in AspenPlus. The catalyst is 

Amberlyst 36 cation exchange resin and its density is assumed to be 770 kg/m3. 

The Universal Quasi–Chemical/Hayden-O’Connell equation of state with Henry’s law 

(UNIQUAC-HOC) property model is selected as an appropriate model in ApsenPlus to 

describe the vapor-liquid-liquid equilibrium. Table 1 lists the UNIQUAC binary 

parameters. Table 2 compares the model predicted azeotropic composition with that 

reported in the literature and also with the NRTL model reported in our published work 

(Liu et al., 2022), the relative error is smaller than 3% and the two models demonstrate 

almost the same results. Therefore, it is reasonable to use UNIQUAC-HOC model for 

process simulation. 

Table 1 the UNIQUAC binary parameters in the system 

Component i Component j aij aji bij bji 

C6H10 H2O 0 0 -1024.1 -466.35 

C6H12O H2O 0 0 -342.857 26.0981 

Table 2 the comparison of boiling point for different systems 

Component 

Literature values 

(Gould, 1973) 

Calculated values using 

NRTL (Liu et al., 2022) 

Calculated values using 

UNIQUAC 

T/℃ 
Molar 

composition 
T/℃ 

Molar 

composition 
T/℃ 

Molar 

composition 

ENE 82.75 - 82.88 - 82.88 - 

W 100.00 - 100.02 - 100.02 - 

(ENE-W) 70.80 (0.308,0.692) 70.62 (0.314,0.686) 70.58 (0.314,0.686) 

NOL 160.65 - 160.84 - 160.84 - 

(NOL-W) 97.80 (0.927,0.073) 98.24 (0.929,0.071) 98.46 (0.929,0.071) 

Note: ENE denotes cyclohexene; W denotes water; NOL denotes cyclohexanol 

4. Process Simulation 

In this work, for all processes described below, including the ARDS, ORDS and HPRD. 

The process simulations were conducted using the rigorous modules (RADFRAC). in 

AspenPlus. The productivity of cyclohexanol is set to 10016 kg/hr (100 kmol/hr). 

4.1. Aqueous-phase-refluxed reactive distillation with a stripper (ARDS) 

The ARDS process contains two distillation columns, one is reactive distillation (RD), 

the other is a distillation stripper in which the product (NOL) is purified. The aqueous 

phase from the RD-column decanter is fully refluxed to the top of the RD-column, 

thereby, the organic phase from the decanter is 99.75% cyclohexene, which can be 

recycled to the RD-column with its make-up, the bottom outlet is the cyclohexanol-water 
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mixture, which is separated by a decanter after cooling. The aqueous phase from the 

decanter is recycled back with fresh water into the RD-column, the organic phase is fed 

into a stripper to obtain 99.9 wt% cyclohexanol. A small heat exchanger is used to heat 

the recycled water stream to reduce the reboiler duty (691 kW) of the RD-column. In this 

process, the temperature of the RD-reboiler is 121.45 oC and that of the stripper is 161.74 
oC, thereby low pressure (LP, 6atm 159 oC) steam and medium pressure (MP, 11 atm, 

184 oC) steam are required. The original detailed flowsheet is given in Liu et al. (2022). 

4.2. Organic-phase-refluxed reactive distillation with a stripper (ORDS) 

The flowsheet of ORDS also contains reactive distillation and a stripper, similar to that 

of ARDS. The main difference is that the organic phase from the decanter is fully recycled 

back to the top of the RD-column. Therefore, the bottom outlet is a mixture of 

cyclohexene, cyclohexanol, and H2O with a lower reboiler temperature (105.59 oC). 

Unlike ARDS, where the second decanter is used to split the cyclohexanol-water mixture, 

in ORDS it is used to split the cyclohexanol-water-cyclohexene mixture, therefore, the 

remaining organic phase is the mixture of cyclohexene-cyclohexanol, which is further 

separated by a stripper with an additional decanter. It should be noted that the temperature 

difference between the RD-column condenser and reboiler in ORDS is smaller than that 

of ARDS. Also, organic-phase-refluxed method results in a higher cyclohexene 

concentration in the RD-column, leading to a better energy utilization efficiency of the 

reactive distillation column. The original detailed flowsheet is given in Liu et al. (2022). 

4.3. Heat-pump-assisted reactive distillation (HPRD) 

Figure 1 presents the flowsheet of heat-pump-assisted reactive distillation with its mass 

and energy balance from AspenPlus simulation. The results are almost the same with that 

reported in our previous work (Liu et al., 2022) in which the NRTL model is used. 

Compared with the ORDS process, the main difference is that a heat pump is used to 

compress the vapor phase to 3.2 atm at the top of the reactive distillation column to 

increase the stream temperature so that it could be used to heat the reboiler at the bottom, 

thereby an extra heat exchanger is required. A flash tank is also used to provide the bottom 

vapor phase for the RD-column. 

 

 
Figure 1 The flowsheet of the novel heat-pump assisted reactive distillation column 
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5. Process Evaluation 

5.1. Evaluation method 

Energy analysis: To assess the total energy consumption under the same criterion, the 

electricity is converted into the equivalent heat duty through a coefficient (see Eq. (3)).  

𝑇𝐸𝐶 = 𝑊𝑒/𝜂 + 𝑄𝑡ℎ (3) 

Where, We is the electricity consumption in pump and compressor, Qth is the heat duty 

in flash and stripper, η is the conversion efficiency of thermal energy (heat duty) to 

electricity, which is usually around 0.3~0.4 (Luo et al., 2015). 

Economic analysis: For the economic analysis, the total cost is often calculated from the 

sum of the annualized capital cost (ACC) and the total operating expenditure (OPEX). 

The ACC is computed by translating the total capital expenditure (CAPEX) into 

annualized ones. All the ACC, CAPEX and OPEX are calculated based on the procedure 

given by (Liu et al., 2021). The purchased equipment cost and utility cost in OPEX are 

computed from Aspen Process Economic Analyzer (APEA). Considering the same 

productivity of the different processes, the raw material (cyclohexene and fresh water) is 

not included in the comparison. 

5.2. Evaluation results 

For the energy consumption, the total energy consumption (TEC) of the three processes, 

including electricity (converted by equivalent heat) and heat duty are shown in Figure 2a. 

Compared with ARDS process, the ORDS process shows a reduction of 15% in TEC, 

demonstrating the advantage of the process with organic reflux, which could increase the 

concentration of ENE, enhancing the conversion rate. For the HPRD process, the TEC 

saving becomes 65%, which is a remarkable figure, implying a very high energy 

efficiency. Through economic evaluation, As shown in Figure 2b, it can be observed that 

the annualized capital cost (ACC) contributes little (< 3%) of the total cost compared with 

the operational expenditure (OPEX) containing the fixed operation cost (FOC) and 

variable operation cost (VOC) in three processes, indicating the predominance of OPEX 

in total annualized cost and the importance on energy saving. Compared with the ARDS, 

ORDS process, the HPRD process achieves a reduction of 23%, 33%, respectively, 

realizing significant economic-saving. The new analysis confirms the HPRD results 

reported earlier as the best among the different alternatives studied.  
 

 
Figure 2 Total energy and economic results in three processes (a) total energy consumption (b) 

total cost 
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6. Conclusion 

In this work, with cyclohexanol in a huge demand in current industry, the reactive 

distillation (RD) process for direct hydration of cyclohexene to cyclohexanol has been 

studied. The parameters of reaction kinetic model and phase equilibrium models are 

obtained from reported data in published papers and the database in AspenPlus. The 

prediction of phase equilibrium, which plays a very important role in this study, has been 

cross-checked not only with available data but also with different property models. The 

UNIQUAC model has been found to give similar results as the NRTL model. Two 

reactive distillation processes with conventional flowsheet are simulated and assessed, 

one is aqueous-phase-refluxed reactive distillation with a stripper (ARDS), the other is 

organic-phase-refluxed reactive distillation with a stripper (ORDS). To improve the 

energy efficiency, different heat-pump-assisted reactive distillation process (HPRD) 

alternatives have been studied and a novel scheme has been identified. The key operation 

parameters are optimized through sensitivity analysis. Different alternatives have been 

compared through rigorous process simulation and evaluated in terms of energy and 

economic data. Results show that the performance of ORDS is better due to a slightly 

higher conversion of cyclohexene to cyclohexanol. The HPRD process, however, realizes 

a significant energy saving of 58% and achieves a 23% reduction in total energy 

consumption and total annualized cost, as compared to ORDS, indicating the possibility 

of a good economic-saving and environmentally friendly technology. 
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Abstract
High global warming potential of refrigerant gases have prompted immediate attention
to ensure minimum usage and recovery of hydrofluorocarbons (HFCs). Due to the
azeotropic nature of HFC mixtures, advanced separation processes are required for
selective separation and recovery. We perform a multiscale separation, intensification and
material-to-process systems analysis of R-410A, which is a HFC mixture of R-32 and
R-125 refrigerants, using extractive distillation (ED) and ionic liquids (ILs) as solvents.
Under different design objectives, we demonstrate improved process performance of
the obtained flowsheets in terms of process economics, energy consumption and
sustainability. Specifically, when minimization the overall separation cost, we achieve
upto 21% lower cost than that of a base design. Additionally, when minimizing CO2-eqv
emission, we achieve process configurations with up to 60% and 50% reductions in
energy and emission, respectively. We also performed an IL-process performance
mapping considering both cost and equivalent energy consumption as functions of
IL-selectivity. Our analysis shows that R-32 selective ILs would lead to processes with
better performances. For such cases, the optimal IL candidates would most likely have
Henry’s constant between 0.4 and 1.6 MPa with energy consumption as low as 500 kJ/kg
of HFC mixture.

Keywords: Sustainable Process Intensification; Process Synthesis; Material Screening;
Refrigerant Separation; Extractive Distillation

1. Introduction
R-410A belongs to a family of hydrofluorocarbons (HFCs) which are commonly used
as refrigerants in domestic and commercial cooling systems. Due to lower ozone
depletion potentials, HFCs are predominantly used to replace chlorofluorocarbons
(CFCs). However, high global warming potential (GWP) plagues the sustainable usage
of HFCs. About 2–3% of the total global greenhouse gas (GHG) emission is due to the
millions of tons of worldwide HFC emission (Purohit and Höglund-Isaksson, 2017). To
combat this issue, the Kigali Amendment to the Montreal Protocol recommended cutting
the global HFC emissions by 80–85% by 2047 (Pardo et al., 2021). In addition, low
GWP refrigerants (e.g., hydrofluoroolefins, hydrocarbons, etc.) are proposed to be used
in place of HFCs. Therefore, it is desirable to minimize the amount of already existing
HFCs. Incineration is not a practical option since it would result in the release of a large
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amount of CO2 into the atmosphere. Recycling, on the other hand, may have a market
value of more than a billion dollars in the U.S. At the same time, HFCs can be chemically
converted to low GWP hydrofluoroolefins (Pardo et al., 2021). However, recycling HFCs
pose a significant challenge as they often form azeotropes or close-boiling mixtures
that often behave as single fluid. Consequently, conventional separation techniques,
such as cryogenic distillation are highly energy and cost-intensive, and pose significant
operational challenges (Pardo et al., 2021). Process intensification techniques, such as
extractive distillation (ED), can be used to resolve these challenges (Tian et al., 2018;
Demirel et al., 2019). ED processes depend on suitable solvent selection. To combat
this issue, ionic liquids (ILs) have garnered significant attention as potential solvents
for ED-based separation of the azeotropic HFC mixtures. More specifically, ILs can
selectively absorb a particular refrigerant from a mixture of HFCs, thereby improving the
efficiency of absorption refrigeration processes. In addition, the negligible vapor pressure
of ILs ensures that the toxicity and the contamination of the refrigerant gas with solvent
can be prevented (Faúndez et al., 2013).

Although, several works have been reported in the literature on extractive separation
applications (Finberg and Shiflett, 2021; Faúndez et al., 2013), there is a need
for systematic analysis of ED performance for different ILs as solvents. In this
work, we report SPICE_ED (Synthesis and Process Intensification of Chemical
Enterprises Involving Extractive Distillation) framework for detailed process synthesis,
intensification and optimization. We demonstrate the framework using two ILs, namely
[C4C1im][PF6] and [C4C1im][BF4] and carry out rigorous ED modeling and analysis
to investigate the process performance in terms of energy requirement, sustainability,
and process economics. We extend our analysis to hypothetical ILs by utilizing the
temperature dependent binary interaction parameters of vapor-liquid equilibrium (VLE)
thermodynamics and perform a material-property-process-performance mapping. We
anticipate that such a mapping will direct the experimental efforts in synthesizing new
ILs with superior performance.

2. Problem Representation

Figure 1: Distillation column tray: (a) conventional representation, (b) equivalent building
block-based representation.

In this section, we provide a brief overview of the SPICE_ED framework which is then
used for the detailed synthesis and optimization of R-410A separation process. In this
framework, we express the physicochemical phenomena through the building-block based
representation (Demirel et al., 2017; Monjur et al., 2021a,b), where sets of blocks are
arranged in a two-dimensional grid to represent a superstructure. Eqs. 1–4 provide a
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simplified (not exhaustive) formulation of the superstructure. We denote the position of
blocks in the superstructure by i (row number) and j (column number). Figure 1a depicts
the conventional representation of a single ED column tray, whereas Figure 1b depicts
building block-based representation of a single tray. Two blocks are used to represent the
two phases, and the dashed vertical line between the blocks represent the phase boundary.
In this manner, we require two series of blocks to represent the whole ED column. We
represent the material balance for each component k (Eq. 1), where material flow rates in
vertical and horizontal directions are denoted by Ri, j,k and Fi, j,k, respectively. We denote
flow rates of fresh feed f , product p, and jump streams from block (i, j) to block (i′, j′) by
Mi, j,k, f , Ni, j,k,p, and Ji, j,i′, j′,k respectively. We express the energy balance for each block
(Eq. 2), which considers stream enthalpies along with work and heat from external utility
sources.

Fi, j−1,k +Ri−1, j,k −Fi, j,k −Ri, j,k + ∑
f∈FS

Mi, j,k, f − ∑
p∈PS

Ni, j,k,p

+ ∑
(i′, j′)∈Link

Ji′, j′,i, j,k − ∑
(i′, j′)∈Link

Ji, j,i′, j′,k = 0, ∀ i, j,k
(1)

EFi, j−1 +ERi−1, j −EFi, j −ERi, j +EMi, j −ENi, j +EJ f
i, j −EJp

i, j

+W comp
i, j −W exp

i, j +W pump
i, j −W val

i, j +Qh
i, j −Qc

i, j = 0, ∀ i, j
(2)

fph
i, j,k,ph = fequil(Keq

i, j,k,ph,Ti, j,Pi, j,yi, j,k,yi, j+1,k,zi, j,ph), ∀ i, j,k, ph ∈ Equil (3)

fph
i, j,k,ph −M(1− zi, j,ph) ≤ yi, j,k ≤ fph

i, j,k,ph +M(1− zi, j,ph), ∀ i, j,k, ph (4)

For the R-410A separation process, we rely on VLE based ED process. Therefore, the
phenomena set ph in Eq. 3 contains VLE-based separation phenomena. The equilibrium
based separation depends upon equilibrium rate constant, temperature, pressure, and
composition, which are denoted by Keq

i, j,k,ph, Ti, j, Pi, j, and yi, j,k, respectively. Based on
the value of the binary variable, zi, j,ph ∈ {0,1}, the appropriate separation phenomena is
activated (Eq. 4). Following previous work (Shiflett and Yokozeki, 2006), we model the
solubility of the HFCs in the IL using the Gamma-Phi based method, where the liquid
phase activity coefficient is estimated by the NRTL model.

3. Extractive Distillation Process Synthesis for R-410A Separation

3.1. Base Design

For the separation of R-410A mixture, we consider a typical ED based process
configuration as base case design, which is shown in Figure 2. [C4C1im][PF6] is used
as the solvent to break the azeotrope. R-410A enters the ED column at stage 21 with
a flow rate of 100 kg/h, while the recirculating IL enters at stage 2. The ED column
operates at 10 bar with a reflux ratio of 0.25 and has total 28 stages. As R-32 is more
soluble in [C4C1im][PF6], it leaves the column with the IL at the bottom while the less
soluble R-125 separates out as distillate product at the top. The rich IL from the bottom of
the ED column is sent to two sequential flash separators for regeneration, which operate
at 1 bar and 0.1 bar, respectively. The combined vapor product from the flash separators
has a R-32 purity of 99.9 mol%. The IL from Flash 2 is sent back to the ED after being
pumped and cooled.

Management: A Multiscale Material Screening and Process Design Approach
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Figure 2: Process flowsheet of base
design.

The overall process has equivalent energy
consumption of 2078 kJ/kg R-410A, 0.073 kg
CO2-eqv/kg R-410A emission, and separation cost
of $0.081/kg R-410A.

3.2. Process Optimization

We optimize the base design by taking into
consideration the detailed phenomena level process
synthesis. Here, we limit our process-scale
analysis to two commonly used ILs as absorbents,
[C4C1im][PF6] and [C4C1im][BF4]. For each of
the cases, we vary the number of trays between 15
and 40 and allow R-410A to enter at any tray. We
also consider heat integration between the hot and
the cold process streams. The minimum purity that
must be achieved is set to be at least 99.5 mol% for
both R-32 and R-125.

Figure 3: Optimized extractive distillation process with [C4C1im][PF6] as solvent for
R-410A separation. Design targets are (a) minimum separation cost, and (b) minimum
CO2-eqv emission.

When [C4C1im][PF6] is used as solvent, Figure 3a shows the optimized process flow
sheet with 21 total stages for the design objective of minimization of separation cost
($0.071/kg R-410A). As shown in Table 1, it offers 12% lower separation cost than that
of the base design. It also achieves 60% reduction in energy consumption. Due to the heat
integration, 70% of the re-boiler duty is supplied from the circulating IL, while 66% of
the cooling duty for the IL is provided by the re-boiler. Consequently, the required sizes
of the heat exchanger and re-boiler reduce. We then set CO2-eqv emission as the design
target, and obtain a process flowsheet with 38 stages (Figure 3b). Note that, an increase in
the number of equilibrium stages (i.e. trays) improves the separation and consumes less
energy. Compared to the base design, we achieve 50% and 60% reduction in CO2-eqv
emission and energy consumption, respectively. However, the increased number of trays
increases the capital cost and results in increased separation cost.
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Table 1: Process Performance Comparison.
Design targets Base design [C4C1im][PF6] Improvement (%) [C4C1im][BF4] Improvement (%)

Equivalent energy (kJ/kg R-410A) 2078 824 60 852 59

CO2 emission (kg/kg R-410A) 0.073 0.036 50 0.038 48

Separation cost ($/kg R-410A) 0.081 0.071 12 0.063 21

Figure 4: Selectivity mapping of ILs for (a) minimum equivalent energy, and (b) minimum
separation cost. The triangle (▼) represent the designs with 99.5 mol% minimum purity
and the star (⭑) denote the designs with 97 mol% minimum purity. [C4C1im][PF6] is
represented by the circle (○) and [C4C1im][BF4] by the square (�).

Next, we consider [C4C1im][BF4] as solvent, and perform similar optimization. As shown
in Table 1, when the design target is the minimization of separation cost, we achieve 21%
reduction compared to the base design. The corresponding ED column requires 20 stages.
Unlike the previous designs, here the R-410A enters in two different trays (trays no. 16
and 17). Notably, we achieve 48% reduction in CO2-eqv emission compared to the base
design under the design target of CO2-eqv emission minimization. The corresponding
process configuration requires ED column with 37 trays.

3.3. Mapping of IL Selectivity, Separation Energy and Cost

As the cations and the anions forming an IL can be arranged in many different
combinations, it is possible to consider millions of hypothetical ILs. However, exhaustive
synthesis and the corresponding process-scale analysis of all the ILs is impractical.
To address this issue, we aim to reduce the search space of optimal ILs for R-410A
separation. The motivation arises from the need to construct hypothetical ILs and predict
the corresponding process performance to direct the experimental efforts. It is well
known that the binary interaction parameters of a particular IL/HFC system dictates its
solubility. Therefore, we focus on generating feasible binary interaction parameters via
latin hypercube sampling, and construct nearly 3000 hypothetical ILs. When each of
the ILs are used as solvents in the SPICE_ED optimization framework, not all are able
to achieve the required R-32 and R-125 purity. For example, out of 3000 ILs, only
200 satisfy 97 mol% purity while only 117 ILs satisfy 99.5 mol% purity constraint.
The equivalent energy consumption and separation cost of all the ILs (200 hypothetical,
[C4C1im][PF6], [C4C1im][BF4]) are shown in Figure 4. Note that the selectivity is

Sustainable Process Intensification of Refrigerant Mixture Separation and
Management: A Multiscale Material Screening and Process Design Approach
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defined as the ratio of Henry’s constant of R-32 over R-125 at 298.15 K. By definition,
when the selectivity < 1, R-32 is more soluble in the IL and vice versa. We deduce three
key points: a) when the selectivity is between 0.5 and 2.0, IL may not be a suitable solvent
candidate for HFC separation, since the required 99.5 mol% purity is not achieved, (b)
R-32 favourable (more selective) IL is desired, as the corresponding process consumes
less energy and requires less separation cost, (c) The Henry’s constant value of R-32 is of
particular importance, since for the same selectivity, ILs can have different equivalent
energy consumption. Interestingly, when the target is less than 1000 kJ/kg R-410A
equivalent energy with 99.5 mol% purity, more than 86% ILs have Henry’s constant value
of R-32 between 0.4 and 1.6 MPa. It is worth noting that, prediction of important IL
properties (e.g., viscosity, heat capacity, and heat of absorption) which might impact the
overall process performance, is beyond scope of this study.

4. Conclusions
Due to the azeotropic nature of HFC mixtures, conventional separation technologies are
not suitable. In an effort to address this issue, we employed extractive distillation as a
means for HFC separation process intensification. Many favourable properties of ionic
liquids make them an attractive candidates as solvent for the absorption of selective
refrigerants in HFC mixtures in ED columns. We developed SPICE_ED framework
to achieve improved process configurations for IL-based extractive distillation. Our
analysis show that use of [C4C1im][BF4] would result in lower separation cost, while
[C4C1im][PF6] would result in lower energy consumption and emission. We extended
our analysis to hypothetical ILs by utilizing the temperature dependent binary interaction
parameters and performed a multiscale mapping of IL selectivity and energy/cost. We
conclude that ILs offering more solubility towards R-32 would lead to better process
performance in terms of energy consumption. We also conclude that the optimal IL
candidates would most likely have exhibit Henry’s constants between 0.4 to 1.6 MPa
for R-32. The overall energy consumption can be also reduced to as low as 500 kJ/kg and
separation cost as low as $0.06/kg of HFC.
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Abstract
The main goal of this work is the development of a structured optimisation strategy for
reactive distillation systems in order to prevent production failures due to operational
disturbances and/or uncertainties in the design input. The framework developed is
demonstrated using a case study of industrial interest, based on a systematic evaluation
of optimal design and control alternatives, offering the possibility of revising the design
and/or operation of the process in order to minimise the risk of production failures. This
framework can be used in an early design stage to quantify the impact of specific input
parameters such as kinetics on process performance and costs, and it can therefore be
used to focus the experimental effort on determining the most critical parameters for the
performance of a reactive distillation process.

Keywords: reactive distillation, design, operation, control, uncertainty

1. Introduction
Reactive distillation is an intensified process where reaction and separation are integrated
into a single unit. However, the large difference in time scales of the two processes, where
reaction typically requires minutes for significant conversion whilst VLE is almost
instantaneous, means that the design and control strategies cannot be easily extended from
conventional distillation. This challenge is even further amplified when disturbances and
design uncertainties are considered within the process.

Various optimisation methods have been applied in the open literature for the design of
reactive distillation processes (e.g. Ciric and Gu 1994, Tian et al. 2020 etc.), some of
which considering process control as part of the optimisation problem (e.g. Contreras-
Zarazúa et al. 2017, Bernal et al. 2018 etc.). A few contributions have discussed the
impact of process design on controllability (e.g. Mansouri et al. 2015, Georgiadis et al.
2002 etc.) whilst others have focused on the design of reactive distillation processes
capable to successfully operate under uncertainty (e.g. Paramasivan and Kienle 2012,
Tian et al. 2020 etc.).

Although reactive distillation design, controllability and uncertainty have all been
previously studied, no systematic methodology has combined all those elements to
investigate potential process modifications to improve performance under process
disturbances and/or market changes. This is therefore the aim of this work, to provide a
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Figure 1: Overall framework presented in this work.

framework for the design of reactive distillation processes which are capable of dealing
with production failures due to design and/or operational deficiencies. The framework
and associated benefits will be demonstrated here by considering input uncertainty
(particularly in reaction kinetics) on an optimal reactive distillation process.

2. Methodology
The methodology demonstrated in this work is presented in Figure 1. The methodology
starts with determining the optimal design and operational parameters of the process, for
instance using a methodology based on superstructure optimisation (Tsatse et al. 2021),
then different process control configurations are evaluated. If, given the control scheme
and the process disturbances considered, the system is not able to meet specifications and
tolerate the (short-term) disturbances introduced, then the design must be revised in order
to improve its control performance. If, however, specifications are met and disturbances
are tolerated, the design is provisionally acceptable. In the final step, which is the focus
of this work, the performance of the process is evaluated under input uncertainty. Process
disturbances can be considered simultaneously with input uncertainty, although only the
latter is the focus of this work. If the system cannot tolerate these (i.e. is failing to meet
specifications) then the design and/or its control configuration must be revised to increase
its flexibility (i.e. tolerance to uncertainties). If the system is not sensitive to the
uncertainties, then the engineer can be confident that the process designed is not only
economically attractive, but also capable of mitigating production failure issues due to
design and/or operational deficiencies and model parameter uncertainties. The software
used in this work for process simulation, optimisation and control is gPROMS
ProcessBuilder v1.3.1 (Process Systems Enterprise 2021). For the uncertainty simulations
in particular, the Global System Analysis (GSA) tool within ProcessBuilder was
additionally used. The GSA tool is used to perform multiple model evaluations
(simulations) with selected (i.e. uncertain) model input, as will be shown in section 4.

3. Case study
In this section, the case study used for the demonstration of the methodology is presented.
This case study will only focus on the investigation of input uncertainty as the optimal
design and control of the process have been previously considered in separate
investigations.
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A quaternary system is considered, in which the following auto-catalysed reversible
reaction occurs in the liquid phase with component D as the desired product:

A + B ↔ C + D 

The kinetic expressions for the forward (f) and backward (b) reaction rates are the
following:

௙ݎ = ௙݇଴݁
ିா௔೑/ோ்ܥ஺ܥ஻

௕ݎ = ௕݇଴݁
ିா௔್/ோ்ܥ஼ܥ஽

where reaction rate, r, is expressed in kmol/(m3∙s), pre-exponential kinetic factors, kf0 and
kb0, are expressed in m3/(kmol∙s), activation energy, Ea, is expressed in kJ/mol (assumed
to be 80 kJ/mol for both directions), and component concentration Ci is expressed in
kmol/m3. Heat of reaction was assumed to be negligible, thus the activation energy is the
same for both reaction directions and Keq is independent of temperature, based on the
previous assumptions. More details for the system considered and the underlying
assumptions can be found in Tsatse et al. (2021) for Case study 15 in particular.

The feed streams to the overall system were one stream of reactant B of flow rate 12.6
kmol/hr, and one stream of reactant A below of the same flow rate (1:1 feed molar ratio).
This corresponds to approximately 5 ktn/year of product D for full reactant conversion,
which is met for production rates larger than 12.55 kmol/hr of component D. The feeds
were assumed to be at their boiling points at 1 atm. Liquid hold-up of the reactive
distillation column was assumed equal for all reactive stages, fixed at 0.1 m3/reactive tray.

V-only control was applied to the system, where pressure at the top of the column (stage
2) is controlled by the condenser duty (PI control, Kc = 20 and τ = 12 min) and the liquid 
levels of the reflux drum (P-only, Kc = 2) and the sump (P-only, Kc = 2) are controlled by
the distillate flow rate and bottoms flow rate, respectively. Reboiler duty is manipulated
in order to control bottom product purity (PI control, Kc = 3 and τ = 25 min).

In this work, process disturbances such as feed composition change etc. (second step of
the framework presented in Figure 1) will not be considered, in order to focus on input
uncertainties only. For reactive distillation, critical input is mainly reaction kinetics and
VLE and in early design stages, these are typically known with limited accuracy. Proper
understanding of their impact on process performance and cost can therefore contribute
to focused experimental effort, leading to a carefully designed and rigorous process.

Uncertainty in reaction kinetics is considered for the controlled process, using two cases
(case a: uncertainty in kf0 so varying kb0 in order to keep Keq at the base case value, case
b: uncertainty in Keq so fixing kf0 and varying kb0 to form the desired Keq uncertainty
values as Keq=kf0/kb0)). For both cases, the uncertainty range considered was ±50% based
on industrial experience and the two pre-exponential factors were grouped and varied as
a multivariate enumerated set (i.e. 100 pairs or samples of the predefined values of the
two pre-exponential factors to uniformly cover the uncertainty range). Based on the base-
case values presented in Table 1, the value ranges considered are therefore:

a) 15.138 < kf0 = 30.276 < 45.414 (109 m3/(kmol∙hr)) so  
6.728 < kb0 = 13.456 < 20.184 (109 m3/(kmol∙hr)) to keep Keq constant at 2.25

of uncertainty of reactive distillation
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Figure 2: Uncertainty simulations. Product purity (xB,D) together with bottom production rate (B),
condenser (QC) and reboiler (QR) duties and flexible optimal dynamic controlled (V-only) design.
Uncertainty in kinetics (case a-left, case b-right) is considered.

Initial design is indicated as: for left y-axis, and as: for right y-axis. Flexible design is
indicated as: for left y-axis, and as: for right y-axis.

b) 1.125 < Keq = 2.25 < 3.375, and since kf0= 30.276∙109 m3/(kmol∙hr) 
8.971 < kb0 = 13.456 < 26.912 (109 m3/(kmol∙hr))  

The Key Performance Indicators (KPIs) for the case study considered were the bottom
product purity (xB,D), which should be maintained at 0.99 mol/mol; bottom production
rate (B), which should be higher than 12.55 kmol/hr; condenser (QC) and reboiler (QR)
duties; as well as the total cost of the process (Production TAC) .

4. Results and Discussion
In this work, the uncertainty simulations using GSA in gPROMS ProcessBuilder v1.3.1
(Process Systems Enterprise 2021) needed approximately 0.2-5 min CPU time. The short
times are due to the fact that the number of samples (100) and the number of factors (kf0
and kb0) and responses (controlled and manipulated variables, objective function value)
was moderate, as was the complexity of the flowsheet (a single reactive distillation
column in this case). The initial optimal design of the case study considered was found
based on the superstructure methodology and a cost objective function, subject to product
quality constraints, whilst the main product of interest was component D (see Tsatse et
al. 2021 for more details). The base-case input as well as the initial optimal results are
presented in Table 1.

Figure 2 shows the results of the simulations when considering uncertainty in reaction
kinetics (left: case a, right: case b) for the initial (lines indicated as initial) as well as the
flexible (lines indicated as flexible) system. Note that flexible system refers to the revised
process, as presented in Table 1.
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Figure 2 (left: case a, right: case b) shows that under the uncertainty considered, the
product purity (xB,D) is maintained (top of Figure 2) by the V-only controlled system, but
this is only possible by reducing the bottom production rate (i.e. B < 12.55 kmol/hr) when
kf0 drops below 28.6∙109 m3/(kmol∙hr)). This means that with the initial optimal design 
and control configuration, slower kinetics (case a) down to 28.6∙109 m3/(kmol∙hr)) can be 
mitigated by control action alone. Similarly, lower chemical equilibrium (down to 2.08)
can be mitigated by control action whilst lower values lead to violation of the desired
production flow rate (right in Figure 2). Figure 2 shows that for this design and parameter
set and the uncertainties considered, slower kinetics (kf0) have a more significant impact
on the performance than lower Keq. The 50% uncertainty range considered for Keq
corresponds to a range of 51.5% to 64.8% conversion (the base case conversion, i.e. for
Keq=2.25, is 60%) which is not a broad range and can easily occur.

As the initial optimal design is not able to tolerate the entire range of uncertainty
considered, a mitigation strategy must be applied which in this case is revision of column
design. Re-optimising the reactive distillation column using the methodology described
in Tsatse et al. (2021) leads to the optimal parameters of the new, flexible process as
shown in Table 1. The uncertainty range is now re-considered, this time in the new
flexible V-only controlled system and the results are shown in Figure 2. The system is
now able to tolerate the entire range of uncertainty in kinetics considered, not only in
terms of product purity (note that xB,D lines of initial and flexible design overlap) but also
maintaining production rate at the desired level. Changes in condenser and reboiler duties
are more significant for slow kinetics than for lower chemical equilibrium.

Table 1: Optimal results for the initial and flexible design for the case study considered (stages
numbered from the top, condenser = 1, reboiler = NT).

Initial optimal design Flexible design

kf0 (m3/(kmol∙hr)) 30.276∙109

Keq 2.25

CA - AB - ΒD 1.2 - 2.5 - 2

Values in optimal design

Heavy feed (B) stage (NT1) 9 12

Light feed (A) stage (NT2) 23 26

Number of stages (NT) 27 31

Reflux ratio (RR,-) 3.7 3.5

Bottoms flow rate (B, kmol/hr) 12.6 12.6

Reactive stages 2-26 2-30

Column diameter (DC, m) 0.71 0.70

Bottom purity (xB,D) 0.99 0.99

Operating cost (OPEX, M€/yr) 10.49 10.50

Capital cost (CAPEX, M€/yr) 0.31 0.41

Production TAC (€/kg) 2.150 2.167

A systematic methodology for the optimisation, control and consideration 671
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This particular case study demonstrates revision of process design as the mitigation
strategy is employed. However, alternative mitigation strategies, i.e. revision of control
configuration and revision of the entire process including addition of ancillary units, are
also supported within the framework. Since the entire range of uncertainty in reaction
kinetics is now tolerated, the engineer can have confidence that the new flexible V-only
controlled design can mitigate the uncertainty considered, here up to ±50% uncertainty in
kinetics. Also, compared to the initial column design, the new flexible design includes
four additional stages for reaction and separation to tolerate the uncertainty in kinetics
considered, with less than a 1% increase (which mainly stems from the increase in capital
cost) in the objective function as shown in Table 1 indicating a cost-effective alternative.

5. Conclusions
The findings indicate that, as uncertainty is expected in a reactive distillation process, a
structured methodology to quantify its impact is essential as an economically optimal
steady state design might nevertheless not operate successfully under process and input
uncertainties leading to an unsuccessful project evaluation. Revision of its design and
control strategy may therefore be required to improve its robustness. As this revision is
associated with increased cost, the framework thus provides a basis to assess the relative
benefits (process robustness vs cost) helping to make a more profound business decision.
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Abstract

The natural  gas  liquefaction  process  is  a  cryogenic  energy  intensive  process  which
requires a complex designed multi-stream heat exchanger (MHEX). In this study, we
present  a  discrete  model  for  the  detailed  design  of  a  spiral  wound  heat  exchanger
(SWHX) used in the natural gas liquefaction process. The design model is derived by
discretizing  first  principles  heat  equation  inside  the  heat  exchanger  for  multiple
refrigerant  streams and natural  gas.  The phase change (liquefaction or  vaporization)
process  is  modeled  using  complementarity  constraints  which  are  reformulated  and
solved as a NLP. 

The SWHX model  is  embedded and  solved  inside  a  flowsheet  model  with process
constraints  for  feasible  design  operations.  The  optimization  results  show  that  the
inclusion of detailed MHEX design inside process flowsheet models is imperative to
obtain optimal solutions which can be achieved in actual process performance.

Keywords: Multi-Stream Heat Exchanger, Natural Gas, Optimization 

1. Introduction

Natural  gas has become the largest source of energy production in US over the last
years. The increase in production has led to increase in US natural gas exports to other
countries (Source: U.S. EIA, 2021). Natural gas is transported overseas in a liquefied
state  inside  huge  storage  tanks  as  liquefied  natural  gas  (LNG).  The  natural  gas
liquefaction (NGL) process is known to be a very energy intensive cryogenic process
which can account upto 52% of the cost of LNG (Petrowiki, 2018).

There are mainly three types of natural gas liquefaction (NGL) processes i.e. a) cascade
liquefaction process, b) mixed refrigerant liquefaction process and c) expander based
liquefaction  process.  Cascade  liquefaction  processes  consist  of  multiple independent
pure refrigeration cycles where the natural gas is cooled using propane, ethylene and
methane as refrigerants sequentially. The cascade liquefaction process has high energy
efficiency compared to other type of liquefaction process but its capital costs are high
because of its complex design and additional individual units required.

Mixed refrigerant (MR) liquefaction processes use a nitrogen and hydrocarbon mixture
(methane,  ethane,  propane,  i-butane  and  n-butane).  They  require  fewer  units  than
cascade refrigeration process and the energy consumption is significantly lower. MR

http://dx.doi.org/10.1016/B978-0-323-85159-6.50112-3 
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the  compressor  power  required  to  recycle  the  mixed  refrigerant  (MR)  and  provide
enough  refrigeration  to  liquefy  natural  gas.  The  degrees  of  freedom  (DOF)  in  the
optimization model are: 1) MR inlet temperature, pressure and composition, 2) Pressure
drop  across  LMR and  HMR valves  and  3)  Bundle  break  temperature  (temperature
between warm and cold bundles). 

3. Methodology

The optimization of natural gas liquefaction process with the described MHEX DAE
design model for SWHX and the NGL flowsheet model is a large scale optimization
problem with nonlinearities and complementarity constraints. Therefore, it is imperative
to provide a good initial point for convergence of the NLP solver. For this reason, the
problem is solved in a step-by-step procedure as described:

 Solve natural gas liquefaction flowsheet model:  The first step is solve the
flowsheet model without the heat exchanger model. The model consists of only
enthalpy and mass balances along with the process constraints such as EMAT,
super-heated stream at compressor inlet etc.

 Solve MHEX DAE design model:  The stream flowrates  and temperatures
from the flowsheet  model  solution are  taken as  inputs  to the MHEX DAE
design  model.  The  DAE  model  is  discretized  and  the  complementarity
constraints are relaxed and solved as a NLP model as in Kazi et al. (2019) .

 Initialize and solve the combined flowsheet with detailed DAE model:  The
solution from both the flowsheet and the MHEX models are used as the initial
guess for the combined overall natural  gas liquefaction model with detailed
exchanger design. The combined optimization model is solved using standard
NLP solvers such as CONOPT or IPOPT.

4. Optimization Results

The models  are written using Pyomo – a Python based  modeling language and the
MHEX DAE model is discretized into N=20 elements each for warm and cold bundle
respectively.  The flowsheet model consists of 2,453 variables  and 2,465 constraints,
whereas  the  DAE  model  consists  of  23,297  variables  and  23,834  constraints.  The
solution time to solve the complete set of models comes to about 5 CPU min on a 16
GB RAM Intel Core i7 system with 2.70 GHz processor.

Variable Value MR Composition Value

Pressure Energy 
Loss (Objective)

33,854.4 kW Nitrogen 0.046

Pressure Drops 
(Valve 1 and 2)

3700 & 3840 
kPa

Methane 0.404

Heat Duty (WB) 2,01,095 kW Ethane 0.5

Heat Duty (CB) 97,376 Propane 0.05

Table 1: Optimal values for Flowsheet values and MR composition
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Abstract 

Extractive dividing wall column (EDWC) is an efficient and economic technique for 

separating azeotropic or close boiling-point mixtures. However, optimal design of EDWC 

using rigorous models is still challenging. In this work, we develop an improved 

sequential least squares programming (SLSQP)-based feasible path algorithm for such 

optimal design. The computational results show that the proposed algorithm can generate 

better solutions and reduce the computational time by around one order of magnitude. 

Keywords: EDWC, SLSQP, feasible path algorithm, homotopy continuation 

1. Introduction 

Extractive dividing wall column (EDWC) is a promising intensification technique for 

separating azeotropic or close boiling-point mixtures, which can reduce both energy and 

capital costs significantly compared to the conventional extractive distillation. However, 

optimal design of EDWC is still challenging due to the complexity of its model with at 

least ten design and operating variables to be determined.  

The sequential sensitivity analysis-based method is frequently used, but the method is 

hard to consider the interactions among variables, possibly getting a suboptimal solution. 

Although stochastic algorithms such as genetic algorithm (GA) have also been applied to 

optimize EDWC (Bravo-Bravo et al., 2010), these algorithms need a large number of 

simulations, leading to long computational time. The sequential quadratic programming 

(SQP)-based feasible path algorithm has also been reported for optimisation of EDWC 

using the sequential modular simulator (Yang et al., 2018). However, the convergence of 

the SQP algorithm in such environment is largely degraded due to inaccurate gradients 

used (Pattison and Baldea, 2014).  To resolve such problem, Ma et al. (2020) proposed a 

hybrid steady-state and time-relaxation-based optimization algorithm for optimal design 

of EDWC in the equation-oriented environment, demonstrating a good convergence. 

However, the hybrid algorithm requires many pseudo-transient continuation (PTC) 

simulations (Pattison and Baldea, 2014). As the PTC simulation is usually much more 

time-consuming than the steady-state simulation, the hybrid algorithm is inefficient. 

In this work, we develop an improved sequential least square programming (SLSQP)-

based feasible path algorithm for optimal design of EDWC. We integrate the homotopy 

continuation (HC) technique with the line search to achieve effective and robust line 

search. The PTC simulation is activated to guarantee the convergence only when many 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50113-5 
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HC steps are needed. It is shown that the proposed algorithm can generate better solutions 

with the reduced computational effort by approximately one order of magnitude. 

2. Problem Statement 

Fig. 1a illustrates a typical EDWC, where the mixture 𝐴𝐵 is feed stream and 𝑆 is the 

solvent. The EDWC can be modelled by the thermodynamically equivalent model with 

five column-sections shown in Fig. 1b, which is adapted from the model with six column-

sections for DWC proposed by Pattison et al. (2016). The problem is stated below: 

                       

Fig. 1 a) Schematic of an extractive dividing wall column; b) thermodynamically equivalent 

model with five column-sections 

Given: an azeotropic or close boiling-point mixture to be separated, the solvent adopted, 

the purity requirements of the products, and perhaps some other production requirements 

(such as the temperatures of some streams). Determine: solvent make-up flow rate (𝐹𝑆), 

the number of stages in the five column-sections, reflux ratios of the main and side 

sections (𝑅𝑅𝑀, 𝑅𝑅𝑆), split fraction of the vapour stream to the side column section (𝑆𝐹) 

and the flow rate (𝐹𝐵) at the bottom. The objective is to minimise total annualised cost. 

3. Mathematical Model 

The EDWC is described by the rigorous equilibrium stage model with material balance, 

phase equilibrium, summation and enthalpy balance (MESH) equations applied to each 

stage. The bypass efficiency method (Dowling and Biegler, 2014) is adopted to determine 

the number of stages so that the current problem is a more tractable nonlinear 

programming (NLP) problem. Since we will use PTC simulations as safeguards of the 

line searches, the PTC model from Ma et al. (2017) is used for such simulations.  

4. Solution method 

4.1. SLSQP-based feasible path algorithm 

Feasible path algorithms separate variables 𝑥 in the optimisation problem as independent 

variables 𝑥𝐼  and dependent variables 𝑥𝐷 . For each given 𝑥𝐼 , 𝑥𝐷  (and possibly the 

sensitivity 𝜕𝑥𝐷/𝜕𝑥𝐼) can be got through solving an nonlinear equation system,  

𝐹(𝑥𝐼, 𝑥𝐷) = 0, (1) 
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which is usually called simulation in engineering. Then, various optimisation algorithms 

can be applied to solve the problem in 𝑥𝐼 space instead of the original high dimensional 

𝑥 space. SQP algorithm is often used in such setting as it usually requires less function 

evaluations (corresponding to simulations) (Schittkowski, 1982) that accounts of nearly 

all the computational time.  As an variant of SQP, SLSQP (Schittkowski, 1982) has the 

same merit as SQP and is possibly more stable (Schittkowski, 1982), which is to solve a 

linear constrained linear least squares problem (LSQ) shown below to generate descent 

direction  𝑑𝑘 at each major iteration.  

 min
1

2
‖𝐴𝑘𝑑𝑘 − 𝑏𝑘‖2  (LSQ) 

𝑠. 𝑡. 𝐸𝑘𝑑𝑘 − 𝑓𝑘 = 0 

    𝐺𝑘𝑑𝑘 − ℎ𝑘 ≥ 0. 

A typical SLSQP-based feasible path algorithm can be briefly stated as follows: 

Step 1: set 𝑘 ← 0. Given 𝑥𝐼
0 and corresponding 𝑏0, 𝐸0, 𝑓0, 𝐺0, ℎ0, which can be 

got according to the solution of the simulation problem 𝐹(𝑥𝐼
0, 𝑥𝐷

0) = 0. 

Step 2: solve LSQ subproblem for 𝑑𝑘  and check convergence condition of the 

original NLP problem. If solution is found, go to step 5. 

Step 3: conduct line searches with some simulations to get 𝑥𝐼
𝑘+1and 𝑥𝐷

𝑘+1 satisfying 

the Armijio condition Eq. (2). 

Step 4: update 𝐴𝑘+1, 𝑏𝑘+1, 𝐸𝑘+1, 𝑓𝑘+1, 𝐺𝑘+1, ℎ𝑘+1 based on simulation results at 

𝑥𝐼
𝑘+1 and BFGS formula. Set 𝑘 ← 𝑘 + 1, then go back to Step 2. 

Step 5: return 𝑥𝐼
𝑘, 𝑥𝐷

𝑘, 𝑓𝑘. 

In step 3, the Armijio condition is as follows 

𝑃(𝑥𝐼
𝑘+1) ≤ 𝑃(𝑥𝐼

𝑘) + 𝛼 𝜌 𝐷𝑃(0), (2) 

where 𝜌 ∈ (0, 0.5) is a constant, 𝑃(𝑥𝐼
𝑘) is the L1 merit function considering the values 

of both objective function and constraint violations, and 𝐷𝑃(0)  is the directional 

derivative of 𝑃(𝑥𝐼) along direction 𝑑𝑘 at 𝛼 = 0. 

One of the main difficulties in the feasible path algorithm is to conduct the line search 

reliably in step 3. In Section 4.2, the HC method will be used to resolve the problem. 

4.2. Homotopy continuation (HC) enhanced line search 

A typical backtrack line search procedure in a major iteration 𝑘 of above feasible path 

algorithm is as follows, where we drop the superscript 𝑘  to avoid the abused use of 

indices. Hence, 𝑥𝐼
0, 𝑥𝐷

0  in the current Section 4.2 is actually 𝑥𝐼
𝑘, 𝑥𝐷

𝑘 in Section 4.1. 

Step 3.1: set 𝑖 ← 0. Given 𝑥𝐼
0, 𝑥𝐷

0 , and an initial step length 𝛼0 ∈ (0, 1]. 
Step 3.2: set 𝑥𝐼

𝑖+1 ← 𝑥𝐼
0 + 𝛼𝑖𝑑 , conduct simulation 𝐹(𝑥𝐼

𝑖+1, 𝑥𝐷
𝑖+1) = 0 , and 

evaluate the merit function 𝑃(𝑥𝐼
𝑘+1) based on the simulation results. 

Step 3.3: if Eq. (2) is satisfied, go to Step 3.5. 

Step 3.4: generate an 𝛼𝑖+1 smaller than 𝛼𝑖, set 𝑖 ← 𝑖 + 1, then go back to Step 3.2. 

Step 3.5: return𝑥𝐼
𝑖+1, 𝑥𝐷

𝑖+1. 

Sequential Least Squares Programming Algorithm
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The line search may fail to generate an 𝛼 satisfying Eq. (2) or may generate a tiny step 

length if the simulations continue to fail and 𝑃(𝑥𝐼
𝑘+1) cannot be evaluated in step 3.2. The 

former causes the premature termination of the optimisation, while the latter leads to slow 

progress. The HC method can be used to resolve the problem, which is to start from the 

solution of an equation system that can be solved more easily and then approach the 

solution of the original problem. In that spirit, if a simulation problem 𝐹(𝑥𝐼
0 +

𝛼𝑖𝑑, 𝑥𝐷
𝑖+1) = 0 cannot be solved in Step 3.2, we define an intermediate step length 

𝛼̅𝑗 = 𝑡𝑗𝛼𝑖, 𝑡𝑗 ∈ (0,1], 𝑡0 = 0. (3) 

We then gradually increase 𝛼̅𝑗  from 0 and solve a series of simulation problems 

𝐹(𝑥𝐼
0 + 𝛼̅𝑗𝑑, 𝑥̅𝐷

𝑗
) = 0 with the solution (𝑥̅𝐷

𝑗′

) at 𝛼̅𝑗′
< 𝛼̅𝑗 (𝑗 ≥ 1) as the initial point until 

𝛼̅𝑗 = 𝛼𝑖 (𝑡𝑗 = 1), reaching to the solution of the original problem. In this way, when 𝛼̅𝑗 

and 𝛼̅𝑗′
 are close enough and the implicit function 𝑥𝐷(𝑥𝐼) is continuous with nonsingular 

Jacobian matrix, 𝑥̅𝐷
𝑗′

 will be within the convergence basin of the Newton method for 

solving the simulation problem, leading to a converged simulation. Note that 𝛼̅0 = 0,  

𝑥̅𝐼
0 = 𝑥𝐼

0 and 𝑥̅𝐷
0 = 𝑥𝐷

0 . Such process leads to a homotopy path as shown in Fig. 2a. 

        

Fig 2. a) homotopy path without singular point, b) homotopy path with discontinuous point. 

A merit of applying HC method in line search algorithm is that we have the chance to 

terminate the HC calculation before 𝑡𝑗 reaches to 1 if the merit function 𝑃(𝑥𝐼
0 + 𝛼̅𝑗𝑑) 

starts to increase. This is because a larger 𝛼 will lead to a higher merit function under the 

assumption that 𝑃(𝑥𝐼
0 + 𝛼𝑑) has a single minimum along the direction 𝑑 for 𝛼 ∈ [0,1], 

while the aim of the whole line search algorithm is to find its minimum. The chance to 

terminate early is an advantage of the proposed HC method to the PTC method, which 

doesn’t provide meaningful intermediate information before the PTC simulation finishes.  

However, the HC method cannot guarantee a converged simulation if the assumptions of 

continuity and nonsingularity are not satisfied as shown in Fig. 2b, which frequently 

happens during the line search for the optimisation of EDWC. If 𝑥𝐼
0 is at or rather close 

to the discontinuous point, the HC method will be useless for promoting the convergence 

of the simulation for the first line search step. In such case, we have to use the PTC method 

to guarantee the convergence. When the number of HC steps (denoted as 𝑛𝐻𝐶) is greater 

than a certain number (e.g. 10), the PTC method will be then activated. The proposed 
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simultaneous homotopy continuation and line search method is given below, 

Step 3.2.1: set 𝑗 ← 0 . Given 𝑥𝐼
0 , 𝑥𝐷

0 , 𝛼𝑖 ∈ (0, 1] , 𝑛𝐻𝐶 ; set 𝑡𝑗 ← 0.5 , 𝑓𝑙𝑎𝑔𝐿𝑆 ←
𝐹𝑎𝑙𝑠𝑒 , 𝛼𝐿𝑆 ← 𝑁𝑜𝑛𝑒 , 𝑥𝐼

𝐿𝑆 ← 𝑁𝑜𝑛𝑒 , 𝑥𝐷
𝐿𝑆 ← 𝑁𝑜𝑛𝑒 , 𝛼min ← 0 , 

𝑥𝐼
min ←, 𝑃min ← ∞, 𝑡𝑐 ← 0, 

Step 3.2.2: generate 𝛼̅𝑗 according to Eq. (3), 𝑥̅𝐼
𝑗

← 𝑥𝐼
0 + 𝛼̅𝑗𝑑, conduct simulation 

𝐹(𝑥̅𝐼
𝑗
, 𝑥̅𝐷

𝑗
) = 0, and evaluate 𝑃(𝑥̅𝐼

𝑗
) based on the simulation results. 

Step 3.2.3 if the simulation converges, 𝑡𝑐 ← 𝑡𝑗, go to Step 3.2.4; otherwise, go to 

Step  3.2.6. 

Step 3.2.4: if Eq. (2) is satisfied, set 𝑓𝑙𝑎𝑔𝐿𝑆 ← 𝑇𝑟𝑢𝑒, 𝛼𝐿𝑆 ← 𝛼̅𝑗, 𝑥𝐼
𝐿𝑆 ← 𝑥̅𝐼

𝑗
, 𝑥𝐷

𝐿𝑆 ←

𝑥̅𝐷
𝑗
. 

Step 3.2.5 if 𝑃(𝑥̅𝐼
𝑗
) < 𝑃min  and 𝑡𝑗 < 1 , set 𝑃min ← 𝑃(𝑥̅𝐼

𝑗
) , 𝛼min ← 𝛼̅𝑗 , 𝑥𝐼

min ←

𝑥̅𝐼
𝑗
, 𝑥𝐷

min ← 𝑥̅𝐷
𝑗
 and set 𝑡𝑗+1 ∈ (𝑡𝑐 , 1]; otherwise, go to Step 3.2.7.    

Step 3.2.6: if 𝑗 < 𝑛𝐻𝐶 , set 𝑡𝑗+1 ∈ (𝑡𝑐 , 𝑡𝑗); otherwise, set 𝑡𝑗 ← 1, apply the PTC 

method for simulation, evaluate 𝑃(𝑥̅𝐼
𝑗
) and then go to Step 3.2.7; 

Step 3.2.7: if 𝑓𝑙𝑎𝑔𝐿𝑆 = 𝑇𝑟𝑢𝑒 , return 𝑓𝑙𝑎𝑔𝐿𝑆 , 𝛼𝐿𝑆 , 𝑥𝐼
𝐿𝑆 , 𝑥𝐷

𝐿𝑆 ; otherwise, 

return 𝑓𝑙𝑎𝑔𝐿𝑆,  𝛼min, 𝑥𝐼
min , 𝑥𝐷

min. Go to Step 3.3 of previous algorithm. 

Here, 𝑓𝑙𝑎𝑔𝐿𝑆 indicates whether a step length satisfying Armijio condition has been found 

(𝑇𝑟𝑢𝑒  if found; otherwise, 𝐹𝑎𝑙𝑠𝑒 ), and 𝛼𝐿𝑆 , 𝑥𝐼
𝐿𝑆  and 𝑥𝐷

𝐿𝑆  are the corresponding step 

length, independent and dependent variables. 𝑃𝑚𝑖𝑛  denotes the minimum penalty 

function value obtained until the current iteration, and 𝛼min , 𝑥𝐼
min  and 𝑥𝐷

min  are the 

corresponding step length, independent and dependent variables. 𝑡𝑐  is the largest 

homotopy parameter leading to a converged simulation until the current iteration. 

5. Case study 

The separation of acetone and chloroform mixture using EDWC is used to illustrate the 

capability of the proposed algorithm. The optimal design of EDWC for the same 

separation has been reported in Ma et al. (2020). The example is solved on a desktop with 

3.20 GHz Intel core i7 processor, 16 GB RAM and Windows 64-bit operating system. 

The optimisation problem involves 9399 equations, 16 inequality constraints and 10570 

variables including 90 decision variables. The objective is to minimize total annualized 

cost (TAC). We conduct optimisations from six different initial points as with Ma et al. 

(2020). The results are shown in Table 1. 

Table 1. Comparative results from the algorithm of Ma et al. (2020) and the proposed algorithm 

Initial point 1 2 3 4 5 6 

Time/s 
Ma2020 1259 7722 2263 3698 1650 1714 

Ours 1498 587 903 380 1197 1519 

Number of 

Simulations 

Ma2020 239 302 409 509 380 262 

Ours 478 268 528 229 466 796 

TAC/ 

(k$ year-1) 

Ma2020 6081 6116 6106 6124 6137 6097 

Ours 6076 6076 6076 6078 6094 6077 
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As seen from Table 1, both algorithms can find optimal solutions from all six initial 

points. The proposed algorithm needs much less computational time than the hybrid 

algorithm of Ma et al. (2020) from all initial points except from the initial point 1. For 

instance, starting from the second initial point, the proposed algorithm needs 587 CPU s, 

whilst the hybrid algorithm requires 7722 CPU s. More importantly, the proposed 

algorithm always obtains a bit better solution with TAC reduced by 0.08% ~ 0.75%, 

compared to the hybrid algorithm. In addition, the proposed algorithm often requires more 

simulations than the hybrid algorithm, which do not lead to higher computational time 

for the proposed algorithm because the time-consuming PTC simulations are used much 

less compared with the hybrid algorithm. 

6. Conclusions 

In this work we proposed an improved SLSQP-based feasible path optimisation algorithm 

for optimal design of EDWC using rigorous models. We integrate HC simulations with 

line searches to get step lengths satisfying Armijio condition reliably. To further improve 

the efficiency, we proposed a criteria to terminate the HC calculation early. To further 

guarantee the convergence of simulations, we use PTC simulations as the last safeguard. 

Finally, one case study from literature indicates the proposed algorithm can be 10 times 

faster than the state-of-art feasible path algorithm and also generates better solutions. 
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Abstract 
An integrated and multiscale modeling framework is introduced to accurately model the 
biphasic dehydration of a mixed carbohydrate feed from typical lignocellulosic waste 
biomass to form 5-hydroxymethylfurfural and furfural. This modeling framework 
integrates computational chemistry into a process model, allowing for a greater 
exploration space for process design. Moreover, this multiscale model is used to 
demonstrate more accurate solvent selection that is in line experimental data, unlike the 
existing solvent screening methods. For this purpose, a pool of five commonly used 
organic solvents for this system are considered, which are 1-butanol, 2-butanol, methyl 
isobutyl ketone, 2-methyltetrahydrofuran, and tetrahydrofuran.  

Keywords: green chemistry, process intensification, computational chemistry, 
mathematical modeling, lignocellulosic biomass valorization. 

1. Introduction 
The current global scenario for energy and chemicals consumption features the 
impending exhaustion of fossil resources and the undeniable threat of global warming 
as major challenges to be tackled by mankind. Due to the escalating demands for 
energy, bulk chemicals and materials, alternative sources of feedstock are restlessly 
sought after. In the recent decades, the biorefinery concept has emerged as an 
alternative for the generation of these goods via the sustainable processing of biomass 
of diverse nature following chemical, thermochemical, enzymatic or fermentative 
pathways (Corma et al., 2007). Conversion of biomass into fuels and chemicals bids a 
potential opportunity to fulfill the energy needs of the upcoming decades. Owing to 
their relevance in synthesis, 5-hydroxymethylfurfural (HMF) and furfural have been 
considered as outstanding building blocks for chemicals and fuels in the US Department 
of Energy's list of top value-added chemicals from biomass (Bozell and Petersen, 
2010). Both these compounds offer great possibilities considering their chemical 
functionality and allow the production of a wide array of chemicals with very diverse 
applications. Putten et al. (2013) reviewed thoroughly the synthetic pathways starting 
from HMF leading to products with applications as: monomers for subsequent 
polymerization, highlighting diols from HMF, 2,5-diformylfuran, 2,5-furandicarboxylic 
acid or 5-hydroxymethyl-2-furan carboxylic acid; fine chemicals, including products of 
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interest as pharmaceuticals, agrochemicals, flavors and fragrances; and fuel 
components, such as dimethylfuran, levulinic acid or methyl tetrahydrofuran. 

Much of the earlier work on the synthesis of these building block chemicals is reported 
in monophasic systems which suffer from thermodynamic limitations, low selectivity, 
low yield, or undesired side-products. A smart strategy to overcome some, if not all, of 
these hurdles is the use of a multiphase reaction-extraction system. However, the design 
and optimization of such systems is hardly straightforward. For instance, the choice of 
the organic solvent in the aqueous biphasic system to produce HMF and furfural from 
sugars is a crucial factor for both process economics and sustainability. Mathematical 
modeling can be valuable for efficiently analyzing and designing these complex 
systems. For example, solution and reaction properties of the many chemicals involved 
(reactants, solvents, products, coproducts, and catalysts) need to be described; the extent 
of miscibility (totally, partially, or effectively immiscible) must be established; the 
phases where reactions occur need to be identified; and the reaction and mass transfer 
mechanisms must be established. Also, the effects of chemically inert species on 
partitioning and of mixture composition on reaction rates must be characterized. 
However, the commonly used thermodynamic models lack the necessary 
thermodynamic parameters for every case and are inherently limited to the portion of 
the chemical design space for which every binary interaction parameter is available. 

In this respect, COSMO-based models, such as COSMO-RS (Klamt, 1995; Klamt et al., 
1998), are valuable alternatives for describing liquid-phase thermodynamics since they 
do not require any binary interaction parameters. Furthermore, such models allows for 
easy integration of quantum chemical calculations into a process modeling framework, 
greatly expanding the envelope of chemical species that can be modeled at a high level 
of accuracy. Here, an integrated and multiscale modeling architecture (Pudi et al., 2020) 
is employed to design and simulate the biphasic process based on COSMO-based 
thermodynamic models that do not require any binary interaction parameters. This 
modeling approach allows for not only easier optimization of reaction conditions but 
also more accurate solvent selection compared to the existing screening methods. 

2. Multiscale modeling approach 
This multiscale approach was first presented in an earlier work (Pudi et al., 2020). With 
python as the high-level interface, three different tools are employed at three different 
scales: density functional theory for the description of individual molecules, COSMO-
RS for the description of individual physicochemical phenomena, and mathematical 
modeling for the description of all the interlinked phenomena in a biphasic reactive 
system. 

3. Biphasic system 
In an effort to achieve carbon neutrality and circular economy, lignocellulosic waste 
biomass has been identified as a promising carbon source and widely studied for the 
production of HMF and furfural. Therefore, a typical composition of rice straw (20% 
xylose, 35% fructose, and 45% lignin and other inert materials) is considered as feed 
(Amiri et al., 2010). Three reactions are considered in the system: xylose dehydration to 
furfural, fructose dehydration to HMF, and HMF rehydration to levulinic acid (LA) and 
formic acid (FA). 
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xylose → furfural + 3H2O (1) 

fructose → HMF + 3H2O (2) 

HMF + 2H2O → LA + FA (3) 

Other degradation reactions, including humin formation, have not been considered in 
this work. The calculations are carried out for a typical reaction temperature of 150 °C 
and 1:1 volume ratio of aqueous and organic phases. Five commonly used organic 
solvents for this process are considered to evaluate the impact of this choice on system 
performance and compare the accuracy of the multiscale model with experimental data 
and other solvent screening works. The candidates are 1-butanol, 2-butanol, methyl 
isobutyl ketone (MIBK), 2-methyltetrahydrofuran (2-MeTHF), and tetrahydrofuran 
(THF). 

4. Results and discussion 
4.1. Steady state properties of the system 

Results from the multiscale process model are presented in Table 1. At equilibrium, the 
conversions of xylose and fructose are essentially 100 %. Since only reaction is 
considered for xylose, all of the converted reactant is converted to furfural. In the case 
of fructose, it appears that it is completely converted to LA and FA, leaving no presence 
of HMF. These results are unsurprising once the standard Gibbs’ free energies of these 
reactions in the aqueous phase are considered: -164 kJ/mol for xylose dehydration to 
furfural, -182 kJ/mol for fructose dehydration to HMF, and -121 kJ/mol for HMF 
rehydration to LA and FA. These values remain do not decrease by more than 15–30 
kJ/mol as the reaction proceeds from the feed composition to equilibrium. This explains 
the complete conversion of the feed reactants and HMF. Feed sugar conversions of 
>99% at equilibrium are also observed in experiments (Yang et al., 2012). 

Table 1 Equilibrium results (in percentages) at 150 °C calculated using the multiscale model 

Solvent Furfural 
Yield 

Furfural 
Extracted 

HMF 
Yield 

LA Yield LA 
Extracted 

FA 
Extracted 

1-butanol 100 87 0 100 77 60 

2-butanol 100 86 0 100 74 56 

MIBK 100 81 0 100 58 40 

2-MeTHF 100 83 0 100 62 50 

THF 100 88 0 100 77 68 

 

The biphasic system has minimal effect on the fundamental kinetics in the aqueous 
phase (Weingarten et al., 2010), but it is crucial to maximize product yield by extracting 
the desired products into the organic phase. Although the choice of the solvent also 
depends on other process objectives, this work only compares their extractive abilities. 
All the considered solvents extract more than 80% of the produced furfural. However, 
contrary to the results of other solvent screening works (Esteban et al., 2020), our 

Furfural-Multiscale Modeling for Easier Optimization and More
Accurate Solvent Selection
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results show that 1-butanol and 2-butanol extract higher percentage of furfural than 
MIBK and 2-MeTHF. Moreover, our results agree with experimental studies (Amiri et 
al., 2010). The strength of our multiscale model in comparison to other solvent 
screening works lies in the estimation of a solvent’s extractive ability. 

4.2. Extractive ability of the solvent candidates 

Extractive ability of the organic solvent is crucial for a well-designed biphasic system 
that can capture as much of the desired products as possible. Table 2 presents a 
comparison between the partition coefficients of all the products in five different 
solvents at feed conditions. These coefficients (POA) are calculated as the ratio of mole 
fraction of a component in the organic phase to that in the aqueous phase. Earlier studies 
in solvent selection chose to calculate partition or distribution coefficients at room 
temperature and/or in a purely ternary solvent-water-solute system (Blumenthal et al., 
2016; Esteban et al., 2020). However, partition coefficients could vary by significant 
margins at higher temperatures and in the presence of other compounds. In general, high 
partition coefficients are desired both at higher temperatures during the reaction (to 
maximize yield and selectivity) and at lower temperatures after the reaction (to 
maximize the amount of product in the extraction phase). 

Although the values reported in this work cannot be quantitatively compared to the 
concentration-based partition coefficients usually reported in experimental studies, the 
general trends can be compared. Most of the commonly used organic solvents for this 
application provide a higher POA for furfural than HMF (Esteban et al., 2020), and this 
trend is also seen in the values reported in this work. However, comparing the partition 
coefficients in Table 2 to the amounts of products extracted in Table 1, there is no direct 
correlation. For example, MIBK has the highest POA for furfural but recovers the least 
amount of furfural. 

Herein lies the reason for our multiscale model’s better prediction of the real behavior 
observed in experiments. While all the solvent screening work published in the 
literature so far have based their results on partition coefficients at one particular state of 
the biphasic system (or worse, in pure ternary systems), our multiscale model takes into 
account the changing compositions. If necessary, it can also consider the change in 
temperatures if the reaction and settling are performed at different temperatures. 

Table 2 Partition coefficients of all the products at feed composition and 150 °C 

Solvent HMF Furfural Levulinic Acid Formic Acid 

1-butanol 8.1 10.9 5.5 1.6 

2-butanol 8.4 11.5 5.7 1.6 

MIBK 11.2 19.4 6.7 1.8 

2-MeTHF 10.2 15.6 6.0 1.9 

THF 7.7 9.5 5.0 1.9 

 

In addition to the partition coefficients, it is important to consider the degree of 
miscibility between the solvent and water. Most studies neglect the amount of water 
dissolved in the organic phase in their solvent selection process. However, the mole 
fraction of water partitioning into the organic phase is around 30–50% for all the 
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commonly used organic solvents for this process. The solubility of one solvent in the 
other creates downstream separation and recycling challenges that should be considered 
in the overall process economics and sustainability analyses. A recent study has 
identified several alternatives in this aspect (Wang et al., 2021). 

5. Current limitations 
As noted earlier, only three reactions are considered in this work and only one of them 
is a degradation reaction. For example, no degradation reactions were considered for 
furfural, which caused 100% furfural yield. However, soluble and insoluble humins are 
known to form in this system, which reduces the yield of furfural and HMF. In addition, 
this process in practice is rarely taken to equilibrium in order to maximize the yield of 
desired products (Weingarten et al., 2010). Therefore, a more comprehensive study 
must include kinetics and assess the dynamic behavior of the system. 

6. Conclusions 
A multiscale modeling approach based on quantum chemistry and COSMO-RS is 
successfully employed in this work to model the steady state behavior of biphasic 
dehydration of sugars to valuable products such as HMF and furfural. This approach 
conforms to prior knowledge and experimental data. In addition, solvent selection based 
on this multiscale model presents more accurate results than the existing screening 
approaches that sometimes contradict experimental behavior. The presented approach 
paves the way for a more comprehensive work that can be used for systematic process 
optimization. 
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Abstract 

Process intensification with micro channels is known for the lowest production cost, 
high efficiency, safest-clean production rate, and energy-saving equipment. It is well 
known that by replacing conventional channels with micro-level channels, CO2 
emission can be controlled efficiently with the comparatively high CO2 removal rate. In 
the present study, we compare the CO2 absorption rate in presence of different solvents 
like water, amino acids, mixture of amines, ammonia, NaOH, and KOH in terms of 
mass transfer coefficient that is based on different absorption phenomena and come-up 
with some guidelines. Also, an attempt is made to develop a correlation for the 
Sherwood number and the results obtained are compared with the predicted available 
co-relations in literature. This study concludes that the use of microchannels can 
enhance the mass transfer coefficient as well as CO2 absorption rate several times in 
comparison to conventional channels and amines are proved to be a better solvent in 
comparison to other solvents for CO2 removal in microchannels. 

Keywords: Absorption, Mass transfer coefficient, Amines, CO2, Microchannels. 

1. Introduction 

In this era, industrial growth is on boom due to rapid advancement and implementation 
of new techniques at the same time its growth is hampered significantly due to CO2 
emissions. Absorption of CO2 in solvents like water, amino acids (MEA, DEA, and 
MDEA), mixture of amines (Mackowiak et al., 2018), ammonia, NaOH, and KOH is 
promising both by physically and chemically in micro-channels. Akkarawatkhoosith et 
al., (2020) shows that the chemisorption rate is lowest in conventional channels, and its 
value increases as the size of channel diameter decreases. It is well known that 
physisorption of CO2 by water at low temperature and elevated pressure is 
comparatively low w.r.t chemisorption. However, the absorption rate can be enhanced 
by replacing the solvents, using some additive in existing solvents, varying the 
operating conditions such as flow rates (Q), concentration (C), etc., replacing physical 
absorption phenomena with chemical absorption, and by reducing the channel diameter 
to mini and micro level. As a result, we discuss the need of microchannels over 
conventional and mini contactors/reactors on the basis of mass transfer coefficients 
values in the next section. 
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2. Selection of system 

2.1 Conventional, Mini, and Micro-channels 

On the basis of mass transfer coefficients values we justify the need of microchannels 
over conventional channels/reactors. Figure 1 (a & b) shows a comparison of the values 
of mass transfer coefficient for conventional channels (e.g. packed columns, tray 
columns, trickle bed reactors), and microchannels (range: 200 μm ≧ Dh ＞10 μm). 
Chemical absorption involves mass transfer rate and mass transfer coefficient can be 
enhanced by the parameters such as flow rates (Q), concentration (C), temperature (T), 
pressure (P) etc. (Al-Hindi et al., 2018). It can be easily seen in Figure 1 that the 
microchannels and a special type of microchannel gives a higher value of mass transfer 
coefficient than the conventional and mini-channels for the absorption process. 
 

  
 
 

 
Figure 1: Schematic representation of mass transfer coefficient for different contactors and 

reactors. 

2.2 Physical/Chemical Absorption 

Dong et al., (2020) shows that the chemisorption of CO2 has an absorption rate around 3 
to 10 times greater than the physical absorption. As the diameter of the channels 
decreases (micro-channels) chemisorption always gives higher values of mass transfer 
coefficient over physical absorption (Akkarawatkhoosith et al., 2020). For 
microreactors, the range of mass transfer coefficient for physical absorption comes 
under the 0.3 - 7 s-1 and for chemisorption, the range extended from 0.7 - 100 s-1 for 
CO2 absorption in amines (Yao et al., 2017). 

2.3 Solvents 

The solvents shown in Table 1 gives good absorption rate for conventional channels. 
These solvents can also give good absorption rate in mini and micro-channels as well 
provided channels should be clean before vaporization of solvents. Because absorption 
of CO2 in water, NaOH, KOH, and ammonia forms soluble salts (Carbonates and 
Bicarbonates) may block the channels of small diameters. Thus, the amines and its 

“a” “b” 
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blended solutions can be proved to be good solvents for the CO2 absorption process in 
microchannels and a special type of microchannel (Figure 1).  

Table 1: CO2 absorption in different type of solvents reported in literature. 

Authors Absorption  Absorption mechanism 

Elhajj et al., (2020) Water CO2 + H2O ⇌ H2CO3; H2CO3 ⇌ HCO3
− + H+; 

 HCO3
− ⇌ CO3

2− + H+ 
Kraub et al., (2017) NaOH CO2 + 2OH− ⇌ CO3

2− + H2O 
Liu et al., (2009) Ammonia NH3 + CO2 + H2O ⇌ NH4HCO3 
Kim et al., (2014) MEA CO2 + 2MEA ⇌ MEAH+ + MEACOO− 

Rinker et al., (1996) DEA CO2 + R1R2NH ⇌ R1R2NH+COO− 
R1R2NH+COO− + B ⇌ R1R2NCOO− + BH+ 

Donaldson et al. 
(1980) 

MDEA (R)3N + CO2 + H2O ⇌ (R)3NH+ + HCO3
− 

Where (R)3N is any tertiary amine e.g., MDEA 
Conway et al. (2015) Mixture of 

Amines 
Amine1 + Amine2 + CO2  ⇌  Amine1CO3

− +

Amine2H+  

2.4 Concentration 

When CO2 absorbs in any solvent, several parameters affect the absorption rate like 
concentration, flow rates, temperature, pressure, channel diameter, type of absorption, 
and solvents. Section 2.1, 2.2, and 2.3 helps to decide the channel diameter range, type 
of absorption (physical/chemical absorption), and solvents. Table 2 shows low 
temperature and high pressure is a favorable condition for CO2 loading (means mole of 
CO2 load per mole of solvent). Table 3 indicates that higher absorption efficiency can 
be achieved with higher solvent rate and low value of CO2 flow rate. 

Table 2: CO2 absorption in amines at different temperature and pressure. 

Amines Temperature 

(K) 

Pressure 

(kPa) 

CO2 loading 

(mole/mole) 

Authors 

 

MEA 313 15.70 0.56 Prachi Singh (2011) 
MEA 373 30.40 0.238 Guevara et al., (1993) 
DEA 298 6.89 0.57 Lee et al., (1972) 
DEA 313 10.70 0.59 Benamor et al., (2005) 
MDEA 313 101.325 0.46-0.58 Chowdhary et al., (2013) 

Table 3: CO2 absorption in amines at different flow rates.   

Amines Liquid 

load 

(m3/m2-h) 

Gas flow 

rate 

(L/h) 

Removal 

Efficiency 

(%) 

Authors 

MEA, DEA, MDEA 10 -    90, 54, 04 Aroonwilas et al., (2004) 
MEA, DEA, MDEA 4.8 -    43, 35, 03 Aroonwilas et al., (2004) 
MDEA - 100, 200,  

300, 400 
< 40, ≈ 20,  
< 10, < 05 

Pan et al., (2014) 

2.5 Sherwood number 

From section (2.1-2.4) that chemisorption in microchannels enhance mass transfer 
coefficient/absorption rate by using high flow rate of solvent (amines), low flow rate of 
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CO2, low temperature, and high pressure. We represent mass transfer coefficient in 
terms of Sherwood number (Sh) for gas liquid-phase and use the method of 
Buckingham Pi theorem in which Sherwood number is a function of gaseous Reynolds 
number (ReG), Reynolds number of liquid (ReL), Schmidt number for gas (ScG), and the 
ratio of liquid to gas velocity (VL/VG) as given by Eq. (1 & 2). 

𝑆ℎ =  𝑓. (𝑅𝑒𝐺 . 𝑅𝑒𝐿. 𝑆𝑐𝐺 .
𝑉𝐿

𝑉𝐺
)                                                                                               (1)                                                           

𝑆ℎ =  𝑛1. 𝑅𝑒𝐺
𝑛2 . 𝑅𝑒𝐿

𝑛3 . 𝑆𝑐𝐺
𝑛4 .

𝑉𝐿

𝑉𝐺

𝑛5

 (2) 

In order to obtain a more accurate Sherwood number, the Schmidt number of gas is 
introduced in Eq. (2) in which n1, n2, n3, n4, and n5 are the fitting parameters and their 
values taken are 0.084, 0.12, 0.385, 0.3, and 1 respectively. These values are obtained 
with the help of experimental data, performed in the laboratory and the parameters used 
in the experiment are given in Table 4. The final modified form of the equation is given 
by Eq. (3). 

𝑆ℎ =  0.084 . 𝑅𝑒𝐺
0.12𝑅𝑒𝐿

0.385𝑆𝑐𝐺
0.3

𝑉𝐿

𝑉𝐺
   (3) 

Table 4: Parameters used for the present study of experimental and theoretical work. 

Parameters  Values Parameters Values Parameters Values 

Gas  CO2 Temperature 298, 313, and   
338 K 

Schmidt number 5891.684, 
4359.327, and 
3969.112 

Amine  Aq. MEA Model Homogeneous 
mixture model 

Reynolds number 13 < ReG < 193 
90 < ReL < 540 

Pressure  1 atm. VL/VG 10 System Microchannel 

3. Results and discussion 

 

Figure 2: Comparison of present work with the 

other empirical co-relations. 

 

Figure 3: Study of Sherwood number at a 

different temperature, for CO2 absorption in 

aq. MEA. 
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Figure 2 and Figure 3 shows the comparison of modified correlation given by Eq. (3) 
with that of Niu et al., (2009) and Ganapathy et al., (2013) which is mentioned in Eq. 
(4) and (5) respectively.  

𝑆ℎ. 𝑎. 𝑑ℎ = 0.11𝑅𝑒𝐺
0.39𝑅𝑒𝐿

0.7𝑆𝑐𝐿
0.5 (4) 

𝑆ℎ. 𝑎. 𝑑ℎ = 10.201𝑅𝑒𝐺
0.206𝑅𝑒𝐿

0.218𝑆𝑐𝐿
0.5 (5) 

It can be clearly seen that the modified correlation outperforms in comparison to the 
others and gives higher values of Sherwood number throughout the range of ReG (0-
200) (Figure 2). It is also observed that replacing ScL with ScG gives the higher value of 
Sherwood number and thereby higher value of mass transfer coefficient as well. Figure 
3 indicates that with increase in temperature, the value of the Sherwood number 
increases as a result the mass transfer coefficient also increases at higher temperature 
values. 

4. Conclusions   

The presented work investigates the conditions to enhance the higher rate of CO2 
removal and solvent selection, and equipment’s based on literature review and also 

suggest a modified correlation of Sherwood number that gives higher values of mass 
transfer coefficient. The main findings are as follows:  

 In conventional, mini and microchannel, it is found that microchannels/special type 
of microchannels provides a high value of mass transfer coefficient. 

 It is found that chemisorption with amine solution gives high rate of absorption 
with low flow rate of CO2, high flow rate of solvents, low temperature and high 
pressure. Amines are proved to be good solvent for microchannels because it 
doesn't form carbonates and bi-carbonates and thereby prevent choking problems in 
channels. 

 On that basis of developed empirical co-relation, it can say that that the selection of 
ScG over ScL provides much better results than the other empirical co-relations 
which are also verified with the help of experimental work. 

 At constant pressure, as the temperature increases the value of Sherwood number 
increases which leads to increase in the value of mass transfer coefficient. Thus, it 
can be concluded that the 318 K favours the chemisorption process of CO2 in MEA. 
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Abstract 

Ethylene oxide (EO), a high-volume chemical intermediate, is produced through highly 

exothermic partial oxidation reactions. It is one of the most energy-intensive and 

inefficient processes in the chemical process industry. Even a small increase in efficiency 

through process intensification can significantly reduce the harmful impact on the 

environment and improve economic performance. The exothermic partial oxidation 

reaction necessitates the use of a large number of long, small-diameter tubes inside the 

EO reactor to achieve fast convective heat removal. Moreover, localized hotspots can 

originate from flow channelling inside the reactor, causing some tubes to operate under 

runaway conditions, producing unwanted, complete oxidation of ethylene in the ignited 

tubes, resulting in much lower overall selectivity. The newly developed MicroFibrous 

Entrapped Catalysts (MFECs) is a non-woven microfibrous metal mesh made of either 

nickel, steel, or copper. MFECs provide better thermal management of the exothermic 

reactions through enhanced conductive instead of convective heat transfer inside the 

reactors. This work assesses the impact of using MFECs inside the EO reactor on the 

overall process. We have evaluated the effect of the number of ignited tubes (10%, 4%, 

2%, 0%) inside the reactor for the conventional process and compared it to the MFEC 

configuration, which inherently avoids ignition. Avoiding ignited tubes results in higher 

EO production and reduced formation of CO2, leading to reduced separation cost. The 

MFEC configuration leads to an overall product cost reduction of 18.4%. 

Keywords: Intensification; Process Simulation; Derivative-free Optimization.  

1. Introduction 

The ever-growing use of commodity products is causing great demand for high-volume 

raw material intermediates such as ethylene oxides, which are extensively used in plastic 

bottles, anti-freeze, sports gear, detergents, and paints. In 2019 alone, the United States 

produced 2.8 million metric tons of ethylene oxides (EO) and is projected to increase 3-

4% per year over the next decade. Ethylene oxidation is considered to have great potential 

for reducing of carbon emissions (Brueske et al., 2015).  

The newly developed MicroFibrous Entrapped Catalysts (MFECs) is a non-woven 

microfibrous metal mesh made of either Nickel, Steel, or Copper. MFECs provide better 

thermal management of the exothermic reactions through enhanced conductive instead of 

convective heat transfer inside the reactors. It also has a better ignition prevention 

capacity because of its ability to mitigate hotspots. The technology has been 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50116-0 
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experimentally proven for a variety of exothermic reaction systems, including Fisher-

Tropsch Synthesis (Choudhury et al., 2020). Moreover, MFECs having a large surface 

area and high void space can help in even flow distribution along the reactor. All these 

properties of MFECs are advantageous in EO production, especially in terms of increased 

per pass ethylene conversion, prevention of hotspots, enhanced process safety, stable 

performance, and extended catalyst activity (Sheng et al., 2013). 

This work assesses the impact of using MFECs inside the EO reactor on the overall 

process. First, a plant-scale baseline simulation model of the conventional EO process has 

been developed using Aspen PlusTM. The optimum design parameters are found using 

derivative-free optimization (DFO). Next, an economic analysis tool, ECON (Kalakul et 

al. 2014), is used to calculate capital and operating costs. We evaluated the effect of the 

number of ignited tubes (10%, 4%, 2%, 0%) inside the reactor for the conventional 

process and compared it to the MFEC configuration, which inherently avoids ignition. 

 

Figure 1. Ethylene oxide process PFD 

2. Process Description and Design 

2.1 Process description 

The conventional oxygen-based process, which is reported to offer higher efficiency 

towards EO formation than the air-based process variant, was selected as the base-case 

design for later process intensification (Barecka et al., 2017; Peschel et al., 2012). Based 

on reported EO capacities, the typical product flowrate was selected as 100 kilotons per 

year with a purity of 99.1%. The reactor and EO feed conditioning and conversion 

sections are modeled using the UNIFAC group contribution method. Moreover, the 

model applicability was verified by comparing simulation results with process plant data. 

For the EO absorption and purification sections, SR-POLAR and experimentally 

regressed CPA models are used, respectively (Barecka et al., 2017). The carbon dioxide 

separation sections are modeled by the Electrolyte Non-Random-Two-Liquid (ENRTL) 

model with the Redlich-Kwong (RK) equation for the vapor phase. Henry coefficients 

are used for modeling the solubility of gases.  
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2.2. Feed conditioning and conversion 

The EO reactor (R-101) is modeled as a multitubular, packed-plug flow reactor. A silver-

based catalyst was chosen based on its reported high selectivity and work rate (Kobe et 

al., 2002). Typical reaction conditions for industrial EO production uses excess ethylene 

with 8% conversion of ethylene and 2% EO in the reactor outlet. 

2.3. EO Purification 

EO is absorbed in water under high pressure (20 bars) in a counter-current column (T-

201). The water flow rate is adjusted to achieve total recovery of the diluted EO. The gas 

stream leaving the absorber, which is depleted in EO, is split into three streams: a fraction 

of the stream is sent to the CO2 removal section, whereas the rest is directly recycled to 

the reactor to limit separation costs. A small fraction (<1%) of the gas stream is purged 

to avoid build-up of impurities. In column T-202, the dissolved gases are vented. Finally, 

in column T-203, EO is desorbed under lower pressure, reaching a purity of 99%. 

2.4. Carbon dioxide removal 

Carbon dioxide is scrubbed by physical and chemical absorption in hot potassium 

carbonate (K2CO3) solution (30% in water); MEAs are usually not used as they might 

form stable EO complexes. The reaction kinetics reported by Kothandaraman (2010) were 

used for modeling the absorption. The absorption column consists of several separation 

trays and operates at 20 bar, while the desorption column is operated at 1 bar. The purity 

of the CO2 stream recovered as the top product was fixed at 95% to limit solvent loss. 

  

Figure 2. Ignited tubes inside conventional reactor vs. MFEC reactor (left) and its effect on reactor 

temperature, pressure and ethylene conversion (right) 

2.5. Tube burnout inside EO reactor 

The exothermic partial oxidation reaction necessitates the use of a large number of long, 

small-diameter tubes inside the EO reactor to achieve fast convective heat removal 

(Partopour & Dixon, 2016). Moreover, localized hotspots can originate from flow 

channeling inside the reactor, causing some tubes to operate under runaway conditions, 

producing unwanted, complete oxidation of ethylene in the ignited tubes, resulting in 

much lower overall selectivity (Geitenbeek et al., 2018; Kimmerle et al., 2009). As 

indicated in Figure 2 (left), EO reactors are continuously run even when a number of 

tubes are operating under ignited conditions which considerably impact reactor 

temperature profiles for conventional reactors. Ignited tubes inside the reactor result in 

waste of valuable raw materials and loss of product. Considerable amounts of excess 

waste CO2 is produced inside the reactor. MFEC reactors which have better heat 

High Thermal Conductivity Microfibrous Entrapped Catalyst
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dissipation capabilities have the potential to prevent most of these problems. Figure 2(a) 

shows the reactor operating conditions for both MFEC and conventional reactor (Fogler, 

2011). Figure 2(b-c) show the ethylene oxide (yEO) and ethylene (yE) mole fractions 

along the reactor, respectively. The figure shows six feet of tubes might be sufficient 

compared to thirty feet of conventional reactor with same number (24800) of tubes. 

Figure 2(d) shows the pressure drop along the reactor for both reactor configurations.  

3. Optimization Algorithm 

Figure 3 illustrates the DFO algorithm, a type of optimization algorithm which does not 

use derivatives to reach optimality. The objective function is treated as a black-box model 

or analytical equations, which provides the objective function values for a set of decision 

variables. Next, both a set of decision variables and the objective function combination is 

passed back to the DFO algorithm, where a new set of decision variables are calculated 

based on optimality direction and subsequently further evaluated. This process is carried 

until the termination criterion (number of iterations) is met. 

 

Figure 3. DFO algorithm 

In this work, a DFO based algorithm named RBFOpt (Radial Basis Function) is used 

where a surrogate-model-based search method is employed to select the optimal design 

and operating conditions to achieve minimized objective function (Costa & Nannicini, 

2018; Rios & Sahinidis, 2013).  We used annualized cost as our objective function, which 

is calculated using Equations (1) - (8). The cost of each piece of equipment  was calculated 

using standard cost coefficients from literature (Turton et al., 2008). The raw material 

(EO and ethylene) cost has been calculated using a commodity chemical database (ICIS 

Chemical Business, October 2020). 

𝑚𝑖𝑛:  𝑇𝐴𝐶 =  𝑖(𝑖 + 1)𝑛

(𝑖 + 1)𝑛 − 1
× 𝐼𝐶 + 𝐴𝑈𝐶 (1) 

𝑠𝑡.  𝐼𝐶 =  ∑𝐶𝑜𝑠𝑡𝑗(𝑞𝑠,𝑗)

𝑗

 (2) 

𝐴𝑈𝐶 = 24 × 300 ×∑𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗(𝑞𝑜,𝑗)

𝑗

 (3) 

𝑞 = 𝛩 (𝑥,  𝑧,  𝑝(𝑥)) (4) 

∑𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑗 ≤ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦0
𝑗

 (5) 
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𝑥𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ≥ 𝑝𝑢𝑟𝑖𝑡𝑦 (6) 

𝑥 ∈ 𝑋 (7) 

𝑧 ∈ 𝑍  (8) 

4. Results and Discussion 

We used the DFO algorithm to find the optimum configuration for the overall EO process. 

The optimized process configuration parameters are given in Table 1 for varying degrees 

of tube ignition (note that BU indicates the bounds using during optimization). As CO2 

formation due to ignition increases inside the reactor, the requirements for the separation 

equipment increase. It can also be seen that the EO purification column (T-203) 

contributes most to the separation cost. 

Table 1: Optimal process configuration for the EO process 

 0% 2% 4% 10% BU 

No. Stages in EO Absorption Column, T-201 15 15 15 15 8-28 

Solvent Flowrate in Column T-201 (ton/hr) 188 191 195 209 1-1000 

No. Stages in EO Purifier Column,  T-202 14 14 15 18 5-20 

Feed Stage in EO Purifier Column,  T-202 8 9 5 7 3-20 

Pressure in EO Purifier Column,  T-202 (bar) 2 2 2 2 1-15 

No. Stages in EO Purifier Column,  T-203 65 68 70 84 35-95 

Feed Stage in EO Purifier Column,  T-203 50 32 25 44 3-95 

Reboiler Duty, T-203 (MW) 29 30 30 31 1-100 

Pressure in EO Purifier Column-2,  T-203 (bar) 1 1 1 1 1-15 

No. Stages in CO2 Absorption Column, T-301 6 5 5 5 4-7 

Solvent Flowrate, T-301 (ton/hr) 21 26 31 48 1-100 

No. Stages in CO2 Desorption Column, T-302 9 11 13 20 3-22 

Feed Stage in CO2 Desorption Column, T-302 4 4 3 3 3-22 

The capital and annualized cost for different varying levels of tube ignition in the EO 

process are shown in Table 2 (note that CV indicates the conventional reactor 

configuration). As the ignition percentage increases, the annualized cost also increases 

due to increased solvent requirements and an increase in the associated reboiler duties of 

the purification columns in Table 1. A larger overall cost reduction is found for the MFEC 

process mainly related to catalyst cost, as the MFEC system requires much less catalyst 

inside the reactor than the conventional process. 

Table 2: Optimal process configuration for the EO Process 

 0% MFEC 0% CV 2% CV 4% CV 10% CV 

Capital Cost (106$) 170.08 179.08 180.79 181.46 183.89 

Annualized Cost (106$) 167.45 179.05 180.96 181.78 184.84 

EO Production (kton/year) 111.12 111.12 109.27 107.04 100.00 

Cost of EO Production ($/tons) 1506.93 1611.32 1656.08 1698.24 1848.40 

Techno-Economic Study of Intensified Ethylene Oxide Production Using
High Thermal Conductivity Microfibrous Entrapped Catalyst
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5. Conclusions 

In this paper, we have investigated various reactor ignition cases of the EO process and 

examined how the conditions inside the reactor and the use of MFEC can significantly 

impact the overall economics of the process. We have used DFO optimization to find the 

optimum process configuration in each case. If tube ignition can be avoided inside the 

reactor, the separation cost can be reduced for the intensified process by using MFEC, 

while also achieving optimum design and operating conditions. Moreover, our economic 

analysis clearly shows that the use of MFECs can significantly reduce the annualized cost 

of production from $1,848/ton to $1,506/ton, corresponding to a reduction of 18.4%. 
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Abstract

With the increasing penetration of renewable generating units, especially in remote areas
not well connected with load demand, there is growing interest to co-optimize generation
and transmission expansion planning (GTEP) in power systems. Due to the volatility in
renewable generation, a planner needs to include the operating decisions into the planning
model to guarantee feasibility. Three different formulations, i.e., a big-M formulation,
a hull formulation, and an alternative big-M formulation, are reported for transmission
expansion. To address the computational challenge, we propose a nested Benders de-
composition algorithm and a tailored Benders decomposition algorithm that exploit the
structure of the GTEP problem. Using a case study from Electric Reliability Council of
Texas (ERCOT), we are able to show that the proposed tailored Benders decomposition
outperforms the nested Benders decomposition. The coordination in the optimal gener-
ation and transmission expansion decisions from the ERCOT study implies that there is
an additional value in solving GEP and TEP simultaneously. The detailed results of this
paper has been published in Li et al. (2021).

Keywords: Power Systems, Generation Transmission Expansion, Mixed-integer
Programming, Decomposition Algorithm

1. Introduction

Generation expansion planning (GEP) of power systems involves determining the optimal
size, location, and construction time of new power generation plants, while minimizing
the total cost over a long-term planning horizon (Conejo et al., 2016). There is a growing
interest to use mathematical programming models to solve generation expansion planning
problems (Lara et al., 2018; Tso et al., 2020). Conventional power units are dispatchable
thermal power plants that can provide stable power output. However, with the increased
penetration of renewable generation technologies, such as solar and wind, power systems
nowadays need to be more flexible so as to adjust to the volatile power generation from

http://dx.doi.org/10.1016/B978-0-323-85159-6.50117-2 
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renewables. In this case, operations decisions, such as unit commitment, ramping deci-
sions, become important to assess system feasibility. Transmission expansion planning
(TEP) refers to installing new transmission lines or expanding the capacities of existing
transmission lines in a power system. Bahiense et al. (2001) propose a mixed integer dis-
junctive model for transmission network expansion. GEP and TEP are generally solved
as two independent optimization problems. However, the significant penetration of re-
newables into power systems may lead to their concentration in remote areas not well
connected to load demand. Therefore, installing renewables in those remote areas could
compromise transmission expansion. The recognition of transmission’s interaction with
generation expansion has motivated the development of co-optimization methods to con-
sider the tradeoffs between generation and transmission expansion (Krishnan et al., 2016).
This paper is an extension of the GEP model reported in Lara et al. (2018) to a GTEP
model. The long version of this paper has been published in Li et al. (2021).

2. Problem Statement

We are given different types of existing and known generating units and the generating
units’ nameplate (maximum) capacity; expected lifetime; fixed and variable operating
costs; fixed and variable start-up cost; cost for extending their lifetimes; CO2 emission
factor and carbon tax, if applicable; fuel price, if applicable; and operating characteristics
such as ramp-up/ramp-down rates, operating limits, contribution to spinning and quick
start fraction for thermal generators, and capacity factor for renewable generators. Also
given are existing and candidate transmission lines between any of the two neighboring
buses. The susceptance, distance, and capacity of each transmission line are known. We
use DC power flow equations to calculate the power flow in each transmission line. These
equations are built based on Kirchhoff’s voltage and current laws which differ from the
network flow model used in the work of Lara et al. (2018). In the network flow model, the
transmission network is represented similarly to pipelines where the flows only observe
energy balance at each node while ignoring Kirchhoff’s laws.

With the above input data, the spatial and temporal representations in Li et al. (2021), the
proposed GTEP model is to decide: a) when and where to install new generators, storage
units and transmission lines; b) when to retire generators and storage units; c) whether
or not to extend the life of the generators that reached their expected lifetime; d) unit
commitment of the thermal generators during the representative days; e) power generation
of the generator clusters and power flows through the transmission lines. The objective
is to minimize the overall cost including operating, investment, and environmental costs
(e.g., carbon tax and renewable generation quota).

3. Transmission Expansion Formulation

One of the major constributions of this paper is to compare different formulations for
transmission expansion. For the candidate transmission lines, we can write the following
disjunction, where NTEl,t is a logic variable whose value can be True or False indicating
whether or not transmission line l is installed in year t. If line l already exists in year
t, the corresponding power flow has to satisfy DC power flow equation and upper and
lower bounds. Otherwise, the corresponding power flow is zero. We assume that all the
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candidate transmission lines are standard. In other words, the susceptance of the candidate
transmission lines Bl are parameters in the model. NTEl,t

pflowl,t,d,s = Bl(θs(l),t,d,s − θr(l),t,d,s)

−Fmax
l ≤ pflowl,t,d,s ≤ Fmax

l

 ∨
[
¬NTEl,t

pflowl,t,d,s = 0

]
∀l ∈ Lnew, t, d, s (1)

Standard approaches, i.e., big-M reformulation and hull reformulation (Grossmann and
Trespalacios, 2013), are available to reformulate disjunctions (1) into mixed integer con-
straints.

The big-M formulation of the disjunction is,

−Ml(1−ntel,t) ≤ pflowl,t,d,s−Bl(θs(l),t,d,s−θr(l),t,d,s) ≤ Ml(1−ntel,t) ∀l ∈ Lnew, t, d, s

(2)

−Fmax
l ntel,t ≤ pflowl,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (3)

This big-M formulation is most commonly used in the literature (Conejo et al., 2016) for
TEP.

The hull formulation is,

pflowl,t,d,s = Bl∆θ1l,t,d,s ∀l ∈ Lnew, t, d, s (4)

θs(l),t,d,s − θr(l),t,d,s = ∆θ1l,t,d,s +∆θ2l,t,d,s ∀l ∈ Lnew, t, d, s (5)

−π · ntel,t ≤ ∆θ1l,t,d,s ≤ π · ntel,t ∀l ∈ Lnew, t, d, s (6)

−π(1− ntel,t) ≤ ∆θ2l,t,d,s ≤ π(1− ntel,t) ∀l ∈ Lnew, t, d, s (7)

where ∆θ1l,t,d,s and ∆θ2l,t,d,s are disaggregated variables for the angle difference of trans-
mission line l. Variable ∆θ1l,t,d,s is equal to the angle difference if transmission line l has
been installed in year t. Otherwise, ∆θ2l,t,d,s equals to the angle difference. In addition
to equations (4)-(7), equation (3) needs to be included in the hull formulation. The hull
formulation has more continuous variables than the big-M formulation but it avoids using
the big-M parameters of equations (2).

Alternative big-M formulation: Besides the big-M and hull formulations, an alternative
big-M formulation is proposed by Bahiense et al. (2001). In this formulation, additional
continuous variables pflow+

l,t,d,s, pflow−
l,t,d,s, ∆θ+l,t,d,s, ∆θ−l,t,d,s, are introduced, where the super-

script ‘+’ means that the flow is in the same direction as the nominal direction of transmis-
sion line l, i.e., from the sending-end node s(l) to the receiving-end node r(l); superscript
‘-’ means the opposite direction. By defining these new continuous variables, equation (2)
is replaced by equations (8a) to (8d) and equation (3) is replaced by equations (8g) and
(8h).

pflow+
l,t,d,s −Bl∆θ+l,t,d,s ≤ 0 ∀l ∈ Lnew, t, d, s (8a)

pflow−
l,t,d,s −Bl∆θ−l,t,d,s ≤ 0 ∀l ∈ Lnew, t, d, s (8b)

Power Systems Infrastructure Planning with High Renewables
Penetration
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pflow+
l,t,d,s −Bl∆θ+l,t,d,s ≥ −Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (8c)

pflow−
l,t,d,s −Bl∆θ−l,t,d,s ≥ −Ml(1− ntel,t) ∀l ∈ Lnew, t, d, s (8d)

pflowl,t,d,s = pflow+
l,t,d,s − pflow−

l,t,d,s ∀l ∈ Lnew, t, d, s (8e)

θs(l),t,d,s − θr(l),t,d,s = ∆θ+l,t,d,s −∆θ−l,t,d,s ∀l ∈ Lnew, t, d, s (8f)

pflow+
l,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (8g)

pflow−
l,t,d,s ≤ Fmax

l ntel,t ∀l ∈ Lnew, t, d, s (8h)

pflow+
l,t,d,s, p

flow−
l,t,d,s,∆θ+l,t,d,s,∆θ−l,t,d,s ≥ 0 ∀l ∈ Lnew, t, d, s (8i)

4. Proposed Algorithms

The proposed MILP GTEP model typically involves millions or tens of millions of vari-
ables, which makes the model not directly solvable by the commercial solvers. We propose
two algorithms to efficiently solve this problem.

4.1. Nested Benders decomposition

Lara et al. (2018) apply a nested Benders decomposition algorithm to solve their GEP
model. Like in the GEP model, the nested Benders decomposition algorithm decomposes
the fullspace of the GTEP problem by year.

4.2. Benders decomposition

Instead of solving the GTEP problem sequentially by year as in the nested Benders de-
composition, we treat all the investment-related variables as complicating variables and
include all these variables in a single Benders master problem. The Benders algorithm
iterates between the Benders master problem and the Benders subproblems.
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Figure 1: Tailored Benders decomposition algorithm applied to the GTEP problem
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5. Results

0

20

40

60

80

100

120

140

160

180

2019
2020

2021
2022

2023
2024

2025
2026

2027
2028

2029
2030

2031
2032

2033
2034

2035
2036

2037
2038

G
en

er
at

io
n 

ca
pa

ci
ty

 (G
W

)

natural gas wind solar nuclear coal

Figure 2: Aggregated generation expansion results

We carry out a GTEP case study
for ERCOT (Texas region in the
US). It is divided into five ge-
ographical regions: Northeast,
West, Coast, South, and Panhan-
dle. We also test the two decom-
position algorithms described in
section 4. The nested Benders
decomposition is implemented
in Pyomo/Python (Hart et al.,
2011). The tailored Benders
decomposition implementation is
from CPLEX. The computational
results of the two proposed de-
composition algorithms are shown in Table 1. The tailored Benders decomposition al-
gorithm is able to solve all the three formulations to within 1% optimality gap within
10,000 seconds wall time (real wall clock time).

Table 1: Computational results of the two proposed decomposition algorithms using dif-
ferent formulations

Algorithm Formulation UB ($109) LB ($109) Gap Wall time (secs)

tailored Benders big-M 283.7 282.6 0.38% 5,115
tailored Benders alternative big-M 283.9 281.6 0.82% 3,693
tailored Benders hull 282.6 280.6 0.71% 8,418
nested Benders big-M 295.7 268.9 9.98% 53,682
nested Benders alternative big-M 294.2 265.5 10.81% 43,389
nested Benders hull 288.0 269.3 6.97% 37,577
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Figure 3: Transmission expansion results

The capacities of different generation
technologies from 2019 to 2038 are
shown in Figure 2. The results include
high capacities of solar and wind. The
aggregated natural gas capacity of the
five regions increases in the first few
years, reaches its peak in 2024 and
gradually decreases afterwards due to
the retirement of old generators and
the increase in carbon tax, which
makes the natural gas generators less
competitive compared with solar and
wind generators. The nuclear ca-
pacities are unchanged throughout the
planning horizon. The coal capacities
are unchanged in the first few years
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and start decreasing in 2029 because of reaching their nominal lifetimes. No storage unit
is installed. Therefore, the renewable generation when the net load is negative has to be
curtailed. The total discounted renewable curtailment cost is $1.64 billion in 20 years.
The number of transmission lines built over the planning horizon are shown in Figure 3.
Most of the transmission lines are built for Northeast-Panhandle and South-West in order
to transfer the power generated by the renewable sources in West and Panhandle to other
regions.

6. Conclusions

We have developed models and algorithms for capacity expansion of power systems with
high penetration of renewables. For PSE researchers, the capability to analyze power
systems enables to study hybrid energy systems that have both electricity generators and
electricity/heat consumers, such as chemical plants.
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Abstract 

This paper aims to develop a new optimization model for the design and operation of 

reliable power generation systems. This work optimizes the selection of redundant or 

backup units and operating units to maximize the reliability and to minimize the cost. In 

particular, every possible failure state that the power generation systems can have is 

investigated to evaluate the system reliability. To achieve this goal, we develop an 

optimization model that minimizes the total cost using Generalized Disjunctive 

Programming (GDP). The GDP model includes two decision variables: the first is a 

selection of redundant units with different sizes to increase the reliability of systems, and 

the second is a selection of operating units to satisfy the power demand. Specifically, the 

model determines the system reliability and corresponding expected power production by 

considering the number of redundant and operating units, and possible failure states under 

each design and operation mode. The model imposes a penalty when the demand is not 

satisfied, and the system has a low reliability. We have applied the proposed model in a 

small power plant (one stage with up to three generators) and verified through a sensitivity 

analysis that the model installs larger and more units to improve the system reliability as 

penalty rates increase.  

Keywords: Redundancy, Reliability, Design, Operation, Optimization 

1. Introduction 

As evidenced by the Texas power crisis in 20211, the failure of power generation systems 

can lead to extreme events. Therefore, power generation systems should be designed to 

have high reliability to withstand failures of one or multiple components, and supply near 

uninterrupted electric power to industries and households. Reliability indicates the 

probability that a system will perform its required function properly even if one or 

multiple units fail (Sherwin et al., 2020). Since the goal of power generation systems is 

to consistently provide electric power, securing high reliability in their design and 

operation is a highly desirable objective. Numerous studies on the design/planning of 

power generation systems and reliability evaluation have been reported. However, 

previous works have dealt with these problems separately. Lara et al. (2018) have focused 

on optimizing the generation capacity to satisfy the power demand, whereas Amusat et 

al. (2016) have evaluated the reliability after designing the power generation systems. 

Studies that integrate design and reliability have also been reported, but they only consider 

a couple of generators or transmission lines failures (Moreira et al., 2016). Given the 

 
1 In February 2021, massive electricity generation systems in Texas were failed due to severe winter storms. Due to this, more 

than 4.5 million homes and businesses were left without power for several days, and at least 210 people were killed. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50118-4 
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recent crisis, there is a strong motivation for a more comprehensive method to consider 

reliability in the design and operation phases of the power generation systems. 

 

One method to improve reliability of the power generation systems at the design phase is 

to add redundant or backup units, which allows the systems to operate even if one or 

multiple generators fail (Kim et al., 2016). This approach is known as ‘reliability-based 

design optimization,’ and various studies on this topic have been conducted. Ye et al. 

(2018) develop a mixed integer nonlinear programming model for the optimal design of 

chemical process. Ortiz-Espinoza et al. (2021) present a multi-objective reliability-based 

design optimization model by combining economics, reliability, and safety. Chen et al. 

(2021) propose a two-stage stochastic generalized disjunctive programming (GDP) model 

by considering reliability and endogenous/exogenous uncertainties. Since these works 

assume that their target systems operate at a steady state, the authors mainly focus on 

optimizing the number of redundant units for the reliable design. However, since power 

systems operate in unsteady state due to time-varying power demand, reliability is also 

influenced by the operational strategies that the systems use to satisfy the load demand. 

Specifically, backup units can have a dual role in power generation systems. They can 

remain as backup units in case of low power demand or change to operating units when 

the power demand is high. Such dual purpose of redundant units depending on the load 

demand should be considered in the design and operation of reliable power generation 

systems. To our knowledge, this issue has not been addressed before in the literature for 

the design optimization of power generation systems with considerations of reliability. 

 

This paper aims to develop a new optimization model for the design and operation of 

reliable power generation systems. This work optimizes the number of redundant units 

and operating units to maximize the reliability and to minimize the cost. In the remainder 

of this paper, we develop an optimization model using Generalized Disjunctive 

Programming (GDP), which is a high-level model representation that involves equations, 

disjunctions, and logic propositions. We then verify the effectiveness of the proposed 

model by solving an illustrative example. 

2. Problem statement 

 

Figure 1. (a) Flow diagram of thermal power plant, (b) circular-parallel systems structure 

Given is a natural gas power plant with multiple stages 𝑘 ∈ 𝐾 including turbine, boiler, 

and pump, parallel identical units 𝑗 ∈ 𝐽𝑘 for each stage 𝑘, and set of discrete capacities 

𝑐 ∈ 𝐶𝑘 of the units j in stages k. The stages can be classified into two groups: noncritical 

stage 𝑘 ∈ 𝐾𝑁 that do not consider reliability, and critical stages 𝑘 ∈ 𝐾𝐶 that do consider 
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reliability. A set of stage designs ℎ ∈ 𝐻𝑘 and corresponding operation modes 𝑚 ∈ 𝑀𝑘,ℎ, 

and time periods 𝑡 ∈ 𝑇 are also given. Specifically, ℎ = 1 means one unit installation and 

ℎ = 𝐻  means all potential units are installed. Likewise, 𝑚 = 1  represents one unit 

operation mode, 𝑚 = 𝑀  refers to the mode in which all units are simultaneously 

operated. Each stage k has different failure states 𝑠 ∈ 𝑆𝑚,𝑘,ℎ depending on design h and 

operation mode m, which can be classified into (i) successful operation states (𝑆𝑚,𝑘,ℎ
𝐹 ) 

and (ii) partial operation states (𝑆𝑚,𝑘,ℎ
𝑃 ) . There are also corresponding operating 

reliabilities: successful operation reliability (𝑅𝑘,𝑡
𝐹 ) and partial operation reliability (𝑅𝑘,𝑡

𝑃 ). 

While ‘successful operation states’ indicate the operation states in which the power 

generation capacity is sufficient to satisfy the load demand, ‘partial operation states’ refer 

to the operation states in which the power generation capacity is insufficient to meet the 

load demand, but still can produce electric power at a limited level. The 𝑅𝑘,𝑡
𝐹  and 𝑅𝑘,𝑡

𝑃  are 

probabilities that such successful or partial operation states exist in stage k in time t, 

respectively. The major assumptions used in the model are: (i) There is one unit in 

noncritical stages, which has sufficiently large capacity; (ii) A redundant unit can be a 

backup of any operating unit; (iii) Repair and maintenance processes are not considered. 

3. Model formulation 

The model is developed using Generalized Disjunctive Programming (GDP) (Grossmann 

and Trespalacios, 2013), which can be expressed in terms of Boolean and continuous 

variables, algebraic constraints, disjunctions, and logic propositions.  

 

There are two Boolean variables related to investment and operation decisions. 𝑍𝑘,ℎ is 

true if design h is selected for stage k; false otherwise (Equation (a)). 𝑊𝑚,𝑘,ℎ,𝑡 is true if 

stage k is in operation mode m in time t for design h; false otherwise (Equation (b)). The 
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binary variable 𝑦𝑘,𝑗,𝑐 indicates the installation of unit j with specified capacity c in stage 

k and 𝑥𝑘,𝑗,𝑐,𝑡 indicates the operation of unit j with specificed capacity c in stage k and time 

t. 𝜆𝑗,𝑘 is a reliability of unit j in stage k  and 𝜎𝑗,𝑘 defined in Eqn (7), states that when the 

unit j belongs to set of backup units in failure state s under design h and operation mode 

m (𝐽𝑠,𝑚,ℎ
𝐵 ), the unit reliability (𝜆𝑗,𝑘) will be 1. If the unit j belongs to set of failed unit 

(𝐽𝑠,𝑚,ℎ
𝐹 ), the unit unreliability (1 − 𝜆𝑗,𝑘) will be used to calculate system reliability.  

 

Eqns. (8) and (9) state that only one capacity can be installed and operated. Eqns. (10) – 

(12) indicate capacity of unit installed in stage k, total expected power production, and 

available capacity of stage k, respectively. Eqn. (13) is a downtime penalty and Eqn. (14) 

is a logic constraint for disjunction. Eqn. (15) are symmetry breaking constraints, meaning 

that a unit can only be selected if the one with higher priority is selected. Eqn. (16) 

indicates that installed units only can be used. Eqn. (17) constrains the expected 

production and operating capacity of noncritical stage 𝑘 ∈ 𝐾𝑁. Eqn. (18) states that the 

expected production of stage k+1 is estimated by using expected production of stage k 

and conversion rate of stage k.  

The objective function in (19) is to minimize the total cost, which includes the investment 

cost (𝛿𝑘,𝑐𝑦𝑘,𝑗,𝑐 ), start-up cost (𝜃𝑘,𝑐𝑥𝑘,𝑗,𝑐,𝑡 ), expected fuel cost to purchase natural gas 

(𝜋𝑡𝐹𝑡), expected operating cost (𝛾𝑘𝑇𝐸𝑃𝑘,𝑡), downtime penalty (𝐷𝐶𝑘,𝑡), and unmet demand 

penalty (𝑃𝑁𝑡 ). The system is charged penalties for the unmet demand, as shown by 

Equation (20). Rather than considering a bi-criterion optimization problem, we assume 

that shortfalls in power demand and low reliability are penalized so as to formulate the 

optimization problem as a single objective problem for cost minimization. 

 

The GDP given by (1)−(20) can be transformed into a Mixed-Integer Nonlinear 

Programming (MINLP) using Big-M (BM) and/or Hull Reformulation (HR) (Grossmann 

and Trespalacios, 2013). This paper uses both methods, and Eqns. (5) and (6) are 

transformed into MILP constraints by using an exact linearization (Avraamidou and 

Pistikopoulos, 2019, and Garcia-Herreros et al., 2015).  
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4. Illustrative example 

To verify the proposed model, the power system that has one stage (k =  1) involving up 

to three generators (| Jk |  =  3) and three different sizes (| Ck |  =  3) are analysed. Here the one 

stage stands for the generator stage. The total time horizon is 10 months, which is divided 

into 10 periods (i.e., 1 month). Table 1 shows the parameter values for the example. 
 

T able 1. Parameter for illustrative example 

Parameter Symbol V alue Parameters Symbol V alue 

Nameplate capacity (MW) 𝜌𝑘,𝑐 
50,80, 

100 

Purchase cost of natural gas 

($ /MMBtu) 
𝜋𝑡 5 

Minimum operating capacity 

(ratio of 𝜌𝑘,𝑐, %) 
𝜀𝑗 10 Production cost ($ /MWh) 𝛾𝑘 5 

Unit reliability  𝜆𝑗,𝑘 0.97 Downtime penalty rate ($ /hr) 𝜉 1000 

Conversion rate  𝜂𝑘 0.4278 Installation cost (k$ /unit) 𝛿𝑘,𝑐 
10, 13, 

15 

Unmet demand penalty rate 

($ /MWh) 
𝛼 100 Start-up cost ($ /unit) 𝜃𝑘,𝑐 

100, 160, 

200 

 
   T able 2. Numerical results of illustrative example      F igure 2. Optimal design and operation 

Solution method MINLP MILP 

Solver BARON CPLEX 

Cost (k$ ) 164.1 164.1 

Average 

reliability 
0 .9 7 5 8  0 .9 7 5 8  

Reformulation BM HR BM HR 

Equations 1,110 1,212 2,190 4,452 

Cont. variables  267 1,083 627 2,883 

Binary variables 108 360 108 360 

CPU (sec.) 4.040 11.110 0.360 0.687 

 

Table 2 shows the numerical results obtained with BARON and CPLEX in GAMS 32.1.0 

on an Intel Core i7-10510U CPU, 1.80GHz. Although the sizes of the MILP 

reformulations are larger, their CPU times are significantly shorter than the MINLP. The 

proposed model predicts the total cost of $ 164,192 including unmet demand penalty of 

$ 144 and downtime penalty of $ 2,328. As shown in Figure 2, the model installs two 

medium size generators of 80 MW each yielding a total of 160MW. While the second 

generator remains as a backup when the demand is relatively low (from T1 – T3 and T8 

– T10), both generators are used to meet the demand during T4 – T7. 
 

5 . Sensitivity analysis 

To analyze the impact of unmet demand and downtime penalty rates on design and 

operation of reliable power systems, two alternative cases that have different penalty rates 

are suggested (Case 1: α =  $500/MWh, ξ =  $5,000/hr, Case 2: α =  $1,000/MWh, ξ =  

$ 10,000/hr). As shown in Figure 3(a), the system with higher penalty rates than base case 

(c.f., Base case: α = $100/MWh, ξ = $1,000/hr) tends to install two larger units (each 100 

MW) so as to improve reliability, and the cost is also increased to 171.9 k$ . When the 

unmet and downtime penalties are significantly higher than other two cases (Base case 

and Case 1) (Figure 3(b)), the system decides to install three medium size generators (each 

80 MW) and have one unit as a backup during all the periods, which results in the highest 

reliability (0.9989) and cost (175.1 k$ ).  

An Optimization Model for the Design and Operation of Reliable 

   Power Generation Systems
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F igure 3. (a) and (b): Optimal design and operation of alternative cases, (c): total cost and 

average reliability of all cases 
 

6 . Conclusions 

This paper has presented a mathematical optimization model for the design and operation 

of reliable power generation system. This work optimizes the number of redundant units 

and operating units to maximize the reliability and to minimize the cost. We propose a 

GDP formulation to represent the reliability and expected production, which are essential 

factors to determine the design and operation of power generation systems. Through a 

small example and sensitivity analysis, we found that the optimal system involves more 

and larger units to improve the system reliability as the penalty rates increase. Future 

work will involve other operation problems in power systems such as economic dispatch 

and unit commitment to evaluate the reliability more precisely by using a more rigorous 

reliability model such as Markov chain theory. 
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Abstract 

Targeted process improvements can be achieved through process intensification and/or 

integration. Three alternative options, depending on the reference, are highlighted in the 

paper. The rules needed, to establish when process intensification and/or integration are 

feasible pathways to improvement, are given and through case studies, their successful 

applications are highlighted.  

Keywords: Reactive distillation; Divided wall columns, Hybrid distillation schemes; 

Intensification; Optimization; Integration 

1. Introduction 

Integrated technologies can perform multiple tasks simultaneously within the same 

physical unit or sequentially in separate physical units with the objective to achieve a set 

of performance improvement targets. In the case of the former, a reactive distillation 

column (RDC) is a well-known example, while in the case of the latter, a divided wall 

column (DWC) and a hybrid distillation scheme (HDS) are well-known examples. In 

RDCs, both reaction and separation tasks are performed simultaneously on one or more 

stages of the column (Tian et al., 2018; Tula et al., 2020). In DWCs multicomponent 

separations that normally require multiple distillation columns are performed in a single 

column by placing a partial vertical partition (pre-fractionator) inside the main column 

(Asprion and Kaibel, 2010). In HDSs, two-unit operations, where one is distillation, are 

combined to perform specific separation tasks such that each operates at their highest 

efficiencies (O’Connell et al., 2019). Note that HDS is not membrane distillation. 

Distillation is the common separation technique in RDC, DWC and/or HDS. However, 

separation by distillation is energy intensive and the majority of the separation operations 

found in the chemical and related industries are primarily distillation. Therefore, a large 

percentage of indirect emissions of carbon dioxide (CO2) could also be attributed to 

distillation (Angelini et al., 2005). Accordingly, the challenge of the energy-environment 

interactions requires consideration of options to perform the same separation tasks at 

lower energy consumptions (Pistikopoulos et al., 2021). Opportunities exist for 

substantial reductions in CAPEX, OPEX, waste and CO2 emission through simultaneous 

and/or sequential integration of operations.    

Options to totally replace distillation as a separation technique by less energy intensive 

separation techniques have been proposed (Sholl and Lively, 2016), but their use depends 

on availability of, for example, materials that could serve as mass separating agents for 

membrane-based or for adsorption-desorption based separation techniques. Also, from a 

practical point of view, while it would be possible not to use distillation in future chemical 

processes, it would be practically impossible to replace the thousands of existing 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50119-6 
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distillation columns that are currently in operation all over the world. A more pragmatic 

alternative is to employ intensification and/or integration options based on the currently 

used separation techniques together with new separation techniques in hybrid schemes.  

In this paper, feasibility of employing integrated technologies and related issues is 

highlighted. That is, in which chemical processes the reaction and separation operations 

can be intensified into an RDC, or which separation operations can be combined into 

DWC units, or which distillation-based separation operations can be retrofitted by an 

HDS? Note that in all cases the objective is to improve energy demand and related 

sustainability metrics without changing the product specifications and the feed mixture. 

The first two options indicate the replacement of an existing design with a more 

sustainable design, while the third refers to use of retrofit options without removing 

existing equipment.  

Here, we present a rule-based, three-step method, which assists designers in deciding 

whether a more sustainable RDC can be configured to represent (and replace) a known 

chemical process; or, which separation operations can be combined into DWC; or, which 

distillation columns can be modified to HDSs; together with results from case studies 

highlighting different features of the three-step method. In particular, the results from the 

case studies highlight the potential to significantly improve the process in terms of 

sustainability metrics. More sustainable alternatives mean increased profit, lower CO2 

emission and sensitive environmental impacts. The objective is to find non-tradeoff 

solutions, if feasible, within the limits of the equipment parameters.  

2. Method 

Very briefly, the work-flow for the method has three main steps: 1) check using the rule-

based method, if any of the three alternatives satisfy a set of feasibility criteria; 2) if the 

answer is yes, then apply the respective design methods for the feasible candidates; 3) 

apply target-based process improvement methods to obtain the final sustainable process 

design. A sample of the rules employed by the work-flow of step-1 is given in Table 1 

for the three options. For step-2, stages 1 & 2 of the sustainable design method (Tula et 

al., 2017a) are applied, while for step-3, extended versions of stage-3 of the same method 

are applied. Therefore, the methods-tools for these steps are described here. 

Table 1: Selected rules for process intensification and/or integration 

Rules Reactive Distillation Divided Wall Column Hybrid Distillation Scheme 
1 Is the reaction exothermic? Are there two or more 

distillation columns 
connected sequentially? 

Are high purity products 
obtained as distillate? 

2 Is there only one reaction? Is it necessary to separate a 
multicomponent mixture?  

Does the host column have 1 
feed & 2 products? 

3 Does the reaction and 
separation involve liquid and 
vapor phases? 

Can the lightest & heaviest 
boiling products leave as top 
& bottom products in DWC? 

Is the separation difficult 
(indicated by their driving 
force values)? 

4 Does the separations involve 
azeotropes or close boiling 
pairs? 

Is the number of high purity 
products less than or equal to 
2 for a DWC? 

Based on the cut-off equation 
(Eq 1), is the potential saving 
> 20%? 

5 Does the separations involve 
3 or more products? 

Can the separations in the 
targeted columns be operated 
at similar pressures? 

Is the feasibility of the other 
separation technique in HDS 
confirmed?  

6 Are high purity products 
desired? 

Does the targeted columns 
involve extraction and 
recovery operations? 

The mixture to be separated 
does not involve azeotropes? 

7 Are there energy intensive 
separations or waste issues?  

Is the middle product 
flowrate low? 

Are retrofit alternatives 
desired? 
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In step-1, based on the problem data and applying the rules, if the answer is yes to all the 

questions (for the RDC case), then the potential for generating a sustainable alternative 

employing RDC will exist. For DWC and HDS, additional rules and/or data are needed 

for rules 5-7. Step-2 involves the actual synthesis and design of the respective intensified-

integrated alternative (Tula et al., 2017a). Step-3 verifies and further refines the solution 

from step-2, and ranks the alternatives in terms of chosen sustainability metrics based on 

techno-economic analysis and process simulation. See Tula et al. (2017a) for more details. 

3. Case Studies 

Results from three case studies involving RDC, DWC and HDS are presented. Detailed 

results for all case studies can be obtained from the authors. 

3.1. Application of RDC (replacement and/or retrofit of base case) 

Process intensification issues are highlighted through a new case study involving the 

production of methyl chloride (MeCl), which is produced from the reversible gas-phase 

reaction between methanol and hydrogen chloride, also producing water. Dehydration of 

methanol may occur giving di-ethyl ether and water. As in the production of methyl 

acetate (Agreda & Partin, 1984) or dioxalane (Castillo-Landero et al., 2018), this process 

can also be intensified to RDC because the answers to the rules in Table 1 are yes.  

A base case process design exists for MeCl production (Dantus, 1999) and the goal is to 

produce the required amount of MeCl (90,000 metric tons/year), with a desired purity of 

MeCl (96-99.5 mol%). Design of the conventional process achieves these goals with 

higher operating and raw material costs. Figures 1 and 2 show two configurations 

generated by applying the established RDC synthesis and design methods (Sanchez-Daza 

et al., 2003). The main differences between the two configurations are: i) configuration-

1 (Fig 1) considers a chiller to process the top product (MeCl) containing surplus reagent 

(HCl) for later separation using a conventional distillation column to recover the pure 

product and the surplus reagent; ii) configuration-2 (Fig 2) has a side product, which is 

sent to a membrane-based separation unit from which the product (MeCl) is separated 

from the unreacted HCl.  

 
Figure 1: RDC configuration-1 for the production of methyl chloride 

 
Figure 2: RDC configuration-2 for the production of methyl chloride 

As the two reversible gas-phase reactions are exothermic, the heat produced by the 

reactions can be used to reach the boiling temperatures at each reactive stage. Therefore, 

the two RDC configurations require less energy than the base case process: configuration-

1 requires -14.94 MW in the condenser and 14.44 MW in the reboiler, while, 

configuration-2 requires -15.53 MW in the condenser and 14.41 MW in the reboiler. The 
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furnace energy consumption used to pre-heat the reactants in the base case process is 

around 146.54 MW. The savings in cost of capital and operation are significant, even 

after taking into consideration the investiment for the extra unit operation. Note that as a 

retrofit option, one of the three existing distillation columns could be used as the RDC as 

the number of stages match. The reactive stages would be packed with catalyst.  Another 

advantage of process intensification is that the RDC configurations achieve a higher 

purity product (99.9% MeCl), compared to the base case of 96% purity. 

3.2 Application of DWC (replacement of base case) 

The feasibility of the application of a DWC is highlighted considering a simpler version 

of the separation problem (Tamuzi et al., 2020), where a 6-compound hydrocarbon 

mixture consisting of C2, C3, iC4, nC4, C5+ is considered. There are 5 products, 

consisting of C2, C3, iC4, n-C4, C5+ and separation by distillation trains require a 

minimum of 4 columns corresponding to four separation tasks represented by splits of 

C2/C3, C3/i-C4, i-C4/n-C4 & n-C4/C5+. The answers to the rules from Table 1 are yes, 

and so any two of adjacent columns of the distillation train can be intensified into a DWC. 

Four possible configurations are feasible and the best is shown in Figure 3. All columns 

are designed by the reverse driving force based method in terms of sequence of the splits 

(separation task), the number of stages, feed location and product purities. Note that these 

are the minimum design variables that need to be specified to determine all other variables 

by simulation. Further reductions in energy could be achieved by adding separation units, 

as highlighted in Figure 3, in hybrid distillation schemes (described in section 3.3).  

 
Figure 3: Flowsheet of a separation process with a DWC. 

In Figure 3, the first two columns for the C2/C3 and C3/i-C4 splits are combined into one 

DWC. Membrane unit M2 purifies the distillate (top) product from DWC1-2 and M4 

purifies the distillate top product from column C-4 by removing the high boiling 

compounds from their respective feed streams. Membrane unit M2-3 on the other hand, 

removes the low boiling compound from its feed stream. In all cases, the compound 

present in the smaller amount is removed, making the membrane unit feasible in terms of 

flux limitations and membrane area needed for the separation. It is able to reduce the 

energy consumption by around 45.32% compared to the optimized 4-column 

configuration. Other DWC combinations, such as two DWC (DWC1-2 and DWC 3-4; 

C1, DWC2-3, C4; C1, C2, DWC3-4, with or without membrane units, give lower 

reductions in energy consumptions. 

3.3. Application of HDS (retrofit of base case) 

In principle, any distillation column (also RDC and DWC) can be considered for HDS if 

the rules given in Table 1 give “yes” answers. Then, for the identified column (separation 
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task), the work-flow involves selection of the operating pressure to determine the driving 

force and its maximum location for the binary pair of compounds defined as a key 

compound for the separation task. Next, for a column with fixed number of stages and 

feed location, simulation-based data is generated to obtain plots of reboiler duty versus 

distillate product purity as a function of driving force (O’Connell et al., 2019). Next, the 

Qcut-off (the reboiler duty corresponding to a lower product purity) and Qdesired (reboiler 

duty corresponding to the target high purity product) are located on the reboiler duty 

versus distillate purity plot and used to determine the likely energy savings, Qsavings:   

𝑄𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = (
𝑄𝑑𝑒𝑠𝑖𝑟𝑒𝑑  – 𝑄𝑐𝑢𝑡−𝑜𝑓𝑓

𝑄𝑑𝑒𝑠𝑖𝑟𝑒𝑑

) ∗ 100  (1) 

If this value is > 20%, an HDS would be feasible, provided a separation technique for the 

further purification separation task can be found. For example, find a suitable membrane 

for a membrane-based separation. The synthesis-design of an HDS represents step-3 of 

the 3-step method. A typical HDS problem could be defined as: 

Given - a mixture to be separated into two or more almost pure compounds; Required - 

design an appropriate hybrid distillation scheme that can deliver the specified products at 

lower energy consumption than a single distillation operation. 

The work-flow for the above problem solution is given by O’Connell et al. (2019) and 

available in the ProCAFD software (Tula et al., 2017b), which provides options for fast 

and reliable separation process design, including hybrid separation schemes for 

azeotropic as well as non-azeotropic mixtures. In this paper, some of the applicability 

issues are highlighted. Table 2 lists different distillation columns that have been 

retrofitted (based on their reported designs) to more sustainable HDS and verified through 

steady state simulation with AVEVA PRO/II (AVEVA, 2021).   

Table 2: Hybrid distillation schemes reported in published papers 

Problem Mixture compounds Energy saved Reference 

1 i-butane + n-butane* 44.4% 14 

2 i-pentane + n-pentane* 37.6% 14 

3 Methanol + water* 34.5% 14 

4 2,2 dimethyl butane + n-hexane 25-45% 4 

5 Styrene + ethylbenzene 25-45% 4 

6 Benzene + cyclohexane* 42.5% 15 

7 Acetonitrile + water 38.5 15 

* One separation task in a multicomponent separation process or a multi-operation process 

As an example, consider problem 1 in Table 2 (also, column C-4 in Fig 3). Using the data 

reported by Tula et al. (2017b), the available driving force for i-butane and n-butane is 

computed to be 0.095. From the corresponding reboiler duty versus distillate product 

purity, potential energy savings is calculated to be 44% (with Qdesired as 32.33 GJ/hr and 

Qcutoff as 17.98 GJ/hr). The distillate cut-off composition is 85.0% and the specified 

distillate purity is selected as 99.5%. The HDS for this mixture is shown in Fig 3 (column 

C-4). A membrane with permeabilities of 0.2196 kmole/(m2 hr) for n-butane and 0.0008 

kmole/(m2 hr) for i-butane is available in the database. This gives a required membrane 

area of 109.24 m2. Using a membrane cost of 2500 Euro/m2, the additional CAPEX is 

calculated to be 273,100 Euro. Savings in energy costs is calculated to 114.1 Euro/hr, 

giving a payback time of 0.27 years. Details of this solution can be found in Tula et al. 

(2017b). Considering driving force values ranging from 0.085 to 0.095, with the lower 

value indicating actual column data, a range of energy savings data can be generated.  

          Rule-based Method for Retrofitting Conventional Processes with
Integrated Units
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4. Conclusion 

The intensification and integration options considered in this paper confirm their potential 

in terms of tackling the energy-environment nexus. The large number of energy intensive 

chemical processes and within them, distillation operations, should be targeted for 

improvement in terms of energy and environment where the additional investment could 

be recovered from the additional profit, without negatively impacting the environment. It 

should be noted that while the operations of some chemical processes are energy 

intensive, others are sensitive to environmental impacts but not energy intensive. 

Therefore, targeted improvements must address both these issues. The proposed rules and 

the three steps method are able to quickly identify the candidates for improvement, and 

opportunities for new advances in methods and associated tools to tackle the challenges. 

In this way, they add an intelligence feature to the current design methods. Current and 

future work is expanding the rules-based feasibility analysis as well as creating a database 

of solved problems that can serve as repository of knowledge and data to share with the 

community. The rules also need to be updated to avoid exceptions. 
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Abstract

Conventionally, many approaches for process design are based on steady-state assump-
tions. Only in the last two decades, dynamic aspects have also been considered, but frame-
works for large-scale systems are still scarce. Recently, we introduced our framework of
a fully discretized dynamic model in combination with an optimal economic NMPC. In
this contribution, we apply this framework on the CO2-based methanol synthesis, which
represents a large-scale case study of 50,000 continuous variables for a time horizon of
around 1 h. Feed variability is modeled by an amplitude-modulated pseudo-random bi-
nary sequence to gain as much information on the dynamics as possible.

Keywords: Integration of Design and Operation, Methanol Synthesis, Economic NMPC.

1. Introduction

Process design is a fundamental aspect of process systems engineering. The design must
ensure that all requirements regarding product purities are met. Additional constraints for
process parameters, e.g., due to safety concerns, must hold as well. Conventionally, pro-
cess design and control design are performed sequentially or as an iterative process (Seider
et al., 2017). However, this approach may lead to dynamic constraint violations, hinder ro-
bust performance, or simply reduce the controllability of a process during plant operation
(Malcolm et al., 2007). Therefore, performing these two subsequent tasks simultaneously
by integration of design and operation (IDO) is highly desirable. The most common ap-
proaches have been summarized in several reviews, for example, by Vega et al. (2014).
Previously, we suggested using the objective function of an economic nonlinear model-
predictive controller (eNMPC) to account for the connection of economics and variability
(Hoffmann et al., 2019). We also studied how parametric uncertainty can be included by
using the Unscented Transform (Hoffmann et al., 2020). In this contribution, we apply
our framework on a considerably larger example: the CO2-based methanol synthesis. In
the next section, we describe our IDO-eNMPC framework. Afterward, we outline the dy-
namic process model of the case study. Finally, we present the results obtained with our
framework and analyze them regarding their merit.

2. Framework

The mathematical structure of the IDO framework is given in Equation (1): An objective
function that includes both investment and operating costs is minimized subject to equal-
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ity and inequality constraints. The constraints are functions of states x, controls u, input
variabilities ν, parameters θ, and design variables d (for example, the volume of equip-
ment). In addition, constraints determining the initial states (subscript 0) and terminal
states (subscript t) are necessary. In the framework, all equations are fully discretized us-
ing orthogonal collocation on finite elements. The indices represent the collocation point
cp and the finite element fe . States and controls must also lie within a certain domain X
and U , respectively:

min
u, d

f (xcp,fe, ucp,fe, d) (1a)

s.t. 0 = g (xcp,fe, ucp,fe, νcp,fe, θ, d) (Dynamic process model), (1b)
0 ≤ h (xcp,fe, ucp,fe, νcp,fe, θ, d) (Path constraints), (1c)
0 ≤ h0 (x0, u0, ν0, θ, d) (Initial constraints), (1d)
0 ≤ ht (xt, ut, νt, θ, d) (Initial constraints), (1e)
xcp,fe ∈ X , ucp,fe ∈ U (Domain) (1f)

The input variability is represented by amplitude-modulated pseudo-random binary se-
quences (APRBS), a signal type that allows for high information gain and that is suitable
for nonlinear systems (Nelles, 2001).

3. Model

The dynamic process model is based on the flowsheet in Figure 1. The feed gas (CO2 and
H2) is compressed, potentially heated to reactor inlet temperature, and passes the fixed-
bed reactor to form methanol and water. The products are condensed whereas the gases
are re-compressed and recycled to the reactor. In the tank, liquid methanol and water are
stored and the product stream is withdrawn.

3.1. Balance equations

The model consists of a two-dimensional (time and axial) model of reactor with dynamic
mole, energy, and momentum balances (only the mole balance is shown here due to space
limitations):

εcat ·
∂cc
∂t

= −cc
∂w

∂z
+ w

∂cc
∂z

+ (1− εcat) · ρcat ·
∑
r

νc,rrr (2)

Therein, εcat is bed porosity, cc is molar concentration of component c, w is velocity, ρcat
is catalyst density, νc,r and rr are stoichiometric coefficient and reaction rate, respectively.
Here, the reaction kinetics by Slotboom et al. (2020) are used. The tank consists of dy-
namic mole balances. Heat exchangers and compressors are modeled under steady-state
assumptions.

3.2. Cost functions

The cost of the equipment is determined from cost functions with degression exponent n:

C = Cref

(
cap

capref

)n

. (3)
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Therein, C and Cref are costs at capacity cap and reference capacity capref , respectively.
Operating costs are computed by multiplying the electricity or product costs with the inte-
gral mean of the respective material or energy stream.

3.3. Initial conditions

During the model formulation and first attempts to solve the system, it became clear that
the large number of unfixed initial conditions in a spatially distributed system, i. e., the re-
actor, causes an additional challenge. If these are not assigned consistently by any method,
the optimizer may choose huge initial concentrations of the product and thus artificially
maximize the product yield. This cannot be resolved by simply bounding the initial con-
ditions as they should also represent are realistic concentration, temperature, and velocity
profiles. Also, fixing the initial conditions to an arbitrary value is impossible because
they are inherently related to the design, which will change during the iterations. For this
reason, a steady-state version of the model is also incorporated into the model, which is
solved simultaneously with the dynamic model. The steady-state sub-model provides the
initial conditions for the dynamic case, but it will also still depend on the same design
variables.

Figure 1: Flowsheet for the case study.

3.4. Path constraints

Several path constraints are required
to ensure a stable behavior: First,
the temperature must always remain
below 260 °C to avoid catalyst deac-
tivation – this temperature is higher
in reality; the value was chosen to
achieve an active bound at the op-
timal solution. Second, stability
must be ensured so that concentra-
tion profiles do not drift over time.
This is achieved by demanding that
the terminal states match the initial
condition within a certain thresh-
old. This is not required for every
state of the model, but for key vari-
ables, such as the inlet pressure and
temperature of the reactor, and the
holdup of the tank, for example:

|HUtank(t = 0)−HUtank(t = tt)| ≤ εtank (4)

This ensures the stability of the obtained trajectories under the respective input variabil-
ity. In addition, the integral average of the produced flow should be close to the nominal
product flow to achieve production goals:∣∣∣∣ 1tt

∫ t=tt

t=0

Fprod(t) dt− Fprod,st−st

∣∣∣∣ ≤ εprod (5)
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The integral is evaluated with Radau quadrature using the same Radau collocation points
as in the discretization scheme. In addition, the change between consecutive values of the
same variable can be restricted, for example, the reactor’s feed pressure:

|Preactor(t = tk)− Preactor(t = tk+1)| ≤ εpressure (6)

3.5. Implementation and framework

The resulting partial differential equation system is discretized via orthogonal colloca-
tion in both the spatial coordinate of the reactor and the time coordinate. 20 spatial finite
elements were chosen in preliminary trials. The number of finite elements for the time co-
ordinate can be chosen freely. The system roughly scales to 50,000 variables per 10 finite
elements in time. The model is formulated within AMPL (Fourer et al., 2003) and inter-
faced to Python via AMPLPy. AMPL is chosen because it allows the use of sets for model
generation, includes a powerful tool for automatic differentiation to generate derivatives,
and disposes of interfaces to many solvers. The external layer in Python provides the data
(parameter and variable values), performs the initialization, manages loops and saves the
results.

4. Results and discussion

In this contribution, both CO2 and H2 feed are assumed to be variable inputs νcp,fe that
are represented by two APRBS, which means that their values at each collocation point
are given by the APRBS. Both are assumed to have a standard deviation of the variability
range of 20 mol s−1. The APRBS are generated by our own sampling framework (Weigert
et al., 2020).

4.1. Initialization

Even if the model is initialized at steady-state, an initialization strategy is required to solve
Problem (1). For this purpose, an homotopy approach is taken so that the current input
depends on an homotopy parameter φ:

Fst=1,c = φ · FAPRBS
st=1,c + (1− φ) · F nominal

st=1,c (7)

Hence, Problem (1) is solved repeatedly with increasing φ from 0.1 to 1. In our experience,
an increase of 0.1 per step suffices to converge the system. Should this not be the case, the
step size can be made smaller.

4.2. Comparison of steady-state and dynamic results

The results obtained with the framework are compared to results obtained under steady-
state conditions only. Exemplary numerical values for design decision are given in Table 1.
In both cases, the tube diameter lies at the lower bound. The reactor inlet pressure is lower
in the dynamically obtained design (lower costs for feed compression) whereas the inlet
temperature is higher (faster kinetics) that are necessary in cases where the stoichiometry
might no be ideal occasionally. The reactor length is significantly shorter in the dynamic
case, which is compensated by higher recycle ratios and thus results in a larger energy
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Table 1: Comparison of design based on steady-state and dynamic consideration. Results
under dynamic conditions are average values or are given in ranges. Lower (LB) and upper
bounds (UB) during the optimization are given if applicable.

Design variable / operating condition LB UB Steady-state Dynamic

Average feed compressor power, MW 0 – 12.7 11.1
Average reactor inlet pressure, bar 30 100 60 50
Reactor inlet temperature, K 273 – 320 384 – 426
Reactor length, m 0 – 5.3 2.6
Tube diameter, m 0.05 – 0.05 0.05
Number of tubes 10 – 14,400 25,600
Condenser area, m2 0 – 1740 1200
Recycle compressor, MW 0 – 2.8 4.2
Recycle ratio 1.0 – 4.4 2.6 – 8.6
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Figure 2: Comparison of axial temperature profiles at different times and the steady-state
temperature profile.

consumption of the recycle compressor. Figure 2 shows a comparison between the steady-
state temperature profile (long reactor) and the dynamic, axial temperatures for different
times. For both profiles, the upper bound is never violated. In the case of the dynamic
optimization, this is, however, only possible because the design has notably changed.

4.3. Computational times

The computations were performed on an Intel® Core™ i7-4770K CPU @ 3.50GHz running
Ubuntu 18.04.6. AMPL version 20210326 in combination with IPOPT 3.12.6 was used
to formulate and solve the optimization problems. Because a steady-state solution and a
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dynamic solution are looked at here, it is not a fair comparison in terms of the required
computational time. However, the reader may get an impression of how the computational
time scales with the system’s size. The steady-state solution is usually obtained within
a few seconds. This may vary with the quality of the initialization. The dynamic solu-
tion, which is always initialized at the steady-state solution, may require several days of
computations. However, this is still deemed acceptable for design problems, which typ-
ical do not require the rapid solution that is demanded from online applications, such as
model-predictive control.

5. Conclusion and outlook

This contribution applied a methodology for the integration of design and operation on a
large-scale system. The results were obtained by full discretization of the dynamic pro-
cess model with subsequent solution of the resulting nonlinear programming problem.
We compared the obtained results with those obtained by a steady-state optimization and
found significant differences in the design, e.g., the reactor length, which would justify
to consider the dynamics during process design. However, the length of the time horizon
might have significant impact on the results. Therefore, this must be investigated in the
future.
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Abstract 

Syngas is an important intermediate feedstock to produce various downstream 

chemicals and clean fuels. In this study, two process models are developed by 

integrating the gasification and dry-reforming models in the parallel and series 

configuration to produce the syngas at the rate of 10,000 kmol/h with H2/CO ratio of 2. 

The heat integration is also developed in a way to utilize the heat energy from the coal-

derived syngas into the dry-reformer without any energy penalties. The proposed 

integrated designs can enable the utilization of fossil fuels in an environment friendly, 

technically feasible and an economical way.  

Keywords: Integration; carbon capture and utilization; simulation; syngas. 

1. Introduction 

Synthesis gas commonly known as “syngas” is an important component for the 

synthesis of chemicals and fuels. It drives many industrial facilities including power 

generation, fertilizers, polymers, and production of bulk chemicals. Depending on the 

feedstock, oxidizing agent, desired syngas ratio and downstream application, multiple 

syngas production technologies exist. Gasification and reforming are the most 

commonly employed commercial technologies for the syngas production (Medrano-

García et al., 2018). Generally, gasification is used for the solid feed stocks such as coal, 

coke, and biomass while reforming is the preferred process for the gaseous and liquid 

feed stocks. While coal is still the primary source of energy for many countries, coal 

based processes are usually associated with high carbon emissions (Alibrahim et al., 

2019).  

Reforming technologies may employ steam (in steam reforming), oxygen (partial 

oxidation reforming) or carbon dioxide (dry reforming) as the oxidant depending on the 

type of reforming process. Steam reforming (SR) and dry reforming (DR) are 

endothermic processes while partial oxidation (POX) of hydrocarbon is an exothermic 

process. Recently, a great attention has been given, particularly in the process and 

catalyst development, to the DR processes (Alenazey et al., 2021; Alibrahim et al., 

2021). This is due to the fact that the DR consumes two major greenhouse gases in 

which methane or other higher hydrocarbons along with carbon dioxide can be 
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converted to the syngas (Afzal et al., 2018). However, the commercialization of DR 

based processes have been hindered due to certain process limitations. The main 

problematic aspect of the DR technology is the deactivation of active catalyst surface 

due to carbon deposition at high temperature, along with high energy demand for the 

endothermic reactive system, low syngas ratio and equilibrium limitation due to the 

influence of reverse water gas shift reaction (RWGS). Elbashir et al. (Elbashir et al., 

2018) reported that the operational limitations of DR process can be overcome by 

combining the DR with other reforming process such as SR and POX. Similarly, Man et 

al. (Man et al., 2014) studied the integration of SR, DR and gasification processes by 

utilizing the coke-oven gas for the coal-to-olefins (CTO) process. Their results showed 

that the coke-oven gas assisted process with the coal gasification improves the process 

efficiency by 10% compared to the conventional CTO process. Several studies in the 

past have focused on the integration of various reforming and gasification technologies 

in order to combine the synergies and suppress the imperfection of one technology to 

another (Balasubramanian et al., 2018; Carapellucci and Giordano, 2020; Summa et al., 

2019; Wang et al., 2020). Qian et al. (Qian et al., 2015) evaluated the utilization of CO2 

supply from WGS reactor in the tri-reforming for the coal-to-methanol (CTM) process. 

They reported a decrease in the carbon emissions by 44% and an improvement of 

carbon utilization by 25% compared to the conventional CTM process. Chen et at. 

(Chen et al., 2019) investigated the integration of conventional coal gasification and 

coke-gasification processes to produce methanol product. They showed the integrated 

design to have 14.3% higher carbon utilization efficiency and 34.6% reduced carbon 

emissions compared to the conventional CTM process.  

The goal of this work is to develop the conceptual design based on the process 

intensification techniques that can produce the syngas of varied composition by the 

integration of gasification and DR processes. The combination of an endothermic and 

exothermic processes for energy-effective utilization offers lower exergy destruction. 

The proposed designs offer an improved performance in terms of energy requirement, 

carbon emissions and cost due to the process intensification and synergies coupling. 

First, standalone simulation models are developed for the coal gasification and DR 

respectively to assess the performance in terms of efficiency and syngas quality. Then, 

two integrated process designs are proposed with series and parallel integration between 

gasification and DR process. In order to have a fair comparison among various designs, 

the syngas production capacity is set as 10,000 kmol/hr with a syngas ratio (H2:CO) of 2 

which is suitable for many downstream applications. Finally, a detailed techno-

economic analysis has been performed in order to ascertain the performance and 

economic feasibility of the proposed designs. 

2. Process description 

2.1. Series integration 

In the case of gasification and DR series integration, coal preparation and gasification 

units are similar to that of the standalone gasification process. However, the gas 

cleaning unit only contains H2S removal system while the CO2 removal unit is 

employed in the WGS unit after the shift reactors as shown in the figure 1. An important 

aspect of this design is the heat integration between the gasification and the reforming 

reactor. All the heat duty required by the DR reactor has been provided from the 

gasification reactor, hence making the net heat duty of the DR reactor zero. The DR unit 

is placed downstream of H2S removal unit where it receives a bulk of gas mixture 
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mainly containing syngas and CO2. Given that H2/CO ratio is below unity after coal 

gasification, high water-gas shift rate is expected. The CO2 captured from the WGS 

section is sent back to the DR section as a feed to react with freshly fed methane. The 

syngas ratio at the exit of dry reforming process is 0.822 which is low compared to the 

target syngas ratio of 2. Therefore, a part of raw syngas stream is sent to the WGS unit 

where 99.6 % CO conversion is achieved. Rectisol process is used to capture the 99.7 

mol. % CO2 while the high purity H2 is blended with the bypassed syngas to achieve the 

desired product syngas.  

 

Figure 1. Series design integration of gasification and dry reforming for syngas 

production 

2.2. Parallel integration 

In the case of parallel integrated design, the coal preparation and gasification sections 

are the same as that of the standalone gasification process. The gas cleaning unit has 

H2S removal and CO2 removal sections employing the Rectisol process. The captured 

high purity (99.7 mol.%) CO2 stream is sent to the dry reforming unit which is in 

parallel configuration with the gasification process. The raw syngas from the outlet of 

gas cleaning unit has a H2 to CO ratio of 0.76 which is lower than the required syngas 

ratio of 2. Therefore, a part of the raw syngas is directed to the WGS unit in order to 

convert CO to H2, while the remaining syngas bypasses the WGS unit. Design Spec 

function in Aspen Plus has been utilized to vary the split fraction in order to achieve the 

desired product syngas ratio. Since the syngas coming from the gasification and dry 

reforming sections is deficient in H2 content, the Design Spec function calculates the 

amount of syngas that should be directed to the WGS, while the remaining syngas is 

bypassed. The second CO2 capture unit is installed in the WGS unit to separate the 

produced CO2 from the CO which is sent back to the DR unit. The bypassed syngas, 

syngas from the DR and high purity H2 from the WGS are then mixed to produce the 

desired product syngas. Similar to the series integrated design, the parallel integration 

provides all the required DR heat duty from the gasification section as shown in the 

figure 2.  

In this study, two cases (series and parallel) are demonstrated for the syngas production 

rate of 10,000 kmol/h with a H2/CO ratio of 2. However, the proposed designs are 

flexible in terms of changing the quantity and/or quality of the product syngas. The feed 

coal and natural gas flowrates can be adjusted for a desired production rate of syngas in 

a way that the reformer net duty remains zero. Similarly, the quality of the syngas can 

be adjusted by changing the split fraction upstream of the WGS unit. However, it should 

be noted that any such change will affect the overall carbon utilization and emissions 

from the process. 
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Figure 2. Parallel design integration of gasification and dry reforming for syngas 

production 

3. Results 

3.1. Energy analysis 

Figure 3 shows the total energy requirement in terms of utilities for the four cases for 

the syngas production of 10,000 kmol/h with H2 to CO ratio of 2. The results show that 

in the case of standalone DR, more than 62.8 % of the total energy requirement is in the 

form of heating. In the case of standalone gasification, both the heating and cooling 

requirements contributes significantly to the total energy demand. On the other hand, 

approximately 43.25 MW of net power is generated from the steam cycle. The 

electricity demand for the standalone DR process is the highest among all the designs. 

Since, the delivery pressure of the product syngas is set at 28 bar, the syngas produced 

from the DR process at 4 bar needs to be compressed to 28 bar requiring a three-stage 

compression train. The electrical energy consumed by the 3-stage compressor is 28.2 

MW which is significantly higher than the pumping requirement of the gasification 

process. The integration of coal gasification and DR shows considerable reduction in 

the total energy input as shown in figure 3. The results show that the integrated designs 

reduce the heating requirement by 52.4% and 61.8% for the series and parallel designs 

respectively compared to the standalone DR. Figure 4 shows the breakdown of the total 

energy requirement for each section of the four cases. The reformer is the largest energy 

consumer in the case of standalone DR process requiring around 46.5% of the total 

energy. By performing an integration between the gasification and DR, the reformer 

duty is completely removed by supplying the required heat from the gasification. The 

net heat supplied from the gasification reactor in the series and parallel integration is 

equivalent to 82.16 MW and 81.92 MW respectively. Since, all the cases are designed 

for the production of an equimolar flowrate, the amount of feeds in the integrated design 

is considerably reduced compared to the standalone gasification case. The result reveals 

that an integrated design requires 45.2% and 54% less coal and natural gas feed rates 

respectively, compared to the standalone gasification and DR process.  

3.2. Economic analysis 

The analyses performed in the previous section clearly shows the technical feasibility 

for the design integration between the gasification and DR process. The results revealed 

a positive impact on the overall process performance in terms of carbon emissions and 

energy requirements for the series and parallel integrations. This section explores the 

economic viability of the integrated designs compared with the standalone gasification 

and DR process. A detailed economic analysis has been performed to calculate the fixed 
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capital and operating costs. Aspen Economic Analyzer has been used to perform the 

sizing and capital cost estimation of the equipment.  
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Figure 3. Utility-wise energy consumption 

for the standalone and integrated designs 

Figure 4. Section wise energy 

consumption for the standalone and 

integrated designs 

The result shows that the series design has the highest total capital cost while the 

parallel design offers the lowest capital cost. The high capital cost of series design is 

due to the series integration of the gasification and DR processes which resulted in the 

large equipment size. The results also reveal that the direct cost is in the range of 55 – 

63% of the total capital cost. The operating cost calculation includes the raw materials, 

utilities, labor and supervisory costs, maintenance and general and administrative costs. 

The integrated series design offers the TAC of 100.4 M$ which is 16% higher than the 

integrated parallel design cost. The economic analysis shows that the series design is 

cost competitive with the standalone DR design. Since all the designs produce the same 

amount of syngas, per unit cost of syngas for the integrated designs is lower compared 

to the standalone designs as shown in figure 5. 

4. Conclusions 

In this study, two integrated models are proposed to produce 10,000 kmol/h of syngas 

with a H2/CO ratio of 2 delivered at a pressure of 28 bar. The integrated designs 

eliminate the energy requirement of dry reformer by supplying the heat energy from the 

gasifier. The total energy requirement for series and parallel design is 202 and 162 MW 

respectively, compared to 424.3 MW energy requirement for the standalone DR 

process. The low energy requirement by the integrated designs is reflected in terms of 

high process efficiency of 83.63 % and 86.66 % for the series and parallel designs, 

respectively. The economic analysis shows that the raw materials cost has the highest 

share in the TAC for all the designs. Parallel design requires less CAPEX and OPEX of 

17.7 M$ and 12.2 M$/y respectively compared to the series design. Among all the 

designs (standalone and integrated), parallel offers the lowest TAC of 86.4 M$/y which 

translates into unit product cost of $ 0.99. 

Blue syngas synthesis via the integration of gasification and reforming 
processes
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Figure 5. TAC and product cost for the standalone and integrated designs 
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Abstract 
Carbon dioxide electroreduction (ECO2R) is gaining attention due to its capacity to 
mitigate CO2 emissions while using electricity that would otherwise be curtailed. Its 
foreseeable industrial implementation requires of holistic methods to assess the 
technological and economic performance of ECO2R processes and integrate them in 
current chemical supply chains and power systems.  
Here, we combine techno-economic assessment and mathematical programming to find 
the optimal paths to electroreduce CO2 into valuable chemicals under variable electricity 
prices. The proposed approach is tested with a case study addressing the CO2 capture 
from flue gas or direct air and its electricity-powered reduction into carbon monoxide, 
formic acid or multi-carbon compounds. The results obtained demonstrate the ability of 
the framework to build ECO2R networks and provide operation profiles that respond to 
fluctuating electricity prices. 
 

Keywords: electroreduction, carbon dioxide, techno-economic assessment, 
superstructure, optimization. 

1. Introduction 
The electroreduction of carbon dioxide (ECO2R) can play a pivotal role in the transition 
to carbon-free chemicals. Catalyst and reactor design have led to an interesting range of 
electrosynthesized chemicals from single-carbon syngas and formic acid to multi-carbon 
commodities (e.g. ethylene, ethanol or propanol). However, the integration of these 
chemicals into the current market remains a challenge, mainly due to the electricity-
intensive nature of ECO2R. Renewably-powered ECO2R can lead not only to the 
mitigation of CO2 emissions, but also contribute to the use of electricity that would 
otherwise be curtailed. Conversely, techno-economic estimations show that under current 
electricity prices, the cost shares to power the electrolyzer can represent up to a 78% of 
the total cost (Somoza-Tornos et al., 2021). Thus, current research efforts should focus 
on scaling up the technology to industrially-relevant scales while integrating it with 
renewable energy systems in an economically viable manner.  

In this work, we present an optimization framework to assess the large-scale 
implementation of ECO2R and its integration with renewable energy systems based on 
process modeling, techno-economic assessment and network optimization. It is built upon 
previous experimental work on ECO2R (Ma et al., 2021); studies on the modeling and 
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assessment of CCU and ECO2R (Jouny et al., 2018; Orella et al., 2019; Roh et al., 2020; 
Shin et al., 2021; Sisler et al., 2021; Zimmermann et al., 2020), hybrid fossil- and CO2-
based routes (Ioannou et al., 2020) and supply chain optimization of carbon utilization 
processes (Leonzio et al., 2020; Zhang et al., 2020).  

2. Modeling and techno-economic assessment of ECO2R processes 
One of the main challenges of assessing the implementation of emerging ECO2R is the 
accurate evaluation of the costs that the technology will entail in short to mid-term time 
frames, when it is expected to be operated at industrial scales. To increase the accuracy 
of existing ECO2R techno-economic models, our framework includes a rigorous 
calculation of the mass balances of the systems under study, leading to better separation 
cost estimations. That is done through the calculation of the cell outlets based on the cell 
design and reaction mechanisms. Eq. 1, for instance, represents the global mass balance 
of the electrolyzer cell.  

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖 (𝑔𝑔𝑔𝑔𝑔𝑔) + 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖𝑖𝑖 (𝑎𝑎𝑎𝑎) = 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜 (𝑔𝑔𝑔𝑔𝑔𝑔) + 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑜𝑜𝑜𝑜𝑜𝑜 (𝑎𝑎𝑎𝑎) + 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑜𝑜𝑜𝑜𝑜𝑜 (𝑔𝑔𝑔𝑔𝑔𝑔)  (1) 

The flows and compositions of the industrial-scale electrolyzer are later used in the 
techno-economic assessment to evaluate the unitary capital and non-energy operational 
costs, as well as the electricity and heat requirements. This data is then used as inputs for 
the optimization model in the next section.  

3. Optimization model 
In this section, the network optimization model for the combined design and operation of 
ECO2R systems is formally defined.  
3.1. Problem statement 
The problem addressed can be stated as follows: given are a set of CO2 emissions sources 
(i.e. flue gas or air) and a set of technologies that enable the electricity-powered 
transformation of these emissions into valuable products (i.e. point source capture, direct 
air capture, and electroreduction of CO2 and CO into chemicals including product 
purification) with their corresponding data on performance, cost and energy consumption. 
Given is also a yearly profile with hourly detail of electricity prices and other relevant 
economic parameters. Our goal is to find the optimal paths to best utilize CO2 by its 
upcycling into commodity chemicals, tackling both design capacities and their operation 
according to fluctuating prices.  

The elements of the network are represented through a superstructure, that provides all 
the paths to go from CO2 emissions to carbon sinks, allowing for one and two-step 
electrosynthesis of products.  

3.2. Mathematical formulation 
The problem is formulated as a mixed-integer linear program (MILP) where the main 
variables are the capacity of technology j built (𝐶𝐶𝑗𝑗) and its operational level at time period 
t (𝑂𝑂𝑗𝑗𝑗𝑗). The objective function to be minimized is the total cost (Eq. 2) including the capex 
and non-energy opex (calculated through the parameters for the unitary capex 𝛾𝛾𝑗𝑗 and opex 
𝜎𝜎𝑗𝑗), the electricity consumption (where 𝜃𝜃𝑗𝑗 denotes the unitary electricity consumption of 
each technology and 𝜀𝜀𝑡𝑡 the cost of electricity for time period t) and the heating costs 
(likewise, with 𝜌𝜌𝑗𝑗 and 𝜏𝜏). Eq. 3 denotes the material balance for each compound i, 
including the CO2 sources utilized 𝑈𝑈𝑖𝑖𝑖𝑖, the transformation  ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑗𝑗 𝑂𝑂𝑗𝑗𝑗𝑗 (where 𝜇𝜇𝑖𝑖𝑖𝑖 is a 
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parameter linking the consumed and produced yields of compound i for each technology 
j) and the sales of final products 𝑃𝑃𝑖𝑖𝑖𝑖. Eqs. 4-7 represent the algebraic constraints to the 
decision variables: the set of demands of compounds i 𝛿𝛿𝑖𝑖 should be satisfied (Eq. 4) while 
not exceeding the available CO2 sources (Eq. 5); the capacity of each technology cannot 
exceed a maximum level which is based on feasible plant sizes (𝐶̅𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚) (Eq. 6); and the 
operation of each technology in each time period has to be below or equal to its capacity 
(Eq. 7).  

min𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =� 𝐶𝐶𝑗𝑗
𝑗𝑗

𝛾𝛾𝑗𝑗 + � 𝑂𝑂𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗

𝜎𝜎𝑗𝑗 + � 𝑂𝑂𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗

𝜃𝜃𝑗𝑗𝜀𝜀𝑡𝑡 + � 𝑂𝑂𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗

𝜌𝜌𝑗𝑗𝜏𝜏 

s.t. 

(2) 

𝑈𝑈𝑖𝑖𝑖𝑖 + � 𝜇𝜇𝑖𝑖𝑖𝑖
𝑗𝑗

𝑂𝑂𝑗𝑗𝑗𝑗 = 𝑃𝑃𝑖𝑖𝑖𝑖         ∀𝑖𝑖,∀𝑡𝑡 (3) 

� 𝑃𝑃𝑖𝑖𝑖𝑖
𝑡𝑡

≥ 𝛿𝛿𝑖𝑖           ∀𝑖𝑖 ∈ 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (4) 

� 𝑈𝑈𝑖𝑖𝑖𝑖
𝑡𝑡

≤ 𝜑𝜑𝑖𝑖           ∀𝑖𝑖 ∈ 𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (5) 

𝐶𝐶𝑗𝑗 ≤ 𝐶̅𝐶𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚              ∀𝑗𝑗 (6) 

𝑂𝑂𝑗𝑗𝑗𝑗 ≤ 𝐶𝐶𝑗𝑗             ∀𝑗𝑗,∀𝑡𝑡 (7) 

4. Case study 
To illustrate the capabilities of the model, we define a case study on the CO2 capture from 
flue gas or direct air and its electrically-powered reduction into carbon monoxide, formic 
acid or multi-carbon chemicals (including routes from CO2 and CO to evaluate the one-
step and two-step electrolysis).  

The costs for the economic models of CO2 capture from flue gas and direct air are 
retrieved from reports on their simulation and techno-economic assessment (James et al., 
2019; Keith et al., 2018) and the experimental results needed for the modelling and 
assessment of ECO2R technologies are gathered from diverse lab-scale contributions 
(Chen et al., 2020; J. Li et al., 2019; Y. C. Li et al., 2019; Ma et al., 2020; Wang et al., 
2020) identified at the review by Ma et al. (2021).  

As an illustrative example, flue gas from a natural gas power plant with a capacity of 
1,036 MW and annual CO2 emissions of 3.5 M tonnes (United States Environmental 
Protection Agency (EPA), 2021) is used as a flue gas source, together with an unlimited 
supply of air for direct air capture. The demands of one multi-carbon product (ethylene) 
and one single-carbon (formic acid) are also defined. A target on the demand of ethylene 
of a 10% of the maximum stoichiometric yield of that CO2 stream is used. And since the 
same assumption for formic acid would exceed the national yearly demand, the latter is 
assigned. The electricity prices profile chosen for the assessment is the hourly purchase 
prices for Texas in 2019, to avoid the effect of the 2020 Covid pandemic.  
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5. Results 
The model is implemented in GAMS and solved with CPLEX 20.1. The MILP involves 
307,489 continuous variables and 210,872 constraints and was solved in 42.2 CPUs on 
an Intel® Core™ i5-8250U processor operating at 1.60GHz. 

 
Figure 1. Hourly operation levels of the two selected technologies with respect to the electricity 

price profile. 

 
Figure 2. Production cost of the capture and ECO2R technologies resulting from the optimization. 

The three technologies selected to satisfy the demands of ethylene and formic acid are the 
CO2 capture from flue gas, the CO2 reduction into formic acid, and one of the routes for 
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the CO2 reduction into multi-carbon products (with mass yields of 54% ethylene, 27% 
acetic acid, 13% ethanol, 3% n-propanol and 3% hydrogen). Figure 1 shows the result for 
the optimal operation of the two ECO2R plants as a result of the variable electricity prices, 
with capacity factors of 85% for the formic acid production and 84% for the multi-carbon 
plant. The threshold for the electricity price that causes plant shutdowns for the present 
case is 49 USD/MWh. Figure 2 depicts the production cost breakdowns for the three 
resulting technologies. While the cost driver of the CO2 capture from flue gas is its capital 
costs (52.8%), electricity is the main driver of ECO2R processes (42% for the reduction 
into formic acid and 48% for the reduction into multi-carbon products).  

6. Conclusions 
The results obtained show that the model is a useful tool to identify the most promising 
routes to convert CO2 into valuable chemicals and its operative response to fluctuating 
electricity prices. Such methodology is valuable for the multiple actors involved in the 
mitigation of emissions and the alternative synthesis of chemicals: from private 
companies, who can identify the most economically promising processes; to 
policymakers, who can identify which routes should be incentivized to promote carbon 
capture and utilization. 

ECO2R-specific conclusions can also be drawn from the studied case. CO2 capture is 
preferred over direct air capture due to its higher cost-effectiveness. Also, one-step 
electrolysis is selected over the two-step route, since the higher efficiency of the latter 
does not compensate the higher capital expenses of two electrolyzers.  

Future work will address the assessment of the main sources of uncertainty at the 
electrolyzer operating parameters and the economic model and the integration of 
environmental criteria in the assessment.  
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Abstract 

The solid oxide electrolysis cell (SOEC) has been recognized as a promising technology 

for producing green hydrogen utilizing renewable energy. However, due to various 

degradation phenomena, the electrochemical performance of SOEC will deteriorate over 

time. This degradation leads to varying heat duty and inefficient operation. Based on 

previously reported durability test data, we simulate and optimize a SOEC system with a 

robust heat exchanger network to address the degradation issue. Overall, a 45.9% 

redundancy heat exchanger area is designed into the system, which leads to a levelized 

cost of hydrogen (LCOH) of 4.23 $/kg H2. The system efficiency is 77.4% initially but 

drops to 63.2% due to degradation. The vaporizer consumes the most energy in the heat 

exchanger network.  

Keywords: Solid oxide electrolysis cells; Potentiostatic; Degradation; System design. 

1. Introduction 

Climate neutrality is one of the most essential European policies today, and using green 

hydrogen is indispensable to achieve this goal (Espegren et al., 2021). Green hydrogen is 

produced from water electrolysis powered by solar or wind energy. Among various 

electrolysis technologies, the solid oxide electrolysis cell (SOEC) is the most promising 

in the future due to its high electrochemical efficiency compared to its low temperature 

competitors (Ebbesen et al., 2014). The SOEC is a multi-layer unit consist of fuel 

electrode, electrolyte, and oxygen electrode. Its efficiency is strongly impacted by the 

operating voltage, necessitating careful control. When SOEC operates at thermoneutral 

voltage (~1.285 V), it has near 100% stack efficiency as the Joule heat fully compensates 

for the heat demand of the endothermic electrolysis reaction. Operating the SOEC stacks 

at thermoneutral voltage makes it easier to manage heat balance because no extra heat is 

needed from or released to the system. It also reduces potential cell cracking caused by 

large temperature gradients and excessive thermal stress within the stack.  

Even though constant voltage operation has several advantages, it is not immune to the 

problem of cell degradation. The most likely causes for the cell degradation include 

formation of ZrO2 nano-particles in the fuel electrode, which deteriorates the active triple 

phase boundary, and O2 bubble formation in the electrolyte near electrode/electrolyte 

interface (Chen et al., 2013; Knibbe et al., 2010). Yang et al. recently reported a 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50123-8 
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potentiostatically operated SOEC durability test at thermoneutral voltage, which reveals 

the details of long-term cell degradation (Yang et al., 2021). As illustrated in Fig. 1, 

current density decreases dramatically over the first 300 hours and then stabilizes. 

Throughout the test, several unwanted interrupts and four load cycles occur, and the 

current density remains stable after each load cycle. This indicates that while SOEC 

degraded primarily during the initial stage, it is capable of remaining stable over time 

even when subjected to numerous load cycles. 

 
Fig. 1. Evolution of current density of an SOEC cell operated at 750oC and 1.29V for 

electrolysis of steam. Replotted based on the data reported by Yang et al., 2021. 

From a system perspective, a decrease in current density results in a decrease in H2 

production and a change in the heat capacity of downstream flow. For efficiency and 

safety reasons, such uncertainty must be factored into the design stage. Given that the 

installed plant's SOEC effective cell area and heat exchange area are fixed, it requires a 

robust system designed to address the degradation issue and ensure the system's 

appropriate operation throughout its life. However, by designing an oversized heat 

exchange network, the system can achieve robustness efficiently and cost-effectively. 

(Chin et al., 2020; Kemp and Lim, 2020).  

2. Process description 

This paper proposes a robust SOEC system modified after the original design (AlZahrani 

and Dincer, 2017) as shown in Fig. 2. The system process is simulated and optimized 

based on the SOEC durability test profile (Yang et al., 2021). Table 1 presents the results 

of the durability test, including the current density. While data from the entire test period 

was used in the simulation, only those at the most critical time are listed here. The initial 

condition is set to 0 h, and the stable condition is set to 943 h. Data at 244 h are used 

solely for comparison purposes. The designed power Pel,des is assumed to be 10 MW. As 

the stable region occupies most of the life cycle, the current density at the stable stage Jstb 

is used to estimate the cell area: 

 (1) 

During the test, the feedstock of the cathode is a mixture of 10% H2 and 90% H2O at 

800 °C. Cathode feed stock flow rate is determined by the initial current density at thermal 

neutral voltage. To be more precise, the water molar flow rate ncat,H2O is: 

 (2) 
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where Jini is initial current density, Acell is cell area, F is Faraday constant, and SCdes is 

design steam conversion ratio, which is 85%. The feedstock flowrate remains constant 

throughout the test period. Meanwhile, because of degradation, current density decreases, 

along with the actual steam conversion ratio SCreal and electrolyze power Pel,real: 

 (3) 

 (4) 

where Ji is current density at time i.  

 
Fig. 2. Process flowsheet of the SOEC hydrogen production system. 

Table 1. SOEC experiment profile from the durability test (Yang et al., 2021) and 

simulation respond at different time.  

Time, h Voltage, V T, °C J, A/cm2 ncat,H2O, mol/s SCreal, % Pel,real, MW 

0 1.29 800 1.54 109.1 85.0 24.3 

244 1.29 800 0.76 109.1 41.9 12.0 

943 1.29 800 0.64 109.1 35.0 10.0 

Before entering the SOEC at 800 °C, the water and air feedstocks are heated via a series 

of heat exchangers and an electric heater. Five of these heat exchangers (E-101~E-105) 

are configured for heat recovery. Given the current density deterioration, the optimal 

exchanger area will also shift over time. To get the optimal heat exchanger area, the 

temperature boundary of these five heat exchangers is optimized as a nonlinear 

constrained programme. The constraints include the mass and energy balance and the 

minimal temperature difference in the heat exchanger. The objective function is the total 

heat exchanger area. Then, for each heat exchanger, the design with the largest optimal 

exchange area over its life is chosen. Finally, the temperature settings in simulation are 

revoked, and the final oversized heat exchange areas are specified. Even though this 

increases the cost, it assures the system continues to run reliably over its entire life.  
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Besides the heat exchangers that improve robustness, the system involves other 

components such as evaporators, pre-heater, compressor, blower, and pump. The 

evaporator E-106 is an electric heater that vaporizes liquid water into steam. E-107 and 

E-108 are electric pre-heaters that ensure cathode and anode feedstock temperatures reach 

800 °C. Anode product (O2 rich air) is emitted into the environment after cooling down 

to room temperature by E-110. Considering the cost of purification, O2 is inappropriate 

for separation and storage. Meanwhile, high commercial value product H2 is treated 

another way. After being cooled by E-109, the cathode product is separated by a flash 

into two phases: the vapor and the liquid phase. The vapor phase is a mixture of H2O and 

98.2% H2, which required a further purification by PSA. Liquid water from the flash and 

PSA are mixed with the makeup water before being fed to the system. A portion of the 

vapor phase from flash is heated and recycled to dilute the cathode feedstock to 90% H2O.  

3. Result and discussion 

In this paper, a 10 MW SOEC system for hydrogen production is simulated in Aspen 

Hysys. Pinch analyses are evaluated in Aspen Energy Analyser. The optimization of the 

heat exchanger network is calculated in MATLAB. Optimal temperature set up and 

oversized UA is introduced from MATLAB into Aspen Hysys via COM interface 

following Hysys Customization Guide (AspenTech, 2011).  

The grand composite curve of the SOEC system at both initial and steady stage are 

compared in Fig. 3. In both cases, the SOEC is operated in potentiostatic mode at thermal 

neutral voltage. As illustrated, water vaporization is the most energy intensive part in the 

heat exchanger network. The electricity consumption of vaporization accounts for 29.5% 

of the total system electricity consumption, while SOEC accounts for 67.0%. Apart from 

improving the efficiency of the SOEC stack, another way to save energy in this system is 

to rely on a cheap vaporization approach. The operation cost would be reduced if a less 

expensive heat source that can vaporize the water is available, such as abundant heat from 

fuel synthesis (Wang et al., 2018). To separate the water and hydrogen, the cathode 

product must be cooled to room temperature. Condensation cooling demand increases 

over time as the steam conversion ratio decreases and more water stays in the cathode 

product.  

 
Fig. 3. Grand composite curve of the SOEC system in each degradation stage.  

Due to degradation, both the composition and the heat capacity of the cathode product 

change, resulting in a variation in heat recovery duty, as well as a different optimal 

exchanger area for heat recovery. The varying optimal exchange areas of five heat 

recovery heaters (E-101~E-105) are depicted in Fig. 4. For example, the overall heat 
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transfer coefficient (UA) of E-101 and E-103 decreased by 28.7%  and 35.9% , 

respectively. Also, not all heat exchanger areas need to be reduced with degradation. At 

244 hours, the optimal UA of E-102 is 4.09 kJ/ ° C/ h, but it is only 1.84 kJ/ ° C/ h at the start. 

This emphasizes the necessity of doing detailed robust heat exchanger network design as 

feasible for all stages of SOEC performance.  

 
Fig. 4. Overall heat transfer coefficient (UA) of the heat exchangers at each time. 

System efficiency (LHV) of the system is shown below, which is also depicted in Fig 5: 

 (5) 

The SOEC system efficiency is deteriorating simultaneously as the current density. In the 

first 300 hours, the system efficiency also decreases by 14.2 % . Overall, the current 

density drops by 58.8 %  from initial stage to stable stage, and the system efficiency 

decreases from 77.4%  to 63.2% . Although the system efficiency reduces sharply over the 

first 300 hours, this problem can be mitigated in practice. The situation occurs because 

the initial water flow rate is too high and applying a lower water flow rate can improve 

efficiency. After each load cycle, SOEC recovers a little bit, which result in a rise of 

system efficiency. When the SOEC is restarted at 1000 h, the current density rises 0.09 

A/ cm2, and the system efficiency enhances by 2.66% .  

 
Fig. 5. System efficiency of the SOEC hydrogen production process. 

This work also examines the economics of the robust SOEC system. It should be noted 

that the total capital cost (TPC) is calculated based on the oversized capacity of the 

components (particularly the heat exchanger). As a result, the system has a greater TPC 

than the conventional design. Simultaneously, a drop in current density results in a 

reduced rate of hydrogen production, thereby diminishes the revenue. The robust 

A  robust design of heat ex changer network for high temperature
electrolysis systems
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optimization prolongs the system's life by 1.6% at the cost of an 11% increase in 

equipment costs. In the life cycle, the levelized cost of hydrogen (LCOH) is $4.25/kg H2 

and the net present value (NPV) is $13.5 million.  

4. Conclusions 

In summary, this paper presents a SOEC hydrogen production system incorporates 

oversized heat exchangers to handle degradation concerns. SOEC degradation manifests 

as a decrease in current density during potentiostatic operation. Both electric power and 

system efficiency decline in lockstep with the trend of decreasing current density. 

Additionally, the optimal heat exchange area changes because of degradation, and 45.9% 

more heat exchange area can handle this uncertainty. Meanwhile, vaporizers consume 

most of the electricity in the heat exchange network. When other techniques for reducing 

evaporating costs are considered, the system still has the potential to increase profitability. 

In future studies, we will look at how to improve the SOEC system design and operating 

strategy to increase durability. 
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Abstract 

The rising demand for monoclonal antibodies is increasing the pressure for improving 

production efficiency and lowering costs. A high-resolution assessment of two 

bottleneck units is provided. Within the main cultivation unit, different cell lines were 

assessed at various production scales, and operating modes. In addition to operating 

costs, and production time, the generation of impurities, e.g., host cell proteins was also 

estimated using a hybrid model. A newly established cell line was shown to be highly 

productive, but presenting a trade-off between production costs and time, and generated 

impurity levels. A superstructure was built combining design and operating parameters 

of the capture chromatography unit. Scenarios regarding variations in inlet conditions 

based on upstream disturbances were analyzed. Process robustness was evaluated and 

mitigation measures suggested. This work provides a more comprehensive assessment 

framework that extends beyond cost and time to include quality, and potential 

operational problems. This could help guide process design and control efforts.  

Keywords: Cell cultivation; Capture Chromatography; Continuous production; Process 

assessment; Biopharmaceutical production; Therapeutic proteins. 

1. Introduction 

Demand for therapeutic proteins, and especially monoclonal antibodies (mAb)s, is 

rising, having already increased many folds in the past decade (Walsh, 2018). 

Applications for mAbs are expanding for the treatment of diseases such as cancer and 

even most recently for COVID-19. The pandemic has placed the efficiency of 

biopharmaceutical manufacturing under scrutiny. Increasing productivity is now 

necessary to avoid bottlenecks and keep up with the rising demand, especially for plants 

already operating at near capacity. Another major challenge is to reduce production 

costs to increase accessibility and to fend off rising competition from biosimilars. 

A typical mAb production process involves upstream cell cultivation to 

produce the required antibody product and downstream purification units to reach the 

required product profile as shown in Figure 1. Efforts to increase productivity include 

cell line modifications, manipulating operating conditions to improve cell productivity, 

or changing operating modes from batch to continuous. Continuous operations can 

potentially offer higher productivities, more flexibility as well as being more suitable 

for unstable products. However, they are also susceptible to increased operational 

difficulties, such as clogging, which could lead to fluctuations in downstream loads and 

longer process downtimes. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50124-X 
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Figure 1: Typical mAb production process 

Most studies comparing batch and continuous operations focus on ideal 

operations. A comprehensive framework is still needed for comparison including 

product quality and production robustness in addition to production time and costs.  

 This work offers an assessment of different upstream process alternatives 

involving variations in cell lines, operating conditions, and cultivation modes. A 

comparison is presented in terms of operating costs and expected product quality. 

Downstream capture chromatography is also investigated regarding differences in 

design and control parameters. Different scenarios of upstream changes are presented 

and their influence on capture costs and productivity. A discussion of measures needed 

to maintain productivity is also provided. 

2. Simulation of process alternatives 

2.1. Main cultivation unit 

Simulated alternatives described in this work include fed-batch and perfusion 

cultivation (Karst et al., 2018). Fed-batch cultivation is where nutrient levels are 

maintained during operation to avoid cell death without removing product from the 

reactor. Perfusion cultivation is where continuous addition of nutrients is balanced with 

product and by-product removal to reach steady operation. Three different Chinese 

hamster ovary (CHO) cell lines are depicted in this work. Cell A is from a newly 

established cell line, which is proclaimed to be more productive than traditional cell 

lines. Further details can be found in Okamura et al. (2022). Simulations with Cell B 

were based on the fed-batch experiments presented in detail by Badr et al. (2021) at and 

Cell C on that presented by Xu and Chen (2016) with perfusion operation.  

Cell cultivation models used in this work were based on the model presented 

by Badr et al. (2021). The model presented there was validated with experimental data 

generated from the Kobe GMP consolidated lab of the Manufacturing Technology 

Association of Biologics. The newly established cell line used as the basis for the Cell 

A simulations are more sensitive to lactate concentrations. A novel hybrid modelling 

approach is introduced in Okamura et al. (2022), where a data-driven module accounts 
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for the impact of changes in experimental conditions on model parameters and acts to 

provide a dynamic correction for lactate concentrations. The generation of host cell 

proteins (HCP)s and other process-related impurities was accounted for through 

description of cell death and dissolution (Maruhashi et al., 1994).  

2.2. Downstream capture chromatography 

A comparison of batch and continuous operations in the capture unit is presented. While 

chromatography is typically conducted as batch, continuous operation can be achieved 

through running several columns together. An example of continuous capture 

chromatography is periodic counter current (PCC) operations, where one column is 

loaded while others go through cycles of washing and regeneration (Baur et al., 2016). 

A sensitivity analysis was carried out varying the column design and control 

parameters. Within this analysis a superstructure of process options was built, where 

operational costs and productivity of the capture unit were compared. The 

superstructure was used to identify promising alternatives. In addition to varying the 

operating mode from batch to continuous, the super structure also included changes in 

the number of columns, column dimensions, superficial velocity in the column, and the 

column switching criterion in continuous mode. The model presented in Badr et al. 

(2021) was used for flow description within the column and for estimating the costs and 

productivity. 

 Four different scenarios regarding inlet concentrations and flowrates were also 

tested in this analysis as shown in Figure 2. The scenarios represent different potential 

disturbances that can arise in upstream units. In the baseline scenario Sc. 1, a constant 

inlet was simulated based on the expected flowrates from a typical perfusion or fed-

batch cultivation operation. Sc. 2 represents the impact of the start-up and shutdown 

phases within the continuous operation in a more realistic portrayal of the inlet form 

perfusion mode. In the absence of active control in the upstream units, concentration 

peaks and fluctuations can be observed as seen in Sc. 3 and 4, respectively. The impacts 

of such disturbances were investigated along with mitigation measures in the design and 

operation of the capture columns. 

 

Figure 2: Downstream inlet scenarios 
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Figure 3: Cultivation operating costs for scenarios (a) 2 kg production scale in 50 L 

reactor and (b) 200 kg production scale in 2000 L reactor 

3. Results and discussion 

3.1. Cultivation unit 

Figure 3 shows a comparison of cultivation operating costs and their breakdown at 

different production scales, reactor volumes, operating modes and cell lines. The newly 

established cell line (Cell A) resulted in the lowest overall costs per gram mAb 

produced. The higher productivity of this cell line also resulted in a reduced cultivation 

time (~4.4 times shorter than that of Cell B). The highest productivity and lowest 

cultivation time were achieved by the perfusion mode, followed closely by that of Cell 

A in fed-batch mode. However, perfusion mode also yielded the highest costs per gram 

at commercial scales, mainly due to the higher media consumption. At smaller scales 

and reactor volumes, labor costs were more pronounced for fed-batch units.  

Figure 4 shows the calculated concentrations of HCPs in the reactor for Cells 

A and B. HCP concentrations as well as other process related impurities, such as DNA, 

were found to be higher for Cell A than for the other tested alternatives. Therefore, the 

load to downstream purification units from Cell A can be higher than the other 

candidates.  

Further improvements can still be tested, for example, by using the more 

productive Cell A in perfusion mode. This could result in additional productivity gains, 

while maintaining the generated impurity concentrations at lower levels.  

 

 

Figure 4: Simulated host cell protein concentrations in the reactor 
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3.2. Capture chromatography 

In total 1,440 combinations of process alternatives were tested in the developed 

superstructure. Figure 5 shows the resulting pareto optimal alternatives considering 

operating capture costs and productivity for integrated batch options with fed-batch inlet 

and integrated continuous processes with perfusion inlet. 

The superstructure results show that continuous options can offer lower costs 

compared to the batch alternatives. The lower productivity can also be attributed to the 

lower titers of the perfusion cultivation units, which results in a need to process larger 

volumes downstream to achieve the same product mass. Optimizing operating 

conditions can help increase productivity, e.g., increasing superficial velocity. However, 

care should be taken to avoid product losses especially when high velocities are coupled 

with short columns and slow switching between columns in PCC operations. Product 

losses lower the yield per cycle and lead to significant increases in costs. Product losses 

should thus be minimized for robust design. This effect is particularly highlighted when 

upstream disturbances are taken into account, especially for scenario Sc. 3 with the 

sudden concentration peaks. Therefore, the results from all scenario analysis should be 

carefully considered to reach a compromise between maintaining high productivity and 

robustness with upstream changes.  

 Ideally, one of the advantages of integrated continuous operations, would be 

eliminating the need for intermediate surge tanks. This could have a big impact on 

achieving reductions in process capital costs. However, surge tanks can still be 

beneficial for mitigating upstream disturbances, in particular concerning fluctuations in 

inlet flowrates and concentrations. Careful determination of the required surge tank 

volume is necessary to avoid suboptimal operation. The conducted scenario analysis is 

thus a crucial tool towards achieving this goal. 

Overall, the analysis showed that hybrid alternatives with fed-batch upstream 

and continuous downstream options can outperform integrated batch or continuous 

operations. This is achieved by combining the advantages of both, with higher titers 

from upstream operations and more efficient continuous downstream conditions. 

However, there is still room for improvement with developments upstream, e.g., with 

using the more productive Cell A in perfusion mode, higher titers could be achieved. 

 

F igure 5: Pareto optimal design alternatives for the capture chromatography unit 

Techno-economic assessment of upstream and downstream process

alternatives for the production of monoclonal antibodies
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4. Conclusions 

In this work a high-resolution analysis was undertaken for two bottleneck units in mAb 

production. Within the upstream cultivation unit, the newly established cell line gave 

superior results in terms of operating costs and reasonable operating times even in fed-

batch operation. The performance of this cell line should be investigated in more novel 

perfusion operation or in different experimental conditions to further enhance its 

performance in the established fed-batch operations. Cell A, however, resulted in a 

higher concentration of process related impurities (e.g., HCPs). This could cause 

increased loads on the downstream units. This work does not differentiate between 

different HCP structures though. A unified measure of quality between upstream and 

downstream units should still be determined. As downstream processing difficulties do 

not only arise from the increased volumes and concentrations but could also be 

influenced by similarities between the impurities to be removed and the main product.  

The importance of incorporating expected upstream disturbances in the design 

of downstream units has been demonstrated. The analysis in this work was extended 

beyond costs and time to also include quality aspects in the upstream units and 

robustness downstream. This approach provides a comprehensive overview of 

performance under varying production scenarios, production scales, and possible 

operational issues. The analysis offers a deeper understanding of influential process 

parameters, the sources of disturbances in the system, their magnitudes, and potential 

mitigation measures.  
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Abstract 

Energy consumption and climatic changes are challenging issues these days. Unlike fossil 

fuels, the utilization of renewable fuels such as biogas is a promising option to meet these 

challenges. Biogas upgraded form (biomethane) is an emerging potential alternative to 

natural gas. However, biomethane production is itself challenging because of the pros and 

cons of each biogas upgrading technology. In this study, a cryogenic technology is 

adopted because of its dual benefits; carbon dioxide (CO2) removal and biomethane 

precooling due to its low-temperature operation. The CO2 is removed from biogas through 

the CO2 solidification process. The phase behavior of CO2 is investigated and the 

specified conditions for CO2 solidification (-68℃ and 5.17 bar) are applied for 

biomethane production. After CO2 removal, biomethane is liquefied. The refrigeration 

duty for upgrading and liquefaction is provided by a parallel nitrogen expansion cycle 

adopting pure nitrogen as a refrigerant. Aspen Hysys® v11 is used as a commercial 

simulator for process simulation and to evaluate CO2 freezing behavior in the proposed 

study. The mixed optimization technique is employed to optimize the design variables of 

the proposed process. The proposed process shows energy and exergy savings of 17.4 and 

29.7%, respectively. It is evaluated that the proposed integrated process depicts superior 

results than the conventional studies. 

Keywords: Biomethane production; Liquified biomethane; CO2 solidification; Anti-

sublimation; Mixed optimization; Parallel nitrogen expansion cycle. 

1. Introduction 

Due to increasing energy demand and environmental challenges, the use of biogas has 

seen an increasing trend at a rate of 11.5% annually (International Energy Agency, 2020). 

Owing to its increasing production, transportation of biogas is becoming a matter of 

concern especially because of production at atmospheric pressure. Transportation at this 

pressure is uneconomical due to its low energy density (Krich et al., 2005). This energy 

density can be enhanced either through compression or liquefaction. Compression is 

beneficial only for shorter distances. For longer distances, liquefaction is an economical 

approach. However, the impurities must be removed before liquefaction to avoid carbon 

dioxide (CO2) freezing or maintenance issues. Typically, CO2 below 50 ppm is 

recommended in the upgraded biogas i.e., biomethane (Fan et al., 2018). 

Biogas upgrading can be carried out through absorption, adsorption, membrane, and 

cryogenic technology. Amongst these technologies, cryogenic technology is the most 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50125-1 
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viable technology if integrated with the liquefaction process, known as liquefied 

biomethane (LBM) production (Naquash et al., 2021). The cryogenic technology is of 

two types, depending on the state of CO2 separated. The cryogenic distillation process is 

adopted to separate CO2 in liquid form (Yousef et al., 2017) while anti-sublimation 

technology is adopted to separate CO2 in solid-state (Spitoni et al., 2019). Separation of 

CO2 in solid form is preferable because of high product purity. Various researchers have 

explored these technologies technically and economically. For example, the cryogenic 

and absorption-based biomethane production integrated with a liquefaction process was 

studied by (Pellegrini et al., 2018). Their results showed that the absorption upgrading, 

and liquefaction process requires 34.8% of the total energy to liquefy biomethane, which 

is significantly higher than cryogenic processes. Similarly, the absorption and cryogenic 

biogas upgrading processes integrated with liquefaction were analyzed by (Hashemi et 

al., 2019). Their results showed that the cryogenic process is more efficient, with lower 

specific energy consumption (SEC) of 2.07 kWh/kg bio-LNG than that of the absorption 

process (3.35 kWh/kg) (Hashemi et al., 2019). In another study, the CO2 solidification-

based biogas upgrading integrated with the liquefaction process was investigated and the 

reported SEC was 1.45 kWh/kg (Baccioli et al., 2018). Similarly, the CO2 solidification-

based biogas upgrading integrated with the liquefaction process under various feed 

compositions was also studied recently and the reported SEC ranged from 1.093 to 1.574 

kWh/kg (Spitoni et al., 2019). Recently, another study was proposed in which a biogas 

upgrading process through CO2 solidification followed by LBM production was 

investigated. The total SEC was 0.495 kWh/kg (Naquash et al., 2021). 

It is analyzed from the literature review that the cryogenic upgrading process is energy-

intensive and complex. In this study, a simple and energy-efficient process is proposed 

that adopts a single refrigeration cycle utilizing pure refrigerant to produce high purity 

LBM. The refrigeration cycle i.e., parallel nitrogen expansion cycle (PNEC) is a simple 

cycle utilizing pure N2 as a refrigerant. The application of PNEC has already been 

explored in the liquefaction of natural gas (He et al., 2019). In this study, the application 

of PNEC is evaluated for cryogenic biogas upgrading and LBM production. The process 

is simulated in Aspen Hysys® v11. To explore energy-saving potential, the process is 

optimized through Aspen Hysys® v11 in-built optimizer using mixed optimization 

technique. The proposed process is analyzed through energy and exergy analyses to 

identify and locate process inefficiencies.   

2. Process design and simulation 

2.1. Process description 

The process flow diagram of the proposed process is shown in Figure 2. The feed stream 

(Biogas) at 1.0 bar is first compressed to 6.97 bar by compressors (K1 and K2) assisted 

with aftercoolers (E1 and E2) before entering in CHX1. After CHX1, the feed stream 

temperature is dropped to -66℃ at 5.17 bar in stream (5). The stream (5) is entered into 

the cold box (CB1) where the temperature is further decreased to -68℃. The CB1 

conditions are selected according to the solidification conditions of CO2. The phase 

diagram of the feed stream is prepared according to the data calculated by Aspen Hysys® 

v11, as shown in Figure 1. According to Figure 1 (enlarged version), the feed conditions 

at -68℃ and 5.17 bar are in the region of CO2 solidification.  
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Figure 1 Pressure-Temperature phase diagram of biogas feed (CH4/CO2: 0.5/0.5)

In CB1, the CO2 is separated in solid form and biomethane is separated from the top of 

CB1. For simplification, only one cold box is shown in Figure 2. Considering continuous 

operation of solidification process, another cold box configuration can be installed. 

Biomethane is then sent to CHX2 for liquefaction. At the outlet of CHX2, the biomethane 

is 100% liquefied. The pressure of LBM is reduced to 1.2 bar by passing through an 

expander (T3) for storage at liquid conditions. The cooling duty for biogas upgrading and 

biomethane liquefaction is provided by PNEC. In PNEC, pure nitrogen (N2) is used as a 

refrigerant, which is compressed to 16.83 bar in a series of compressors. After 

compression, stream (18) is cooled to -66℃ by passing through CHX1. After CHX1, the 

stream (19) is split into streams (20 and 21) by TEE2. Stream 21 pressure is reduced to 

4.20 bar which further enters MIX2. Stream (20) is further cooled to -137.3℃ by passing 

through CHX2 in stream (23). Stream (23) pressure is then reduced to 4.20 bar which 

reenters CHX2 to exchange its cold energy. Stream (25), leaving CHX2, is mixed with 

stream (22) in MIX2 and reenters CHX2 to further exchange its cold energy. After leaving 

CHX2, stream (27) at -88℃ enters CHX1 to assist in temperature decrease of stream (4) 

and stream (18). After CHX1, stream 28 at 37.14℃ and 3.90 bar is recycled back to 

complete the refrigeration loop.   

 
Figure 2 Process flow diagram of the proposed process 

2.2. Process simulation 

The process is simulated in Aspen Hysys® v11. Peng-Robinson is used as the equation of 

state (Peng and Robinson, 1929). The feed conditions and design parameters have opted 

from the Base case (Naquash et al., 2021). The following assumptions (Naquash et al., 

2021) were taken in the simulation of this study: 

g p

upgrading process
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1. The pressure drop in coolers is 0.25 bar. 

2. The pressure drop in CHXs is 1.0 and 0.1 bar for the hot and cold sides, respectively. 

3. It was assumed that CO2 is completely solidified at -68℃ and 5.17 bar. 

The design parameters of the proposed process are presented in Table 1. 

Table 1 Design parameters and constraints of proposed process 

Design Parameters Values (Naquash et al., 2021) 

Feed biogas conditions T: 35 ℃ 

P: 1 bar 

Flowrate: 308.2 kg/h 

Feed biogas composition (mole) CH4: 0.5 

CO2: 0.5 

Compressor efficiency 80% 

Turbine efficiency 90% 

Design constraints  

MITA value (℃) 1.0 ~ 3.0 

Inlet temperature of compressors >Tdew 

3. Process optimization 

The process was optimized in the in-built optimizer of Aspen Hysys® v11. In this study, 

a mixed (combination of BOX and SQP) optimization method was adopted to calculate 

the optimal values of design variables keeping the design constraint value within the 

range. The objective function is to reduce SEC while keeping the design constraint i.e., 

minimum internal temperature approach (MITA) in the range of 1 to 3℃. The values of 

refrigerant flow rate, suction and discharge pressure of refrigeration cycle, and split ratios 

of TEE1 and TEE2 are the design variables optimized through mixed technique. 

4. Results and discussion: Process analysis 

The energy and exergy analyses are performed which are discussed in the following 

sections. 

4.1. Energy analysis 

The energy analysis of a liquefaction process is typically described in terms of SEC and 

refrigerant flowrates. The values of refrigerant flowrates, SEC along suction and 

discharge pressure of refrigeration cycles of the base case and the optimized proposed 

process is presented in Table 2. It can be seen from Table 2 that the proposed process is 

energy efficient with 17.4% energy savings compared to the base case process. In the 

base case process, two separate refrigeration cycles were used whereas in the proposed 

process, a single refrigeration cycle is used with pure refrigerant to make a simple, and 

energy-efficient biomethane production and liquefaction process. However, as compared 

to the base case, the process consumes more refrigerant flowrate i.e., 2398 kg/h which is 

33.4% more.  

Table 2 Design variables values of base case (Naquash et al., 2021) and proposed case  

Design variables Base case Proposed process 

Biogas upgrading section   

mC1 (kg/h) 66.6 - 

mC3 (kg/h) 87.5 - 
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mCO2 (kg/h) 718.1 - 

Total refrigerant flowrate (kg/h) 872 - 

Suction pressure (bar) 11.8 - 

Discharge pressure (bar) 50.7 - 

Specific energy consumption (kWh/kg) 0.162 - 

Bio-LNG section   

mN2 (kg/h) 85 2398 

mC1 (kg/h) 376 - 

mC2 (kg/h) 165 - 

mC3 (kg/h) 98 - 

Total refrigerant flowrate (kg/h) 724 2398 

Suction pressure (bar) 3.1 4.2 

Discharge pressure (bar) 68.7 17.1 

Specific energy consumption (kWh/kg) 0.333  

Total specific energy consumption (kWh/kg) 0.495 0.408 

Relative energy savings (%)  17.4 

4.2. Exergy analysis 

The exergy analysis of the optimized process is performed. The equations adopted for 

exergy analysis are taken from (Venkatarathnam and Timmerhaus, 2008). The values of 

exergy destruction for each piece of equipment are presented in Figure 3.  

 

Figure 3 Total process and equipment exergy destruction values  

The highest exergy destruction (28 kW) is attributed to coolers followed by compressors 

(25.4 kW) whereas expanders exhibit the lowest exergy destruction (14.6 kW). The main 

reason for high exergy destruction in compressors and coolers is due to high SEC by 

refrigeration cycle compressors. This high exergy destruction shows that there is large 

potential available for improvement. As compared to the base case, the overall exergy 

destruction is significantly lower with 29.7% savings. 

5. Conclusions 

The cryogenic biogas upgrading, and LBM production process is a complex and energy-

intensive process. To reduce high SEC and process complexity, a simulation study 

considering CO2 solidification-based biogas upgrading process followed by LBM 

production is proposed. The proposed process is simulated in Aspen Hysys® v11. The 

CO2 solidification conditions are assessed from the phase diagram of biogas. The CO2 is 

25.4

14.6

25.6

28 131.8

92.7

Compressors Expanders CHXs Coolers Base caseProposed case

0

5

10

15

20

25

30

E
q

u
ip

m
en

t 
ex

er
g

y
 d

es
tr

u
ct

io
n

 (
k

W
)

 Equipment exergy destruction (kW)

0

25

50

75

100

125

150
 Total process exergy destruction (kW)

T
o

ta
l 

p
ro

ce
ss

 e
x

er
g

y
 d

es
tr

u
ct

io
n

 (
k

W
)S
avin

gs=
 29.7%

Biomethane liquefaction followed by CO2 solidification based biogas

 upgrading process
755



 A. Naquash et al. 

solidified at -68℃ at 5.17 bar. The high purity biomethane is liquefied assisted by PNEC. 

The proposed process is analysed from energy and exergy aspects. From the results, it is 

concluded that the process has a low SEC of 0.408 kWh/kg with 17.4% energy savings 

compared to the base case. In terms of exergy, the proposed process is 29.7% efficient 

owing to less equipment and low SEC.  
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Abstract 

Green hydrogen and ammonia are critical technologies in our decarbonisation toolkit, but 

at present remain more expensive than traditional energy vectors. In order to increase 

their competitiveness with respect to fossil fuels, many authors have optimised production 

systems based on hourly solar and wind profiles and a range of technologies to maximise 

production and minimise costs. This optimisation problem, however, is enormous in 

scale: it requires consideration of a large number of possible production sites and their 

performance over many years. Failure to consider both spatial and temporal variation in 

green ammonia production costs may exclude excellent locations, or include sites that are 

unreliable due to interannual variation. In this work, we examine three techniques which 

can reduce the complexity of input data: time aggregation, hierarchical clustering, and K-

means clustering. We compare the suitability of each of these approaches based on the 

extent to which they accelerate the solution of a green ammonia plant design optimisation 

problem, and the error between the simplified and actual solutions to the problem. Using 

these simplification approaches, we demonstrate the importance of considering 

interannual variation in green ammonia plant design.  
 

Keywords: Data Clustering, MILP Optimisation, Green ammonia production, 

Renewable energy storage 

1. Introduction 

The decarbonisation of national power grids poses new energy storage challenges to 

provide reliable power during periods of high demand, or when renewable energy 

availability is low. While a range of technologies can be deployed on a very large scale 

for storage on an hours-days timescale (e.g. demand response, battery to grid, highly 

interconnected electrical grids with geographical diversity of energy sources), fewer 

technologies are available for storage on a months-years timescale.  

Storage on a months-years timescale is necessary to  provide sufficient storage (i) to meet 

seasonal peaks in energy usage, and (ii) to account for interannual variation in renewable 

energy availability. In the UK, for instance, the energy shortage at the start of autumn 

2021 was exacerbated by a long-term wind-drought, the scale of which had not been 

observed since the early 1960s (Ambrose 2021); the frequency of such wind droughts is 

forecast to increase with climate change (Dawkins 2019).  

Green ammonia is a promising solution for storage over large timescales. Compared to 

liquid hydrogen, it can be stored cheaply, and with much lower boil-off. Unlike gaseous 

hydrogen stored in salt caverns, it has much higher density, allowing import via ship. 

Recent publications have optimised the cost of green ammonia production and have 

demonstrated its cost is rapidly falling, and will soon be competitive with other 

technologies (Nayak-Luke and Bañares-Alcántara 2020; Fasihi et al. 2021). 
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Figure 1 - Comparison of time aggregation and hierarchical clustering 

However, the optimisation of green ammonia plants is computationally intensive, forcing 

researchers to either consider a comparatively small number of locations (Nayak-Luke 

and Bañares-Alcántara 2020), or to use only one year of weather data for plant design 

(Fasihi et al. 2021). Further complications emerge if other energy sources (e.g. electricity 

grids or hydro/nuclear power) are considered. Given the interannual weather variation 

described above, and the intended use of ammonia to store energy between years, larger 

volumes of weather data need to be processed to develop a robust ammonia economy. 

This work explores three data clustering approaches which reduce the volume of weather 

data. It demonstrates that it is possible to significantly accelerate calculation without 

sacrificing accuracy. Several applications of accelerated calculation are then discussed.   

2. Methodology 

Green ammonia production uses renewable energy (from wind and/or solar plants) to 

power three core units: a water electrolyser to make hydrogen, an air separation unit to 

make nitrogen, and a Haber-Bosch loop which synthesises them into ammonia. Since it 

operates at high temperatures and pressures, the Haber-Bosch process requires back-up 

storage of power and hydrogen to sustain production above minimum rates. Here, back-

up power is supplied from batteries, or from a fuel cell which cannibalises some of the 

stored hydrogen. The model may also connect the plant to the electricity grid, from which 

it can buy and sell power (capped at 175 MW by the limits of grid connection). 

Rigorous existing models for ammonia plant design use hourly weather data to size each 

piece of equipment, subject to material and energy balances and technical constraints on 

equipment, mostly related to the inflexibility of the ammonia plant. However, in other 

energy optimisation analyses, some data clustering techniques have been attempted.  

The Balmorel energy systems model, a popular open-source application, uses time 

aggregation, whereby larger time steps are used to reduce the data size (Wiese et al. 2018). 

Palys and Daoutidis (Palys and Daoutidis 2020) modelled a grid-based energy system 

which included ammonia that used a hierarchical approach, in which the most similar 

input data points are iteratively clustered until the data is reduced in size by a pre-specified 

factor. Not all time steps are the same size using this approach, so the model affords them 

different weights to determine the impact of a time-step on ammonia production, and the 

levels in energy and mass storage equipment. Figure 1 shows the difference between these 

two techniques. The former is simpler for both the coder and the computer to implement; 

the latter captures more dynamic variation in weather with the same number of time steps. 
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A third approach in the literature simplifies the data using representative days (van der 

Heijde et al. 2019); one technique used by Gabrielli et al. (Gabrielli et al. 2018) for 

selecting such days is K-means clustering, which uses a principal component analysis  to 

classify days into clusters, and then represents each day in the cluster by its medoid.  

To compare these options (time-aggregation, hierarchical aggregation and K-means 

clustering), we define the simplification factor (SF), which is the ratio of the number 

datapoints in the raw hourly data to the number of datapoints in the clustered data; for 

instance, data using a two-hourly time-step would have SF = 2. The model has eleven 

variables defined at all time steps (nine for power flows between plant components, and 

one for each of the inventories of the battery/hydrogen storage), nine continuous variables 

for the size of each unit in the process, and a binary variable indicating if grid connection 

is used. Thus for a model considering n years of data, the total number of variables is: 

(1) 

For K-means clustering, the storage inventories cannot be represented by their cluster’s 

medoid, since this will cause discontinuities where two consecutive days are not in the 

same cluster. Therefore for the K-means cases, the number of variables is: 

    (2) 

An 8-core desktop computer with an i7 processor and 16 GB of RAM was used to solve 

the model for 701 locations in Australia (spread in a grid pattern across the country). Only 

three cores were parallelised; if more cores were used, very large convergence times were 

observed as the computer hit RAM limits. The concurrent and barrier methods of the 

Gurobi optimisation solver were used for the root and node relaxations respectively; these 

settings were found to give the fastest solutions.  

3. Results 

3.1. Comparison of performance 

Figure 2 compares the techniques at different simplification factors to results at a 

simplification factor of 1. Each point represents results at one location; if the points form 

45o lines, this indicates good agreement between the simplified model and actual results.  

Time aggregation and hierarchical clustering perform well at low simplification factors. 

Performance starts to degrade around a simplification factor of 12, because the diurnal 

variation of solar panels begins to be smoothed into a near constant supply of electricity, 

which will underestimate the amount of energy storage required. As expected, the 

performance of time aggregation degrades more quickly than hierarchical clustering. In 

general, both techniques tend to slightly underestimate the LCOA; this is because the 

smoothing inherent to reducing the size of the time data provides more reliable electricity 

and therefore reduces the need for batteries, hydrogen storage, or back-up grid power. 

The performance of K-means clustering is very poor at all simplification factors. While 

other techniques exist by which representative days can be selected, it is unlikely that a 

different selection of medoids would radically change the poor performance of this 

approach. To some extent, the poor performance is caused by the long-term nature of 

ammonia plant design, meaning the representative day is too short a time frame over 

which to base plant design. For instance, plant operation may need to be different on two 

days with identical weather based on the inventories of the hydrogen storage and battery.  

of green ammonia plants 
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Figure 2 - x-y plots for estimated LCOA from simplified approaches compared to results from a 

one-hour time-step. Data are offset for readability; see legend. Each point represents a different 

location; offset x-y 45o lines are included for each series (a) - Left: Time aggregation. (b) - Centre: 

Hierarchical clustering. (c) - Right: K-means (Simplification Factor = 24 excluded for readability) 

3.2. Comparison of speed 

Figure 3 shows the relationship between the time taken for the model to converge in all 

of the 701 locations considered, and both the average and maximum error observed in the 

results compared to the result obtained using a one-hour time step.  

Predictably, because of the results shown in Figure 2, the results for K-means clustering 

generate very high errors; additionally, they also take a long time to converge. This is 

because the dimensionality of the hydrogen and battery storage variables is not reduced 

by representative day clustering (since the model still needs to build a continuous storage 

profile). For the other two clustering techniques, higher simplification factors tend to 

result in shorter solution times and higher errors. In all cases, the error observed using the 

hierarchical clustering was lower than that observed using time aggregation at the same 

simplification factor, but the time required for convergence was greater.  

 

Figure 3 - Relationship between error and solution time. The highlighted marker is the option 

selected as optimal for further analysis. (a) – Top: Average error across all locations. (b) – Bottom: 

Maximum error across all locations; the axes in this subplot do not encompass K-means clustering 

due to the large errors observed with this method.  
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At low simplification factors, the majority of time taken for the model to converge is 

taken by the optimisation solver. However, as the simplification factor increases, the 

computational time required to simplify the data itself begins to increase, and the time 

required for the optimisation solver decreases. This limits the time taken for the model to 

converge to the time taken to perform the data clustering itself. Because the hierarchical 

clustering approach is more computationally challenging than time aggregation, this 

minimum limit on convergence time is higher; indeed, at the highest simplification used 

here (24), the model begins to take longer to converge than at the lower factor of 12.  

The best option for further analysis will deliver a fast solution with an acceptably small 

error. The point selected is shown on Figure 3; it combines acceptable errors (~3.5% on 

average, 9.5% at most) with quick solution times (~3,500 s). More accurate results could 

have been obtained with a time penalty of ~ 20%, but the improvement is not large, 

particularly given the error implicit in the model due to input parameter estimation.  

4. Historical Data Analysis 

Green ammonia plants for energy storage need to operate under different conditions over 

a large time period (~30 years). Using time aggregation with a simplification factor of 8, 

the model was converged repeatedly using different starting years, and considering time 

periods of 1, 3, 5 and 10 years. Since long-term historical grid data is not available, grid 

connections were not allowed for these estimates. The LCOA results for a single 

representative location are plotted in Figure 4. They demonstrate that as more years of 

data are considered, the optimum value for the LCOA tends to converge around a single 

value; if only one year of data is used, there is a wide spread in the LCOA estimates. 

Considering all locations for the cases where only one year of data was analysed, the 

average range between the minimum and maximum LCOAs estimated was 15% 

(substantially higher than the error introduced by clustering); in the worst case, it was 

more than a third of the total ammonia cost. When a larger number of years of data are 

considered, the results are much more stable over different time periods. Using ten years 

of input data, the average range between the minimum and maximum cases across all 

locations was only 2%, and the largest error observed was only 6%.  

If the long term average LCOA is taken from the cases where a single year of data is used, 

the cheapest location for ammonia production is located near in central Western Australia. 

However, this site only has the cheapest production cost in ten of thirty years of individual 

data; in one poorly performing year, it was the 50th ranked site of the 701 considered.  

 

Figure 4 - Optimum LCOA for a given location in South Australia using different input weather 

data; data are offset from each other to improve readability.  
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There is a weak relationship between the number of years of data used for the optimization 

and its outcome. In 677 of the 701 cases considered, there was a positive correlation 

between the number of years of data considered and the LCOA; i.e. considering more 

years of data slightly increases the LCOA. Although this relationship is small (on average, 

the LCOA estimated increases by 10 USD/t when comparing average results from ten 

individual years to the results from one ten-year period), it does suggest that an 

engineering plant designed over a single year alone will be underdesigned. 

5. Conclusions  

To play a robust role as an energy storage medium on a months-years timescale, green 

ammonia plants must consider large time periods in system design. This research 

analysed three techniques to reduce the size of large weather datasets to enable plant 

design to be optimised rapidly over large time scales and in many locations.  

The results demonstrate that a ‘representative day’ approach (e.g. K-means clustering) 

for data size reduction is not suitable for plant design; too much relevant data is excluded 

with little benefit to convergence time. However, both time aggregation and hierarchical 

clustering accelerate convergence while providing meaningful results. Since hierarchical 

clustering itself is slow, time aggregation provided the optimum balance of speed and 

accuracy for this work, but hierarchical clustering may be better suited for other problems.  

Using the time aggregation approach, ammonia plant designs were considered for a range 

of different years of data. They demonstrated that considering only a single year of data 

may undersize ammonia plants, and may fail to identify the optimum production location. 

The accelerated solutions enabled by time aggregation could facilitate significant further 

research. Two options would include (a) Monte-Carlo simulation of green ammonia plant 

design given the significant unknowns surrounding equipment cost and performance, and 

(b) consideration of climate forecasting (which returns a large array of possible outcomes) 

in future-proofing ammonia plant designs against various possible scenarios.  

References 

J. Ambrose, 2021, 'What caused the UK's energy crisis?', The Guardian. 

L. Dawkins, 2019, 'Weather and Climate Related Sensitivities and Risks in a Highly Renewable 

UK Energy System: A Literature Review', Met Office, Accessed May 2021. 

https://nic.org.uk/app/uploads/MetOffice_NIC_LiteratureReview_2019.pdf. 

M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, 2021, 'Global potential of green ammonia 

based on hybrid PV-wind power plants', Applied Energy, 294: 116170. 

P. Gabrielli, M. Gazzani, E. Martelli, and M. Mazzotti, 2018, 'Optimal design of multi-energy 

systems with seasonal storage', Applied Energy, 219: 408-24. 

R. Nayak-Luke, and R. Bañares-Alcántara, 2020, 'Techno-economic viability of islanded green 

ammonia as a carbon-free energy vector and as a substitute for conventional production', 

Energy & Environmental Science, 13: 2957-66. 

M.J. Palys, and P. Daoutidis, 2020, 'Using hydrogen and ammonia for renewable energy storage: 

A geographically comprehensive techno-economic study', Computers & Chemical 

Engineering, 136. 

B. van der Heijde, A. Vandermeulen, R. Salenbien, and L.Helsen, 2019, 'Representative days 

selection for district energy system optimisation: a solar district heating system with 

seasonal storage', Applied Energy, 248: 79-94. 

F. Wiese, R. Bramstoft, H. Koduvere, A.P. Alonso, O. Balyk, J.G. Kirkerud, A. G. Tveten, T.F. 

Bolkesjø, M. Münster, and H. Ravn, 2018, 'Balmorel open source energy system model', 

Energy Strategy Reviews, 20: 26-34. 

N. Salmon -Alcántara and R. Bañares762



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Integrating Carbon Negative Technologies in 

Industrial Clusters 

Elizabeth J. Abraham, Dhabia M. Al-Mohannadi*, Patrick Linke 

Department of Chemical Engineering, Texas A&M University at Qatar, Education City, 

PO Box 23874, Doha, Qatar 

dhabia.al-mohannadi@qatar.tamu.edu 

Abstract 

Negative emission technologies (NETs) are an emerging innovation essential for tackling 

the climate crisis since decarbonization on its own will no longer suffice. While these 

technologies are crucial in limiting temperature rise by the end of the century, they bring 

their own set of unique feasibility and efficiency challenges. An innovative approach to 

overcoming these barriers is the development of eco-industrial parks (EIPs) or clusters, 

which can integrate several processes and technologies to achieve economic, 

environmental, and social benefits collectively. Furthermore, through the multiple 

interactions that can arise from exchanging resources and technical knowledge in these 

systems, technology spill overs can occur, allowing these parks to serve as a hub for 

process innovation. Thus, this work explores the integration of NETs into industrial 

clusters that can simultaneously exchange multiple resources over time. The multi-period 

model optimized network configurations for maximum net present value and determined 

park design across time. Two NETs, bioenergy with carbon capture and storage (BECCS) 

and direct air carbon capture and storage (DACCS), were integrated into a cluster to 

provide the carbon dioxide needed for methanol production, produced through either 

carbon hydrogenation or electrolysis. The optimization revealed that electrolysis required 

improved energy efficiency to compete with hydrogenation. Furthermore, significant 

reductions in capital costs are necessary for the NETs to become active in EIPs. 

Keywords: Multi-period, Resource integration, Negative emission technologies, 

Industrial parks, Optimization 

1. Introduction 

Climate change mitigation is a daunting challenge whose slow progress now requires the 

reduction of greenhouse gases (GHGs) and their removal from the atmosphere to limit 

global warming temperature rise to less than 2 °C above pre-industrial levels (Gasser et 

al., 2015). While several strategies and technologies can effectively reduce GHGs, 

negative emissions technologies (NETs) that offset positive emissions have only begun 

to gain traction. To lower their atmospheric concentrations, NETs remove GHGs, 

particularly carbon dioxide (CO2), from the atmosphere through various existing or 

proposed techniques and subsequently store them (McLaren, 2012). The extensive 

research on NETs currently explores different technologies, their feasibility, and 

comparative performance with other technologies, where two NETs, bioenergy with 

carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS) 

make up a significant portion of this literature. BECCS utilizes biomass or plant material 

that absorbs atmospheric CO2 as it grows to produce bioenergy and then captures and 

stores any emissions released during production in geological formations (IPCC, 2018). 
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DACCS, on the other hand, directly extracts CO2 from the atmosphere, typically using 

solid sorbents or basic aqueous solutions as the capture media, before storing them 

underground (Keith et al., 2018). While both NETs are in early commercialization stages, 

they encompass many uncertainties. Geological storage is a fundamental aspect of NETs, 

which though seemingly feasible at present, entails high costs and uncertainties over long-

term storage (Norhasyima and Mahlia, 2018). In these scenarios, there is a proclivity to 

utilize and valorize the CO2 captured (Norhasyima and Mahlia, 2018), which calls for the 

integration of NETs with carbon capture utilization and storage (CCUS), as shown by 

Tan et al. (2021) in carbon management networks integrated with enhanced weathering 

and biochar application. 

Systematic methods that synthesize CCUS strategies by considering various CO2 sources 

and sinks include optimization methods (Al-Mohannadi et al., 2016), graphical source-

sink allocation approaches (Lameh et al., 2020), and others like the Mini-MAC approach 

that uses marginal abatement costs (Lameh et al., 2021). While these approaches focus 

on CO2 as the primary material of interest, most utilization technologies require multiple 

material and energy resources. The recent resource integration approach developed by 

Ahmed et al. (2020) considers both material and energy resources simultaneously to 

design industrial clusters or eco-industrial parks (EIPs). This work uses a multi-period 

model based on this novel approach to identify challenges in integrating NETs and CCUS 

in clusters that can capture emissions from the atmosphere and itself. 

2. Approach 

The multi-period resource integration approach described in this work adopts the method 

proposed by Ahmed et al. (2020) to optimize industrial clusters while simultaneously 

considering all material and energy flows. The extension allows for assessing the 

evolution of such clusters over a time horizon, where each process considered, including 

the NETs, have a set of associated resources. The optimization is solved as a mixed-

integer linear program (MILP) that determines the existence and capacities of processes 

along with the flow of its associated resources throughout the cluster in each period 

considered. The net present value (NPV) of the cluster, which accounts for the time value 

of money, is maximized as the objective function in this work as given by Eq. (1): 

𝑁𝑃𝑉𝐸𝐼𝑃 = ∑
∑ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒−𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑠𝑡−𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠

(1+𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑅𝑎𝑡𝑒)𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑𝑃𝑒𝑟𝑖𝑜𝑑  (1) 

The proposed model has several parameters that govern resource and cash flows 

throughout the cluster, such as process-specific cost and performance parameters, 

resource line specifications, resource prices, inflation rates, and NPV discount rates. 

Simply put, each process has specific capital and operating cost parameters, in addition 

to specific mass and energy balance parameters that define the flow of resources to and 

from it. These resources flow in the cluster through resource lines characterized by a 

unique set of specifications (temperature, pressure, quality, etc.). Thus, processes obtain 

input resources from certain resource lines and send output resources to their 

corresponding resource lines. In this way, resource lines can be associated with multiple 

processes with the same resource specifications, thereby facilitating resource integration. 

Variables in this model include process capacities and flows of fresh feed and output 

resources in each period considered. Furthermore, quality and inequality constraints are 

placed on the resource line balances and variables respectively to ensure non-negative 

values, while binaries implement logical decisions within the model. The optimization 

problem has been solved using LINDO “What’sBest!16.0.2.6” in Microsoft Excel 2019.  
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3. Illustrative example 

3.1. Process data 

The multi-period model is to design an industrial cluster that must integrate two NETs, 

bioenergy (BEC) and direct air (DAC) carbon captures, to capture the CO2 required to 

produce 500,000 tons per period (tpp) of methanol (CH3OH). For this, the cluster 

considers two innovative methanol production routes, namely, the emerging 

hydrogenation (CHR) route and the novel infeasible CO2 electrolysis (CEM) route. The 

CHR process requires hydrogen (H2), provided from a steam methane reformer (SMR) or 

water electrolyzer (WSE), in addition to CO2, while the CER only requires CO2. Power 

requirements for the cluster are met by a natural gas power plant (NGP) and photovoltaic 

system (PV). The CHR, SMR and NGP processes each have their own carbon capture 

units with a 90% capture efficiency, while a sequestration unit (SQU) stores any 

unutilized CO2. Lastly, an air separation unit (ASU) supplies the DAC’s oxygen (O2) 

demand. Data on process specifics, namely, reference products, CAPEX parameters, and 

maximum capacities, are listed in Table 1, where the maximum capacity indicates the 

maximum allowable capacity of a process across the periods considered. 

Table 1: Process reference products, CAPEX parameters and operational capacities 
 

Resource Reference Product 

(RP Unit) 

CAPEX Parameter 

($/RP Unit) 

Maximum Capacity 

(RP Unit per period) 

ASU O2 (t) 20.30 80,000 

BEC CO2 (t) 34.00 3,000,000 

CER CH3OH (t) 13.03 500,000 

DAC CO2 (t) 102.06 1,000,000 

CHR CH3OH (t) 11.64 500,000 

CHR Capture CO2 (t) 6.98 60,000 

NGP Electricity (kWh) 10.00 20,000,000,000 

NGP Capture CO2 (t) 12.49 750,000,000 

PV Electricity (kWh) 20.00 20,000,000,000 

SQU CO2 (t) 9.02 1,250,000 

SMR H2 (t) 13.09 125,000 

SMR Capture CO2 (t) 1.08 1,250,000 

WSE H2 (t) 623.20 125,000 

The only inputs to the cluster are air, biomass, CO2, natural gas, water, additives for DAC, 

and other utilities besides power. The given cluster was analyzed across three periods, 

where each period spans five years. The operational capacities and capital cost or CAPEX 

parameters remain fixed across all periods for all processes except BEC and DAC, whose 

capacities increase with their expected increase in deployment capacities. Specifically, 

the capture capacities of BEC increases from 1,000,000 tpp to 3,000,000 tpp, while that 

of DAC increases from 20,000 tpp to 1,000,000 tpp across the periods considered. Prices 

and process parameters for the BEC, CER, DAC, NGPP and SMR can be found in Table 

2, while those for all other processes are obtained from Abraham et al. (2021). The NET 

parameters in Table 2 were acquired from Bhave et al. (2017) and Keith et al. (2018), 

while data for the CER, NGPP and SMR processes were found in Jouny et al. (2018), 

Biliyok and Yeung (2013), and Spath and Mann (2001) respectively. 
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Table 2: Process parameters (in Unit/RP Unit) and resource prices in ($/Unit) 
 

Resource (Unit) Price BEC CER DAC NGPP SMR 

Air (t) - -4.98 - -1467.84 -0.01 - 

BEC emissions (t) - 4.72 - - - - 

Biomass (t) 60 -0.74 - - - - 

Calcium carbonate (t) 330 - - -0.02 - - 

Carbon dioxide (t) 40 1.00 -0.73 1.00 - - 

Hydrogen (t) 900 - 0.02 - - 1.00 

Methanol (t) 400 - 1.00 - - - 

Natural Gas (t) 136 - - -0.12 - -2.91 

NGPP emissions (t) - - - - 0.01 - 

Oxygen (t) - - 0.39 -0.35 - - 

Slurry (t) - - - -5.30 - - 

SMR emissions (t) - - - - - 10.73 

Treated air (t) - - - 1474 - - 

Wastes (t) - - - 0.70 - 0.20 

Waste water (t) - - - 21.58 - - 

Water (t) 0.02 - -0.68 -3.11 - -14.10 

Cooling water (t) 0.03 - - -3.25 -0.11 - 

Electricity (kWh) - 574 -11532 -366 1.00 -316 

MP Steam (t) - - - - - 5.08 

Process water (t) 0.02 - - -20.36 - -4.80 

3.2. Results 

For illustrative purposes, the breakthroughs needed in process parameters were analyzed 

at inflation and discount rates of 10% and 5%, respectively. Under various scenarios, the 

optimization revealed different designs to meet methanol production demands over time.  

The activated processes in each scenario and period are shown in Figure 1.  

CHR CHR CERCER

BECBECSMRSMR

SEQ CER

DAC

CERCER

DAC

Design 4 Design 5Design 3Design 2Design 1

tp1,tp2,tp3 tp1tp1,tp2,tp3tp1,tp2,tp3tp1,tp2,tp3 tp2,tp3

Network configurations remain the same throughout all three periods in 
Designs 1 through 4, while it varies across time in Design 5.

 

Figure 1: Activated processes for the designs analyzed 

The optimization identifies methanol production via hydrogenation or CHR, where H2 is 

provided by SMR and CO2 by SMR capture, to be most profitable across time. 

Sequestration is a fundamental part of this design scenario, called D1, in storing the CO2 

captured from the CHR and SMR processes. Thus, when sequestration is unavailable, the 

cluster configuration changes to a new design, D2. Here, instead of being sequestered, 

the CO2 captured from SMR unused in CHR, and the CO2 captured from CHR itself are 

utilized in the CER or carbon electrolysis process. It is clear from these two cases, where 
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the cluster design remains fixed across all periods considered, that the NETs are not an 

attractive CO2 source, even as both methanol production routes activate. 

To bring the NETs online, solely improving only their prospects, was thus not sufficient 

due to the high costs of the auxiliary processes supporting them. Of the two production 

routes, CER has a significantly higher power demand than CHR, considering even the 

additional units CHR must activate for H2 production, carbon capture, and sequestration. 

Furthermore, with WSE being an expensive process, H2 will continue to come from SMR, 

whose emissions, along with those from CHR, will always need to be captured and 

sequestered. With sequestration constrained, these captured emissions cannot leave the 

cluster and must be utilized in the CER process. In this way, methanol production via 

both routes prevents the activation of the NETs since there is no need to obtain CO2 from 

the atmosphere as the cluster itself generates the required amount. Therefore, the CER 

process must become the sole methanol production route to integrate the NETs into the 

cluster, and to do so, the CER process requires a 72% reduction in its power requirement. 

With the power efficiency of CER improved, design scenarios 3 and 4 aimed to activate 

either of the NETs as the sole source of CO2. BEC met the CO2 demand for all three 

periods with a 98% capital cost reduction in design D3. On the other hand, even with a 

90% reduction in capital costs, DAC only fully supplied the second and third periods in 

design D4. DAC partially met the demands of the first period, however, due to its capacity 

limits, the cluster's CO2 feed met the rest. When the model integrated both NETs, supplies 

of the first period were met by BEC, while DAC covered the remaining periods as in 

design D5. The capacity limitations of DAC prevent its activation in the first period of 

D5; however, in later periods when both NETs can meet the CO2 demand, the DAC is 

more feasible due to its lower operating costs. The capacities across all three periods for 

each of the designs are summarized in Table 3. 

Table 3: Cumulative process capacities across all periods for network configurations 
 

Network CHR 

(t CH3OH) 

CER 

(t CH3OH) 

BEC 

(t CO2) 

DAC 

(t CO2) 

NPV 

(Million $) 

N1 1,500,000 - - - 734 

N2 1,163,185 336,815 - - 696 

N3 - 1,500,000 1,092,275 - 772 

N4 - 1,500,000 - 748,183 773 

N5 - 1,500,000 364,092 728,184 774 

To achieve such significant capital reductions is a challenge that requires a thorough 

understanding of the technology and parameters that define its efficiency such as 

selectivity and yield. Understanding these parameters will aid in identifying the pathways 

by which these cost reductions can be achieved. Thus, by incorporating these parameters 

into the multi-period model, it can therefore, determine the learning curves that can make 

these technologies competitive (Feriolia et al., 2009). 

4. Conclusion 

EIPs are an opportune means to integrate NETs with CCUS to derive greater collective 

benefits. The feasibility of integrating these technologies in EIPs was analyzed from a 

holistic perspective in terms of cash and resource flows as illustrated through the multi-

767



 

 

period resource integration described here. The optimization determined that CER needs 

more energy efficiency, while both BEC and DAC require a reduction in capital costs to 

be deployed successfully. Thus, through the multi-period analysis, the proposed approach 

can analyze the deployment of emerging technologies and their varying parameters 

simultaneously considering operations in other periods during optimization, and without 

performing numerous iterations. Furthermore, the model can be extended to incorporate 

uncertainties of different parameters to create more resilient and sustainable systems. 
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Abstract 

Chemical processes are often subject to uncertainty. Consequently, the evaluation of the 
flexibility of a process with respect to variations in inlet conditions is vital to identify 
bottlenecks in current process flowsheets or new flowsheet design proposals. The 
flexibility index is a well-established concept to perform flexibility analysis of chemical 
processes. In this paper, we propose novel reformulations of the flexibility index problem 
to account for overlaying uncertainty sources which interfere with each other. The aim of 
the paper is to identify and define overlaying uncertainty sources and to overcome 
shortcomings of existing approaches when calculating the flexibility index in such 
situations.  

Keywords: Flexibility Analysis, Flexibility Index, Overlaying Uncertainty, Types of 
Uncertainty, Chemical Process Design. 

1. Introduction 

Flexibility analysis of chemical processes has been investigated since the 1980s when the 
flexibility index was introduced by Swaney and Grossmann (1985). Although established 
in the 1980s, the mathematical formulation of the flexibility index has also been applied 
in recent publications (e.g., da Silva et al. 2021). The flexibility index is defined as the 
ratio between the maximum feasible variation range (defined by operational constraints) 
and the expected variation range. Therefore, feasibility is guaranteed if the flexibility 
index is larger than or equal to 1.  

Several extensions and reformulations have been suggested in literature to adapt the 
original formulation by Swaney and Grossmann (1985) to specific applications. Pulsipher 
and Zavala (2018) suggested to incorporate multivariate Gaussian random variables in 
the flexibility index problem to define expected variation ranges with ellipsoidal shape 
(compared to the hyperrectangular shape used traditionally) in order to capture 
correlations. In addition, Langner et al. (2021) suggested to study the geometrical shape 
of the distribution of operating points to explicitly define the expected variation range 
using linear boundary functions. Ochoa and Grossmann (2020) extended the original 
flexibility index problem to account also for uncertain parameters which cannot be 
measured and therefore cannot be subject to control actions during operation. 

Traditionally, when formulating the flexibility index problem, the expected variation 
range is formulated for each uncertain parameter by accounting for the largest positive 
and/or negative deviation from a nominal operating point which has been observed 
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(retrofit problem) or which is expected (greenfield problem) over a specific timeframe 
(e.g., lifetime of a plant). Consequently, the expected variation range is independent of 
time.  

However, this is problematic in the case when sources of uncertainty interfere with each 
other, e.g., when the flexibility with respect to short-term operational disturbances is 
affected by an uncertain singular event (see e.g., Marton et al. 2021). Examples of such 
singular/rare events can be a switch in feedstock, a change of operational parameters 
required to comply with new emission legislation and/or a change in the production rate. 
All such events have in common that they can have a significant impact on the nominal 
operating conditions, i.e., the nominal operating point is likely to vary temporarily or even 
change permanently. On the other hand, it is very unlikely that short-term operational 
disturbances will disappear when the nominal operating point is subject to uncertainty. 
Consequently, in such cases we face overlaying sources of uncertainty which interfere 
with each other, meaning these singular/rare events divide the above-mentioned 
timeframe into intervals which need to be accounted for in the flexibility index problem. 

This paper discusses possible approaches to account for overlaying uncertainty sources 
in the flexibility index problem and present the necessary reformulations of the flexibility 
index problem as originally reported by Swaney and Grossmann (1985).  

2. Flexibility index and suggested reformulations 

The formulation of the flexibility index problem reported by Swaney and Grossmann 
(1985) is given in Eq. (1) where 𝑑 is the vector of design variables, 𝑧 relates to the control 
variables, and the varying inlet conditions or uncertain parameters are denoted by 𝜃. 

𝐹𝐼 ൌ max 𝛿 
𝑠. 𝑡. max

ఏ∈்ሺఋሻ
min
௭

max
௝∈௃

 𝑓௝ሺ𝑑, 𝑧, 𝜃ሻ ൑ 0 

       𝑇ሺ𝛿ሻ ൌ ൛𝜃௜ห𝜃௜,ே െ 𝛿∆𝜃௜
ି ൑ 𝜃௜ ൑ 𝜃௜,ே ൅ 𝛿∆𝜃௜

ାൟ ∀ 𝜃௜ ∈ 𝜃 
       𝛿 ൒ 0 

(1) 

The maximum feasible variation range is described by 𝑇ሺ𝛿ሻ which states that if 𝛿 ൌ 1, 
the maximum feasible and the expected variation range are similar. Hereafter, we include 
overlaying uncertainty sources (which interfere with each other) in the original 
formulation of the flexibility index (see Eq. (1)) and present the shortcomings. We then 
derive reformulations to the original flexibility index problem to overcome these 
shortcomings. For readability, the uncertainty sources are classified as shown in Table 1. 

Table 1: Different classes of uncertainty based on the source or origin of the uncertainty 

Conventional operational disturbances 
(included in the original flexibility index 
formulation, see Eq. (1)) 

Uncertainty class A 

“Other” sources of uncertainty (i.e., nominal 
operating point varies or changes) 

Uncertainty class B 

2.1. Original flexibility index formulation and overlaying uncertainty sources 

In line with the original formulation of the flexibility index problem, it may be intuitive 
to include (additional) uncertainty sources (of any kind and nature) in a similar fashion to 
that proposed for uncertainty class A by Swaney and Grossmann (1985). Thus, the vector 
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𝜃 would represent all uncertain parameters (of class A and class B: 𝜃௖௟௔௦௦ ஺ and 𝜃௖௟௔௦௦ ஻) 
and 𝑇ሺ𝛿ሻ is formulated as in Eq. (1). This approach yields a single scalar which expresses 
the maximum feasible variation/change for each uncertain parameter in 𝜃. Note that a 
physical uncertain parameter (e.g., an uncertain temperature) may be present in both sets, 
𝜃௖௟௔௦௦ ஺ and 𝜃௖௟௔௦௦ ஻, while the expected variation range or change (∆𝜃ି and ∆𝜃ା) differs 
for each class. However, with such an approach it is not possible to gain information on 
the feasibility of operational short-term disturbances (class A) when the nominal 
operating point varies or changes (class B) since the uncertainty sources are analyzed 
independently of each other. Such information is, however, vital in design and planning 
processes and to overcome this problem, Eq. (1) needs to be formulated for different 
discrete nominal points (𝜃ே) and the resulting formulations can then be solved in an 
iterative scheme. This iterative scheme can be impractical and time-consuming; thus, we 
suggest reformulating Eq. (1).   

2.2. Suggested reformulation of the flexibility index problem 

In our approach, we aim to find the maximum feasible variation/change for uncertain 
parameters of class B which ensures that a pre-defined flexibility target of the uncertain 
parameters of class A (operational short-term disturbances) is feasible, e.g., the expected 
variations of the uncertain parameters of class A are exactly feasible. Thus, we distinguish 
between the two uncertainty classes and suggest reformulating Eq. (1) to Eq. (2).  

𝐹𝐼 ൌ max 𝛿஻ 
𝑠. 𝑡. max

ఏ∈்ሺఋಲ,ఋಳሻ
min
௭

max
௝∈௃

 𝑓௝ሺ𝑑, 𝑧,𝜃௖௟௔௦௦ ஺, 𝜃௖௟௔௦௦ ஻ሻ ൑ 0 

      𝑇ሺ𝛿஺, 𝛿஻ሻ ൌ ൞

൛𝜃௜ห𝜃௜,ே െ 𝛿஺∆𝜃௜
ି ൑ 𝜃௜ ൑ 𝜃௜,ே ൅ 𝛿஺∆𝜃௜

ାൟ ∀ 𝜃௜ ∈ 𝜃௖௟௔௦௦ ஺

 ൛𝜃௞ห𝜁௞ െ 𝛿஺∆𝜃௞,஺
ି ൑ 𝜃௞ ൑ 𝜁௞ ൅ 𝛿஺∆𝜃௞,஺

ା ൟ 

൛𝜃௞ห𝜃௞,ே െ 𝛿஻∆𝜃௞,஻
ି ൑ 𝜁௞ ൑ 𝜃௞,ே ൅ 𝛿஻∆𝜃௞,஻

ା ൟ
ቋ∀ 𝜃௞ ∈ 𝜃௖௟௔௦௦ ஻

 

      𝛿஺ ൌ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡, 𝛿஻ ൒ 0 

(2) 

Eq. (2) includes several reformulations compared to Eq. (1). When distinguishing 
between uncertain parameters of class A and of class B, the maximum feasible 
variation/change for each class is respected individually by defining a scalar 𝛿 for each 
class (𝛿஺, 𝛿஻). As aforementioned, we suggest searching for the maximum feasible 
variation/change for uncertain parameters of class B which allows for a pre-defined 
flexibility target of the uncertain parameters of class A. Consequently, the constraint 𝛿஺ ൌ
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 is included in Eq. (2) while searching for the maximum value of 𝛿஻ is 
formulated as the objective function. Furthermore, the uncertainty of the nominal value(s) 
for the uncertain parameters of class B is respected by defining the variables 𝜁௞ ∀ 𝜃௞ ∈
𝜃௖௟௔௦௦ ஻. Consequently, the first and the second line in 𝑇ሺ𝛿஺, 𝛿஻ሻ guarantee that expected 
short-term disturbances remain feasible when the nominal operating point varies or 
changes. The maximum feasible variation/change of the nominal operating point is found 
by including the third line in 𝑇ሺ𝛿஺, 𝛿஻ሻ. 

For solving Eq. (2), we suggest using the active constraint strategy proposed for solving 
Eq. (1) by Grossmann and Floudas (1987). This requires that an upper bound for the 
operational flexibility target value is pre-defined (𝛿஺ ൌ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡). This upper 
bound can be obtained in a first step by considering only the uncertain parameters of class 
A and thus formulating and solving Eq. (1). In a second step, the uncertain parameters of 
class B are added, and Eq. (2) can be formulated and solved. 

uncertainty sources
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If the expected variation range of operational uncertainty (class A) is itself expected to 
change (when the nominal operating point varies/changes), ∆𝜃௞,஺

ି  and ∆𝜃௞,஺
ା  can be 

defined as functions depending on the nominal operating point 𝜁௞ (e.g., if the expected 
variation range of short-term disturbances is expected to be a percentual share of the 
nominal operating point, such as ± 5%). 

3. Illustrative Example 

Consider a process with a feasible operating region that can be described by a set of given 
constraints (Eq. (3a) to (3f)) where 𝜃ଵ and 𝜃ଶ correspond to two uncertain parameters and 
𝑥ଵ denotes an additional state variable. 

𝜃ଵ െ 2𝑥ଵ ൌ 0 (3a) 

2𝑥ଵ െ ൬67 െ
2
3
∗ 𝜃ଶ൰ ൑ 0 (3b) 

10 െ 0.25𝜃ଶ െ 𝜃ଵ ൑ 0 (3c) 
𝜃ଵ െ ሺ0.5𝜃ଶ ൅ 5ሻ ൑ 0 (3d) 
2.5 ൅ 0.05𝜃ଶ െ 2𝑥ଵ ൑ 0 (3e) 
𝜃ଵ െ ሺ22.5 െ 0.05𝜃ଶሻ ൑ 0 (3f) 

Let us further assume a nominal point (𝜃ଵ,ே, 𝜃ଶ,ே) = (12, 65) and due to operational 
disturbances, 𝜃ଵ and 𝜃ଶ are expected to vary in the range of (±4, ±8). Following the 
suggested two-step solution algorithm, Eq. (1) is formulated and solved for the illustrative 
example, and the flexibility index is calculated to be 𝐹𝐼ா௤ଵ ൌ 𝛿஺,௠௔௫ ൌ 1.25. 

For illustrative purposes, we further 
assume that the nominal values of 𝜃ଵ 
and 𝜃ଶ are expected to change due to a 
singular event, but that the potential 
changes are not independent, i.e., 𝜁ଵ is 
correlated with 𝜁ଶ. We assume that the 
maximum (expected) change of 𝜁ଶ is 
∆𝜃ଶ,஻,௠௔௫

ି ൌ െ40 and the correspond-
ding change of 𝜁ଵ is given by            
𝜁ଵ ൌ 23 െ 0.17 ∗ 𝜁ଶ. Solving Eq. (2) 
for 𝛿஺ ൌ 1 (expected operational 
disturbances are feasible), yields 𝛿஻ ൌ
0.6 meaning that 𝜁ଶ may only decrease 
by ∆𝜃ଶ,஻,௙௘௔௦௜௕௟௘

ି ൌ െ24.0 to ensure 
that the operational disturbances, (±4, 
±8), can be handled by the process 
equipment also at the new operating 
point. The analysis is illustrated in Figure 1 in which the expected variation range of the 
operational disturbances (uncertainty class A) are shown as a black, hatched rectangle 
around the current nominal operating point, and the expected change of the operating 
point (uncertainty class B) is shown as solid black line. Additionally, the maximum 
feasible change of the nominal operating point is indicated by a grey arrow pointing from 
the current nominal operating point to the shifted operating point. The potential change 
of the nominal operating point is limited by the expected operational disturbances 
(visualized as grey, hatched rectangle around the shifted nominal point). 

Figure 1: Visualization of flexibility analysis for 
illustrative example (operational disturbances 
overlaying with change of nominal operating point) 
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By means of an additional case, we 
now illustrate how the proposed 
approach can be used when the 
expected variation range of operational 
uncertainty (class A) is expected to 
change (when the nominal operating 
point varies/changes). An illustrative 
example, very similar to the previously 
presented example was developed, but 
in contrast to the previous example the 
operating variation does not remain 
constant but depends on the nominal 
point, i.e., (∆𝜃ଵ,஺, ∆𝜃ଶ,஺) = (േ0.3𝜁ଵ, 
േ0.3𝜁ଶ). The analysis of the additional 
case is shown in Figure 2.  

4. Industrial case study 

To illustrate the practical application of 
the proposed reformulations, an 
industrial case study taken from Marton et al. (2021) was investigated. The case study 
involves three process streams which are part of two different process units of an oil 
refinery located in Sweden. The flow sheet of the case study is shown in Figure 3 and 
process data (including the variation range) is presented in Table 1 in Marton et al. (2021). 
For the analysis, it was assumed that the UA-value of heat exchangers HX 1-1 and 1-2 is 
850 kW/K and 110kW/K for the exchanger HX 2. With the given design data and the 
variation data in Table 1 in Marton et al. (2021), the flexibility index was calculated to be 
𝐹𝐼ா௤ଵ ൌ 𝛿஺,௠௔௫ ൌ 1.38 using Eq. (1). In Marton et al. (2021), it was also discussed that 
the refinery operating company is considering introducing biomass feedstock in the oil 
refinery, which would cause a substantial increase of the nominal flow rates of streams 1 
and 2 (see Figure 3). Assuming a flow rate increase of streams 1 and 2 of 50-100% 
compared to current operation (numbers given in Figure 3), the reformulations suggested 
in this paper can be used to analyse if the process configuration would remain feasible 
(operational disturbances remain constant). Formulating and solving Eq. (2) yields 𝛿஻ ൌ
0.5 (for 𝛿஺ ൌ 1) for an expected increase in flow rates of streams 1 and 2 of 100%. 
Consequently, it can be concluded that the process configuration would be able to handle 
an increase of 50% in the flow rates while for any larger increase in flow rates the 
expected operational short-term uncertainty may not be feasible.  

5.  Influence of operational flexibility target value 

The influence of the operational flexibility target value (𝛿஺ ൌ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 in Eq. 
(2)) was investigated by means of sensitivity analyses. Eq. (2) was solved for different 
target values of 𝛿஺ for both cases of the illustrative example and the case study. We 
identified non-linear dependencies between 𝛿஺ and 𝛿஻ for the case study (due to non-
linearities in the constraints describing the equipment) and the case when operational 
disturbances depend on the nominal point (percentual change itself is non-linear). For the 
first case of the illustrative example, we identified a linear dependency between 𝛿஺ and 
𝛿஻ which is dependent on the limiting or active constraint (i.e., when the limiting/active 
constraint changes, the parameters of the linear dependency also change). 

Figure 2: Visualization of flexibility analysis for 
additional case of illustrative example (operational 
disturbances depending on nominal point).                
Solution of Eq (1): 𝐹𝐼ா௤ଵ ൌ 𝛿஺,௠௔௫ ൌ 1.33 
Correlation between 𝜁ଵ and 𝜁ଶ: 𝜁ଵ ൌ 8 ൅ 0.06 ∗ 𝜁ଶ 
Solution of Eq. (2) for 𝛿஺ ൌ 1: 𝛿஻ ൌ 0.73  

Flexibility analysis of chemical processes considering overlaying  
uncertainty sources
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Figure 3: Flowsheet of heat exchanger network case study adapted from Marton et al. (2021). 

6. Conclusion 

This paper presented novel reformulations of the flexibility index problem to efficiently 
account for overlaying uncertainty sources which interfere with each other. We defined 
that overlaying uncertainty sources are present when the timeframe for which the 
flexibility analysis is aimed to be valid needs to be divided into intervals. We then 
established the need for the aforementioned reformulations by firstly classifying different 
(possibly overlaying) uncertainty sources and secondly presenting the shortcomings of 
the original flexibility index formulation when exposed to such overlaying uncertainty 
sources (i.e., iterative scheme). In this paper, we focused on the deterministic calculation 
of the flexibility index (i.e., based on expected variations). However, distinguishing 
between overlaying uncertainty sources should also be considered when operational 
disturbances and/or uncertainty of the nominal operating point are expressed via 
probability density functions. An illustrative example and an industrial case study were 
investigated and for both, the feasible change of the nominal operating point (due to a 
singular event) could be determined respecting short-term operational disturbances. 
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Abstract 

The reduction of CO2 footprint, the valorisation of different carbon containing sources 
(stranded gas, biomass, plastic waste, high carbon-containing streams released by plants 
etc.) as well as the usage of renewable electricity are of increasing interest, especially in 
relation to global warming and the limitation of carbon containing natural resources. In 
this context, methanol is a key molecule; which can satisfy both environmental 
requirements and economic constraints; for energy storage, for clean fuels and as a 
building block for producing high value chemicals.  

The utilization of hydrogen produced from electrolysis using renewable energy directly, 
the use of unconventional feedstock (CO2, off-gases etc.) with the changing of gas 
compositions and a higher focus on smaller units for methanol production are challenging 
and not only from an economical point of view but also regarding the catalyst degradation, 
the heat management, the by-product formation and the integration in an existing 
industrial complex. Therefore, the innovation philosophy has not only focused on finding 
a solution for the methanol synthesis loop but for the global process via new types of 
equipment (reactor, distillation, heat exchanger etc.), process intensification (layer 
management, intermediate product separation etc.), and smaller footprint (smaller 
equipment, new arrangement etc.) to optimize the CAPEX and OPEX.  

In this contribution, an update of R&D methanol pilots is provided with some highlights 
on recent developments of the multistage reactor. These include the main pilot's features 
and capability, the campaign for validation of different scenarios i.e operating conditions, 
different design, model validation, by-product formation, dynamics, etc  which 
specifically aims for off-gas and CO2 rich gases valorisation from the steel industry. The 
availability of the conventional pilot and the flexibility of the new developed methanol 
pilot at Air Liquide Innovation Campus Frankfurt paves a way for a physical and digital 
connection with advanced electrolysis pilots using renewable energy from the grid for H2 
production and consequently to demonstrate a complete flexible and sustainable concept 
from power to X (i.e Fuel). 

Keywords: Methanol; electrolysis; off-gas; carbon dioxide; hydrogen 

1. Introduction 

Carbon footprint reduction appears in the past few years as a key topic in multifaceted 
discussion in different industries and governments in reaching carbon neutrality. Until 
2021, the 44 countries and  the  European  Union  have  committed  to  meet  a  net‐zero 

emissions  target which  accounts  for  around  70%  of  global  CO2  emissions  and  GDP 
by 2050 (IEA, Net Zero by 2050). Supporting the sustainable development and climate 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50129-9 
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objectives, Air Liquide pledges to reach carbon neutrality by 2050 by increasing the use 
of low-carbon electricity for operations, implementing innovative carbon capture 
technologies, optimizing supply chains and improving the efficiency of our production 
units and products portfolio (Figure 1). 

 
Figure 1: Air Liquide commitment and stepwise approach in reaching carbon neutrality 

until 2050 ( Air Liquide Climate Objective) 
Beside the direct electrification of renewable energy, it is believed that hydrogen from 
electrolysis is an excellent solution for the growth of renewable energy, enabling a novel 
way of renewable energy distribution to different industrial sectors i.e mobility, heat, 
chemical, steel… As renewable energy sources are widely dispersed  and intermittent by 
nature, a storage and transportation solution is necessary to ensure the supply chain and 
the best green energy exploitation. Among different storage solutions, green hydrogen 
can be further combined with a C1 source i.e CO2, off-gas/flue gas with CO/CO2 content 
in producing methanol as a solution for carbon footprint reduction. 

Air Liquide has a strong history in methanol production covering from R&D to various 
commercial products in its portfolio including the Lurgi Methanol and Lurgi 
MegaMethanolTM technologies. Since 1969, more than 68 licenses have been sold 
globally for a capacity of more than 55,5 million tonnes per year of methanol production. 
In a close collaboration with Engineering and Construction, R&D is well equipped with 
competency and pilots supporting different methanol research activities and 
benchmarking (N.T.Q. Do et al 2020; T. Oelmann et al, 2020). In the past years, different 
extensive studies on conventional based methanol and CO2-based methanol synthesis 
have been done at the Innovation Campus Frankfurt covering process development, new 
concept testing, catalyst validation, kinetics model and by-product model development 
(T. Svitnic et al, 2020) and strong focus recently is on off-gas valorisation and CO2 based 
methanol using green hydrogen (EU i3upgrade project funded by RFCS). 

This paper aims to give an update on R&D methanol pilots with some highlights on recent 
developments of the multistage reactor development. These include the main pilot's 
features and capability, the campaign for validation of different scenarios i.e operating 
conditions, different design, model validation, byproduct formation, dynamics, etc  which 
mainly aims for off-gas and CO2 rich gases valorization from the  industry.  
The availability of the conventional pilot and the flexibility of the new developed 
methanol pilot at Air Liquide Innovation Campus Frankfurt paves the way for a physical 
and digital connection with advanced electrolysis pilots using renewable energy from the 
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grid for H2 production and consequently to demonstrate a complete flexible and 
sustainable concept from power to X (i.e Fuel). 

2. Results and Discussion 

2.1 Conventional Methanol Unit 

 
Figure 2: Conventional MeOH 

pilot plan 

The first methanol pilot was constructed more than 10 
years ago featuring MegaMethanol set up with a 
water cooled reactor (WCR) and gas cooled reactor 
(GCR). The maximum methanol capacity of this pilot 
plant is about 6 kg/h. The unit is well equipped with 
a thermocouple for tracking temperature along the 
reactor length, control and analytical tools for 
composition analysis. It was used intensively to 
validate different concepts and catalyst testing in the 
past. Examples can be seen in figure 3 in which two 
catalyst testing concepts are presented. 

a) b) 
Figure 3: Concept testing at our first methanol pilot plant a) one layer catalyst testing b) 

two layers of catalyst testing 

a) b) 
Figure 4: The fitting of modeling using CO2 kinetics and measure data a) CO2 

conversion b) Space Time Yield (STY) 
The temperature profile of one layer catalyst (figure 3a) and layer management (figure 
3b) concept is shown in which one type of catalyst and two types of catalyst are installed 
inside the reactor correspondingly. There is an excellent agreement between experimental 
data and modeling of the two concepts which sets a good basis for scale up and 

with Green Hydrogen
777



  

commercialization (N.T.Q. Do et al 2020). One concrete example of the usage of this 
asset is the development of the layer management (LM) concept with Air Liquide 
Engineering & Construction and with Clariant as described in figure 3b. Within the LM 
concept, a different optimization strategy can be tailored for CAPEX (less catalyst 
volume, compact distillation) and OPEX (longer catalyst lifetime, less recycle ratio,  heat 
management, less by-product formation) saving. This concept can also open for 
customized and disruptive design focusing on flexibility of feedstock, high H2 efficiency 
and compactness of the whole methanol loop. Another example is an extensive test 
campaign with CO2 rich feed stocks to develop a brand new kinetic model for CO2 based 
methanol and a refined deactivation model for the catalyst under these conditions (see 
Figure 4). 

2.2 Multistage Methanol Pilot Unit 

 
Figure 5: Multistage MeOH 

Pilot plant 

The new multistage methanol reactor (figure 5) 
has been built and successfully started in 2020 
under the framework of an EU project funded by 
RFCS namely i3-upgrade (grant agreement No 
800659) with the objective to convert off-gases 
from steel plant into methane and methanol. In this 
case it is very important to respond quickly to 
changes in load and in gas compositions, to be able 
to deal with high amounts of inert like methane 
and nitrogen, as well as to use very effectively the 
hydrogen available. 

The reactor has several tubes with several stages which can be flexibly adjusted for 
different concept testing. The system is well equipped with thermocouple, hot gas 
sampling, and online-offline analysis. The throughput is up to 35 m³N/h for feed gas and 
can produce methanol with capacity up to 20kg/h. The multistage reactor concept is 
promising to offer an optimal solution in the conversion of gases with high inert content 
since it allows very effective conversion rates at reduced recycle rates (down to <1), or 
even without recycling, and reduced costs (CAPEX & OPEX) for low reactive gases like 
CO2. As a first step toward validation, an experimental campaign has run in the 
multistage pilot for more than 1800 hours time on stream (TOS) to confirm for example 
byproduct content, temperature profiles and plant dynamics and to validate the process 
model setting as a basis for next step process design. The total byproduct value of the 
reactor under different pressure conditions can be seen in Table 1. This is crucial to ensure 
proper distillation column design and requested methanol grade. 

Table 1: maximum temperature, hydrogen conversion and byproducts formation  

Case P/ bar MUG/ Nm³/h Tmax/°C X_H2/% By-products/wt-ppm 

1 50 6.7 251 63.6 3808 
2 70 6.7 261 72.7 3928 
3 90 6.7 273 78.1 3909 
4 110 6.7 279 81.9 3548 
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Figure 6: Temperature profile of 4 stages in 4 different cases studies as listed in table 1 

The temperature profile decreases along with the stages and reaches a flat profile 
approaching the reactor end due to the reduction of exothermic reaction as the 
components approach equilibrium (figure 6) and also the cooling effect of the water 
jacket.  

 
Figure 7: The load response of plant to set point 

As renewable energy is very intermittent by nature. Additionally, offgas outlets in terms 
of composition and conditions can also vary depending on upstream feedstock and 
operation mode. Therefore, one of the challenges of integration from upstream fluctuation 
behavior to electrolysis and to hydrogen usage downstream like methanol is to know the 
bottle-neck(s) that determines the whole plant dynamics. This is to ensure the whole value 
chain operability and supply chain planning and optimization. Aiming to understand the 
dynamics, the campaign was done in the pilot by varying load in different steps and time 
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intervals in a once-through setup. Results in figure 7 show a very fast response (less than 
10 minutes) of the process value to the set point values. This is a huge advantage in 
comparison to the classical setup in which a much longer time is needed to respond to 
changes in load and in gas compositions. In the first step this indicates very good synergy 
in the coupling solution of electrolysis and this new multistage methanol reactor system. 
Moreover, it paves the way for innovative advanced process control schemes to respond 
properly to the availability of hydrogen and the CO and CO2 present in different streams 
for the methanol synthesis. 

3. Conclusions and Outlook 

The reduction of carbon footprint via the valorization of CO2 rich gas, off gas, and flue 
gases to fuel or further usable chemicals are of increasing interest for many industries. 
Combined with green hydrogen from electrolysis using renewable energy, this C-1 gas 
source can be used for producing clean methanol as a direct fuel source or building block 
for producing high value chemicals. To enable the synergy of the whole value chain from 
upstream (energy) to downstream (production, usage, storage), the innovation philosophy 
has not only focused on finding an optimal solution of one process unit but the whole 
chain. Having a stepwise approach, identification of determining process units is 
important for operability and process design. In this contribution, the strong focus on the 
methanol process can be realized. In addition to the conventional methanol pilot, the 
recent developments on new process concepts and the multistage reactor development 
has provided some detailed information based on the experimental campaign of about 
2000 hours of TOS. The by-product formation, the temperature profile and peak 
temperature are in the common range and the fast response of the reactor can be achieved. 
The dynamic behaviour of the new pilot shows a promising synergy with electrolysis in 
valuing the renewable energy fluctuation. The flexibility in stage operation provides an 
opportunity in the development of tailor-made solutions for diverse carbon sources, 
especially focusing on a circular economy and on the valorisation of off-gases and of CO2 
rich streams from industries and the distribution of renewable energy. 
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Abstract 

CO2 has been deemed crucial as an alternative carbon source recently due to its low price 

and the urge to utilize it as a way to reduce its amount in the atmosphere. Diethyl 

carbonate (DEC) is a potential candidate for CO2 conversion because it can serve as good 

fuel additive or solvent for lithium batteries. However, CO2 conversion reaction often 

suffers from low conversion rate because of its very stable chemical activity. Not only 

catalyst development is essential, but the research from a process systems engineering 

(PSE) perspective is also necessary when considering the practical implementation in the 

future. In the previous work from our group (Chen & Chien, 2018), three processes of 

DEC synthesis from CO2 and propylene oxide (PO) were proposed and compared. The 

results showed that the two-step process performed relatively better in CO2 emission 

amount. The two step process includes PO reacting with CO2 to produce propylene 

carbonate (PC) and PC reacting with ethanol to produce DEC. Nevertheless, after 

environmental evaluation throughout the two-step process, the positive net CO2 emission 

amount indicated that it still couldn’t be a strategy for CO2 emission mitigation. In this 

study, the root cause of the high energy consumption of the process was reviewed, and it 

was found that the large excess ratio of the second step reaction led to massive energy 

consumption in the separation stage. Consequently, process optimization has been 

executed by sequential iterative procedure. Heat exchanger network according to pinch 

analysis along with thermally coupled configuration has been developed for the two-step 

DEC synthesis process, and the results showed that the new design can save at least 75% 

CO2 emission amount for the process. The purpose of this work is to investigate the 

potentiality of the system to be a CO2 emission reduction route. 

Keywords: CO2 Utilization; Diethyl Carbonate; Heat Exchanger Network; Optimization. 

1. Introduction 

Extreme climate all over the world due to the serious Greenhouse effect has caused many 

serious disasters nowadays. The reduction and utilization of CO2 have become urgent 

research topics, and CO2 valorisation can be a solution to consuming CO2 profitably. 

Among the candidate products of CO2 valorisation, DEC is a promising one for its wide 

applicability as fuel additive or solvent. In addition, no azeotropes exist in the system of 

DEC production process, which will be an advantage for the purification section. 

Chen and Chien (2018) had investigated three routes for producing DEC by using CO2 

and PO as the feedstocks. Route 1 consists of three steps, which start from the production 

of PC, and the transesterification of which with methanol produces dimethyl carbonate 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50130-5 
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(DMC), leading to the final product DEC by reacting with ethanol. Route 2 has the same 

first step of producing PC, with the second step reacting PC with ethanol to produce DEC 

directly. Route 3 is a one-pot reaction of PO, CO2 and ethanol, generating DEC with 

propylene glycol monoethyl ether (PEE) as by-product. After economic and 

environmental evaluations, route 2 was decided to be the process which exhibited larger 

potential for carbon dioxide utilization. 

As a result, optimization, process intensification and heat exchanger network design were 

implemented in this study, in order to disclose the capability of reducing carbon emission 

through this application. Net CO2 emission for route 2 in Chen and Chien (2018) was 

estimated to be 0.7 kg CO2/kg DEC, and it is our target to reduce the value to less than 0 

which can truly imply a reduction in carbon emission. 

2. Process description and optimization 

The process flowsheet of route 2 proposed by Chen and Chien (2018) is shown in Fig. 1, 

which demonstrates two reactors and four columns. CO2 and PO are fed to a PFR first for 

the production of PC, which is purified in the following stripper. Subsequently, ethanol 

is fed into the system with PC in a CSTR for generating the desired product DEC. Ethanol 

excess ratio was set to be 8 to achieve a higher PC conversion, and this leads to high 

energy consumption to purify the unreacted ethanol for the following column. The last 

two columns are used for purifying DEC and the by-product PG. 

Optimization by simple sequential iterative procedure has been carried out for choosing 

proper design parameters and operating conditions. Stripper pressure, stripper stage 

number, pressures, stage numbers and feed locations for the three purification columns 

were determined by the optimization procedure using total annual cost (TAC) as objective 

function. In this work, the overall TAC is calculated by Eq. (1), where TOC stands for 

total operating cost and TCC stands for total capital cost. The correlations for TAC 

calculation were from Luyben (2012). 

TAC = TOC + 
TCC

payback period
  (1) 

ComprCooler

PFR

STR

CO2

22.25 kmol/hr

320 K

PO
20.23 kmol/hr

320 K

Purge
2.48 kmol/hr, 341 K

CO2   0.909

PO     0.091 

PC (product)

20.00 kmol/hr, 518 K

P = 0.1013 MPa

D = 0.48 m
 Q = -688.1 kW

 PC conversion = 0.999

251.7 kW

320 K

-136.5 kW

4.0 MPa

 PC recovery = 0.999

5

Purge fraction = 0.10

EtOH
39.91 kmol/hr

320 K

C1

C2
C3

 T = 303 K

 Q = -967.9 kW

 PC conversion: 57.4%

EtOH recycled

242.17 kmol/hr, 391 K

EtOH  0.980

DEC    0.018

PG       0.002

B1

54.92 kmol/hr

489 K

EtOH  0.001

DEC   0.363

PG      0.366

PC      0.269

B2

34.91 kmol/hr

468 K

DEC   0.0006

PG      0.5759

PC      0.4236

PC recycled

14.91 kmol/hr, 515 K

PG  0.013

PC  0.987

DEC (product)

20.00 kmol/hr

399 K

EtOH   0.004

DEC    0.995

PG       0.001

PG (product)

20.00 kmol/hr, 461 K

DEC   0.001

PG      0.995

PC      0.004

-3538.7 kW

-685.8 kW
-1743.4 kW

5167.8 kW

418.3 kW 1767.5 kW

P = 0.4 MPa

RR = 0.47

D = 1.77 m

6

9

14

19
29

20

P = 0.1013 MPa

RR = 2.39

D = 0.97 m

P = 0.1013 MPa

RR = 5.01

D = 1.17 m

 DEC/(EtOH + DEC) 

  = 0.996

 DEC recovery = 0.999
 PG recovery = 0.99

 

Fig. 1. DEC two-step production process flowsheet 
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After process optimization, in comparison to the base case in Fig. 1, pressures of 

stripper and C1 were adjusted lower to save reboiler duty and heat exchanger area. 

Number of stages in C3 has been increased considerably since PC and PG have close 

VLE curves which indicate more required stages for separation. Nevertheless, C1 

remains to be the unit with the largest energy consumption. 

3. CO2 emission calculation 

CO2 emission amount throughout the process is calculated by the addition of CO2 

emission due to energy usage in each unit. In this process, steam of different grades for 

reboilers and electricity used in compressor were considered. The corresponding CO2 

emission amount of different utilities follows the calculation method proposed by Gadalla 

et al. (2005) and is listed in Table 1. The main correlation for calculating CO2 emission 

amount is shown as Eq. (2), where QFuel is the amount of fuel used; NHV is the net heating 

value of the fuel used in the boiler (LNG 51600 kJ/kg); C% is the carbon percentage of 

the fuel (75.4 for LNG); α is the molar weight ratio of CO2/C (3.67).  

[𝐶𝑂2]𝐸𝑚𝑖𝑠𝑠 = (
𝑄𝐹𝑢𝑒𝑙

𝑁𝐻𝑉
)(

𝐶%

100
)𝛼  (2) 

 

Table 1. Equivalent CO2 emission amount  

Utility Equivalent CO2 emission (kg/GJ) 

Low-pressure steam, 0.5 MPa, 160 oC 72.86 

Medium-pressure steam, 1.0 MPa, 184 oC 76.60 

High-pressure steam, 4.2 MPa, 254 oC 91.14 

Electricity  96.95 

Cooling water - 

4. Process intensification and heat integration 

4.1. Thermally-coupled process 

Thermally-coupled columns are commonly used for columns with obvious remixing 

effect (Li et al., 2015; Wang et al., 2014), which leads to unnecessary energy consumption 

and can be observed on the figure of composition profile in columns. After reviewing the 

composition profile in the purification columns C1 – C3, it was found that C1 and C2 

both had obvious remixing effect in DEC and PG components respectively. C2 and C3 

was chosen to implement the thermally-coupled streams because high-pressure steam was 

used in these two columns, while medium-pressure steam was used in C1. 

It can be observed that remixing effect has been almost eliminated after implementing 

thermally coupling to C2 and C3 as shown in Fig. 2. PG composition fluctuates less and 

the overall reboiler duty has been saved for 3.26%. Noted that optimization when 

implementing thermally coupling is necessary since vapor side draw flow rate and liquid 

side stream feed location are influential to the energy saving result. Optimized design 

parameters for the thermally-coupled columns can be seen in Fig. 3. 
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Fig. 2. Elimination of remixing effect in C2 after thermally coupling 

4.2. Heat integration 

By observing the energy consumption among each unit in Fig. 1, it is obvious that the 

most energy-consuming unit is C1 for ethanol purification. The ethanol purified 

specification was set to be 98 mol% for the sake of saving energy; however, the large 

excess ratio of ethanol to PC led to the significant amount of steam usage. Fortunately, 

this is an opportunity for using the top vapor in C1 as a heat source for the system. Final 

process flowsheet with thermally-coupled columns and heat integration is shown in Fig. 

4. The top vapor stream of C1 was used to heat up the product stream of DEC reactor, 

and the top vapor streams of C2 and C3 joined the line to preheat the inlet stream fed to 

C1. The sequence of using different heat sources was determined by their temperature to 

guarantee the enough temperature difference for heat exchange. An auxiliary condenser 

is needed for C1, for the temperature of C1 top vapor stream is not high enough for 

complete heat exchange with reactor product stream. After optimization and heat 

integration, 60% of C1 reboiler duty can be reduced compared to the base case. A feed-

effluent heat exchanger is further installed before the thermally-coupled columns C2 and 

C3. 
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Fig. 3. Optimized design parameters for the thermally-coupled columns 
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EtOH
40.35 kmol/hr

320 K

C1

C2
C3

 T = 303 K

 Q = -77 kW

 PC conversion: 57.4%

EtOH recycled

241.7 kmol/hr, 320 K

EtOH  0.980

DEC    0.019

PG       0.001

PC recycled

14.84 kmol/hr, 320 K

PG  0.014

PC  0.986

DEC (product)

19.99 kmol/hr

399 K

EtOH   0.004

DEC    0.995

PG       0.001

PG 
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19.98 kmol/hr

463.9 K

DEC   0.0001

PG      0.995

PC       0.005

352 K

-2640.1 kW

399 K

-468.5 kW

464 K

-997.1 kW

425 K

2077 kW

P = 0.1013 MPa

RR = 0.19

D = 1.36 m

6

9

24

34
42

41

P = 0.1013 MPa

RR = 1.35

D = 0.65 m

P = 0.1113 MPa

RR = 2.47

D = 0.9 m

ComprCooler

PFR

STR

CO2

22.26 kmol/hr

320 K

PO
20.24 kmol/hr 

320 K

Purge

2.49 kmol/hr, 375 K

CO2   0.902

PC (product)
19.99 kmol/hr

507 K

P = 0.076 MPa

D = 0.33 m
 Q = -668.8 kW

 PC conversion = 0.999

169.2 kW

320 K

-163.7 kW

4.0 MPa

 PC recovery = 0.99

3

Purge fraction = 0.10

Cooler

320 K

-186.3 kW

Cooler

320 K

-300.3 kW

342 K 375 K 429 K

C2 top vap C3 top vap

Purge

0.48 kmol/hr, 352 K

EtOH  0.996

496.4 kW 468.5 kW 997.1 kW

59 kW

C3 vapor sidedraw

32.6 kmol/hr, 472.8 K

PG      0.81

PC      0.19

516 K

1473.4 kW320 K

-105.1 kW

Cooler

 

Fig. 4. Energy-saving process flowsheet 

CO2 emission amount of the base case (Fig. 1), optimized process and the final energy-

saving process with heat integration (Fig. 4) is listed in Table 2. Optimization has 

successfully reduced the energy consumption in the both steps, and half of the CO2 

emission amount can be saved in this stage. After the implementation of thermal coupling 

and heat integration, significant CO2 emission amount can be saved in the PC to DEC 

step along with the saving in energy consumption. A nearly zero value can be derived for 

the CO2 net emission of the best process. Large excess ratio of ethanol and PC resulted in 

the failure of reducing CO2 net emission to a negative value. 

Table 2. CO2 emission amount of the three processes 

  Base case Optimized Optimized & 

Heat-integrated 

CO2 emission (kt/y) Step A: 0.97 0.82 0.82 

Step B: 19.30 12.70 7.95 

CO2 consumption (kt/y) 7.04 7.04 7.04 

Net CO2 emission (kt/y) 13.22 6.57 1.82 

DEC production (kt/y) 18.89 18.84 18.84 

Net CO2 emission  

(kg CO2/kg DEC) 

0.70 0.35 0.097 

CO2 (emission/consumption) 1.88 0.93 0.26 
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5. Conclusion 

A CO2 utilization process for producing DEC has been optimized and intensified by the 

implementation of thermally-coupled columns and heat integration in this study. In the 

base case, PC is generated by the reaction of PO and CO2, subsequently, excess amount 

of ethanol is fed to a CSTR with PC to produce the desired product DEC. The largest 

disadvantage in the system is the large excess ratio of ethanol to PC, which leads to a 

unavoidable large reboiler duty in C1, accounting for up to 67% of CO2 emission among 

the process. CO2 emission amount was calculated to be 0.7 kg CO2/kg DEC. 

Sequential iterative procedure was used for the optimization of the base case. Results 

showed that CO2 emission amount can be reduced to 0.35 kg CO2/kg DEC by adjusting 

the operating pressure and design parameters in the system. 

Thermal coupling was used as a strategy for process intensification. The remixing effect 

in C2 was almost eliminated and the overall heat duty can be saved for C2 and C3. Heat 

integration has also been investigated for the system, and four heat exchangers were 

installed to recover the heat from top distillate streams and a hot stream. The energy-

saving process saves 86% of CO2 net emission amount, leading to a nearly carbon neutral 

DEC production process.  

With new development in catalyst in the future, it is expected that the conversion of PC 

to DEC can be enhanced, and the excess ratio of ethanol to PC can be reduced to a 

reasonable value. Additionally, green energy can be used for supplying the utilities used 

in this system, such as combined heat and power system or renewable energy. It is firm 

that researchers are going to explore in the field of green production, and there is high 

possibility that DEC production can be an approach dealing with CO2 reduction and 

utilization in the near future. 
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Abstract 

One of the main challenges in industrial applications is to optimally manage flare gases 

that are inevitably generated both in routine and non-routine process operations but can 

yet constitute valuable energy resources for process systems. A main challenge is to 

explore the best possible strategies for exploiting these valuable hydrocarbon streams and 

propose process design alternatives and operational solutions that achieve maximum 

recovery and use of flare gases at minimum total cost and considering the uncertainty 

variations associated with flaring incidents. This requires an understanding of the 

characteristics of flare streams that affect their recovery and reutilization potential as well 

as an examination of their impact on process system performance while recognizing that 

the inherently uncertain nature of flaring calls upon a probabilistic approach. In our study, 

we examine the impact of using a comprehensive probabilistic analysis framework for 

process flare streams’ characterization on the design of an optimal recovery and 

utilization system. In particular, the work aims to explore the impact of uncertainty for 

key parameters on the design solutions, such as rate of flare occurrences that were 

assumed constant in other research works (Kazi et al., 2018). Suitable parametrized 

Monte Carlo (MC) simulations are employed for more accurate flare profile 

representations. A comparative study is conducted between the base case optimal design 

and values at risk solutions for cases where flaring variation increases may significantly 

affect the design features and economic performance of the process system. The proposed 

framework could inform decision makers’ assessments of the impact of random variations 

in flaring profiles on process performance profile. 

Keywords: Flare Management, Flaring Uncertainty, Monte Carlo, Flare 

Characterization. 

1. Introduction 

A dominant strategy in the circular economy era is material and energy recovery, 

recycling, and reuse, offering multiple economic, environmental, and social benefits 

when realized in an efficient manner. It has been shown that there are several flare 

management opportunities and enabling technologies for the recovery and utilization of 

flare streams from process industries that can significantly contribute to reducing the 

carbon footprint, increasing energy efficiency and enhancing economic process 

performance, thus supporting circular economy actions (Kamrava et al., 2015; Kazi et al., 

2016; Kazi et al., 2015). In this respect, the main issue is to be able to explore the best 

possible strategies for scavenging these waste streams in a particular process system and 
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suggest the optimal process design and operation alternatives for attaining their maximum 

recovery and utilization at the minimum possible annualized total cost. Moreover, a 

holistic strategy needs to be developed to consider the maximum potential plant-wide 

benefits under uncertainty variations associated with flaring. 

The ability to adequately characterize streams set for flaring in terms of their energy 

supply potential is of paramount importance in order to recognize flaring perspectives, as 

potential waste energy carrier. From a process systems engineering point of view, flare 

stream characterization will facilitate the establishment of optimum designs for the flare 

recovery and utilization system. The challenge is that the flare occurrences, as well as 

flowrates and compositions of hydrocarbon streams flared from various process sites, 

constitute highly uncertain inputs to the design model of a recovery and utilization system 

in a controlled and safer manner (Kazi et al., 2019a, 2019b). Hence, their occurrence rates, 

and their energy content vary significantly over time and with respect to the process site(s) 

from which they are generated (Kazi et al., 2018; Kazi et al., 2015). Although challenging, 

the process energy utilization opportunities are broadened as available streams from 

multiple process sites can be mixed and segregated to obtain the optimum possible waste 

energy load. While flare streams’ characterization is obviously source dependent, 

attaining their combined probabilistic profiles can help in directly identifying ‘the big 

picture’ of the design alternatives and providing insights into a more systematic design 

approach. Hence the framework suggested in this work encompasses a methodology to 

systematically examine the improvement of the integrated process performance regarding 

economics, energy consumption and most importantly the environmental impact for 

routine and non-routine flare gases during abnormal situations. In addition, the extent of 

variations in the uncertain inputs has been examined within the scope of their impact on 

the overall process performance profile through an appropriately developed probabilistic 

sensitivity analysis. 

2. Problem statement 

Given is a productive system with known design and operational data under certain utility 

requirements. Available is also a historical database of flaring events (flare causes, 

sources, frequencies, compositions, and duration) and specific regulatory limits on GHGs. 

A COGEN unit with a specific boiler type and known capital and operating expenditures 

is considered as an efficient flare mitigation tool. A systematic approach to maximize the 

use of available flare streams by optimally sizing the COGEN unit is developed with the 

aim to ultimately gain environmental and economic benefits, as well as to achieve 

efficient energy recovery and sustainability enhancement. The need to explore the impact 

of incorporating a flare mitigation system on process performance while considering the 

uncertainties of the flaring incidents is reflected in particular, whereas an examination on 

how the extent of variations in the uncertain inputs (flare frequency, amount etc.) impact 

performance outcomes (energy-related, environmental, economic) is performed. 

3. Flare streams characterization and optimization model 

Probability distributions of flare properties comprising input variables can capture the 

uncertainty and variability explicitly when incorporated into the optimization model 

taking into account all sources of uncertainty at the same time. Especially non-routine 

flaring events are constantly faced with uncertainty and variability, and thus can not be 

adequately represented in an optimization model. Monte Carlo (MC) techniques are 

utilized in this work to probabilistically characterize and interpret such incidents that can 

subsequently be employed as input variables in process optimization models. MC 

simulations provide a means to risk analysis by building models of possible outcomes 

after sampling a range of values for any uncertain variable. Producing probability 

distributions of all possible outcomes, MC techniques furnish the decision maker with a 

more realistic way of describing uncertainty in input variables that can propagate through 
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the optimization modeling framework. They can also offer multiple insights from the 

whole process case scope and sensitivity analysis results.  

In this study a previously developed multi-period optimization formulation is used, with 

the objective of minimizing total cost of the flare recovery and utilization system. The 

objective function is mathematically expressed as follows (Kazi et al., 2018): 

Objective function: 

∑TAC

𝑀𝑖𝑛

= C𝑜𝑝 × Hγ⏟      
Annual Operating Cost

+ k𝑓 × (CBoiler + CTurbine)⏟                
Annual Fixed Cost

− Pe × Hγ⏟    
Annual Income

− 𝐸𝑜 × Ctax⏟      
Carbon Tax Savings

 
  (1) 

∑TAC

𝑀𝑖𝑛

= 𝐶𝑜𝑝 × (AOT −∑𝜶𝒊𝐭𝒊

𝑁

𝑖=1

)
⏟              
Annual Operating Cost

+ k𝑓 × (CBoiler + CTurbine)⏟                
Annual Fixed Costs

− 𝑃𝑒 × (AOT −∑𝜶𝒊𝐭𝒊

𝑁

𝑖=1

)
⏟              

Annual Income

− (∑𝑒𝑗𝑖
𝑈 − 𝑒𝑗𝑖𝑡𝑖

𝑵

𝒊=𝟏

) × 𝐂𝐭𝐚𝐱
⏟              

Carbon Tax Savings

 

(2)  

𝑖 = Flaring events (e. g. , PRC trip, Acetylene reactor trip, CGC trip etc. )  

𝑘 = Flaring locations (e. g. , flare A, flare B,… flare G)  

Subjected to 

∑𝛼𝑖 = 1

𝑁

𝑖=1

 
(3) 

Where, 𝛼𝑖 =
𝑛𝑖

𝑛𝑡𝑜𝑡
=

Expected number of event 𝑖 per year

Expected number of total events per year
 

 
(4) 

𝑡𝑖 =  
𝑚𝑡𝑜𝑡,𝑖
𝑚𝑖

=
Annual total mass flowrate of event 𝑖

Mass flowrate of event 𝑖 at correspondin 𝑘
 (5) 

Eq. 1 represents the objective function of the optimization model expressed in terms of 

the total annualized cost (TAC) considering the operating costs related to fuels, boiler and 

turbine of the COGEN system, the annualized capital cost of the COGEN, the annualized 

income from any excess generated power, and the environmental cost in terms of CO2 

tax savings for total emissions. Similarly, Eq. 2 refers to the TAC with the same four 

economic terms, but while considering the uncertain variable of operating time based on 

the flare duration fluctuations with the inclusion of αi and ti obtained from MC simulation 

results (see Eqs. 3-5) as explained in Kazi et al. (2018) (Kazi et al., 2018). The ultimate 

objective is to design an optimum COGEN unit (e.g., the size of the boiler and turbine) 

for flare minimization under uncertainty.  

4. Results 

4.1. Probabilistic characterization 

To organize and visualize the data sets available for the ethylene process system under 

consideration, a MC simulation approach was adopted aiming to capitalize on the 

occurrence values of the random variables and characterize the flare streams with respect 

to the extent of their energy supply and utility potential. Therefore, a detailed statistical 

characterization of flare stream occurrences was performed first by using standard MC 

simulation techniques and probability distribution outcomes for flare flowrates that were 

generated for each uncertain incident as shown in Fig.1 for the off-spec production. 

Optimum Flare Recovery and Utilization Systems
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Flare distribution profiles can provide values for the whole range of flare flowrates 

associated with their probabilities, including maximum and minimum flowrate values or 

ranges of flow rates for different scenarios. For example, Fig. 1 demonstrates that the 

probability of the flare flow rate values for the off-spec production to reach up to 1.2 ×16 

kg/yr is around 55%. Thus, if the probability/likelihood of each flaring incident per year 

is known, the expected flowrate value range of that incident can be estimated from its 

distribution profile. Next, these simulation results generated can be simultaneously fed to 

and propagated through the optimization model as random input variables, to generate a 

comprehensive set of solutions under different uncertainty scenarios. The set of solutions 

are obtained in the form of Pareto fronts representing heat and power combination points 

that dictate optimal designs of the COGEN system in the presence of flare uncertainties, 

as discussed in Kazi et al. (2018). Based on the results, the decision-maker can 

appropriately select, trade-off, and incorporate his design and operational preferences 

concerning the desired implementation goals and hierarchically implement and manage 

his preferred design solutions in a multi-objective decision-making approach. 

  

Figure 1. Frequency and cumulative distribution profiles of process upset during off-spec 

production  

 

4.2. Sensitivity analysis  

Next, sensitivity analysis was carried out to explore how the extent of variations in the 

uncertain inputs (frequencies, emissions, cost) impact performance outcomes. Initially the 

probability distribution for the simulated total flaring frequencies is depicted in Fig.2. 

Although it was found that the standard deviation of distribution is quite small in this case 

(0.0067), variations in the total amount of flowrates can be amplified, and hence greatly 

impact process performance outcomes such as, CO2 tax savings, and sizing the COGEN 

unit, as shown in Kazi et al. (2018).  

 

Figure 2. Simulated total frequencies (number of incidents/month) 
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The effect of the incident type on the simulated total Mean Time Between Incidents 

(MTBI) is next illustrated by employing the sensitivity analysis tool of the @ Risk 

software, the results shown in Fig. 3. In particular, a dominant effect of incidents 

happening due to the off-spec production on total expected flaring events (due to the most 

frequent number of these incidents) was evident. The variability of the total amount of 

CO2 emissions generated in the ethylene production plant was also examined with respect 

to both incident type and time (year) of occurrence. In Fig. 4a it is shown that the highest 

variability in CO2 emissions was observed during the years 2005-2007, whereas the 

largest value is shown in 2012. All statistical reports are obtained to enable a full 

characterization of all the uncertain input variables for which probability distributions and 

variability analyses are produced.  

 
Figure 3. Impact of incident type on variability of total MTBI (mo/inc) 

The analysis included examination of the impact of uncertainty in tax rates on expected 

total CO2 cost. Multiple scenarios with 0.9%, 1.2% and 1.5% annual tax rates were 

simultaneously examined, assuming a 0.5% annual tax rate increase. As seen in Fig. 4b, 

annual variability in expected CO2 cost exhibits the same pattern through the different 

scenarios, as expected, with a significantly accentuated effect for the 1.5% tax rate case. 

Uncertainty in economic and market conditions can thus be captured and propagated 

through the optimization model (Kazi et al., 2018). These uncertainty characteristics may 

influence and cause deviations from process objectives and hence need to be explicitly 

included in the model and explored for making more well-informed decisions at both the 

strategic (process design) and operational levels.  

  

(a) (b) 
Figure 4. (a) Variations of the total amount of CO2 Emissions through the decade (2004-2013) 

and (b) CO2 cost variations per year for different tax rate scenarios 

4.3. Effects of uncertainties on process economics 

Sensitivity analysis on the techno-economic and environmental factors was carried out in 

the light of a flaring uncertainty and it was observed that some of the components 

evaluated (i.e., CO2 tax savings) can significantly be influenced by mild changes in the 
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flaring profiles (see Fig. 5a). The flare mitigation options may be over/under designed 

when evaluating the typical values for flare durations. Fig. 5b shows that, if uncertainties 

relating to flare incidents are incorporated, OPEX  values may change for different sizes 

of the COGEN unit. 

(a) (b) 

Figure 5. Effects of uncertainties on economic factors: (a) annual CO2 tax savings and 

(b) annual operating cost under different flare duration scenarios from sources 

5. Conclusions 

Flaring characterization is essential to effectively design a COGEN system and improve 

integrated process performance at an economic, operational and environmental level. The 

extent of variations in the uncertain inputs and its impact was the focus of this work. In 

particular, the proposed framework enables: (1) integration of key data sets facilitating 

further elaboration (insightfully summarizing/visualizing input data of uncertain nature, 

describing basic features, statistically exploring dominant characteristics and trends that 

may have been overlooked), (2) probabilistic characterization of available flare streams 

as energy sources by insightfully generating real flaring profiles using standard MC 

techniques, (3) direct incorporation of the risk associated with the uncertain nature of the 

flaring events in the multi period optimization model, and (4) examination of the 

economic, environmental and energy-related trade-offs derived by optimizing the energy 

recovery and utilization system while providing valuable information to multiple end-

users. Although the usual limitations of the existence of only scarce and case-dependant 

data hinders a more complete exploration of the system’s behaviour, the conceptual 

sensitivity analysis framework for visualizing and describing the degree of impact of 

inherently uncertain parameters’ variability on performance objectives is highlighted, 

aiming at generating real data-driven insights for enhancing the empirical understanding 

of efficient energy recovery and utilization systems. 
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ABSTRACT: In order to enhance the versatility, we proposed a design method in which a 

micro ORC of 10 kW class. The micro ORC is small scale power generation system for using 

renewable thermal energy such as hot springs. However, such thermal energy is of very low grade 

and involves temperature variations, so it is necessary to develop a versatile small power 

generation cycle. In this study, the design conditions of heat exchanger, expander, and pump were 

fixed for the micro ORC, and the power generation performance was investigated using six 

different working fluids for multiple heat source conditions. The heat source flow rate set to be 

3,000 kg/h and the heat source temperature was 393 K. The heat sink flow rate set to be 18,000 

kg/h and the temperature was 293 K. The pump discharge pressure was 1,500 kPa. As a result, 

Among the selected working fluids, butane showed the highest power generation performance of 

12.9 kW. To predict the power generation performance of the micro ORC, we correlated the power 

generation of each working fluid with the thermophysical properties of the working fluid, but low 

correlation was obtained. Therefore, we introduced new parameter, Exergy Parameter Index (EPI), 

for predicting the power generation of a micro ORC. It was found to be a very reliable parameter 

for forecasting the power generation of a micro ORC. 

 

Keywords: Power generation, Organic Rankine Cycle, Renewable energy 

 

1. Introduction 

Small ORCs are one-of-a-kind industrial products because the working fluid, evaporator, 

condenser, pump, and expander are designed to correspond to the heat source conditions. 

Therefore, it is not versatile and has a high cost. In order to design a small ORC, there are two 

ways of thinking about it: one is to create a one-of-a-kind device with the heat recovery rate as 

the objective function, and the other is to improve the power generation performance of the same 

device by changing the working fluid and pump discharge pressure. From the viewpoint of 
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process enhancement, concepts such as miniaturization are necessary in the design of ORCs. 

Recently, several experimental studies of compact ORCs have been reported (Akimoto et al. 2021, 

Li et al. 2021 and Uusitaro et al. 2020 and). Many researchers have discussed the performance of 

power generation by changing the specification of the equipment for a given heat source. To the 

best of our knowledge, the same equipment specification of a small ORC for various heat sources 

has not been studied at all. 

In this study, we proposed a micro ORC as a waste heat recovery technology for the 10 kW class, 

assuming that the pump, expander, and heat exchanger can work properly even if the working 

fluid was different. By considering the micro ORC, we could expect a low-cost and high-

efficiency small-scale exhaust heat recovery technology. In this paper, the micro ORC design and 

its power generation performance was discussed. The micro ORC was adopted by a model-based 

approach. We investigated how the power generation performance of micro ORC was affected by 

the exchange of working fluid and the control of the pump discharge pressure. We also proposed 

an index to represent the operation and design methods that match the heat source conditions. 

 

2. Modeling 

 

Fig. 1 Schematic diagram of the micro ORC 

 

The schematic diagram of micro ORC with this study is shown in Fig. 1. Micro ORC consists of 

an evaporator, a condenser, an expander, a pump, and an injector of working fluid. The working 

fluid is supplied to the evaporator by the pump (1→2). In the evaporator, the working fluid is 

heated to the saturated vapor or superheated vapor by the heat source (2→3). The heated working 

fluid vapor is expanded through the expander to generate work (3→4). The expanded working 

fluid vapor is supplied to the condenser and condensed to the liquid by cooling water (4→1). 

Finally, the condensed the liquid is pumped back to the evaporator. Table 1 shows the mass and  
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Table 1 Mass and Energy balance of each device 

Device Mass and energy balance equation 

Evaporator ṁ2 = ṁa1 
ṁ2(h3ー h2) = ṁa1(ha2ー ha1) 

Condenser ṁ8 = ṁb1 
ṁ8(h1ー h8) = ṁb1(hb2ー hb1) 

Pump ṁ1 = ṁ2 
Wp = ṁ1(h2ー h1)  
Wp,net = Wp / ηp 

Expander ṁ4 = ṁ5 
Wex = ṁ4(h5ー h4) 
Wex,net = Wex ηex 

 

Table 2 Input parameter of design conditions for the micro ORC  

Equipment Design parameter Value Unit 

Evaporators 

Overall heat transfer coefficient 1,500 W/ (m2･K) 

Heat transfer area 4.0 m2 

Minimum temperature approach 5.0 K 

Condenser 

Overall heat transfer coefficient 1,000 W/ (m2･K) 

Heat transfer area 15 m2 

Minimum temperature approach 5.0 K 

Pump Efficiency 80 % 

Expander 
Isentropic efficiency 80 % 

Mechanical efficiency 80 % 

 

Table 3 Input parameter of operation conditions for the micro ORC  

Operation factor Operation parameter Value Unit 

Hot heat source 

Flow rate 3,000 kg/h 

Temperature 393 K 

Pressure 200 kPa 

Heat sink 

Flow rate 18,000 kg/h 

Temperature 293 K 

Pressure 100 kPa 

Pump Discharge pressure 1,500 kPa 

 

energy balance of each device. Operating conditions and design conditions of the micro ORC in 

this study are shown Table 2 and Table 3. The working fluid was used propane, propylene, n-

butane, isobutane, n-pentane, isopentane and R245fa. 

 

3. Simulation results and discussion 

Fig. 2 shows the power generation performance of each working fluid and relationship between 
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the key parameters, boiling point and latent heat, and the net power generation under the 

conditions of heat source temperature of 393 K, pump discharge pressure of 1,500 kPa, and heat 

source flow rate of 3,000 kg/h. Among the selected working fluids, butane showed the highest 

power generation performance of 12.9 kW, and the lowest power generation is propane, its value 

is 2.75 kW. In Fig. 5a, for R245fa, n-butane, and isobutane, the latent heat + sensible heat at 1,500 

kPa is related to the amount of electricity generated, while for propane and propylene, it is not. In 

addition, as shown in Fig.5b, the boiling point is not related to the net power generation for all 

the working fluids. These results show that the net power generation of the micro ORC cannot be 

estimated only by the physical properties such as latent heat, sensible heat, and boiling point. 

Since the condensation pressure varies depending on the working fluid, the pressure difference 

between the inlet and outlet of the expander is different for each working fluid. It is known that 

the greater the pressure difference, the greater the amount of power generated by the expander. 

For components such as propane and propylene, which have a low boiling point of 233K or lower 

and a high condensation pressure of 1,000 kPa or higher, the pressure difference between the inlet 

and outlet of the expander is less than 600 kPa, resulting in less power generation. Therefore, it 

cannot be inferred from the physical property values alone. The power generation by the heat 

engine can be evaluated by the energy input to the process and the driving force. It should be able 

to be expressed in terms of enthalpy and driving force. The enthalpy is the sum of sensible and 

latent heat, and the driving force is the pressure difference before and after the expander. In this 

study, this relationship is proposed as an innovative index to estimate the power generation 

performance. We define this index as exergy parameter index (EPI), which estimates the power  

 

 

Fig. 2 The relationship between net power generation and: (a) Sensible + latent heat, (b) Boiling 

point (1,500 kPa) 

 

Heat source temperature: 393 K, Pump discharge pressure : 1,500 kPaHeat source flow rate: 3,000 kg/h,

(a) (b)

796 Ryosuke AKIMOTO et al.



 

 
generation performance of micro ORC using heat below 393 K. EPI is expressed by the following 

equation 

 

EPI= ΔP ∙ (hsensible + hlatent)                                                      (1) 

 

where ΔP is pressure difference in the cycle, hsensible is sensible heat, and hlatent is latent heat. The 

pressure difference can be calculated as margin between the pump discharge pressure and the 

condensation pressure of the working fluid. hsensible + hlatent is heat required for the working fluid 

to become saturated vapor.  

Fig. 3 show association between EPI and net power generation of micro ORCF. The EPI ranged 

between 1.22 and 5.91 each fluid. The larger the value of EPI, the higher the power tends to be 

generated: the EPI and power generation of n-butane were 5.91 (MPa⋅ kg)/kJ and 12.9 kW, 

respectively. The EPI is good agreement with power generation performance each working fluids. 

Since the EPI considers not only the physical properties but also the mechanical parameters in the 

cycle, it could be predicted to the net power generation. It is clearly found that the EPI can be 

easy to estimate the net power generation for these conditions without any correction parameters. 

These findings will contribute to the spread of general-purpose small ORCs.  

In this study, the EPI is a key index for predict the micro ORC performance and will be an index 

for future working fluid research, for example, objective function of materials informatics (MI). 

 

 

Fig. 3 The effect of net power generation on Exergy Parameter Index (EPI). 
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4. Conclusion 

In this study, to improve the versatility of small scale ORCs and to clarify their design guidelines, 

a 10 kW class ORC (micro ORC) was developed on a model basis, an assumed that various 

working fluids operate in a single device, and the performance of each working fluid was 

investigated under fixed design conditions.  

In the assumed ORC, n-butane showed the highest power generation performance among the 

selected working fluids. When the relationship between the power generation performance of each 

working fluid and the latent heat, sensible heat, and boiling point was investigated, no high 

correlation was found. 

Therefore, we introduced a new parameter, Exergy Parameter Index, which can predict the power 

generation performance. It was defined the key parameter which considered sensible heat, latent 

heat and pressure difference in the cycle, and can be predict the power generation performance of 

the micro ORC. In this study, the EPI could design and operation conditions for the micro ORC. 

The micro ORC may not achieve appropriate performance due to variations in environmental 

conditions such as heat source temperature. These conditions will increase the power generation 

cost, resulting in negative economic efficiency. After that, the micro ORC should be designed to 

be sustainable from the perspective of rigorous tecno-economic analysis. 
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Abstract 

This work assesses Indiana's electricity demands through the next few decades to identify 

an optimal combination. A mixed-integer linear programming mathematical modeling 

framework in which a combination of sources, generation technology, and capacity of 

future generation technologies are evaluated to minimize investment, operational and 

environmental costs is implemented. Our model is a modification of the implementation 

developed by Lara et al. (2018) with the data from databases such as the U.S. Energy 

Information Administration and other relevant agencies. Our model is implemented in 

Pyomo (Python optimization modeling objects), a free and accessible python-based 

software package for devising optimization models. While there may exist multiple 

combinations of energy sources that prove to be optimal when considering various sets 

of constraints, pertinent results are those that maximize the use of renewable energy 

sources while minimizing operational, environmental, and investment costs. This 

research aims to inform planning agencies of optimal energy infrastructure configurations 

for the State of Indiana, allowing for evaluations of the changes required to reach optimal 

operation with expected growing demand. The model and analysis of results can be 

applied to any other region (State or Country). 

Keywords: Renewable Energy Integration; Mixed-Integer Linear programming; 

Optimization. 

1. Main Text 

In the advent of the current climate crisis, a transition to renewable energy systems has 

become widely apparent as a means to mitigate climate effects.  In the past decade, within 

the United States, the use of renewable energy sources has risen.  The desire to maximize 

the use of renewable energy sources stems from the fact that the alternative non-

renewable, or traditional, power sources contribute more to the pollution of the 

environment (Lopez & Espiritu, 2011).  However, energy data collected by the Energy 

Information Administration (EIA) shows that traditional energy sources, such as fossil 

fuels (petroleum, natural gas, and coal) and nuclear, continue to generate over 85% of 

total energy consumed in the U.S (U.S. EIA, 2021).  Many factors, such as policy, public 

sentiment, and scientific advancements currently assist in driving the transition towards 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50133-0 
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renewable energy systems. Many nations stand at this pivotal moment of restructuring. 

However, with this transition evolves a problem in terms of, what combinations of 

renewable and non-renewable technologies are most optimal to meet required energy 

demand?  

Energy optimization models can be used to present this combination of energy sources.  

These models consider predictions of energy demand over several decades and determine 

which sources of energy best fulfil future energy needs. These models can then offer 

insight on creating a more sustainable energy system, presenting ideal evolutions of that 

energy system over multiple decades, without declaring how probable these evolutions 

are (Pfenninger et al., 2014). This work aims to formulate a multi-objective optimization 

modeling framework to evaluate the necessary changes in the energy systems 

infrastructure of the state of Indiana that meets EIA projected energy demand while 

minimizing environmental and capital costs.  The research focuses on the increased use 

of renewable energy sources of solar and wind and the non-renewable, natural gas 

combined cycle. These three technologies are the expected drivers of future energy 

generation.  

2. Research Methods 

2.1. Collection of Data 

In this research, we assessed the potential of solar and wind generative technologies to 

fulfil demand imposed by planned retirement, economic growth, and population growth, 

all while minimizing both environmental and capital costs.  To do this, we created a linear 

program with an objective function of minimizing the implementation cost for a selected 

set of generative technologies. The model was informed with data retrieved primarily 

from the NREL (National Renewable Energy Laboratory) and the EIA (Energy 

Information Administration). The data consists of two primary types, cost, and 

performance. To drive the cost analysis aspect of the objective function, annual 

technology baseline (ATB) data for the U.S. of the year 2020 was retrieved from the 

NREL. This baseline data provided metrics of cost per performance for renewable and 

conventional generative technologies. The secondary data set consisted of supply curves 

of solar and wind for the U.S. Supply curve data for each technology consisted of the 

following: location (longitude and latitude), generative capacity potential, the area 

available, capacity factor, and distance to interconnect.  Excluding transmission, all listed 

parameters were relevant to inform the model. In addition to these data sets, other data 

was prevalent in the formulation of the model. For instance, generator data, retrieved from 

the U.S. EIA, was used to determine the level of demand imposed by planned retirement 

for the ten-year time horizon (2020-2030). Relevant contributions included listings of 

planned retirements of coal generators and their respective nameplate capacities. The 

summations of these nameplate capacities served as the demand imposed by the planned 

retirement of the ten-year time horizon. For the twenty- and thirty-year time horizons, 

given the lack of data for planned retirement, linear extrapolation was applied to 

determine respective demand coefficients. Lastly, data from the EIA 2021 Annual Energy 

Outlook allowed the determination of time factored, and population factored growth in 

demand with applications of extrapolation techniques. 

2.2. Treatment of Data 

In the process of informing the computational model, the data is pre-processed with 

Python via Jupyter Notebook.  As the focus of the research is the state of Indiana, a subset 
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of supply data of Indiana was devised from the original supply curve data - representative 

of the whole United States.  We employed a rigorous approach to accomplish this.  Firstly, 

border and city location data were retrieved from online sources. This data mapped the 

border and cities of Indiana. With the Pandas package and data frames, border and city 

locations were unionized. A grouping of supply data, based on proximity, was then 

attached to the location data derived by the union of border and city locations. These 

locations were then mapped as nodes on a geospatial plot, providing an informative 

supply curve fitted to the state of Indiana. With this approach, we successfully elicited 

Indiana's supply data from that of the country. 

To further refine the data, locations were sorted. The sorting convention was from greatest 

to least by the following ratio: potential generative capacity to the area of available land.  

High valued ratios are indicative of richer location quality. Quality, we define as the 

amount of generative potential per unit area of land. Following this definition, high 

qualities are desirable as they minimize the amount of land needed for system 

implementation, which reduces the associated cost of implementation. From this 

heuristic, a set of fifty nodes (locations) for solar and wind were developed, totaling one 

hundred decision variables of which selection proportions range from zero to one. 

2.3. Mathematical Modeling 

A mathematical model was constructed with Pyomo, a python-based optimization 

package.  The optimization problem was solved with glpk as a solver. The data elicited 

from the model include generator location, generator type, and proportion of capacity 

selected per selected location. The framework of the mathematical model follows that of 

a linear program. The objective function is given as Equation (1).  The objective function 

seeks to minimize the total implementation cost of the selected generative technologies 

and their respective capacities. 𝐶𝑡 is the cost of implementing a selected configuration. 

𝐶𝑠𝑜𝑙𝑎𝑟
𝑡  is the average cost of solar per MW generative capacity for the time horizon of 

consideration. Likewise, 𝐶𝑤𝑖𝑛𝑑
𝑡  is the average cost of wind per MW generative capacity 

for the time horizon of consideration and 𝐶𝑛𝑔
𝑡  is the average cost of natural gas per MW 

generative capacity for the time horizon of consideration. The decision variables are 𝑥𝑖, 
the amount of solar capacity selected, and 𝑥𝑗, the amount of wind capacity selected. S 

represents solar capacities, W, wind capacities, and NG, natural gas capacities. The 

respective sets comprising selections for each decision variable are SS and WS. Lastly, t 

is used to represent the time horizons with subscripted variables dependent on time. 

The first constraint is a peak demand constraint, Equation (2). This informs the selection 

of generative technologies and their respective capacities to ensure that the sum required 

load (load loss from the retirement and load expected as a result of population and 

economic growth) is met.  In Equation (2), 𝐸𝐷𝑡  is the demand imposed by retirement, and 

the expected growth of population and economy for the planning horizon. Equation (3) 

confirms that the imposed demand for a given time horizon is equal to the sum of the 

demand imposed by retirement (𝑅𝑡) within the horizon, and the contribution to demand 

from expected economic and population growth (𝐸𝑡) within the horizon. Equation 4 

proposes an intermittency constraint.  In order to ensure that a proposed configuration is 

at least as reliable as the current energy infrastructure of Indiana, Equation 4 was 

developed to assess whether the realizable load (peak load multiplied by the capacity 

factor) is greater than or equal to the summation of the realizable load imposed by planned 

retirement and economic and population growth. 𝐶𝐹𝑠, 𝐶𝐹𝑤, and 𝐶𝐹𝑛𝑔 are respectively 

the solar, wind, and natural gas capacity factors. 𝐶𝐹𝑐 is the coal capacity factor, and 𝐶𝐹𝑐𝑐  
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is the aggregated averaged capacity factor of solar, wind, and natural gas. The relevant 

sets are: CS, the Solar Capacity factor set; and CW, the Wind Capacity factor set. The 

last defined constraint is represented as Equation (5), the emissions constraint. This 

constraint allows for the assessment of scenarios of varying reliance on natural gas. 

Natural gas plays a pivotal role in integrative renewable energy systems. However, to 

limit the environmental effects of natural gas, this constraint controls emission tolerances 

accordingly. In Equation (5), 𝑥 serves as the proportion of fulfilled demand occupied by 

natural gas.  

min⁡ 𝐶𝑡 ⁡= ⁡ (𝐶𝑠𝑜𝑙𝑎𝑟
𝑡 ∑𝑆𝑖𝑥𝑖

𝑖∈𝑆𝑆

) ⁡+ (𝐶𝑤𝑖𝑛𝑑
𝑡 ∑ 𝑊𝑗𝑥𝑗

𝑗∈𝑊𝑆

) + (𝐶𝑛𝑔
𝑡 𝑁𝐺), ∀𝑡 ∈ {10,20,30} 

                    (1) 

∑𝑆𝑖𝑥𝑖
𝑖∈𝑆𝑆

+ ∑ 𝑊𝑗𝑥𝑗
𝑗∈𝑊𝑆

+ 𝑁𝐺⁡ ≥ 𝐸𝐷𝑡 ⁡⁡⁡⁡⁡∀⁡𝑡 ∈ {10,20,30} (2) 

𝐸𝐷𝑡⁡ = 𝑅𝑡⁡ +⁡𝐸𝑡⁡,⁡⁡⁡⁡⁡𝑡 ∈ {10,20,30} (3) 

∑ 𝑆𝑖𝑥𝑖𝐶𝐹𝑎
𝑠

𝑖∈𝑆𝑆,𝑎∈𝐶𝑆

⁡⁡+ ∑ 𝑊𝑗𝑥𝑗𝐶𝐹𝑎
𝑊

𝑗∈𝑊𝑆,𝑎∈𝐶𝑊

⁡⁡+ ⁡𝑁𝐺 ∗ 𝐶𝐹𝑛𝑔 ⁡≥ (𝐶𝐹𝑐𝑅 + 𝐶𝐹𝑐𝑐𝐸)⁡ (4) 

𝑁𝐺 = 𝑥𝐸𝐷𝑡 ⁡ (5) 

3. Results and Discussion 

We initially considered the scenario of doubling current renewable generative capacity in 

the state of Indiana for a 5-year horizon. The objective was to determine the optimal 

configuration of counties achieving this specification. In our analysis, we observed that 

in 5 years, doubling renewable energy generative capacity reduces carbon emissions by 

20%. Figure 1 compares the relative distribution of current generation technologies to 

what can be achieved from the considered scenario.  The purpose of this illustration is to 

emphasize the motivation behind this study. 

 

Figure 1: Comparison of relative distribution of current generation technologies to a 5-

year projection when considering the scenario of doubling current renewable generative 

capacity. 

The currently developed mathematical framework aimed to analyze three different time 

horizons, each incremented by a decade. As expected, the cost of implementing the 

determined optimal configuration rose each horizon. The driver of this rise was an 
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increase in imposed demand as dictated by expected increases in planned retirement, 

economic growth, and population growth. Yet, this was somewhat balanced by the 

expected decreasing cost of implementing solar and wind generative technologies, 

resulting from developments in technology. Overall, spanning the three distinctive time 

horizons, a net increase in implementation cost is observed. 

From the ten-year time horizon with a reliance on generation constituting 50 % natural 

gas, the calculated implementation cost was 28.2 billion USD. The distribution of solar 

to wind, based on contribution by generative capacity, is depicted in Figure 2. Each node 

is informative of both longitude and latitude. For the twenty-year time horizon of the same 

reliance factor, the calculated implementation cost was 84.1 billion USD. However, when 

the twenty-year model is fitted with data consisting of one hundred of the best (as defined 

by the heuristic in the treatment of data section) generative wind and solar sites, each, the 

computed implementation cost is 78.5 billion USD. 

(a) (b) (c) 

Figure 2: Nodes of selectable generation. (a) solar generation; (b) wind generation; (c) 

selected configuration of wind and solar for a 10-year 

horizon with associated capacities.  Yellow nodes are representative of solar, blue nodes 

representative of wind. 

The configuration derived from this heuristic is more cost-effective as the higher 

consideration of wind allows for an overall increase in system reliability. Because of 

Equation (4), a larger selection of wind generative capacity reduces intermittency. This 

reduction in intermittency promotes a reduction in the net load of the selected 

configuration, which lowers the cost of implementing the optimized configuration. To 

significantly reduce costs, technological developments focused on increasing the 

reliability of wind and solar generators are warranted. The final analysis was the variation 

of the proportionality factor of natural gas deployed, x.  This variation was carried out for 

the ten-year horizon.  The first considered scenario was x = 0.25, the fulfilment of twenty-

five percent of the imposed demand by natural gas.  The cost of implementation increased 

to 38 billion USD.  The second scenario was the complete minimization of environmental 

costs. Such is representative of absolute reliance on solar and wind.  The cost of 

Scenario Outcomes for Electric Power Generation Expansion Planning  

  considering the State of Indiana as a Case Study
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implementing the optimal configuration for this consideration is 51 billion USD.  These 

sub scenarios are significant in portraying the relationship between capital costs of 

implementation and the amount of CO2 emitted, with amounts of CO2 emitted directly 

proportional to the demand fulfilled by natural gas. 

The model developed for this study is very versatile to improvement. Future research 

could consider, for example, transmission which would require a more complex design 

and analysis of cost factors and energy retention. Another favorable consideration is time 

factorization, which is a means for better controlling intermittency. This consideration 

could entail the deployment of natural gas only when wind/solar is unavailable during the 

day. A third consideration is the implementation of storage technologies. Storage can act 

to negate solar and wind downtime. However, much research is necessary for the effective 

development and deployment of storage solutions. 

4. Conclusions 

This research assessed the capabilities of implementing solar, wind, and natural gas 

generative technologies to replace the retirement of many coal plants and meet the 

demand imposed by economic and population growth in the state of Indiana.  In theory, 

the most practical way to reduce the effects of environmental degradation is a complete 

shift to renewable generation technologies. However, many factors impede this shift.  

Such factors include capital costs and intermittency.  Of these two impeding factors, the 

most significant is that of intermittency. Due to the limited availability of wind and 

sunlight, energy infrastructures cannot exist solely by wind and solar. Thus, the practical 

solution has been the integration of renewable energy sources into current energy 

infrastructures. Such insertions also allow for the displacement of polluting generation 

sources, such as coal. However, because of intermittency, integrative systems suffer in 

reliability. Despite the localized nature of this study, the approaches, methods, and 

findings are well applicable to other regions of the U.S. and the world.  The global energy 

situation is a complex subject, hence works such as this aim to produce informed and 

accurate conclusions to aid transitions when considering integrative energy 

infrastructures. 
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Abstract 

Fast changing markets and higher demands for higher flexibility in the process industry 
in general, require modular concepts that decrease the necessary time-to-market. This 
requires process simulation in earlier engineering phases and make virtual commissioning 
of the modular process plants besides conventional commissioning essential. Quality 
constraints of the model for virtual commissioning also have to be considered to 
confidently trust the results and findings during virtual commissioning. A particular hard 
problem is the quality assurance of the third-party simulation models. Our currently 
investigated research hypothesis is that the VC application puts an emphasis on the factors 
efficiency, maintainability and compatibility as defined in the quality model approach for 
software quality assessment for a mapping towards process simulation. This paper 
addresses the necessary requirements for the quality assessment of simulation models for 
the purpose of virtual commissioning and presents factors, criteria and metrics for the 
assessment of virtual commissioning models. This paper extends the current framework 
for functional quality assessment of simulation models in smart equipment to the use case 
of virtual commissioning models and is a first step to the automated quality assessment 
for virtual commissioning models. Further, the need for model certification is discussed. 
 
Keywords: Modular Plants; Process Operation; Quality Assessment; Quality Assurance; 
Virtual Commissioning. 

1. Introduction 

Fast changing markets and process conditions in the process industry create an increasing 
demand for flexibility of process plants. One approach for adapting to those demands are 
modular process plants (VDI, 2020). This standardized modular plant concept strives to 
be manufacturer independent for the configuration of process modules, which are called 
Process Equipment Assemblies (PEAs). Automation and orchestration requires 
standardized interfaces and communication protocols (Süß et al., 2016) which are 
described within the Module Type Package (MTP) (VDI/VDE/NAMUR, 2019). The 
orchestration of those plants is realized through the Process Orchestration Layer (POL) 
that supports the operator in the configuration of the modular process plants and allows 
service-based control (Bloch et al., 2018) with an emphasis on continuous processes. 
With modular process plants, new plant configuration and recipes must be tested before 
the start of production to assess feasibility and to identify possible optimizations (cf. 
Schenk et al., 2019).  One possible strategy is the utilization of Virtual Commissioning 
(VC) which allows the feasibility and optimization assessment at an early stage of 
engineering. Since modular process plants will integrate different PEAs and components 
from different manufacturers, several third-party simulation models will be integrated the 
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VC framework. One defining aspect is therefore the quality assessment of those models 
to ensure trust in the quality of VC. 

In this paper, section 2 describes current trends for virtual commissioning in modular 
process plants and further discusses current quality assessment approaches for simulation 
models. In section 3 the current approach to quality assessment of simulation models for 
virtual commissioning and the problems with the integration of third-party models is 
discussed. Quality factors, criteria and metrics specifically relevant for virtual 
commissioning models are shown. Section 4 presents the concept for the application of 
the quality assessment for virtual commissioning models to VC schemes. Further, current 
issues and research needs of applying quality assessment to virtual commissioning are 
addressed. The obtained requirements aim to be the basis for a future quality assessment 
framework implementation for virtual commissioning models in smart, modular plants. 

2. State of the art 

2.1. Virtual Commissioning for modular process plants 

As with any process plant, the plant configurations of modular process plants must be 
validated before the start of production. Virtual commissioning (VC) is a good approach 
to cut cost, pre-qualify plant configurations and assess feasibility before real 
commissioning (Puntel-Schmidt et al., 2015). VC includes the testing of individual 
components, interlocks and functions of the automation system during development via 
simulation methods and models adapted to the respective purpose (Schenk et al., 2019). 
Therefore, models must consider actors and sensors in the plant, which are coupled with 
controllers in a Hardware-in-the-Loop (HIL), Software-in-the-Loop (SIL) or Model-in-
the-Loop (MIL) architecture (cf. VDI/VDE 3693). Simulation models are either simple 
state machines or dynamic simulation models of varying fidelity (cf. VDI/VDE 3693). 

 
Figure 1: Test configurations for Virtual Commissioning (VC) 

In modular plants, virtual commissioning can be used to safely test out new plant 
configuration and recipes regarding feasibility and optimization (cf. Schenk et al., 2019). 
Faults can therefore be detected and fixed in an early engineering phase which cuts cost 
and the overall time-to-market (Klose et al., 2019). Klose et al. (2021) suggest a digital 
twin applying the MTP for the integration of the simulation models. With this approach, 
the digital twins (DT) of the PEAs are integrated into a simulation or co-simulation 
environment and coupled to the POL. This considers the automation system including 
device and I/O-models, the controller in a SIL or MIL (cf. VDI/VDE 3693) scheme and 
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a default material system (e.g. water run). To test service sequences, an OPC UA server 
can be utilized (Schenk et al., 2019). Furthermore, the water run models can be extended 
with physical property packages to ensure a better understanding of the service 
parameters and the process timing. Other than the interfaces for property packages, 
simulation control, and mass and energy flows, the interfaces for the information flow 
must be reconfigured to operate with the same service commands and data assemblies as 
the real PEA  

2.2. Quality assessment for simulation models 

Simulation models that are to be used in virtual commissioning of modular plants will be 
provided by PEA manufacturer. The partial models needed for VC are then integrated 
into a virtual commissioning framework, e.g. as co-simulation. To assure the quality of 
these simulation models assessment strategies are required. Currently used methods for 
that purpose focus mainly on accuracy of the model (Sargent, 2013). To integrate the 
quality assessment and control of simulation models into modern digital plants, a 
framework for what quality of a simulation models actually entails needs to be developed 
and implemented. A first approach to quality assessment of simulation models with pre-
definition of quality attributes was proposed in Mädler et al. (2021). 

 
Figure 2: FCM model structure (McCall & Cavano, 1978) 

With simulation models becoming an integral part of PEAs and plant equipment in 
general, simulation models can be considered a part of software. This allows the 
utilization of quality assessment strategies from software development. Current 
simulation model validation and verification methods (Sargent, 2013) are coupled with 
the approach of FCM (factors – criteria – metrics) models (McCall & Cavano, 1978) for 
structuring and executing quality assessment. One approach to FCM models, as 
mentioned in Mädler et al. (2021), is the ISO/IEC 25010 for the assessment of software 
product quality. The exemplary structure of a FCM model is shown in Fig. 2. 

3. Requirements for third-party model integration 

Virtual commissioning allows a pre-qualification of modular process plant 
configurations, recipes and interfaces while utilizing simulations models for the process 
in combination with models for the devices, I/O and controller representations. This 
means that not all models will be provided by the same manufacturer. Since model for 
virtual commissioning put an emphasis on the assembly of the VC framework from 
different partial models which varying depth and purpose, one important aspect to 
realizing the interchangeability of simulation models in VC and therefore individual 
PEAs is the integration of third-party models. 

The quality model presented in Mädler et al. (2021) focuses on factors like functional 
suitability and reliability because the quality assessment is in this case intended for 

807



 I. Viedt et al. 

models for process simulation and optimization. For virtual commissioning, probably the 
most important aspect of models is the ability to combine the necessary partial models to 
a VC framework (Schenk et al., 2019). This makes the consideration of further quality 
factors necessary (cf. Mädler et al., 2021). As of now the framework only considers the 
quality factors functional suitability and reliability but with the extension of the use case 
to virtual commissioning model, the focus shifts to the factors compatibility, 
maintainability and performance efficiency. Other metrics like the validity domain of the 
model, as a metric for functional suitability, that specifically targets the design space of 
the model loses importance in the context of virtual commissioning. 

3.1. Model compatibility 

In this case the factor compatibility is defined through the quality criterion 
interoperability. The concept of interoperable models is not new and can be achieved 
through a standard for the interface to exchange information and models. They are used 
to integrate custom physical property packages, exchange mass, energy and information 
flows, and control the solution process of the simulation model. One approach is the 
CAPE-OPEN standard mostly for steady-state models (van Baten and Pons, 2014). Since 
CAPE-OPEN is an interoperability model and not a data model, the interoperability 
between different process modeling environments is not within the scope of CAPE-
OPEN. This makes the CAPE-OPEN interface specification less appealing for dynamic 
process simulation since it does not initially enable co-simulation between third-party 
models on different simulation environments. Another standard is the functional mock-
up interface (FMI) for dynamic models which allows import and export of both plant and 
controller models into and out of any simulation packages that support the specification 
(Blockwitz et al., 2012). Within FMI interfaces for both model exchange and co-
simulation are covered. The co-simulation interface is intended for use with models where 
data is exchanged between subsystems only at discrete communication points and each 
subsystem is solved independently (Blockwitz et al., 2012). The model exchange 
interface is intended for use with models described by differential, algebraic and discrete 
equations with or without discontinuities where the system equations are solved 
simultaneously (Blockwitz et al., 2012). 

3.2. Model maintainability 

Besides the compatibility of the simulation for the VC framework, the maintainability 
(quality factor maintainability) of those models has to also be considered. Especially for 
virtual commissioning of modular plants different plant configurations have to be 
considered and tested. This means that the quality criterion reusability also needs to be 
considered to describe the maintainability of the models and the framework. With this it 
is important that different partial models can be reuse for different configuration of the 
MP to allow virtual commissioning. The models must be parameterizable to allow testing 
of recipes (Schenk et al., 2019) but also allow a reuse through a standardize interface 
(Fedorova et al., 2015). Furthermore, the transfer of models or model information into 
different simulation environments through XML allows a wider applicability (Fedorova 
et al., 2015), which is especially important for model exchange frameworks for virtual 
commissioning. 

3.3. Performance efficiency 

Another important quality factor to consider for models for VC applications is 
performance efficiency. In this context, the quality factor is defined by the quality 
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criterion time-behaviour. For simulation models or digital twins used for virtual 
commissioning this means that real time and accelerated, hybrid continuous- and discrete-
time simulation must be available to test recipes and interlocks as fast as possible in a 
virtual environment. To achieve synchronized, accelerated simulation, the POL must be 
able to operate in an accelerated mode as well. 

4. Quality assessment for virtual commissioning models 

The addition of three newly considered quality factors and their corresponding quality 
criteria and metric will make the quality assessment framework more holistic but also 
complex. This means that new metrics and assessment strategies have to be found to 
integrate the new factors. The proposed strategy shows that this means a shift from current 
quantitative assessment methods to more qualitative assessment metrics for the virtual 
commissioning models. Table 1 shows these additional quality factors, criteria and 
metrics which must be implemented into the framework in a next step. 
Table 1: FCM model for the assessment of virtual commissioning models 

Factor Criterion Metric 
Compatibility Interoperability Interface standard adherence 

Interface standard compatibility 
Maintainability Reusability Parameterizability 

Interface standard adherence 
Modeling environment transferability 

Performance efficiency Time-behaviour 
 

Flexible simulation mode 
POL-compatible simulation mode 

 
While a check for compliance with current interface standards for model exchange is easy 
to implement into an assessment framework, it is not easy to solve non-compliance of 
third-party models. Non-compliance with current standards will lead to workarounds and 
adjustments for successful application of virtual commissioning for modular plants. One 
strategy to ensure model compatibility could be a certification approach. Independent 
model certification has long been a topic of interest for modeling and simulation tasks but 
no concrete certification entities exist yet (Balci, 2010). 
As virtual commissioning becomes increasingly important and security aspect will be 
necessary to consider, the factor of security as described in ISO/IEC 25010 will also need 
to be considered during systematic quality assessment of models, especially for virtual 
commissioning. This is especially important in the context of the criterion reusability.  

5. Conclusion 

With this paper, the first step towards systematic and potentially automated quality 
assessment for virtual commissioning models is taken. The requirements defined in this 
paper serve as a basis for the development of a quality assessment framework. The 
proposed concept outlines that the quality of models for virtual commissioning and the 
corresponding wish for potential automated assembly of the VC framework depends on 
additional quality factors in comparison to dynamic models used for process design. 
Interfaces for physical property packages, flows and simulation control must be 
developed further to allow tool independent usage and exchange of models. Furthermore, 
tools that potentially allow the transfers of models, or at least their information, for reuse 
in different environments also must be addressed. Depending on the use case and 
complexity of what VC is supposed to do in the future, new requirements to the models 

Requirements for the quality assessment of virtual commissioning models
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might arise and security concerns must be addressed. This paper extends the in Mädler et 
al. (2021) proposed framework for automated quality assessment of simulation models. 
As the use case for the simulation models shifts to virtual commissioning, new quality 
aspects need to be considered and others loses importance. The proposed extension of the 
framework now needs to be transferred to real world applications to assess the usability 
and integration of said concept. Since the proposed requirements and concept are only a 
first step, the new factors, criteria and metrics must be implemented into the 
MATLAB/Simulink framework and evaluated via case study. 
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Abstract 

Particulate processes have a wide range of applications in many different industries, from 

wastewater treatment to the pharmaceutical industry. Despite their extensive applications, 

control and monitoring of chemical and biochemical processes that contain solid particles 

are challenging due to the lack of fundamental understanding of the process mechanism 

and the limited availability of real-time process data. In this study, a hybrid multiscale 

framework is introduced for flocculation processes as a particulate process, and it is 

validated against experimental data resulting from the flocculation of silica particles. The 

variations of the particle size distribution are imposed by varying the pH in different 

experimental batches. In this study, an integrated hybrid deep learning approach 

combining deep learning with first principles is implemented to predict the future state of 

the process. The first-principles model combines a population balance model with surface 

properties of the particles calculated with computational chemistry, while the deep 

learning model is a deep neural network. 

 
Keywords: Hybrid modelling, flocculation, interactions, multiscale modelling. 

1. Introduction 

The flocculation process consists of the separation of solid particles from a liquid medium 

by the aggregation of two or more particles that collide and cluster as an 

aggregate/agglomerate. In the flocculation process, the stability of the suspension is 

influenced by parameters, as the particle properties (charge, morphology, characteristics), 

properties of the flocculant (concentration, type) or properties of the media (pH, ionic 

strength). Previous studies have investigated the correlation between media conditions 

and polyelectrolyte (PE) properties. For example, a low charge density is a limiting factor 

for polyelectrolyte adsorption and retention. Nevertheless, lower ionic strength results in 

a decreasing surface charge, which can also decrease the flocculation efficiency of the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50135-4 
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flocculant. Adsorption can be controlled by the addition of salt (ionic strength) in the PE 

solution (Scheepers et al., 2021). 

 

In this context, the industry could benefit from the development of a model to predict the 

optimum flocculant dosage in a particular system. However, specifically in the case of 

the flocculation process, a hybrid multiscale model can facilitate obtaining more precise 

predictions of the future state of the process by integrating the physical understanding of 

the process phenomena with the underlying features of the data. In this case, deep learning 

models can be used to develop correlations between states of the process that cannot be 

explained by the available first-principles models.   

 

In this study, the first-principles models are implementations of a population balance 

model with surface charge properties that are derived from computational methods in 

chemistry, and the deep learning model is an architecture of deep neural networks 

(DNNs). These two models are integrated as such that the parameters that are difficult to 

measure or estimate are being estimated by the DNN and the predictions of the future 

state of the process are carried out by the first-principles model. 

2. Modelling framework 

A hybrid multiscale framework is developed based on earlier work (Nazemzadeh et al., 

2021a; Nielsen et al., 2020). The inputs for the neural network will be the data collected 

from the experiments including pH, polymer dosage, particle morphology. Then the 

neural network will be trained to estimate the kinetic parameters by determining 

underlying correlations among the process state variables. However, the first-principles 

model is a discretized population balance model (PBM) with computational and 

theoretical chemistry models. The PBM is the component that predicts the particle size 

evolution with the assistance of the parameters estimated from DNN and the surface 

properties determined from computational and theoretical chemistry models.  

 

The computational chemistry models are employed to calculate the surface charge 

density, surface potential, and solid-liquid interfacial energy of the particles vs. medium 

conditions (pH, ionic strength) by using a mean-field model (Andersson et al., 2020). The 

theoretical chemistry model used in this study is based on the DLVO theory (Yotsumoto 

and Yoon, 1993). The theory is named after the four scientists (Derjaguin, Landau, 

Verwey, and Overbeek) that developed the concept. It uses theoretical chemistry 

approaches to quantify the interaction energy among particles in a system. The 

implementation of this theory on a silica particle flocculation was demonstrated earlier 

(Nazemzadeh et al., 2021b). However, in this study, a computational chemistry approach 

is used rather than a completely theoretical approach to determine the surface interaction 

among particles. This potentially leads to a more accurate prediction of the surface 

properties. 

 

In this study, the flocculation process is considered as the combination of aggregation, 

where particles interact with each other to form bigger particles, and the breakage 

phenomenon, where flocs break to form smaller sized particles. However, solving the 

partial integro-differential equation describing the PBM numerically is not trivial, and 

different methods have been proposed. In this study, the PBM is solved using a 

discretization method, where the PSD is distributed in size bins where flocs with similar 
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sizes are grouped, to estimate the variation rate of the aggregates during the process 

(Kumar and Ramkrishna, 1996). The discretized PBM is represented in Eq. (1): 

 

𝑑𝑁𝑖

𝑑𝑡
=  ∑ (1 −

1

2
𝛿𝑗,𝑘) 𝜂𝑖𝛼𝑗,𝑘𝛽𝑗,𝑘𝑁𝑗𝑁𝑘 − 𝑁𝑖 ∑ 𝛼𝑖,𝑘𝛽𝑖,𝑘𝑁𝑘 + ∑ 𝛾𝑗,𝑖𝑆𝑗𝑁𝑗

𝑗≥𝑖𝑘

𝑗≥𝑘

𝑗,𝑘

− 𝑆𝑖𝑁𝑖 (1) 

𝑣𝑖−1 ≤ (𝑣𝑗 + 𝑣𝑘) ≤ 𝑣𝑖+1 

 

Where Ni is the concentration of aggregates in the size bin i, j,k is the Dirac delta function 

to avoid calculating collision of the same size particles twice,  is a proportional 

coefficient assigning the fraction of the floc vi from the aggregate (vj + vk.),  is the 

collision efficiency,  is the collision frequency of two aggregates,  represents the 

breakage distribution function, and S is the breakage rate of the flocs. 

 

The hybrid model framework is represented in Figure 1. This modelling framework is 

developed based on the previous work (Nazemzadeh et al., 2021a; Nielsen et al., 2020), 

which integrates computational chemistry calculations within the population balance 

model to more accurately estimate the kinetic parameters. The output of the neural 

network will be the unknown parameters of the population balance model that cannot be 

explained with the first-principles model. The population balance model evaluates the 

particle size evolution through time based on the kinetic rates, the data collected from 

experiments, and complementary non-observable information estimating the interaction 

energies from computational chemistry approaches. It must be noted that the framework 

is structured such that density functional theory is carried out in the outer loop of the 

hybrid model. To evaluate the deviation of the predictions from experimental data an 

L1norm loss function is defined, which determines the absolute differences between the 

model-based predictions and the experimental data. 

 

Figure 1: An overview of the hybrid multiscale framework 
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3. Application example 

The proposed hybrid model framework is demonstrated through a laboratory-scale 

flocculation with silica particles in water, a common model system for flocculation. The 

particle size distribution is monitored within different batches by monitoring pH as the 

key process variable. The material and methods are fully described in (Nazemzadeh et 

al., 2021a). According to previous experiments, pH must be kept between 2 and 3, as this 

corresponds to the point of zero charge (PZC) (Barisik et al., 2014), overcoming the 

repulsion forces between particles with the same charge. This is also illustrated by our 

computational chemistry calculation (mean-field model) in Figure 2. The particles are 

neutral within the claimed PZC and above that range, the particles are negatively charged. 

It must be noted that particles with a diameter above 500 nm have extremely close surface 

(Barisik et al., 2014) charge density as the calculations are only done for nanoparticles 

with a diameter of 500 nm.  

 

The experiments have been carried out in 9 batches, two of those show agglomeration of 

silica and the rest shows breakage. The data is split into three datasets. One training 

dataset, which consists of one agglomeration batch and four breakage batches, while two 

batches (different from the training set) are left for validation. Moreover, in order to 

evaluate the model performance, the second agglomeration batch and one breakage batch 

are left in the test dataset. The model predictions for agglomeration and breakage batches 

in the test set are illustrated in Figure 3. The model is trained for 400 epochs and it can 

roughly predict the dynamics of the flocculation process for both agglomeration and 

breakage phenomena. The predictions can be improved by training the model for more 

than 400 epochs. To compare it with the models developed in (Nazemzadeh et al., 2021a; 

Nielsen et al., 2020) a further uncertainty analysis can be carried out similar to the one 

developed by (Nielsen et al., 2021) to analyse the performance of each model more in 

detail. 

 

 

Figure 2: Surface charge density of nanoparticles with a diameter of 500 nm 



 

4. Conclusions 

In this study, a hybrid multiscale framework has been developed to predict the dynamics 

of a laboratory-scale flocculation of silica particles. The hybrid multiscale model has the 

advantage of employing the data at non-observable scale to assisting the prediction of the 

dynamics of the process. The framework allows of using computational and theoretical 

chemistry models to predict surface properties of the colloidal silica particles based on 

the medium conditions. Hence, these properties are used in the hybrid model to estimate 

the kinetic parameters of the flocculation process. It is also planned to use this framework 

for predicting the dynamics of a polymeric flocculation process. 

 

 

Figure 3: model predictions of a) agglomeration, and b) breakage batches 

a) 

b) 
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Abstract 

Developing mathematical models for the description of reaction kinetics is fundamental 

for process design, control and optimisation. The problem of model discrimination among 

a set of candidate models is not trivial, and recently a new and complementary approach 

based on artificial neural networks (ANNs) for kinetic model recognition was proposed. 

This paper extends the ANNs-based model identification approach by defining an optimal 

design of experiment procedure, whose performance is assessed through a simulated case 

study. The proposed design of experiments method allows to reduce the number of 

experiments to be conducted while increasing the ability of the artificial neural network 

in recognising the proper kinetic model structure.  

Keywords: optimal design of experiments, kinetic model identification, ANN classifiers. 

1. Introduction 

The mathematical description of the phenomena occurring in reacting systems is crucial 

to evaluate the progress of chemical reactions occurring in the reactor, which is a central 

aspect in reactor design, control and optimisation. The first step in modelling reaction 

kinetics is the definition of candidate models based on preliminary experimental evidence 

and hypothesis about the underlying reaction mechanism. 

The subsequent step in the modelling procedure is to determine among the candidate 

models the most suitable one for describing the chemical system, i.e. to perform the model 

discrimination. Asprey and Macchietto (2000) presented a standard model building 

approach including model discrimination, which can be summarised in the following 

steps: i) structural identiability analysis of each model; ii) regression of model parameters 

on experimental data; iii) evaluation of the quality of fit; iv) application of the chosen 

model selection criterion; v) if required, design and perform new experiments, then 

iteration from step (ii). When new experiments must be performed, experimental 

conditions are typically designed through a mathematical optimisation to maximise their 

information content. Different approaches can be employed for designing optimally 

informative experiments, such as model-based design of experiments (MBDoE) (Chen 

and Asprey, 2003) or probabilistic approaches based on Bayesian statistics or Monte 

Carlo methods. One limitation of standard MBDoE-driven model building strategies is 

that these methods may even lead to the rejection of the “exact” model if the identifiability 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50136-6 
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requirements are not satisfied in step (i) of the procedure. These reasons motivate the 

research for an alternative approach to the kinetic model discrimination and design of 

experiments problem. Quaglio et al. (2020) looked at the problem of selecting a kinetic 

model among a set of candidate ones from a completely different perspective, applying 

artificial neural network (ANN) classifiers for a fast recognition of the kinetic model 

structure of reacting systems from the experimental evidence provided. The idea behind 

the ANN-based approach is to train the ANN classifier (Zou et al., 2009) with in-silico 

generated data for each model from the set of rival kinetic models, so that the trained 

ANN would determine the kinetic model based on the input concentration measurements. 

A key aspect of this approach is that it does not require the fitting of kinetic parameters; 

parameter uncertainty is included during the dataset generation step. The method proved 

to be satisfactory, particularly when the noise on the measured values is low, and within 

this framework the modelling time is expected to decrease. However, the approach was 

characterised by a fixed design of the experiments, which can lead to poorly informative 

experiments.  

The research here presented extends Quaglio et al. (2020) work by defining a procedure 

for optimal experimental design coupled to the ANN-based classifier for fast kinetic 

model recognition. Classical MBDoE approaches are not suitable for the direct 

integration of the ANN approach, because the kinetic models are not used for 

experimental data fitting and making predictions; therefore a new criterion for optimally 

designing experiments has been formulated. The new approach is tested on a simulated 

case study related to the identification of kinetic models in a batch reaction system.  

2. Proposed framework and methods 

Chemical reacting system are typically described by nonlinear dynamic models. In this 

work, the 𝑁𝑚 possible models are formulated as systems of differential and algebraic 

equations in the form 

{ 
 𝐟𝑙(𝐱̇𝑙(𝑡), 𝐱𝑙(𝑡), 𝐮(𝑡), 𝛉𝑙 , 𝑡) = 0

 𝐲̂𝑙(𝑡) = 𝐠𝑙(𝐱𝑙(𝑡))
∀ 𝑙 ∈ {1,… , 𝑁𝑚} (1) 

where 𝐱 is the vector of 𝑁𝑥 state variables, 𝐱̇ is the derivative of the state variables, the 

vector 𝐮 represents the array of 𝑁𝑢 input variables, 𝛉 is the 𝑁𝜃-dimensional vector of 

model parameters, 𝑡 is the variable time, 𝐲̂ is 𝑁𝑦-dimensional vector of measured output 

variables that are function of the state variables, and subscript 𝑙 = 1,… ,𝑁𝑚 stands for the 

𝑙-th candidate model. In the ANN model recognition framework, the ANN is trained and 

then employed to determine among the 𝑁𝑚 models the most suitable one for describing 

the reacting system behaviour.  
The aim is to enhance the ANN ability in associating the right model label to the input 

data, which are affected by the choice of the experimental conditions. To optimise the 

experimental design, the objective function to be maximised is the ANN accuracy on the 

testing dataset is defined in Eq. 2 as the percentage of correctly classified model structures 

where Ψtest is the testing dataset, the dataset elements are the experimental data array 𝐧𝑖 

and the respective model label 𝑙𝑖, while 𝑙𝑖 is the label predicted by the ANN.  
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Figure 1 Block diagram representation of the proposed procedure for design of experiments 

optimisation coupled to ANN-based kinetic model recognition. 

AccΨtest =
|{𝑖 ∈ {1, … ,𝑁Ψtest} s. t. (𝐧𝑖, 𝑙𝑖) ∈ Ψtest ∧ 𝑙𝑖 = 𝑙𝑖}|

|{𝑖 ∈ {1,… , 𝑁Ψtest} s. t. (𝐧𝑖 , 𝑙𝑖) ∈ Ψtest}|
∙ 100% (2) 

The proposed procedure is illustrated in Figure 1. The procedure starts with the definition 

of all the inputs that must be fed to the optimiser, which are:  

• The library of the rival kinetic model structures. 

• A list of feasible values of the kinetic parameters for each candidate model. 

Parameters values are bounded and are said feasible if they satisfy constraints on the 

conversion and selectivity of chemical species when simulating the experiments. 

• The number of experiments to be optimised and the space of experimental conditions, 

i.e. which experimental variables can be manipulated and their range of variability.  

• The ANN structure: the number of layers, the number of nodes at each layer, the 

activation functions and all the other ANN hyperparameters. 

Afterwards, the optimisation of the experimental design is performed, coupled to the 

training of ANNs. The discussion about the DoE optimisation step, represented in Figure 

1 by the dashed box, addresses two aspects. 

i) How the objective function is evaluated for a certain experimental design. 

The objective function has to be evaluated many times for each experimental design 

proposed within the DoE optimiser iterations. The procedure to assess the ANN accuracy 

for a particular DoE choice involves the following sequential steps: 

1. An experimental design is chosen within the experimental design space. 

2. The respective experimental campaign is simulated in-silico for each model and for 

each set of feasible parameter values.  



820   

   

 

3. Simulated measurements of species concentration 𝐧𝑖 are collected and organised to 

build a labelled dataset Ψ, where each element of the dataset is associated to the 

kinetic model used for its generation 𝑙𝑖. An error factor is added to the simulated 

measurements to mimick real experimental circumstances. 

4. The ANN is trained and tested in the classification of the kinetic model structures 

based on the experimental evidence provided. The ANN accuracy (Eq. 2) is evaluated 

at this step. 

ii) The choice of the algorithm for optimising the DoE. 

The accuracy of ANN predictions on the test set is the metric used to evaluate the 

goodness of the experimental design: the higher the test-accuracy, the better the DoE. 

Since this metric is affected by intrinsic randomness in the neural network training 

process, a direct search method has been employed to deal with the optimisation problem. 

In particular, the differential evolution algorithm (Storn and Price, 1997) is chosen, a 

population-based algorithm inspired by the evolutionary theory. Once the algorithm 

converges to a solution, it provides as an output the optimal DoE and the respective ANN, 

i.e. the most accurate one at recognising the right kinetic model structure. In the final step 

of the proposed procedure, the optimally determined conditions are applied to the real 

system. Experimental data are collected and fed to the trained ANN, obtaining as output 

a measure of how likely each model is to describe the chemical system under 

investigation. 

3. Case study description 

The proposed methodology was tested on an in-silico simulated case study, considering 

an isothermal batch reactor where 3 species (A, B, C) react in the liquid phase.  

𝐴 
   𝑟1   
→  𝐵 ;         𝐴 

   𝑟2   
→  𝐶 ;         𝐵 

   𝑟3   
→  𝐶 (2) 

The set of equations describing the evolution of the system, assuming constant volume 

for the liquid mixture in the batch reactor, is given by Eq. 3, where 𝐶𝑖 (mol/m3) indicate 

the concentration of species 𝑖, namely the state variables of the system, 𝑟𝑗 (mol/m3s) is 

the rate of reaction 𝑗, and 𝜈𝑖𝑗 (-) represents the stoichiometric coefficient of species 𝑖 in 

the reaction 𝑗. 

𝑑𝐶𝑖
𝑑𝑡
=∑𝜈𝑖𝑗𝑟𝑗

𝑁𝑟

𝑗=1

    ∀ 𝑖 = 𝐴, 𝐵, 𝐶 (3) 

𝑘𝑗 = 𝐴𝑗𝑒
−𝐸𝑎,𝑗/𝑅𝑇       ∀𝑗=1,2,3 (4) 

Kinetic models are formulated assuming that reactions can occur either in series or 

parallel, and reactions rates were modelled with first or second order power-law 

expressions. Moreover, Arrhenius-type kinetic factors are assumed (Eq. 4) for evaluating 

the reaction rates, characterised by two parameters: pre-exponential factor 𝐴𝑗 and 

activation energy 𝐸𝑎,𝑗. Therefore, a total of 8 rival kinetic model structures are 

formulated, as summarised in Table 1.  
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Table 1 Power-law rate expression for the candidate kinetic models. Models with label l=1,…,4 

consider a series mechanism, while models l=5,...,8 consider a parallel mechanism. 

 Series Parallel 

Label: 1 2 3 4 5 6 7 8 

𝒓𝟏 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴
2 𝑘1 ∙ 𝐶𝐴

2 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴 𝑘1 ∙ 𝐶𝐴
2 𝑘1 ∙ 𝐶𝐴

2 

𝒓𝟐 𝑘2 ∙ 0 𝑘2 ∙ 0 𝑘2 ∙ 0 𝑘2 ∙ 0 𝑘2 ∙ 𝐶𝐴 𝑘2 ∙ 𝐶𝐴
2 𝑘2 ∙ 𝐶𝐴 𝑘2 ∙ 𝐶𝐴

2 

𝒓𝟑 𝑘3 ∙ 𝐶𝐵 𝑘3 ∙ 𝐶𝐵
2 𝑘3 ∙ 𝐶𝐵 𝑘3 ∙ 𝐶𝐵

2 𝑘3 ∙ 0 𝑘3 ∙ 0 𝑘3 ∙ 0 𝑘3 ∙ 0 

The dataset Ψ is generated starting from 125 sets of feasible parameters for each model 

structure, therefore Ψ includes 1000 elements (𝐧𝑖 , 𝑙𝑖). The dataset is split into training-

validation-testing sets on a 60-20-20 basis for ANN training, validation and testing. 

In this case study, the experimental error is generated from a normal distribution with 

zero mean and constant variance σ2, assuming three different noise levels: σ=1 mol/m3, 

σ=4 mol/m3, σ=10.00 mol/m3.  

The experimental variables manipulated when designing the experiments, and their upper 

and lower bounds, are: i) initial concentration of reactant A (0-250 mol/m3), ii) sampling 

times (50-350 s), and iii) temperature in the isothermal reactor (520-720 K).  

As underlined in section 2 of this paper, also the hyperparameters defining the ANN 

architecture must be provided as an input. Quaglio et al. (2020) work is used as the 

starting point to retrieve the ANN hyperparameters for this case study: 

• one hidden layer with 100 nodes and rectified linear unit activation function, 

• 8 nodes in the output layer characterised by softmax activation function, 

• the optimiser is adaptive moment estimation (Adam), (Kingma and Ba, 2014). 

Before employing the optimisation algorithm on the case study, it is worth conducting 

some preliminary study to examine whether the experimental design affects the ANN 

accuracy and to identify potential regions of the design space where to expect optimal 

experimental conditions. A sensitivity analysis has been carried out to this purpose. 

The optimisation is conducted considering three different scenarios of simulated 

experimental noise on concentration measurements and for each scenario the DoE 

optimisation is repeated with i) different number of experiments; ii) different number of 

samples, to determine the minimum amount of experimental effort required from the 

ANN to reach the highest accuracy. 

4. Results 

As far as the ANN test-accuracy is concern, the results are extremely promising, as shown 

in Figure 2a. These results refer to the DoE optimisation of experiments characterised by 

just one sample per batch, which indeed is even more remarkable. Very high accuracy in 

the ANN predictions is achieved even in the case of extremely noisy measurements with 

a limited number of optimally designed experiments. In particular, with four optimally 

designed batches a 100 % accuracy is reached in the low noise scenario, while in the 

medium noise case a 95 % accuracy is reached. In the scenario characterised by high 

noise, still, 90 % accuracy is achieved with just five optimally designed experiments. 

Figure 2b shows the sensitivity of ANN accuracy to temperature and initial concentration 

of species A in the high noise scenario, compared to the optimisation result for a single 

experiment with a single sample collected after t=100 s. Figure 2b suggests that optimal 

conditions for model discrimination are characterised by high initial concentration of 

reactant A (𝐶𝐴,0) and a medium range temperature around 630K.  

Optimal Design of Experiments Based on Artificial Neural Network
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Figure 2 (a) ANN accuracy obtained from the optimal design of experiments for variable number 
of experiments: comparison between the three experimental noise scenarios. (b) Contour plot of the 

ANN accuracy as a function of design variables for σ =10 mol/m3, fixed sampling time t = 100 s. 

The high value obtained for 𝐶𝐴,0 can be due to the hypothesis of constant σ. Under this 

assumption, the relative error is lower when the concentration measurement is higher. In 

the scenario described for Figure 2b, the CPU time required for the DoE optimisation was 

1376 s (approx. 23 minutes), carried out on an Intel Core i5-7200U processor with 8GB 

RAM workstation.  

5. Conclusions 

This study allowed to define a new method for optimal design of experiments that can be 

coupled with the ANN-based methodology for kinetic model recognition. Optimally 

designed experiments lead to a significant improvement in terms of ANN accuracy, thus 

paving the way towards ANN-based DoE methods for the recognition of kinetic models 

in complex reaction networks. Preliminary results show that kinetic model structures can 

be identified with limited experimental effort also in the presence of high noise level on 

the measurements. Future works will include the application to real chemical systems to 

test the reliability of the methods and the comparison in terms of time required and 

experimental campaign costs with classical model discrimination approaches. 
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Abstract 

Rice bran is a natural by-product that is produced by the rice milling process in the rice 

industry. In this study, the modelling of the protein extraction from rice bran using Soni-

auto hybrid method was evaluate via response surface methodology (RSM). Soni-auto 

hybrid method are the combination of the autoclaving extraction followed by sonication 

process. The experimental design for this process was performed using Response Surface 

Methodology (RSM) with Central Composite Design (CCD) model in Design Expert 

software. Three variables parameters namely solvent to sample ratio from 1:20 to 1:40, 

sonication temperature from 40 to 60oC and 20 to 40 minutes was evaluated. The response 

variable in this study are protein concentration. A highly accurate empirical quadratic 

response model for protein concentration was developed for three independent variable 

with adjusted R-squared value for the model was 0.8933. Two parameters; temperature 

and feed-to-solvent ratio give a significant effect (p<0.05) on protein concentration. 

Meanwhile, extraction times are not given the significant on this response. The model 

will be used to obtain the optimum condition for the process. 

Keywords: Modelling, rice bran protein, response surface methodology. 

1. Introduction  

In the rice industry, the large amount of rice bran produced through rice milling process 

is often considered as waste. These rice brans are either being thrown away or sell at a 

very cheap price as animal feed or fertilizer (Gul et al., 2015). The under-utilization of 

rice bran is due to the high amount of free fatty acid in the rice bran due to the reaction 

of the lipase enzyme in the rice bran. Patil et al. (2016) stated that within hours large 

amount of free fatty acid can be produced in the rice bran and the amount can reach 5 to 

7% within the first 24 hours of storage. Nutritionists have considered rice bran with more 

than 5% of free fatty acid are unsuitable for human consumption (Patil et al., 2016). 

Moreover, rice bran contains fiber and phytate which are extensively associated or 

bounded to the proteins makes the separation of protein from these components difficult 

to achieve. Therefore, various extraction techniques such as alkaline extraction, 

enzymatic extraction and physical extraction were used to extract the protein from the 

rice bran fibers and at the same time inhibit the lipase activity in the rice bran (Bhat and 

Riar, 2017). In this study, Soni-auto hybrid method was utilized for the protein extraction 

from the rice bran. Three main extraction parameter namely sonicator temperature, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50137-8 
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extraction time dan solvent to sample ratio was studied as the independent variable. The 

modelling for this process was done through response surface methodology using central 

composite design (CCD) model to obtain the best multivariable equation to represent the 

proses. Besides that, the significant effect of this parameter toward protein concentration 

was determine based on analysis of variance (ANOVA) analysis. 

2. Methodology  

2.1 Raw material 

 

Rice bran was collected from Kilang Beras BERNAS Sdn Bhd, Perlis, Malaysia. It was 

heated in a microwave oven at 850 W for 3 minutes and stored at 4 to 5oC prior to each 

experimental run (Pandey and Shrivastava, 2018).  

 

2.2 Soni-auto hybrid extraction method 

 

Soni-auto hybrid method are the combination of the autoclaving extraction followed by 

sonication process. 5 g of rice bran was added into a conical flask and followed by 100 

ml of distilled water for feed to solvent ratio of 1:20 g:ml. Then, the sample mixture was 

autoclaved at 121˚C for 20 minutes. After that, the autoclaved rice bran solution was left 

to cool down to room temperature. Finally, the mixture of rice bran was sonicated by 

using the sonicator bath (Model: WUC-D22H, Germany). Throughout the sonication 

process, the ultrasonic frequency was maintained at 70% with temperature range between 

40˚C to 60oC and extraction time between 20 to 40 minutes After sonication, the rice bran 

mixture was centrifuged at 4000 rpm for 30 minutes at 25˚C. Then, volume of the 

supernatant was measured. The absorbance of supernatant from each extraction method 

was measured using the UV-Vis spectrophotometer (Shimadzu, Model: UV-1800, Japan) 

to determine protein concentration in the rice bran solution. The procedures were repeated 

three times for all the parameters. 

 

2.3 Response surface methodology (RSM) 

In this study, response surface methodology (RSM) with Central Composite Design 

(CCD) model was utilized to model the extraction of rice bran protein using Soni-auto 

hybrid. The target response that needed to achieve was the maximum level of protein 

concentration in the rice bran solution. Therefore, the influence of the three parameters; 

time, temperature and feed-to-solvent ratio on the protein concentration was investigated. 

The factors and response as defined in CCD model is shown in Table 1. Design Expert 

V10.0.7 software  was used as statistical tool for this purpose. 

Table 1: List of numeric factors and response defined in Central Composite Design 

(CCD) model 

Numeric Factors Name Units Minimum Maximum 

A Temperature ˚C 40 60 

B Extraction time Minutes 20 40 

C Feed : Solvent Ratio g:ml 1:20 1: 60 

Response 

R1 Protein Concentration  mg/ml 

M. Sharizan Md Sarip et al. 
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3. Results and discussion 

 

Based on the response surface methodology (RSM) with Central Composite Design 

(CCD) model, 20 runs of experiment was done with different operating conditions was 

evaluated as shown in Table 2. The condition was generated through design of experiment 

(DOE) procedure using Design Expert V10.0.7 software. 

 

Table 2: Experimental data based on CCD model for protein extraction from rice bran 

Run A  

Temperature 

(˚C) 

B  

Extraction Time 

(minutes) 

C 

Feed: Solvent Ratio 

(g:ml) 

R1 

Protein Concentration  

(mg/ml) 

1 50 30 40 17.588 

2 56 36 52 14.014 

3 50 30 40 17.418 

4 50 30 40 17.502 

5 50 30 40 17.287 

6 44 36 52 14.881 

7 44 24 52 14.894 

8 56 24 28 15.898 

9 50 30 60 13.129 

10 50 40 40 16.876 

11 56 24 52 13.978 

12 50 30 40 17.012 

13 40 30 40 15.218 

14 50 30 20 14.375 

15 56 36 28 15.796 

16 50 20 40 16.614 

17 50 30 40 16.998 

18 60 30 40 15.008 

19 44 36 28 16.598 

20 44 24 28 16.499 

 

3.1 Model selection 

Table 3 shows the model summary statistics for protein concentration, R1. In this section, 

predicted residual sum of squares (PRESS) value was taken into consideration for the 

selection of model. PRESS is a measure of how a particular model fits each design point. 

The coefficients for the model were calculated without the first design point. This model 

was used to predict the first point and then the new residual was calculated for this point. 

This was done for each data point and then the squared residuals were summed. In this 

case, the quadratic polynomial model has the lowest predicted residual sum of squares 

(PRESS) at 11.42 compared to all other models which are not aliased. In addition, 

adjusted R2 values are also used in determining the type of polynomial that is suitable to 

represent the model. From table 3, other than the cubic model that was aliased, the 

quadratic polynomial model was observed to have the highest adjusted R2 value of 0.9046 

compared to the linear and 2FI models that have adjusted R2 value of only 0.0510 and -
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0.1671 respectively. Therefore, from the model summary statistics, the quadratic 

polynomial model with high adjusted R2 and low PRESS values was chosen to represent 

the model of study. The predicted R-square value indicates how well a regression model 

predicts response values; while the adjusted R-square (Adj. R2) indicates the descriptive 

power of the regression models while including the diverse numbers of variables (Che 

Sulaiman et al., 2017).   

Table 3 :  Model summary statistics for protein concentration 

Source Standard 

Deviation 

R-Squared Adjusted  

R-Squared 

Predicted 

R-Squared 

PRESS 

 

Linear 1.32 0.2009 0.0510 -0.2031 42.06 

2FI 1.47 0.2015 -0.1671 -0.7254 60.32 

Quadratic 0.42 0.9498 0.9046 0.6734 11.42 

Cubic 0.29 0.9857 0.9546 -0.2082 42.24 

 

Based on the Table 3, the difference between adjusted R-Squared and predicted R-

Squared of 0.2312 are high for quadratic model. The differences of this value more than 

0.2 are not considered to be a reasonable agreement (Tesfay et al.,2020). Therefore, the 

analysis of variance (ANOVA) was performed for the quadratic model as tabulated in 

Table 4. In general, values of “Prob>F” less than 0.0500 indicate the model terms are 

significant based on 95 % confidence level. In this case, A, C, A2 and C2 are significant 

model as shown in Table 4. If there are many insignificant model terms, model reduction 

can be done to improve the model and produce the reasonable agreement model.  

Table 4 : Analysis of variance (ANOVA) results for quadratic model 

Source F 

Value 

p-value 

Prob>F 

Observation 

Model 21.02 <0.0001 Significant 

A- Temperature 

B- Extraction Time 

C- Feed: Solvent 

AB 

AC 

BC 

A2 

B2 

C2 

5.22 

0.088 

34.69 

0.016 

0.10 

4.813E-4 

42.80 

1.73 

118.85 

0.0453 

0.7722 

0.0002 

0.9005 

0.7551 

0.9829 

<0.0001 

0.2180 

<0.0001 

Significant  

Insignificant 

Significant 

Insignificant 

Insignificant 

Insignificant 

Significant 

Insignificant 

Significant 

 

Based on Table 4, it was found out that B2, BC, AC and AB are in insignificant but only 

B2 model term is removed to improve the model.  This is because BC, AC and AB terms 

are required to support the polynomial equation hierarchy in data fitting based on trial-

and-error model reduction process. The results for reduced quadratic model are shown in 

table 5. 
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Table 5 : Analysis of variance (ANOVA) results for reduced quadratic model 

Source Sum of 

Squares 

Df* Mean  

Square 

F  

Value 

p-value 

Prob>F 

Model 32.90 8 4.11  21.97 <0.0001 

A- Temperature 

B- Extraction Time 

C- Feed : Solvent 

AB 

AC 

BC 

A2 

C2 

Residual 

0.92 

0.016 

6.09 

2.888E-3 

0.018 

8.450E-5 

7.29 

20.57 

2.06 

1 

1 

1 

1 

1 

1 

1 

1 

11 

0.92 

0.016 

6.09 

2.888E-3 

0.018 

8.450E-5 

7.29 

20.57 

0.19 

4.90 

0.083 

32.53 

0.015 

0.096 

4.514E-4 

38.94 

109.90 

0.0489 

0.7786 

0.0001 

0.9034 

0.7620 

0.9834 

<0.0001 

<0.0001 

Standard Deviation 0.43 R-Squared 0.9411 

Mean 15.88 Adjusted R-Squared 0.8983 

C.V. % 2.72 Predicted R-Squared 0.7049 

PRESS 10.32 Adeq Precision 15.651 

-2 Log Likelihood 11.29 BIC 38.25 

*degree of freedom 

The quadratic model with ƒ value (0, 8) = 21.97 and p <0.0001 implies the model has 

significant effect on the response. It also indicates that only 0.01% chance that the F-value 

occurs due to noise. Therefore, the overall model has a significant effect in determining 

the protein concentration within the experimental ranges. 

Based on this result, the feed-to-solvent ratio and temperature had significant effect on 

protein concentration with ƒ value (1,8) = 32.52, p = 0.0001 and ƒ value (1,8) = 4.90, p = 

0.0489, respectively. In contrast, the extraction time for sonication do not exhibit 

significant effects on the protein concentration as it has a low ƒ value (1,8) = 0.083 with 

p = 0.7786.  

As a conclusion, a final equation of the quadratic polynomial model was established to 

represent the process as shown in eq. 1. The adjusted R-squared value for the model was 

0.8933 while predicted R-squared value was 0.7049. The differences of this value are less 

than 0.2 and it considered to be a reasonable agreement.  

𝑅1 = 17.17 –  0.26A +  0.034B –  0.67C –  0.019AB –  0.047 AC 
+  0.00325BC –  0.71𝐴2 –  1.19𝐶2                                                          (1) 

Where,   R1 = Protein Concentration (mg/ml) 

A  = Temperature 

B = Extraction time 

  C = Feed: Solvent ratio 

 

Based on the equation, the validation of model is conducted to evaluate the uncertainty 

of this model by comparing the experiment data with predicted value. The experiment 

was conducted at temperature of 50˚C, feed to solvent ratio set at 1:40 and extraction time 

of 30 minutes. The analysis is shown in table 6.  
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Table 6 : Model validation with experimental data. 

Response 

(R1) 

Experimental data Predicted 

value 

( mg/ml) 

Error 

AARD2  

(%) 
Average 

(mg/ml) 

AAD1 

(mg/ml) 

Protein concentration 16.995 0.137 17.174  1.053 
1 AAD - Absolute average deviation = 

1

𝑛
∑ |𝑌𝑚−𝑌𝑎𝑣𝑒𝑟𝑎𝑔𝑒 |

𝑛
𝑚=1 , where n= 3, no of experiment repeated. 

2  AARD - Absolute average relative deviation = ( 
𝑌𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡−𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

𝑌𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
)𝑥 100. 

4. Conclusions 

 

As a conclusion, the quadratic model was successfully being developed for protein 

extraction process from rice bran using Soni-auto hybrid extraction method with adjusted 

R-squared value of 0.8933 and predicted R-squared value of 0.7049. The model has the 

ƒ value (0, 8) = 21.97 and p <0.0001 which implies it has significant effect on the 

response. Two parameters namely feed-to-solvent ratio and temperature are observed to 

give the significant effect on protein concentration with ƒ value (1,8) = 32.52, p = 0.0001 

and ƒ value (1,8) = 4.90, p = 0.0489, respectively. In contrast, the extraction time for 

sonication not given the significant effects on the protein concentration with ƒ value (1,8) 

= 0.083 with p = 0.7786. The empirical model develop in this study will be used to obtain 

optimum condition. 
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Abstract 

In this work, a scenario-based approach that uses multiple Weibull Accelerated Failure 

Time Regression (WAFTR) models is proposed to predict the remaining useful life 

(RUL) of a benchmark bearing. The external features such as operational load and 

rotatory speed of the bearing are used to categorize the operational scenarios and a 

scenario-based WAFTR model is identified for each operational scenario by using the 

internal features extracted from the sampled horizontal and vertical vibration data. 

Therein, the Weibull parameters in each WAFTR model are expressed either in 

exponential or in linear form of these internal and external operational features. By using 

the mean squared error (MSE) as the performance measure of the prediction model, it is 

found that the proposed multiple WAFTR models approach can predict the RUL within 

20% error. 

Keywords: Bearing, Weibull distribution, Remaining Useful Life (RUL), Reliability 

function 

1. Background 

Rotation equipment such as motors, compressors are largely used in chemical plants. How 

to avoid those equipment damage is an importance task for field engineers. Engineers 

would check some indicators such as the temperature change or vibration amplitude to 

identify the health condition of the machine. Remaining useful life (RUL) is an estimate 

of the time that an item or component can function normally. Normally, the health 

condition of a machine will be worse with time goes by. Thus, maintenance and 

replacement are needed. In a plant, although earlier maintenance can prevent machines 

from broken, the more unnecessary cost has to pay. However, if the maintenance is too 

late, the machine may be broken and cause casualties. The accurate RUL prediction 

provides a suitable moment for replacement actions and keeps a safe environment for 

workers.  

In 2012, the Institution of Electric, Electrical, and Engineering (IEEE) launched a 

challenge to the world (Patrick Nectoux et al (2012)). IEEE provided 17 bearing vibration 

datasets: six of them are the start-to-failure datasets, of which the whole vibration 

condition is from beginning to failure. The rest of them is the testing dataset, of which the 

vibration condition is not given fully. The purpose of this challenge is to let the engineers 

around the world predict the remaining useful life (RUL) for the bearing. There are two 

sensors detected the vibration acceleration connected with the bearing in the horizontal 

and vertical directions. These two sensors would take action every 10 seconds. Each time 

they would collect 2,560 data points in 0.1 seconds. Moreover, this experiment provided 

three different operating conditions by controlling the rotation speed and the force 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50138-X 
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conducted on the bearing. Although the experimental data provided includes the 

horizontal and vertical data, most of the researchers in this field would only use the 

horizontal data, such as Mao at al. (2018) and Guo et al. (2017), to name a few, the 

horizontal and vertical data together will affect the prediction accuracy. However, it is 

believed that the vertical data can still give us important information despite its 

fluctuation. In this work, both the horizontal and vertical data is used to build an RUL 

prediction model to enhance the prediction accuracy.  

2. Methodology 

2.1. Weibull reliability model 

Kundu et al. (2019) proposed using the Weibull distribution function to describe the 

machine failure probability density with time, such as depicted in Eq. (1). The Weilbull 

reliability function can be derived from the Weilbull distribution function, as shown in 

equation (2). 

𝑓(𝑡) =
𝛽

𝜂
(

𝑡 − 𝛾

𝜂
)

𝛽−1

𝑒
−(

𝑡−𝛾
𝜂

)𝛽

 (1) 

𝑅(𝑡) = 1 − ∫ 𝑓(𝑠)𝑑𝑠
𝑡

0

= ∫ 𝑓(𝑠)𝑑𝑠
∞

𝑡

= 𝑒
−(

𝑡
𝜂

)𝛽

 (2) 

Different types of machine failure can be described by tuning the three parameters in the 

Weilbull reliability function. Among these three tuning parameters, β is the shape 

parameter that would determine the type of failure, η is the scale parameter that would 

determine that machine’s life span, and γ is the location parameter that determines at what 

time the machine starts to fail. It is assumed that the machine starts to break at the 

beginning, which means that γ can be set as zero. In a normal degradation process, the 

magnitude of β should greater than 1, and the magnitude of η should be similar to the 

total life span. When the operating time is closed to the failure time, the reliability of the 

machine is deemed to be closed to zero. It is assumed that the reliability is 0.01 at the 

failure time. Eq. (3) shows the relationship of the present time, t, and the RUL. 

𝑡 + RUL(𝑡) = 𝑡failure (3) 

By plunging Eq. (3) into Eq. (2), the main prediction model is derived in Eq. (4). 

RUL(𝑡) =  η × [− ln(0.01)]
1
𝛽 − 𝑡 (4) 

Time t is the primary factor that affects the reliability. However, there are some other 

aging factors contributing to the decreasing reliability. Some parameters can be controlled 

by the operators, like the applied load, and the rotary speed. The other internal aging 

parameters are features revealed by the machine like temperature, vibration magnitude. 

In Kundu’s work, the two parameters β and η can be replaced by the bearing’s features, 

where the η is expressed as an exponential expansion such as Eq. (5) shown. 

η = exp (a0 +  ∑ 𝑎𝑛𝐼𝑛

𝑁

𝑛=1

+  ∑ 𝑏𝑚𝐸𝑚

𝑀

𝑚=1

) (5) 
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𝐼𝑛 and 𝐸𝑚  are the internal and external parameters, respectively, and 𝑎𝑛 and 𝑏𝑚 are the 

coefficients of the aging parameters. In this work, β are also a parameter that would 

change as time goes by. As the result, β can also be expressed as an exponential expansion 

as shown in Eq. (6). Furthermore, the performance of using linear expansion is 

investigated for both β and η as shown in Eq. (7) and Eq. (8). 

β = exp (c0 +  ∑ 𝑐𝑛𝐼𝑛

𝑁

𝑛=1

+ ∑ 𝑑𝑚𝐸𝑚

𝑀

𝑚=1

) (6) 

η =  (a0 + ∑ 𝑎𝑛𝐼𝑛

𝑁

𝑛=1

+  ∑ 𝑏𝑚𝐸𝑚

𝑀

𝑚=1

) (7) 

β =  (c0 +  ∑ 𝑐𝑛𝐼𝑛

𝑁

𝑛=1

+ ∑ 𝑑𝑚𝐸𝑚

𝑀

𝑚=1

) (8) 

2.2. Features 

It is found that only horizontal dataset is used for model building in most of the previous 

studies. However, it is believed that the vertical datasets still contain important 

information, so both the horizontal and vertical datasets are took into concern. Moreover, 

the net vibration magnitude is also an important indicator for the RUL prediction. Thus, 

the “Scalar dataset” is calculated by Eq. (9): 

Scalar(𝑡) = √Horizontal(𝑡)2 + Vertical(𝑡)2 (9) 

By now, there are three types of datasets: the horizontal, the vertical, and the scalar. 

Because all of these contain much noise, the frequency-domain features are used as our 

main inputs for RUL prediction. 

The horizontal dataset 1_1 is illustrated as shown in Figure 1. The Discrete Fourier 

Transform (DFT) is conducted to three types of raw data. Next, the frequency-domain 

features are normalized to highlight the magnitude ratio of frequency-domain features at 

each observation. This normalized value is also called the frequency signal energy. 

Instead of using the specific frequency as our model feature, we prefer to use a zone of 

the frequency. Thus, the whole frequency span is divided into 16 zones, (0 Hz – 800 Hz), 

(800 Hz – 1,600 Hz), (1,600 Hz – 2,400 Hz)… (12,000 Hz – 12,800 Hz). The principal 

component analysis (PCA) is conducted to these 16 frequency-domain features. Three 

principal components are extracted as the internal parameters. Furthermore, because 

using the frequency-domain features is possible to lose information, one time-domain 

internal parameter, the standard deviation, is picked. The standard deviation has high 

monotonicity. It would be seen as a health indicator for prediction. 

Combined with the standard deviation, 12 features are extracted form three types of raw 

data (the horizontal, vertical, scalar data) in each dataset. These 12 internal parameters 

Std =  √∑
(𝑥 − 𝜇)2

𝑁

𝑁

𝑛=1

 (10) 
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and the 2 external parameters (force load, rotatory speed) will be plugged into the 

prediction model. 

 

Figure 1 Frequency-domain features extraction with DFT and PCA 

2.3. Target 

The target of the model, in our case, is accurate prediction of the actual remaining useful 

life (RUL). The target will be used either in the regression part or in the testing part. It is 

assumed that the RUL is decreased linearly to zero at the failure time in our case. One 

can easily use the formula to get our RUL since the IEEE has given all the failure times. 

3. Result and Discussion 

3.1. Regression pre-process 

Before building the prediction model, it is necessary to take a look at the raw data. The 

data provided by IEEE 2012 challenge is the real experimental data, so some datasets 

may include too much noise in building the prediction model. The datasets 1_ 2, 2_ 3, 2_ 5, 

2_ 7, and 3_ 2 are excluded because they contain large fluctuation in the middle of the 

process. Also, the mean squared error (MSE) of the life percentage as shown in Eq. (11) 

is introduced. The value of MSE can show the precision of the prediction. 

MSE =  
1

𝑁
∑ (

RULprediction(𝑛)

Total Life
−

RULactual(𝑛)

Total Life
)

𝑁

𝑛=1

2

(11) 

In this way, regardless of any case, the MSE will give the same value, which is 0.04, when 

the prediction RUL is just at the tolerance boundary. After defining the MSE, one can just 

use the MSE to describe the accuracy of the prediction model. 

3.2. Model selection  

In section 2.1., two types of expansion of β  and η  are combined in the model. The 

adequacy of these models are evaluated by checking the MSE values. The whole datasets 

are used to regress the model coefficients. All the simulations are done in the Python 

environment. The Python 3.9.4 script has the package to solve the non-linear regression. 



I t is  f ou n d that the model with exponential β and linear η is the best b ec au s e it b rin gs  the 

s m al l es t M S E  v al u e.  

D u rin g the predic tion  m odel  proc es s ,  it is  c ritic al  to determ in e the train in g s ets  an d tes tin g 

s ets . A s  there are three operatin g c on dition s ,  it is  reas on ab l e to pic k  at l eas t on e datas et 

f rom  eac h operatin g c on dition . A l s o,  the 1_ 1,  2_ 1,  2_ 2,  an d 3_ 1 are the s tart-to-f ail u re 

datas ets ,  w hic h m ean s  that thos e datas ets  s hou l d hav e m ore in f orm ation  than  the others . 

H ow ev er,  the predic tion  res u l t is  n ot good en ou gh as  s how n  in  T ab l e 1. T he M S E  v al u es  

of  1_ 4,  1_ 5,  an d 1_ 7 are l arger than  0.04,  w hic h m ean s  that the predic ted R U L  is  ou t of  

the tol eran c e z on e. 

T ab l e 1 T he M S E  tes tin g res u l t b y  predic tion  m odel  train ed w ith 1_ 1,  2_ 1,  2_ 2,  an d 3_ 1 

T es tin g s et 1_ 3 1_ 4 1_ 5 1_ 6 1_ 7 2_ 4 2_ 6 3_ 3 

M S E 0.032 0.280 1.192 0.021 0.045 0.010 0.003 0.035

I t is s u s pec ted that regres s in g the m odel w ith dif f eren t operatin g c on dition s w ou l d

dec reas e the ac c u rac y . M oreov er,  the datas ets  f rom  the s am e operatin g c on dition  m ay  n ot 

c on s is ten t en ou gh. A s  the res u l t,  an  an al y s is  in  don e to c hec k  the rel ation s hip b etw een  

eac h datas et. I n  this  an al y s is ,  eac h datas et its el f  is  u s ed as  the regres s ion  datas et to b u il d 

the l oc al  m odel . T he M S E  v al u e c an  b e u s ed in  this  an al y s is  s in c e it c an  repres en t how  

s im il ar the datas ets  are. By  tes t the other datas ets  w ith the l oc al  m odel ,  w e c an  b u il d an  

M S E m ap as s how n in F igu re 2. T he b l an k parts m ean that the tes tin g s et is the s am e as

the train in g s et. T he dot parts  m ean  that the M S E  v al u e is  l ow er than  0.04. T he other gray  

parts  m ean  the M S E  v al u e is  l arger than  0.04.  

 

F igu re 2 M S E  m ap that repres en ts  how  s im il ar eac h datas et is . 

A s  the M S E  m ap s how s ,  exc ept f or 1_ 4,  al l  the M S E  v al u es  are n ic e w hen  w e tes t the 

datas ets  f rom  the s am e operatin g c on dition . T hu s ,  1_ 4 is  s een  as  an  ab n orm al . By  

c hec k in g the M S E  m ap,  w e aim  to pic k  on e datas et f rom  eac h operatin g c on dition . I n  

c on dition  1,  1_ 3,  1_ 5,  1_ 6,  an d 1_ 7 do hav e s u itab l e M S E  v al u es . T ak in g an y  on e of  them  

as  on e of  the train in g s ets  is  ac c eptab l e. I n  c on dition  2,  b oth 2_ 2 an d 2_ 4 are s u itab l e. I n  

c on dition  3,  b oth 3_ 1 an d 3_ 3 are s u itab l e. F in al l y ,  w e f in d that tak in g 1_ 5,  2_ 2,  3_ 3 as  

the train in g s ets  c an  b rin g the s m al l es t M S E  v al u e w hen  predic tin g either the w hol e 

datas ets  or the other tes tin g datas ets . T hu s ,  thes e three datas ets  are s et to b e ou r train in g 

s ets . 

Weibull Reliability Regression Model for Prediction of Bearing
 Remaining Useful Life 

833
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3.3. Single model to multiple models 

Although the model trained with 1_5, 2_2, 3_3 brings precise prediction, β and η will lose 

their physical meaning when the value of them is checked. Take 1_1 as an example, the 

value of β is around 0.34 and the value of η is around 27.7. It is suspected that regressing 

with the datasets from different operating conditions is more likely to let the parameters 

optimized in an extreme situation. To solve this problem, it is intended to build one 

specific model for each specific operating conditions instead of building a single model 

to be responsible for the RUL prediction over whole operating conditions. 1_5, 2_2, and 

3_3 are used to build three prediction models. The MSE results is shown in Table 2. And 

the magnitude of β and η will be settled in the scale of a normal degradation process.   

Table 2 The MSE testing result by prediction model trained with 1_5, 2_2, and 3_3 

Testing set 1_1 1_3 1_6 1_7 2_1 2_4 2_6 3_1 

MSE 1.47E-02 1.37E-03 3.76E-05 8.15E-03 1.57E-02 3.75E-03 1.88E-02 2.47E-02 

4. Conclusions 

This work aims at establishing the Weibull Accelerated Failure Time Regression 

(WAFTR) models to predict the remaining useful life (RUL) of a benchmark bearing. 

The external features such as bearing load and rotary speed are used to categorize the 

local WAFTR model and then the internal features extracted from the frequency 

characteristics of sampled vibration data are used to adjust the scenario-based model 

parameters. In building the Weibull models, it is found that the parameter β expressed as 

exponential expansion and the parameter η expressed as linear expansion is the best 

choice to reflux the complex relationship between the RUL and operational features. By 

applying the multiple WAFTR models, the RUL prediction error is within 20% for all 

testing cases. 
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Abstract 
Surrogate models can be used to reduce the computational load when a simulation model 
is computationally costly to evaluate. This is the case if sophisticated thermodynamic 
models are integrated as e.g. the Perturbed-Chain Statistical Associating Fluid Theory 
(PC-SAFT) equation of state. When constructing surrogate models, the question of how 
to choose the training set arises. Recent research showed that promising results were 
obtained using adaptive or sequential sampling methods. In these approaches, the 
surrogate model predictions are used to identify additional promising sample locations. 
The results depend on the structure of the surrogate model, i.e. the choice of the 
hyperparameters. It is in general a tedious task to choose hyperparameters by trial and 
error, and a set of hyperparameters that is suitable in the initial phase may not be adequate 
anymore when the size of the training set increases significantly. Therefore, we here 
propose a methodology to incorporate hyperparameter optimization (HPO) into the 
adaptive sampling workflow. As this comes with a significant effort, HPO is only 
performed when it promises improvements. 

Keywords: surrogate modeling, adaptive sampling, gray-box modeling, hyperparameter 
optimization, machine learning 

1. Introduction 
For an accurate description of complex phase equilibria in chemical process simulation 
and optimization, modern thermodynamic models like the Perturbed-Chain Statistical 
Associating Fluid Theory (PC-SAFT) should be used. When applying  such models, the 
issue of the high computational cost caused by evaluating the phase equilibria arises. To 
overcome this issue, surrogate models can be applied to approximate the predictions of 
the complex thermodynamic models. Surrogate models are black-box models that can 
describe arbitrary relationships while being computationally cheap to evaluate. An 
overview of different surrogate model types is given in McBride and Sundmacher (2019). 
Recent applications include the development of biorefineries (Mountraki et al., 2020) and 
assisting in the optimization of chemical processes (Janus et al., 2020). 
The process of creating a training set to fit a surrogate model to data is denoted as 
sampling. Recent work showed that adaptive sampling can be used to improve the 
accuracy of the surrogate model, see Nentwich et al. (2019) and Winz et al. (2021). 
One important issue in the application of surrogate models is the choice of a suitable 
surrogate model structure. In a real scenario, there is only limited knowledge about the 
original functional relationship that the surrogate model must approximate, and 
determining the structure of the surrogate model structure and the parameters of the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50139-1 
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training procedure is a complex task. This issue is further complicated when during the 
application of adaptive sampling methods additional samples are collected. Some 
surrogate model types may be suitable for a small initial training set, but not provide 
enough flexibility for a large training set in later iterations. So there is a need for a 
methodology to on the one hand automatically determine a suitable model structure for a 
specific data set and on the other hand detect when during the adaptive sampling it is 
necessary to adapt the model structure. 
In the following, we describe such a methodology. In section 2, we introduce an example 
to which the methodology is applied. Section 3 entails the description of the developed 
methodology for simultaneous adaptive sampling and adaptation of the model structure, 
and in section 4 the results of the application of this method to the use case are presented. 

2.  Hydroformylation  
The considered use case is the design of a process to conduct the hydroformylation of 
1-dodecene in a thermomorphic solvent system, see Nentwich et al. (2019) for further 
details. In this process, a liquid phase reaction is conducted using an expensive 
homogeneous Rhodium-based catalyst. To minimize the loss of the catalyst, the solvent 
system is set up in a specific way. At elevated temperatures the mixture is homogeneous 
and the reaction can be performed with little transport limitations. After cooling down the 
reaction medium, two liquid phases form, which enables the separation of the mixture 
using a decanter and the recycling of the catalyst in the polar phase. 
The intricate thermodynamic phase behavior of the reaction mixture can be accurately 
modeled using the equation of state PC-SAFT (Schäfer et al., 2012). But due to the high 
computational cost involved in solving the PC-SAFT equations, the fugacity coefficients 
are approximated by a surrogate model as described in the next sections. As a quaternary 
component system is considered and the temperature has a strong influence on the 
miscibility, the four fugacity coefficients are a function of four inputs each.  

3. Methodology 
3.1. Surrogate model types 

In this work, different types of surrogate models are considered. Surrogate models can be 
classified with respect to several aspects. A property that is especially relevant in this 
context is parametricity. In parametric methods, the functional form of the response 
surface is fixed before the training. In non-parametric methods, the functional form is 
determined during the training, which typically leads to inherent scaling of the model 
complexity with the training data size (James et al., 2013). To cover both categories of 
models, in this work both Gaussian process regression (GPR) models, as an example of a 
non-parametric method, and parametric artificial neural network (ANN) models are 
applied.  
For the GPR models, the considered hyperparameters are the types of basis and kernel 
functions. For the ANN models, these are the numbers of layers and nodes in each layer. 
The training of the ANN is done using the Levenberg-Marquardt algorithm with early 
stopping after six iterations of non-decreasing validation errors. 
3.2. Adaptive sampling methodology 

Adaptive sampling methods are used to select sets of samples such that accurate surrogate 
models are be obtained when they are fitted to the samples. In this work, the adaptive 
sampling methodology described in Nentwich et al. (2019) is applied.  
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A key element of sampling methods is to introduce a measure of how promising it is to 
evaluate a new sample and to add it to the sample set. This measure is commonly denoted 
as 𝜂𝜂𝑗𝑗. Here it is computed as the weighted mean of the scaled Jackknife variance 𝜎𝜎�𝑗𝑗

2 and 
the scaled nearest neighbor distance 𝑑𝑑𝑗𝑗. 

𝜂𝜂𝑗𝑗 = 𝛼𝛼
𝜎𝜎�𝑗𝑗
2

max
𝚥̃𝚥
𝜎𝜎�𝚥̃𝚥
2 + (1 − 𝛼𝛼)

𝑑𝑑𝑗𝑗
max
𝚥̃𝚥
𝑑𝑑𝚥̃𝚥

  (1) 

The weighting factor 𝛼𝛼 reflects the trade-off between exploration and exploitation. To 
ensure appropriate surrogate model predictions which are necessary for reliably 
computing 𝜂𝜂𝑗𝑗, the hyperparameters of the model have to be chosen carefully.  

3.3. Hyperparameter optimization 

The task of automatically determining hyperparameters of machine learning models and 
methods has attracted much interest in the last years. Recently, Bayesian optimization has 
become popular. In Bayesian optimization, a GPR surrogate of the cost function is 
constructed and used to define an acquisition function that is utilized to identify promising 
inputs by considering both the predicted value of the cost function and the estimated 
uncertainty. A commonly used acquisition function is the expected improvement (EI). A 
variant, where the EI relative to the expected evaluation time is optimized, is proposed 
by Snoek et al. (2012). This tends to favor sets of hyperparameters that lead to a low 
evaluation time. In general, this procedure is time-consuming as the surrogate model has 
to be trained multiple times. Thus, the next section deals with determining when the HPO 
is promising. 
3.4. Supporting hyperparameter optimization 

As the HPO routine is computationally costly to perform, it is impractical to apply it in 
every iteration of the adaptive sampling process. Therefore, in this section we describe a 
criterion to determine when the current set of hyperparameters is not likely to lead to 
sufficient progress. Its combination with adaptive sampling is shown in Algorithm 1. 
As can be seen in Algorithm 1, two main elements are added to the adaptive sampling 
procedure, the hyperparameter optimization itself and a method to evaluate whether the 
hyperparameter optimization is promising. For this evaluation, we propose to adapt the 
slope ratio criterion proposed by Nuchitprasittichai and Cremaschi (2013) using the 
relative progress, RP.  

RP𝑖𝑖 = ��
CVE𝑖𝑖−1

CVE𝑖𝑖
− 1� (𝑛𝑛𝑖𝑖 − 𝑛𝑛𝑖𝑖−1)−1� (2) 

As can be seen in (2), RP is computed from the cross-validation error in iteration , CVE𝑖𝑖, 
and the number of samples in iteration 𝑖𝑖, 𝑛𝑛𝑖𝑖.This is motivated by the idea that if the errors 
in one iteration and in the next one are similar, the progress is small, while large progress 
is observed if the error is reduced by a significant factor. This is different from the 
criterion proposed in previous work (Nuchitprasittichai and Cremaschi, 2013), where the 
absolute difference of the errors is considered. This modification is done here to consider 
a large relative change of the error as significant even if the absolute error is small, as it 
commonly occurs in later iterations of the algorithm. 
As this ratio tends to give noisy results, a smoothening is performed by applying an 
exponential fit to the data points of {𝑛𝑛𝑖𝑖}, {RP𝑖𝑖} that were gathered since the last HPO was 
performed, whenever there are at least minCVEs = 4 error values available. An 
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optimization of hyperparameters is conducted if there is not sufficient progress, i.e. at the 
sample size where the exponential fit reaches a minimum threshold 𝜖𝜖. 

 

4. Results 
4.1. Hyperparameter dependency 

A first investigation is conducted to answer the question of how strongly the prediction 
capabilities of the considered surrogate models depend on the choice of the 
hyperparameters. For this, three training sets of varying sizes with 50, 500, and 5000 
training examples each were created twice using Latin hypercube sampling. One set was 
used for the optimization of the hyperparameters, and the other one for the evaluation of 
the performance of the surrogate models. These sets were created by evaluating the 
fugacity coefficient of the liquid phase with PC-SAFT for different combinations of 
temperature and composition (a relationship with 4 inputs and 4 outputs).  
A hyperparameter optimization was performed using each of the three sets of different 
sizes performing 50 iterations using the EI acquisition function. The optimized 
hyperparameter sets were used to create surrogate models based on different sets also 
containing 50, 500, and 5000 training examples. The resulting performance is shown in 
Figure 1 in terms of the normalized RMSE computed on a separate test set of 964120 
samples. In this figure, it can be seen that for GPR models all sets of hyperparameters 
perform similarly on any training set size, as expected for a non-parametric model. On 
the other hand, for ANN surrogate models there is a strong dependency on the model 
structure. The model where the hyperparameters were optimized for 50 samples does not 
perform well when being trained on a set of 5000 samples and vice versa.  
 

        
Figure 1: Normalized test set error of different surrogate models for hyperparameters optimized 
for different sizes of the training sets. The top numbers denote the mean value, the bottom 
numbers are the mean computation times of training on a standard desktop PC 

Data: Initial training input and output sets 𝑋𝑋 and 𝑌𝑌 
Conduct hyperparameter optimization using 𝑋𝑋 and 𝑌𝑌 to obtain an initial set of hyperparameters {𝜆𝜆𝑖𝑖} 
Initialize the set of cross-validation errors CVEs ← ∅  
while stopping criterion not met do 
 Train surrogate models with hyperparameters {𝜆𝜆𝑖𝑖} 

Update the set of cross-validation errors CVEs ← CVEs∪ CVE 
if number of elements in CVEs > minCVEs do 
 Compute {RP𝑖𝑖} from CVEs (see eq. (2)) and perform an exponential fit for {n𝑖𝑖}, {RP𝑖𝑖} 
 if number of samples where exponential fit meets threshold 𝜖𝜖 < number of samples in 𝑋𝑋 do 

Conduct hyperparameter optimization using 𝑋𝑋 and 𝑌𝑌 to give a new set of hyperparameters {𝜆𝜆𝑖𝑖} 
Reset the set of cross-validation errors CVEs ← CVE  
Train surrogate models with the new hyperparameters {𝜆𝜆𝑖𝑖} 

end 
end 
Adaptive sampling using trained surrogate models to update sample sets 𝑋𝑋 ← 𝑋𝑋 ∪ 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛, 𝑌𝑌 ← 𝑌𝑌 ∪ 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛 

end 

Algorithm 1: Inclusion of hyperparameter optimization in adaptive sampling 
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4.2. Combination of adaptive sampling and hyperparameter optimization 

As shown, the ANN surrogate models are sensitive to the choice of the hyperparameters. 
Thus, the adaptive sampling loop from (Nentwich et al., 2019) was extended with the 
described supporting hyperparameter optimization. The adaptive sampling was initially 
conducted only performing an HPO at the first iteration to analyze the chosen criterion 
for re-optimization as shown below. 

       
Figure 2: Left, top: Error-values over numbers of samples. Left, bottom: Improvement criterion 
and exponential fit. Right: Predicted iteration of need for HPO at different adaptive sampling 
iterations as crosses, identity line as a dashed line 

In this figure in the left upper part, the trajectory of the error on the test set and the CVE 
are presented over the iterations of the adaptive sampling. In the bottom part, the RP 
criterion values, as well as the exponential fit, are shown. Using the criterion, a HPO 
should be performed after 924 samples have been collected as shown by the dotted line 
denoting where the criterion reaches the threshold of 0.001. On the right-hand side, it is 
shown for which iteration the criterion is fulfilled, with the criterion being evaluated at 
different stages of the adaptive sampling. It can be seen that after the 11th adaptive 
sampling iteration the RP criterion consistently predicts the HPO to become necessary in 
iteration 17. This holds true also for later iterations, where the HPO eventually becomes 
overdue. This shows the robustness of the methodology and confirms the assumption, that 
the RP values can be smoothened with an exponential fit.  
After validation, the methodology was applied by performing adaptive sampling and 
HPO, when the RP criterion is met. The results of this procedure are shown in Figure 3. 

  
Figure 3: Adaptive sampling in combination with supporting hyperparameter optimization, the 
hyperparameters are visible as annotations. The dashed lines show the evolution of the error for 
the test set when the hyperparameters were kept constant. 
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It can be seen from Figure 3 that when using adaptive sampling with hyperparameter 
optimization, the model structure is adapted twice, once after 642 samples have been 
collected and then once again for a sample set of 1109 samples, which leads to a 
significant decrease in the test set error, compared to the case, where no HPO was 
performed.  

5. Conclusion 
In this work, a novel methodology for combining hyperparameter optimization and 
adaptive sampling is presented and applied to the approximation of the liquid phase 
fugacity coefficients obtained by PC-SAFT in a quaternary thermomorphic solvent 
system. The methodology is based on evaluating the slope of the cross-validation error to 
detect when the accuracy of the surrogate models is not increasing sufficiently anymore. 
The manual (re-)setting of the hyperparameters, which is a tedious and error-prone task, 
is avoided and replaced by an automatic procedure. The presented results show the 
necessity of hyperparameter re-optimization and the successful application of the 
automatic procedure.  
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Abstract

Fixed-bed reactors employed within Power-to-X technologies are expected to be subject

to volatile process feeds, in order to minimize intermediate buffer or storage systems. In

this context, catalyst particles with an inert shell have proven suitable to prevent reactor
runaway and severe temperature excursion at various loads and during load-changes,

while still allowing for high reactor space-time yields. The aim of this work is to deter-

mine how much active catalyst mass can be saved by multi-period design optimization of

methanation reactors with one, two, and infinite fixed-bed segments. Our results show

that the amount of active mass, which can be saved with a single fixed-bed segment, is

negligible. If more than one fixed-bed segment is considered, up to 45.2 % can be saved

at the expense of a more complex dynamic reactor behavior. In the worst case, severe

temperature excursions during transient scenarios might occur, which is not the case, if

only a single fixed-bed segment is considered.

Keywords: Multi-Period Design Optimization, Load-Flexible Fixed-Bed Reactor, Dy-

namic Reactor Operation, Carbon Dioxide Methanation

1. Introduction

Fixed-bed reactors are commonly employed to carry out heterogeneously catalysed gas-

phase reactions. As they are often the central process unit, their optimal operation and

design has been investigated for decades. Special attention is often paid to heat manage-

ment, as many reactions are highly exothermic. With respect to the increase in volatile

process feeds (e.g., due to renewable energies), load-flexible operation of fixed-bed reac-

tors is expected to become increasingly important (Bremer and Sundmacher, 2019). Con-

sequently, the employed reactors must not only operate reliably in one steady state, but

in many as well as in the transitions between the steady states. Otherwise, severe temper-

ature excursions could deactivate the catalyst or even destroy the reactor material.

The design of the employed catalyst particles has a significant impact on the dynamic

behaviour of fixed-bed reactors. Core-shell catalyst particles consisting of an active core
and an inert shell (‘egg-yolk’ catalyst particles) exhibit favourable properties in this con-

text (Zimmermann et al., 2020). In our recent work, we compare such catalyst particles

http://dx.doi.org/10.1016/B978-0-323-85159-6.50140-8 
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to ordinary fixed-bed dilution, exemplified for carbon dioxide methanation (Zimmer-

mann et al., 2022). In both cases, industry scale fixed-bed reactors with one, two, and

infinitely many segments in axial direction are considered.

We conclude, that fixed-beds consisting of core-shell catalyst particles are favourable for

load-flexible reactor operation compared to ordinary fixed-bed dilution. The reason for

this can be seen in Fig. 1. Whereas ordinary

fixed-bed dilution decreases the effective re-

action rate by a constant factor over the
whole temperature range, core-shell catalyst

particles of the ‘egg-yolk’ type decrease the

effective reaction rate selectively at high

temperatures, where the diffusion through

the inert shell is rate-determining. In conse-

quence, much higher effective reaction rates

are obtained towards the reactor outlet,

where no reduction of the heat release rate is

necessary. This results in higher space-time

yield and lower pressure loss.

If the catalyst particles are operating in the
regime of diffusion limitation by the inert

shell, the active mass in the centre of the cat-

alyst particles does not contribute to the con-

version of reactants. However, as the active

mass often consists of precious noble metals,

it should be located within the particles only

where needed, in order to save investment costs. In this work, we extend the discussed

procedure to include catalyst particles, which consist of an inert core and an inert shell

with a layer of catalytically active mass in between (a.k.a. ‘egg-white’ catalyst particles),

as seen in Fig. 1. We aim to minimize the amount of active mass needed, while ensuring

a high space-time yield and the compliance of conversion and temperature bounds within
the entire reactor.

2. Fixed-Bed Reactor and Catalyst Particle Model

A pseudo-homogeneous fixed-bed reactor model is employed. In addition to the carbon

dioxide conversion X and radially averaged temperature T, the fixed-bed's centre temper-

ature T෡C is approximated by the correlation of Dixon (1996). The reaction kinetic model

of Koschany et al. (2016), which considers no side reactions, is used to describe the

methanation reaction kinetics. Further details on the remaining constitutive equations are

given by Zimmermann et al. (2022).

Figure 1: Schematic comparison of the effec-
tive reaction rates of different catalyst particle

concepts and ordinary fixed-bed dilution in
Arrhenius plots.
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The effective reaction rate of the catalyst particles is calculated according to

This equation is derived by extending the procedure given by Zimmermann et al. (2022)

and is an explicit analytical approximation of the effectiveness factor for a single reaction.

It considers the influence of an inert core with radius R0 in the dimensionless group 𝛾,

and the inert shell with radius Rshell in the dimensionless group 𝛿.

3. Multi-Period Design Optimization

Multi-period design optimizations, as proposed by Grossmann and Sargent (1979), are

performed by employing the pseudo-homogeneous reactor model. Three periods of equal

temporal length and carbon dioxide loads of 0.5 t/h, 1.0 t/h, and 1.5 t/h are considered.

The operating variables consist of the inlet pressure, velocity, and temperature as well as

the coolant temperature and wall heat transfer coefficient. The inlet feed is always a stoi-

chiometric mixture of pure carbon dioxide and hydrogen. The design variables are the

reactor's tube length, diameter, and number, together with the catalyst particle diameter,

shell porosity, pore diameter, and thickness, as well as radius of the inert core. In each

state, the temperature in the centre of the fixed-bed must never exceed 750 K, and the

conversion at the outlet of the reactor must be at least 95 %. The remaining constraints
are given by Zimmermann et al. (2022).

The amount of catalyst, which can be saved by employing catalyst particles with an inert

core is determined in two steps. First, the time-average methane space-time yield is max-

imized, considering a fully active core. In the second step, the amount of active mass in

the reactor is minimized, while at least 99 % of the first steps space-time yield has to be

achieved. Each of the steps is performed with one, two, and infinite segments, which can

consist of different catalyst loadings. Details on the numerical solution strategy and the

used solvers are given by Zimmermann et al. (2022).

Subsequently, dynamic load-change simulations are performed, by switching between the

optimal operating parameters of the respective cases. Additionally, a start-up and a shut-

down are investigated. The initial conditions for the start-up are given as X0 = 0 % and

T0 = 300 K. For the shut-down, Tin and Tcool are reduced to 300 K.

Multi-Period Design Optimization
843
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4. Results

4.1. Multi-Period Design Optimization

The results of the multi-period design optimization are shown in Fig. 2 and in Tab. 1. The

optimal steady states of the first step are identical to those discussed in detail by Zimmer-

mann et al. (2022) and serve as reference. In summary, the optimal reactor is designed

such that the maximum heat transfer to the coolant is realized and the length is determined

by the residence time required to achieve 95 % reactant conversion in each case. The

latter is the main factor for the differing time-average space-time yields.

Figure 2: Multi-period design optimization results, darker colours correspond to higher loads
(0.5 t/h, 1.0 t/h, and 1.5 t/h).

Table 1: Results of all multi-period design optimizations, respective objective function values in
bold.

objective func. max. time-average STY

(step 1, reference cases)

min. active mass

(step 2)

fixed-bed seg-

ments

1 2 Inf. 1 2 Inf.

STY / kg m-3 s-1 0.3850 0.7440 0.8773 0.3811

(-1%)

0.7366

(-1%)

0.8771

(-0%)

mact / kg 215.1 82.2 77.3 211.1

(-2%)
73.95

(-10%)
42.3

(-45%)



Compared to these results, reactors with minimized active mass show very similar trends,

especially if one or two segments are considered. In the case of a single fixed-bed seg-

ment, almost no potential for removing active mass from the centre of the catalyst parti-

cles is available. This is because it is only suitable to save active mass in the particle cores

in the regime of mass transfer limitation, since no reactants enter the interior of the parti-

cles in this case. However, this happens only at high temperatures near the reactor inlet.

At low temperatures near the reactor outlet, the inert core acts as fixed-bed dilution

(Fig. 1) and consequently longer reactors would be necessary to achieve the lower con-
version constraint of 95%, which would lead to a significant drop of reactor space-time

compared to the reactor with maximum time-average space-time yield.

Consequently, more potential to save active mass exists for the two-segment reactor. Only

in first segment close to the reactor inlet, an inert shell is used to limit the effective reac-

tion rate in order to stay within the temperature limit. Consequently, the core of the cata-

lyst particles is chosen to be inert. As a large part of the reactants has been consumed in

the first segment, no restriction of the effective reaction rate is necessary in the second

segment. Thus, the optimizer prefers uniform catalyst particles, as these exhibit the high-

est effective reaction rate of all particle designs considered in this work. This results in a

reduction of the required active mass by 10.0 %.

The results of the reactor with infinite segments confirm this trend in shape of singular
arcs for the inert core and inert shell radii. Additionally, a segment of uniform catalyst is

introduced directly at the reactor inlet, to increase the reactor temperature and thus the

reaction rate. This case yields the maximum potential of active mass reduction, which is

45.2 %.

4.2. Dynamic Load-Change Simulations

Although all steady-states

shown in the previous sec-

tion convey to the upper tem-

perature limit of 750 K, se-

vere temperature excursions

might still occur during dy-
namic transitions. Thus, dy-

namic load-change simula-

tions have been performed as

shown in Fig. 3.

All cases show a fast start-up

behaviour and the ignited

steady-states are achieved in

less than two minutes. The

one- and two-segment reac-

tors with maximized space-

time yields also show

smooth transitions between
the optimal sets of operating

parameters. The same is true

for their counterparts with

minimized active mass, alt-

hough slight oscillations can

be observed after load-

Figure 3: Dynamic load-change simulations, dashed lines show
the results of reactors with maximized time-average space-time
yield and solid lines show the results of reactors with minimized
active mass. Please note the differing scales.

Optimal Catalyst-Reactor Design for Load-Flexible CO  Methanation by2
Multi-Period Design Optimization
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changes. In the cases with infinite segments, the reactors with maximized time-averaged

space-time yield exhibit a travelling hot-spot, whenever the load is reduced. This is even

more pronounced for the reactor with minimized active mass. In addition, such reactors

also show temperature excursions when the load is increased.

During the shut-down, all reactors with more than one fixed-bed segment show pro-

nounced temperature excursions. The reason for this is the high amount of inert mass of

the segments close to the reactor inlet, which cool down quickly. Consequently, high

amounts of reactants encounter the hot segments with high amounts of active mass to-
wards the reactor outlet. As the catalyst particles in these segments also do not exhibit an

inert shell, a steep increase in temperature is observed. The reactors with just one segment

contain catalyst particles with an inert shell along the whole length, and thus no temper-

ature excursions are observed.

5. Conclusions

The introduction of catalyst particles with an inert core offers the possibility to reduce

expensive active mass in fixed-bed reactors on the one hand, but also reduces the effective

reaction rate of the catalyst particles in the kinetically limited regime on the other. Thus,

the reactor space-time yield might drop, such that an inert particle core is only purposeful

at fixed-bed locations, where the reactants are not present in the particle core, which is

the case in the regime of mass transport limitation. In consequence, only minimal poten-

tial is available for reducing the active mass if one fixed-bed segment and high space-
time yield are aimed for, but this case offers fast and save transition during load-changes.

Up to 45.2 % of active mass can be saved if more than one segment is considered. How-

ever, in these cases active mass is in direct contact with the surrounding gas phase, leading

to the risk of severe temperature excursions during load-changes.
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Abstract 

One key challenge of Solid Oxide Electrolyzer Cell (SOEC) systems is degradation over 

long periods of time. Degradation decreases efficiency by increasing the electrical energy 

required for H2 production. This paper presents the first step in managing long-term 

degradation in SOEC systems. In this work, the first data-driven dynamic model for the 

prediction of performance degradation in SOECs as a function of humidity, operating 

temperature, and current density was developed. The model was trained using 

experimental data from multiple data sets in the literature under various conditions. The 

model showed good agreement with validation data over 7000 h operation. One key 

finding is that the data show there are three distinct time regimes in which degradation 

behaviour is qualitatively different. This is likely due to different degradation phenomena, 

although the specific phenomena have not yet been isolated. This is significant for PSE 

applications because operators can choose to vary the operating conditions over time in 

order to predict, account for, or minimize the effects of long-term degradation.  

Keywords: SOEC; Performance Degradation; Data-Driven Model; Operating Condition. 

1. Background 

When baseload power facilities or renewable sources of intermittent power are used for 

electricity generation, excess electricity may be produced during low demand hours. 

Producing surplus electricity can impose additional costs to electricity systems as it 

should be either curtailed or sold at a low price. Therefore, there is a great need for reliable 

energy storage systems at low demand hours. SOEC is a promising technology for energy 

storage that can utilize the excess electricity from the grid to electrolyze steam and 

generate hydrogen. H2 is a clean, useful source of energy with high energy content per 

weight unit. The produced H2 can be compressed and stored in cylinders for various 

purposes, supplied to stationary power generators such as fuel cells to produce electricity, 

or injected into the existing natural gas network to lower carbon intensity. SOECs are 

Solid Oxide Fuel Cells (SOFCs) which are operated in reverse. Indeed, the same 

technology can either generate electricity via some exothermic electrochemical reactions 

(SOFC mode) when supplied with fuel and air, or it can electrolyze water and produce H2 

through endothermic electrochemical reactions (SOEC mode), when supplied with steam 

and electricity. SOFCs and SOECs feature several advantages over some existing power 

generation technologies and electrolyzer systems such as high efficiency, low noise, and 

reduced greenhouse gas (GHG) emissions. However, this technology suffers the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50141-X
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drawback of significant long-term degradation under normal operating conditions. This 

issue has been a barrier for commercialization of SOFCs and SOECs and has limited their 

application in the industry (Zaccaria et al., 2015). In our prior work, we were able to 

successfully overcome this problem for SOFCs specifically by constructing a 

mathematical model for dynamic simulation of the long-term performance drop in SOFC 

systems (Naeini et al., 2021). Using this model in a techno-economic analysis (TEA) 

enabled us to determine the optimal capacity and corresponding optimal dynamic 

operational trajectories of SOFCs that make them more cost-competitive with traditional 

power generation, by managing their long-term degradation and increasing their useful 

lifetime (Naeini et al., 2021). This was possible because the individual mechanisms that 

cause SOFC degradation are known, and thus first principles could be considered directly 

in the model.  

Since the electrochemical reactions and degradation mechanisms in SOFCs are different 

from those in SOECs, the model developed for degradation in SOFCs cannot be used to 

predict degradation in SOECs. As such, a dynamic model should be constructed for 

simulation of long-term performance degradation in SOECs. This is essential for 

identifying optimal sizing and operating strategies of SOEC systems for a cost-effective 

energy storage over an extended lifetime, with controlled degradation. Our broad 

literature survey revealed that a dynamic degradation-based model for SOECs is lacking 

in the open literature. Also, the mechanisms of degradation phenomena in electrolysis 

mode are not well known, which prevents us from developing a first-principles model. 

However, there have been number of experiments investigating impacts of operating 

conditions on SOEC performance degradation. Hoerlein et al.’s (2018) experiments in 

particular showed the impacts of current density, humidity, and operating temperature on 

voltage and ohmic resistance of 20 SOECs over 1000 h of operation. This is a good, 

representative dataset that contains acceptable ranges of operating parameters as it 

includes current density ranging from 0 to 1.5 A/cm2, humidity varying from 40 % to 80 

%, and temperature from 750 to 850 °C. This dataset is used in the current work to develop 

a data-driven model for degradation of SOEC.  

2. Modeling strategy  

The following information shows that the time evolution of SOEC’s ohmic resistance can 

be used to calculate SOEC degradation. SOECs produce H2 at a constant rate as long as 

the current density supplied to the cell is constant (Eq.(1)). 

𝑟𝐻2 = 
𝑖

𝑛𝐹
 (1) 

where 𝑟𝐻2 is the rate of H2 production, 𝑖, 𝑛, and F are the current density, moles of 

electrons involved in the electrolysis electrochemical reactions, and Faraday constant, 

respectively. The ohmic resistance of SOECs increases over time due to degradation. 

According to Ohm’s law (Eq.(2)), the voltage of the SOEC and therefore the energy 

required to produce a constant amount of H2 increase with its degradation (Eq.(3)).   

𝑉 = 𝑅 𝑖   (2) 

𝑃 = 𝑅 𝑖2 = 𝑉 𝑖 (3) 



Data-Driven Modeling of Long-Term Performance Degradation in Solid Oxide 
Electrolyzer Cell System  

In these equations 𝑅, 𝑉, and 𝑃 represent the SOEC’s ohmic resistance, voltage, and 

power, respectively. The magnitude of resistance increase depends on the operating 

conditions. Therefore, a model that predicts time evolution of resistance as a function of 

current density, humidity, and temperature will allow us to quantify performance 

degradation in the SOEC. Data from figure 1 is used in the present work to develop a 

model for SOEC degradation. Given in the y-axis of these plots is ∆𝑅𝑜ℎ𝑚 which shows 

the ohmic resistance increase with respect to the initial ohmic resistance of the cells.  

 

Figure 1. Time evolution of ohmic resistance of SOECs at various current densities from 0 to 1.5 

A/cm2 and a) 800°C and 40% humidity, b) 800°C and 60% humidity, c) 800°C and 80% humidity, 

d) 750°C and 80% humidity, and e) 850°C and 80% humidity. Original data from (Hoerlein et al.). 

The data show an unstable behavior in some SOECs during the first 200 h of operation, 

where the resistance, voltage, and other parameters do not follow a reproducible or 

consistent trajectory from run to run. This behavior is known as cell conditioning or 

transition period and cannot be modelled since it does not conform to any known pattern 

(Sohal; Hubert). However, the data show that the cumulative degradation of the cell at 

the 200h mark does correlate well with temperature, humidity, and current density, even 

though the trajectory in getting there does not. We removed the first 200 h from the 

training data and as a result the developed model applies only beyond 200 h. It should 

also be noted that even though Hoerlein et al.’s (2018) data includes voltage trajectories 

of SOECs, voltage is not used for building the SOEC model in this study. The reason is 

that when there is not any current in the external circuit, i.e. the open circuit voltage 

condition (OCV), the voltage remains constant and as a result it is not a good state variable 

for predicting degradation of SOECs.  

ALAMO (Automated Learning of Algebraic Models) was used to develop the data-driven 

model. This software employs a machine learning approach to learn accurate and simple 

algebraic models from the training dataset (Wilson and Sahinidis). ALAMO models are 

typically linear combinations of nonlinear transformations of the input variables. The 

software uses an optimization approach to find not only the best fit of model parameters, 

but the selection of the basis functions themselves. This avoids overfitting and helps 

choose basis functions that best characterize the data.  
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2.1. Development of the linear model from 200h to 2500h 

First, a partial model was developed based on Hoerlein et al’s (2018) dataset (which has 

data out to 1000h), shown in Eq. (4).   

𝑅𝑡′ = 𝑅0 + 0.019 𝑇𝐻 + 7.290 𝐻𝑖⏟              + [0.033 𝐻𝑡′ + 0.017 𝑖𝑡′] (4) 

where 𝑡′ is time since 200h (h), 𝑅𝑡′ is ohmic resistance at 𝑡′ (mΩ.cm2), 𝑅0 is resistance 

of virginal SOEC at time 0h (mΩ.cm2), 𝑇 is temperature (°C), and 𝐻 is humidity of the 

fuel feed expressed as mole fraction of water. Eq.(4) includes two time-independent 

(underlined) and two time-dependent (enclosed in square brackets) terms. Underlined 

terms show the change in resistance from R0 within the first 200h. While time-dependent 

terms show the increase in resistance from 200h and onward. Since the data for the first 

200h were removed from training data, the model cannot indicate time evolution of 

resistance within this period. Instead, it quantifies the total change in resistance from R0 

within the first 200h. As can be seen, given a constant molar humidity and current density, 

ohmic resistance of SOEC increases linearly with time for at least 1000h, and so we refer 

to this model as the “linear model”. This is in agreement with number of other studies 

that reported linear trend in time for SOEC degradation at fixed operating conditions 

(Hauch; Hubert; Trofimenko et al.). These studies all consider operation for 2500h or 

less. Eq.(4) was fit with R2=0.94 across the training datasets considered up to 1000h. 

Rapid transients may have impacts which are not considered in the model. 

2.2. Validation of the linear model out to 2500 h 

In order to ensure validity of the developed model for predicting performance degradation 

in SOECs under given operating conditions, Tietz et al.’s (2013) experimental data – 

which was not considered in building the model – was used to compare with the model. 

In Tietz et al. (2013) an SOEC was operated at 778±6°C out to 7600h, supplied with 

current density of 1A/cm2, and 80% humidity. We calculated the SOEC’s ohmic 

resistance trajectory using Eq. (4) and then its voltage trajectory using Eq. (2) under the 

given condition. The results, given in Figure 2, indicate capability of this linear model to 

simulate performance deterioration in SOECs for the first 2500 h of operation (R2=0.87). 

After 2500h, it becomes more apparent that the SOEC degrades sub-linearly and the 

degradation rate decreases. We note that most studies that conclude that degradation rates 

are linear, such as Hauch et al. (2006), Hubert et al. (2018), and Trofimenko et al. (2017) 

do not run the experiments long enough to experience this inflection point around 2500h.  

  

Figure 2. Results of the developed model for SOEC performance degradation compared to 

experimental data from (Tietz et al.).The dashed line is our model, drawn on top of a modified 

version of the original figure reproduced from that work.  

M. Naeini et al. 



 

2.3. Sublinear model out to 7000 h 

The model was modified to reflect the sublinear nature of the degradation by adding a 

power term to the time component, and fitting the exponent to Tietz et al.’s data. The 

basis functions and their parameters were unmodified from Eq. 4. The sublinear model is 

given in Eq.(5), in which degradation is sublinear to the order of 0.97, and R2=0.95 for 

Tietz et al.’s data out to 7000h.  

𝑅𝑡′ = 𝑅0 + 0.019 𝑇 + 7.290𝐻𝑖 + (0.033𝐻 + 0.017𝑖)(𝑡
′)0.97 (5) 

A comparison between the linear model, sublinear model, and experimental data is 

provided in Figure 3. As can be seen, the original and modified models are almost equally 

good for simulation of short-term operation. But for the long-term operation, sublinear 

model is significantly better than the linear one.  

 

Figure 3. Results of the linear and sublinear models for long-term performance degradation in 

SOEC compared to experimental data from (Tietz et al.). Figure modified from the original. 

3. Discussion and Future Work 

One key finding is the sublinear nature of the degradation rate, but this is supported only 

by one data set since most experiments in the open literature are not conducted for long 

enough in order to see this trend. Additional research is needed to validate this sublinear 

characteristic. However, sublinear behavior makes sense, as in practice SOECs can be 

used for many years. If the degradation rate was truly linear such that long-term 

degradation continued at the same rate as in the first 1000h, the amount of degradation 

would be much higher than what is actually experienced in practice. For example, 

comparing extrapolating the sublinear (Eq. (5)) and linear (Eq. (4)) models out to 10 

years, the linear model would predict a required voltage of 30% higher than the sublinear 

model. This will make a significant difference in design and operation of large-scale 

systems. Using either the linear or sublinear model, as well as Eq.(2) and Eq.(3), one can 

calculate voltage of SOECs and the required power supply for producing a specific 

amount of H2 at different points of operating time considering the degradation. This will 

enable system designers to find the optimal capacity and operation strategy of SOEC 

system for an economical energy storage with reduced degradation rate. As such, a TEA 

Data-Driven Modeling of Long-Term Performance Degradation in Solid Oxide 
Electrolyzer Cell System  
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will be performed on SOEC systems as the future work. The findings will improve cost-

effectiveness of this technology and will help its commercialization. 

4. Conclusions 

This paper presented a data-driven model constructed from experimental data derived 

from the literature for prediction of the performance deterioration in SOEC. To the best 

of authors’ knowledge, this is the first dynamic model for simulation of the SOEC 

degradation under different operating conditions with high accuracy across a range of cell 

conditions. This model, developed using ALAMO, is a composition of nonlinear 

functions of operating parameters namely humidity, temperature, and current density. The 

model was well-validated using many training and testing sets for the first 2500h of 

operation, but the extension to 7000h requires additional validation. Both the linear (Eq 

4) and sublinear (Eq 5) models work equally well for those first 2500h but the linear 

model breaks down afterward. The results indicated that the rate of SOEC degradation 

depends on the humidity and current density, and decays sublinearly in the long-term. 
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Abstract 

Recently, carbon dioxide capture utilization and storage (CCUS) is gaining attention as a 

way to reduce carbon dioxide emissions. Blast furnace gas (BFG) in the steel industry is 

one of the major sources of carbon dioxide (CO2) emissions, which has the potential to 

be a hydrogen (H2) source by water gas shift reaction to. In this work, we pursue 

simultaneous purification of H2 and CO2 from reformed BFG by pressure swing 

adsorption (PSA). A mathematical model of newly designed PSA for simultaneous 

separation of CO2 and H2 is developed from experimental results. After fitting to the 

experimental results to the model, we were able to reproduce the purity and recovery of 

the recovered gas with an error of about 5 %. The model was also used to perform multi-

objective optimization of the PSA process. From the Pareto solutions, the relationship 

between energy consumption and throughput is analyzed. In addition, it was confirmed 

that there is an operation condition that can increase the purity of carbon dioxide and 

throughput while suppressing the decrease of purity and recovery of hydrogen. 

Keywords: Pressure Swing Adsorption; Modeling; Dynamics; Optimization. 

1. Introduction 

Due to rising concentration of carbon dioxide in the atmosphere, global warming is posing 

a serious threat. To deal with this issue, Carbon Dioxide Capture, Storage and Utilization 

(CCUS), a technological concept to capture carbon dioxide from flue gas from power 

plants and steel mills, etc. to use it as a resource, or to inject it into the ground and seawater, 

has been attracting attention. It is estimated that CCUS could reduce 20% of worldwide 

carbon dioxide (CO2) emission in 2008, which has substantial potential[1]. In particular, 

blast furnace gas in the steel industry is one of the major sources of carbon dioxide 

emissions, and the application of CCUS to this source is expected[2]. 

One of the promising techniques for capturing CO2 is Pressure Swing Adsorption (PSA). 

PSA has been used in many applications of large-scale gas separation[3]. However, power 

consumption and energy cost must be reduced substantially for successful CCUS 

implementation[4]. A study reported that the estimated cost is $72-114 to capture and store 

a ton of carbon dioxide, most of which is spent to capture CO2
[5]. It is expected that this 

cost should be reduced to approximately $18 [3]. 

Blast furnace gas (BFG) contains not only CO2 at high concentration, but also carbon 

monoxide and a small amount of hydrogen.  BFG has the potential to be a hydrogen 

source by steam reforming. The production of methane and methanol, promising products 

of CO2 utilization in CCUS, can be produced from carbon dioxide and hydrogen (H2) 

included in the reformed BFG. To realize this CCUS approach, simultaneous capture of 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50142-1 
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CO2 and H2 from BFG after reforming is expected. However, the process of capturing 

both gases at the same time remains a challenge. For example, multiple PSA units 

designed by Air Products and Chemicals, Inc. may increase the total capital cost[6]. Other 

PSAs that separate these two components at the same time also tend to require high 

hydrogen concentrations in the feed gas, and only a few studies have considered dilute 

hydrogen [7].  

This work pursues simultaneous purification of H2 and CO2 from reformed BFG by a 

novel PSA process. A mathematical model is developed from experimental results. Using 

the model, multi-objective optimization of the PSA process is performed, where the 

Pareto solutions provides insights into the relationship between energy consumption and 

throughput. 

2. Process description 

 

Figure 1 Operation of PSA for multiple separation 

 

Figure 1 shows the operation of the newly designed PSA for CO2 and H2 multiple gas 

separation. The process consists of 2 tandem columns, which allows separation of two 

gas components within one cycle. Reformed BFG from a water gas shift reactor is 

supplied as the feed gas. In the Adsorption step, the off-gas is collected, which is rich in 

the component that adsorbs onto the adsorbent most weakly. In the following two steps, 

Desorption 1 and Desorption 2, a 

vacuum pump withdraws  impurity gas, 

mainly N2, from the upper and lower 

column, respectively. Finally, CO2 is 

withdrawn from the upper column in 

the last desorption step through the gas 

fraction line, fractionated at the 

delivery side of the vacuum pump. 

 

To demonstrate this novel operation, a 

laboratory-scale PSA experiment was 

conducted. Figure 2 and Table 1 show 

the experimental conditions and setup 
Figure 2 Experimental setup Figure 2 Experimental setutut p
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of this 2-column PSA. Zeolite 13X was employed as adsorbent in both columns. In this 

setup, the flow rate of the feed gas was controlled by mass flow controller. The adsorption 

pressure was controlled by a back pressure valve, and the desorption pressure was 

manipulated by a vacuum pump. 

 

Table 1 Experimental condition 

Condition Value Condition Value 

Adsorbent Zeolite13X 
Feed gas 

composition [%] 

N2:40,CO2:37 

H2:23 

Pellet diameter [mm] 1.5 
Feed gas temperature 

[K] 
298.15 

Height of column 

[mm] 

Upper:60 

Lower:200 

Cycle time [s/cycle] 
100 

Weight of adsorbent 

[g] 
Upper:57 

Lower:190 

Pressure at the 

bottom of column 

[kPa] 

Adsorption: 151 

Desorption: 6 

Column inner 

diameter [mm] 
42 

Feed gas flow rate 

[NL/min] 
3.0 

 

3. Mathematical model 

A model was constructed that consists of mass and energy balance equations, Langmuir 

isotherms, and mass transfer rate assuming linear driving force[8]. Boundary conditions 

for each operation stage were also employed from the ones in a previous study[8]. 

3.1. Model fitting 

To fit the model to the experimental data, we employ the formulation of Tikhonov 

regularization[9]. The model parameters were estimated using equation (1) as the objective 

function. 

 

min
𝜃

∑ ∑ (𝐹𝑙𝑜𝑤𝑖,𝑗,𝑀𝑜𝑑𝑒𝑙 − 𝐹𝑙𝑜𝑤𝑖,𝑗,𝑒𝑥𝑝)
2

𝑁𝐶𝑜𝑚𝑝

𝑖=1

3

𝑗=1

+ 𝜌 ∑ (
𝜃𝑜𝑝𝑡,𝑖 − 𝜃𝑙𝑖𝑡,𝑖

𝜃𝑙𝑖𝑡,𝑖
)

2
𝑁𝐶𝑜𝑚𝑝

𝑖=1

 (1) 

 

NComp is the number of component, with NComp = 3; θ is the vector of parameters to be 

estimated; Flow [NL/min] is the flow rate from the column; ρ [-] is the regularization 

coefficient; subscripts i and j are for gas components and steps shown in Figure 1, 

respectively; Model and exp denote calculated and experimental value; and opt and lit 

denote optimized and literature parameter values, respectively. The isotherm equation is 

given by the Langmuir model, and the mass transfer between the gas and adsorbent phases 

is described by the linear driving force model: 

and Hydrogen Separation from Industrial Waste gas
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𝑞𝑖
∗ =

𝑞𝑒𝑞,𝑖𝐾𝑖𝑃𝑖

1 + ∑ 𝐾𝑖𝑃𝑖
𝑛
𝑖=1

 (2) 

𝐾𝑖 = 𝐾1𝑖
exp (1000𝐾2𝑖

(
1

𝑇
−

1

250
)) (3) 

𝑞𝑖 =
15𝐷𝑒

𝑅𝑝
2
(𝑞∗ − 𝑞𝑖) (4) 

 

where qeq,i [mol/kg], qi
* [mol/kg] and qi [mol/kg] are saturation adsorption capacity, 

equilibrium adsorption amount, and adsorption amount, respectively; K1 [1/Pa] and  K2 

[K] are affinity constants; Pi [kPa] is partial pressure; De [m2/s] is the diffusion 

coefficient; Rp [m] is the particle radius of adsorbent; and T [K] is temperature. The 

parameter vector θ is defined as defined as θ = [K1,K2,De]T. 

3.2. Process optimization 

Feed gas inflow rate and energy consumption are strongly associated with efficiency. The 

objective function for process optimization is formulated as in Equation (5) and (6). 

 

max
𝑢

∑ 𝐹𝑒𝑒𝑑𝑖
𝑁𝐶𝑜𝑚𝑝

𝑖=1
 

𝑡𝑐𝑦(𝐿1 + 𝐿2)
− 𝑀𝜀1 −𝑀𝜀2 (5) 

 

where Feed [mol/m2] is the total molar volume of gas that enters the PSA; tcy [s] is the 

cycle time; L1 and L2 [m] are the height of column1 and column2; ε1 and ε2 [-] are tolerance 

variables to enforce a cyclic steady state; M is the penalty constant set to 5000; u is a 

vector of decision variables, defined as u = [Pad, Pde, tcy, L1, L2, F]T; Pad and Pde [kPa] are 

the pressure of adsorption and desorption step; F [NL/min] is the feed flow rate. 

 

min
𝑢

𝐸 =

𝑤𝑜𝑟𝑘𝑎𝑑
𝜂𝑏𝑙𝑜𝑤𝑒𝑟

+
𝑤𝑜𝑟𝑘𝑑𝑒
𝜂𝑝𝑢𝑚𝑝

𝑃𝑟𝑜𝑑𝑢𝑐𝑡
 

(6) 

 

E [kJ/mol] is the energy consumption for a unit mole of recovered gas; workad and workde 

[kJ] are the work of adsorption and desorption step; ηblower and ηpump [-] are the efficiency 

of blower and pump; Product [mol] is the total molar volume of recovered CO2 and H2. 

Finally, the product purity and recovery must be at least  𝑃𝑢𝑟𝑚𝑖𝑛,𝑖  and 𝑅𝑒𝑐𝑚𝑖𝑛,𝑖 , 

respectively: 

 

𝑃𝑢𝑟𝑖𝑡𝑦𝑖 ≧ 𝑃𝑢𝑟𝑚𝑖𝑛,𝑖 (7) 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖 ≧ 𝑅𝑒𝑐𝑚𝑖𝑛,𝑖 (8) 

 

where i = H2, CO2. In this study, the optimization  formulation and solution approach in 

Ko et al. [8] was employed.  
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4. Results and Discussion 

4.1. Model fitting 

Table 2 Experimental values and model fitting of purity and recovery 

 PurityCO2 RecoveryCO2 PurityH2 RecoveryH2 

Experiment 0.894 0.718 0.534 0.752 

Model 0.823 0.758 0.532 0.758 

 

Table 2 shows the model fitting for the experiment. It can be seen that both of the purity 

and recovery of CO2 have an error of about 5 % compared to the experimental results, 

while hydrogen reproduces the experimental results well. While further reducing the 

value of ρ in Equation (1) would allow the parameter values to deviate from literature 

and reduce the model error, overfitting and parameter values that are physically 

inconsistent must be avoided. A potential reason for the model mismatch is the isotherm 

model in Equation (2), which has substantial influence on the desorption gas flow rate in 

Desorption1, 2 and 3. 

4.2. Optimization Results 

 

Figure 3 Pareto optimal solutions for energy consumption and throughput with Purmin,CO2 = 0.99, 

Recmin,CO2 = 0.90, Purmin,H2 = 0.60, Recmin,H2 = 0.70 in Equation (7) and (8). 

Figure 3 shows the energy consumption and throughput, showing the trade-off between 

throughput and energy consumption for a unit mole of recovered CO2 and H2. All of the 

optimal solutions reach the lower bound of the constraints shown in Chapter 3. It can be 

confirmed that as the energy consumption increases, the impact on the throughput 

decreases. According to this graph, the higher energy consumption is, the smaller 

increment of throughput.  

Comparing the experimental and optimized performance in Table 3, it is confirmed that 

better operating conditions can be found by the optimization, where the product 

constraints, Equation (7) and (8), are adjusted to the experimental data. In the optimal 

solution, the throughput is increased by approximately 20 %, and CO2 purity and CO2 

recovery are both higher, while H2 recovery and H2 purity are same and the energy 

consumption is slightly lower. 

Modeling and Optimal Design of Pressure Swing Adsorber for Carbon Dioxide
and Hydrogen Separation from Industrial Waste gas
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Table 3 Comparison of experimental and optimized performance. The optimization was 

performed with the following conditions to match the experimental results: Purmin,CO2 = 0.894, 

Recmin,CO2 = 0.718, Purmin,H2 = 0.534, Recmin,H2 = 0.752 in Equation (7) and (8). 

 experiment optimization  experiment optimization 

Energy 

Consumption E 

[kJ/mol] 

468 461 
Throughput 

[mol/m3/s] 
3.064 3.65 

PurityCO2  0.894 0.983 RecoveryCO2  0.718 0.877 

PurityH2 0.534 0.534 RecoveryH2 0.752 0.752 

 

5. Conclusions 

In this study, we developed a mathematical model of the newly designed PSA for 

simultaneous gas separation of CO2 and H2, and optimized the process to improve the 

performance. The model was fitted to experimental results by Tikhonov regularization to 

consider literature data. Furthermore, the analysis by multi-objective optimization 

enabled trade-off analysis of process performance and identification of new operating 

conditions. Future study aims to reduce model error, and analyze the influence of 

constraints for product purity and recovery. 
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Abstract 

Membrane characterization provides essential information for the scale-up, design, and 

optimization of new separation systems. We recently proposed the diafiltration apparatus 

for high-throughput analysis (DATA), which enables a 5-times reduction in the time, 

energy, and the number of experiments necessary to characterize membrane transport 

properties. This paper applies formal model-based design of experiments (MBDoE) 

techniques to further analyse and optimize DATA. For example, the eigenvalues and 

eigenvectors of the Fisher Information Matrix (FIM) show dynamic diafiltration 

experiments improve parameter identifiability by 3 orders of magnitude compared to 

traditional filtration experiments. Moreover, continuous retentate conductivity 

measurements in DATA improve A-, D-, E-, and ME-optimal MBDoE criteria by 

between 6 % and 32 %. Using these criteria, we identify pressure and initial 

concentrations conditions that maximize parameter precision and remove correlations. 

Keywords: Membranes, Design of experiments, Parameter Estimation, Dynamic 

Modelling, Diafiltration 

1. Introduction 

Membrane processes have shown promise for addressing the critical needs for 

sustainability and energy efficiency. Recent material design to achieve separations of 

similar-sized molecules has evolved in the directions of precisely controlling the 

nanostructure of membranes and identifying chemical functionalities which accentuate 

desired transport properties (Hoffman and Phillip, 2020; Sadeghi et al., 2018). A detailed 

understanding of the underlying thermodynamic and transport phenomena can elucidate 

the molecular interactions and mechanisms that affect the macroscopic transport 

properties of the membrane (Geise et al., 2014; Yaroshchuk et al., 2018). Motivated by 

this need, the development of membrane characterization techniques that explore the 

dependency of membrane performance on feed conditions can greatly accelerate the 

development of materials (Ghosh et al., 2000). In addition, membrane characterization 

that elucidates underlying mechanisms provides essential information for scale-up, 

design, and optimization, facilitating the development of separations.  

Design of Experiments (DoE) methods optimize computational and physical experiments 

to maximize the information gain and to minimize time and resource costs. Classical 

‘black-box’ (a.k.a. factorial, response surface) DoE approaches, which decide the best 

design by the input-output relationship, does not (directly) incorporate membrane science 

knowledge; in contrast, model-based DoE (MBDoE) leverages high-fidelity models 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50143-3
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constructed from underlying physical principles that describe the experimental system 

(Franceschini and Macchietto, 2008). The information collected from experiments can be 

applied to discriminate between scientific hypotheses, posed as mathematical models, and 

to improve the precision of parameter estimation. However, to date, MBDoE has not been 

applied to membrane characterization techniques. 

Guided by data analytics, Ouimet et al. (2021) developed a diafiltration apparatus for 

high-throughput analysis (DATA) to address the limitations of current membrane 

characterization methods, e.g., time-consuming experimental campaigns and parameter 

non-identifiability. In this paper, we use MBDOE and FIM-based analysis to 

mathematically quantify the improvements reported by Ouimet et al. (2021) and further 

refine the experimental conditions needed in DATA to characterize membrane transport 

properties and discriminate between possible transport mechanisms.  

2. Mathematical model, materials, and methods 

In the dynamic diafiltration experiments described by Ouimet et al. (2021), a concentrated 

diafiltrate is continuously injected into a stirred cell under applied pressure, permeate is 

collected in several scintillation vials with the mass of the sample vial, 𝑚𝑣 , permeate 

concentration, 𝑐𝑣, and retentate concentration in the stirred cell, 𝑐𝑓, measured. Using these 

measurements, three model parameters - hydraulic permeability, 𝐿𝑝 , the solute 

permeability coefficient, 𝐵 that correspond to the membrane transport properties, and the 

reflection coefficient, 𝜎, that depends on the thermodynamics of the membrane-solution 

interface - are estimated via weighted least-square nonlinear regression (Eq. (1) where 

𝜽 = {𝐿𝑝, 𝐵, 𝜎}). These parameters are related to the volumetric flux of water, 𝐽𝑤, and the 

molar flux of the solute, 𝐽𝑠, across the membrane in Eq. (2).  

𝜽̂ = argmin
𝜽

∑𝑤𝑚𝑣,𝑖
(𝑚𝑣,𝑖 − 𝑚̂𝑣,𝑖)

2

𝑖

+ ∑𝑤𝑐𝑣,𝑗
(𝑐𝑣,𝑗 − 𝑐̂𝑣,𝑗)

2

𝑗

+ ∑𝑤𝑐𝑓,𝑘
(𝑐𝑓,𝑘 − 𝑐̂𝑓,𝑘)

2

𝑘

  
(1) 

𝐽𝑤 = 𝐿𝑝(∆𝑃 − 𝜎∆𝜋),   𝐽𝑠 = 𝐵∆𝑐 (2) 

The diafiltration apparatus, the differential-algebraic equations (DAEs) model, the data, 

and the regressed parameters values, i.e., 𝐿𝑝 = 3.90 L∙m-2∙h-1∙bar-1, 𝐵 = 0.29 μm∙s-1 and 

𝜎 = 1 are described by Ouimet et al. (2021). Three key design decisions, the diafiltrate 

concentration, 𝑐𝑑, the initial feed concentration, 𝑐𝑓(0), and the applied pressure, ∆𝑃 may 

be optimized to maximize the precision of the estimated parameters from dynamic 

diafiltration experiments. 

3. Fisher Information Matrix (FIM) 

The Fisher Information Matrix (FIM), 𝐌 , measures the information content of 

measurements and is defined as the inverse of the posterior covariance matrix 𝐕, Eq. (4), 

ignoring the prior information (Franceschini and Macchietto, 2008). Here, 𝑣𝑚,𝑟𝑠 is the 

𝑟𝑠th element of the 𝑁𝑦 × 𝑁𝑦 inverse matrix of measurements error.  𝐉𝑟 is the sensitivity 

matrix of output 𝑦𝑟 sampled at times 𝑡𝑠 and evaluated at nominal parameters values 𝜽̂ and 

specified experimental design conditions 𝝓. 
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𝐌 = [𝐕(𝜽̂, 𝝓)]
−1

= ∑ ∑𝑣𝑚,𝑟𝑠
−1𝐉𝑟

𝑇𝐉𝑠

𝑁𝑦

𝑠=1

𝑁𝑦

𝑟=1

, 𝐉𝑟 =

[
 
 
 
 
 
𝜕𝑦𝑟

𝜕𝜃̂1

|
𝑡1

⋯
𝜕𝑦𝑟

𝜕𝜃̂𝑚

|
𝑡1

⋮ ⋱ ⋮
𝜕𝑦𝑟

𝜕𝜃̂1

|
𝑡𝑛

⋯
𝜕𝑦𝑟

𝜕𝜃̂𝑚

|
𝑡𝑛]

 
 
 
 
 

 (3) 

MBDoE techniques increases parameter precision by minimising a metric of 𝐕  or 

equivalently maximizing a metric of 𝐌 . A-, D-, E-optimal experimental designs 

correspond to minimising the trace, the determinant, and the maximum eigenvalue of 𝐕, 

respectively (or maximizing the trace, the determinant, and the maximum eigenvalue of 

𝐌). The determinant and trace of the covariance matrix 𝐕  can be interpreted as the 

volume of the covariance ellipsoid under feasible experimental conditions, while the 

maximum eigenvalue represents the size of the major axis, minimizing them reduces 

model parameter uncertainty. Additionally, the modified E-optimal (ME-) criterion 

minimizing the condition number of 𝐌 which is defined as the ratio of the largest to the 

smallest eigenvalues, removes the correlation of parameters. 

4. Results and discussions 

4.1. Diafiltration experiment enables identification of all model parameters 

Table 1 compares the FIMs and their eigen decompositions for experiments in both 

filtration (F) and diafiltration (D) modes as reported by Ouimet et al. (2021). The analysis 

of each mode considers one experiment with continuous data collection from the inline 

conductivity probe (M1) and one experiment encompassing only the initial and final 

retentate measurements (M2). The elements of the FIMs are one order of magnitude larger 

for diafiltration (D) than filtration (F) experiments. This shows diafiltration experiments 

contains more useful information to infer the model parameters. Moreover, analysing the 

eigenvalues and eigenvectors indicates which parameter can be precisely estimated 

through experimental design. For example, the minimum eigenvalue of filtration (F) M1 

is 4.93E+05; the corresponding eigenvector is predominantly in the direction of model 

parameter 𝜎. Under the same mode, the largest eigenvalue, 4.71E+09, corresponds the 

eigenvector in the direction of 𝐿𝑝. This difference, 4 orders of magnitude, indicates that 

a filtration experiment alone is unable to precisely estimate 𝜎. In contrast, for diafiltration 

(D) mode, the eigenvalues whose corresponding eigenvectors in the direction of 𝜎 , 

8.53E+10 in M1 and 8.18E+10 in M2, become the largest ones. Moreover, the smallest 

eigenvalues for diafiltration mode are 2.17E+08 (M1) and 1.96E+08 (M2), which are 3 

orders of magnitude larger than the smallest eigenvalues for filtration mode. This 

difference indicates that diafiltration experiments are better suited to precisely estimate 

all three model parameters. Both findings are consistent with the sensitivity analysis 

results from Ouimet et al. (2021). 

4.2. Additional retentate measurements improve parameter precision 

Ouimet et al. (2021) show that measuring the retentate concentration is necessary to 

identify a converging set of parameters. We now use MBDoE to quantify the information 

content of the additional measurements. Recall M1 in Table 1 considers inline 

conductivity probe measurements for the retentate whereas M2 omits these measurements 
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and only considers initial and final retentate measurements. Table 1 shows elements and 

eigenvalues of FIMs of M1 are always larger than M2, which shows the additional data 

increases the precision of the estimated parameters for both modes. Furthermore, for 

diafiltration, Table 2 shows 6 % and 32 % reduction in terms of the volume of the 

confidence ellipsoid from A-, D-optimal criteria, respectively, 11 % reduction in terms of 

the uncertainty of the least confident parameter (𝐵) from E-optimal, and 6% improvement 

in the ME-optimal criterion which measures parameter correlation. Similarly, Table 2 

also shows 8 %, 17 %, and 2 % improvements from A-, D-, E-optimal criteria, 

respectively, in filtration experiments. However, the 6 % worsening of the ME-optimal 

criterion, indicates collecting additional data in filtration mode increases the correlation 

of the estimated parameters.  

Table 1. FIM, eigenvalues and eigenvectors of FIM are calculated in both filtration (F) mode and 

diafiltration (D) mode. Model M1 includes inline conductivity probe measurements while models 

M2 includes only the initial and final retentate measurements. 

Mode Model 
FIM (×1e9) 

Eigenvalues 
Eigenvectors 

𝐿𝑝 𝐵 𝜎 𝐿𝑝 𝐵 𝜎 

F 

M1 

4.67 -0.01 -0.40 4.93E+05 -8.57E-02 -8.50E-03 -9.96E-01 

-0.01 0.02 0.00 1.74E+07 1.80E-03 1.00E+00 -8.70E-03 

-0.40 0.00 0.04 4.71E+09 -9.96E-01 2.60E-03 8.57E-02 

M2 

4.34 0.01 -0.37 4.85E+05 8.60E-02 3.30E-03 9.96E-01 

0.01 0.02 0.00 1.63E+07 2.00E-03 -1.00E+00 3.20E-03 

-0.37 0.00 0.03 4.37E+09 -9.96E-01 -1.70E-03 8.60E-02 

D 

M1 

20.85 3.09 -20.62 2.17E+08 -1.46E-01 -9.47E-01 -2.88E-01 

3.09 5.56 -19.14 1.45E+10 9.41E-01 -2.23E-01 2.56E-01 

-20.62 -19.14 73.61 8.53E+10 -3.07E-01 -2.33E-01 9.23E-01 

M2 

17.78 3.00 -18.36 1.96E+08 -1.41E-01 -9.47E-01 -2.89E-01 

3.00 5.57 -19.03 1.27E+10 9.50E-01 -2.11E-01 2.29E-01 

-18.36 -19.03 71.38 8.18E+10 -2.78E-01 -2.43E-01 9.29E-01 

Table 2. DoE optimality criteria for models M1 and improvement of using M1 instead of M2. 

Mode Model 

Functions of FIM 

A-optimal D-optimal E-optimal ME-optimal 

Trace Determinant Minimal eigenvalue Condition number 

F 

M1 
Improvement 

4.73E+09 
8%↑ 

4.04E+22 
17%↑ 

4.93E+05 
2%↑ 

9551 
6%↑  

 

M2 4.38E+09 3.45E+22 4.85E+05 9002 

 

 

 

D 

M1 

Improvement 

1.00E+11 

6%↑ 

2.69E+29 

32%↑ 

2.17E+08 

11%↑ 

393 

6%↓ 

 

 

 

M2 9.47E+10 2.03E+29 1.96E+08 418 

 

 

 



Fig. 1. A-, D-, E-, ME-optimal criteria evaluated under varying experimental conditions. Panel A 

shows filtration experiment (with 8 vials collected) predictions for varying initial feed 

concentration and applied pressure. Panels B, C, D examine the diafiltration experiment with 1, 5 

and 10 vials collected, respectively, for the diafiltrate concentration and applied pressure. 

4.3. MBDoE  optimizes DA TA  system  

We now use A-, D-, E-, and ME-optimality criteria to inform the applied pressure, initial 

retentate or diafiltrate concentrations (experimental design decisions) necessary to 

identify all parameters in filtration and diafiltration. Fig. 2A. examines filtration 

experiment at varying initial feed concentration 𝑐𝑓(𝑡 = 0) and applied pressure ∆𝑃 with 

8 vials collected. Fig. 2B, 2C, and 2D examine diafiltration experiments at varying 

diafiltrate concentration 𝑐𝑑 with 1, 5, and 10 vial collected, respectively. The gray regions 

correspond to physically impossible operating conditions where the water flux is equal to 

or less than zero. The contour lines show the log10-transformed values of every criterion. 

Comparing Fig. 2C to 2A, the lighter color and larger contour values for A-, D-, E-

optimality metrics indicates that the diafiltration experiments with 5 vial collections 
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contains more information than the filtration experiment with 8 vial collections. 

Moreover, higher applied pressures maximize A-, D-, and E-optimal metrics. However, 

based on ME-optimality, low applied pressure is desired in diafiltration experiment with 

5 or fewer vial collections to remove the correlation among parameters. Increasing to 10 

vial collections in diafiltration, shown in Fig. 2D, resolves the trade-off between 

parameter precision (A and D) and removing correlations (ME). Thus, with 10 vial 

collections, diafiltration experiments with a feed concentration of 5 mM KCl should be 

performed with a diafiltrate concentration greater than 50 mM KCl and an applied 

pressure at least 45 psi to identify all parameters with an order of magnitude of 

improvement in precision over filtration experiments. 

5. Conclusions 

In this paper, we apply MBDoE analyses to quantify the information gain in a recently 

proposed diafiltration apparatus for high-throughput analysis (DATA) for membrane 

characterization. In the future, MBDoE can be used to discriminate possible phenomena 

and mechanisms within complex multi-component systems and optimize diafiltration 

experiments with more degrees of freedom (e.g., time-varying applied pressure). 
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Abstract 

This contribution proposes a systematic modelling approach for tray distillation columns. 

Abstracting the distillation column into a network of the underlying, essential processes 

introduces a model topology. The topology is equipped with a centrally-established 

ontology that is a collection of fundamental principles and definitions describing the 

processes’ nature. This systematic approach minimises modelling errors, enables rapid 

model design, and significantly lowers the entry threshold for non-expert modellers. 

This study provides a holistic model that is, in contrast to common distillation models, 

applicable to steady-state as well as dynamic process conditions. The model’s design and 

mathematical formalism are described, followed by a discussion of the model capabilities 

including model fitting and evaluation of the simulation results against experimental data 

as well as a commercial flowsheeting package. 

Keywords: process modelling, simulation, topology, ontology, methodology 

1. Motivation 

Distillation is probably the most widespread industrial process for the separation of liquid 

mixtures. Accordingly, design, optimisation and process control are required for the 

exploration and testing of a myriad of various, differing process scales, operational 

domains and mixtures. Experimental studies may have been the conventional approach 

in process engineering for the better part of the 20th century, but they are expensive, time-

consuming and limited in their viability. Process simulations, on the other hand, are 

executed in computers and thus not limited by physical constraints. The fast development 

of computing rapidly enhanced the capabilities of numerical simulation, thus moving the 

centre of process engineering progressively away from lab facilities towards modelling 

suites. The increasing need for model implementations places a high demand on the 

modellers, thereby prompting a growing interest in more effective model generation 

methods that incorporate the expertise from different scientific domains like physics, 

chemistry, biology and engineering. Providing the modeller with customisable compound 

models equipped with multi-disciplinary expert knowledge is thus a critical undertaking 

for process engineering in general and distillation applications in particular. 

Applying the modelling method established by Preisig (2014), this study proposes a 

systematic modelling approach for distillation model design. First, an exemplary tray 

distillation process is graphically abstracted through a topology. Due to the established 

links between the topology and a physics ontology, the modeller-specified capacities 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50144-5 
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inherently provide the model’s fundamental mathematical abstraction. This study 

showcases the capabilities and reliability of the resulting compound model by validating 

the simulation results against experimental data as well as the results of commercially 

available flowsheeting software. 

2. Structural model design 

The processes we observe are intrinsically composed of various sub-processes on 

multiple scales. Modelling has thus to include both, the identification of the physical 

processes involved, and the adaptation of the mathematical formalisms to the systems’ 

nature and application. 

Topologies appear to be particularly convenient for model design since they are easily 

translated into matrix algebra and applied to multiple scales. A topology is the graphical 

abstraction of a process as a graph network of nodes representing finite-volume capacities 

and arcs that are flows of extensive quantities driven by gradients in intensive properties. 

Our methodology limits the topology design to basic entities, provides a maths 

description for each entity, and associates the entities to the graphical objects used to 

establish the topologies. This approach enables the rapid design of rigorous, holistic 

models that are also easily customisable and minimised in the amount of potential, 

modeller-caused errors. Furthermore, the topology structure enables the process depiction 

in both, steady-state as well as dynamic operation.  

Figure 1 presents the topology for tray distillation columns that was applied in this study. 

For an in-depth description of topology symbols and terminology, please see Pujan & 

Preisig (2022). A column outfitted with 𝑛 trays is fed a fluid mixture by the reservoir 𝐹 

on feed tray 𝑛𝐹. On every tray, part of the stage’s liquid phase 𝐿𝑖 is dripping down to tray 

𝑖 + 1 while other parts evaporate into the gas phase 𝐺𝑖, subsequently rising up to tray 𝑖 −
1. While ascending, the vapour passes both an empty column space 𝑆𝑛 as well as the 

cavities of the tray 𝑇𝑖 . The condenser 𝐶 at the column’s head cools down the arriving 

vapour 𝐺0, forming the condensate 𝐿0 that is, according to the specified reflux ratio, 

partially dripping back to the column’s first tray and partially drained as distillate 𝐷. The 

column bottom is heated by 𝐻, thus evaporating parts of the boiler’s liquid 𝐿𝑛+1, while 

the bottom product 𝐵 is continuously drained at a certain rate. In steady-state (on the left 

of Figure 1), each tray’s liquid and vapour capacities are in thermodynamic equilibrium 

and without any time-dependencies, thus depicted as point capacities (black dots). Under 

dynamic conditions, for example during start-up and shut-down, these volumes change 

over time, both in extensive quantities as well as intensive properties. If considering 

distributional effects in them to be negligible, the phases appear as lumped capacities 

(circles) in terms of mass and heat distribution (central topology of Figure 1). 

As described in detail by Pujan & Preisig (2020), the pressure distribution in dynamic 

processes can only be assessed employing a model split. This split results in a dynamic 

model for the observable mass and heat flows and an event-dynamic model (on the right 

of Figure 1) for the supposedly immediate pressure distribution. 

The graphical topology structure is accessed by mathematical modelling through the so-

called incidence matrix F that is a structural matrix that can be sub-divided into F𝑚, F𝑞, 

and F𝑤 specific for mass, heat and work transport (Pujan & Preisig, 2022). 
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Figure 1: Topologies for a tray distillation column in steady-state (left) and dynamic process 

conditions (middle: dynamic mass and heat distribution; right: event-dynamic pressure distribution)  
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3. Mathematical model design 

The model’s mathematical behaviour is extracted from a centrally established equation 

ontology. The term ontology encompasses the entirety of fundamental concepts, 

definitions and relations taken from the application-specific scientific roots. Ontologies 

are a means of abstraction and concentrating information, promoting a more systematic 

approach to model design (Preisig, 2012).  

Table 1 shows the fundamental equation ontology for the physical domain of tray 

distillation columns. Vectors and matrices are depicted as 𝑥 and 𝑥, respectively. The 

decorator 𝑥̇ represents an accumulation and 𝑥̂ a flow. The grey-marked variables have to 

be specified further for the model initiation. These specifications typically are: 

 assumptions and preset values, like the nullification of the system’s change in 

kinetic and potential energy 𝐾̇ and 𝑃̇, and the gravitational acceleration 𝑔, 

 initial conditions 𝑥0, 

 plant dimensions such as liquid and weir heights ℎ𝐿 and ℎ𝑊, diameters 𝑑, weir 

length 𝑠𝑊, and weir drain coefficient 𝐶𝑊, 

 thermodynamic values from databases or external estimators, like the specific 

enthalpy ℎ𝑖, density 𝜌𝑖, molar mass 𝑀𝑖, and transport coefficients for heat 𝑘𝑖
𝑞
 

and mass 𝑘𝑖
𝑑 for substance 𝑖,  

 and further ontology equations, e.g. for temperature 𝑇, volume-specific 

interphase area 𝑎, and frictional pressure drop ∆𝑝𝑓. 

4. Results and discussion 

The model was initiated for the distillation of the binary mixture water-methanol and the 

steady-state results were validated against the experimental data by Kazameas et al. 

(2015) and Morinaga & Yao (1965), as well as simulation results derived from the 

flowsheeting package Aspen Plus®. Unfortunately, at the time of this publication, no 

sufficient data set was available for the validation of the model’s dynamic capabilities. 

 

Below the feed tray (feed stage marked with a circle), the initial simulation results in 

Figure 2 show a notably increased deviation from the experimentally determined molar 

fractions. Whereas the flowsheeting results seem to better match the experiments below 

the feed, our model seems more appropriate above. This performance was significantly 

improved through a simple model fitting, including only thermodynamic estimation 

parameters and the Murphree tray efficiency. 

  

Figure 2: Comparing simulation results to Kazameas et al. (2015) and Morinaga & Yao (1965) 
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Table 1: Physics equation ontology for tray distillation columns 

Integrals  

Substance 𝑛 =  ∫ 𝑛̇𝑡dt
𝜏

0

+  𝑛0 (1) 

Energy 𝐸 =  ∫ 𝐸̇𝑡dt
𝜏

0

+  𝐸0 (2) 

Balances  

Substance conservation 𝑛̇ =  F𝑚 𝑛̂ (3) 

Energy conservation 𝐸̇ =  𝑈̇ + 𝐾̇ + 𝑃̇ (4) 

Internal energy conservation 𝑈̇ = F𝑚[𝑈̂ + 𝐾 + 𝑃̂ + 𝑤̂𝑣 + 𝑤̂𝑓] + F𝑤 𝑤̂ + F𝑞 𝑞̂ (5) 

Transport terms  

Mass flow 𝑚̂ = ∑ 𝑚̂𝑖 (6) 

Mass component flow 𝑚̂𝑖 = 𝑀𝑖  𝑛̂𝑖 (7) 

Substance flow 𝑛̂ = ∑ 𝑛̂𝑖 (8) 

Molar flow of i (convection) 𝑛̂𝑖 = 𝑐𝑖  𝑉̂ (9) 

Molar flow of i (diffusion) 𝑛̂𝑖 = −𝑘𝑖
𝑑 𝑎 F𝑚

T  𝑐𝑖  (10) 

Internal energy flow 𝑈̂ =  𝐻̂ − 𝑤̂𝑣  (11) 

Kinetic energy flow 𝐾 =  1
2⁄ 𝑚̂ 𝑣2 (12) 

Potential energy flow 𝑃̂ = ℎ 𝑚̂ 𝑔 (13) 

Volume work flow 𝑤̂𝑣 = 𝑝 𝑉̂ (14) 

Friction work flow 𝑤̂𝑓 = Δ𝑝𝑓  𝑉̂ (15) 

System volumetric work 𝑤̂ = 𝑝 𝑉̇ (16) 

Heat flow (conduction) 𝑞̂ = −𝑘𝑞 𝐴 𝑠−1 F𝑞
T 𝑇 (17) 

Enthalpy flow 𝐻̂ = ∑ 𝐻̂𝑖  (18) 

Enthalpy component flow 𝐻̂𝑖 =  ℎ𝑖  𝑚̂𝑖 (19) 

Volume flow  𝑉̂ =  𝐴 𝑣  (20) 

Volume flow (weir) 𝑉̂ =  2
3⁄ 𝐶𝑊 𝑠𝑊√2𝑔 (ℎ𝐿 − ℎ𝑊)

1.5
  (21) 

State variable transformations  

Cylindrical cross-section 𝐴 =  𝜋
4⁄ 𝑑2 (22) 

Molar concentration 𝑐𝑖 = 𝑛𝑖 𝑉
−1 (23) 

Substance component 𝜒𝑖 = 𝑛𝑖  𝑛
−1 (24) 

Mass fraction 𝜔𝑖 = 𝑚𝑖  𝑚
−1 (25) 

Systematic Modelling of Distillation Columns based on Topologies
 and Ontologies

 869  



870  

Figure 3 compares the simulation 

results to the temperature profile 

recorded by Kazameas et al. (2015). 

The model shows a better (unfitted) 

performance than Aspen Plus®, 

however, the significant different 

shapes of experimental and 

simulation results hypothesise 

measurement errors in the 

experiment. As the dashed curve 

indicates, assuming constant pressure 

does not perceptibly alter the model’s 

temperature profile under steady-state 

conditions. 

 

  Figure 3: Stage temperatures 𝑇 compared to  

  Kazameas et al. (2015) 

5. Conclusions 

As this paper shows, ontology-imposed topology model designs are a fast and reliable 

method for modelling distillation columns. The presented model will be implemented in 

the compound model library of the modelling suite ProMo, which is currently in 

development at the NTNU (Elve & Preisig, 2019; Preisig, 2020). The software 

automatically selects the required ontology equations and generates executable program 

code, thus enabling rapid custom distillation model design. Future work will add models 

and ontology equations specific for packed and divided-wall distillation columns as well. 
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Abstract 

Electrically enhanced condensation achieved by an electrospray system can enhance 
dehumidification in HVAC applications if successfully scaled up. The first step towards 
scale-up is identifying critical design and operating parameters that significantly impact 
dehumidification for the electrospray system. Sensitivity analysis is one approach for 
identifying critical parameters. This paper presents a methodology that can efficiently 
perform quantitative sensitivity analysis on a computationally expensive high fidelity 
simulation model, which is a computational fluid dynamics (CFD) model of the 
electrospray system. The methodology employs surrogate modeling and Sobol sensitivity 
analysis. We estimate the main and total effect Sobol sensitivity indices of four operating 
parameters of the electrospray system. The results reveal that the most important 
parameter is the size of the sprayed droplets, followed by the volumetric flow rate of the 
bulk air and injected water in the system. The water injection velocity of the spray was 
found to have little to no impact on dehumidification. 

Keywords: CFD; Sensitivity Analysis; Surrogate-modelling; ALAMO; PRESTO 

1. Introduction 

Dielectrophoresis is a well-documented phenomenon, with the first study coining the 
name in 1951 (Pohl, 1951). The phenomenon refers to the force imparted on a dielectric 
particle from a nonhomogenous electric field. Dielectrophoresis has been used in various 
applications, e.g., from cell separation (Henslee et al., 2011) to nanowire assembly (Collet 
et al., 2015). One more promising application is in heating, ventilation, and air 
conditioning (HVAC) systems. For an HVAC application, water condensation in the air 
can be enhanced by dielectrophoresis by spraying electrically charged droplets into the 
air, reducing the energy consumption of conventional HVAC systems. 

Electrically enhanced condensation uses highly charged water droplets injected in the 
moist air. The droplets become electric seeds that attract polar water vapor molecules to 
their surfaces and promote condensation. The growth of the charged droplets depletes the 
vapor phase near a droplet, while dielectrophoresis flow and diffusion compensate for 
this depletion. Dielectrophoresis flow involves surrounding vapor at a distance of about 
10 to 100 nm for droplets charged by an electrospray compared to ~2 nm for a single 
electron charge in a droplet. As vapor molecules collapse on the surface of the droplets, 
their initial electrical charge decreases due to the neutralization of the ions. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50145-7 
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An electrically enhanced dehumidification system thus far has only been demonstrated in 
laboratory-scale studies (Higashiyama and Kamada, 2017). One challenge that hinders its 
large-scale application is the lack of knowledge on critical design and operating 
parameters that significantly impact the dehumidification rate. This work addresses this 
challenge by efficiently developing an approach to identify the critical parameters. The 
approach utilizes a CFD model of the electrospray system within a duct, surrogate 
modeling, and Sobol sensitivity analysis. The CFD model includes a particle-laden flow, 
where the dielectrophoresis flow is modeled within the mass transfer between the two 
phases (Section 2). We develop a surrogate model that links the dehumidification rate to 
select CFD model parameters (Section 3) and perform Sobol sensitivity analysis (Section 
3) on the surrogate model to identify the critical parameters (Section 4). 

2. Electrospray System Computational Fluid Dynamics (CFD) Model 

The CFD model was built using open-source CFD simulation software OpenFOAM v8. 
We modified the sprayFoam solver to add an electro-condensation model, which includes 
the thermal and transport equations for water vapor dielectrophoresis condensation at the 
interface of electrically charged liquid droplets. SprayFoam is a numerical solver that 
takes the Eulerian-Lagrangian approach to simulate dispersed particle-laden flow. The 
Euler method was used to model the continuous phase, bulk airflow as dry air and water 
vapor mixture. The Lagrangian approach was used to model the dispersed phase, the 
electrically charged water droplets from the spray. The water vapor was modeled as a 
component of the bulk air, transported by both diffusion and convection. The governing 
equations for the moist airflow were the conservation of continuity, momentum, species, 
energy, and the equation of state in the laminar flow regime. Droplets in the spray were 
subjected to several physical phenomena, including coalescence and drag effects. Two-
way coupling was introduced in the numerical study to establish the interaction between 
the two phases (air and water droplet). Source terms calculated in the sub-models using 
the Lagrangian approach were introduced into gas phase equations in the Eulerian 
approach to represent the interaction between Euler and Lagrangian methods. The water 
molecules placed in a gradient electric field experienced a force that moved them toward 
the charged droplets. 

  Particle-Laden Gas Using Eulerian Method 

Eqn. 1 reflects the conservation of mass for the gas phase, 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑈) = 𝜌̇௦ (1) 

where 𝜌 is the density of air, 𝑡 is time, 𝑈 is the velocity, and  𝜌̇௦ is a source term defined 
only for the water vapor. It is calculated using the water vapor condensation into liquid 
droplets. Mass transport for individual species in the gas phase is given in Eqs. 2 - 4, 

𝜕𝜌𝑌௜

𝜕𝑡
= ∇ ∙ (𝜇௅∇𝑌௜) = 𝜌̇௦

௜  (2) 

𝜌̇௦ = ෍ 𝜌̇௦
௜

௜

 (3) 

where, 𝑌௜ is the mass fraction for the 𝑖-th gas species (𝑖 = 𝐻ଶ𝑂 , 𝑂ଶ, 𝑁ଶ) in the bulk air, 
and 𝜇௅ is the laminar viscosity. 
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𝜕𝜌𝑈

𝜕𝑡
+ ∇ ∙ (𝜌𝑈𝑈) = −∇𝑃 + ∇ ∙ (𝜇௅ ∇U) + ∇ ∙ [dev(𝜇௅  (∇𝑈)்)] + 𝜌𝑔 + 𝐹ௌ (4) 

In Eq. 4, 𝛻𝑃 is the pressure gradient, 𝑔 is the acceleration due to gravity, 𝐹ௌ is the the 
resultant force induced by the charged water droplets due to drag force and gravity force.  

 Spray Charged Droplets Using Lagrangian Method 

The dispersed charged spray droplets were solved using the Lagrangian particle tracking 
method. The approach assumes that spray injection consists of different droplet parcels, 
and each parcel consists of many spherical droplets sharing the same location, diameter, 
velocity, and temperature. Newton’s second law describes the charged droplet motion. 
The driving forces for the charged droplets are drag force from the surrounding air, the 
electrostatic force, and gravity force. These forces link droplet mass (𝑚஽) and velocity 
(𝑈௜௡௝) to droplet density (𝜌ௗ), and diameter (𝑑௜௡௝). 

 Droplet Electro-Condensation Model 

With the dielectrophoresis effects, the saturated vapor pressure can be evaluated by the 
modified Kelvin-Thomson (MKT) model as described in Eqn. (1) of Morcelli and 
Cremaschi (2021). This equation provides the oversaturation pressure ratio, (𝑃௦௔௧/𝑃௦௔௧

௙௟௔௧) 

where, 𝑃௦௔௧ is the saturated vapor pressure near the surface of the droplet and 𝑃௦௔௧
௙௟௔௧

 is the 
saturated water vapor pressure above a flat surface at temperature 𝑇. The oversaturation 
ratio is calculated, as the electric charge on the droplet increases the differences between 
the vapor pressure of the water droplet and bulk air. If the bulk air vapor pressure is 
higher, droplets grow. For the present study, the temperature 𝑇 was constant at 20°𝐶 for 
both moist airflow and droplets. For the MKT model, the droplets were kept fixed to the 
maximum electric charge (𝑞௘), dictated by the Rayleigh limit, Eq.5,  

𝑞௘ = 8𝜋ඥ𝜀଴𝜎𝑅ଷ (5) 

Where 𝑅 is the instantaneous water droplet radius. The oversaturation ratio, was 
determined from MKT model and a mass transfer from the water vapor to the droplet 
surface occurred. A prerequisite condition of oversaturation ratio less than 1 was 
introduced to limit the droplet growth via diffusion for realistic cases. The 
dielectrophoretic force sustain the vapor flow towards the droplet surface even if the 
diffusion transport diminishes due to the equality of the pressures near the droplet surface 
and far away from the droplet. The mass transfer due to electrically enhanced 
condensation is calculated using Eq. 6. 

𝑑𝑚஽

dt
=  − 4π𝑅ଶ 

𝑑𝑅

𝑑𝑡
𝜌ௗ (6) 

Here 
ௗோ

ௗ௧
 is the constant droplet growth rate, estimated using data from Abe and Kameda 

(2003) and Morcelli and Cremaschi (2021). 

3. Surrogate-based Sobol Sensitivity Analysis 

Sensitivity analysis (SA) identifies parameters that significantly impact the output of 
interest for a model. We employed Sobol SA (Sobol, 2001) to investigate the sensitivity 
of the dehumidification rate in the duct, estimated by the CFD model, to select operating 
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parameters of the electrospray system. Sobol SA is a global method that quantifies the 
effect of each variable and its interactions with other variables on the model output by 
decomposing the output variance. These effects are quantified using main-effect and total 
Sobol indices and show the true sensitivity of the outputs with a high degree of accuracy. 
However, obtaining stable Sobol index estimates may be computationally expensive as it 
may require a large number of model evaluations (Tian, 2013). A surrogate model-based 
Sobol SA is proposed to overcome this issue, considering a single run of the CFD 
simulation for electrospray system in the duct takes, on average, seven days (wall time) 
on an Intel E5-2660, 20 core 2.6 GHz node. 

The surrogate-based Sobol SA is performed to determine the impact of four operating 
parameters on dehumidification. The parameters are injected water flowrate (𝑉̇௜௡௝), the 
injected water droplet size (𝑑௜௡௝), the injected water velocity (𝑈௜௡௝), and the bulk air 
flowrate (𝑉̇௔௜௥). The potential operating ranges for these parameters are listed in Table 1.  

Table 1 Potential operating ranges for the four parameters considered for sensitivity analysis 
Parameter Upper bound Lower bound Unit 

𝑈௜௡௝ 2.73 ⨯ 10ିଶ 2.73 ⨯ 10ିଵ [m/s] 

𝑑௜௡௝ 15 100 [m] 

𝑉̇௜௡௝  0.1 50 [𝜇L/min] 

𝑉̇௔௜௥ 0.5 5 [ft3/min] 

The surrogate-based SA starts by running the CFD simulation at selected parameter 
values to compute the corresponding output, dehumidification. The parameter values for 
the CFD runs are selected according to Saltelli’s (2002) method. We collected 78 unique 
input/output pairs by running the CFD simulation. 

Next, an appropriate surrogate modeling technique is selected to represent the input-
output relationship. Previous analysis revealed that the data characteristics and the 
application (surface approximation or optimization) are essential for selecting the correct 
surrogate modeling technique (Williams and Cremaschi, 2021). To determine the correct 
modeling technique, we employed PRESTO, Predictive REcommendations of Surrogate 
models To Optimize (Williams et al., 2022), which recommended automated learning of 
algebraic models (ALAMO) (Cozad et al., 2014) as the technique to best represent the 
data out of eight potential surrogate modeling approaches. We trained a surrogate model 
using ALAMO and the input-output pairs and employed it to estimate the Sobol indices 
following Saltelli’s (2002) method. 

4. Results 

The maximum number of terms allowed during training a surrogate model should be 
determined a priori when using ALAMO. The allowed basis functions were 𝑠𝑖𝑛(𝑥), 
𝑐𝑜𝑠(𝑥), 𝑒𝑥𝑝(𝑥), ln(𝑥), Gaussian radial basis function, polynomials up to third power, 
and pairwise combination of variables, both linear and quadratic. We employed 4-fold 
cross-validation (Burman, 1989) with 30 Monte Carlo replications using a 75 % to 25 % 
training to testing split to determine the maximum number of terms. Fig. 1 (A) includes 
a plot of the root mean square error (RMSE) for the training and test data sets vs. the 
maximum number of terms. We used 20 terms to train the ALAMO model used in the SA 
based on the beginning of an upward trend of the testing RMSE. The dehumidification 
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rate predictions of the ALAMO model are plotted against the values calculated by the 
CDF model in Fig. 1(B). The plot also includes the RMSE of the trained model with the 
model output normalized to the range of the data. 

 
Figure 1 A) RMSE of training and testing data for term number determination of ALAMO model 
and B) parity plot of the trained ALAMO model versus the CFD output. 

The main-effect and total Sobol indices are estimated using the ALAMO model. A plot 
of how the index values and their confidence intervals change as the number of model 
evaluations increases is given in Fig. 2. The number of model evaluations, 𝑁, are 
increased according to 𝑁 = 𝑛(2𝐷 + 2) where 𝐷 is the input dimension, and 𝑛 = 2௫ (𝑥 ∈
ℤା) is the number of Sobol sequence samples to satisfy the convergence properties of the 
Sobol sequence. For this study, 𝑥 ∈ [1,15].  

 
Figure 2 A) Main-effect and B) Total Sobol indices estimated using the ALAMO model  

Fig. 2A is a plot of the main-effect indices, and Fig. 2B total effect indices. As can be 
seen from Fig. 2, the droplet diameter, 𝑑௜௡௝, is the most impactful parameter and the 
injection velocity, 𝑈௜௡௝, the least with a negligible contribution to the variation of outlet 
humidity for the system considering the main-effect and total Sobol indices. The bulk air 
flowrate, 𝑉̇௔௜௥ , has the second-highest  contribution for both the main effect and the total 
Sobol indicies, while the injected water flowrate, 𝑉̇௜௡௝, shows to have the third most 
contribution. The droplet diameter impacts the number of droplets for condensation to 
occur within the system, driving the overall reduction in humidity. The air flowrate 
determines the droplet residence time in the duct, controlling the time allowed for 
condensation to occur on each droplet. When the injected water flowrate is considered on 
its own, it has little impact on dehumidification (Fig. 2A). However, when its interactions 
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with the other parameters are considered, its impact increases (Fig. 2B). The primary 
interaction contributing to its increased impact is with the droplet diameter. For higher 
injection rates with smaller droplet diameters, many droplets are injected, enhancing 
condensation. 

5. Conclusions and Future Work 

We introduce a computationally-efficient surrogate-model-based sensitivity analysis 
(SA) approach to identify the critical parameters of a CFD model. The approach combines 
accurate surrogate modeling and Sobol SA. We applied the approach to a CFD model of 
an electrospray system designed for enhanced dehumidification of moist air in a duct. The 
results indicate that the dehumidification rate was most sensitive to the diameter of the 
charged water droplets injected into the duct. Our analysis also revealed that the number 
of CFD model evaluations to estimate stable Sobol indices is temporally intractable 
without employing the proposed approach for this system. The SA results will be used to 
construct an experimental matrix for a scale-up study of the electrospray system for 
maximizing dehumidification. 
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Abstract 

This work presents the simulation-based comparison of batch and flow syntheses of a 

drug substance. The target reaction is heterogeneous hydrogenation which is the most 

widely used reduction method in pharmaceutical synthesis. We developed rigorous 

physical models of batch and flow syntheses considering the decrease in catalyst 

activity due to poisoning. Sensitivity analysis of reaction rate constant and viscosity was 

performed. The reaction rate constant had an effect on the conversion of both batch and 

flow syntheses.  On the other hand, the impact of viscosity on conversion was greater in 

flow synthesis than in batch synthesis. This result suggests the importance of careful 

selection of operational conditions when changing from batch to flow synthesis as 

optimal conditions might differ between them. 

Keywords: Flow chemistry; Drug Substance; Physical modelling; Viscosity; Sensitivity 

1. Introduction 

There have been significant advances in the application of flow synthesis in drug 

substance production. Bogdan et al. (2009) reported the synthesis of ibuprofen, a widely 

used painkiller. Other studies include an anti-malaria drug (Lévesque and Seeberger, 

2012); olanzapine, an atypical antipsychotic (Hartwig et al., 2013) and rolipram, an anti-

inflammatory drug (Tsubogo et al., 2015).  

With progress in flow synthesis research, the question remains whether the novel 

technology proves to be more beneficial than the conventional batch technology. Few 

studies report specifically on the comparison of drug substance synthesis. Pedersen et al. 

(2018) redesigned the synthetic routes of melitracen, an antidepressant using flow 

synthesis, and compared it with the conventional synthetic routes in batch. However, 

simulation-based investigation in this field is still in infancy despite the need for it due 

to expensive experimental costs. Therefore, this work presents the simulation-based 

comparison of batch and flow syntheses for an actual drug substance using 

heterogeneous hydrogenation. Multi-objective comparison of batch and flow syntheses 

were performed in the previous work (Kim et al., 2022). Here, the impact of reaction 

rate and viscosity on batch and flow syntheses are investigated.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50146-9 
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Figure 1. Target reaction scheme (modified from Kim et al. (2022)) 

 

Figure 2. Mass transfer and reactions in gas/liquid/solid phases (modified from Kim et al., (2022)) 

2. Materials and methods 

2.1. Target reaction 

Figure 1 shows the target reaction, heterogeneous hydrogenation. The figure was 

modified based on the previous work (Kim, et al., 2022). The reaction scheme is the 

part of the synthetic route of an antibiotic active pharmaceutical ingredient, doripenem. 

In the hydrogenation, compound a is reduced to give intermediate b in the presence of 

the hydrogen gas and Pd/C catalyst. During this process, p-toluidine is produced as 

byproduct x, which causes the poisoning of the catalyst. In the model, m was assumed 

as intermediate of the hydrogenation reaction, which refers to compounds having either 

of the two protecting groups remaining. In the original reaction scheme (Kim, et al., 

2022), compound b undergoes decarboxylation reaction, where the product decomposes 

into various byproducts. Here, only the hydrogenation part was considered as the 

comparison of the conversion of a is the focus of this work.  

2.2. Model assumptions 

Figure 2 shows the overview of the mass transfer and reactions. The figure was 

modified based on the previous study (Kim, et al., 2022). In the model, the same 
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reaction mechanisms and parameters are assumed in batch and flow syntheses. The 

mass balance in the liquid and solid phases are considered. The energy balance was 

neglected in this work because batch experiments did not show significant temperature 

changes. The hydrogenation reaction was modelled based on the Langmuir–

Hinshelwood (LH) mechanism.  

2.3. Model equations for batch synthesis 

The mass balance equations of liquid and solid phases in batch synthesis were defined 

as: 

where 𝐶𝑖,L [mol m–3] and 𝐶𝑖,S are the concentrations of compound 𝑖 (H2, a, m, b, x) in 

the liquid and solid phases, respectively, 𝑡 [s] is time, 𝑘GL [m s-1] is the gas-liquid mass 

transfer coefficient, 𝑎GL [m–1] is the specific gas-liquid contact area, 𝐶𝑖,L
∗  [mol m–3] is the 

saturation concentration of 𝑖, 𝑘SL [m s-1] is the solid-liquid mass transfer coefficient, 𝑎SL 

[m–1] is the specific solid-liquid contact area, 𝜐𝑖,𝑗 [–] is the stoichiometric coefficient, 𝑟1 

[mol m–3 s–1] and 𝑟2 [mol m–3 s–1] are the reaction rates for the first and second steps of 

hydrogenation, respectively, and 𝛼act [–] is the activity coefficient of the catalyst. The 

values for mass transfer between the gas and liquid phases in batch synthesis (𝑘GL𝑎GL) 

were estimated by catalogue data (e.g., Satake MultiMix Corporation, 2021) for the 

actual batch reactor in use. The values for mass transfer between the solid and liquid 

phases (𝑘SL, 𝑎SL) were estimated using the following equations (Sano et al., 1974): 

𝑘SL =
𝑆ℎ𝐷𝑖

𝑑p
 

(3)  

𝑆ℎ = 2 + 0.4𝑅𝑒L
1/4

𝑆𝑐1/3 
(4)  

𝑎SL =
6𝑚S𝜌S

𝑑p𝑚L𝜌L
 

(5)  

where 𝑆ℎ  [–] is the Sherwood number, 𝐷𝑖  [m2 s–1] is the diffusion coefficient of 

compound 𝑖 in the liquid phase, 𝑅𝑒L [–] is the particle Reynolds number in the liquid 

phase, 𝑆𝑐 [–] is the Schmidt number, 𝑚S [kg] is the catalyst mass, 𝜌S [kg m–3] is the 

density of the catalyst, 𝑑p [m] is the particle diameter, 𝑚L [kg] is the liquid mass and 𝜌L 

[kg m–3] is the density of the liquid. The reaction rates of hydrogenation were modelled 

by using the following equations: 

𝑟1 = 𝜌cat𝑘1

𝐾H2
𝐾𝐚𝐶H2,S𝐶𝐚,S

(1 + 𝐾H2
𝐶H2,S + 𝐾𝐚𝐶𝐚,S + 𝐾𝐦𝐶𝐦,S + 𝐾𝐛𝐶𝐛,S + 𝐾𝐱𝐶𝐱,S + 𝐾𝐜𝐶𝐜,S)2

 
(6)  

𝑟2 = 𝜌cat𝑘1

𝐾H2
𝐾𝐦𝐶H2,S𝐶𝐦,S

(1 + 𝐾H2
𝐶H2,S + 𝐾𝐚𝐶𝐚,S + 𝐾𝐦𝐶𝐦,S + 𝐾𝐛𝐶𝐛,S + 𝐾𝐱𝐶𝐱,S + 𝐾𝐜𝐶𝐜,S)2

 
(7)  

where 𝜌cat [kg m–3] is the bulk density of the catalyst, 𝑘1 [mol kg–1 s–1] is the reaction 

rate constant of hydrogenation and 𝐾𝑖 [mol–1] is the adsorption coefficient of compound 

d𝐶𝑖,L

d𝑡
= 𝑘GL𝑎GL(𝐶𝑖,L

∗ − 𝐶𝑖,L) − 𝑘SL𝑎SL(𝐶𝑖,L − 𝐶𝑖,S) 
(1)  

d𝐶𝑖,L

d𝑡
= 𝑘SL𝑎SL(𝐶𝑖,L − 𝐶𝑖,S) + 𝜐𝑖,𝑗𝑟1𝛼act

2 + 𝜐𝑖,𝑗𝑟2𝛼act
2 

(2)  
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𝑖. The change in catalyst activity was calculated by the following equation (Kilpiö et al., 

2012): 

d𝛼act

d𝑡
=

−𝛼act𝑘p𝐾𝐱𝐶𝐱,S

(1 + 𝐾H2
𝐶H2,S + 𝐾𝐚𝐶𝐚,S + 𝐾𝐦𝐶𝐦,S + 𝐾𝐛𝐶𝐛,S + 𝐾𝐱𝐶𝐱,S + 𝐾𝐜𝐶𝐜,S)

 
(8)  

where 𝑘p  [s–1] is the poisoning rate constant. Eqs. (6)–(8) were used in the flow 

synthesis as well. 

2.4. Model equations for flow synthesis 

The mass balance of liquid and solid phases in flow synthesis are defined as: 

where 𝑢L [m s–1] is the superficial liquid velocity, 𝜀L [–] is the liquid holdup and 𝑙 [m] 

represents the location in the reactor, and 𝜀s [–] is the solid holdup. The values for mass 

transfer between the gas and liquid phases (𝑘GL𝑎GL) were estimated by the following 

equation (Kilpiö et al., 2012): 

𝑘GL𝑎GL𝑑p
2

𝐷H2
(1 −

𝜀L

𝜀P
)

= 2𝜃0.2𝑅𝑒L
0.73𝑅𝑒G

0.2𝑆𝑐0.5 (
𝑑p

𝑑pipe
)

0.2

 (11)  

where 𝜀P  [–] is the porosity of the reactor, 𝜃  [–] is the surface shape factor for the 

particle (specified as 2.0 for a sphere according to Kilpiö et al., 2012), 𝑅𝑒G [–] is the 

particle Reynolds number in the gas phase and 𝑑pipe [m] is the diameter of the reactor. 

The values for mass transfer between the liquid and solid phases (𝑘SL , 𝑎SL ) were 

estimated by the following equations (Burghardt et al., 1995). 

𝑆ℎ = 2 + 1.1𝑅𝑒L
0.6𝑆𝑐1/3 

(12)  

𝑎SL =
6

𝑑p

(1 − 𝜀P)  
(13)  

3. Results and discussion 

3.1. Conversion of raw materials 

The conversion of batch synthesis was defined as: 

𝑐𝑜𝑛𝑣 = (1 −
𝐶𝐚,L(𝑡batch)

𝐶𝐚,L(0)
) × 100 

(14)  

where 𝑡batch [min] is the batch reaction time and 𝐶𝐚,L(0) is the initial concentration of a. 

In this work, 𝑡batch = 60 min. The conversion of flow synthesis was defined as: 

𝜕𝐶𝑖,L

𝜕𝑡
= −

𝑢L

𝜀L

𝜕𝐶𝑖,L

𝜕𝑙
+ 𝐷𝑖

𝜕2𝐶𝑖,L

𝜕𝑙2
+

1

𝜀L
𝑘GL𝑎GL(𝐶𝑖,L

∗ − 𝐶𝑖,L)

−
1

𝜀L
kSL𝑎SL(𝐶𝑖,L − 𝐶𝑖,S) 

(9)  

𝜕𝐶𝑖,S

𝜕𝑡
=

1

𝜀s
kSL𝑎SL(𝐶𝑖,L − 𝐶𝑖,S) + 𝜐𝑖,𝑗𝑟1𝛼act

2 + 𝜐𝑖,𝑗𝑟2𝛼act
2 

(10)  
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𝑐𝑜𝑛𝑣 = (1 −
∑ 𝐶𝐚,L(𝑡) ∙ 𝑣L ∙ ∆𝑡

𝑡1
𝑡0

𝐶𝐚,L(0) ∙ 𝑣L ∙ (𝑡1 − 𝑡0)
) × 100 

(15)  

where 𝐶𝐚,L(0) is the concentration of a at the inlet, 𝑣L [cm3 min–1] is the volumetric flow 

rate of the liquid phase and ∆𝑡 is the time interval for the calculation output (set as 1 

min in the simulation). The parameters 𝑡0 [min] and 𝑡1 [min] represent the beginning 

and the end of production using flow synthesis (start-up and shut-down were excluded). 

3.2. Sensitivity analysis of reaction rate constant and viscosity 

Sensitivity analysis was performed to investigate the impact of the hydrogenation 

reaction rate constant and viscosity on the conversion in batch and flow syntheses. The 

parameters were changed under the following ranges.  

𝑘1 ∈ {5, 10,∙∙∙, 100} 

𝜂solvent ∈ {0.2, 0.25,∙∙∙, 2.0} 

Here, 𝜂solvent [mPa s] is the viscosity of the solvent. Figure 3 shows the conversion of a. 

The reaction rate constant affects the conversion of both batch and flow. It showed less 

impact in flow synthesis, especially with smaller viscosity values. This is because 

almost 100% of conversion was obtained even under small reaction rate constant values. 

On the other hand, the viscosity showed a greater impact on the conversion of flow 

compared to batch. The viscosity affects the mass transfer between phases (gas-liquid 

and liquid-solid), and it has less impact in batch synthesis because mass transfer in 

batch is sufficient even with larger viscosity values. 

 

Figure 3. Conversion in batch and flow syntheses 
 

Table 1. Parameter values and conversion at four conditions 

Condition 𝜂solvent [mPa s] 𝑘1 [102 mol m–3 s–1] Conversion [–] 

A 0.5 10 0.83 

B 1.95 70 1.00 

C 0.5 10 0.99 

D 1.95 70 0.90 

Rigorous modelling for comparing batch and flow syntheses of a drug substance
using heterogeneous hydragenation
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The results suggest that the optimal condition may differ between batch and flow 

synthesis, and could result in a need for extra flow experiments at all relevant conditions 

when changing from batch to flow synthesis. For example, the optimal operation was 

obtained at condition B (Figure 3) in batch synthesis, which shows 17% higher 

conversion than the condition A (Table 1). However, condition C shows 9% higher 

conversion than condition D in flow synthesis. Further investigation of the impact of 

other parameters such as solvent density could contribute to reducing the number of or 

avoiding extra experiments needed for the change from batch to flow. 

4. Conclusions and outlook 

Sensitivity analysis was performed to compare the impact of reaction rate constant and 

viscosity in batch and flow syntheses. Reaction rate constant influenced the conversion 

of both batch and flow syntheses. Viscosity showed much greater impact on the 

conversion of flow than that of batch. The differences in optimal condition between 

batch and flow hinder the direct transfer of process experiences between the different 

production modes. Thus, dedicated experiments are required to optimize production in 

flow synthesis. Extensive simulation of flow synthesis incorporating the effects of other 

parameters could help lower the expected experimental load.  
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Abstract 
This work presents a comparison of several distillation structures that can attain energy 
and cost savings. The Different Pressure Thermally Coupled Distillation (DPTCD) was 
studied to increase its energy-savings potential by exploiting heat integration among 
stages. Therefore, a Mixed-Integer Linear Programming (MILP) problem was proposed 
and solved to find heat-integrated distillation column (HIDiC) structures that can 
improve energy and cost savings of DPTCD. The separation of a closed-boiling point 
mixture was taken as a case study. The HIDiC slightly outperformed DPTCD in energy 
and cost terms. 

Keywords: Process Synthesis, MILP, DPTCD, HIDiC, Heat Integration 

1. Introduction 
Distillation is the most widely used technique to separate liquid mixtures. However, it 
uses large amounts of energy because it boils liquid streams. Typically, more than half 
of the process heat distributed to a plant is dedicated to supplying heat in distillation 
columns' reboilers (Caballero and Grossmann, 2013). To improve energy efficiency in 
distillation processes, several alternatives, including heat integration and thermal 
coupling, have been proposed. Heat integration between hot streams and cold streams 
has been widely used in the Chemical Industry. 

Different Pressure Thermally Coupled distillation (DPTCD) has been proposed as an 
energy-saving distillation alternative for the separation of close-boiling point mixtures 
(Liu et al., 2017) and in reactive distillation (Li et al., 2015). DPTCD claims that heat 
integration between the top vapor of a high-pressure rectifying column and the bottom 
liquid of a low-pressure stripping column reduces the energy requirements in 
comparison with its conventional counterpart. The Vapor Recompression Column 
(VRC) can also realize condenser-reboiler heat integration by compressing the top 
vapor stream leaving the column. Finally, the Heat Integrated Distillation Column 
(HIDiC) can also realize condenser-reboiler heat integration. However, it also exploits 
the idea of realizing heat integration among stages in the rectifying and stripping 
columns. This work compares the economic and energy performance of DPTCD, VRD, 
and HIDiC. The economic criterion is assessed by minimizing the total annual cost 
(TAC), while the energy requirement criterion is assessed by minimizing energy 
consumption. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50147-0 



884  J. Rafael Alcántara-Avila and R. T. Saenz

2. Problem Statement 
The HIDiC structure is expected to be the most promising alternative to reduce the 
energy consumption in the chemical plants because outstanding energy savings up to 
60% in comparison with its conventional distillation counterparts have been obtained 
theoretically and experimentally in pilot plants (Matsuda, Iwakabe and Nakaiwa, 2012). 
However, the typical HIDiC structure (i.e., concentric arrangement of inner and outer 
tubes) has presented operating issues such as difficult maintenance, HIDiC structures 
with few heat integrations have been proposed (Wakabayashi and Hasebe, 2013, 2015). 

The simulation of DPTCD and VRC alternatives is straightforward because the only 
heat integration is between the condenser and reboiler. However, the simulation and 
optimization of the HIDiC structure is more challenging because the following 
questions must be answered: (1) how many heat integrations are needed? and (2) what is 
the best amount of heat transferred at the chosen locations?  

This work adopts a synthesis methodology for the generation of near-optimal HIDIC 
structures where the stages in a high-pressure rectifying column are regarded as heat 
sources, and the stages in a low-pressure stripping column are regarded as heat sinks. 
The synthesis problem is represented by a superstructure in which all possible heat 
integrations are explicitly included. Finally, the superstructure is formulated as a mixed-
integer linear programming (MILP) problem that successively combines process 
simulation and optimization (Alcantara-Avila, 2019; Herrera Velázquez et al., 2021). 

In this work, the synthesis problem for the heat integration among stages in a HIDiC 
structure is formulated based on the following assumptions: 

1. The top pressure in each section is given in advance, and the pressure drop is 
considered (i.e., 75 kPa per stage). 

2. The feed composition and product specifications are given in advance. 
3. The feed and products are saturated liquids. 
4. Only one stage in the high-pressure column (i.e., rectifying section) can supply 

heat to only one stage in the low-pressure column (i.e., stripping section). 
5. Only one stage in the low-pressure column (i.e., stripping section) can receive heat 

from only one stage in the high-pressure column (i.e., rectifying section). 
6. The minimum temperature difference value that enables heat integration is given 

in advance. 
7. The compressor type and efficiency are given in advance. 
8. The process is at the steady-state. 
9. Vapor-liquid equilibrium is reached in each distillation stage. 
10. Utility costs per unit amount of heating and cooling are given in advance. 

The synthesis problem is represented by the superstructure in Figure 1. REC and STR 
are the sets of stages in the rectifying and stripping sections. LC and HC are the light 
and heavy component(s), respectively. The arrows connecting stages of different 
sections represent the heat transfer between stages. 
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Figure 1. Superstructure representation 

3. Mathematical formulation 
The superstructure in Figure 1 can be reformulated as the optimization problem 
represented by Eq. (1). The detailed optimization model can be found in Herrera 
Velázquez et al., (2021).  

𝑈𝑈𝑈𝑈 = � 𝑄𝑄𝑖𝑖,𝑗𝑗hx𝑈𝑈𝑗𝑗cool
𝑖𝑖∈𝑅𝑅𝑅𝑅𝑅𝑅
𝑗𝑗∈𝑅𝑅𝐶𝐶

+ � 𝑈𝑈𝑖𝑖heat𝑄𝑄𝑖𝑖,𝑗𝑗hx
𝑖𝑖∈𝐻𝐻𝐶𝐶
𝑗𝑗∈𝑆𝑆𝑆𝑆𝑅𝑅

+ 𝑊𝑊𝑈𝑈elec 

s.t. 
 Heat balance at each stage 

 Heat balance in the condenser, reboiler, and compressor 

 Heat integration feasibility 

 Work, condenser and reboiler duty estimation 

(1) 

where 𝑈𝑈𝑈𝑈  is the utility cost, 𝑈𝑈𝑈𝑈 and 𝐻𝐻𝑈𝑈  are the set of cooling and heating utilities, 
respectively. 𝑄𝑄𝑖𝑖,𝑗𝑗hx is the heat exchange between a heat source 𝑖𝑖 and a heat sink 𝑗𝑗. 𝑈𝑈𝑗𝑗cool 
and 𝑈𝑈𝑖𝑖heat is the cooling and heating cost of utilities per unit amount of heat. 𝑊𝑊 is the 
compressor work duty and 𝑈𝑈elec is the electricity cost. 

The optimization variables are the pressure ratio between the rectifying and stripping 
sections (𝑃𝑃𝑃𝑃 ), the heat removed at a stage in the rectifying section (𝑄𝑄𝑖𝑖 ), the heat 
removed at a stage in the stripping section (𝑄𝑄𝑗𝑗), the location of a heat integration (𝑌𝑌𝑖𝑖,𝑗𝑗hx), 
and the number of heat integrations (𝑁𝑁hx), respectively. 𝑌𝑌𝑖𝑖,𝑗𝑗hx is an integer variable that 
becomes one if heat integration is realized between stages 𝑖𝑖 and 𝑗𝑗 while it becomes zero 
otherwise. Therefore, the optimization problem can be solved as an MILP problem. 
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The stage-by-stage material balance, thermodynamic relationships, and summation 
restrictions are considered in the process simulation Aspen Plus V11. The iterative 
execution of simulations and optimizations result in the optimal HIDiC structure when 
the convergence criterion in Eq. (2) is met. 

� � �𝑇𝑇𝑖𝑖,𝑠𝑠 − 𝑇𝑇𝑖𝑖,𝑠𝑠−1�
2

𝑖𝑖∈𝑅𝑅𝑅𝑅𝑅𝑅

+ � �𝑇𝑇𝑗𝑗,𝑠𝑠 − 𝑇𝑇𝑗𝑗,𝑠𝑠−1�
2

𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆

≤ (𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁)𝜑𝜑 
(2) 

where 𝑇𝑇 is the temperature of stage 𝑖𝑖 and 𝑗𝑗 at an iteration 𝑠𝑠. 𝑁𝑁𝑁𝑁 and 𝑁𝑁𝑁𝑁 are the number 
of stages in the rectifying and stripping sections of the HIDiC structure, and 𝜑𝜑 is the 
tolerance for the termination criterion, which is a small value (e. g., 0.01). 

4. Case Study: n-butanol/isobutanol separation 
The separation of a close-boiling point mixture of n-butanol and isobutanol studied by 
Liu et al., (2017) is taken as a case study to compare economic and energy criteria for 
the DPTCD, VRC, and HIDiC structures. The key ideas in this comparison are to know 
the true energy-saving potential of DPTCD and to know if HIDiC can outperform 
DPTCD. 

Table 1. shows the parameters used in the optimization problem. 

Parameter Value 

Cooling cost (𝐶𝐶𝑗𝑗cool) [$/GJ] 0.354 

Heating cost (𝐶𝐶𝑖𝑖heat) [$/GJ] 7.720 

Electricity cost (𝐶𝐶elec) [$/GJ] 16.81 

Payback time [yr] 5 

Overall heat transfer coefficient [BTU/h F ft2] 

 Condenser: 

 Heat exchanger / Reboiler: 

 

190 

175 

Big-M parameter (M) [-] 250 

Minimum Temperature difference (∆𝑇𝑇min) [F] 18 

The total annual cost (TAC) was calculated using the Marshall & Swift index for 2020 
(i.e., 2171.6). The TAC was calculated according to Eq. (3) 

min𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑂𝑂𝑂𝑂 ∗ AOH +  
�𝐶𝐶shell + 𝐶𝐶tray + 𝐶𝐶comp + ∑ 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑖𝑖,𝑗𝑗 𝑖𝑖∈𝐻𝐻𝐻𝐻

𝑗𝑗∈𝐶𝐶𝐶𝐶
�

PBP
 

(3) 

where 𝑖𝑖 ∈ 𝐻𝐻𝐻𝐻  is the set of heating streams (𝐻𝐻𝐻𝐻 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∪ 𝐻𝐻𝐻𝐻 ), 𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶  is the set of 
cooling streams (𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝐶𝐶𝐶𝐶), 𝐶𝐶shell , 𝐶𝐶tray , 𝐶𝐶comp , and 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑖𝑖,𝑗𝑗  is the cost of the 
column shell, trays, compressor, and heat exchangers. AOH  and PBP  are the annual 
operation hours (i.e., 8000 h/y) and the payback time (i.e., 5 years), respectively. 
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5. Results and Discussions 
Table 2 shows the results of the conventional distillation column (CD), VRC, DPTCD, 
and HIDiD structures after executing the optimization problem in Section 3. It is worthy 
of keeping in mind that even the solution of the MILP needs to determine the following 
questions: 1) how many heat integrations does the optimal result have, and 2) what is 
the maximum amount of heat integrated at stages. Table 2 shows the simulation and 
optimization results, while Table 3 summarizes the energy and cost savings. 

Table 2. TAC results for the different distillation structures 

 CD* VRC* DPTCD* HIDiC 

Heating [$/y] 542,169 --- --- 23,072  

Cooling [$/y] 25,554  4,187  3,300  3,856  

Electricity [$/y] --- 165,934  137,710  104,147  

Operating Cost [$/y] 567,723  170,120  141,009  131,075  

Condenser [$] 211,959 79,699 55,954 64,231 

Reboiler [$] 456,595 --- --- 42,009 

Heat Exchangers [$] --- 761,662 522,257 656,844 

Column [$] 1,327,953  1,327,953  1,360,239  1,519,093  

Tray [$] 156,973  156,973  133,271 151,423  

Compressor [$] --- 1,903,129  1,633,325  1,298,955  

Equipment Cost [$/y] 2,153,479 4,229,415 3,705,045 3,732,554 

TAC [$/y] 998,419  1,016,003  882,018  877,586  

*Adapted from the simulation results in Liu et al., (2017). 

Table 3. Energy and cost savings comparison for the different distillation structures 

 CD VRC DPTCD HIDiC 

Energy Consumption [kW] 2438.5 935.7 776.5 691.1 

Energy savings [%] 0.0 61.6 68.2 71.7 

TAC savings [%] 0.0 -1.8 11.7 12.1 

The energy consumption was calculated according to Eq. (4) as the summation the 
energy from heating utilities and the electricity used in the compressor 

Energy consumption = ∑ 𝑄𝑄𝑖𝑖,𝑗𝑗hx𝑖𝑖∈𝐻𝐻𝐻𝐻
𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆

+ 2.73𝑊𝑊 (3) 

From the results in Tables 2 and 3, it can be seen that in terms of energy consumption, 
the HIDiC uses less energy because it operates at a compression ratio smaller than that 
of DPTCD (2.0 and 2.6, respectively) despite HIDiC needs steam at the bottom reboiler 
in the stripping section. Although HIDiC needs energy, electricity, and compressor 
costs less than DPTCD, it increases the column, trays, and heat exchangers cost. 
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Therefore, overall, DPTCD and HIDiC have similar TAC, but there is a trade-off 
between energy consumption and equipment cost. This same behavior has been 
presented in previous works when compressors are included in the synthesis and 
optimization of distillation sequences (Cabrera-Ruiz et al., 2012; J. Alcántara-Avila, 
Kano and Hasebe, 2012; J. R. Alcántara-Avila, Kano and Hasebe, 2012). The HIDiC 
structure had one heat integration between stage 9 in the rectifying section and the 
reboiler in the stripping section. 

6. Conclusions 
This work presented a comparison between several distillation structures that can realize 
heat integration between a condenser and reboiler as well as among stages in different 
column sections. When one heat integration was done, the HIDiC structure attained 
energy and cost savings higher than DPTCD. Although the HIDiC and DPTCD can 
have very similar performances, there is a trade-off between these alternatives. 
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Abstract 

Tennessee Eastman process (TEP) is a widely used test benchmark in the field of process 
monitoring and process control. A complete chemical plant is simulated, which can 
provide a large amount of process data as DCS (Distributed Control System), and people 
can introduce various faults artificially as case studies in their research. original TEP 
program was written in FORTRAN. Ricker used f2c (Fortran to C) program to convert 
Fortran code to C code, and wrote a mex function to connect TEP to MATLAB. Users 
can run the TEP process graphically and view the curves of variables. The graphical 
interface of MATLAB/Simulink is easy to use, but it takes a lot of glue code to set up 
TEP's parameters and run simulations in other programming languages. In addition, the 
fault adding logic of TEP is put in the code written in C language, which prevents the 
fault from being added dynamically at the expected time. 

In order to make better use of the TEP process and make it convenient for people to use 
it, a method of calling TEP through python instead of MATLAB is proposed. Through 
the interaction between python's C-API and TEP's C program, all the functions of TEP 
are exported. The stop time of running open-loop simulation is consistent with the result 
of MATLAB, and the relative error between the modified program running results and 
the data generated by the original TEP program with open-loop is less than 10-6. Ricker 
developed a Simplified TEP (S-TEP), and kept only one tank reactor with two phases. In 
the same way, the method of connecting S-TEP with python is proposed. Then the C 
library with python interface is bundled into a python package. This allows users to install 
all programs needed to run S-TEP, and only one python package needs to install through 
the python package manager without configuring the C language compilation 
environment, which greatly facilitates the use of S-TEP. A GUI interface was added to 
the modified S-TEP program to make it easier for people to use.  

Keywords: Process Monitoring; Fault detection; Tennessee Eastman Process; Process 
models; Process simulators. 

1. Introduction 

Modern chemical industry is large in scale and high in complexity, which runs a 
multivariable control system. With the upgrading of chemical processes and the use of 
new reaction equipment, the chemical process has become more and more complex and 
highly nonlinear. Large-scale complex systems will produce a large amount of process 
data. Although more information from the process can be collected, the amount of data 
provided by existing distributed control system (DCS) is quite tremendous, which makes 
it hard for operators or engineers to evaluate the effectiveness of the process only by 
observing process data. Especially when a fault occurs, it is more difficult to find the real 
cause of the fault from overwhelming information provided by DCS and solve it quickly. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50148-2 
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In order to ensure that the process operations meet the performance specifications, faults 
in the process need to be detected, diagnosed and eliminated. These tasks are related to 
process monitoring, more specifically, it is data-driven process monitoring. Benefited 
from proper process monitoring, downtime is minimized, safety of plant operations is 
improved, and production costs is reduced. With the increase of the number of 
instruments in the plant, the amount of data available for monitoring and troubleshooting 
is also increasing. 

Data-driven methods require a large amount of process data, including data under normal 
working conditions and data in case of failure. For the stable operation of the chemical 
process, most of the time is in normal state. Faults only occur in unusual situations, and 
the operator will try to shorten the duration of faults as much as possible. Factories will 
not provide its process data for data security or confidentiality. Therefore, it is difficult to 
extract the fault state data from the actual chemical process.  

Downs and Vogel (1993) presented the Tennessee Eastman Challenge in their paper. This 
process is also known as Tennessee Eastman Process (TEP). TEC is based on a real 
industrial process and consists of a set of FORTRAN subroutines. Running these 
subroutines can obtain instrumental information in a process like DCS. Furthermore, by 
introducing faults manually, we can capture process data in case of faults. TEP has been 
used to research and evaluate many aspects, such as process monitoring algorithms, 
control system design, optimization algorithms. Many authors have used it to demonstrate 
their procedures for the design of control systems (Ricker, 1995; Ricker and Lee, 1995; 
Ricker, 1996; Larsson and Skogestad, 2001). 

Bathelt and Ricker (2015) have studied the underlying computer code of the well-known 
TEP model. A bug was found in the original TEP. The causes of bug are discussed in this 
paper and a solution in terms of a modified code is presented. Furthermore, some 
additional changes are discussed, widening the usability of the simulation model. This 
improvement to the TEP has improved TEP, but the current TEP is still difficult to extend 
programmatically. Martin-Villalba and Guodong Shao (2018) presented the development 
of two different Modelica libraries, TE-process and TE-Simplified. Using Modelica is an 
important attempt to improve the programmability of TEP, which proves that TEP does 
not completely rely on MATLAB. However, the modelling language used by Modelica 
is not very popular, and there are not many packages related to statistical algorithms, so 
we tried to use other languages to replace MATLAB, and after some comparison we 
finally chose python to encapsulate the TEP code. 

2. Different versions of TEP 

Ignoring the control part and considering only the core process simulation part, there are 
many versions of the TEP. The most important versions are: the original TEP, the 
simplified version of the TEP and the latest version of the TEP. 

2.1. Original TEP 
The TEP was created by the Eastman Chemical Company to provide a realistic industrial 
process for evaluating process control and monitoring methods. The testing process is 
based on a simulation of an actual industrial process, in which components, dynamics and 
operating conditions are modified due to patent reasons. This process is well suited for a 
wide variety of studies including both plant-wide control and multivariable control 
problems. FORTRAN code representing the process is available from Downs and Vogel 
(1993), but they have chosen not to publish the model equations. Instead, they provide a 
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flowsheet, a steady-state material balance, and a qualitative description of the key process 
characteristics. The process is nonlinear and open-loop unstable. Without control, it 
reaches shutdown limits within an hour, even for very small disturbances. 

All codes are written in FORTRAN 77 in a fixed format. According to the notes in the 
source code, MEX interface only supports the MATLAB version 3.x and 4.x, and cannot 
be used with the new version of MATLAB at present. Only FORTRAN source files and 
MEX interface codes are provided, and no control codes of MATLAB are provided. All 
symbols in the FORTRAN code are capitalized, and there is no space or indentation 
between statements. This version of the code is the original TEC code, and is often used 
as the basis for improvements in other versions, but it can neither be compiled nor read 
because of its long history and incomplete code. Therefore, papers will use the dataset 
that comes with the original TEP directly instead of running the program to generate a 
new dataset. If not specified in papers, the TEP dataset usually refers to the dataset 
accompanying this version. 

2.2. Simplified TEP 
Ricker (1995) proposed the Simplified Tennessee Eastman Challenge (S-TEP) which is 
a simplification of the TEP model, with only one process unit and eight state variables. 
The process consists of a single vessel that represents a combination of the reactor and 
separation system in the original TE process. The process unit has two input flows and 
two output flow. The S-TEP model is also a well-known benchmark process. It is a multi-
input multi-output, nonlinear system, open-loop unstable, and contains fast and slow 
dynamics. 

FORTRAN77 with fixed format is used in the code of process simulation. The control 
part of the code is written by MATLAB, but only supports MATLAB version 3.x or 4.x. 
Therefore, the S-TEP code needs to be updated to use. 

2.3. The Newest TEP 
With the update of MATLAB and the improvement of the complexity of TEP control 
system, a bug was found in the original process simulation code: when using different 
integration methods or different integration steps, the results of process simulation are 
inconsistent. After detailed debugging, the problem lies in the generation of random 
numbers. Different integrators need different convergence times, which leads to different 
calls of random number generators, which makes the generated random numbers different, 
and finally leads to inconsistent process simulation results. Bathelt and Ricker (2015) 
implemented a new random number generation method to fix this problem. Furthermore, 
some additional changes are discussed, widening the usability of the simulation model. 

The core process simulation part is written in C language, and the control part is written 
in MATLAB/Simulink. The tested code can run on MATLAB 2014~2020. C language 
can be recompiled by MSVC 2017 compiler. The work in this article is also based on this 
version. 

2.4. Possible way to improve TEP 
At present, TEP mainly uses FORTRAN, C and MATLAB. The core part of process 
simulation is written in FORTRAN and C languages, which runs well and is rarely 
modified. Most of the modifications are in the MATLAB. MATLAB is used to call the 
process simulation, integrate the process variables and implement control system. Using 
TEP to generate data requires using graphical user interface, adjusting parameters, setting 
the running time length, then clicking the Run button, waiting for the simulation to be 
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completed, and finally manually exporting the required data sets. If you need data for 
multiple faults, you need to manually repeat the above steps several times. Using 
MATLAB script some of the above steps can be completed automatically to a certain 
extent, but the copyright and toolbox package of MATLAB somehow limited TEP 
revision. Python or R is usually used in statistical study of data processing. Among the 
above languages, Python has the most mature data science ecology, and many data-driven 
algorithms can be used directly. Therefore, we chose Python as a substitute for MATLAB, 
so that data generation and post-processing can be carried out in one language. The 
advantage of doing this is to improve the usability of TEP, and to make TEP more widely 
used. 

3. Connect TEP to Python 

3.1. System Architecture 
The architecture of the 2015 modified version of TEP is shown on the left side of Figure 
1. The core module is written in C and the interface is exported for MATLAB through a 
wrapper of S-functions. The control logic is written in MATLAB, and the input of 
parameters and the output of results are performed in MATALB.  

Figure 1 Original and modified TEP architecture diagram 

Such an architecture involves encapsulating the details of the process simulation, and the 
control logic can be modified in MATALB, which is very convenient for researchers in 
the control field. However, for the field of process monitoring, the control methods of the 
system are generally not modified, and researchers are more concerned with the 
introduction of faults, the superposition of noise, and the input of parameters and output 
of results. The generation and export of the dataset is performed manually in MATLAB's 
GUI, and the processing of the data and application of the algorithm is performed in 
python. These can be partially automated in MATLAB, and a more desirable situation 
would be to use one language to perform these operations as well.  

To solve the problem of interaction between TEP and other languages, we propose to use 
python to call the core modules directly, without MATLAB. The overall architecture is 
shown on the right side of the figure, where the python wrapper script calls the modules 
of TEP by using C-API directly, and the control logic is moved to the python script. We 
use the ctypes module in python standard library to wrap constants, variables, and 
structures from C code into python, and then define the prototypes of the functions in 
python. Once the correct C compiled shared library is loaded, the corresponding C 
functions can be called in python. 
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3.2. Precision Comparison 
To verify that the accuracy of the TEP process simulation does not degrade after 
switching from MATLAB to python. We used the open-loop TEP model without 
control system as a test, compared the stopping time of the original TEP and the python 
wrapped TEP, and calculated the deviation of each process variable. Additional noise 
was added to the output of the TEP, so we calculated the relative error of the 50 state 
variables in the TEP. As shown in Figure 2, the relative errors of component A in vapor 
phase of reactor are within acceptable limits (less than 10-6). This indicates that the 
same accuracy can be achieved by using python to call the TEP core module directly as 
by using MATLAB to call the TEP. 

Figure 2 Errors in TEP.py vs. TEP-2015 

3.3. GUI for S-TEP 
The TEP process is complex and requires many variables to be wrapped. After verifying 
the feasibility of calling TEP in python, we used the S-TEP process as an example, 
wrapped the code using the same method, and created a graphical user interface (GUI) 
for ease of use. The GUI for model parameter setting is shown in Figure 3. 

Figure 3 GUI for S-TEP.py 
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4. Conclusions 

The existing TEP still can be further improved, such as the need to compile before use, 
the use of commercial software MATLAB/Simulink, the lack of standardization of 
process, and the weak repeatability of process simulation, etc. This paper proposes a 
method to connect C code in python through C-API, and successfully use python to call 
the core code of TEP directly. And it achieves the same accuracy as the original TEP in 
the open-loop test without control system. A GUI interface of the modified S-TEP 
program has been added to make it easier for people to use. Then a package of S-TEP 
process has been made by using modern scripting language Python and new object-
oriented programming technology. A standardized S-TEP can promote the use of S-TEP, 
and make all kinds of research based on S-TEP comparable.  

Next step, the original control logic of S-TEP will be transplanted into python, which will 
prove that python can substitute for Simulink. When the output accuracy of the python S-
TEP program with control logic reaches an acceptable range, and the bundled S-TEP 
python module will be uploaded to the python package hosting website for everyone to 
use. 
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Abstract 

Lube-oil industries use a complex network of pipelines for transporting thousands of 

high-value finished products successively in batches throughout the production plant. 

Each lube-oil is unique in regard to its properties, and its integrity is extremely crucial. 

Therefore, during a changeover operation, the lines are flushed using a high-value 

finished product of the current batch that is desired to be processed. The existing flushing 

operation typically rely on a trial-and-error procedure, resulting in the downgrading of 

the finished product. Moreover, it leads to enormous economic losses to the industries. In 

response to this problem, this work presents an approach for modeling and optimizing the 

flushing operation by employing first-principles and optimal control strategies. We model 

the flushing operation by integrating the Kendall and Monroe viscosity blending 

equations with time-dependent component balance equations for lube-oil pipelines. The 

models developed are validated against the data collected from well-designed flush-study 

experiments, and a good agreement is observed. We generate theoretical optimal flowrate 

profiles and provide insights for designing and controlling the flushing operation.  

Keywords: lube-oil pipelines, flushing, optimization, optimal control 

1. Introduction 

In the lube-oil process industries, pipelines are considered the safest and most cost-

effective mode of transportation. Therefore, complex pipeline networks are widely used 

for the transfer of lube-oils during various phases of manufacturing. A single network of 

pipelines is used for processing over thousands of different product blends. Product 

quality is extremely crucial to the lube-oil industries because even the slightest amount 

of contamination can reduce their market value and desired functionality. Hence, to 

ensure the integrity of every product and avoid contamination due to product mixing, 

pipelines are flushed between every changeover operation. The traditional flushing 

techniques involve the use of a finished product of the new batch for cleaning the residual 

oil from the previous batch. A finished product is used for flushing because using a 

different cleaner such as water or other oil-based fluid adds further contamination 

possibilities. Hence the existing flushing technique leads to the downgrading of the high-

value finished product, is labor-intensive, primarily depends on a trial-and-error basis, 

and adds to long operational downtime. Moreover, it leads to economic losses exceeding 

over $1M/year and renders the product commercially unviable in the worst-case scenario. 

However, by integrating chemical engineering principles with process optimization 

techniques, the operation can be conducted more efficiently (Cafaro et al. 2015). The 

optimized operation could save the industry over a million dollars per annum as well as 

minimize material and energy consumption footprint. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50149-4 
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Product composition must be within specifications required by the purchaser, as the 

systems in which these products are used (automotive engines, turbines, gears etc.) are 

extremely sensitive to contamination. During transportation of lube-oil in a batch 

changeover, a formerly processed oil mixes with the oil that is desired to be processed 

next. It results in the creation of a mixed oil at the interface of the two batches. The mixed 

oil does not match in specification to either of the two batches, hence it is classified as 

downgraded oil/commingled oil, and is unsuitable for the intended end-use consumer. 

The knowledge of physical property of the mixture is used as a quality indicator to predict 

whether the desired purity level of the current product batch is attained. One of the most 

important physical property of lube oils is viscosity. In commercial lube oil industries, 

samples are collected at the end of a flush period and tested for their viscosity to confirm 

the quality specifications prior to final packaging. This is a labour-intensive test, and 

results in operational downtime, which can be minimized via predictive modeling and 

optimization for effective flushing operation.  

2. Optimal Control Problems and Applications 

The flushing operation involves controlling a dynamic system, i.e., the system that 

evolves with time. Optimal control theory is a branch of mathematics that finds optimal 

ways to control dynamic systems (Sethi 2019). Here, the system refers to the pipeline 

flushing operation. The way of controlling the state of our system is through the oil flow 

rate in the flushing operation. Hence, our control variable is the flush oil flow rate. We 

achieve the theoretical optimal flow rate profile and report insights for designing and 

controlling the flushing operation. Optimal control deals with the properties of control 

functions, such that these functions, when inserted in differential equations, give a 

solution that minimizes or maximizes a performance index. In engineering applications, 

the control function is an intended outcome denoted in a mathematical form. The 

differential equations describe the dynamic response of the mechanism to be controlled 

and depend on the control strategy employed. The evaluation of the time-dependent 

operating profiles, in terms of the control variable, is used for optimizing the process 

performance (Yenkie and Diwekar 2012). In this work, our developed optimal control 

problem for predicting the optimal flushing policies is solved by using the Pontryagin’s 

maximum principle. 

3. Viscosity Blending Equations 

To model the flushing operation, it is important to calculate the viscosity of the mixture 

of the two oils. Viscosity blending equations or mixing rules are widely used in the 

lubricant industries to calculate the viscosity of the mixture of lube oils (Roegiers and 

Zhmud 2011). One of the best-known viscosity blending equations was proposed by 

Kendall and Monroe (1917) (represented by equation (1)). It relies on the power law and 

calculates blend viscosity as the cubic-root average of the component viscosities. This 

equation also gives us an understanding of the mass fraction of the individual components 

of the blend. Through this equation, we would predict how the blend viscosity attains the 

desired specifications of the new oil with time. 

µ𝐴𝐵
1/3

 =   𝑥𝐴 µ𝐴
1/3

+ 𝑥𝐵 µ𝐵
1/3

 (1) 

where: µ𝐴𝐵
 - viscosity of blend A and B; µ𝐴

  and µ𝐵
 - viscosities of lubricants A and B; 

𝑥𝐴 and 𝑥𝐵 - mass fractions of lubricants A and B 
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Flushing Operations  

Based on these fundamentals, we model the flushing operation by combining the Kendall-

Monroe equation with the component balance equations for the lube oil transportation 

pipelines. The developed models were compared against the experimental data, and a 

good agreement was observed. The comparison graphs for two different products are 

shown in Figure 1. A comparison for thirty such changeover operations was analysed. 

This confirms that our developed models hold value in representing the lube oil pipeline 

system. 

4. Modeling the Flushing Operation 

Based on the fundamental first-principles, the component balance equations for the lube 

oil transportation pipelines are represented by equations (2) and (3). The assumptions 

made while developing the component balance equations are as follows: The densities of 

the lube oil A & B is approximately the same. Furthermore, prior to flushing the pipeline 

with lube oil B, it is completely filled with lube oil A. 

𝑑𝑥𝐴

𝑑𝑡
 =   −

𝑥𝐴
 𝑄

     𝐴𝐶 𝐿
 (2) 

𝑑𝑥𝐵

𝑑𝑡
 =        

𝑥𝐴
 𝑄

     𝐴𝐶 𝐿
 (3) 

where: Q- volumetric flowrate of lubricant B; 𝐴𝐶 - cross-sectional area; 𝐿- pipe length 

 

 

5. Solution Methodology 

Our objective is to have the pipeline completely free of the old lube oil A and just filled 

with the pure lube oil B. Mathematically, our objective can be formulated as minimization 

of the difference between the viscosity of the blend (time-dependent) and the viscosity of 

lube oil B (constant) at the final flush time. In other terms, the objective is to maximize 

the negative of the difference in viscosities of the blend and the lube oil B, as shown in 

equation (4).  

Max J  =   −[µ𝐴𝐵
  (𝑡𝑓𝑖𝑛𝑎𝑙) − µB]2 (4) 

The state of our system is controlled through the flow rate of lube oil B. Hence, the 

variable 𝑄 represents the control variable of the system. The process performance is 

determined by attaining the desired viscosity of lube oil B. Given the values of the state 

variables 𝑥𝑖 [𝑤ℎ𝑒𝑟𝑒 𝑥𝑖  = (𝑥A, 𝑥B, µ𝐴𝐵
 )] and the control variable 𝑄 at time 𝑡, the 

differential equations (2), (3), and (5) specify the instantaneous rate of change in the state 

variables. Equation (5) is obtained by differentiating equation (1) w.r.t time and 

substituting equation (2) and (3) in it. 

Figure 1. Validation of First Principle Mathematical Models against Experimental Data 
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𝑑µ𝐴𝐵
  

𝑑𝑡
 =   3µB

2/3
𝑥A 

3 𝑄

     𝐴𝐶 𝐿
 [1 - µA

1/3
] + 6𝑥A

2𝑥B 
𝑄

     𝐴𝐶 𝐿
 [µA

1/3
µB

2/3
−  µA

2/3
µB

1/3
] + 

3µB
2/3

𝑥A 𝑥B 
𝑄

     𝐴𝐶 𝐿
 [µB

1/3
𝑥B −  2µA

1/3
] 

        

(5) 

The application of the Pontryagin’s maximum principle involves the introduction of 

additional variables known as adjoint variables and reformulation of the objective as a 

Hamiltonian function. Three adjoint variables ‘𝑧𝑖’, corresponding to each of the state 

variables result in three more adjoint differential equations as shown in equation (7), and 

the Hamiltonian must satisfy equation (8). The initial values of the state, and control 

variable, and model parameters are: 𝑥A= 1, 𝑥B= 0, µ𝐴𝐵
  = 12cSt, 𝑄 = 0.007 (m3/s), µA

 = 12 

cSt, µB
 = 8.7cSt, 𝐴𝐶 = 0.019m2, 𝐿 = 6.1m 

𝑑𝑥𝑖

𝑑𝑡
=   𝑓 (𝑥𝑖 , 𝑄, 𝑡) (6) 

𝑑𝑧𝑖

𝑑𝑡
=  − ∑ 𝑧𝑗

3

𝑗=1

𝜕𝑓𝑗

𝜕𝑥𝑖

 (7) 

H =  ∑ 𝑧𝑗

3

𝑖=1
𝑓 (𝑥𝑖 , 𝑄, 𝑡) (8) 

The system results in a two-point boundary value problem since we have initial conditions 

for the state variables, 𝑥𝑖(𝑡0)= [1 0 µA], and final conditions for the adjoint variables, 

𝑧𝑖(𝑡𝑓)= [0 0 -1]. Furthermore, the total flush time is 60 seconds. For evaluating the 

Hamiltonian derivative, we use an analytical method proposed by Benavides and Diwekar 

(2013), which introduces an additional variable 𝜃𝑖  corresponding to each state variable 

and Ф 𝑖  corresponding to each adjoint variable.  

𝜃𝑖  = 
𝑑𝑥𝑖

𝑑𝑄
 & Ф 𝑖  =  

𝑑𝑧𝑖

𝑑𝑄
  (9) 

𝑑(𝑑𝑥𝑖 𝑑𝑡⁄  )

𝑑𝑄
  =  

𝑑(𝑑𝑥𝑖 𝑑𝑄⁄  )

𝑑𝑡
  =   

𝑑𝜃𝑖  

𝑑𝑡
 (10) 

𝑑(𝑑𝑧𝑖 𝑑𝑡⁄  )

𝑑𝑄
  =  

𝑑(𝑑𝑧𝑖 𝑑𝑄⁄  )

𝑑𝑡
  =   

𝑑Ф𝑖  

𝑑𝑡
 (11) 

𝑑𝐻

𝑑𝑄
 = ∑ (

𝑑𝐻

𝑑𝑥𝑖
)3

𝑖=1 (
𝑑𝑥𝑖

𝑑𝑄
) + ∑ (

𝑑𝐻

𝑑𝑧𝑖
)3

𝑖=1 (
𝑑𝑧𝑖

𝑑𝑄
) 

(12) 

The solution algorithm shown in Figure 2 starts with the initial guess of flowrate 𝑄(t). 

Next, state equations are solved for the interval of 𝑡0 to 𝑡𝑓 using forward integration then, 

the adjoint equations are solved using backward integration. Next, the optimal control 

variable 𝑄(t) is obtained by finding the extremum of the Hamiltonian at each time step, 

using the optimality condition of [|dH/d𝑄 |] < tolerance. If the optimality condition is not 

satisfied, the flowrate 𝑄(t) is updated using the gradient, such that the updated flowrate 

profile improves the objective function.  
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6 . Results and Discussions 

The profiles for the derivative of Hamiltonian with respect to the control variable ‘Q’ is 

shown in Figure 4(a). It can be seen that the value of dH/d𝑄 decreases with every iteration. 

The final iteration value lies within the given tolerance limit hence, we conclude the 

flowrate to be optimal and the corresponding flowrate profile ‘Q (flow)’ is shown in 

Figure 4(b). The variation of the state variables with respect to time is shown in Figure 5. 

The desired viscosity value for the lube oil B was 8.9 cSt and was attained at 

approximately 40 s. 

 

 

 

 

 

 

 

 

 

 

 

S top 

[ | dH / d𝑸|]<  tolerance 

S T ART  

Assume initial flowrate v alue  𝑸 =  0 .0 0 7  ( m3/ s)  

S olv e eq uations 
𝒅𝒙𝒊

𝒅𝒕
 =  𝒇(𝒙𝒊, 𝑸, 𝒕) from 𝒕𝟎 to 𝒕𝒇 using forward integration 

S olv e eq uations 
𝒅𝒛𝒊

𝒅𝒕
 =  𝒇(𝒙𝒊, 𝒛𝒊, 𝑸, 𝒕) from 𝒕𝟎 to 𝒕𝒇 using back ward integration 

Compute the v alues of  
𝒅𝑯

𝒅𝑸
 = ∑ (

𝒅𝑯

𝒅𝒙𝒊
)𝟑

𝒊=𝟏 (
𝒅𝒙𝒊

𝒅𝑸
) + ∑ (

𝒅𝑯

𝒅𝒛𝒊
)𝟑

𝒊=𝟏 (
𝒅𝒛𝒊

𝒅𝑸
) 

Y es 

N o 
𝑸 ( t) new =  𝑸 ( t) old +  M 

𝒅𝑯 

𝒅𝑸
(𝒕) 

Figure 4. (a) Profiles of Hamiltonian Gradients for All Iterations (b) Profile of Control 

Variable (Flowrate) for Final Iteration 

Figure 3. Flowchart of Solution Technique Using Maximum Principle Approach 
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7. Conclusion 

In this work, the flushing operation of the lube-oil transportation pipelines was modelled 

by integrating the Kendall-Monroe mixing rule with component balance equations. 

Optimal control theory was employed in the form of the Pontryagin’s maximum principle 

for solving the optimal flushing flowrate prediction problem. The results indicated that 

the optimal flushing time was 40 seconds with a modified flowrate profile. Thus, our 

solution approach will provide a platform for strategically optimizing the flushing 

operation in the lube-oil transportation pipelines and will eliminate long operational 

downtimes, product downgrade, and economic losses. 
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Abstract  
 

Distributed ammonia production has received a lot of attention as a means of converting 

stranded fossil resources to a valuable product or for energy storage. However, little 

attention is given to the potentially problematic pairing of a process sensitive to 

disturbances with a feedstock variable in rate and composition. The purpose of this work 

is to explore the stability of a small-scale ammonia production system and thus the 

viability of distributed ammonia production with processes and chemistries similar to 

those of large-scale plants. A state-of-the-art large-scale ammonia production system is 

modelled in Aspen Plus® and converted to a flow driven model in Aspen Dynamics® to 

serve as a reference model. The reference model is then scaled down to 10% of its original 

capacity using constant length to diameter ratios for the reactors, and both models are 

subjected to disturbances in reactor temperature, reactor feed flow rate, and natural gas 

feed. In the small-scale model, a 5% pulse in the natural gas flow rate is shown to cause 

100 °C swings in reactor temperature and 550 kmol/h swings in reactor flow rate, while 

the reference model remains stable. We conclude with an outlook of the need of 

decoupled ammonia synthesis pathways that allow for independent control of the extent 

of reactions and therefore their heat generation or consumption. 

Keywords: Distributed Chemical Manufacturing, Ammonia Production, Haber-Bosch 

1. Introduction 

In recent years, there has been an increasing interest in the concept of using distributed 

ammonia production systems to convert stranded resources such as wind, biomass, and 

natural gas into ammonia-based fertilizers for local markets (Arora et al., 2016). Using 

stranded resources as a feedstock has the advantages of proximity to local markets, low 

acquisition costs and, in the case of wind, being available in a virtually infinite supply 

(Allman and Daoutidis, 2016). However, commingled with these advantages are 

disadvantages of the variable quality, intermittency, and volatility associated with 

distributed resources. While some chemical manufacturing processes are resilient enough 

to withstand volatile feedstocks, there is sufficient evidence to suggest that ammonia 

production processes may not be robust and stable to handle variability and disturbances 

in the process boundaries (Morud and Skogestad, 1998).  
  
Distributed ammonia production proposals generally attempt to replicate the Haber-

Bosch process at small scale, fed by a stranded resource, despite evidence that small 

changes in the Haber-Bosch process conditions can lead to system failures (Morud and 

Skogestad, 1998; Gullberg, 2018). Although considerable attention is being given to 

assessing the economic feasibility (Arora et al., 2016), optimal location (Allman and 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50150-0 
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Daoutidis, 2016), and coproduction options for distributed ammonia production systems 

(Andersson and Lundgren, 2014), little is being done to assess the difficulty in pairing of 

a temperamental process with a sporadic feedstock at a small scale.  
 
Simulations are a powerful tool for assessing the feasibility of a proposed process and are 

the primary method used to evaluate distributed ammonia production proposals. 

Ammonia synthesis reactors exhibit multiple steady states and may move between steady 

states if perturbed (Morud and Skogestad, 1998), thus necessitating the need for dynamic 

as well as steady state simulations to accurately assess the feasibility of new process 

concepts. Nevertheless, the literature is a medley of distributed ammonia production 

proposals done at steady state without regard for process dynamics, stability and 

robustness to uncertainty. Arora et al. (2016) and Andersson and Lundgren (2014) 

investigated the techno-economic potential of a distributed ammonia production process 

fed by biomass at steady state using reactors modelled as Gibbs reactors, without studying 

the potential for process instabilities. Conversely, Gullberg (2018) studied the instability 

of a small-scale ammonia reactor in a steady state and dynamic simulation and showed 

that small changes in reactor feed temperature, pressure, or flow can induce oscillatory 

behavior and instability. Gullberg’s study concluded with a control structure to reduce 

the oscillatory behavior brought on by process changes; however, the reactor was studied 

in isolation and the effects of feedstock changes upstream of the reactor were not 

evaluated. To date, scant attention has been paid to the potential of process instability 

jeopardizing distributed ammonia production proposals; thus, motivating this study into 

the effects of feedstock variation on the process stability of a small-scale ammonia 

production system.  
  
In this study, a state-of-the-art ammonia production system fed by stranded natural gas 

was modelled in Aspen Plus® with the capacity of 1300 tNH3/d and validated against 

industrial data to serve as a reference model. The reference model was then scaled down 

to 130 tNH3/d using standard scaling principles for the reactors and heat exchangers. Both 

models were then converted to dynamic models in Aspen Dynamics® and subjected to 

disturbances in reactor feed temperature, reactor feed flow and natural gas flow.  The 

study concludes with a stability comparison at each scale.  

2. Methodology 

2.1. Model Description 

Figure 1 shows the block diagram of the model used in this work segmented into the 

following three sections: synthesis gas generation, gas purification, and ammonia 

synthesis. Unit operations in the synthesis gas generation and gas purification sections of 

the model were adapted from the ammonia plant model (Aspen Technology, 2008) and 

amine absorber model (Aspen Technology, 2013) included in the Aspen Plus® software 

examples respectively. The ammonia synthesis model was adapted from Morud and 

Skogestad (1998) using a kinetic model for a modern catalyst, and a 3-bed adiabatic plug 

flow reactor system with intermediate quench. The pressure drop across each bed is 

calculated by the Ergun equation and heat transfer to the catalyst is allowed with a catalyst 

heat capacity of 1100 J/kg-K and bulk density of 2200 kg/m3.  
 
The process modelled begins with the combustion of a split stream of natural gas to 

produce steam and preheat the feed to the primary reformer to 700 °C.  The primary 
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reformer is fed with a steam-to-carbon ratio of 3/1 at 2.5 MPa to steam-reform methane 

and produce hydrogen. The products of the primary reformer are sent to the secondary 

reformer where air is introduced to combust natural gas in an autothermal reformer 

design. The products of the secondary reformer are then cooled to 450 °C using the 

process feed water before entering the water gas shift reactors (high temperature shift, 

HTS and low temperature shift, LTS). Next, the process gas is fed to the gas purification 

section, where CO2 is removed using an amine absorber adapted from the model 

developed by Aspen Technology (2013). Downstream the absorber, the process gas is 

passed through the methanator to remove unreacted CO and CO2 from the process stream 

and convert it to CH4 before being compressed to 21 MPa and fed to the ammonia reactor 

loop at a H2/N2 ratio of 3/1 at 250 °C. Finally, the products of the ammonia reactor are 

cooled to -10 °C to recover ammonia as a liquid product and the unreacted H2 and N2 is 

recycled to the reactor to increase NH3 yield.  
 

 
 Figure 1. Ammonia production flow sheet.  

2.2. Model Validation and Downscaling 

The reference model was validated in three steps: first, individual components were 

validated against literature data; then, the ammonia loop was validated in a dynamic 

environment; and finally, the full model was validated against data from similar-sized 

plants. After the reference model was validated, it was scaled down from 1300 tNH3/d to 

130 tNH3/d using fixed length to diameter ratios for the major reactors. Heat exchangers 

used in the reference model were scaled to 10 % of their heat exchange area in the small-

scale model, and columns were scaled using fixed height to diameter ratios.  

2.3. Dynamic Simulations and Disturbance Testing 

The steady state reference model and small-scale model were converted to flow driven 

dynamic models in Aspen Dynamics®. The amine absorbers of each model were replaced 

with separators of equivalent CO2 removal efficiency, due to the lack of support for rate-

based absorption in Aspen Dynamics®. Additional modifications were made to heat 

exchangers and valves used in the model according to Aspen Plus® recommendations to 

improve model robustness. 

 

The following studies were performed on the open-loop of the models in Aspen 

Dynamics®: (a) Haber-Bosch (HB) reactor stability analysis; (b) and full plant stability 

analysis. In the HB reactor stability analysis, HB reactors were studied in isolation to 

explore the effect of size on their stability. Each HB reactor was fed with a feed of H2, 

N2, and NH3 at a mole fraction of 0.73, 0.23, and 0.04, respectively, at 250 °C and 20.0 

MPa. The following disturbances were introduced; (a) a reactor feed temperature pulse 

of +20 °C and -20 °C for 1h; (b) a reactor feed flow pulse of +23.1 % and -23.1 % for 1 

h; and (c) a reactor feed flow noise modelled as a sine wave with amplitude 23.1 % and 
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a period of 30 minutes for 8 h. In the full plant stability analysis, the HB reactor stability 

was examined in response to a +5 % bump in natural gas flow to the ammonia process.  

3. Results and Discussion 

3.1. Model Validation 

A summary of the model tuning and validation is presented in Table 1, in terms of reactor 

outlet composition of the primary reformer (PR), the high temperature shift reactor 

(HTS), the methanator (MTH), and the ammonia reactor (AM) against their respective 

reference values, marked as Ref. Specifically, the PR outlet was compared to the data of 

an industrial primary reformer (Tran et al., 2017), the HTS was compared to data by 

Fabian et al. (2020), the MTH was compared to data by Er-Rbib and Bouallou (2014), 

and the ammonia reactor outlet was compared with the industrial plant data provided in 

Appl (2011). Overall, each process component was tuned to be in excellent agreement 

with literature data. 
  
Table 1: Component validation results. 

  CH4 H2 CO CO2 H2O   CH4 H2 N2 NH3 Ar 

PR 3.7 45 5.7 7.6 37.6 MTH 13 25 - - 49.9 

Ref 3.8 47 5.7 8.8 34.3 Ref 12 24.8 - - 50.5 

HTS - 34 7.1 26.9 31.7 AM 5 57 18 19 1 

Ref - 35 6.5 27.4 31.5 Ref 6 56 18 15 2 

 

3.2. Disturbance Testing 

The Haber-Bosch (HB) reactors of the reference model and small-scale model were 

subjected to disturbances in feed temperature and flow rate, and an excerpt of disturbance 

and response plots is shown in Figure 2. First, the HB reactors were subjected to a -20 °C 

pulse in reactor feed temperature, which resulted in limit cycle behavior in both models 

in agreement with the literature (Morud and Skogestad, 1998; Gullberg, 2018) shown in 

Figure 2(a) and Figure 2(b) for the reference model and small-scale model respectively. 

After the pulse, the reference model returned to steady state while the small-scale model 

sustained oscillations of 10 °C for over 30 simulated hours. Next, the HB reactors were 

subjected to a +20 °C pulse in reactor feed temperature and a -23.1 % reduction in reactor 

feed flow rate, where no process instabilities were observed in agreement with Gullberg 

(2018). Thereafter, the HB reactors were subjected to a +23.1 % pulse in reactor feed flow 

rate, which resulted in reaction extinction in both models, as evident by the rapid drop in 

reactor outlet temperature shown in Figure 2(c) and Figure 2(d) for the reference model 

and small-scale model, respectively. The immediate increase in flow rate to the system 

began to induce the limit cycle behavior shown in Figure 2(c) and Figure 2(d), however 

the sustained increase in flow rate resulted in a decrease in reactor feed temperature 

beyond limit cycle to reactor extinction. Lastly, the HB reactors were subjected to a 

sinusoidal disturbance in feed flow rate, which resulted in sustained oscillations of 7 °C 

in the reference model and reaction extinction in the small-scale model. 

 

In testing the full plant model at different scales, a +5 % bump in natural gas flow rate 

resulted in a HB reactor outlet temperature decrease of 10 °C in the reference model, 

shown in Figure 2(e), and large oscillations in the HB reactor of the small-scale model, 

L. Burrows and G. Bollas 



 

shown in Figure 2(f). In response to the +5 % bump in natural gas flow rate, the HB 

reactor outlet temperature of the small-scale model oscillated within 20-100 °C for over 

20 simulated hours, with a corresponding flow rate oscillation between 100-550 kmol/h. 

The precipitous changes experienced by the small-scale model could plausibly result in 

system failure similar to those reported by Morud and Skogestad (1998). 
 

 
Figure 2. Disturbance and response plots for: a -20 °C pulse in HB reactor feed in the 

reference model (a), and small-scale model (b); a +23.1 % pulse in HB reactor flow in the 

reference model (c), and small-scale model (d); and a +5 % bump in natural gas flow to 

the reference model (e), and small-scale model showing the response in HB reactor outlet. 

 

In previous studies, it has been shown that decreasing the HB reactor feed temperature 

can lead to limit cycle behavior (Morud and Skogestad, 1998), in this study we show that 

an increase in natural gas flow rate to the production plant can also lead to such behavior, 

seen in Figure 2(f). Evidently, the behavior shown in Figure 2(f) is also due to a reduction 

in HB reactor feed temperature. As the stream of higher flow rate enters the preheater of 

the HB reactor, it exchanges heat with the smaller reactor outlet flow, and is not 

sufficiently heated to the desired operating temperature. Thereafter, the decreased inlet 

temperature increases the reaction rate of the forward exothermic reaction, which in turn 

increases the reactor bed temperature, until the reverse endothermic reaction dominates, 

and the reactor bed temperature is decreased. As the reactor beds cycle between the 

forward exothermic reaction and the reverse endothermic reaction of the Haber-Bosch 

process, the effects are transferred through the reactor by the intermediate quenches and 

preheater, creating a feedback loop of snowballing effects (Morud and Skogestad, 1998).  

Comparison of ammonia synthesis plants of different scale with a
 dynamic model  
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Ammonia synthesis reactors operate with a small margin of stability, which this study 

suggests decreases with system size. To improve ammonia production stability at small 

scale the following could be explored: (a) a reactor design with no intermediate quenches 

or heat integration, thus eliminating the ability for snowball effects to permeate through 

the system at the expense of ammonia yield and potentially economic feasibility; (b) 

advanced control structures such as those proposed by Gullberg (2018) or Araújo and 

Skogestad (2008); and (c) a chemical looping reactor (Burrows et al., 2021), to decouple 

ammonia synthesis and eliminate the potential of the exothermic forward reaction 

competing with the endothermic reverse reaction. 

4. Conclusion 

In this study, ammonia production stability was explored at different scales to assess the 

impact of stranded resource variability on small-scale ammonia production. A state-of 

the-art ammonia production process was modelled, scaled down and subjected to 

disturbances in reactor feed temperature, flow rate and natural gas feed to the process. It 

was found that the reference model is more robust than the small-scale model, when 

subjected to the same disturbances. Interestingly, after only a 5% increase in natural gas 

flow rate, the small-scale model exhibited large oscillations in the ammonia reactor 

temperature and flow, whereas the reference model remained stable. Future distributed 

ammonia production work should focus on improving the stability of the ammonia 

synthesis reactor by: reducing the ability of large oscillations to permeate through the 

reactor, employing advanced controls, or decoupling the ammonia synthesis reaction 

using intermediates that assist with N2 or H2 fixations, such as those in chemical looping. 
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Abstract 
In the present study, we investigate a new strategy for design of modular, energy-
efficient green ammonia production system, which is equipped with a reactor system 
utilizing novel Ru-based catalyst and novel heat management. In order to maximize the 
performance of the reactor, which employs two stages consisting of Fe-based (first 
stage) and the new Ru-based (second stage) catalysts, we propose a split feed method 
for main feed gas, of which a portion of the feed gas serves as quench gas at inlet of the 
second stage. Through sensitivity analysis, we demonstrate that split feed method for 
nitrogen gas could achieve higher process efficiency than other feed methods. 

Keywords: Process Synthesis; Green ammonia; Process simulation; Optimization. 

1. Introduction 
To realize the net-zero emission of carbon dioxide by 2050, a supply chain of green 
ammonia (NH3) needs to be established. A key component of such supply chain would 
be modularized, decentralized, small- and medium-scale plant for production of NH3 
(10-100 ton-NH3/day) from renewable-derived hydrogen. It is necessary to overcome 
some key problems, namely high specific energy consumption, harsh operating 
condition, and slow response towards rapidly-fluctuating operating parameters. These 
challenges have to be addressed with development of new catalysts, as well as novel 
process design tailored to realize their potentials. 

Ruthenium (Ru) catalysts have been widely studied and utilized in industrial scale due 
to its high activity under milder operating temperature (~400 oC) and pressure (<12 
MPa). In addition, Ru-based catalysts are considered to be superior to the start-up 
performance in comparison with conventional iron-based catalysts. On the other hand, 
hydrogen poisoning has been identified as major obstacle for application of Ru-based 
catalysts, and therefore various types of catalyst supports have been put forward in the 
literature. Our research group has developed new Ru/lanthanoid oxide catalysts that 
performed high NH3 yield and less hydrogen poisoning under high pressure conditions. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50151-2 
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From process system design perspective, unique optimum operating condition window 
of NH3 synthesis over such type of catalysts, which includes lower H2/N2 ratio (1.0 – 
1.5) and temperature (380 – 400 oC) than that of conventional catalysts, warrants 
specific attention and eventually new strategy for the intensification of the process. This 
is achievable by adjusting the gas feed condition, however, relative complexity of the 
process itself (e.g. unreacted gas recycle and multi-bed configuration of reactors) 
presents challenge towards its implementation. 

In the present study, we introduce and demonstrate a new strategy for design of modular, 
energy-efficient green NH3 production system, which utilizes integration of reactor 
system equipped with novel Ru-based catalyst and internal quench gas feed, as well as 
novel heat management. To the authors’ knowledge, there is a scarcity of publications 
and studies in regards of gas feed methods specifically designed for the above-
mentioned Ru/lanthanoid oxide-type catalysts. Therefore, a purpose of the present 
contribution is to quantitatively clarify the effect of the gas feed method on the process 
efficiency for the overall process system using the catalyst by process simulation. 

2. Derivation of reaction rate equation for developed Ru-based catalyst 
Various reaction rate models based on the Langmuir-Hinshelwood mechanism have 
been proposed in the previous literature on NH3 synthesis reactions using Ru-based 
catalysts (Aika, 2017; Y. Kobayashi et al., 2017). Most reaction rate equation models 
have been derived assuming that the reaction rate determining step (RDS) is the 
dissociative adsorption of nitrogen. In addition, various assumptions have been made 
regarding the adsorption of reaction intermediates on the surface of the catalyst, and it 
was considered difficult to deductively determine the  RDS for Ru/lanthanoid oxide 
catalysts that we have developed. Therefore, in derivation of the reaction rate equation 
model for our developed catalyst, RDS is also assumed to be dissociative adsorption of 
nitrogen. Furthermore, all possible reaction intermediates, namely H*, N*, and nitrogen 
hydrates groups NHx*, have to considered for the surface coverage balance. 
  

Table 1 Elementary reactions and reaction rate equations 
Reaction Rate expression Eq. 

A-1 N2(g) + * ↔ N2* 𝜃𝜃N2∗ = 𝑘𝑘𝐴𝐴,1𝜃𝜃∗𝑃𝑃𝑁𝑁2 (1) 

A-2 N2* + * ↔ 2N* 𝑟𝑟 = 𝑘𝑘𝐴𝐴,2,𝑓𝑓𝜃𝜃∗𝜃𝜃N2∗ − 𝑘𝑘𝐴𝐴,2,𝑏𝑏𝜃𝜃N∗2 (2) 

B-1 N* + H*↔ NH* + * 𝜃𝜃NH∗ = 𝑘𝑘𝐵𝐵,1′
𝜃𝜃N∗𝜃𝜃H∗
𝜃𝜃∗

 (3) 

B-2 NH* + H*↔ NH2* + * 𝜃𝜃NH2∗ = 𝑘𝑘𝐵𝐵,2′
𝜃𝜃NH∗𝜃𝜃H∗

𝜃𝜃∗
 (4) 

B-3 NH2* + H*↔ NH3* + * 𝜃𝜃NH3∗ = 𝑘𝑘𝐵𝐵,3′
𝜃𝜃NH2∗𝜃𝜃H∗

𝜃𝜃∗
 (5) 

B-4 NH3*↔ NH3(g) + * 𝜃𝜃∗ = 𝑘𝑘𝐵𝐵,4
𝜃𝜃NH3∗
𝑃𝑃𝑁𝑁𝑁𝑁3

 (6) 

C-1 H2(g) + 2* ↔ 2H* 
𝜃𝜃H∗ = 𝜃𝜃∗�𝑘𝑘𝐶𝐶,1′𝑃𝑃𝐻𝐻2 

(7) 
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Table 1 shows the assumed elementary reactions and their respective reaction rate 
equations in deriving the reaction rate equation model based on the Langmuir-
Hinshelwood mechanism. Reactions A-i, B-i and C-i represent the dissociative 
adsorption of nitrogen, the formation of nitrogen hydrides (NHx), and the dissociative 
adsorption of hydrogen, respectively. The balance of the coverage of the reaction 
intermediate on the catalyst surface species was assumed to be Eq. (8). 

𝜃𝜃H∗ + 𝜃𝜃N∗ + 𝜃𝜃NH∗ + 𝜃𝜃NH2∗ + 𝜃𝜃NH2∗ + 𝜃𝜃NH3∗ + 𝜃𝜃∗ = 1 (8) 

The reaction rate equation based on the Langmuir-Hinshelwood mechanism, which can 
be derived from Eqs. (1) - (8), was shown in Eq. (9). The second to sixth terms of the 
denominator of the Eq. (9) represent the reaction suppression by adsorption of H*, N*, 
NH*, NH2*, and NH3*, respectively. The Arrhenius-type estimation equations for the 
forward reaction rate constant kf and the adsorption constant Kj are Eq. (10) and Eq. (11), 
respectively. 

𝑟𝑟 =
𝑘𝑘𝑓𝑓𝑃𝑃𝑁𝑁2 − �

𝑘𝑘𝑓𝑓
𝐾𝐾𝑒𝑒𝑒𝑒

�𝑃𝑃𝑁𝑁𝑁𝑁3
2

𝑃𝑃𝐻𝐻23

�1 + 𝐾𝐾𝐻𝐻∗𝑃𝑃𝐻𝐻20.5 + 𝐾𝐾𝑁𝑁∗
𝑃𝑃𝑁𝑁𝑁𝑁3
𝑃𝑃𝐻𝐻21.5 + 𝐾𝐾𝑁𝑁𝑁𝑁∗

𝑃𝑃𝑁𝑁𝑁𝑁3
𝑃𝑃𝐻𝐻21

+ 𝐾𝐾𝑁𝑁𝑁𝑁2∗
𝑃𝑃𝑁𝑁𝑁𝑁3
𝑃𝑃𝐻𝐻20.5 + 𝐾𝐾𝑁𝑁𝑁𝑁3∗𝑃𝑃𝑁𝑁𝑁𝑁3�

2 (9) 

𝑘𝑘𝑓𝑓 = 𝐴𝐴𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝑎𝑎,𝑓𝑓

𝑅𝑅𝑅𝑅 � (10) 

𝐾𝐾𝑗𝑗 = 𝐴𝐴𝑗𝑗 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑄𝑄𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅𝑅𝑅 � (11) 

By using experimental data for the catalytic activity test, the parameters in Eqs. (9) to 
(11) based on the isothermal plug flow reactor (PFR) model were estimated. Figure 1 
shows the results of parameter estimation. The plots in Figure 1 represent the activity 
test data, and the solid lines (red and blue) represent the simulation data based on 
estimated values for the parameters. In the region for operating condition far from the 
equilibrium concentration (dash line in the figure), an acceptable agreement was seen 
between the simulation data and the activity test data. Hence, by considering not only 
H* and N* but also the reaction intermediate NHx* for the balance of coverage of the 
reaction intermediate on the surface of the catalyst / support, a reaction rate equation 
with higher predictive performance could be derived. 

The estimated values of parameters in the reaction rate equation model based on the 
Langmuir-Hinshelwood mechanism were analyzed afterwards. The value of activation 
energy Ea,f in the reaction rate constant of the forward reaction (Eq. (10)) was estimated 
to be 21.0 kJ/mol. It was found that the Ea,f value was slightly lower than the activation 
energy (~ 24-50 kJ/mol) of the Ru-based catalyst using an alkali oxide as a carrier 
reported in the previous literatures (Dahl et al., 2000; Siporin and Davis, 2004). It was 
considered that the support of lanthanoid oxide exhibited higher degree of electron 
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donation to ruthenium, which resulted in the cleavage of nitrogen triple bonds at lower 
energy levels. 

 
Figure 1 Comparison of experimental data and simulation data of NH3 synthesis rate for 
Ru/lanthanoid oxide catalyst (Operating pressure P = 1 MPa, 5 MPa; H2/N2 = 3.0). 
 
The orders of value of the adsorption equilibrium constants of the reaction intermediates 
calculated from the estimated values of the parameters was as follows. 

KNH3* < KNH* < KH* < KNH2* < KN* 

It was considered that the adsorbed hydrogen H* was certainly an important 
intermediate for the balance of coverage of absorbed species, since it depended on the 
partial pressure of hydrogen, which was higher than partial pressure of ammonia under 
operating conditions.  

3. Simulation analysis for application of methods for split feed of gas 
Upon obtaining the kinetic rate equation of the synthesis reaction, process simulation of 
a small-scale NH3 production system (250 kg-NH3/h) operating under low pressure 
conditions (≤ 8 MPa) was carried out to investigate favorable operating conditions, 
consisting of inlet composition and flow ratio of quench gas (N2 or H2). Schematic 
diagram of the system is seen in Figure 2, which shows the dual-stage reactor 
configuration. In the present paper, a conventional Fe-based catalyst and the 
Ru/lanthanoid oxide catalyst developed in the present study were filled in the first stage 
(hereinafter, "Bed 1") and the second stage (hereinafter, "Bed 2") of the reactor, 
respectively. In addition, heat integration of the entire system was investigated. An in-
situ heat removal system was adopted for both of two stages in the reactor, and a system 
of heat exchange of the reactor inlet gas with reactor outlet gas and recycled gas was 
also applied in this simulation. 

The inlet temperature of the Bed 1 of the reactor was set at 673 K (400 oC). A quench 
flow (573 K) of N2 or H2 between Bed 1 and 2 was added not only to shift the Bed 2 
inlet composition to favorable ratio, but also to decrease the Bed 1 outflow to favorable 
temperature of 673 K. Variable parameters in this process simulation include the 



composition (H2/N2 ratio) and ratio of flow rate of quench gas to the main feed. The 
system performances were evaluated by using two indices: process efficiency (ηprocess) 
and specific energy consumption (SEC). 

𝑆𝑆𝐸𝐸𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑆𝑆 𝑐𝑐𝑐𝑐𝑒𝑒𝑆𝑆𝑐𝑐𝑆𝑆𝑒𝑒𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒

𝑁𝑁𝑁𝑁3 𝑒𝑒𝑟𝑟𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒  (12) 

𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑎𝑎𝑎𝑎 =
𝑄𝑄NH3  combustion 

𝑄𝑄H2  combustion + 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑆𝑆 𝑐𝑐𝑐𝑐𝑒𝑒𝑆𝑆𝑐𝑐𝑆𝑆𝑒𝑒𝑆𝑆𝑐𝑐𝑐𝑐𝑒𝑒 × 100 (13) 

 

 
Figure 2 Process flow diagram of the NH3 production system 

 Figures 3 and 4 show results of sensitivity analysis of composition of the main feed gas 
and the flow ratio of quench gas to the main feed with respect to the process efficiency 
and the SEC. It was seen that process operation with high H2/N2 ratio of ~2.75 at the 
inlet of Bed 2 adjusted by H2 (or N2) quench with medium rate (50% of total feed of H2 
or N2) was preferable. Interestingly, when the H2/N2 ratio of the main feed was constant, 
change in values for the above evaluation indices with respect to the operating 
conditions for quenching (gas type and feed ratio) was extremely small. Through the 
process simulations, the optimum performance of the evaluated process was ~61% and 
~ 7500 kJ / kg-NH3 for process efficiency and SEC, respectively. 

In addition, the ratio of each energy consumption of the reactor, separator, etc. to that of 
the entire system was calculated for each case using split quench gas of  hydrogen and 
nitrogen. The proportion of energy consumption associated with the separation of NH3 
and the recycling of separated gas was also seen to be significant, and thus it is 
considered that reduction of the energy consumption for NH3 separation / recovery unit 
will continue to be an important issue, which will be subject in further study. 

4. Conclusions 
A novel small-scale green ammonia synthesis process system design was proposed 
herein, which employs dual-stage reactor with Fe- and newly-developed Ru/lanthanoid 

911Simulation Analysis of Gas Feed Method for Development of Ru-Based
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oxide catalysts and split feed method. For the development of the process system model, 
the reaction rate equation for ammonia synthesis over the novel Ru catalyst was derived 
based on the activity test data collected under realistic operating pressure conditions. To 
optimize the system performance, we proposed a split feed method for main feed gas to 
utilize as quench gas at inlet of Bed 2. Through sensitivity analysis by process 
simulation, it was demonstrated that the split feed method for nitrogen gas could 
achieve higher process efficiency than other feed methods. 

 
Figure 3 Sensitivity analysis of operating conditions to the process efficiency; (a) H2 
and (b) N2 quench 

 
Figure 4 Sensitivity analysis of operating conditions to the SEC; (a) H2 and (b) N2 
quench 

References 
K. Aika, 2017,  Role of alkali promoter in ammonia synthesis over rutheniumcatalysts—Effect on 

reaction mechanism, Catalysis Today, 286, 14–20. 

S. Dahl et al., 2000,  Surface science based microkinetic analysis of ammonia synthesis over 
ruthenium catalysts, Journal of Catalysis, 192(2), 391-399. 

Y. Kobayashi et al., 2017,  Kinetic evidence: the rate-determining step forammonia synthesis over 
electride-supported Rucatalysts is no longer the nitrogen dissociation step, Catal. Sci. Technol., 
7, 47–50. 

S.E. Siporin and R.J. Davis, 2004, Use of kinetic models to explore the role of base promoters on 
Ru/MgO ammonia synthesis catalysts, Journal of Catalysis, 225(2), 359-368. 



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 
June 19-23, 2022, Kyoto, Japan ©  2022 Elsevier B.V. All rights reserved. 

Estimation of the effect of liquid viscosity on gas-

liquid mass transfer in a bioreactor using CFD-

PBM coupled model 

Young Seok Baka and Jong Min Leea* 

aSchool of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-

ro, Gwanak-gu, Seoul 08826, KOREA 

jongmin@snu.ac.kr 

Abstract 

 Stirred tanks are widely used as aerated fermenters for cell cultivation. Mass transfer 

inside the bioreactor is important for reactor control and design, as it directly affects 

productivity. Even if mixing and aeration are considered sufficient, insufficient local 
oxygen mass transfer may occur due to the highly inhomogeneous nature of reactor 

hydrodynamics. Furthermore, it is well known that the increase in viscosity greatly 

reduces the amount of oxygen mass transfer, which is inevitable as cell cultivation 

progresses. In order to analyze the effect of viscosity on mass transfer of bioreactor , this 

work proposes a modeling and computational framework that combines CFD 

(Computational Fluid Dynamics) and PBM (Population Balance Model). A 6-blade 

Rushton tank was selected as the target system, and the model was validated with the 

measurement results at the nominal water-viscosity, 1cp. Then, the change in mass 

transfer rate was analyzed. As the viscosity increases, the mass transfer rate gradually 

decreases, and the level of decrease was consistent with the empirical correlations.   

Keywords: Bioreactor, Computational fluid dynamics, Population balance model, Gas-

liquid mass transfer, Liquid viscosity 

1. Introduction 

 Control and design of bioreactors aim to maximize productivity by creating an optimized 

environment for cell cultivation. However, due to the lack of understanding of reactor 

hydrodynamics, maintaining an optimal environment for bioreactors with various scales 

remains a challenging task. 

 Oxygen is one of the most important materials required by cells. However, the 

inhomogeneous nature of the hydrodynamics of the stirred tank bioreactor creates the 

regions with locally deficient oxygen supply. Traditionally, the mass transfer rate 

between gas and liquid has been estimated from the interfacial area and mass transfer 

coefficient.  Since these two factors are influenced not only by the hydrodynamics of the 

continuous phase, the liquid, but also by the dynamics of the disperse phase, the bubble, 

a comprehensive simulation of both phases is required. Using the population balance 
model (PBM), it is possible to describe the bubble dynamics such as coalescence and 

breakage. 

 In this study, an integrated model framework consisting of both CFD and PBM is 

suggested to reliably predict the oxygen mass transfer rate inside the bioreactor. As a 6-

blade Rushton turbine tank system was targeted, the model was validated through 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50152-4 
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measurement results using the viscosity of water. Then, the change in oxygen mass 

transfer rate was further analyzed by increasing the viscosity tenfold. 

2. Methodology 

The Eulerian-Eulerian approach was employed for multiphase simulation. Only the drag 

force was considered as the interactive force between the gas and liquid phases. In order 

to reflect the drag change due to the non-spherical shape of bubbles, the Ishii-Zuber model 

was employed. In addition, to reflect the dense dispersion of bubbles and the bubble 

cavity formed after the impeller, Behzadi correlation-based drag coefficient modification 

was included. The final drag model is given by 
   

CD,modified= {

CD,IZ (e3.64αg+αg
0.864)

CD,IZ(-62.5815αg+51.0651)

CD,IZ

 

0<αg≤0.6

0.6<αg<0.8

0.8≤αg<1

 (1) 

 

CD,IZ= max {min(
24

Re
(1+0.15Re0.687),

72

Re
) ,

8

3

Eo

Eo+4
} 

 
(2) 

 

, where αg is the gas volume fraction, and E is the Eotvos number. The SST k − ω model, 

one of the Reynolds averaging Navier-Stokes approaches, was employed for the 

turbulence model. 

 Population balance equation (PBE) was used to simulate the bubble coalescence and 

breakage. In this study, a quadratic method of moments (QMOM) based approximation 

was employed to solve the equation. The number of ODEs in the PBM was determined 

by the number of tracked moments and the number of bins. For the gas-liquid systems, 

such as bubble columns or stirred tanks, three nodes and 6-moments equations are widely 
selected as an option to guarantee both accuracy and stability. The equations of PBE and 

QMOM are   
 

∂n(L;x,t)

∂t
+∇∙[u⃑ n(L;x,t)]= 

             Bag(L;x,t)-Dag(L;x,t)+Bbr(L;x,t)-Dbr(L;x,t) 

 

(3) 

 

 

∂mk

∂t
+∇∙[u⃑ mk]= Smk

 
 

(4) 

 

mk= ∫ n(L)LkdL

∞ 

0

 ≈ ∑wiLi
k

N=3

i=1

 

 
(5) 

 

Smk
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1

2
∑wi

N=3

i=1

∑wjhij

N=3

j=1

[(Li
3+Lj

3)
k

3-Li
k-Lj

k]+ ∑wigi
 (bi

k-Li
k)

N=3

i=1

 

 

(6) 

 

n(L; 𝐱, t) is a function of property and m represents the moments of property function. 

gij and hij are called kernels and have different forms depending on physical phenomena. 

The above equation assumes QMOM with three nodes. 
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bioreactor using CFD

Since QMOM employs approximation using moments and nodes, it is necessary to 

transform the source term, which reflects the physical phenomenon, into the moment 

space. Because the problem must be closed in the moment space, the source term has a 

rather complicated form. In this study, the kernels for bubble coalescence and breakage 

phenomena are given by  
 

h(𝐿1 , 𝐿2)

= 𝐶1(𝐿1 + 𝐿2)
2𝜖

1
3√𝐿1

2/3
+ 𝐿2

2/3
exp(−𝐶2

𝜇𝑙𝜌𝑙𝜖

𝜎2
(

𝐿1𝐿2

𝐿1 + 𝐿2
)
4

) 

 

(7) 
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1
3erfc  (√𝐶4

𝜎

𝜌𝐿𝜖
2
3𝐿

5
3

+ 𝐶5

𝜇𝑙

√𝜌𝐿𝜌𝐺𝜖
1
3𝐿

4
3

) 
 

(8) 

 

β(L, λ) = 180 (
𝐿2

𝜆3
)(

𝐿3

𝜆3
)

2

(1 −
𝐿3

𝜆3
)

2

 

 
(9) 

 

, where h is the coalescence kernel, g is the breakage kernel, and β is the daughter bubble 

size distribution. The kernel of Prince and Blanch with the collision efficiency of  

Coulalglou and Tavlarides was employed for the coalescence kernel, and the kernel of 

Laakkonen was employed for breakage and daughter bubble size distribution. The built-

in QMOM framework in Fluent®  was used, and other optional kernels and drag models 

were implemented via the user-defined macros in Fluent® . 

 The volumetric mass transfer rate was calculated as the product of the mass transfer 

coefficient KL and the interfacial area a. In this study, the interfacial area was directly 

obtained from the CFD simulation results, and the mass transfer coefficient was estimated 
by the slip velocity model: 
 

𝑎 = 𝑎𝑆𝑎𝑢𝑡𝑒𝑟 ∗ 𝑅 
 

(10) 

 

aSauter = ∑𝜋𝑑𝑏,𝑖
2 𝑛𝑖

i

≈
6𝑎𝑔

𝑑32
 

 (11) 

R = 1 + 0.163Eo
0.757 

 
(12) 

 

kL =
2

√𝜋
√

𝐷𝐿𝑣𝑏

𝑑𝑏
 

 

(13) 

 

where aSauter is the interfacial area calculated from the Sauter mean diameter, and R is 

the aspect ratio of bubbles with ellipsoidal shape. DL is the diffusivity of oxygen in water, 

and vb is the slip velocity. 
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3. Numerical strategy 

A 6-blade Rushton turbine tank with a ring sparger was selected as the target system. The 

geometry of Laakkonen was referenced, and the thickness of blades and baffles was set 

to 4mm, which is  similar to that of the actual Rushton tank. The multiple reference frame 

(MRF) method was employed to model the impeller movement. A Green-Gauss node-

based formulation was used for calculating gradients, QUICK scheme for the momentum 

equations, PRESTO! scheme for the pressure balance equation, and the 1st order upwind 

scheme was used for all other equations. The pressure outlet was used for the outlet 

boundary condition. A grid sensitivity study was conducted using 4 fully structured 

hexagonal meshes of 419k, 666k, 729k and 930k elements, and the 666k elements mesh 

was finally selected. The shape of grid is shown in Figure 2. 

 

Figure 1 Schematic figure of a 6-blade Rushton tank with a ring sparger. The alphabets indicate 
where Laakkonen measured the diameter of bubbles. Model validation was performed through 

comparison with the measurement results.  

Figure 2 Structure of grid with 666k hexagonal elements. From left, front view, rotor view, and 
top view 

Y. S. Bak and J. M. Lee 



   
4. Results and discussion 

4.1 . M odel validation 

The overall gas hold-up was 4.35%, which is in fairly good agreement with the measured 

value of 6%. The power number was 2.2, estimated from the turbulent dissipation rate. 

Although the typical power number of a Rushton tank is about 5, it is widely known that 

the estimation of power number from the turbulent dissipation rate leads to 

underestimated values. Moreover, previous studies also obtained power number ranging 

1 to 2. Since the power number is used as an indicator for judging whether an appropriate 
level of turbulence was simulated in this work, the above power number is acceptable for 

this study. Figure 3 shows the contours of bubble sauter mean within the reactor. 

The reactor-volume-average KL𝑎 was 0.0465, which showed good agreement with the 

measurement. The local bubble size results achieved an error of less than 15% with 

experimental measurements at all the measured points, which is an improvement over 

previous studies. Figure 4 shows the results of a local bubble size comparison.  

4.2 . Effect of liq uid viscosity on ox ygen mass transfer 

From nominal water-viscosity, the change in oxygen mass transfer was analyzed by 

increasing the viscosity of liquid up to ten times. At 10 cp, it was estimated that only 28% 

of the oxygen transfer in nominal water was delivered. The rate of oxygen mass transfer 
in the reactor was found to be inversely proportional to the viscosity power of 0.653, and 

the R square value was 0.933. These results are consistent with the empirical correlations 

widely used. Figure 5 below shows the change of oxygen mass transfer with increasing 

viscosity. 

5 . Conclusions 

 This work showed that the CFD-PBM model can reflect the heterogeneous 

hydrodynamics of a 200L bioreactor including baffles, rotors, and sparger. The results of 
local bubble size distribution and overall gas volume fraction are consistent with the 

measurement results. In addition, the volume-averaged oxygen mass transfer rate was 

predicted to decrease by 28%, and a relationship between viscosity and oxygen mass 

transfer was estimated to be inversely proportional to the 0.653 power. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

 

Figure 3 Contour of bubble diameter (1cp Case) 

917Estimation of the effect of liq uid viscosity on gas-liq uid mass transfer in a
-P BM  coupled model bioreactor using CF D



918  

Acknowledgements 

 This paper was supported by Korea Institute for Advancement of Technology(KIAT) grant 
funded by the Korea Government(MOTIE) (P0008475, The Competency Development Program 
for Industry Specialist) 
 

References 

 Y.S. Bak, and  J. M. Lee, “Integration of Population Balance Model with Computational Fluid 
Dynamics for Estimation of Oxygen Mass Transfer Rate in Bioreactor”, Mater’s Thesis, 
https://www.dcollection.net/handler/snu/000000167087 

 A. Behzadi, R. Issa, and H. Rusche, " Modelling of dispersed bubble and droplet flow at high 

phase fractions,"  Chemical Engineering Science, vol. 59, no. 4, pp. 759-770, 2004. 

 J. Gimbun, C. D. Rielly, and Z. K. Nagy, " Modelling of mass transfer in gas–liquid stirred tanks 
agitated by Rushton turbine and CD-6 impeller: A scale-up study,"  Chemical Engineering 
R esearch and Design, vol. 87, no. 4, pp. 437-451, 2009. 

M. Laakkonen, P. Moilanen, V. Alopaeus, and J. Aittamaa, " Modelling local bubble size 
distributions in agitated vessels,"  Chemical Engineering Science, vol. 62, no. 3, pp. 721-740, 
2007. 

 M. J. Prince and H. W. Blanch, " Bubble coalescence and break‐up in air‐sparged bubble 
columns,"  AI ChE J ournal, vol. 36, no. 10, pp. 1485-1499, 1990. 

Figure 4 Comparison of local bubble diameters of 5 points 

Figure 5 Viscosity and oxygen mass transfer rate plot 

Y. S. Bak and J. M. Lee 



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Knowledge-matching based computational 

framework for genome-scale metabolic model 

refinement 

Kiumars Badr, Q. Peter He and Jin Wang* 

Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA 

*Corresponding Author’s E-mail: wang@auburn.edu 

Abstract 

Genome-scale metabolic models (GEMs) are mathematically structured knowledge base 

reconstructed from annotated genome of different organisms. With the advancement of 

next-generation sequencing technology, many organisms have had their genomes 

sequenced. However, obtaining a high-quality GEM is highly time-consuming, even with 

the introduction of several genome-scale reconstruction tools that offer automated draft 

network generation and gap filling. It has been recognized that the iterative process of 

manual curation and refinement is the limiting step of GEM development, and how to 

expedite the GEM refinement is still an open question. As cellular metabolism is a 

complex system with very high degree of freedom and redundancy, the principles and 

techniques developed in process systems engineering can be adapted to expedite GEM 

refinement. In this work we present a knowledge-matching based computation framework 

for GEM refinement, and demonstrate the effectiveness of the proposed solution using 

the refinement of a GEM for Clostridium tyrobutyricum . 

Keywords: Genome-scale metabolic model; manual curation; system identification; 

multivariate analysis; visualization. 

1. Introduction 

A genome-scale metabolic model (GEM) is a mathematically structured knowledge base 

that is reconstructed from annotated genome of an organism (King et al., 2016)). A GEM 

contains a list of biochemical reactions, metabolites and (annotated) genes involved in 

the cellular metabolism for a specific organism, as well as a set of biophysical constraints 

(e.g., nutrient uptake and substrate availabilities, etc.). A high-quality GEM can be used 

to conduct simulations to answer various questions about the capabilities of the organism, 

serve as a framework to integrate and interpret omics data collected through experiments, 

and guide the design of mutant for metabolic engineering, etc.  

The GEM reconstruction process generally consists of the following steps (Thiele and 

Palsson, 2010): (1) a draft network is reconstructed based on the annotation of a genome 

and the prediction of candidate metabolic functions; (2) the draft reconstruction is refined 

or curated by the user in an iterative manner through an exhaustive review of each 

reaction, metabolite and gene in the network; (3) the reconstruction is transformed into a 

mathematical structure, with an objective function and a set of constraints to account for 

different culture conditions. With the mathematical representation, the resulting GEM can 

be evaluated by reproducing the experimental data. If the GEM predictions do not match 

the experimental data, the manual refinement process will be repeated till the quality of 

the GEM is satisfactory. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50153-6 
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It has been recognized that the iterative process of manual curation and refinement is the 

limiting step of GEM development (Mendoza et al., 2019)). To expedite the development 

process, several genome-scale reconstruction tools that offer automated draft network 

generation and gap filling have been reported. However, a systematic assessment of seven 

GEM reconstruction tools (Mendoza et al., 2019)) concluded that none of the tools 

performed well in all of the evaluated categories, and there was a relatively large 

discrepancy between the automatic reconstruction and the high-quality manual curation. 

Therefore, it is no surprise that the currently validated high-quality GEMs collected in 

BiGG Models are all manually curated (King et al., 2016)). 

For GEM refinement, one big challenge is to quickly identify the root cause of an 

erroneous model prediction. Because of the complex interconnectivity in the GEM, many 

times seemingly unrelated reactions located far away from the “problematic” reactions 

(i.e., reactions that are not carried out in the expected way) play a key role in correcting 

the model behavior. Directly comparing the model prediction with experimental data 

usually yields limited information on the “hidden” relations between the erroneous model 

prediction and its corresponding root cause reactions. Currently, GEM refinement relies 

heavily on the modeler’s knowledge and capability to sort out clues from various 

simulation results, and is labor intensive and time consuming.  

As cellular metabolism is a complex system with very high degree of freedom and 

redundancy, we hypothesize that the principles and techniques developed in process 

systems engineering can be adapted to address some of the challenges associated with 

GEM refinement. In this work, we first review the foundation of the proposed solution, 

i.e., a knowledge-matching based computational framework for GEM analysis, then we 

present the developed GEM refinement approach, and demonstrate the effectiveness of 

the proposed solution using the development of a GEM for C. tyrobutyricum.  

2. Knowledge-matching based framework for GEM analysis  

In essence, a high-quality GEM is a comprehensive knowledge base of the organism’s 

cellular metabolism. If the key qualitative knowledge captured by a GEM could be 

extracted and visualized, then GEM refinement could be expedited through knowledge-

matching, i.e., by comparing the extracted knowledge with the available ones. The 

knowledge captured by a GEM is usually embedded in numerical model predictions under 

various environmental perturbations (e.g., culture media and conditions) and/or genetic 

perturbations (e.g., mutant), which are difficult to extract and visualize.  

To address this challenge, we have developed a system identification (SID) based 

computational framework for knowledge-matching based GEM analysis (Damiani et al., 

2015). In the SID framework, three main steps are involved for GEM analysis, as shown 

in Figure 1a. First, a set of in silico experiments are designed to cover the whole transition 

path between two metabolic states, where each simulation represents an incremental 

change along the path. The experiments represent a one-dimensional perturbation to the 

cellular metabolism and result in a flux matrix containing a series of cellular metabolic 

states along the transition path; next, system identification tools (such as principal 

component analysis or PCA) are applied to extract the knowledge contained in the flux 

matrix (e.g., how the cells respond to the perturbation); finally, the extracted knowledge 

is visualized against the metabolic network map and compared with the existing 

knowledge for GEM analysis. Here we use an illustrate example (Figure 1b) to 

demonstrate how the SID-based GEM analysis works. 
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metabolic model refinement   

Knowledge for model 

validation

Design corresponding   

in silico experiments 

Perform simulations

Perform PCA analysis  
on flux matrix

Visualize PC loadings    
on network map

Agree with the

knowledge?

Model 

refinement

No

Yes

Move on to validation 

of other knowledge

Metabolism shift with increasing O2 

uptake under O2-limited fermentation

1001 in silico experiments with O2 set 

as [0.1:0.001:0.2]

Obtain a flux matrix with each column 

contains all fluxes for one condition

Identifies the direction of variation in 
the high dimensional flux space 

caused by the perturbation

Visualize how each reaction changes 
and by how much under the perturbation

Example:

Are the reaction/pathway up/down 

regulations consistent with existing 

knowledge?

 

(a) 

 
 

 

(b) 

Fig. 1 (a) Illustrated flow chart of the SID-based GEM analysis; (b) an example showing the 

loadings (top) and their visualization on a simulated network (bottom). 

As shown in the bottom part of the Figure 1b, the illustrative example is a toy metabolic 

network with 13 reactions, which consumes both carbon and oxygen to produce biomass 

and three potential by-products (C, D and E). To determine if the model correctly captures 

the metabolic capabilities of the network, we examine if the knowledge captured by the 

model on how the network respond to an increased O2 supply under oxygen-limited 

condition is correct. This response is well understood and well conserved among different 

microbes, and we expect to see increased flux through electron transport chain due to the 

availability of additional O2 (electron acceptor) and increased biomass growth. To do so, 

we conducted a set of in silico experiments, where the carbon uptake was fixed, while the 

upper limit of O2 uptake was gradually increased from 0.1 to 0.2 mmol/gDCW/min. These 

simulations resulted in a 13×1001 flux matrix where each column contains all fluxes 

within the network under a given O2 uptake flux. Next, PCA, which we have applied in a 

novel closed-loop subspace identification algorithm (Wang and Qin, 2006), is applied to 

extract the knowledge contained in the flux matrix. Due to the linear network structure 

and one-dimensional perturbation, one principal component (PC) is expected to capture 

100% of variation in the flux matrix provided that the whole transition path is located 

within the same phenotype. Indeed, our result showed that one PC captured 100% of 

variation. The PC loading captures the knowledge of how the perturbation propagates 

through the network, i.e., how each reaction flux in the network is affected by the 

perturbation. The scaled loading is plotted in Figure 1b (top part) and visualized on the 

network structure in Figure 1b (bottom part). Figure 1b shows that with increasing oxygen 

supply, the carbon flux in the network shifts from production of by-product D toward 

biomass production, together with upregulated electron transport chain which converts 

reducing power (NADH) to produce ATP. This model response agrees with existing 

understanding as described before, and confirms the model quality. This example further 

illustrates that although rooted in numerical simulations, the knowledge-matching offered 

by the SID-based framework is qualitative in nature, which offers enhanced robustness 

against systematic error among experimental results reported in different literature.  
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3. SID-based GEM refinement 

To identify the root cause of an erroneous model prediction, we adapt the SID-based 

framework to identify a few candidates which drastically narrows the search space for the 

potential root causes. The SID-guided GEM refinement process consists of three steps: 

(1) conducting a set of in silico experiments with forced correct model behaviors by 

applying additional hard constraints; (2) applying PCA to determine how each reaction is 

affected by the forced correct behavior; (3) identify the candidate root cause reactions – 

we hypothesize that the reactions affected the most by the forced model behavior are the 

potential root cause reactions that contribute to the erroneous model behavior. Once the 

candidate reactions are identified, they will be examined against existing knowledge to 

see if any of them is the actual root cause. Below we use the development of a GEM for 

C. tyrobutyricum as an example to illustrate how the SID-guided GEM refinement works.  

C. tyrobutyricum is a novel and promising industrial chassis strain that plays an important 

role in carboxylic acids production from lignocellulosic substrates. Since a GEM for C. 

tyrobutyricum is currently not available, we first developed a draft GEM based on a 

published GEM for C. beijerinckii, iCM925 (Milne et al., 2011). Genome analysis 

revealed that C. tyrobutyricum does not use phosphotransbutyrylase nor butyrate kinase 

for butyric acid production; instead, it uses a CoA transferase to mediate the butyric acid 

production from butyryl-CoA by reassimilation of acetic acid (Lee et al., 2016). 

Therefore, the corresponding reaction pathways were deleted from or added to iCM925 

to obtain the draft GEM for C. tyrobutyricum (iKB917). 

Experimental results showed that when cultivated on glucose, C. tyrobutyricum excretes 

butyrate, acetate, hydrogen and carbon dioxide, in addition to cell growth (Lee et al., 

2016). However, when the draft GEM was tested by using the experimentally reported 

glucose uptake rate as the only constraint to predict cell growth and product excretion, 

the model does not produce butyrate at all, but over-produces acetate, hydrogen and 

biomass, while under-produces CO2 (Table 1). Since the draft GEM contains 939 

reactions, it is not clear which reaction pathway(s) could be the causes for this erroneous 

modeling behavior and should be modified. To improve the GEM, we applied the SID-

based GEM refinement, as shown in Figure 2.  

Table 1. Comparison of measured data with predicted data by the GEM 

No. Condition Glucose Acetate Butyrate H2 CO2 Biomass 

1 Experimental measurement -2.594 0.717 1.895 4.75 4.34 0.052 

2 Draft GEM prediction -2.594 4.223 0 7.96 4.17 0.074 

3 Refined GEM prediction -2.594 0.823 1.834 4.81 4.45 0.053 

(1) To force the correct model behavior, i.e., butyrate production, we added a hard 

constraint to force butyrate production flux gradually increased from 0 to 1.0 

mmol/gDCW/min, to produce a flux matrix of 939×1001. 

(2) PCA was applied to analyze the flux matrix, and the PC loadings of selected reactions 

are plotted in Fig. 2 (bottom plot). Clearly, the affected reactions were widespread 

across multiple pathways. However, the reactions that were affected the most are 

concentrated in two reaction pathways, i.e., H2 and H2O syntheses.  

(3) Additional review of literature suggests that due to physiological constraints, the 

amount of H2 and CO2 produced by the cells are proportional to each other (Jo and 

K. Badr et al. 



Kim, 2016). Since the GEM does not contain any regulatory mechanism, it over 

produces H2. To correct this erroneous behavior, we implemented a soft constraint 

on the ratio of H2/CO2 production. Such a soft constraint could provide similar effects 

as regulatory mechanisms without adding hard constraints, therefore provides more 

flexibility for the GEM to simulate different phenotypes under different conditions. 

(4) The refined GEM (with the added soft constraint) was tested again, which showed 

significantly improved prediction accuracy (low row of Table 1). The refined GEM 

not only predicts the excretion of butyrate, but also predicts the excretion of all the 

byproducts whose fluxes showed excellent agreement with experimental results.  

This example highlights the challenge of GEM refinement and effectiveness of the SID-

guided refinement. Without the guidance of the SID framework, it can take much longer 

to figure out what would be the root cause of the erroneous model behavior. 

4. Conclusions 

GEM has been recognized as a highly effective tool to elucidate the complex cellular 

metabolisms. It offers a foundation to integrate various omics data, and helps reveal 

genotype-phenotype relationships, which is fundamental to biology. Despite the recent 

advancement in automated GEM draft reconstruction and gap filling, manual curation 

and refinement of GEM remains the limiting step in GEM development. To help address 

this challenge, we developed a knowledge-matching based computational framework to 

expedite the GEM refinement. By adapting the principles and techniques in process 

systems engineering, the proposed SID-guided GEM refinement can quickly identify the 

“hidden” root cause for the erroneous modeling behavior, therefore significantly expedite 

the GEM refinement process. The effectiveness of the SID-guided GEM refinement 

framework is demonstrated through improving a draft GEM of C. tyrobutyricum. 
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Abstract 

This study focuses on the development of a Multi-Regional Surrogate Model Selection 
(MRSMS) approach for the optimal fitting and analysis of univariate responses. Using a 
library of simple curve fitting and regression models, the proposed approach can be used 
to provide surrogate model recommendations at each section of the response based on the 
user specified selection of the residual error metric and its corresponding data fit range. 
The efficacy of the proposed approach is validated using the Henry Hub Natural Gas price 
dataset and its fitting performance is compared with Piecewise Linear (PL), Neural 
Network (NN) and Support Vector Regression (SVR) models. It was found that proposed 
MRSMS approach outperformed the fitting performance of the considered models. 

Keywords: Surrogate Model; Optimal Data Fitting; Univariate Responses, Piecewise 
Linear Model 

1. INTRODUCTION 

The idea of employing simple and less complex surrogates (or) surrogate models in 
estimating a functional relationship of a complex chemical phenomenon has gained 
traction in the research community over the last few decades. Surrogate models, also 
known as meta-models (or) response surfaces, are used to accurately mimic the 
relationship between the inputs and outputs of a system (McBride and Sundmacher 
(2019)). 
 
The selection of a surrogate model for a particular system (or) phenomenon is an 
extremely challenging task. Although there is no consensus or clear-cut mantra to select 
a particular model, the existing popular custom in surrogate-based modelling of complex 
phenomena is to fit one (or) more surrogate models and select the best fitting model 
(based on an error metric) over an entire data response. 
 
Several studies have aimed at finding the best surrogate model for a particular dataset. 
While some research works were heavily reliant on the trial-and-error approach of trying 
one model after another on a dataset and then comparing its performance with its fellow 
member models (Williams and Cremaschi (2020)); other research works have focused on 
the development of ensemble model approaches, where the individual member models 
are combined to form a weighted ensemble through some optimization framework (Goel 
et.al (2007)). In recent times, the concept of meta-learning has gained traction, where the 
best surrogate model can be selected through an automated platform utilizing an 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50154-8 
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exhaustive library of models, error metrics, rules, and datasets. Cozad et al. (2014) 
developed the ALAMO model approach to determine the optimal mix of nonlinear basis 
functions by iteratively solving a MILP based optimization problem.  Cui et al. (2016) 
developed a framework for surrogate selection using a meta-learning approach. Their 
approach involved the characterization of the datasets into several quantitative features, 
which were then used as a selection guide in identifying the best modeling technique. 
S.Garud et al. (2018) developed the LEAPS2 model for finding the best surrogate model 
based on the given input-output data relationship and drew comparisons with Cui’s meta-
learning model. M.Ahmad and Karimi (2021) further revised the existing LEAPS2 
framework through the inclusion of more surrogate models, attribute sets and weight 
metrics in their analysis database and drew positive comparisons of their revised 
framework’s accuracy against the earlier LEAPS2 framework.  
 
Based on the above literature, we have found that most of the developed approaches only 
provide surrogate recommendations valid over the entire sample size of a data response. 
The number of research works providing surrogate model recommendations at different 
sections of a data response have been very limited and this study focuses on the 
development of a multi-regional surrogate model selection (MRSMS) approach for the 
optimal fitting and analysis of univariate responses. The proposed approach has been 
applied on the Henry Hub Natural Gas price dataset and its performance has been 
compared with the widely used Piecewise Linear (PL), Neural Network (NN) and Support 
Vector Regression (SVR) models. 
 

2. METHODOLOGY 

The proposed approach has been implemented with MATLAB v2020b used as the 
programming language and steps of the proposed MRSMS approach are as follows: 
 

I. Step 1: On acquiring the required data and user-specific inputs, the first segment 
of acquired data (𝑊𝑠𝑖𝑧𝑒) is fitted using all the member models of the library and 
their in-sample fitting performances are recorded in a matrix. The list of member 
models and user-specific inputs can be found in Tables 1 and 2 respectively. 

II. Step 2: Subsequent data points and their responses are iteratively added to the 
existing segment based on the step size (𝑆𝑠𝑖𝑧𝑒) value and all the models 
respective in-sample performances are recorded and appended to the existing 
performance matrix. The number of models having a fitting performance within 
the range of 𝐹𝑖𝑡𝑚𝑖𝑛 & 𝐹𝑖𝑡𝑚𝑎𝑥 are noted at each iteration. Overfitting models (or) 
models having a fit greater than 𝐹𝑖𝑡𝑚𝑎𝑥  are assigned a ‘NaN’ or null value at 

every iteration. 
III. Step 3: The performances of all models are recorded at every iteration and the 

termination of a data segment (or) region of data is executed when none of the 
models are within the given user-specified range of fit for a given number of 
user-specified consecutive validation steps (𝑉𝑠𝑡𝑒𝑝𝑠). 

IV. Step 4: Once the termination of a data segment is executed, the best 
characteristic model for this segment is determined to be the model with the best 
average performance (within the user-specified levels of fit) over this region. In 
the hypothetical case that if two models were found to have the same fitting 
performance over a data segment, then the best model for the segment is 
determined to the model with the lowest SQS score developed by M. Ahmad 

and I. A. Karimi
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and Karimi (2021). Unlike the commonly used Akaike Information Criteria 
(AIC), which assumes that the model parameters are determined using the 
‘maximum likelihood estimate’ theory and can sometimes favour its goodness 
of term (gof) over the second penalty term, the SQS metric developed to 
addresses these limitations, provides a proportional weightage between a 
model’s fitting accuracy and its complexity. The formula of the SQS score is 
displayed in Eq.(1). 
 

𝑆𝑄𝑆𝑚𝑜𝑑𝑒𝑙 = (1 − 𝑅𝑚𝑜𝑑𝑒𝑙
2 ) · (

ln(1 + 𝐷𝑂𝐹𝑚𝑜𝑑𝑒𝑙)

ln(1 + 𝐾𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
)

0.5

  
 

(1) 
 

 
Where, 𝑅𝑚𝑜𝑑𝑒𝑙

2  represents the fit of the model, 𝐷𝑂𝐹𝑚𝑜𝑑𝑒𝑙  represents the number of 
independent model parameters and 𝐾𝑠𝑒𝑔𝑚𝑒𝑛𝑡  represents the sample size of the current data 
segment under analysis.  

 
Step 5: The last point (or) the point where all the model performances started falling 
outside the regions of user-specified fit with the current segment of data indicates the 
termination of that segment and this final point is recorded as a breakpoint. The process 
is repeated from Step1 from the latest breakpoint until all the points in the response are 
fitted optimally.  
 
All the member models in this approach have been implemented using the Curve Fitting 
and Mathematics Toolbox of MATLAB. The model parameters of these models are 
estimated using the least squares approximation. We would like to point out that the 
results of fit, segment sizes and the location of these breakpoints obtained from this 
approach are subject to change depending on the characteristic nature of the dataset, the 
type of models present in the library and the user specified inputs.  
 
Table 1: MRSMS Member Models 

 

Model Model Form 

2nd Degree Polynomial model 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

Exponential model 𝑦 = 𝑎 · 𝑒𝑥𝑝(𝑏𝑥) 

Gaussian Model 𝑦 = 𝑎 · 𝑒𝑥𝑝(−(𝑥 − 𝑏) · 𝑐−1)2) 

Power Law Model 𝑦 = 𝑎𝑥𝑏 

Sinusoidal Function 𝑦 = 𝑎 · sin (𝑏𝑥 + 𝑐) 

Hyperbolic Tangent Function 𝑦 = 𝑎 · tanh (𝑏𝑥) 

Root Function 𝑦 = √𝑥
𝑎  

Rational Function 𝑦 = (𝑎𝑥 + 𝑏) · (𝑐𝑥 + 𝑑)−1 

Sigmoid Function 𝑦 = (1 + exp(−𝑐1 · (𝑥 − 𝑐2)))
−1

 

Logarithmic Function 𝑦 = 𝑎 · log (𝑏𝑥 + 𝑐) 

and optimal fitting of 
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Table 2: MRSMS User-Specific Inputs 

3. CASE STUDY 
The Henry Hub Natural Gas Price dataset containing the monthly prices of natural gas (in 
Dollars/Millions BTU) from January 1997 onwards, is obtained from the U.S Energy 
Information Administration (EIA) website (EIA (2021)). The default settings of 𝑆𝑠𝑖𝑧𝑒 =
1, 𝑊𝑠𝑖𝑧𝑒  = 8, & 𝑉𝑠𝑡𝑒𝑝𝑠=6 is used here. The aim is to have an  𝑅2 fit between 0.70 and 0.98 
for the first 200 points of this dataset. 

 

 
Figure 1: Comparison of the MRSMS fit with various models.  

 

Table 3: MRSMS summary of fitting performance on Henry Hub data 
Segment No Starting Point Ending Point Model Form 𝑅𝑓𝑖𝑡

2  

1 1 11 Polynomial 0.905 

2 12 55 Polynomial 0.899 

3 56 81 Polynomial 0.875 

4 82 111 Gaussian 0.932 

5 112 125 Polynomial 0.840 

6 126 140 Polynomial 0.892 

7 141 200 Rational 0.816 
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Based on Table 3, it was found that there are 7 optimal segments (or 7 optimal models) 
required to fit the dataset within the given user-specifications. Out of the 7 models 
required for fitting the curve, 2nd degree polynomial models (with different coefficients) 
were found to be the best models in most of the segments except for segments 4 and 7 
where the Gaussian and Rational functions were found to the best models respectively. 

Due to the concerns about the paper length, the results of fit using the 𝑅2 metric are only 
presented. However, the MRSMS fitting performance on this dataset has been verified 
using other commonly used error metrics such as the Root Mean-Squared Error (RMSE), 
Mean-Squared Error (MSE), and Mean Absolute Error (Metric) as well. 

Table 4 provides a comparison of the MRSMS fitting performance against the considered 
regression models. To establish a valid basis for comparison, the number of hidden 
neurons for NN models and the no of segments for PL models (D’Errico, J (2009)) were 
initially set to be equal to the number of segments obtained from the MRSMS approach. 
These settings were then modified to identify the respective model structures required to 
outperform the MRSMS fitting performance.    

Table 4: Comparison of MRSMS fitting performance with other models 
Approach No of 

Segments 
 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑓𝑖𝑡

2  Parameters No of 

Parameters 

RMSE 

MRSMS 7 0.879 Model-Coeffs 22 0.855 

PL 7 0.649 Model-Coeffs 14 1.383 

PL 16 0.916 Model-Coeffs 32 0.753 

NN (7) 1 0.834 Weights & biases 22 1.105 

NN (8) 1 0.897 Weights & biases 25 0.869 

SVR 
(Gaussian) 

1 0.842 Support Vectors 106 1.08 

From Table 4, it can be inferred that for almost the same number of parameters, the   
developed MRSMS approach provides a better fitting performance than the PL models 
(7 segments), NN model (7 neurons) and even the SVR model (with Gaussian Kernel & 
106 support vectors). Although the NN (8 neurons) and PL (16 linear segments) models 
were found to out-perform the fitting ability of the MRSMS approach, the number of 
parameters involved in their data fitting are much higher than that of the MRSMS 
approach. Modelling a dataset with a lesser number of model parameters that achieves a 
similar fitting performance obtained from more complex models demonstrates a 
significant advantage of using the developed approach. We believe that the proposed 
MRSMS approach can guide researchers in understanding the different types of model 
behaviour present at different sections of their univariate response. 

5. Conclusion 
This study focuses on the development of the MRSMS approach its application for 
optimally fitting of the Henry Hub Natural Gas price dataset. Relying on a library of 
models and user-specified inputs, the developed MRSMS approach is compared with 
several linear and nonlinear models in terms of fitting performance, and we found that 
the MRSMS approach outperformed these models in optimally fitting the given univariate 

Multi-Regional Surrogate Model Selection (MRSMS) approach for the analysis
univariate responses  and optimal fitting of 
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response for the given user specified inputs. Our future works will focus on conducting 
sensitivity analysis of the user-specified inputs on the overall fitting performance, 
validation on other univariate chemical engineering responses (generated with the help of 
the Aspen Hysys Software), comparison with other models such as regression trees and 
finally, the application of the methodology towards the accurate modelling and analysis 
of Multi-Input Single Output (MISO) responses. 
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Abstract 

Technological advancements increase the demand for more diverse skill sets across 

industry.  To meet this growing demand, digitally-based education and training 

interventions are a common solution. For practical skills development, digital tools have 

the potential to increase the capacity of provisioned educational experiences by 

allowing more people to be trained on more skills using less physical infrastructure. 

Having analyzed the learning objectives for several PILOT PLANT courses delivered at 

the Chemical and Biochemical Engineering Department at the Technical University of 

Denmark (DTU-KT), eight broad competencies have been identified across 

undergraduate and graduate programs. These competencies, for which the learning 

objectives are intended, is for the effective operation of a number of unit operations. 

One way to map these competencies to the respective unit operations and their 

corresponding theoretical frameworks is via two cognitive interfaces. The first of these 

interfaces is concerned with cognition and learning whilst the second is concerned with 

User and spatial Interaction. An educational virtual reality (VR) platform is currently 

being developed and implemented at DTU-KT. It is designed to introduce learners to 

the physical structures and components that make up a unit operation, whilst 

demonstrating the functionality and processes for which the unit operation is intended.  

This paper will start out by presenting the cognitive framework that was designed and 

utilized for the design of digital reality learning tools at the PILOT PLANT at DTU-KT. 

Thereafter, it will present a design study for the recently developed 360° VR learning 

tool that was developed for a Citric Acid Crystallizer.  

Keywords: Education; Pedagogy, Unit Operations; Experiments, Virtual Reality. 

1. Introduction 

In December 2020, not least because of the limitations imposed on situated learning as a 

result of COVID 19, a product idea was born at the Department of Chemical and 

Biochemical Engineering at the Technical University of Denmark (DTU-KT).  This idea 

was to leverage eXtended Reality (XR) technologies to build learning experiences for 

PILOT PLANT courses.  It would take another three months for the concept to take 

shape, by the end of which time, it was understood that the Team would endeavor to 

deliver walk-throughs for Unit Operation experiments.  The Citric Acid Crystallizer was 

selected for a project to build a prototype and the Instruction Manual for the experiment 

was to serve as a foundation in forming a product that could be described as a 

deconstructed linear narrative (Note: A linear narrative is a narrative (story) with a fixed 

sequence of steps (events).  In other words, there is only one sensible path to navigate 

the content. Whilst a deconstructed linear narrative breaks the narrative down into 

smaller steps, facilitating flexible entry and exit points.). At the same time, a technology 

partner was on boarded, and in April 2021, the development of a prototype commenced. 

This paper will set out some of the preceding and initial design activities that informed 

the prototype project.  It will commence by introducing the learning objectives and 

desired outcomes for existing course offerings at DTU.KT that served as a means to 

understand the purpose of the respective courses.  It will then move on to demonstrate a 

model that was used to understand the connection between the product features and 

cognition (or learning), with a view to bridging the product to the learning objectives.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50155-X 
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Finally, this paper will present a design study to explore how specific design features 

were formed in response to anticipated cognitive conditions, and subject to the 

constraints of the product architecture. 

 

2. Existing Course Offering 

At DTU.KT, several courses are on offer for operator training at both undergraduate and 

graduate level. The design team commenced by reviewing the learning objectives for 

each course and grouped them according to eight core competencies.  This 

categorization strategy was leveraged to make it easier to think about how to design the 

product to serve various knowledge and skills requirements for students studying at 

different levels. The categories, education level, and their corresponding definitions are 

set out in Table 1 and Figure 1 below. 

For the prototype our target user was undergraduate students.  Of the four intended 

competencies for undergraduate students, two were deemed to be appropriate for a 

mixed reality tool, namely ‘Familiarity’ and ‘Basic Operations’.  Hence, the design 

team would seek to develop a product that would respond to the learning objectives that 

sought to facilitate students in demonstrating familiarity with the various pieces of 

equipment and instrumentation, and, to demonstrate a capacity to operate same. 

Intuitively, it was felt that spatial reasoning was one of a number of theories that could 

assist the design team in selecting a number of teaching theories that could further guide 

the work.  Spatial reasoning is a diffused area of research (Davis & Francis 2020).  It 

involves, but is not limited to, a range of abstract reasoning skills that can identify, 

translate, transform and synthesize information about the geometry, scale, direction and 

motion of physical objects.  More fundamentally, it exploits the physical context of our 

own body in relation to our environment.  In the section that follows, a model will be 

employed to articulate how relevant learning and teaching theories can be understood in 

the context of mixed reality education products. 

 

Table 1: Definitions for desired competency categories 

 

 

 
 
Figure 1: Summary of learning outcomes, based on level of Education 

 

Learning 

Objectives 

Translating theoretical understanding to a practical situation 

Safety Knowledge of safe and responsible work practices 

Planning Independently able to plan experiments 

Familiarity Familiar with the equipment and instrumentation 

Operations Capable of operating equipment and instrumentation 

Calculations Able to carry out calculations on given or collected data 

Interpreting  Able to make sense of the raw data and calculated data 

Contrasting Can anticipate the correct values for collected and calculated data.   

Where  discrepancies  occur,  can identify the source(s) of error 

Communication Can communicate  goals,  processes  and  findings  
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3. A Cognitive Framework for the design of digital reality learning tools 

 

Figure 2: A Cognitive-Program Model 
Note: Teaching theories can be identified as hexagons with lighter borders and softer corners than 

their learning theory counterparts. Affordance Theory (Gibson, 1979) Simulation-based learning 

(Ton De Jong & Sarti, 1994) (Nazir et al, 2012) Distributed Cognition (Hutchins, 1991) Situated 

Learning (Lave & Wenger, 1991) 
 

Educational theories can be broken down into theories of learning and theories of 

teaching (Davis & Francis 2020), where learning theories seek to understand how 

learning happens and teaching theories are methods to facilitate learning.  As was the 

case for competencies, the design team sought to develop a simple model for rapid 

conceptualization of pedagogical design and cognitive processes in light of their 

existing and proposed digital systems.  Bearing in mind that this is merely a model, the 

purpose of which is to facilitate understanding, and, keeping in mind that it is by no 

means exhaustive, a Cognitive-Program Model was devised for the project and is 

represented in Figure 2 above.   

The model consists of three layers; a cognitive mental interface layer, a program layer 

(or product layer), and, a cognitive spatial interface layer.  The cognitive mental 

interface is devoted to human learning whilst the cognitive spatial interface is devoted 

to the relationship one has with their environment.  Sitting between the two cognitive 
interfaces is the digital program, mediating the relationship between how one thinks and 

how one interacts with their surroundings. 

In our Cognitive-Program Model, you can draw a vertical line through the center of the 

diagram to produce two discrete product groups.  To the left, is a system for a mixed 

reality solution that leverages affordances to create a distributed cognitive system. This 

mixed reality system exploits human perception, with a view to reducing cognitive load, 

for the purpose of enabling a user to focus their attention on the task at hand. 

Distributed cognition, as it relates to cognitive load, can be understood by two actions.  

The first is the potential to transfer content from our working memories and locate it 

elsewhere in our environment, for example, as a list on a piece of paper. The second 

action is the potential to access information that is annotated in our environment such as 

is the case with signs and symbols that populate motorways.  Combining these two 

actions is a powerful methodology to reduce cognitive overload.  Moreover, a learning 

environment with these capabilities is ideal for learners who are largely unfamiliar or 

inexperienced with a subject or skill.  On the right side of the diagram, is a system for a 

digital twin which leverages simulation in a situated context.  In contrast, the digital 

twin is suitable for those with a good fundamental understanding of their subject and 

whom are capable of engaging in a variety of reason-based cognitive activities.  This 

paper will not concern itself with the design of digital twins. 
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In the section that follows, a design study will be presented that demonstrates how some 

of the learning and teaching theories from our Cognitive-Program Model were applied 

to the design of a VR prototype at DTU in 2021.   

4. Design Study: The PID 

An affordance can be described as ‘the quality or property of an object that defines its 

possible uses or makes clear how it can or should be used’ (Merriam-Webster.com).  A 

Piping and Instrumentation Diagram (PID) is a language of related symbols.  The 

symbols in a PID do not necessarily have strong affordances.  On the other hand, the 

components and instrumentation for a unit operation are designed to tell a user how they 

can be used.  In nature it is more common to be exposed to a thing itself before one 

encounters or creates a symbol for the same thing.  However, often in formal education, 

as is the case for learning PILOT PLANT operations at DTU, it happens in reverse.  

At the 1st project meeting, the value of the PID was emphasized.  As a language in 

Chemical Engineering, and one that most students are fluent in, it was a feature that 

offered significant pedagogical value in the overall design.  Hence, it was decided to 

exploit it as a device that learners could use to comprehend the virtual renditions.  An 

initial design was proposed, however, the choice of hardware and software for the 

prototype did not facilitate the design of bespoke features.  On the contrary, the 

technical architecture had been selected for the speed of implementation, and not for 

flexibility.  As such the design team needed to be creative. 

In this design study, both the proposed and the implemented design for integrating the 

PID into the walkthrough for a pilot scaled experiment will be outlined.  In both cases, 

the solution seeks to achieve the same goal, which is to use the PID as a way to navigate 

and make sense of pilot scaled experiments. 

4.1 Original Design  

Excerpts from the original design specification: 

‘The PID will serve as a navigation device in the experiment.  For each step in the 

experimental process, the PID will change dynamically from step to step, illustrating 

which components are involved in each corresponding step.’ 

‘A user can locate individual components of the unit operation by selecting the 

corresponding unit in the PID, and vice versa’. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Mockup of how the PID could change dynamically from step to step 
Note: The vertical axis located on the right side of the screen acts as a navigation system for 

tracking the user’s current location in the experiment. In Figure 3, steps 1.3 – 1.6 are in view.  

Arrows on both ends of the axis allow the user to move back and forward through the 

experiment/narrative.  The PID can be visible or invisible (see Figure 4).  When the PID is visible, 

only the objects in the PID that are relevant to that step will be visible (not shown here).  
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Figure 4: Mock up for how to activate the PID as a navigation tool 
Note: A user can activate the PID overlay by performing an action on the corresponding step on 

the navigation axis.  Otherwise, the PID will be invisible. 

The first of the two use cases from the requirement specification is illustrated as 

mockups in Figure 3 and Figure 4 above.  In the mockups, the PID has been scaled up to 

facilitate understanding, however, in a VR environment, the relative size of the PID to 

the unit operation would be significantly smaller.   

This proposed solution responded to the requirements for the product by developing an 

interactive play between the PID and virtual unit operation.  The feature permitted the 

user to project knowledge about something they already understood, i.e. the PID, onto a 

new knowledge domain, i.e. physical unit operations.  This process is referred to as 

scaffolding, a theory that states that learners build new knowledge by using their 

existing knowledge (Wood, Ross, Bruner, 1976). And whilst attractive as a concept, 

time constraints dictated that an alternative solution was required, at least initially. As 

such, the proposed features are currently part of the product backlog for future 

development.   

4.2 Implemented Design 

The solution that was implemented for the prototype project took advantage of a 360 

VR development environment called present4D.  The main staple for the content 

delivery portion of the product was the development of a series of animated videos for 

each step in the experiment.  It was decided that in order to capture the value of the PID 

for each step in the experiment, cut scenes between a PID (highlighting relevant 

components for that step) and animated segments (that demonstrated the required action 

and location of the corresponding components) could serve to bridge the two. This is 

illustrated in Figure 5 below.   

The navigation system for the prototype was designed using an identical architecture to 

the proposed design, however the UX in the prototype is somewhat different.  Rather 

than using a linear axis for example, the user selects from a menu of modules, and then, 

from a menu of steps.   

 

 
 
Figure 5: Left: PID with arrow pointing to V38 (valve 38).  Right: Screen shot from 

animation with tag attached to V38 (valve 38). 

 935A Digital Reality Pilot Plant for Research and Learning 
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5. Conclusion  

VR is a visual medium and ideal for addressing pedagogical challenges that involve 

visual learning such as object recognition, process demonstrations and simulations of 

body active experiences.  There are several potential value propositions for developing 

digital reality tools to teach unit operations as part of chemical and biochemical 

engineering education, not least for remote learning.  Based on our experience, it is 

advantageous to consider the goals and the assumptions of the same courses offered in 

their current format, to guarantee that the competencies sought (or part thereof) are 

consistent.  

Technical architectures will shape the possibilities for product design, however, it is 

often possible to achieve the same requirements using different technologies, albeit via 

different design features.  This does not necessarily mean that the designs for each 

medium will be of equal value therefore the choice of technical architecture should be 

informed by their suitability to address the product goals. In the case of the prototype 

for DTU.KT, a full scale user testing program is yet to be implemented, however, the 

current implemented solution has recently been made available to both Teachers and 

Students at the department as a working prototype.  Early feedback suggests that the 

product is a useful tool for experiment preparation for both sets of users. 
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Abstract 

Under real industrial conditions, there are usually missing values in the data. This is due 

to measurement errors, sensor failures, missing values in real-time databases, irregular 

measurement intervals, and data that are not covering the total operation range of the 

plant. Due to the lack of data, the soft sensor (SS) model is of poor quality. The 

functioning of this model is also unsatisfactory in the new operating points of the plant 

in the case of a small training sample. We propose the use of a calibrated rigorous (first-

principles) process model with acceptable limits of parametric uncertainty to extend the 

training dataset, which allows us to take into account the physicochemical 

characteristics of the process. It is shown that the extension of the training sample based 

on the rigorous model makes it possible to obtain a nonlinear SS of higher accuracy. 

Keywords: soft sensor; small training dataset, rigorous model; sample extension; 

reactive distillation. 

1. Introduction 

Small samples in the development of SSs lead to overfitting and poor interpretability of 

the models of an industrial plant when using existing approaches of multiple regression 

and deep learning (Zhu et al., 2018). To improve the accuracy of SSs under conditions 

of small samples, we propose approaches based on the generation of virtual data. The 

approach based on the generation of virtual samples (Virtual Sample Generation - VSG) 

is used to obtain a large number of new virtual data based on information obtained from 

small data sets in order to increase the accuracy of SSs. To reduce gaps in the training 

data set, an information-expanded function based on triangular membership has been 

developed (Chen et al., 2017). For iterative evaluation of the most appropriate training 

samples, an approach based on particle swarm optimization with VSG (PSOVSG) was 

proposed. Zhu et al. (2020) propose a novel locally linear embedding based on a virtual 

sample generation (LLEVSG) approach. In their proposed LLEVSG method, locally 

linear embedding is first used to extract features from the original data space. Next, 

back-propagation neural network (BPNN) and a method of random interpolation are 

utilized to generate effective virtual samples in the sparse region of the original data. 

Within the framework of Industry 4.0, one of the important aspects should be noted, 

which is the use of a physically based first principles model, intended not only to model 

an industrial plant, but also to validate collected data for building a reliable model by 

monitoring the process in various operating points (Vaccari et al., 2021). Thus, the use 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50156-1 



938  A. Torgashov et al. 

of a physically based model for virtual sampling is an advanced approach, as it allows 

the taking into account of the physicochemical features of the chemical process, and it 

becomes possible to take into account various modes of operation of the industrial unit 

(Ko et al., 2021). 

Hsiao et al., 2021 proposed a methodology for developing SSs that combines a 

calibrated, physically based model to extend the training dataset and transfer learning to 

develop them. In this current work, we propose the use of a calibrated rigorous process 

model for sample extension in case of parametric uncertainty in the phase equilibrium 

model, which is often seen in practice. The superiority of the proposed approach based 

on the sample extension compared to the traditional PSO and PSO with bootstrapping is 

demonstrated based on the industrial reactive distillation of methyl tert-butyl ether 

(MTBE) production. 

2. Statement of problem and its analysis 

We have considered The problem of developing an SS for estimating the output product 

of a reactive distillation column produced by a high-octane additive of gasoline as 

MTBE in a small training sample (Fig. 1). The mass fraction of MTBE (grade A) should 

exceed 98% in the product. 

 
Figure 1: Histograms of the output variable distribution 

 

To build an SS, a training sample with input variables (Table 1) was used 

  42 6

1= ,…, nU u u R   and output variable observations   42 1

1= ,…, nY y y R  . 

To test the developed models, a test sample was used with   18 6

1= ,…, nU u u R   

and   18 1

1= ,…, nY y y R  . 

Basically, the "black box" model is used when building SS. The main drawback of this 

approach is the lack of use of available a priori knowledge about the process. To solve 

the problem of a small training sample and improve the accuracy of the SS, we propose 

the use of a rigorous analytical model for a reactive distillation (RD) process. 



Soft sensors development for industrial reactive distillation processes
 under small training datasets

 
Fi g u r e  2. The  MTBE s y n the s i s  f l ow s he e t d i a g r a m  

 

Table 1. P r oc e s s  v a r i a b l e s  

N o P r oc e s s  v a r i a b l e , u Ta g  n a m e  U n i ts  of  m e a s . 

1 Fe e d  of  c ol u m n  C -1 FIC 81 m
3
/hr  

2 Bottom  pr e s s u r e  of  c ol u m n  C -1 P I69  MP a  

3 Bottom  te m pe r a tu r e  of  c ol u m n  C -1 TI06 
о
С 

4 Top te m pe r a tu r e  of  c ol u m n  C -1 TI09  
о
С 

5 Fe e d  te m pe r a tu r e  of  c ol u m n  C -1 TIC 28 
о
С 

6 5
th

 tr a y  te m pe r a tu r e  of  c ol u m n  C -1 TIC 30 
о
С 

 

H ow e v e r , i t i s  a l s o n ot pos s i b l e  to d i r e c tl y  u s e  the  r i g or ou s  m od e l  of  R D to b u i l d  a n  S S , 

e .g . u s i n g  the  c on c e pt of  a  " g r a y  b ox "  (A hm a d  e t a l ., 2020) he r e , d u e  to the  hi g h 

d i m e n s i on  of  the  m od e l . A  s e t of  hi g hl y  n on l i n e a r  e q u a ti on s  c a n  b e  ob ta i n e d  b y  a  

m a te r i a l  b a l a n c e  e q u a ti on  (1), e n tha l py  b a l a n c e  e q u a ti on  (2), Mu r phr e e  m a s s  tr a n s f e r  

e f f i c i e n c y  e q u a ti on  (3), pha s e  e q u i l i b r i u m  e q u a ti on  (4), m ol a r  f r a c ti on  s u m m a ti on  

e q u a ti on  (5) a n d  c he m i c a l  r e a c ti on  r a te  e q u a ti on  (6) (W a n g  e t a l ., 2020, Me n d oz a  e t a l ., 

2013):  
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stoichiometric coefficient component i of the reaction r; R is the extent of the reaction, 

mol·s
−1

; hF, h
V
 and h

L
 are the feed, vapor and liquid mass enthalpies; 

*

iy  is the 

equilibrium mass fractions of the component i of the vapor phase; E
MV

 is Murphree 

mass transfer efficiency; rr is the reaction rate of the reaction r; T is the temperature, K; 

P is the pressure, MPa. 

3. Soft sensor evaluation based on the sample extension 

Therefore, we propose the use of a rigorous model of the RD plant to simulate the 

steady-state operating points under various conditions in order to extend the training 

sample. The proposed algorithm for developing the SS for estimating the quality of 

MTBE production in case of a small training dataset is shown in figure 2. 

 
Figure 3. The scheme of algorithm for developing the SS in case of a small sample of 

industrial data. 

 

Kernel partial least squares (KPLS) (Jin et al., 2014, Liu et al., 2010) are used for 

developing the SS to estimate the quality of MTBE. Giving the input matrix 

 1= ,…, n m

nU u u R   and output matrix  1= ,…, n p

nY y y R  used, where n is the 

number of observations, and m and p represent the number of process variables and 

quality variables, respectively. 

The rigorous model of reactive distillation was calibrated on industrial data and the 

following Murphree efficiencies were estimated: 1
ˆ 0.8E   (trays 1-5); 2

ˆ 0.6E   (trays 6-

28). It should be noted that the calibration of the rigorous model is also influenced by 

the parameters of binary interaction. For the MTBE production process, the parameters 

of the binary interaction of isobutylene (DIB) dimers (2,4,4-trimethyl-1-pentene, and 

2,4,4-trimethyl-2-pentene) are practically absent in the literature. However, DIB is often 

detected in the output product as an impurity component. Binary parameters for MTBE 

and DIB are MTBE,DIB 17.13    K, DIB,MTBE 45.75   K. (Sundmacher et al., 1999). 

For a rigorous model, the activity coefficients of the MTBE-system are calculated from 

the UNIQUAC-model. In this regard, the deviations of the calibrated rigorous model 

parameters ˆ
ij  of the process under study were introduced as ˆ ˆ

ij ij ij    . To 

determine the threshold values of deviations opt.th

ˆ
ij

 , the % of reduction of R
2
 (δR

2
) was 

estimated for the range of parametric uncertainty  ˆ 0.1, 0.4ij   relative to the base 

case when the model exactly corresponds to the plant, i.e. relatively to ˆ 0ij  . If δR
2
 

exceeded 5%, then a threshold deviation value was assigned for the corresponding 
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binary parameters under which the extension of the training dataset leading to 

improvement of soft sensor model accuracy (Table 2). 

Table 2. R
2
 and MAE obtained on the test sample before and after the extension of the 

training sample 

Criterion 
Extension of the training dataset (number of added observations) 

0 10 20 30 

Particle swarm optimization 

MAE 0,1626 0,1595 0,1548 0,1503 

R
2
 0,5514 0,6060 0,6897 0,7025 

Particle swarm optimization and bootstrap 

MAE 0,1626 0,1579 0,1495 0,1489 

R
2
 0,5514 0,6243 0,7077 0,7139 

Rigorous model 

MAE 0,1626 0,1501 0,1483 0,1408 

R
2
 0,5514 0,7053 0,7245 0,7316 

 

 
Figure 4: Comparative study of several SSs 

 

The proposed algorithm based on the rigorous model for extending the training sample 

is compared with well-known approaches for building models to evaluate the quality of 

end products in conditions of small training samples (Fig.4)—for example, expanding 

the training sample using particle swarm optimization (Chen et al., 2017), as well as the 

joint application of particle swarm optimization with bootstrap (Fortuna et al., 2009, 

Zhang et al., 2021). The value of MAE for an SS to estimate the concentration of MTBE 

using the proposed approach is reduced by ((0.1626-0.1408)/0.1626) 100 13.41%   . 

4. Conclusions 

The use of a calibrated, physically based model of the process with acceptable limits of 

parametric uncertainty of binary parameters to extend the training sample allows us to 

take into account the physico-chemical characteristics of the process. The use of 

nonlinear methods for building soft sensors on an extended training sample allows to 

increase the accuracy of the developed SS. 

Soft sensors development for industrial reactive distillation processes

 under small training datasets
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Abstract 

To realize robust process design and operation of simulated moving bed (SMB) 

chromatography, prediction uncertainty in a model must be quantified. In this study, we 

quantify the prediction uncertainty as predictive distributions stemming from a model 

parameter uncertainty estimated from experimental data. The resulting predictive 

distributions provide insights into selecting experimental methods to assure reliability of 

the model predictions and parameters. 

Keywords: Simulated Moving Bed; Uncertainty Quantification; Bayesian Inference; 

Predictive Distribution; Sequential Monte Carlo. 

1. Introduction 

Simulated moving bed (SMB) chromatography is a continuous separation process 

widely used for the separation of petrochemicals, enantiomers, and chiral compounds 

(Schmidt-Traub et al., 2012). The SMB process consists of multiple chromatographic 

columns connected in a semi-closed-loop structure, and a mixture is continuously 

separated by cyclic operation. Between each column, there are inlet valves for supplying 

feed and desorbent streams and outlet valves for withdrawing extract and raffinate 

streams. The positions of these four streams are simultaneously switched along the flow 

direction at a regular time interval, called step time.  

A lot of research has been carried out on modeling of SMB, process design, and 

optimization using mathematical models. In most of these studies, the SMB model 

consists of a system of partial differential algebraic equations (PDAEs). In this model, 

there are unknown parameters that are dependent on adsorbents and components to be 

separated. To estimate parameters, many estimation methods have been studied; in 

general, these unknown model parameters are estimated from single-column batch 

experiments and applied to the SMB model. Research to optimize operating 

conditions—the four flow rates and step time—by model simulation using estimated 

parameters has also been extensively conducted. 

To assess the SMB model in terms of reliability and robustness, uncertainty in the 

model prediction—product concentration, purity, recovery, and internal concentration 

profile—should be quantified, but there has been little research on the quantification of 

uncertainty of the SMB model prediction so far. Uncertainty in model prediction stems 

from uncertainties in model parameters, implementation of design and operation, and 

measurement. This prediction uncertainty can be quantified by estimating the predictive 

distribution. By obtaining the predictive distribution, the reliability of the model 

prediction can be assessed under various uncertainties, which is crucial for robust 
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process design and optimization; however, the predictive distributions of purity and 

recovery, which are essential for evaluating the process performance of SMB, have not 

been sufficiently investigated, especially for systems with nonlinear adsorption behavior. 

In this study, we rigorously estimate uncertainty in SMB model predictions derived 

from uncertainty in model parameters and analyze an influence of the parameter 

uncertainty. We consider the separation of the mixture of two components described by 

the Langmuir isotherm (Bentley et al., 2013). Uncertainty in model parameters is 

quantified as the posterior distribution via Bayesian inference from the artificial 

simulation data of single-column batch experiments. We employ sequential Monte 

Carlo (SMC), which parallelizes numerical sampling for efficient implementation of 

Bayesian inference (Yamamoto et al., 2021). The predictive distributions are obtained 

based on the estimated parameter uncertainty. The resulting predictive distributions 

provide insights into the reliability of parameter estimation results and model 

predictions, as well as the robustness of processes and operating conditions. 

2. Methodology 

2.1. SMB Process Model 

A system of PDAEs, called the LDF model that is widely used to describe adsorption 

phenomena inside columns, is adopted in this study. Details of this model are given in 

Schmidt-Traub et al. (2012). The mass balance in the liquid phase is, 

𝜀b

𝜕𝐶𝑖
𝑗(𝑥, 𝑡)

𝜕𝑡
+ (1 − 𝜀b)

𝜕𝑞𝑖
𝑗(𝑥, 𝑡)

𝜕𝑡
+ 𝑢𝑗(𝑡)

𝜕𝐶𝑖
𝑗(𝑥, 𝑡)

𝜕𝑥
= 0 (1) 

where 𝐶𝑖
𝑗(𝑥, 𝑡)  and 𝑞𝑖

𝑗(𝑥, 𝑡)  are concentrations in the liquid and solid phases, 

respectively, of component 𝑖 ∈ {𝐴, 𝐵}  in the 𝑗 ∈ {1,2, … , 𝑁col} th column at axial 

position 𝑥  at time 𝑡 ; 𝜀b  is the overall bed porosity; 𝑢𝑗(𝑡)  is the superficial liquid 

velocity; 𝐴 and 𝐵 are components to be separated; and 𝑁col is the number of columns in 

the SMB. The mass balance in the solid phase is 

𝜕𝑞𝑖
𝑗(𝑥, 𝑡)

𝜕𝑡
= 𝑘𝑖 (𝑞𝑖

eq,𝑗(𝑥, 𝑡) − 𝑞𝑖
𝑗(𝑥, 𝑡)) (2) 

where 𝑘𝑖 is the overall mass-transfer coefficient of component 𝑖; and 𝑞𝑖
eq,𝑗(𝑥, 𝑡) is the 

equilibrium concentration in the solid phase. This equilibrium concentration is given by 

the Langmuir isotherm: 

𝑞𝑖
eq,𝑗(𝑥, 𝑡) =

𝐻𝑖𝐶𝑖
𝑗(𝑥, 𝑡)

1 + 𝑏𝐴𝐶𝐴
𝑗(𝑥, 𝑡) + 𝑏𝐵𝐶𝐵

𝑗(𝑥, 𝑡)
 (3) 

where 𝐻𝑖  is Henry’s constant and 𝑏𝑖 is the affinity coefficient. 

2.2. Bayesian Inference and Predictive Distribution 

In this study, we estimate the predictive distribution due to uncertainty in the model 

parameters. Generally, an observation 𝒚 ∈ ℝ𝑀 is modeled using a deterministic model 

𝑓(𝜽) and an observation error as 𝒚 = 𝑓(𝜽) + 𝜺, where 𝜽 is the model parameter and 𝜺 

is the observation error. The observation error is often assumed to follow a multivariate 
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normal distribution with mean 0 and a covariance matrix 𝚺. Under this assumption, the 

probability density 𝑝(𝒚|𝜽) is given by 

𝑝(𝒚|𝜽) =  (2𝜋)−
𝑀
2 |𝜮|−

1
2𝑒𝑥𝑝 {−(𝒚 − 𝑓(𝜽))

𝑇
𝜮−1(𝒚 − 𝑓(𝜽))}   (4) 

The parameters 𝜽  in the model 𝑓(𝜽)  are estimated from observed data 𝒀data  via 

Bayesian inference: 

𝑝(𝜽|𝒀data) ∝ 𝑝(𝒀data|𝜽)𝑝(𝜽)  (5) 

where 𝑝(𝜽|𝒀data)  is the posterior distribution; 𝑝(𝜽)  is the prior distribution; and 

𝑝(𝒀data|𝜽) is the likelihood distribution formulated as 𝑝(𝒀data|𝜽) = ∏ 𝑝(𝒚𝑖
data|𝜽)

𝑁data
𝑘=1  

when the data is given by 𝒀data = [𝒚1
data, 𝒚2

data, … , 𝒚𝑁data

data ]
𝑇
. 

The predictive distribution 𝑝(𝒚|𝒀data) using the posterior distribution of the parameter, 

𝑝(𝜽|𝒀data) obtained by Eq. (5), is given as follows: 

𝑝(𝒚|𝒀data) = ∫ 𝑝(𝒚|𝜽)𝑝(𝜽|𝒀data) 𝑑𝜽 (6) 

where 𝑝(𝒚|𝒀data) is usually approximated using a Monte Carlo method. 

In this study, the model 𝑓(𝜽)  is Eqs.(1)-(3), 𝜽 = [𝐻𝐴, 𝐻𝐵 , 𝑘𝐴, 𝑘𝐵, 𝑏𝐴, 𝑏𝐵]𝑇 , and the 

observation is 𝒚 = [𝐶E̅xt,𝐴, 𝐶E̅xt,𝐵, 𝐶R̅aff,𝐴, 𝐶R̅aff,𝐵]
𝑇

 where  𝐶𝑖̅  is the average product 

concentration and subscripts Ext and Raff refer to extract and raffinate, respectively. 

The data 𝒀𝑑𝑎𝑡𝑎 are the time-series concentration data sets obtained from the artificial 

simulation data of single-column batch experiments as follows: 𝒀data =

[𝑪1
data, 𝑪2

data, … , 𝑪𝑁data

data ]
𝑇
 where 𝑪𝑘

data refers to the 𝑘th experimental data set as 𝑪𝑘
data =

{(𝑡𝑙, 𝐶(𝐿, 𝑡𝑙))}
𝑙=1

𝑀
; 𝐿  is the length of the column; and 𝑡𝑙  is observation time in 𝑘 th 

experiment. 

3. Experimental 

3.1. SMB Model, Operating and Simulation Condition 

The model parameters, as well as design and operating conditions in Bentley et al. 

(2013) for the separation of cyclopentanone (c5) and cyclohexanone (c6) with SMB 

were used in this study. The final parameter values repetitively refined in their study 

were employed as true values in this study. Their design conditions—the number of 

columns 𝑁col = 4 , column length 𝐿 = 0.25 [m]—were adopted, and their operating 

conditions—flow rates and step time—were also employed. The covariance matrix 𝚺 in 

Eq.(4) was assumed to be a diagonal matrix, and the diagonal element 𝜎𝑖𝑖 was assumed 

to satisfy the following equation for the element 𝑦𝑖  of 𝒚: 1.96𝜎𝑖𝑖 = 0.03𝑦𝑖  [g L⁄ ]. 

3.2. Artificial Data of Single-Column Experimental 

Simulation of the single-column batch experiment was conducted to obtain the artificial 

data. Two experimental data were generated using a mixture of c5 and c6 with 34 g/L 

of each component as a feed and a flow rate 𝑄 = 3.0 [mL min⁄ ]: (A) 40 μL injection 

Simulated Moving Bed Chromatography
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test. (B) 20 mL injection test. For (A) and (B), the number of experimental points was 

𝑀 = 1000; the observation time was 𝑡𝑀 = 1200 [s]; and Gaussian noise was added as 

the observation error. Bayesian inference was performed with two different data sets—

Set α and Set β: Set α contains only (A) (𝑁data = 1) while Set β contains (A) and (B) 

(𝑁data = 2). 

3.3. Implementation of sequential Monte Carlo 

The posterior distribution of the model parameters was estimated using SMC with the 

likelihood tempering (Yamamoto et al., 2021). SMC approximately estimates the 

posterior distribution in Bayes' theorem (Eq.(5)), which cannot be solved analytically in 

general, from data using a large number of particles. The number of particles was 1,000 

and the number of likelihood tempering depended on data sets, 24 for Set α and 31 for 

Set β. The prior distribution was set with the method shown in Yamamoto et al. (2021).  

4. Results 

4.1. Posterior Distribution of Model Parameters 

Comparing the posterior distributions estimated using Set α  and Set β , the posterior 

distributions estimated from Set β were found to have smaller uncertainty than that of 

Set α. Table 1 shows the mode values and 95% credible intervals of the posterior 

distributions from Set α  and Set β , respectively. The 95% credible intervals for all 

parameters were narrower for Set β  than for Set α ; especially, the intervals of the 

equilibrium constants 𝐻𝑖  and 𝑏𝑖  were reduced from Set α to Set β by 86%, 89%, 99%, 

and 96%, for 𝐻c5 , 𝐻c6 , 𝑏c5 , and 𝑏c6 , respectively. This uncertainty reduction of the 

equilibrium constants is due to the addition of the breakthrough test (B) data, where the 

interaction between 𝑏c5  and 𝑏c6  sufficiently appears, making it easier to determine 

values of 𝐻𝑖  and 𝑏𝑖. 

Table 1. True values, modes, and 95% credible intervals of posterior distributions of model 

parameters estimated from Set α and Set β.  

Parameter True Posterior distribution (Set α) Posterior distribution (Set β) 

𝐻c5 [−] 2.13 2.13−6.55×10−3
+5.23×10−3

 2.13−1.07×10−3
+5.53×10−4

 

𝐻c6 [−] 3.82 3.82−4.75×10−3
+4.15×10−3

 3.82−5.36×10−4
+4.72×10−4

 

𝑘c5 [s−1] 0.312 0.312−1.44×10−3
+1.14×10−3

 0.312−1.13×10−3
+1.23×10−3

 

𝑘c6 [s−1] 1.19 1.19−7.26×10−3
+1.09×10−2

 1.19−4.22×10−3
+5.20×10−3

 

𝑏c5 [g L⁄ ] 1.7 × 10−2 1.57 × 10−2
−6.51×10−3
+7.03×10−3

 1.70 × 10−2
−4.42×10−5
+6.88×10−5

 

𝑏c6 [g L⁄ ] 4.2 × 10−2 4.35 × 10−2
−1.67×10−3
+2.28×10−3

 4.21 × 10−2
−1.00×10−4
+6.90×10−5

 

4.2. Prediction uncertainty in internal concentration of SMB 

The two parameter uncertainties estimated from Set α and Set β were propagated to the 

SMB model predictions. Figures 1 (a) and (b) show the simulation results at the true 

parameter and the uncertainty of the internal concentration profile by median and 68 %, 

95 %, and 99.9 % prediction intervals (PI). These PIs were estimated by solving the 

SMB model with 1,000 sets of model parameters sampled from each of the posterior 



distributions from Set α  and Set β . For each simulation, 20 cycles of continuous 

operation were performed to ensure that the process reached the cyclic steady state 

(CSS). The width of the 99.9 % PI for the internal concentration of each component is 

clearly narrower in (b) than in (a). 

The reduction in the uncertainty on the internal concentration profiles of Set β from 

Set α  can be explained by the data addition of the breakthrough test (B) used for 

parameter estimation. In the region where the two components are mixed, indicated by 

the arrow in Figure 1 (a), the median of PIs deviates significantly from the true value; in 

the same interval in Figure 1 (b), there is almost no spread in PIs. The interaction 

between 𝑏c5  and 𝑏c6  may appear significantly in the interval in which the two 

components mix at high concentrations, where the uncertainty can be reduced 

remarkably by including the data of the breakthrough test (B).  

 
Figure 1. Simulation using the true parameter values and prediction intervals (PI) of the internal 

concentration profile. (a) PIs estimated from the posterior distribution from Set α. (b) PIs 

estimated from the posterior distribution from Set β. 

4.3. Predictive Distribution of Product Purities and Recoveries 

Similarly to the uncertainty of the internal concentration profile (Figure 1), the 

predictive distribution of product purity and recovery estimated from the posterior 

distribution of Set β was much less uncertain than that of Set α. Figure 2 (a1) to (a4) 

and (b1) to (b4) show the predictive distributions of purity 𝑃𝑢𝑟Raff,c5 and 𝑃𝑢𝑟Ext,c6 and 

recovery 𝑅𝑒𝑐Raff,c5 and 𝑅𝑒𝑐Ext,c6 estimated from the posterior distributions of Set α and 

Set β, respectively. In each graph, the abscissa is the purity or recovery, and the ordinate 

is the probability density, obtained from the model using the true parameters and two 

types of predictive distributions: one propagating only the parameter uncertainty and the 

other including observation error. As in Figure 1, the predictive distribution was 

estimated using 1,000 sets of parameters sampled from the posterior distribution. The 

predictive distributions for (b1) through (b4) are much sharper than those for (a1) 

through (a4). 

By comparing the predictive distributions with and without observation error, we 

conclude that the influence of the parameter uncertainty estimated from Set β  is 

sufficiently smaller than that of the observation error. For Set α, the two predictive 

distributions shown in Figure 2 (a1) to (a4) overlap each other, indicating that the 

parameter uncertainty is more dominant than the observation uncertainty. In contrast, 

for Set β shown in (b1) to (b4) of Figure 2, the magnitudes of the variances for the two 

predictive distributions differ significantly; the predictive distributions without 

observation error are very sharp, while those with observation error is widely distributed 
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as nearly symmetric distributions; i.e., the observation uncertainty given as Gaussian 

noise is more dominant than the parameter uncertainty. This result confirms that, under 

the observation error assumed in this study, the influence of the parameter uncertainty 

estimated from Set β on the SMB model predictions is reduced sufficiently. 

 
Figure 2. Predictive distributions (PD) of purity and recovery estimated from the posterior 

distributions of Set α—(a1), (a2), (a3), and (a4)—and of Set β—(b1), (b2), (b3), and (b4). 

5. Conclusions 

In this study, we quantified the prediction uncertainty in an SMB model and analyzed 

the influence of the parameter uncertainty on predictions from two different 

experiments. The resulting distributions allow us to evaluate the reliability of the model 

predictions and parameters and identify the necessary experiments. Estimating a 

predictive distribution that considers the uncertainty of the operating conditions such as 

flow rates and step time will be future work. 
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Abstract 

The rapid growth of the global economy, combined with the growing demand for energy, 

environmental degradation from greenhouse gas emissions, and fluctuating fossil fuel 

prices, have emphasised the importance of renewable sources of energy. Biofuels 

produced from biomass conversion processes accounts for at least 13% of the gross global 

energy consumption and 70% of the world renewable energy mix. The biomass resources, 

including municipal, industrial and forestry waste, were proven to have a great potential 

for deriving various forms of energy in an affordable and reliable manner. In this regard, 

several thermochemical technologies have been developed to convert biomass waste into 

energy. However, due to the extremely heterogeneous characteristics of biomass 

resources, the feasibility and efficiency of these processes may greatly vary, depending 

on the biomass category and composition. Intensive experiments, simulations and 

optimisation models were developed to select the optimal processing pathway for each 

feedstock, which generally consume significant time and effort. To address this issue, it 

is desirable to seek novel and accurate mathematical representations that enable rapid 

performance estimation and multi-criteria selection for the optimal biomass processing 

pathway based on the physical properties and chemical compositions of different biomass 

categories, without the need for expensive experimental setup or time-consuming 

simulations. The objective of this study is to develop a mathematical model which links 

the biomass’ proximate and elemental analyses to three crucial technology performance 

criteria: including the return on investment, energy efficiency, and carbon intensity. For 

this purpose, intensive simulations and sensitivity analyses were carried out using Aspen 

Plus to examine three main processes including gasification, pyrolysis and hydrothermal 

liquefaction (HTL). The comprehensive simulation data were subsequently used to 

develop and compare multiple meta-models for their accuracy of representation using 

regression algorithms. This model is believed to expedite the ongoing research on 

biomass thermo-processing and play a significant role towards enhancing biomass 

sustainability. 

Keywords: Prediction model, Biomass, Gasification, Pyrolysis, Liquefaction.  

1. Introduction 

Biofuels, which are produced from biomass, nowadays contribute to nearly 70% of renewable 

mix and considered as a promising alternative fuel to reduce greenhouse gas emissions (WBA, 

2019). In this context, wastes are the most abundant biomass for almost every country to be 
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processed into valuable energy products. While thermochemical conversion pathways (i.e., 

gasification, pyrolysis, HTL) are now gaining more interest at the expense of the time-consuming 

biochemical processes like anaerobic digestion. Nevertheless, there is no single technology can 

efficiently accommodate all different types of wastes due to their extremely heterogeneous 

nature. Therefore, the selection of technologies that can handle this diversity is very important 

for bio-refineries. Selecting an optimal technology to process specific biomass resources have 

been presented earlier using different optimization techniques (Al-Ansari et al., 2020; Alherbawi 

et al., 2021a). However, these models are biomass-specific and do not often accommodate a 

wide range of biomass resources. As such there is a persistent need to provide a general model 

that can predict the optimal technology to process different biomass resources based on their 

composition and characteristics without the need to perform any intensive experiments or 

simulations. The assessment and the selection of the optimal waste to energy technology is a 

tricky process as it is closely linked with socio-economic and environmental factors, hence an 

appropriate solution for the above challenge has to be arrived at based on multi-criteria decision-

making. For example, Yap and Nixon employed the analytic hierarchy process (AHP) model to 

identify the most suited waste to energy technology in the UK and India (Yap and Nixon, 2015). 

It was reported that gasification is the most appropriate technology for treating wastes in UK 

while anaerobic digestion is the best technique for India. Therefore, this study presents a 

prediction model for the selection of optimal thermochemical technology based on the proximate 

and elemental characteristics of biomass. The targeted processes are modelled using Aspen 

Plus, and evaluated in terms of their technical, environmental, and economic performance 

for a wide set of biomass compositions. The obtained data are utilized to develop a 

regression prediction model that correlates the different biomass compositions to the 

energy recovery, the return on investment and the possible greenhouse gas reduction 

relative to fossil resources. 

2. Methodology 

2.1. Processes Modelling 

Advanced System for Process Engineering (Aspen Plus V.10) software is utilised for the 

development of the three thermochemical processes. All processes are modelled based on 

the assumptions of steady-state and isothermal conditions. For gasification modelling, 

Peng-Robinson package is selected to estimate fluid properties. In addition, biomass is 

initially defined as a nonconventional component referring to its proximate and elemental 

attributes. The nonconventional attributes are then converted into their corresponding 

components using a Fortran code. Steam is used as a gasifying medium with a steam to 

biomass ratio of 0.75, while the process is conducted at 850 °C and atmospheric pressure 

(AlNouss et al., 2021). The “RGibbs” reactor is used to simulate the key reactions which 

operates based on the minimization of the Gibbs’ free energy. By the end of the process, 

biochar is collected using a cyclone, while the condensable volatiles are collected upon 

the cooling of the stream. The gasification process flowsheet is presented in Figure 1. 

For pyrolysis process, biomass is initially dried then introduced into a grinder, whereby, the 

energy requirement for drying and grinding is adapted from (Cheng et al., 2020). The 

nonconventional stream is then converted into conventional components using a Fortran 

code based on the products distribution model of (Swagathnath et al., 2019). The process is 

simulated in an “RYield” reactor at 600 °C and atmospheric pressure with the supply of 

nitrogen gas to ensure an inert atmosphere (Alherbawi et al., 2021a). Char is then collected 

using a cyclone, while the volatile stream is cooled down for the collection of syngas and 

bio-oil. The process flowsheet of pyrolysis is presented in Figure 2. 
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Figure 1: A simplified process flowsheet of gasification. 

 

Figure 2: A simplified process flowsheet of pyrolysis. 

 

Figure 3: A simplified process flowsheet of hydrothermal liquefaction. 

For HTL modelling, the non-random two-liquid (NRTL) thermodynamic package is used, 

while biomass is defined based on its proximate and elemental attributes. Water as added 

to create a slurry ensuring the organic solids do not exceed 20%. The slurry is then pumped 

using two consecutive high-performance pumps into the HTL reactor. The key sub-process 

is simulated using an “RYield” reactor, whereby, the maximum biocrude and minimum 

hydrochar yields are restricted based on the model developed by (Zhong and Wei, 2004) 

using a Fortran code. While the biocrude and hydrochar compositions are adapted from 

(Pedersen et al., 2017) and (Lentz et al., 2019) respectively. The syngas composition is 

then calculated in an “RGibbs” reactor via the minimization of the Gibbs’ free energy. The 

process is conducted at 350 °C and 100 bar. In addition, solids are collected using a hydro-

cyclone, while a three-stage flash drum is utilised to split the remaining stream into three 

phases: gas, biocrude and an aqueous phase. The HTL flowsheet is illustrated in Figure 3. 

2.2. Technical, environmental and economic studies  

Three criteria are selected to develop the prediction model for optimal processing 

pathway selection, including technical, environmental and economic aspects. At technical 

level, energy recovery is evaluated as a ratio of the generated energy to the consumed 

energy for each process. The generated energy is estimated based on the lower heating 

value of all products, while the consumed energy comprises utilities requirement and the 
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calorific value of biomass. Whereas for the environmental study, the global warming 

potential (GWP) at process level (gate-to-gate approach) is evaluated. It comprises the 

greenhouse gases emitted to atmosphere during the process, as well as the GWP of 

utilities based on an emission factor of 0.58 kgCO2-e/kWh (Spath and Mann, 2000). The 

GWP of each process is then evaluated in relation to that of charcoal (Bhattacharya et al., 

2002). Nevertheless, an economic study is conducted for all processes using Aspen 

Process Economic Analyzer (APEA V.10). To achieve a high accuracy of capital costs 

evaluation, the key equipment prices are based on actual market prices, while scaled 

up/inflated based on the Chemical Engineering Plant’s Cost Index (CEPCI) (Alherbawi 

et al., 2021b). The year 2019 is considered as the base year of analysis, while all processes 

plants are assumed to have a feed capacity of 30 t/h and a lifespan of 25 years. The return 

of investment (ROI) parameter is used for the comparison between the different processes 

and runs, which provides a ratio between net income and investment cost. 

2.3. Regression Model 

Regression approach is utilized to develop a prediction model that correlates the biomass 

characteristics and thermochemical processes performance. Six input parameters are 

considered in the model including moisture, ash, carbon, hydrogen, oxygen and nitrogen 

contents of biomass. Whereas three responses are observed including the energy recovery 

(%), the GHG reduction relative to charcoal (%), and the return on investment (%). Each 

input parameter is varied, while the remaining parameters are normalised with reference 

to a baseline biomass composition. The parameters are varied as follows: moisture (10-

50 %), ash (6-18 %), carbon (30-70 %), hydrogen (4-12 %), oxygen (20-40) and nitrogen 

(1-5 %). The fixed carbon is assumed to be 50% of total carbon for all runs, while the 

volatile matter is found based on the difference (100% - fixed carbon – ash). In total 54 

runs are conducted and evaluated. The obtained responses are then processed to develop 

a regression prediction model using Excel’s Data Analysis tool. 

2.4. Model Evaluation 

The models have then been evaluated through providing three different biomass 

feedstocks to test the model performance against reported results from Aspen simulation. 

Table 1: Biomass types for model evaluation.  

Biomass M* FC VM Ash C H N O 

Food waste 70.0 33.07 61.13 5.80 43.97 4.97 2.14 43.12 

MWS 7.56 24.21 57.99 17.8 48.47 5.14 1.16 27.43 

Waste Plastics 0.41 0.28 97.28 2.44 83.93 12.83 0 0.80 

* M: moisture content on wet basis (%). 

3. Results and Discussion 

The developed model is evaluated by analysing the values of regression coefficients and 

analysis of variance (ANOVA). Besides, the extent of fit of the model equation is expressed 

by the determination coefficient R2, while the model significance is evaluated through F-

significance as presented in Table 2. The predicted R2 values of (70.57 – 99.83 %) reflect a 

good correlation between the actual and predicted values of the responses. While the model 

significance is high since the lack of fit values (F-significance) are extremely low (0.01- 

8.5x10-13). A maximum “F” value of 0.01 means that only 1% of the input data may possibly 

not fit into the model. The model suggested that the moisture, carbon and oxygen contents are 

the key influencing parameters for all responses. 



Table 2: Regression models and their data fitting evaluation.  

 Regression model* F-Significance R2 

Gasification 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) 

= 1.005 ∗ 𝐶 + 1.868 ∗ 𝑂 − 0.292 ∗ 𝑀 
2.9x10-07 97.07 % 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) 

= 4.036 − 4.456 ∗ C − 5.217 ∗ O − 0.639 ∗ M 
2.5x10-05 92.23 % 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (%) 

= 0.638 − 0.131 ∗ 𝐶 − 0.891 ∗ 𝑂 − 0.292 ∗ 𝑀 
8.5x10-13 99.83 % 

Pyrolysis 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) 

= 1.303 − 0.316 ∗ 𝐶 − 0.476 ∗ 𝑂 − 1.060 ∗ 𝑀 
8.2x10-11 99.52 % 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) 

= 1.112 − 1.033 ∗ 𝑂 − 0.437 ∗ 𝑀 
1.0x10-02 70.57 % 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (%) 

= 0.777 − 0.307 ∗ 𝐶 − 0.974 ∗ 𝑂 − 0.453 ∗ 𝑀 
1.5x10-08 98.49 % 

HTL 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) 

= −4.148 + 5.627 + 7.040 ∗ 𝑂 − 0.961 ∗ 𝑀 
2.8x10-07 97.10 % 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) 

= 2.619 − 2.006 ∗ 𝐶 − 2.887 ∗ 𝑂 + 0.248 ∗ 𝑀 
1.6x10-04 88.28 % 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (%) 

= −0.742 + 1.088 ∗ 𝐶 + 1.263 ∗ 𝑂 − 0.3 ∗ 𝑀 
1.5x10-04 88.40 % 

* M: moisture content on wet basis (%), C & O: carbon and oxygen mass contents on dry basis (%). 

The three responses are combined in one formula to indicate an overall efficiency for each 

process, considering an equal relative weight for each response. The final prediction model 

is presented in Eq.(1-3). The overall efficiency is a function of biomass characteristics 

which facilitates selecting the optimal processing pathway for each biomass, by satisfying 

the technical, environmental and economic aspects of the process. The highest overall 

efficiency amongst the three processes indicates the optimal technology for the tested 

biomass. 

𝑮𝒂𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝒐𝒗𝒆𝒓𝒂𝒍𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 (%) = 1.668 −  1.057 ∗ 𝐶 −  1.413 ∗ 𝑂 −  0.408 ∗ 𝑀 (1) 

𝑷𝒚𝒓𝒐𝒍𝒚𝒔𝒊𝒔 𝒐𝒗𝒆𝒓𝒂𝒍𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 (%) =  1.064 −  0.2076 ∗ 𝐶 −  0.828 ∗ 𝑂 −  0.65 ∗ 𝑀  (2) 

𝑯𝑻𝑳 𝒐𝒗𝒆𝒓𝒂𝒍𝒍 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 (%) =  −0.757 +  1.5698 ∗ 𝐶 +  1.8057 ∗ 𝑂 −  0.338 ∗ 𝑀   (3) 

The model is evaluated using the three biomass feedstocks in Table 1. The results as 

illustrated in Figure 4 demonstrate the excellence of HTL in the case of food waste that is 

high in moisture, fixed carbon and oxygen, gasification in the case of municipal solid waste 

(MSW) that is moderate in attributes, and pyrolysis in the case of waste plastic that is high 

in volatile matter and carbon content.  
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Figure 4: Results of model evaluation. 

4. Conclusions 

The study in hand presented a prediction model for the selection of optimal 

thermochemical processing pathway without the need for the costly experiments or time-

consuming simulations. Whereby, the prediction model satisfies the technical, 

environmental and economic aspects of the selected optimal process based on the 

proximate and elemental attributes of different biomass resources. As such, this model is 

expected to contribute to the development of sustainable biomass-based energy 

production and expediate the ongoing research in biorefining field.  
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Abstract 
A recent numerical study on the mass transfer around a crystal showed that the mass 
transfer rate in a shear flow is greater than that in a uniform flow. In this study, we also 
demonstrated that this effect was greater for small crystals. This implies that under shear 
flow conditions, fine crystals grow faster, and a greater number of effective nuclei can be 
generated. In this study, the effect of shear flow on the size distribution of the product 
crystals was investigated. The evolution of the crystal size distribution in a batch cooling 
crystallizer was simulated by solving a population balance equation. Because batch 
crystallizers are operated under unsteady state conditions, the consequence of applying a 
shear in the early stage of the operation is expected to differ from that in the final stage. 
The numerical results obtained in this study showed that the crystal size distribution could 
be controlled by varying the profile of the shear rate. 

Keywords: cooling crystallization, population balance equation, mass transfer, shear rate, 
dynamic operation 

1. Introduction 
Crystallization is an important class of unit operation for purification. The quality of 
product crystals is largely determined by their size distribution. There are several different 
operations that create supersaturation, which is the driving force behind crystal deposition. 
One of the typical operations is cooling crystallization, in which the solution temperature 
is lowered such that the saturation concentration decreases below the solute concentration. 
In cooling crystallization, the temperature profile is the only parameter that can be 
manipulated to control the crystal size distribution. The impact of manipulating the 
temperature profile on the crystal size distribution was demonstrated using the 
programmed cooling method (Mullin and Nývlt, 1971). 

 Recently, a new type of crystallizer, which utilizes the Taylor–Couette flow, has drawn 
considerable attention because it allows better control over the crystal size (Nguyen et al., 
2017). A Taylor–Couette crystallizer comprises two concentric cylinders with a small gap. 
The inner cylinder rotates and produces a uniform shear flow in the solution in the gap. 
A previous study claimed that this type of crystallizer could produce finer crystals with a 
smaller coefficient of variation (Nguyen et al., 2017). The characteristics of the Taylor–
Couette apparatus have been investigated experimentally (Nguyen et al, 2010, Khuu et al, 
2016), but the physics behind the improved size distribution has not been clarified. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50159-7 
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Notably, the fluid in a stirred tank, which is used in cooling crystallization, is not uniform 
with respect to the mixing intensity. The turbulent intensity is high and the fluid rapidly 
deforms near the impeller, whereas circulating motion with the fluid around the mixing 
axis is dominant when the fluid element and the impeller are distant. The fluid motion in 
the Taylor–Couette crystallizer is different from that in the mixing tanks. The fluid is 
subject to a uniform and high shear rate, which differentiates the Taylor–Couette 
crystallizer from the stirred-tank crystallizer. 

 A recent numerical study on the mass transfer around a crystal showed that the mass 
transfer rate in shear flow is greater than that in a uniform flow (Kitagawa, 2018). The 
study also showed that this effect was magnified for small crystals. This implies that under 
shear flow conditions, the fine crystals grow faster, and a greater number of effective 
nuclei can be generated.  

This study focused on the effect of the shear rate on the size distribution of crystals 
obtained from a cooling crystallizer. A simple model was developed to express the 
growth-enhancing effects of the shear flow. The evolution of the crystal size distribution 
was calculated using the population balance equation. The results showed that an increase 
in the shear rate reduced the average size of the crystals. The simulation study also 
showed that by dynamically changing the shear rate, both the average size and coefficient 
of variation can be controlled. 

2. Numerical model 
The variation in the crystal size distribution in the cooling crystallizer was modeled using 
a population balance equation (Eq. 1). 

       𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝐺𝐺𝐺𝐺)
𝜕𝜕𝜕𝜕

= 0     𝑛𝑛|𝐿𝐿=0 = 𝐵𝐵
𝐺𝐺|𝐿𝐿=0 

, (1) 

where n is the population density (number weighted) [#∙m–1∙kg–1], t is the time [s], L is 
the particle diameter, G is the growth rate [m∙s–1], and B is the nucleation rate [#∙s–1∙kg–

1]. The total mass balance of the solute is given by Eq. 2. 

      d𝐶𝐶
d𝑡𝑡

=  − 3𝜌𝜌𝑐𝑐𝑘𝑘v ∫ 𝑛𝑛𝐿𝐿2𝐺𝐺d𝐿𝐿∞
0  (2) 

Here, kv and ρc are the volumetric shape factor [-] and crystal density [kg∙m–3], 
respectively. C [kg∙(kg solvent)–1] is the solute concentration in the bulk liquid. The 
solution of Eq. 2 is used to calculate the degree of supersaturation and subcooling, which 
are the driving forces of crystallization. 

The kinetic parameters and solubility data for the numerical study were taken from a study 
on the cooling crystallization of potassium sulfate (Kobari et al., 2011, Kobari et al., 2012). 
The growth and nucleation rates are described as power functions of the degree of 
subcooling. 

The kinetic data obtained from the literature were identified using data obtained from an 
experiment using a stirred tank. It is anticipated that each crystal in a stirred tank is 
subjected to a uniform flow of solution for most of the time. Kitagawa et al. (2018) 
numerically simulated mass transfer around a particle under uniform and shear flows. The 
results indicated that shear flow enhanced the mass transfer around the particles, in turn, 
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suggesting that the application of shear leads to increased nucleation and growth rates. 
The mass transfer data calculated by Kitagawa et al. (2018) were analyzed in this study, 
and the ratio of mass transfer rate under shear flow to that under uniform flow was 
expressed as a function of particle size and the shear rate (this ratio is referred to as the 
enhancement factor f [-] in the sequel). 

To account for the effect of the shear rate on the crystallization, the growth rate was 
assumed to be greater than that obtained in a stirred tank experiment by a factor of f. This 
assumption holds when the rate-limiting step of crystal growth is the mass transfer of the 
solute from the bulk to the crystal surface. Another important assumption used in this 
study is that the mass transfer rate also results in an increase in the nucleation rate by a 
factor of f for L=0. In crystallization experiments, an increase in the stirring rate results 
in the formation of finer product crystals; thus, it is widely accepted that intensified 
mixing results in a higher nucleation rate. Because mixing is an act of enhancing mass 
transfer, this observation qualitatively justifies the assumption of the effect of shear rate 
on the nucleation rate. 

The population balance equation (Eq. 1) was discretized using a backward difference 
scheme. A simulation program based on the Euler method was coded using the Python 
programming language. The simulation conditions were determined to reflect real 
crystallizer operations. No crystals existed at the beginning of cooling. The initial 
concentration of the solute was 0.199 kg∙(kg solvent)–1, and the initial temperature was 
the saturation temperature of the solution. The temperature of the solution was lowered 
by 20 °C at a constant rate. 

3. Results and discussion 
A simulation of the cooling crystallizer was conducted for different cooling and shear 
rates. The resulting number-based average size decreased with increasing shear rate (Fig. 
2). The model used in this study was built on the assumption that shear enhances both the 
nucleation and growth rate. An increased nucleation rate reduces the size of the crystals, 
but a greater growth rate leads to increased crystal size. The simulation results indicate 
that the nucleation rate has a stronger effect on the crystal size than the growth rate under 
the current simulation conditions. 

 The effect of shear on the coefficient of variation (CV) is summarized in Fig. 3. The 
range of CV variation was approximately 0.28–0.38. With increasing cooling rate, CV 
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increased but reached a maximum when the cooling rate was 0.02 ℃/s in the crystallizer 
operation without shear. The maximum CV was also recorded when the cooling rate was 
0.04 ℃/s in an operation with shear. 

Because the cooling crystallizer is always in an unsteady state, the dynamic change in 
shear rate is expected to be a useful approach for controlling the crystal size distribution. 
Thus, we investigated the effect of stepwise changes in the shear rate on the crystal size 
distribution. In this simulation, the shear rate was zero at the beginning of the simulation 
and increased to 1000 s–1 at a certain time. Fig. 4 shows the variation in the number-based 
average size by the time of the step increase in the shear rate. The average size can be 
further reduced by applying a shear at the right time. When the shear started at the early 
stage of crystallization, the average size was insensitive to the time of the step increase. 
If the shear rate was changed near the end of the operation, the enhancement effect was 
small, and the average size approached that measured under the no shear condition. It was 
revealed that the maximum degree of subcooling was observed when approximately 1500 
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s lapsed. When shear was applied at this moment, numerous nuclei were formed, which, 
in turn, led to a reduction in the average size. However, when shear was applied after 
1500 s, CV significantly increased, and then reached 0.7 when shear was applied at 1900 
s. When the shear flow was applied too late, the nucleation process that was already 
ending started again, and this produced a second group of crystals. 

The consequence of the step decrease in the shear rate was also examined. In this case, 
the shear rate was 1000 s–1 from the beginning of the simulation and reduced to 0 s–1 in a 
stepwise manner. The CV increased slightly and then decreased significantly as the step 
change time was delayed. The increase was caused by the change in shear rate, which 
resulted in the formation of two groups of crystals. However, as the high shear rate was 
applied longer, the number of crystals in the first group significantly increased because 
the degree of subcooling increased with time and greatly promoted the nucleation rate. 
At a certain point, this first group of particles, formed when the shear rate was high, will 
dominate over the group of crystals formed later. Consequently, the resulting crystal size 
distribution was nearly unimodal, and the overall CV decreased. However, if the shear 
flow was applied for too long, an excess number of particles would form and the average 
size would decrease, causing the CV to increase again. 

 
Figure 4 Time of step increase in the shear on the average size 

 
Figure 5 Time of step decrease in the shear on the average size 
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4. Conclusions 
In this study, a model of a cooling batch crystallizer that reflects the effect of shear flow 
was developed. Various shear profiles were assumed, and their effects on crystal size 
distribution were investigated. It was demonstrated that shear flow could be utilized to 
reduce both the average size and coefficient of variation. It is anticipated that a further 
study on the optimal profile of shear rate will provide more insight into the operation of 
Taylor–Couette crystallizers.  
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Abstract 

Process optimization is an essential step for a feasible and cost-effective process design. 

However, problems arise due to more decision variables within the process for a complex 

system. In complex processes, many design and target variables have large nonlinear 

relationships that make it challenging to achieve the global optima. This study attempted 

to overcome the complexity of hydrogen liquefaction and nonlinear optimization 

processes. Optimize the simulation model to measure the time taken and compare it to 

the estimate made by the machine learning model. The basic process was simulated in 

Aspen HYSYS, while the machine learning model and optimization were carried out 

using the particle swarm optimization algorithm in MATLAB environment. Interestingly, 

the model optimization results of the ANN approach showed significantly less time and 

improved prediction.  

Keywords: hydrogen liquefaction; machine learning; optimization; surrogate 
 

1. Introduction 

Liquefaction is one of the methods for storage and transportation of hydrogen (Durbin 

& Malardier-Jugroot, 2013), which is considered the future energy source (International 

Energy Agency, 2019). The liquefaction of hydrogen occurs at a very low temperature, 

20 K, making it an energy-intensive process. Therefore, it is critical to minimize energy 

consumption through optimization in design, such as process simulation of the hydrogen 

liquefaction process. However, due to the fundamental problem of many optimization 

variables, direct optimization of the simulation process requires a considerable amount of 

time and effort, even with high-performance computers. In this situation, the applicability 

of machine learning techniques has great potential, as foretold by Qadeer et al. (2018) in 

their study for offshore LNG units. 

 Machine learning is a field of artificial intelligence technology that implements human 

intelligence through computers. Learning techniques include supervised learning, 

unsupervised learning, and reinforcement learning. The computers trained in these 

methods provide predictions or judgments for their models (Batta, 2020; Lecun et al., 

2015). When a model is well-learned about a relationship, it is also called a surrogate 

model because it can provide the same results as a specific ‘real’ model that actually 

describes the relationship. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50160-3 
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In this study, the relationship between design variables and performance parameters of 

the hydrogen liquefaction process was learned through machine learning, and the 

optimization results and computational load of two models optimized with the same 

algorithm were compared. It is expected to improve the computational load of a complex 

hydrogen liquefaction process using a well-trained surrogate model. 

2. Hydrogen liquefaction Process 

In this study, a triple mixed refrigerant (TMR) cycles hydrogen liquefaction process is 

considered from our previous works (Riaz et al., 2021), from now on called as Base 

Model (BM). BM process uses different mixed refrigerants (MR) for three refrigeration 

cycles; Precooling MR, Cooling MR, and Liquefaction MR’s refrigeration. Figure 1 

shows the process flowsheet diagram, whereas Table 1 shows feed conditions and mass 

flow rate of gaseous hydrogen (GH2) and liquid hydrogen (LH2) (Aasadnia & 

Mehrpooya, 2018). 

 

Figure 1 Process flowsheet of the BM (Riaz et al., 2021) 

The hydrogen feed stream is precooled to 118 K and then sent to the ortho-para 

conversion (OPC) reactor. At 118 K, conversion reaches 13% and increases the share of 

para-hydrogen from 25 % to 35 %. At 34 K, the outlet stream flows to the next OPC 

reactor, increasing the para-hydrogen composition to 92.6 % with a percent conversion 

of 88.5 %. Similarly, the third reactor increases the molar percentage to 99.4 % by 

achieving 92 % conversion. As a result, a 100 % saturated liquid hydrogen (LH2) is 

obtained as a product.  

In each cycle, the hot pressurized refrigerant stream is cooled to the same temperature as 

the H2 stream. The respective cold stream gives its pressure energy in the form of useful 

work in an expander. The resultant cold stream is returned through the cryogenic heat 
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exchanger (CHX) as cooling media. These streams enter the compression section at the 

hot end to close the loop. 

Table 1 Process conditions of the gaseous and liquid hydrogen 

Parameter GH2 LH2 

Temperature, K 298 21 

Pressure, bar 21 1.3 

Mass Flowrate, kg/s 1 1 

Molar composition, % 
Ortho- 74.92 0.59 

Para-  25.08 99.41 

 

The design parameters and assumptions for the hydrogen liquefaction process presented 

in Table 1 and Table 2 are kept the same as BM. The low temperature of the cooling cycle 

is achieved because of a relatively high content of nitrogen and hydrogen in an optimum 

ratio. Also, it approaches the critical temperature of H₂(33K). In terms of hydrogen, the 

high flow rate of H₂increases the power requirement. In the refrigerant stream, Helium, 

one of the refrigerant candidates, in the refrigerant stream decreases the power needed by 

slightly increasing the flow rate. The presence of a high-boiling or low-boiling part as 

refrigerant results in little or no waste thermodynamically. For reducing energy 

consumption, it needs an optimal combination of refrigerants. 

Table 2 Details of the BM refrigeration cycles (refrigerant flowrates and suction/discharge 

pressures 

Component Precooling cycle Cooling cycle Liquefaction cycle 

C1 [kg/s] 4.683 2.280  

C2 [kg/s] 1.438   

C3 [kg/s] 18.291   

N2 [kg/s] 2.075 23.021  

H2 [kg/s]  3.185 1.640 

He [kg/s]   0.173 

Suction P [bar] 3.8 2.9 4.4 

Discharge P [bar] 42 59 34 

 

3. Machine learning application result 

This study analyzed the results by utilizing the possibility of imitation of machine 

learning-based models for complex relationships between inputs and outputs. 

Furthermore, the results were compared by applying the optimization to the simulated 

base model (BM) and the trained machine learning model (MLM). 
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The base model is the TMR Cycles H2 liquefaction process simulated in Aspen HYSYS, 

and the MLM is trained in MATLAB with a fully connected neural network structure 

(Figure 2). The learning of the MLM used about 1,600 randomly generated data from the 

BM case study. In machine learning, data were used for training/validation/testing at a 

ratio of 70:15:15. The result of machine learning is shown in Figure 3. As shown in Figure 

3, R is greater than 0.999, and the mean squared error, which means the performance of 

the MLM, is also 0.01, so it can be seen that the MLM is well learned, and the BM is 

described with high accuracy. 

 

Figure 2 Artificial neural network structure of MLM 

 

Figure 3 Training result of MLM 
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Both models were optimized using the Particle Swarm Optimization algorithm (PSO) 

(Zhou & Liao, 2013) programmed in MATLAB. The PSO algorithm is an algorithm that 

mathematically models the social information sharing behavior of individuals belonging 

to groups of ants, fish, and birds. From a probabilistic point of view, it is effective to find 

the global optimum. We tried to learn and optimize the MLM for all existing models. 

However, there were too many decision variables, so we focused on the precooling 

section of the hydrogen liquefaction process for preliminary research. 

Therefore, there are 15 determinant variables in the base hydrogen liquefaction process. 

However, only six variables were considered: the precooling unit’s suction and discharge 

pressures and the mass flow rate of the mixed refrigerant components. The optimization 

will proceed to minimize the specific energy consumption (SEC) of the hydrogen 

liquefaction process with these six variables. The constraints to be applied during 

optimization were kept such that the heat exchanger’s minimum temperature approach 

(MITA) was not less than 1 ℃. Table 3 shows the PSO results and elapsed time of BM 

and MLM. 

Table 3 PSO best position and optimal parameters of BM and MLM 

Input variables BM MLM 

N2 Mass Flow [kg/s] 1.746 1.8475 

C1 Mass Flow [kg/s] 5.103 5.3193 

C2 Mass Flow [kg/s] 1.604 0.72 

C3 Mass Flow [kg/s] 20.170 20.2719 

Discharge Pressure [kPa] 4,600.456 5,459.604 

Suction Pressure [kPa] 522.245 570 

Optimal output parameters 

MITA [℃] 0.99943 1.041078 

SEC [kWh/kgH2] 11.040 11.01352 

Elapsed time [s] 43,133.30073 3.243759 

 

In Table 3, the values of the six decision variables and the optimal parameter values are 

slightly different, but it can be seen that they are within an acceptable range. On the other 

hand, the optimization time took 10,000 times more for BM than for MLM. This is due 

to the fundamental difference between the mathematical calculation models of BM and 

MLM. BM is a fundamental process simulation model, and it is a result value derived 

through material and energy balance and thermodynamic calculations. Various 

processing units between input and output delay the calculation time even more. 

However, on the other hand, MLM has a very light neural network structure to have many 

advantages in terms of time. 

4. Conclusions 

This study checked the machine learning model’s performance as an imitation. We 

analyzed how well the self-learning model imitates the existing model and how different 

Application of machine learning model  965 

liquefaction process   

to optimization of the hydrogen



966  

the results are for certain tasks under the same conditions. Based on these results, for the 

analysis of the hydrogen value chain in various scenarios in the future hydrogen economy 

society, the limited system in this study can be expanded with a deeper and more 

advanced surrogate model. However, the system’s expansion, such as the entire hydrogen 

liquefaction process, is accompanied by more determinants, making it difficult to collect 

and learn data. Therefore, it is necessary to actively utilize artificial intelligence and 

machine learning technology. It is essential to introduce big data processing techniques 

such as dimension reduction using principal components analysis. 
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Abstract 
CO2 is a pollutant which is commonly produced through industrial processes. In this 
work, Computational Chemistry tools are applied to seven choline based ionic liquids 
(ILs), which are used as an alternative to traditional organic solvents in the CO2 
extraction. The study was performed at the PBE-D3/6-311++G** level of calculation, 
including the solvent effect (water in this case), thus analyzing weak interactions. It was 
found that these ILs form hydrogen bond networks which favors the complex formation 
with CO2, therefore this allows a more efficient absorption process. In addition, the 
complex formation process was found to be close to the thermodynamic equilibrium, 
which is key in the IL recovery, with the aim to be used in several CO2 absorption cycles. 

Keywords: Ionic liquids, CO2 absorption, computational chemistry. 

 

1. Introduction 
Production of green-house gases is a worldwide problem linked to global warming and 
climate change. One of the main greenhouse gases is carbon dioxide (CO2), which is 
generated as a byproduct in a variety of chemical reactions, such as combustion, which 
are part of all kinds of industrial processes (Lamb et al., 2021). Therefore, research has 
focused on diverse strategies to diminish CO2 production, which otherwise would be 
released to the environment. In this case, certain solvents are used to absorb and capture 
these green-house gases; however, organic solvents, such amines, are used for this 
purpose thus producing other waste which also generates pollution (Mazari, 2015). 

For this reason and guided by Green Chemistry principles (Anastas & Eghbali, 2010), 
there is an interest in employing more environmentally friendly solvents, such as ionic 
liquids (ILs). ILs present many interesting properties, for example, low vapor pressure, 
high thermal stability, low toxicity, high solvation efficiency, and wide versatility; in 
addition, they can be recovered once the process has been carried out, thus being 
reutilized for several cycles. In that way, they are considered as green solvents and they 
may be a good choice for replacing traditional solvents (Plechkova & Seddon, 2008; 
Weingärtner, 2008). 

To develop efficient absorption processes, it is necessary that ILs present a very good 
affinity to the CO2. In previous theoretical studies, ILs with amino-acids as anions have 
been used for this purpose, for example, with amino-groups (Kasahara et al., 2016), 1–
butyl–3–methylimidazolium (Noorani & Mehrdad, 2020), or phosphonium-groups 
(Shaikh et al., 2020) as the corresponding cations. In this work, Computational Chemistry 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50161-5 
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tools are proposed to carry out a thermochemical analysis for the CO2 absorption with 
choline based and amino-acids ILs, as well as a non-covalent interactions analysis for the 
IL-CO2 complexes under study. The selection of choline versus other cations is due to its 
non-toxicity, since it is considered an essential dietary amine (Rakkar & Hillier, 2007), 
therefore these ILs can be cataloged as green solvents (Anastas & Eghbali, 2010). 

 

2. Methodology 
In this study, the choline cation ([Ch+]) was employed together with the organic anions: 
alaninate ([Ala–]), butanoate [But–], propanoate [EtCO2–], glycinate [Gly–], leucinate 
[Leu–], lysinate [Lys–], and salicylate [Sal–]. 

Initial preoptimization of the ion structures was carried out through the PM3 
semiempirical (Stewart, 1989), the lowest energy structures were calculated with the 
B3LYP functional (Andzelm & Wimmer, 1992; Becke, 1993; Stephens et al., 1994) and 
the DGDZVP2 basis set (Godbout et al., 1992), and again the lowest energy structures 
were selected to be reoptimized with the PBE functional (Perdew et al., 1996), including 
dispersion (D3; Grimme et al., 2010), and the basis set 6-311++G** (Hehre et al., 1986). 
Once the ions of the ILs were obtained, ILs were built, employing several spacial 
distributions between anions and cations with the aid of the electrostatic potential surfaces 
of the corresponding ions. 

The lowest energy structures of the ILs were thus employed to obtain the complexes with 
the CO2 molecule, IL-CO2, and the gas-phase lowest energy structures were calculated 
including the solvent effect of water through the COSMO implicit solvation model 
(Klamt & Schüürmann, 1993). Calculations for the IL formation were carried out through 
the program package Gaussian 09 (Frisch et al., 2016); whereas the complex formation 
calculations and addition of the solvent effect were performed using NWChem 6.6 
(Valiev et al., 2009). Additionally, frequency calculations were included to ensure the 
minima on the potential energy surface. 

The thermochemistry of the ILs and the IL-CO2 complexes formation was obtained 
according to Eqs. (1, 2). For IL, the reactants were the corresponding anion and cation, 
and the product was the IL under study; in the case of the complexes, the reactants were 
the IL and the CO2, and the product was the IL-CO2 complex. Basis set superposition 
errors (BSSE) were included through the Counterpoise method (Boys & Bernardi, 1970). 

𝐶𝑎𝑡𝑖𝑜𝑛 + 𝐴𝑛𝑖𝑜𝑛 → 𝐼𝐿 (1) 

𝐼𝐿 + 𝐶𝑂! → 𝐼𝐿 − 𝐶𝑂! (2) 

In addition, inter- and intramolecular interactions present in the ILs and the IL-CO2 
complexes were analyzed through the Atoms in Molecules (AIM; Bader, 1991) and Non-
Covalent Interactions (NCI; Johnson et al., 2010) methodologies as implemented in 
GPUAM (Hernández-Esparza et al., 2014; Hernández-Esparza et al., 2019; Cruz et al., 
2019). 
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3. Results and Discussion 
3.1. Ionic liquids 
Table 1 shows the thermochemistry for the formation of the choline based ILs under 
study. According to the results, the IL formation is a slightly exothermic process, as 
shown by the enthalpy; whereas the Gibbs energy presents a non-spontaneous or 
endergonic process, through positive values, except for the complex with leucinate as 
anion, which is slightly negative. Even though the formation process in not spontaneous 
at standard conditions, it may be achieved in the laboratory by changing the conditions of 
the experiment. 
Table 1. Thermochemistry for the formation of the choline based ILs under study at standard 
conditions. 

IL ΔH 
[kJ/mol] 

ΔS 
[J/mol*K] 

ΔG 
[kJ/mol] 

[Ch][Ala] -35.80 -140.13 5.99 
[Ch][But] -38.81 -163.45 9.92 

[Ch][EtCO2] -43.25 -166.51 6.36 
[Ch][Gly] -43.12 -169.02 7.29 
[Ch][Leu] -56.94 -189.79 -0.33 
[Ch][Lys] -48.99 -199.92 10.63 
[Ch][Sal] -40.91 -189.87 15.74 

An example from the AIM and NCI results is shown in Fig. 1, where [Ch][EtCO2] 
presents interactions between the hydroxyl group of the choline cation and the 
carboxylate of the anion (pink lines); in this case, NCI results show a strong hydrogen 
bond through the red isosurface. In addition to the hydrogen bonds in the IL structure, 
van der Waals interactions (green isosurfaces) were also found, which is key to the 
stability. 
In a similar way, intramolecular interactions between the cation and the anion are also 
depicted. Similar interactions are found in all the studied ILs, where O–H···O and C–
H···O hydrogen bonds are formed between the cation, as hydrogen bond donor, and the 
anion, as hydrogen bond acceptor. A slightly different behavior is present for ILs 
containing [Ala–], [Leu–], and [Lys–], since the carboxylate group is near the amine group; 
in a similar way, [Sal–] presents an intramolecular O–H···O hydrogen bond with the 
carboxylate group. 

 
Figure 1. AIM and NCI for the [Ch][EtCO2]. 
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3.2. Ionic liquids and CO2 complexes 

Table 2 shows the thermochemistry for the formation of the IL-CO2 complexes under 
study. The enthalpy for the formation process of the IL-CO2 complex is less exothermic, 
in comparison with the formation of the sole IL. In a similar trend, the Gibbs energy is 
more endothermic in comparison with the IL, indicating a non-spontaneous process, 
which may be overcome through experiments at non-standard conditions. These values 
also indicate that IL-CO2 complexes are more stable structures in comparison with the 
corresponding IL. 

An interesting characteristic can be appreciated in the complex formation process, which 
in all cases is close to the thermodynamic equilibrium. This is very important, since this 
would allow the recovery of the IL; in this way, the ILs under study could be reused in 
several cycles of the absorption process. 
Table 2. Thermochemistry for the formation of the IL-CO2 complexes under study.  

IL-CO2 
Complex 

ΔH 
[kJ/mol] 

ΔS 
[J/mol*K] 

ΔG 
[kJ/mol] 

[Ch][Ala]-CO2 -20.10 -194.94 38.02 
[Ch][But]-CO2 -6.87 -107.64 25.25 

[Ch][EtCO2]-CO2 -8.83 -105.67 22.69 
[Ch][Gly]-CO2 -9.34 -65.65 10.26 
[Ch][Leu]-CO2 -8.92 -91.19 18.25 
[Ch][Lys]-CO2 -1.72 -104.67 29.52 
[Ch][Sal]-CO2 -4.02 -91.69 23.32 

Fig. 2 shows an example related to Fig. 1, i.e., the AIM and NCI results for the 
[Ch][EtCO2]-CO2 complex. In this case, interactions between CO2 and the ions of the IL 
are present; this can be observed through the NCI green isosurfaces, which show van der 
Waals interactions, as well as through the pink lines of the AIM results. In addition, 
possible hydrogen bonds were also found in the structure, especially those between the 
cation and the anion, where the smallest distance is 1.62 Å (see red isosurface). Similar 
results were found for the rest of the ILs. 

 
Figure 2. AIM and NCI for the [Ch][EtCO2]-CO2 complex. 
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4. Conclusions 
In this work, the thermochemistry for the IL and IL-CO2 complex formations were 
studied. Results show that hydrogen bonds between the carboxylates from the anions and 
cholinium cation are the main structural characteristic which provides stability to the ILs. 
In a similar way, IL-CO2 complexes also present weak interactions between the ions and 
the CO2, this consideration includes hydrogen bonds, where these interactions are 
important for the CO2 absorption process. 

With respect to the thermochemistry, energetics show that the IL-CO2 complex formation 
is close to the thermodynamic equilibrium. This characteristic is very important since it 
is related to the possibility of the IL to be easily recovered and reused.  

According to the results, all the studied ILs are good for the CO2 absorption process, 
however, there is a slight preference for [Ch][Leu], since it presents an exergonic value 
for the Gibbs energy. The rest of the ILs are energetically close, therefore other 
considerations must be taken into account, such as cost and availability. In this way, CO2 
may be absorbed and further employed in other processes, such as biomass production. 
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Abstract 

This work presents a study of the CO2 transport process in Block Polyether Amide 

(PEBA) membranes, based on an experimental design and mathematical modelling, 

considering a fickian and non-fickian diffusion models. PEBA membranes were 

synthesized using the plate casting method and were thermally characterized by 

differential scanning calorimetry and thermogravimetric analysis. Subsequently, 

experimental measurements of the concentration of permeated gases were carried out, 

using different pressure and temperature conditions for a fixed CO2/CH4 mixture. The 

permeability, selectivity, diffusivity, and solubility of CO2 were determined. It was 

found that the membranes are highly selective to CO2 over the CH4. The experimental 

data of the permeated CO2 concentration throughout the operating time, the solubility 

and diffusivity were employed in the mathematical models to describe the solution-

diffusion phenomenon. It was found that the fickian model was only able to reproduce 

the behaviour of the process at the steady state conditions. In contrast, the non-fickian 

model achieved an appropriate description of the process. 

 

Keywords: CO2 separation, dense membranes, solution-diffusion mechanism, 

mathematical modelling. 

1. Introduction 

Gas separation is one of the essential processes in the field of Chemical Engineering; 

specifically, the separation of acid gases (CO2, H2S, and SO2) presents a considerable 

environmental and industrial importance, such as greenhouse gases capture and natural 

gas cleaning (Xu et al., 2019; Dai et al., 2016). For example, CO2 accounts for 

approximately 60% of the total greenhouse gas emissions (Tan et al., 2019; Wang et al., 

2019). 

Natural gas, when burned, has a CO2 emission factor of 26% and 41% lower than that 

emitted by oil and coal, respectively. Therefore, expanding natural gas consumption will 

be one of the effective measures to reduce CO2 emissions (Li et al., 2018). However, 

nowadays, natural gas is extracted in large quantities and often contains an excess of 

CO2, which must be removed to improve its heat power, reduce the volume of gas to be 

transported, avoid atmospheric pollution, and reduce corrosion in pipelines. 

The most common methods of CO2 separation are cryogenic distillation, adsorption, and 

absorption (Li et al., 2018; Kidnay et al., 2011). Among these methods, amine 

absorption is the most advanced commercial technology; however, this method implies 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50162-7 



974  -Jácome et al. A. Solís

an increase of 50-90% in the energy cost of the plant (Ibrahim et al., 2018; Ji et al., 

2010), as well as the corrosion of the equipment, and these are just some of the 

disadvantages of this technology (Ibrahim et al., 2018). A promising method to reduce 

the cost of CO2 separation is the use of membranes, which, in comparison to chemical 

absorption, has advantages such as low cost and high energy efficiency (Ji et al., 2019; 

Li et al., 2016; Mahmoudi et al., 2015). 

In the field of membrane technology, polymeric membranes have been widely used to 

capture CO2 from different gas mixtures due to their selectivity and permeability, as 

well as their chemical and thermal resistance, low material costs, among others (Xu et 

al., 2019; Li et al., 2018; Dai et al., 2016). However, despite all the technological 

advances in the study of the CO2 separation process using polymeric membranes, this is 

still an open field for research. 

Another way to analyse the CO2 separation process using membranes is through 

mathematical models and numerical simulations, validated with experimental data. 

However, most of the mathematical models reported in the literature for dense 

membranes use Fick's Law to describe the mass transport process. It may not be 

appropriate, since dense membranes are not a homogeneous medium and consequently 

predict the process far from reality. Therefore, this work proposes an analysis of the 

CO2 transport in a dense membrane (PEBA) based on the determination of experimental 

data and a mathematical modelling that considers an effective diffusivity coefficient. 

2. Methodology 

Through sequential steps based on the elaboration and characterization of the 

membranes, properties such as permeability and selectivity of CO2 were calculated 

using a gas stream consisting of methane including the variation of pressure and 

temperature. 

The permeability of CO2 and CH4 was calculated through the following correlation. 
𝒫

L
=

QN

𝐴(pin − p)
 

(1) 

Where 𝒫 is the permeability, Q is the volumetric flow rate of the permeate gas, 𝐴 is the 

active area of the membrane, pin and p are the inlet and permeate partial pressures, 

respectively, and N is the permeate gas concentration. 

For selectivity (α), it was calculated following the next expression. 

αCO2 CH4⁄ =
𝒫CO2
𝒫CH4

 
(2) 

It was also possible to determine certain parameters, such as molecular diffusion (D) 

and solubility (S). 

DCO2 =
L2

6θ
 

(3) 

 

SCO2 =
𝒫CO2
DCO2

 
(4) 

DCO2  was calculated from the ratio obtained from the thickness (L) of the membrane and 

six times the period (θ) in which the concentration of the permeated gas reaches the 

steady state. Then, the SCO2 coefficient was calculated from the relationship of the 

permeability of CO2 and its diffusion coefficient through the membrane. 
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3. Mathematical Model 

The solution-diffusion mechanism has been considered to study mass transfer in dense 

membranes, with diffusion inside the polymeric matrix and solubility at the limits of the 

membrane. The proposed mathematical model of this work focuses on determining the 

behaviour of CO2 in the membrane, based on Fick's second law of diffusion, and 

considering an effective diffusivity. 

∂CCO2
∂t

= Deff

∂2CCO2
∂x2

 
(5) 

In Eq. (5), the coefficient Deff is defined as a function of the molecular diffusion of CO2 

and a parameter 𝜙, Deff = 𝐷𝐶𝑂2𝜙. A parametric estimation employing the Levenberg-

Marquardt method was used to determine the parameter 𝜙. 

ℙ𝑘,i+1 = ℙ𝑘,i + (J𝑇J + 𝜆𝐼)−1J𝑇(𝑦i − 𝑦m,i
𝑘 ) (6) 

Where: ℙ represents the parameter to be estimated; 𝑘 and i are counters; J and J𝑇 are the 

Jacobian and transposed Jacobian matrix, respectively; 𝜆, the damping factor; 𝐼, an 

identity matrix; 𝑦i, the real data; and 𝑦m, the data based on the modelling. The CO2 

concentration data measured in the lower chamber of the membrane were used as real 

data in this work. 

4. Results 

4.1. Characterization of the membrane 

Dense membranes with a uniform, flexible, and homogeneous appearance were 

synthesized from PEBA and characterized by Differential Scanning Calorimetry (DSC) 

and Thermogravimetric Analysis (TGA). 

 
Figure 1. TGA analysis to membrane synthesized from PEBA. 

 

The TGA was carried out to analyse the possible thermal decomposition of the PEBA 

membrane, as shown in Figure 1. A thermal decomposition for PEBA starts at 380 °C, 

where membrane degradation begins; this temperature is consistent with other studies 

reported in the literature (Soloukipour et al., 2017; Li et al., 2016). 

 

4.2. Membrane permeability and selectivity 

The permeabilities of CO2 and CH4 were calculated as a function of the pressure and the 

temperature (Figure 2). The CO2 permeability values were in a range of 118.59 to 

196.76 Barrer. These values are within the scope of 40 to 400 Barrer, reported in the 

W
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literature (Zhang et al., 2019; Zou et al., 2006). Regarding the permeability for CH4, the 

values obtained were all smaller than 1 Barrer. 

 
 

Figure 2. Effect of the pressure and the temperature on the permeability of PEBA 

membranes for CO2 absorption. a) Effect of pressure. b) Effect of temperature. 

 

 
Figure 3. Effect of the pressure and the temperature on the selectivity of PEBA 

membranes for CO2 absorption. a) Effect of pressure. b) Effect of temperature. 

 

Figure 3 shows the values obtained for selectivity in a range of 207 to 970. Thus, these 

values are within 40 to 1200, as reported in the literature (Zhang et al., 2019; Kobayashi 

et al., 2019). 

The calculated diffusion coefficients (D), with the effect of pressure and temperature, 

presented values between 2.5 to 6.5 x 10-6 cm2/s. In the case of the solubility, values 

were found in a range of 2 to 6 cm3 (STP) cm-3 cm Hg-1, which are in good agreement 

with those reported in the literature (Kalantari et al., 2019; Hou et al., 2018). 

 

4.3. Mathematical modelling 

Prediction of the measured experimental CO2 concentrations was carried out with both 

models, the classical fickian model and the non-fickian model proposed in this work. In 

addition, the parametric adjustment used molecular diffusivity and solubility. 

Simulations were carried out with all operating conditions, as experimentally evaluated. 

For illustrative purposes, Figure 4 only shows the data corresponding to 35 °C and 50 

psi. However, in all cases, the non-fickian model was the one with the best performance. 
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Figure 4. Dynamic behaviour of the CO2 concentration in the membrane’s lower 

chamber. a) Fickian model. b) Non-fickian model. 

 

The non-fickian model required the adjustment of only one parameter, as included in the 

definition of the effective diffusivity coefficient (Deff = 𝐷𝐶𝑂2𝜙). The values of the 

parameter 𝜙, determined by the Levenberg-Marquardt method, and the plasticization 

factor, reported by Minelli (2013) for several dense membranes, presented the same 

order of magnitude. 

5. Conclusions 

Experimental tests determined that the membranes under study are highly permeable 

and selective to CO2, in comparison to CH4, for all the evaluated pressures and 

temperatures. The permeation rate of CO2 increased with the temperature and decreased 

with the pressure. The highest permeability value was 196.76 Barrer at a temperature of 

55 °C and a pressure of 50 psi. In addition, pressure and temperature increments 

favoured the CO2/CH4 selectivity. 

The mathematical modelling showed that, to describe the CO2 transport process in 

dense membranes, a non-fickian model is required, where additional factors are 

included for the effective diffusion coefficient. It is important to remark that these 

factors must be a function of the operating conditions and the properties of the dense 

membranes. 
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Abstract 

In this contribution, a dynamic first principles model of an existing 3.01 MW natural gas 

fired water bath heater (WBH) in operation at the Takoradi Distribution Station (TDS) in 

Ghana is developed primarily to predict the outlet temperature of the natural gas stream 

being heated. The model is intended to be applied during operations to provide useful 

data to optimise material and energy consumption, as well as minimise CO2 emissions. 

Due to the low thermal efficiencies of WBHs, even small improvements in efficiency can 

result in significant savings. The firetube and process coils are both modelled as one-

dimensional (1D) thin-walled tubes and the entire model incorporates mass and energy 

conservation equations, heat transfer rate relations and rigorous thermodynamic p-V-T 

relations. In contrast to what commonly exists in literature, this model accurately 

estimates the enthalpy change of the natural gas stream being heated by accounting for 

its enthalpy departure correction term due to pressure, in addition to the ideal gas heat 

capacity relation which is a function of only temperature. The coupled ordinary 

differential and algebraic equations are implemented using gPROMS® ModelBuilder® 

V4.2.0, a commercial modelling and simulation software. Verification of the model 

results showed good agreement between the model predictions and actual on field 

measurements. With excess air at 15%, the simulation results closely approximate 

measured data with an absolute error of about 0.31 %. More importantly, the results show 

that significant savings of up to 30% per annum can be made through optimal operation 

of the water bath heater. 

Keywords: modelling, optimisation, simulation, heater. 

1. Introduction 

In natural gas transportation systems, pressures must often be reduced from transmission 

pipeline to distribution pipeline values at regulating and metering (R&M) stations. This 

pressure reduction process with the accompanying temperature drops, a phenomenon 

known as the Joule-Thomson effect, is an isenthalpic expansion process. Consequently, 

if the natural gas chills to sufficiently low temperatures, owing to a huge pressure 

reduction across the throttling valve, for instance, some of the heavier components of the 

natural gas stream can condense out of the vapour phase into a liquid phase potentially 

forming hydrates in the presence of free water and causing corrosion problems. Hydrates 

can damage pipeline components or cause blockages that disrupt gas export operations. 

Therefore, to protect downstream consumers such as natural gas-fired turbine power 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50163-9 
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plants, indirect water bath heaters (WBH) are typically provided upstream of pressure 

regulating packages in R&M stations to superheat the natural gas stream. Normally, the 

natural gas is in a superheated state if it is at a temperature of at least 28 0C above the 

hydrocarbon dewpoint temperature at the specified operating pressure. Figure 1 shows a 

simplified schematic of an indirect WBH. 

 

Figure 1: Indirect water bath heater at the TDS 

As most process heaters, indirect WBHs are energy intensive units. However, they have 

relatively lower overall thermal efficiencies when compared to direct fired heaters, for 

instance. As a percentage of the total energy input (LHV basis), a large majority of 

previous research estimated that the stack losses were somewhere between 25 – 60% 

while the wall losses range from 0.5 to 2% of the total energy input. Stack losses were 

therefore, identified as a major source of energy wastage accounting for the low thermal 

efficiencies of indirect water bath heaters. Through a 12-month statistical data collection 

and analysis, Khalili et al. (2010) estimated the thermal efficiency of an indirect water 

bath heater to be between 41.6 and 52.0%. Similarly, Romocki et al. (2018), reported the 

thermal efficiency of a WBH to be around 46%. Clearly, such low thermal efficiency 

levels of the existing water bath heaters are incongruous with the looming transition into 

a low-carbon future which stipulates drastic reductions in carbon emissions and high 

energy efficiency. In this light, mathematical modelling and simulation can be a very 

powerful tool that can be used to gain deeper insight into the underlying phenomena 

involved in WBH design and operations and in effect, help to improve operating 

efficiencies. Accordingly, Azizi et al. (2014), proposed an energy integration approach 

by placing a heat exchanger upstream of the indirect water to extract heat energy from 

the flue gases released from the water bath heater, which hitherto, would have been 

released into the atmosphere to pre-heat the natural gas stream and thus, reduce the total 

energy input leading to a lower overall fuel consumption. Romocki et al. (2018), proposed 

the replacement of indirect WBH with an Immersion Tube Thermosyphon Heater (ITTH) 

as it offered a thermal efficiency of about 90% leading to a reduction in both fuel 

consumption and CO2 emissions.  
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Interestingly, only a handful of these previous works were conducted to model and 

simulate the dynamic performance of these process heaters such as cold start-up 

operations. Moreover, one of the main weaknesses of the existing models was the 

estimation of enthalpy changes of the natural gas stream being heated based on the ideal 

gas heat capacity relation, which is a function of only temperature and does not account 

for enthalpy departure correction term due to pressure of the natural gas. The overall 

objective of this work is to achieve optimal operation of the TDS WBH by identifying 

optimal operating variables that minimise fuel gas use (increasing energy efficiency) for 

a given process heat duty while also minimising CO2 emissions. 

2. Model dev elopment 

2.1. Process description 

Three (3) indirect fired heaters are installed in a 3 x 50 % configuration (3 x 202.5 

MMscf/D, design heating duty per heater is 3.01 MW) upstream of the pressure regulating 

package at the TDS. A cascaded temperature control loop is provided for controlling the 

temperature of the water bath. In addition, a cascaded temperature control loop is also 

provided for controlling the outlet temperature of the natural gas stream being heated. 

The water bath temperature is controlled and normally set at 60 oC (333.15 K). The design 

setpoint is 86 °C (359.15 K). Depending on the downstream customer requirement, the 

natural gas is typically heated to between 30 oC (303.15 K) and 52 oC (325.15 K); normal 

setpoint temperature is 40 oC (313.15 K). The complete model comprises firetube zones 

1 and 2, the non-flow water bath, the process tube, and the natural gas stream. The various 

sub-models are then interconnected by energy flows shown in Figure 2. 

 

F igure 2: Model connectivity 
 

The model considers the overall energy balance for the WBH control volume, as well as 

for the various sub-components, the combustion of a natural gas stream containing both 

nitrogen and carbon dioxide in the presence of excess air, the transfer of the heat to the 

first pass of the firetube through a combination of radiation and convection.  
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The outlet temperature of the natural gas stream, Tng,2 is estimated from the relation: 

𝑞𝑛̇,𝑛𝑔 ∙ 𝑑ℎ̅ = 𝑄̇𝑛𝑔               (1) 

Changes in the specific molar enthalpy of the natural gas between two thermodynamic 

equilibrium states is estimated from the relation: 

𝑑ℎ̅ = ℎ̅2(𝑇𝑛𝑔,2, 𝑃𝑛𝑔,2) − ℎ̅1(𝑇𝑛𝑔,1, 𝑃𝑛𝑔,1)                                                                                                 (2) 

In general, the specific molar enthalpy at each state is calculated from the relation: 

ℎ̅𝑖 = ℎ̅𝑖𝑑𝑒𝑎𝑙 + ℎ̅𝑑𝑒𝑝                                                                                                                                         (3) 

The first term on the RHS of Eqn. (3) represents the ideal gas enthalpy change for the 

individual components of the natural gas mixture at reference conditions of 298.15 K and 

1 atm to the state temperature and at ideal gas conditions; the second term on the RHS 

represents the enthalpy departure (pressure correction term) involved in taking the fluid 

to the state pressure. The Lee-Kesler (LK) Equation of State (EOS) method (Lee and 

Kesler, 1975) was used to estimate this term as it is the most accurate enthalpy calculation 

model for gas mixtures (Changjun et al., 2011). The compressibility factor of the natural 

gas stream at each state is calculated using the Peng-Robinson EOS. (Peng and Robinson, 

1976). Physical property data and binary interaction parameters were obtained from 

ASPEN® HYSYS® V11. Since the flue gas flow through the firetube is calculated to fall 

under forced convection, the Dittus-Boelter correlation as discussed in Incropera et al., 

(2007) is used for estimating the convection heat transfer coefficients in all cases. All 

external free convection heat transfer coefficients are estimated using the GPSA 

Engineering Data Book.  

2.2. Optimisation model 

The complete optimisation problem is posed in the form below: 

Minimise:  

𝑓 = 𝑛𝑑𝑎𝑦𝑠 ∙ 24 ∙ 𝑐𝑓𝑢𝑒𝑙 ∙ 𝑞𝑚̇,𝑓𝑢𝑒𝑙−𝑀𝐵 ∙ 𝐿𝐻𝑉𝑓𝑢𝑒𝑙  

Subject to: 

50
𝑘𝑔

ℎ𝑟
≤  𝑞𝑚̇,𝑓𝑢𝑒𝑙−𝑀𝐵  ≤ 620

𝑘𝑔

ℎ𝑟
 

333.15 𝐾 ≤ 𝑇𝑤 

313.15 𝐾 ≤ 𝑇𝑛𝑔,2 

The objective function is the total cost of fuel gas burned, in $ per annum. The % valve 

opening, and ambient air temperature are set as decision variables in the gPROMS® 

optimisation settings. The water bath (Tw) and the hot natural gas outlet (Tng,2) 

temperatures, which are external discontinuities, are set as constraints. The fuel gas flow 

rate (𝑞𝑚̇,𝑓𝑢𝑒𝑙−𝑀𝐵) flowing through the modulating flow control valve is set as an 

additional constraint.  

2.3. Parameter specifications 

Firetube Zone 1: Di,ft1 = 0.89534 m; Do,ft1 = 0.9144 m; Ao,ft1 = 24.0264 m2; Ai,ft1 = 23.5256 

m2; mft1 = 2739.50 m2; cpsteel = 0.4610 kJ/kg K; ksteel = 0.0450 kW/m K; 

Firetube Zone 2 - Single Firetube in Zone 2: Di,ft2 = 0.06268 m; Do,ft2 = 0.073 m; Ao,ft2 = 

1.4147 m2; Ai,ft2 = 1.2147 m2; mft2 = 2739.50 m2; ntubes = 52;  

Firetube Zone 2 – Total Number of Firetubes in Zone 2: Ao,ft2 = 73.5621 m2; mft2 = 

2764.00 m 



2.4. Variable specifications 

ε = 1.15; ηMB = 0.95; qm,fuel = Min (Valve_Flow, 620) kg/hr; LHVng = 47,990.08 kJ/kg; 

αft1 = 0.90; ef = 0.90; eft1 = 0.50; Tamb,air = 298.15 K; hws = 0.120 kW/m2 K; hal-air = 0.00250 

kW/m2 K; MW_ng = 18.6529 kg/kmol; w = 0.0259; qstd,v = 85.23 MMscf/D; T1 = 26.10 
oC (Tng,1 = 299.25 K); P1 = 68.00 barg; vm,1 = 0.8221 m3/kmol; P2 = 67.75 barg; vm,2 

=0.2964 m3/kmol;  

The calculated Lee-Kesler pseudo-critical properties for the natural gas composition are: 

Tc = -63.53 oC and vc = 0.1063 m3/kmol; F1 = 0.05 and F2 = 0.85. 

3. Results and discussion 

Per the cold start-up operating procedure of the WBH, motor operated valves (MOVs) 

are opened to allow for natural gas flow and heating only once the setpoint of the water 

bath is reached. This discontinuity in the process was captured in the model execution in 

gPROMS®. A summary of the cold start-up simulation results for a water bath set point 

temperature of 60 oC (333.15 K) and a natural gas outlet temperature setpoint of 40 oC 

(313.15 K) is presented in Table 1. The initial cold conditions were 27.1 oC (300.25 K) 

for the water bath and 26.1 oC (299.25 K) for the cold inlet natural gas stream. 
 

Table 1: Summary of TDS WBH Cold Start-up Simulation Results for 3,050 seconds 

Valve % Travel % 47 50 -6.00% 

Time Taken to Reach Water Bath 

Setpoint Temperature 

s 2,152 2,192 -1.82% 

Outlet Temperature of Natural Gas 

Stream 

K 314.28 313.30 0.31% 

 

The temperature profiles of the water bath and the natural gas stream for the cold start-up 

simulation period are illustrated by Figures 3. 

 

 

Figure 3: Temperature profiles of the water bath (left) and the natural gas (right) 

The results obtained demonstrate that the TDS WBH model closely approximates the 

actual behaviour of the key operating variables such as water bath and outlet natural gas 

temperature. At the same time, the model deviates quite significantly in predicting other 

variables such as thermal efficiency which the manufacturer specifies as a minimum of 

75%. 
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A model-based dynamic optimisation operation was conducted in gPROMS to determine 

the operating variables that minimise fuel gas purchasing cost. Considering a 24 h over 

340 days operation in a year and a natural gas purchase cost of $0.004265/MJ, the results 

obtained indicate that the annualised purchasing cost of natural gas for the base case is 

$674,065 from cold start up to steady state, a total time of 2,296 seconds (38.26 minutes). 

The optimised case shows significant savings between 10 – 30% can be realised for a 

total time of 3,600 seconds (60 minutes) from cold start up to steady state. 

The objective function was particularly sensitive to the % opening of the modulating flow 

control valve on the main burner fuel gas supply line. 

4. Conclusions 

The simulation and optimisation study results clearly demonstrate that the dynamic model 

proposed in this work is a powerful predictive tool for process improvement and to aid 

decision making at TDS as it closely approximates the behaviour of the actual water bath 

heater, FY2301A/B/C under varied operating conditions. The model, thus, affords an 

insight into the dynamics of the process that did not exist previously. Further work should 

be done to validate the model with experimental data and verify the optimisation results. 

Moreover, a robust process controller can be designed to accurately control and optimise 

the operations of the WBH. 
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Abstract 

The International Marine Organization (IMO) established regulations on SO2 emissions 

in the MARPOL Annex VI, which is applied from 1st January 2020. The emissions 

standard was 3.5 % in weight, but now, sulphur emissions for oceangoing vessels must 

be equivalent to a sulphur content in fuel lower than 0.5 % in weight worldwide. 

Especially, in some coastal regions named “Sulphur Emission Control Areas”, SECAs 

sulphur emissions have to be lower than 0.1 % in weight. Due to economical compliance 

to the environment regulation, wet flue gas desulfurization (FGD) process is preferred. In 

this work, experiments are performed using scrubber, which has square-based shape and 

fresh water with addition of sodium hydroxide as absorbent, to treat flue gas from a 

marine diesel engine (720 kW) that has to comply with current regulation. The 

experimental tests in spray column indicate that the absorption efficiency above 95 % can 

be achieved. The experimented performances match well with the simulated results 

Keywords: Process design; Marine flue gas desulfurization(FGD); The International 

Marine Orgarnization(IMO) 

1. Introduction 

In the worldwide, trade by sea consists more than 90 % of the total trade amount. In 

transport activities, large ships often use cheap heavy fuel oil, resulting in sulfur oxides 

(SOx)exhaust, which can negatively affect human health and marine 

communities.(Nielsen,2014) IMO and several governments have put into use rules to 

control the damages from sulfur emission. In particular, a maximum limit for equal sulfur 

emission of less than 0.1 % in weight was established for some coastal areas termed as 

sulfur emission control areas (January 1, 2015). In addition, from January 1, 2020, sulfur 

emission for oceangoing ships worldwide must be equal to those given-off by fuel with 

sulfur content lower than 0.5% in weight.(Flagiello, 2019) These rules have forced ship 

owners to search for solutions to meet the needed things, not only for new ships, but more 

importantly for the current fleet of ships.(Strandberg, 2017) 

For controlling sulfur emissions effectively, FGD is a viable option, which the wet 

processes consists around 87 % of those used worldwide.(Srivastava, 2017)  Shipments 

can apply open loop with seawater, closed loop with sodium hydroxide (NaOH), or hybrid 

systems which be able to switch the modes.(Oikawa, 2003) Seawater’s natural alkalinity 

and large availability make absorption ability. However, open loop system has several 

limitation such as it requires large amount of seawater which cause corrosion on process 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50164-0 
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equipment and several countries have banned any discharge from open loop system. 

(Eason, 2018) Thus, the closed-loop mode using NaOH is preffered alternative. In this 

paper, a new square-shaped closed-loop scrubber with spray has been proposed for marine 

applications. By applying the square shape, the spray scrubber can reduce its volume, area 

and weight, which are essentially considered for installation on board. We performed 

design, construction, experiment, and simulation to evaluate the proposed FGD square-

shaped closed-loop scrubber with spray.  

2. Closed-Loop Square Scrubber With Spray 

2.1. Proposed Methodology 

As the first step, a literature survey on the availability of components in Aspen Plus, 

solubility or equilibrium data, reaction parameters, requirements, and constraints of a 

marine FGD was performed. Subsequently, a rigorous simulation and a sensitivity 

analysis were performed to evaluate the scrubber and identify the variables affecting its 

performance with actual feed conditions. Finally, the simulation and experimental data 

were compared to validate the proposed systematic methodology. 

2.2. Process Description 

Existing FGD systems are coastal and commercial marine scrubbers that usually consist 

of spray towers fed with pure seawater (open loop) or water doped with an alkaline 

neutralizing agent (closed loop). NaOH is commonly used as an alkaline 

agent(MAN,2020) to neutralize the sulfuric acid in the scrubber water. When SO2 is 

absorbed into solutions, the diffusion of SO2 molecules from the current gas phase core 

to the gas/liquid interface and the dissolution in the washing agent should be initially 

considered, as described by Eq. (1).(Wang,2015) The dissolution process is considered to 

obey Henry’s law for low concentrations of SO2 in effluent gases. 

 

    
2 2SO (g) SO (l)                    (1) 

Some dissolved acid gas molecules dissociate according to reaction (2), and others 

directly react with hydroxide ions according to reaction (3). In turn, hydrogen sulfite 

reacts with the additional hydroxide ions to form sulfite, as shown in reaction (4). 

 

   2 2 3SO H O HSO H                                                 (2) 

2 3SO OH HSO                                                              (3) 

2

3 3 2HSO OH SO H O                                                                             (4) 

Reaction (3) is very fast while reaction (4) has a considerably higher rate constant than 

reaction (3). Thus, both reactions can be considered as instantaneous.(Hikita,1977) The 

above processes are related with the dissociation of water (Eq. 5) and NaOH (Eq. 6): 

 

  
2H O H OH                                                 (5) 

NaOH Na OH                                   (6) 
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2 3 2 2 4 2H SO +2NaOH+1/2O Na SO 2H O      (7) 

  2

2 2 4 2SO (g)+2NaOH(aq)+1/2O (g) 2Na +SO H O                          (8) 

  
2 2CO (g) CO (l)        (9) 

  
2 2 3CO H O HCO H          (10) 

  
2 3CO OH HCO          (11) 

  2

3 3 2HCO OH CO H O           (12) 

 

Figure 1 shows a simplified closed-loop FGD process in which water is recirculated 

through the scrubber with no discharge at sea.  

2.3. Design of Square Spray Column 

Spray towers have traditionally been used in several applications such as low pressure 

drop is essential, a high degree of separation is not required, and there are solid particles 

and precipitating solvents.(Yeh,2003) They have advantages such as low pressure drop,

lightness, simple construction and operation, and low investment, operating, and 

maintenance costs.(Bandyopadhyay,2012) 

 

Figure 1 Schematic diagram of the closed-loop FGD process. 

3. Materials And Methods 

3.1. Materials 

Fresh water with the addition of NaOH was used as an alkaline neutralizing agent. NaOH 

5 % was purchased from Hanwha Solutions.  

3.2. Diesel Engine 

In the scrubber experiment, a Shinko marine diesel engine (Figure 2a) with a power of 

720 kW was operated with high sulfur fuel oil containing 3.5 % in weight. Figure 2b 

shows the effect of the engine speed on the flow rate of flue gas. During the scrubber 

experiment, an engine speed of 800 rpm was fixed.  

and Experiment
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(a)                                                                 (b) 

       

Figure 2 (a) Marine engine and (b) influence of engine speed on the flow rate of flue gas. 

3.3. Spray Column 

The square spray tower, with a cross section of 800 × 800 mm, length of 11,400 mm, and 

operated at 35 °C and 1 atm, was constructed after the design phase. The liquid flow rate, 

L, was supplied at the top by a centrifugal pump controlled by a globe valve. For spray 

scrubbing, a good atomizer should produce a fairly uniform spray with drop diameters 

sufficiently small to generate a large interfacial area of contact and sufficiently large to 

prevent excessive entrainment.(Bandyopadhyay,2012)  

3.4. Analytical Methods 

The Testo 350 exhaust gas analyzer equipped with an electrochemical sensor was used to 

measure SO2 based on the principle of ion selective potentiometry. The experimental 

SO2 removal efficiency (ηSO2) was calculated as follows: 
 

  2 2

2

2

( ) ( )

( )

-
SO SO

SO

o

g g

SO o

g

C C

C
 

      (13) 

 

where Co
SO2(g) and CSO2(g) are the inlet and outlet SO2 concentrations, respectively.  

4. Results and Discussion 

4.1. Simulation 

The simulation was performed using the simulator Aspen Plus V10. The Electrolyte 

NRTL activity coefficient model was used for the prediction of the vapor–liquid 

equilibrium of these simulations. In this study, during the experiment and simulation, the 

pH value of the solvent was maintained at approximately 8.  

Figure 3 shows the influence of the gas velocity, flue gas temperature, and liquid/gas ratio 

(L/G) on the removal efficiency. The results indicate that the removal efficiency reduces 

from approximately 97 % to 92 % when the flue gas velocity increases from 0.5 m/s to 

2.5 m/s (Figure 3a). In addition, the influence of flue gas temperature within 30–90 °C is 

negligible (Figure 3b). Furthermore, the removal efficiency increases with increasing L/G 

(Figure 3c).  
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Figure 3 Influence of the (a) flue gas velocity, (b) flue gas temperature, and (c) L/G on the 

removal efficiency of SO2 

4.2. Scrubber Operation 

The flue gas from the engine was quenched in a venturi scrubber before entering a cyclone 

to remove particulate matter. 100 ppm SO2 was involved in feed gas. The industrial-scale 

scrubber unit constructed at the Hanbal Masstech company was used to scrub SO2 from 

the flue gas. When the column was wetted, the engine was activated to generate flue gas, 

which was fed into the scrubber unit. To maintain the operating temperature at 35 °C, 

fresh water was pumped to the air cooler system. 

The analyses of the flue gas inlet and outlet were performed using the Testo 350 exhaust 

gas analyzer. The results showed that under the designed operating conditions, the outlet 

SO2 was 5 ppm, resulting in an outlet SO2(ppm)/CO2(%) ratio of 0.64. It was possible 

to achieve an absorption efficiency higher than 95% by using a liquid-to-gas mass ratio 

of approximately 4.32 kg.kg-1. The results also showed that the unit had small pressure 

drops (0.5 mbar). 

4.3. Comparison Between Simulation And Experimental Results 

The experimental outlet SO2 ppm was compared with the simulation results obtained 

using the Aspen Plus software, which were based on actual conditions. Excellent 

agreement was observed between the experimental and simulated performances. In 

particular, the real operation indicated an outlet SO2 of 5 ppm, which is similar to the 

simulated outlet SO2 of 4.3 ppm (Figure 4a).  
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Figure 4 (a)SO2 profile in scrubber. (b)Influence of the inlet SO2 on the scrubber performance. 

The results indicated that the higher the inlet SO2, the higher the outlet SO2 and the 

SO2(ppm)/CO2(%) ratio (Figure 4b). This implies that, in this range, the designed 

scrubber can comply with the IMO regulation.  
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5. Conclusions 

A compact, light, and effective square scrubber equipped with spray was proposed for 

SOx removal in this study. Through the proposed systematic methodology, the design, 

construction, simulation, sensitivity analyses, and experiment were successfully 

accomplished. The results indicated a good agreement between experimental and 

simulation results. The proposed square scrubber system can achieve high SO2 removal 

efficiency with low water consumption and low pressure drop. In particular, an SO2 

removal efficiency higher than 95 % was achieved using a liquid-to-gas mass ratio of 

approximately 4.32 kg.kg-1. Most part of mass and heat transfers occurred in the bottom 

section of the scrubber. In addition, the results indicated that the unit exhibited 

comparatively low pressure drop. 
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Abstract 

The chemicals industry is facing a highly dynamic environment. Demand is continually 

fluctuating, and the pressure for new sustainable processes and products is rising. New 

environmental regulations are always expanding and becoming less harmonized globally, 

and customers are demanding sustainable products that are friendly to the environment. 

Owner operators in all industries are maximizing the value that can be extracted from 

their projects and have been seeking out new and innovative ways to drive greater 

efficiency and productivity. Efficiency, safety and quality must be guaranteed and 

therefore more stringent control over compliance and regulation requirements has to be 

at the heart of every aspect of the design process. Profitability, safety and efficiency must 

be intrinsically linked. 

 

Today, companies need to find ways to be more efficient in the execution of the 

engineering projects. One way is to compress engineering cycles and adapt processes and 

products to comply with sustainable KPIs and new demands. The Unified Engineering 

methodology is one option enabled by the latest technologies and tools available. For 

decades, engineering to design and build industrial plants has been developed through 

projects with a complex and highly iterative workflow, using siloed solutions. The entire 

process is very time consuming, and the final deliverable to the owner of the operation is 

a set of documents with disperse data, with no guarantee of consistency. 

 

In order to compress engineering cycles, a data-centric approach must be used. With this 

approach, documents and applications are always kept up to date with the latest validated 

data. The data-centric approach is the first step to apply the Unified Engineering 

methodology, which will evolve later to the plant Digital Twin. The Unified Engineering 

methodology uses a single source of information that is available for all the teams 

involved in the project. Engineers become more efficient and work with reliable 

information as documents and models are updated in a controlled way as soon as any 

change is made. For even greater sustainability and effectiveness, the best way is to use 

the Unified Engineering methodology in the cloud.  

 

Unified Engineering reduces capital project costs, risks, and delays, enabling shorter 

engineering cycles required to deliver new sustainable projects. By minimizing 

engineering errors and accelerating project execution, companies can get 50% faster 

FEED stage, 30% increase in engineering efficiency, and 5% reduction in TIC (Total 

Installed Cost). 

Keywords: sustainability; simulation; design; digital twin; predictability 
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1. Introduction 

As an industrial software provider, we support chemical companies achieve superior 

performance in their quest to make sustainable products, align with the circular economy 

and demonstrate product stewardship throughout the product life cycle. By digitally 

connecting assets, process, and people, our solutions empower companies to run safe and 

responsible operations, mitigating EHS risks, and moving toward more circular systems, 

while remaining profitable. 

 

With more than 50 years of industrial software innovation, AVEVA enables 13 of top 15 

chemical companies and most of the world's petrochemical crackers, with the most 

comprehensive portfolio that ties profitability to sustainability goals. 

Research typically identifies the following Critical Sustainability Drivers: 

• Demand higher transparency on a company’s environmental, social & governance 

(ESG) performance by stakeholders 

• Manage a complex environment and provide safety to employees, processes, 

products and local communities 

• Minimize energy and utilities consumption, so as emissions 

• Manage liquid effluents, waste and suppliers, seeking the circular economy 

• Commitments to global and local regulations 

• Portfolio management towards innovation and sustainable products 

 

Today´s technology allows suppliers to develop better solutions to those markets that are 

in constant change. The Digital Twin technologies, initially adopted mainly by the 

automotive and aerospace industries, are now promoting big changes in how chemical 

plants are operated and managed. This type of technology can change the decision-

making process since more reliable information is available in real time.  

A significant step was taken recently in terms of process simulation. Now it is possible 

for the engineering and operating companies to build the Digital Twin of the process 

plant. The Digital Twin is built on a simulation platform that will support the entire plant 

lifecycle, from design to operation. 

 

2. The Digital Twin 

The new generation of process simulation uses a platform approach that evolves the 

simulation model from the conceptual engineering to the operation optimization. It allows 

a new approach to be implemented so companies can transition from the conventional 

scenario to the use of the process simulation Digital Twin, expanding benefits to the entire 

plant lifecycle. The same platform is used for process simulation and process utilities 

(cooling water, flare, steam and others), allowing engineers to further evaluate how each 

system impacts the other. Heat and material balances can be re-evaluated after equipment 

and pipeline sizing, since that information is in the simulation from the beginning, as a 

result, little or no extra engineering effort is required. Once sizing is validated, the 

simulation is switched to dynamic mode, in which control loops are included to the 

simulation model to validate the process control strategy. As it is seamless to shift the 

simulation to dynamic mode, rather than build a completely new model using the 

conventional approach or converting a model that cannot be taken back to the steady state 

mode, dynamic studies are performed earlier in the project lifecycle. This promotes 

savings in equipment acquisition and in operating costs, since control logic responses are 
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evaluated in earlier stages. Plus, when something doesn´t respond as expected, simulation 

is taken back to steady state mode, for re-evaluation of heat and material balance and re-

sizing. The ability to go back and forth between steady state and dynamic modes is critical 

to increase efficiency in the project lifecycle, leading to huge savings in engineering 

effort.  

3. Unified Engineering 

Companies are beginning to make progress on their digitalization journey, finding the 

right applications for digital transformation and seeing increasingly better returns on their 

investment. While the age-old market environment challenges (such as supply and 

demand, cost and price) haven’t gone away, competitive pressures are making the digital 

transformation opportunity more pressing than ever. Many have already started to 

leverage the latest data-centric technology and work processes for their workforce to 

collaborate and take control of their data, reducing the risk for errors, delays and increased 

project cost throughout the asset lifecycle. By doing so they are in a stronger position to 

become more competitive, increase their margins and win new business. 

 
As outlined by an AVEVA whitepaper (2019), Unified Engineering is a new proposition 

to break down the silos between FEED and Detailed Design to minimize risk and 

maximize return on Capital Investment. 

Unified Engineering enables global multi-discipline teams to work concurrently in a 

common data-centric environment, controlling and managing change across the entire 

project. This breaks down the silos between FEED and detailed design. The simulation 

data created in FEED is readily available for use in detailed design and is checked and 

validated in real-time, increasing efficiency, minimizing risk, and maximizing return on 

investment on your Capital Projects. 

 
Never have the stakes been higher for companies when it comes to making improvements 

to their engineering work processes to maximize ROI on Capital Projects. Productivity 

has not developed in decades – the average Capital Project schedule lags by 20 months 

and goes over budget by 80%. These are results that have been shared by Jayanth (2017) 

during the Rice Global E&C Forum Roundtable. 

In many of today’s Capital Projects, there is a disconnect between FEED and Detailed 

Design. In response, AVEVA are the first industrial software provider to pioneer a new 

solution to break down the silos between these engineering disciplines. 

 
Unified Engineering consists of two main components, the Unified Lifecycle Simulation 

Platform (one model), and Integrated Engineering and Design (one database). The two 

are combined to form a robust process model and an engineering database that is able to 

synchronize through bi-directional flow of all 1D, 2D and 3D data on one platform. The 

bi-directional integration of a steady state and dynamic process model with an 

engineering database makes the process seamless and eliminates the need for MS Excel 

or other intermediate steps to transfer information between tools. 
 

With the Unified Engineering model, you can have: 

• Verification that the plant will operate as expected, and that controls are 

properly configured 

• Verification that equipment and piping are properly sized 

• One single version of the truth that remains up to date 

Sustainability 
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Figure 1 - Unified Engineering principles 

4. Process Simulation lifecycle 

Process simulators are irreplaceable tools for every process engineer. Since the nineteen 

seventies, process simulators have found widespread adoption within operating 

companies in oil & gas, refining and chemical industries, as well as the engineering 

companies and equipment manufacturers that service these industries. The tools available 

in the market today have incrementally improved over the years to provide more features 

and functionality. However, they trace their origins to legacy architectures, operating 

systems and aftermarket user interfaces, which create inherent limitations:  

• They cannot support the full plant lifecycle as they are limited by their single-

purpose architecture such as steady state process simulation, dynamic 

simulation, optimization, or flow network analysis for which they were 

originally designed  

• Extending their functionality can be performed by a very small number of 

software developers with chemical engineering knowledge, software 

programming skills, and/or knowledge of that particular specialized program  

• They are often based on decades old programming code that cannot leverage the 

more recent technological developments within the software industry  

 

Today’s simulators typically only support a single phase of the lifecycle and are often 

based on thermodynamics of different simulation vendors and different calculation 

methods. This not only leads to lack of trust in the results but causes substantial rework 

by having to build a new simulation model in each new tool. And the results are hard to 

compare.  

The technological limitations of incumbent process simulation tools forestall 

improvements in engineering workflows. Collaboration only occurs outside the 

simulation because the software cannot accommodate it. Engineering departments send 

analysis and optimization questions to outside specialists because they cannot easily 

perform advanced simulations with their in-house tools and software expertise. These 

complications trap engineering workflows in a waterfall project management paradigm 

where development is forced into a linear process. Iteration is to be avoided because 

J. de Beer et al.
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legacy software makes it cumbersome, error-prone, and tedious. Willetts and Depew 

(2020) describe in detail the current challenges and how a Process Digital Twin will 

significantly help improve efficiency and drive increased sustainability. 

 
Global competition, pricing pressure and energy alternatives are now driving the need for 

a new approach. The oil & gas industry has seen high volatility and the lower price level 

of today is seen as the “new normal”. The chemicals industry has a continuous need to 

innovate for greater agility and lower costs.  

The next generation of workers also expects a modern, scalable and easy to use solution 

with technology they now take for granted – high speed internet access, mobile devices, 

touch screens and virtual reality. New concepts like the Industrial Internet of Things 

(IIoT), Industry 4.0, and Artificial Intelligence have created greater opportunities with a 

new next generation platform that provides a “Digital Twin” of the plant through the 

process lifecycle that cannot be provided with today’s tools. 

 
A next generation process simulation platform means that one process model is extended 

throughout the entire lifecycle of the plant, from concept through to operations. This 

requires a process design mode, a fluid flow/rating mode and a dynamic mode, in 

combination with the ability to toggle back and forth between modes. Optimization may 

be provided to any mode.  

 

A single, easy-to-use simulation platform will allow engineers to move seamlessly 

between questions of design, analysis, and optimization. Engineers will be able to assess 

the impact of design and specification changes quickly and with a holistic view of 

multiple disciplines. Intensive collaboration becomes commonplace. In this environment, 

organizations will be able to adopt agile engineering workflows based on smaller pieces 

of work with continuous integrated testing to reduce development cost while eliminating 

surprises at the end of the project. 

5. Conclusion 

Lifecycle process simulation has been a vision for process simulation providers and their 

customers for a long time. Today’s simulators cannot leverage the rapid developments 

occurring in the software industry due to legacy architecture. 

 

Looking at the industry’s increasing demand for higher transparency, this can only be 

achieved using a data-centric Digital Twin approach. This data-centricity enables an ideal 

platform for new product and process development to create new models and include the 

management of complex environments bringing together both steady-state and dynamic 

simulation with constant iteration and constant solving capabilities. 

 

The integration of the process analysis and simulation with other Engineering & Design 

disciplines also allows to breakdown the silos that were typically existing previously. 

Connecting and remotely controlling previously unconnected processes will increase 

sustainable operations and improve business efficiency in a sustainable environment. 

Over the long term the impact will drive resilience and sustainable performance through 

technologies.  

 

Connecting the Simulation Model to the Digital Twin to help drive
Sustainability 
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Abstract 

Gas-liquid slug flow in micro/millimeter-scale channels is attractive in a broad range of 
applications. The sizes of slugs need to be known precisely, since the mass transfer 
characteristic depends on the slug length. To estimate the slug length from design and 
operating conditions, a number of models have been developed so far for T-junctions, 
but parameters of such models need to be empirically determined through many 
experimental trials. To reduce the experimental efforts, the physically sound model has 
been developed but are limited to micrometer-scale T-junctions. In this study, the 
applicability of the existing physically sound model is experimentally investigated in 
the case of millimeter-scale T-junctions. The results show that the volume added to the 
slug during the squeezing period is strongly affected by the condensed phase or liquid 
volumetric velocity. Taking this result, the combination of physical and empirical 
models is newly developed in this study. Our developed model will ensure the high 
accuracy in the design of the millimeter-scale T-junctions with gas-liquid slug flows. 

Keywords: Millimeter-scale T-junctions; Gas-liquid slug flow; Slug generation 
mechanism; Slug size; Process modelling. 

1. Introduction 

Gas-liquid slug flows are attractive in a broad range of applications, such as in chemical, 
bio-chemical and material synthesis, drug discovery, medical diagnostics (Suryawanshi 
et al., 2018). The slug generation mechanism can be divided in different regimes such as 
squeezing, dripping and jetting, based on the capillary number (Zhu and Wang, 2016). 
The focus of the present research lies on T-junctions operating in the squeezing regime 
(cf. Fig. 1). The squeezing regime is governed by surface tension forces, making the 
pinch-off mechanism independent from fluid parameters like viscosity. Extensive work  

 

Figure 1. Slug generation mechanism in a T-junction with liquid flowrate Qc and gas flowrate Qd. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50166-4 
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in this area has been done which resulted in models trying to predict the slug size from 
feed flows and channel geometry. In the present research, experimental validation of the 
proposed model by van Steijn et al (2010) is performed in millimetre scaled channels 
and channel geometries that have not been tested for this model. Based on the results, 
the shortcomings of the model are explained and tried to overcome.  

2. Method 

This chapter introduces the applied methods. The model by van Steijn et al. (2010) and 
the optical sensor and micrograph measurements is briefly explained.  

2.1. Steijn's Model 

The proposed model by van Steijn et al. (2010) enables the prediction of slug sizes 
within the squeezing regime at low capillary numbers Ca < 0.01. In this area, the slug 
formation mechanism is dominated by surface forces rather than viscous forces. It is a 
physically sound expression based on continuity, geometrical assumptions and the 
pinch-off mechanism. The slug formation mechanism can be divided into a filling and a 
squeezing part (cf. Fig. 1). The filling period ends when the bubble confines the whole 
main channel, leading to the accumulation of continuous phase fluid behind the bubble. 
This accumulating fluid squeezes the neck of the bubble during the squeezing period 
until it collapses. The upcoming dispersed phase then starts to fill the main channel 
again. This cyclic mechanism creates a segmented flow within the main channel.  

In Steijn's model, it is possible to determine the filling shape of a bubble from simple 
geometrical calculations. During the squeezing period, the continuous phase flow is 
obstructed by the bubble which confines the main channel. Continuity states that the 
incoming continuous phase accumulates behind the bubble and a part of it bypasses the 
bubble as gutter flow. Herein, the ratio of gutter flowrate (Qgut) to continuous phase 
fluid flowrate (Qc) is assumed to be constant 0.1 (van Steijn et al., 2009).  

2.2. Optical Signal Measurements 

Slug sizes can be measured by using pairs of optical sensors, which need to be placed 
along the channel, capturing the altering light transmission due to scattering and 
absorption. Using the signals from two optical probes placed a certain interval, the two 
signals can be cross-correlated to determine the time lag and then yield instantaneous 
superficial velocity of slug flow and slug lengths of gas and liquid (Ide et al., 2009).  

2.3. Micrograph Measurements 

A method to capture the gutter flow has been developed and implemented in Python. 
During the experiments, the T-junction needs to be aligned with the camera's field of 
vision. The video's contrast should be high and capturing the whole pinch-off area for 
accurate performance. The procedure to acquire the gutter flow is automatized.  

3. Experimental 

This chapter describes the experimental setup and procedure.  

3.1. Setup 

The experimental setup composed of three sections can be seen in Fig. 2. The first one 
being the green underlined liquid feed section. The continuous liquid phase (ethanol) is 
supplied by a syringe pump. Additionally, the pressure in the liquid feed line is 
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observed to determine the start of steady state operation. The second section is the 
yellow underlined gas feeding section. The dispersed gas phase (nitrogen) comes from a 
gas cylinder. The flowrate is regulated by a mass flow controller (MFC). A subsequent 
mass flow meter (MFM) is used to check for steady state operation. The gas then flows 
through a barrier channel (BC) into the T-junction. The barrier channel is used to enable 
steady state operation by reducing the effects of pressure swings within the channel on 
MFC. The third section is the blue underlined channel section. A variety of channels has 
been used. In all of them, the continuous liquid phase intersects with the dispersed gas 
phase coming from the perpendicular oriented feed channel. At this point, the 
segmented flow starts in the main channel. The T-junction itself is observed by a 
camera. Further downstream, the pair of optical sensors is placed, observing the 
segmented gas-liquid flow. The fluids are then led into a beaker at constant liquid level 
to ensure constant outlet pressure during the operation.  

Five different device geometries have been used. Their dimensions are given in Table 1. 
The devices were fabricated both in polymethyl methacrylate (PMMA) and glass. The 
relative production accuracy is 5% of the stated lengths. This information was 
confirmed with the available microscope and a micro scale.  

  

Figure 2. Schematic illustration of experimental setup. 

3.2. Procedure 

For each device, the connection to the feeding lines and beaker were reconnected. The 
surface of the T-junction should be cleaned for optimal image quality. The temperature 
of the ethanol supplied to the syringe pump was adjusted to room temperature. During 
start-up procedure, the gas must be supplied first to prevent backflow of liquid in the 
gas feed line. The setpoints for the feed flowrates are inserted into the syringe pump and 
MFC. The pressure signal from the liquid feed line and the display from the MFM are 
observed to determine reach of steady state operation. Then, the sensor signals are 
recorded for 60s at a sampling rate of 1ms-1. During this time, the video data was 
captured for usually 15s. After the data has been saved for one configuration, the feed 
rates were adjusted again.  

4. Results and discussion 

This chapter summarizes and discusses the main results of the conducted experiments. 
In the first section, the prediction accuracy of Steijn's model is evaluated. After that, the 
experimental validation of the gutter flow evolution is given. The following section 
shows how additional process information influences the prediction accuracy of Steijn's 
model. Based on this finding, an additional series of experiments was conducted with 
the goal to derive a gutter flow prediction submodel. The derivation and prediction 
results are described in final section. 

 

Table 1. Millimeter-scale devices. 
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Table 2. Prediction accuracy of Steijn's model for dimensionless gas slug volume. 

 

4.1. Steijn's Model Evaluation 

The measured dimensionless gas slug volume from the experiments has been compared 
to the predictions by Steijn's model. Table 2 shows the boundaries and mean prediction 
errors. It can be seen that there is a general underestimation of the gas slug volumes. 
The underlying reasons are discussed in the following section.  

4.2. Gutter Flow Ratio 

Qgut is one of influencing parameters in Steijn's model as described in section 2.1. The 
gutter flow during the squeezing period was captured for every conducted experiment. 
Qgut can be determined by the Python script from the micrograph video data. Figure 3 
shows a scatter plot of all gutter flow ratios over linear flow velocities for all conducted 
experiments. From this data it is clear that the assumption of a global constant gutter 
flow ratio does not hold for the scope of the performed research. It is confirmed that 
bigger channels inhibit higher gutter flow and flat channels E-1 and E-3 have lower 
gutter flows than quadratic channels. There is a slight material dependency of the gutter 
flow ratio. For glass devices the measured ratio was generally lower. This could be due 
to the corner roundness of the glass devices. The sharp corners of PMMA devices may 
lead to a bigger gutter area, allowing for more fluid to pass the bubble. A general trend 
of decreasing gutter flow ratio with increasing flow velocity can be seen. While the flat 
devices inhibit gutter flow ratios in the vicinity of Steijn's assumption, the other devices 
have considerably higher ratios. In the following, it is tested if the use of additional 
information about the ratio in Steijn's model improves the prediction accuracy and how 
the gutter flow ratio can be modeled.  

4.3. Incorporated Gutter Flow 

Using the additional information about the gutter flow, it is possible to calculate 
adjusted gas slug sizes from Steijn's model. For each experiment the information about 
the gutter flow ratio has been inserted into the prediction model resulting in new 
prediction errors. As a result, the prediction accuracy improved. Figure 4 visualizes the 
error distribution of PMMA and glass devices before and after the incorporation of 
gutter flow data. It can be seen, that in most cases the width of the error region narrows 
and gets shifted towards zero. The mean error of the PMMA predictions drops from 
21.6% to 11.9%. For glass devices the error drops from 16.8% to 9.7%. 

4.4. Gutter Flow Model Construction 

From the previous experiments, it was shown that using the actual measured gutter flow 
ratio in the prediction model leads to improved prediction accuracy. For system design 
purpose, it is necessary to have a descriptive model for the gutter flow ratio. Here, a 
possible model derived from experimental data is constructed and evaluated. 

(a)  PMMA (b)  Glass 
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Figure 3. Gutter flow to continuous phase ratio of all conducted experiments for PMMA and glass 
devices. The dashed line shows Steijn's model assumption of a constant ratio of 0.1. 
 

 

Figure 4. Prediction error of Steijn's model with conventional assumption (black) and with 
incorporation of gutter flow data (see Fig. 3) (orange). 

The main influencing factors for the gutter flow ratio appeared to be the channel 
geometry, the flow velocity v and the ratio of feed flowrates Qd/Qc. To reduce the 
complexity and experimental effort, in this research the geometrical influence was not 
included in the model but the extrapolation ability of the model has been tested. A set of 
experiments has been designed to cover the variable space ranging from v = 4-70 mm/s 
and Qd/Qc = 0.5-4. In total 27 samples have been acquired. It turned out that with 
increasing v and Qd/Qc, Qgut/Qc decreases. As there is no physical description of this 
mechanism, it is tried to fit a function candidate to the data. Plotting the measured data 
points according to Eq.(1) leads to a scatter that resembles a hyperbolic dependency for 
both variables. For this reason the following model has been selected: 

 
(1) 

The three empirical parameters a, b, c have been determined from least squares 
optimization. A cross-validation procedure was chosen in which four random samples 
have been chosen from the training set. The remaining samples were used for the 
parameter fitting. This procedure was repeated ten times to get an impression of the 
model sensitivity towards the selected training samples. The optimal parameters fall 
within a short range around a = 0.9, b = 0.2, c = 0.1 and the cross-validation shows high 
robustness towards training sample selection. It can be concluded that the constructed 
gutter flow model performs well within its training range for glass device C-1. To test 
the models extrapolation ability, it was used to predict Qgut/Qc for the other devices. The 
results can be seen in Table 3(a). 
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Table 3. Extrapolation ability of the constructed gutter flow model.  

 

It is evident that the constructed model is only valid within its training region for device 
C-1. The closest prediction accuracy is achieved for device B-1 which has the same 
aspect ratios only scaled down. The accuracy for A-1 is even worse and the prediction 
for E-1 and E-3 barely compare to the measured data. The gutter flow ratio behaves 
similar for devices with same aspect ratios (A, B and C-1) as can be seen from Fig. 3. 
To obtain a model that can describe the gutter flow for channels with aspect ratios h = w 
= 1 and win = w = 1, it was tried in a next step to fit the parameters a, b and c to the 
whole database for these devices. In this case, the training set consisted of 57 samples 
and a “10-fold leave 6-out” cross validation approach was applied. The best model in 
this training procedure slightly differs from previous one. The newly obtained 
parameters are a = 0.94, b = 0.23 and c = 0.099. The prediction accuracy for this model 
can be seen in Table 3(b). Using the broader training data leads to a more uniform 
prediction error for the quadratic devices. The accuracy for B-1 and A-1 increased 
slightly on the cost of C-1 accuracy. For the flat devices E-1 and E-3 no qualitative 
difference can be identified. 

5. Conclusions 

In this research, an experimental evaluation of a model for slug size prediction in T-
junctions has been performed. The channel sizes in this study were one order of 
magnitude bigger than those from the original study and made from PMMA and glass. 
The chemical system was a gas-liquid system of ethanol as continuous and nitrogen as 
dispersed phase. For these conditions, mean prediction error of 21.6% and 16.8% for 
PMMA and glass devices respectively could be achieved with Steijn's model. Methods 
were developed to calculate the actual slug volume from light sensor data and capturing 
the gutter flow volume from micrograph data. Incorporating the measured gutter flow 
data improved the prediction accuracy to 11.9% and 9.7%. An empirical gutter flow 
model was derived and trained to the acquired database. This model was found to 
describe channels of same aspect ratio (A-1, B-1, C-1) with a reasonable accuracy while 
the flat channels (E-1, E-3) cannot be described by the constructed model. 
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Abstract 

The catalytic conversion of captured CO2 and H2 into fuels is recognised as an interesting 

option to decarbonise the transport sector in the short-midterm future. DME has been 

identified as an ideal diesel-substitute for heavy-duty vehicles due to its high cetane 

number and excellent combustion properties, but to be competitive with diesel a low-cost 

and low-carbon H2 production route is a key enabler. Recent developments indicate that 

methane pyrolysis has the potential to produce H2 at a similar cost compared to steam 

methane reforming, the main H2 production route nowadays, yet with no direct CO2 

emissions. This paper presents an enviro-economic assessment of 12 life-cycle pathways 

for DME production. Our results show that DME produced using H2 from methane 

pyrolysis could be competitive with diesel, both economically and environmentally, but 

is highly dependent upon the utilisation of the carbon by-product.  

Keywords: Dimethyl ether; Process simulation; Life cycle assessment; Enviro-economic 

assessment. 

1. Introduction 

Decarbonisation of the transport sector is a long-standing challenge for our modern 

societies and an important step towards a sustainable future. Fuels that can be produced 

from CO2 hydrogenation (methanol, dimethyl ether (DME), oxymethylene ethers (OME), 

Fisher-Tropsch fuels) are gaining significant attention. DME, in particular, has been 

identified as an ideal diesel-substitute for heavy-duty vehicles (HDVs). The combustion 

of DME compared to diesel offers several advantages (no particulate matter or SOx 

emissions, reduced NOx and CO2 emissions), and major truck producers such as Volvo 

and Mack have already developed and tested DME-fuelled trucks with positive results 
(Szybist et al. 2014). While the DME production process has been extensively studied in 

the literature, the economic feasibility and environmental benefits of DME over its whole 

life cycle are yet to be proven (Royal Society, 2019). 

In a recent paper, Matzen and Demirel (2016) carried out a life cycle assessment of DME 

from methanol dehydration, considering CO2 and H2 from water electrolysis powered by 

wind energy as raw materials and found that DME outperforms diesel from an 

environmental perspective. However, a techno-economic analysis focusing on the same 

route showed that DME is not cost competitive in the current market conditions 

(Michalios et al. 2019). The main cost driver is H2 production, which is 4 to 6 times more 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50167-6
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expensive when produced by renewable energy compared to methane reforming, the main 

H2 production route nowadays (Al-Q uatani et al. 2021). This is in line with the results of 

similar studies focusing on other alternative fuels such as methanol (Gonzales-Garay et 

al. 2019) and OME (Rodrí guez-Vallejo et al. 2021). Recent developments indicate that 

methane pyrolysis, a thermal decomposition of methane into H2 and solid carbon in a non-

oxidative environment, produces H2 with no direct CO2 emissions and at a cost between 

$ 0.4 and $ 1.9 /kgH2 which compares favourably against steam methane reforming, for

which the estimated cost is $ 1.2 /kgH2 (Parkinson et al. 2018, 2019).  

The objective of this work is to assess DME production pathways that use H2 from 

methane pyrolysis and compare them with diesel, when both are used to power HDVs. A 

distinctive feature of our analysis is that it relies on detailed kinetic models, calibrated 

against experimental data to simulate the DME synthesis process and generate the 

foreground inventories used in both the techno-economic analysis (TEA) and life-cycle 

assessment (LCA). A total of 12 life-cycle pathways for DME production are compared 

with diesel from and economic and environmental point of view using a well-to-wheel 

(WTW) approach.  

2. Material and methods 

Figure 1 summarises the DME pathways considered in this work and the following 

subsections provide additional information on the modelling assumptions and approaches 

used to carry out the TEA and LCA.  

 

F igure 1: scope of the DME infrastructure divided in CO2 procurement (SS1), H2 production 
(SS2), DME production (SS3) and DME utilization in HDV. 

2.1. P rocess simulation and economic analysis 
Our focus is on two DME production processes: the direct synthesis where CO2 and H2 

are converted to DME in a one-step process; and the indirect synthesis that first produces 

methanol that is subsequently dehydrated to form DME. Detailed process simulations 

relying on kinetic models calibrated against experimental data were implemented in 

Aspen HYSYS (version 11). The modified Peng-Robinson fluid package (PRSV) was 

used to simulate the methanol synthesis, while the UNIQ UAC with the Redlick-Kwong 

activity model was used for methanol dehydration and direct DME synthesis. 

F eed composition. Both DME synthesis processes are fed with a mixture of CO2 and H2 

with a stoichiometric molar ratio of 1:3. The CO2 is assumed to be available at 1 bar with 

y
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2.5 %mol of water and nitrogen, regardless the source. The H2 is available at 30 bar, with 

2.5 %mol of methane.  

Indirect DME synthesis. The indirect DME plant is based on previous work by Van Dal 

et al. (2013) for methanol synthesis and by Luyben (2017) for methanol dehydration. 

Methanol is produced in an adiabatic reactor operating at 75 bar with a feed temperature 

of 210 °C, in accordance with Michalios et al. (2019). The unreacted gases are separated 

from the liquid products (methanol and water) in two consecutive flash drums then a 

distillation column separates the methanol from the water. A small (2 %) fraction of the 
unconverted feed is purged and burnt to produce electricity, while the rest is recycled 

back to the reactor. The electricity production unit is simulated as a syngas-fired gas 

turbine integrated with a steam turbine. The gas turbine cycle comprises a compressor to 

pressurize the air at 15 bar, a combustion chamber represented as a conversion reactor in 

Aspen HYSYS, and an expander. The hot flue-gas is used to produce additional electricity 

with a Rankine cycle. Operating variables, such as the pressure of the combustion 

chamber, and parameters, such as the compressors and turbines efficiencies, are taken 

from Narvaez et al. (2019). The methanol is fed at 240 °C to the DME reactor where it is 

dehydrated under 12 bar. The reactor is cooled to keep the internal temperature lower than 

400 °C to avoid catalyst deactivation, and the outlet stream exits at 360 °C. Two 

distillation columns are used to separate the products. DME is extracted from the top of 
the first column at the 99.5 %mol purity, while methanol is separated from the water in the 

second column and recycled to the methanol reactor.  

Direct DME synthesis. In the direct DME process the mixture of H2 and CO2 is fed to 

an isothermal reactor operated at 55 bar and 260 °C (Bernardi et al.2020). The outlet 

stream contains the unreacted syngas, DME, methanol and water. It is cooled to 35 °C 

before entering an absorption column where a mixture of water and methanol is used as 

the absorbing agent. The gas stream leaving the absorption column has most of the 

unreacted H2, CO, and CO2 with traces of DME. 2 % of the unreacted syngas is used to 

produce electricity with the combined gas and steam turbine described before, while the 

rest is recycled to the reactor. DME, methanol and water exit the absorption column in 

the liquid stream and are fed to a distillation train. The first column separates water and 
methanol from the DME and gaseous impurities. Water and methanol are in part recycled 

to the absorption column and in part fed to a second distillation column for their 

separation. The top stream of the first column is fed to a third column operating under 10 

bar where DME is recovered from the bottom at 99.5 %mol purity. A small (3 %) fraction 

of DME is lost from the top of this column in order to maintain a temperature above –20 

°C in the condenser. A refrigeration cycle with ammonia as working fluid is used to 

operate this cryogenic distillation column.  

Economic analysis. The capital and operating costs of the DME production plants are 

estimated using Aspen Economic Analyzer and considering that the plant is operating in 

the UK. An annual capital charge of 0.16 is used to annualize the capital cost. The CO2 

and H2 prices are taken from Gonzales-Garay et al. (2019) and Parkinson et al. (2018) 

respectively. The H2 price depends on the selling price of the carbon by-product, and 
values of $150 /ton and $500 /ton are assumed for the metallurgical coke (MC) as carbon 

black (CB). The diesel production cost considered here is the average price excluding 

VAT and duty between 2017-2021 reported in BEIS (2021).  

2.2. Life-cycle analysis 

Goal and scope: The functional unit (FU) for the LCA analysis is chosen as “1 ton 

transported over 100 km with a heavy-duty vehicle” (i.e.: FU = 1 tkm). The assessment 

hydrogen from methane pyrolysis
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of DME entails the analysis of the fuel use, as well as three background subsystems as 

shown in Figure 1. Subsystem SS1 involves the procurement of CO2 and three alternatives 

are considered in this work: direct air capture (DAC), carbon capture from a natural gas 

power plant (NG), and carbon capture from a coal power plant (C). Subsystem SS2 is 

concerned with the H2 production via methane pyrolysis. Two alternative uses of the 

carbon by-product are considered: carbon black (CB) and metallurgical coke (MC). 

Subsystem SS3 is the DME production step using either the direct or indirect process. 

Apart from DAC the other CO2 and H2 production pathways are multi-product and require 
dealing with multi-functionality. Following the recommendation by von der Assen et al. 

(2013) system expansion via substitution was adopted in this work. It is important to note 

that CB is a more valuable product compared to MC, but CB market demand is two orders 

of magnitude lower than MC and would not be enough if a large share of the HDV fleet 

was to be converted from diesel- to DME-fueled trucks.  

Data collection and life cycle inventory: The life-cycle inventories (LCIs) for SS3 are 

obtained by the simulations described in Section 2.1, while the inventories for the other 

subsystems are gathered from the literature:  

- SS1: LCIs are taken from Gonzales-Garay et al. (2019). The electricity produced by 

the power plants is assumed to substitute electricity from a conventional power plant 

located in UK and using the same fuel; 
- SS2: The inventory data for methane pyrolysis are derived from Parkinson et al. (2018), 

and the credits for the by-products are taken from the ecoinvent database; 

- Fuel use: fuel consumption and associated direct emissions are estimated for diesel and 

DME using the software GREET (version 1.3), considering heavy-duty trucks.  

Environmental impact assessment. ReCiPe2016 is the impact assessment methodology 

used in this work (Huijbregts et al. 2017). The methodology provides midpoint indicators, 

which quantify the effects of resource utilization and emissions on a specific 

environmental category (e.g.: global warming); and endpoint indicators, which represent 

the three areas of protection: human health, ecosystems quality, and resources. In our 

analysis we converted the endpoint indicators into a common monetary basis according 

to the economic penalties proposed by Weidema (2015), a process known as monetization 
of the environmental externalities. The environmental assessment is conducted in 

Simapro (version 9.1.1.1), using ecoinvent 3.6 for the background process inventories.  

3. Results and discussion 

3.1. Midpoint environmental analysis - emissions 

Figure 2a compares the GWP of DME with diesel in our WTW analysis. The labels 

indicate: the DME process, (indirect synthesis, iDME; direct synthesis, dDME); the use 

of carbon by-product (metallurgical coke, MC; carbon black. CB), and the CO2 source 

(direct air capture, DAC; carbon capture from natural gas power plant, NG; and from coal 

power plant, C). 

We can observe that all the 12 pathways lead to a reduction of the GWPWTW: the pump-

to-wheel (PTW) impacts are similar to those of diesel, but the well-to-pump (WTP) 

impacts are negative for 11 out of 12 pathways. This is the consequence of the negative 

GWP of the raw materials: the CO2 from DAC is accounted for as a negative emission, 
while the other multifunctional processes are associated with environmental credits for 

the avoided by-products. These credits exceed the direct emissions from the DME 

production stage, except for dDME-MC-C. We can also observe that iDME slightly 



 

outperforms dDME when the same CO2 and H2 sources are considered. DME also 

outperforms diesel in terms of life-cycle PM, NOx, and SO2 emissions. 

 
Figure 2: Enviro-economic assessment of DME- and diesel-powered HDV considering “1 ton 
transported for 100 km” as functional unit: (a) GWP; (b) externalities cost; (c) production cost. 

The error bars in (c) represent the minimum and maximum production costs considering a ±20% 
variation in the cost of the CO2 and H2 and historical prices for diesel in the period 2017-2021.  

3.2. Endpoint analysis and total cost 

Figure 2b shows the monetized values of the endpoint environmental impacts. We can 

observe that CB is the by-product of methane pyrolysis DME outperforms diesel, 

otherwise the total externalities cost of DME is higher than diesel. The damage to 

resources always represents the largest share. In the other two areas of protection DME 
is superior to diesel, except for impacts on ecosystems by dDME-MC-C and dDME-MC-

DAC that are comparable to diesel. As for the GWP, iDME compares favorably against 

dDME also from an endpoint perspective. 

Turning to economic considerations, finally, figure 2c shows the production and total cost 

per functional unit. We can observe that: (i) iDME outperforms dDME, and (ii) iDME is 

cost competitive with diesel only if the CO2 is captured from power plants and CB is the 

by-product of pyrolysis. iDME outperforming dDME is the result of an easier separation 

between products and unreacted reagents, that leads to a lower amount of CO2 and H2 lost 

in the purge streams. CO2 from DAC and H2 when MC is the by-product are the most 

expensive alternatives, and if used together they account for approximately 60% of the 

total production cost. In terms of total cost (including externalities) the alternative selling 

CB as by-product achieves a lower total cost compared to diesel as a result of the 

significantly lower monetized externalities. 

Conclusions 

This paper has presented an enviro-economic comparative assessment of different DME 

production pathways using H2 from methane pyrolysis and considering two alternatives 

for the solid carbon by-product. Using “1 ton transported by 100 km by HDV” as the 

basis of comparison, our results show that direct and indirect DME production routes 

using H2 from methane pyrolysis have a similar enviro-economic performances, and that 

they both have the potential to be cost-effective and to present lower environmental 

impacts compared to diesel, provided that the carbon by-product of the methane pyrolysis 

is sold in the market as carbon black. If the solid carbon is sold as metallurgical coke, 

DME might still offer benefits at midpoint level in terms of GWP, PM, NOx and SO2 

emissions, but at endpoint level DME has higher monetized externalities than diesel due 
to high damages to resources. Future work will aim to assess the robustness of our results 

incorporating a sensitivity analysis to account for uncertainty in the life-cycle inventories 

(a) (b) (c)

Enviro-economic assessment of DME synthesis using carbon capture and 
hydrogen from methane pyrolysis
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and investigate the impact of key assumptions of the LCA study. Moreover, different low-

carbon H2 production routes, such as electrocatalytic routes using renewable electricity, 

will be included in the comparison to assess the role of methane pyrolysis in the context 

of sustainable H2 production. 
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Abstract 

Cost-effective desulfurization of sour gas is of paramount importance not only in terms 

of safety, but also for the effective utilization of natural gas resources, as a significant 

amount of the gas content of a shale oil well is currently burned or emitted, which is 

detrimental for both the environment and the economy. Therefore, we need robust and 

cost-effective desulfurization technologies that can handle a wide range of gas flowrates 

and hydrogen sulfide concentrations. There has been significant progress in developing 

new desulfurization technologies, however determining their cost-effectiveness at 

different scales remains a challenge. Process modeling of these emerging desulfurization 

processes can help elucidate the parameters/uncertainties that impact their performance 

and thus help identify the best solution for a given system configuration. In this work, 

three natural gas desulfurization processes, i.e., oxidative sulfur removal (OSR) 

SourCatTM (Deng et al., 2020), iron-chelate redox systems LO-CAT® (Faramawy et al., 

2016)  , and Triazine based scavenger (Lozano & Trauffer, 2000) are simulated for natural 

gas feeds ranging from 1 to hundred thousand MSCFD and inlet H2S concentrations from 

500 to 2,500 ppm.  

Keywords: Desulfurization; Process Simulation; 

1. Introduction 

Fossil fuels are still an indispensable part of modern living for human society, keeping 

cars running and houses heated, for example. Due to the renewed emphasis on renewables 

and rigorous environmental scrutiny on other dirtier fossil fuels (coal, oil), there is an 

increasing demand for natural gas as a cleaner energy resource. Moreover, with 

disinvestment happening around the energy industry, it has become imperative to utilize 

natural gas resources effectively. Sour gas is a natural gas resource that contains a 

significant fraction of hydrogen sulfide (H2S) and carbon dioxide. The high hydrogen 

sulfide content severely limits the technical, economic, and environmental viability of 

certain natural gas resources. Hydrogen sulfide is toxic and corrodes pipelines if 

untreated. Sour gas from the gas well is processed by separating the H2S to give a sweet 

natural gas with specifications appropriate for transport and use by customers (maximum 

of 4 ppm H2S).  

Natural gas produced in lesser but not insignificant quantities or at remote locations is 

termed as stranded gas. These natural gas resources are typically vented or flared because 

of high transportation and processing costs. Processing stranded sour gas resources 

requires the development of scalable and easily deployable gas sweetening processes. 

Modularization of chemical processes is a process intensification option that provides 

significant economic and safety benefits because of flexibility and robustness in the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50168-8 
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transportation, deployment, and operation of a processing facility (Baldea et al., 2017; 

Bielenberg et al., 2019). Modularized desulfurization of stranded gas is highly beneficial 

for better utilization of natural gas and prevention of environmental emission. 

In this work, three natural gas desulfurization processes, i.e., oxidative sulfur removal 

(OSR) SourCatTM, iron-chelate redox systems LO-CAT®, and Triazine based scavenger 

(Hugo et al, 2000) are simulated for a natural gas feed at various scales (1 to hundred 

thousand MSCFD) and inlet H2S concentrations (500 to 2,500 ppm). For each set of 

operating conditions, the desulfurization cost is calculated for each process. The 

calculated cost is depicted and analyzed through heat maps. The process with the lowest 

desulfurization cost is identified for each operating condition. 

2. Process Simulations and Desulfurization Cost Calculations 

2.1. Triazine-based scavenger process 

Scavenger-based absorption is used hydrogen sulfide removal method for small sour gas 

cleaning. The process does not employ solvent regeneration and can be discarded to the 

environment as the spent liquid are readily biodegradable (Taylor et al., 2019). A process 

flow diagram (PFD) for the triazine-based absorption process is given in Figure 1. Sour 

gas (10-70°C) is injected into an absorber with a 52 wt% triazine-based scavenger, and 

the liquid-gas mixture is separated in a tower where sweet gas is collected from the top 

and spent liquid scavenger from the bottom (Lozano & Trauffer, 2000). To avoid solids 

formation, the inlet triazine is kept at 20% excess. Finally, the gas phase is maintained 

with sulfur content lower than 4 ppm, and the liquid phase is the reacted Triazine which 

will be disposed of. 

 

 
Figure 1. Triazine-based PFD Figure 2. LOCAT® PFD 

 

2.2. Liquid redox process 

In the LO-CAT® process, H2S is oxidized to elemental sulfur using a chelated iron sodium 

ferric ethylenediaminetetraacetate (EDTA FeNa) solution (Faramawy et al., 2016). This 

process is primarily used for small scale desulfurization of natural gas. The process flow 

diagram of the LO-CAT® process is given in Figure 2 (Faramawy et al., 2016; Speight, 

2018). In the absorber vessel (T-1), H2S from sour gas is absorbed by the EDTA solution, 

where ferric ions oxidize H2S to form solid sulfur. Subsequently, in vessel T-2, ferrous 

ions are oxidized back to ferric ions when reacted with oxygen in air. Sweet gas with the 

required specification (<4 ppm H2S) leaves the top of the absorber. The ferric ion solution 

is recycled back to the absorber. Fresh EDTA solution is added to the recycle loop to 

compensate for losses related to the wet sulfur cake. To prevent iron precipitation and 

accelerate H2S absorption, NaOH or KOH is used to maintain the solution pH between 8 

and 9.  
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2.3. Chemical oxidation (SourCatTM) process 

The SourCatTM process is a newly patented solid catalyst-based oxidative sulfur removal 

(OSR) desulfurization process developed by IntraMicron, Inc., an Auburn University 

spin-off company (Deng et al., 2020). A process flow diagram of the simulation is given 

in Figure 3. Sour gas and air are injected into the solid fixed-bed catalytic reactor, where 

H2S is converted to solid sulfur and a small amount of SO2 with high selectivity to 

elemental sulfur (over 90%). The reactor effluent is washed and cooled with water to 

remove solid elemental sulfur and most SO2. The solid sulfur is collected by a filter and 

discarded as sulfur cake. The small amount of SO2 produced is carried by the gas stream 

and separated from the sweet gas by an adsorption bed (V-2). 

 

Figure 3: SourCatTM PFD 

2.4. Cost calculation 

Desulfurization costs are defined as the cost of sweetening one thousand standard cubic 

feet (MSCF) natural gas. Aspen PlusTM process simulations are used to calculate the raw 

material/utility requirements and equipment sizes for each process. Given this 

information, the capital expenses (CAPEX) and operating expenses (OPEX) are 

calculated using standard cost calculation coefficients (Turton et al., 2008). Next, the 

desulfurization cost before and after paying back the capital investment is calculated 

using Equations (1) and (2), respectively. In Eq. (1), the annual interest rate, r, is assumed 

at 10%, and the payoff time, t, is set as 5 years. The variable capacity represents the sour 

gas flow rate in thousand standard cubic feet per day (MSCFD). 

𝐷𝑒𝑠𝑢𝑙𝑓𝑢𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑎𝑦𝑏𝑎𝑐𝑘 =
𝐶𝐴𝑃𝐸𝑋×

𝑟(1+𝑟)𝑡

(1+𝑟)𝑡−1
+𝑂𝑃𝐸𝑋

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
  

 
(1) 

𝐷𝑒𝑠𝑢𝑙𝑓𝑢𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑝𝑎𝑦𝑏𝑎𝑐𝑘 =  
𝑂𝑃𝐸𝑋

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
  (2) 

2.5. Modularization criteria 

In this work, a simple modularization criterion is used to limit the size of principal 

equipment in each process to allow for easy transportation. In sizing the conventional 

process, each piece of equipment was scaled freely according to the process requirements. 

On the other hand, to identify the size of the modularized plants, we constrained the size 

of the equipment based on federal transportation guidelines (Morris, 2003). The sizing 

algorithm for the modularization is illustrated in Figure 4 (Shao et al., 2020). 
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Figure 4. Method and criteria used for modularization. 

3. Results & Discussion 

After the cost calculations to compare three different desulfurization processes, a plot is 

generated comparing desulfurization cost before and after the payback of the equipment. 

In Figure 7 (left), the cost before payback is shown, and Figure 7 (right) shows after 

payback. Both plots show the cost for SourCat™ process is minimum at ten thousand 

MSCFD, for before and after payback time, respectively. 

 

   

Figure 7: Desulfurization cost at 10,000 MSCFD before (left) and after (right) payback. 

In Figure 8 (left), the cost before payback is shown, and Figure 8 (right) shows after 

payback for 100,000 MSCFD. Both plots show that the cost of the SourCat™ process is 

the lowest at 100,000 MSCFD, both before and after payback. LOCAT could only 

compete at very low H2S concentration. The Triazine-based process cost has been 

excluded from the plots as it is significantly more expensive than the others at 100,000 

MSCFD. 

 

C. B. Mukta et al. 
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Figure 8: Desulfurization cost at 100,000 MSCFD before (left) and after (right) payback. 

Based on the cost calculation results, heat maps illustrating the competing technologies 

for different combinations of flowrate and H2S concentration have been developed and 

shown in Figure 9. Both plots indicate that at higher natural gas flowrates, SourCat™ 

may be the most cost-effective technology, but at very low natural gas flowrates and 

particularly at lower hydrogen sulfide concentrations, the Triazine-based scavenger 

process can be cost-effective. 
 

 

Figure 9: Desulfurization cost heat map. 

Similarly, heat maps illustrating the comparison of the three technologies for the 

modularized case have been developed and are shown in Figure 10. It shows that at high 

flow rates of 100,000 MSCFD and low H2S concentration, LOCAT can be cost-

competitive, however for most cases investigated here, the best choices are Triazine for 

low flow rates, and SourCat™ for higher flowrates (>100 MSCFD). 

4. Conclusions 

In this paper, we have investigated three natural gas desulfurization technologies at a 

range of gas flowrates and hydrogen sulphide concentrations. Conventional designs, as 

well as modularized configurations, have been compared. For all combinations of gas 

flowrate and H2S concentration, the technology with the lowest sulphur removal cost has 

been identified. The new SourCat™ process appears to be the most cost-effective and 
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economically favorable process for flowrates above 100 MSCFD regardless of H2S 

concentration, while the Triazine-based Scavenger process is more suitable for small 

capacity/lower flowrate systems. The LOCAT® process only shows promise at a very 

high flowrates and very low H2S concentration, even in the modularized configuration. 

Therefore, while the Triazine-based process has potential for very small systems, the 

flexibility and scalability of the SourCat™ process lends itself more to process 

intensification and deployment at medium to larger size systems. 

 

 

Figure 10. Desulfurization cost heat map for modularized process. 
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Abstract 

With the increase in the global energy requirements, the utilization of fossil fuels have 

been also increased which not only increased greenhouse gas (GHG) emissions but also 

caused global warming. The sharp reduction in the GHG emissions demands for utilizing 

the energy mix and fuel switch technologies to develop the cleaner fuels. In this study, 

process simulation framework has been proposed to simultaneously produce two fuels 

(methanol and H2) in the co-generation process integration framework. Two process 

models have been developed in Aspen Plus ® V12 followed by the techno-economic 

assessment to analyze the process feasibility. Case 1 is considered as the base case 

process, where the process initiates with the coal-biomass gasification to produce the 

synthesis gas. The synthesis gas is then treated in the acid gas removal units to remove 

the CO2 and H2S. The synthesis gas is then fed to the methanol synthesis unit to produce 

methanol, whereas, the unconverted CO is treated in the water-gas shift (WGS) reactors 

to convert CO into the H2 and CO2 followed by CO2 removal in the AGR section. Case 2 

design represents the novel process for co-production of methanol and H2, where the coal-

biomass gasification technology is sequentially integrated with the methane reforming 

technology to maximize the heat utilization without any energy penalties. Both the 

models are techno-economically compared in terms of methanol and H2 production rates, 

specific energy requirements, carbon conversion, CO2 specific emissions, overall process 

efficiencies, fuel production costs and project feasibilities.  The results showed that the 

case 2 design offers higher methanol and H2 production rates with the low energy 

requirements.  Also, the process efficiency of case 2 is 3.8% higher than the case 1 design, 

where, the specific energy requirements of case 2 is almost 16% less compared to the case 

1 design. While performing some sensitivity studies, it has been analyzed that the case 2 

process offers better process feasibility in terms of process performance and economics. 

Keywords: gasification, reforming, hydrogen, methanol. 

1. Introduction 

The global energy demand has increased manifolds during the last few decades due to 

rapid industrialization and continuously relying on the conventional processes for heat 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50169-X 
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and power generation. Also, the recent report issued by Global Energy Outlook (GEO, 

2020) also forecasted an increase in energy demand up to 30% in the near future. To 

minimize the difference between energy demand and supply, conventional and 

economical fuels have been used for power generation, where, coal and natural gas are 

among the  most widely used feedstock’s. However, the recent increase in the fuel prices 

has put more pressure to use the cleaner fuels and reduce the carbon emissions. Since, the 

coal fee stocks are widely available and most of the infrastructure is developed based on 

the coal based processes, it is expected that the coal will be used in the coming decades. 

Therefore, an attention has been made to convert the coal into clear fuels i.e. syngas, H2, 

methanol, FT chemicals, etc. 

Natural gas to methanol and hydrogen (NGTMH) technology has been widely used to 

produce hydrogen and methanol. Steam methane reforming (SMR) is an intermediate step 

to convert the natural gas into syngas with the HCR of 2.0-2.5. The syngas can be further 

transformed into various products including H2, methanol, and FT chemicals. On the 

other hand, hydrogen and methanol can be produced from the coal by converting it into 

syngas using gasification techniques, which, can be further transformed into methanol 

and H2. Coal to methanol and hydrogen (CBH) processes have received a lot of attention 

due to lower coal prices, however, hydrogen to carbon (HCR) from the coal-based 

processes lies in the range of 1:2, which is not suitable for methanol production. 

Therefore, water gas shift (WGS) and CO2 removal systems are deployed to enhance the 

H2 production and minimizing the CO2 emissions. On the other hand, an integrated 

approach to utilize the natural gas reforming and coal gasification is the single process 

can be also used to enhance the overall hydrogen production. This approach utilizes the 

heat from the gasification unit in the natural gas reforming unit to minimize the overall 

energy needs while producing additional syngas. Mixing the gasifier and reformer derived 

syngas; the overall HCR can be increased to make it suitable for the methanol and 

hydrogen production. Yi et al. (2015) reported that the 2.6 ton of CO2 is emitted for each 

ton of methanol production while using the CTM technologies. On the other hand, SMR 

processes showed a potential of lower carbon emissions due the higher HCR ratio in the 

synthesis gas. Recently, Blumberg et al. (2019) also performed the exergy analysis and 

developed the alternative designs by integrating different reforming technologies to 

enhance the H2 production that can improve the overall methanol production. Ahmed et 

al. (2021, 2021, and 2021) also integrated the syngas production processes to enhance the 

overall H2 production rates that can influence the downstream methanol production.  

This study utilizes coal and biomass feedstocks, which are gasified to generate the syngas. 

Moreover, the gasification unit is integrated with the methane-reforming unit, where, the 

heat from the gasification unit is utilized in the reforming unit. The key idea is to use the 

multiple feedstocks that can involve the biomass to reduce the overall carbon footprint, 

while, enhancing the syngas production. The technical and economic analysis is 

performed to determine the overall process efficiency, carbon emissions fuel production 

costs.  

2. Modelling and Simulation  

Aspen Plus (V12) has been used in this study to develop the simulation models for the 

production of methanol and hydrogen. The Peng Robinson with Boston Mathias (PR–

BM) is used as the effective thermodynamic package, where, coal and biomass are 

defined based on proximate and ultimate analysis. Table 1 represents the process 

conditions and some of the main units of the overall process: 
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Process Conditions 

Reformer (RGibbs) Temperature: 900°C, Pressure: 32 bar  

NG flow rate: 5.50kg/s, H2O:CH4 = 3:1, 

Ni-based catalyst 

Gasification (RGibbs) 

Temperature: 1350-1370°C, Pressure: 56 

bar 

Coal Flow Rate: 62.2kg/s  

Biomass flow rate: 6.2kg/s 

Methanol Reactor(RGibbs) Temp/Pressure = 200℃ / 5.5 MPa 

Heat Exchangers (MHeatX) ΔTmin=10°C 

Water Gas Shift Rector ( REquil Reactor) Adiabatic reactors, Steam/CO: ~2.2 

3. Process Description 

Two process models have been developed in Aspen Plus (V12). Figure 1 shows the base 

case model, where, coal and biomass are used to produce syngas in the gasification unit.  

Gasification Unit

Coal/Biomass
90:10 (weight)

Syngas Quench
Methanol 
Synthesis

O2

Coal

MeOH

Biomass

WGSH2S Removal CO2 Removal

CO2 H2

Claus Plant
Sulphur CO2 

Storage
H2 

Storage
Methanol 
Storage

 
Figure 1: Dual Methanol and H2 production from Coal and biomass – Case 1 

 

The temperature of the syngas is then reduced in the radiant coolers to generate high-

pressure steam. The syngas is then passed through the acid gas removal unit to remove 

the H2S and CO2 from the syngas. The synthesis gas is then allowed to enter in the 

methanol synthesis unit, in the presence of copper-based CuO/Al2O3/ZnO catalyst, to 

produce the methanol.  The unconverted syngas from the methanol unit is then fed to the 

WGS unit to convert the CO in the syngas to CO2 and H2. The mixture of CO2 and H2 is 

then fed to the CO2 removal unit to capture excess of the CO2 and to get the pure H2, 

which is sent to the storage section. Figure 2 represents the case 2 process model, which 

uses biomass, natural gas and coal feedstocks for the production of methanol and H2. Case 

2 mainly integrates the coal/biomass gasification process with the natural gas reforming 

technology, where, the energy from the gasification unit is utilized in the reforming unit. 

The overall aim of this integration is to minimize the energy needs of the process while 

increase the production of syngas and H2. 
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Gasification 
Unit
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CO2 Removal

H2 Storage

CO2 Storage
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Storage

 
Figure 2: Production of H2 and Methanol from Coal, Biomass and Methane in an 

integrated process – Case 2 

4. Results and Discussion  

4.1 Methanol and H2 Production Rates and Overall Process Performance 

The results from the case 1 and case 2 are compared to analyze the overall process 

efficiency and to evaluate the production rates of the methanol and H2 from both cases. 

The results showed that the case 2 design has higher syngas production rates with the 

higher HCR in the syngas. The results are also compared in terms of higher heating value 

(HHV) of the syngas, where, the HHV of the syngas in case 1 and case 2 is calculated as 

16.24MJ/kg and 18.84MJ/kg, respectively. The production rates of methanol for case 1 

and case 2 have been calculated as 31.17kg/s and 45.44kg/s, respectively. Similarly, the 

H2 production rates for case 1 and case 2 have been calculated as 3.1kg/s and 2.58kg/s, 

respectively, as shown in Figure 3.  

 

Figure 3: Methanol and Hydrogen Production Rates 

The specific energy requirement is an important indicator to find out the energy required 

for each unit of product formed. It has been seen from the results that methanol specific 

energy requirement for case 1 and case 2 is 20.51kg/GJ and 26.15 kg/GJ. Also, the H2 

specific energy requirement for case 1 and case 2 is 2.04 kg/GJ and 1.48kg/GJ, 

respectively. It is also important to estimate the overall process performance of case 1 and 

case 2 for comparative analysis. The efficiency for both the cases have been calculated 

based on thermal energy of feedstocks and produced fuels (methanol and H2 ) as 

represented in the equation 1.  



 

Process Efficiency =
Methanol thermal energy [MWth]+H2 thermal energy [MWth]

Feed stock thermal energy [MWth] + Energy consumed [MWth]
x 100%  (1) 

The results showed that the overall process efficiency of case 1 and case 2 is 65.3% and 

69.9% respectively. Moreover, it has been seen from results that the specific production 

energy requirement for case 1 and case 2 is 44.33GJ/MT and 36.18GJ/MT of energy, 

respectively. Moreover, the carbon conversion efficiency for case 1 and case 2 is 

calculated around 30% and 40%, respectively. In terms of emissions, case 1 and case 2 

generated 0.31 kg and 0.19 kg of uncaptured CO2 for each kg of fuel (methanol and H2) 

produced.  

5. Economic Analysis and Project Feasibility  

Economic analysis includes the estimation of the capital expenditure (CAPEX) and the 

operational expenditure (OPEX) to estimate the cost of the final product. The CAPEX 

mainly involves the cost the equipment, piping and installation, instrumentation, civil 

work etc. On the other hand, OPEX is calculated on the base of cost of raw material or 

feedstocks, utilities, catalyst replacement, maintenance, etc. The CAPEX is calculated by 

sizing all the equipment depending upon the operational conditions and the flow rates of 

the stream through each unit. The CAPEX is calculated using equation 2, where the 

CEPCIold, Capacityold and Costold values are taken from the literature for the corresponding 

units along and the new CEPCI of 618 for the year 2021 has been chosen to estimate the 

cost of new units along with new production capacities taken from the model. The value 

of x is taken as 0.6 (6/10th rule) for keeping the comparative analysis simple. 

 CostNew = CostOld × (
CapacityNew

CapacityOld
)

x

×  
CEPCINew

CEPCIOld
    (2) 

The results from the economic analysis is represented in the Table 2. The results showed 

that CAPEX/MT required for case 1 and case 2 is 75.37 $/MT and 66.51$/MT, 

respectively. Moreover, the OPEX/MT for the case 1 and case 2 is calculated as 250.82 

$/MT and 217.02 $/MT, respectively. The CAPEX and OPEX calculations are used to 

determine the total production cost (TPC) and minimum selling price (MSP). The results 

showed that the selling price of the methanol for case 1 and case 2 is estimated as 322.73 

$/MT and 256.93 $/MT, respectively. Moreover, the selling price of the H2 for case 1 and 

case 2 is estimated as 36.09 $/MT and 54.96 $/MT, respectively. 

Table 2: Economic Analysis 

 Units Case 1 Case2 

CAPEX USD/MT 75.37 66.51 

OPEX USD /MT 250.82 217.02 

Total (CAPEX+OPEX)  USD /MT 326.20 283.53 

10% Profit Rate USD /MT 32.62 28.35 

MSP od Fuel (H2+CH3OH) USD /MT 358.82 311.88 

MSP of Methanol USD /MT 322.73 256.93 

MSP of H2 USD /MT 36.09 54.96 

The cash flow analysis for both the cases have been also done to analyze the project 

feasibility, where, the lifetime of the plant in both cases is taken as thirty three (33) years 

as represented in the Figure 4. The results showed that the case 2 design offers higher rate 

on return on the investment as compared to the case 1 design.  
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Figure 4: Cumulative Cash Flow Analysis 

6. Conclusions 

This study represented the technical and economic analysis of two process models for the 

production of hydrogen and methanol. Both the models were developed in Aspen Plus, 

where, the base case model used coal and biomass for the production of hydrogen and 

methanol. On the other hand, the alternative model used the natural gas along with the 

coal and biomass, where, the sequential integration between the gasification unit and 

reforming unit is done to minimize the energy needs. The two models were compared in 

terms of process efficiencies, fuel production rates and carbon conversion. The results 

showed that the case 2 performs better compared to the case 1 design in terms of both 

process performance and economics. 
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Abstract 

A small graphical language provides the means to document and discuss process models 

in details without engaging into a programming environment. It proved to be a powerful 

tool to discuss model on the back of an envelope as well as for defining a graphical user 

interface for ontology-based modelling suite ProMo. 

Keywords: Modelling ontologies, simulation, control, design, operations 

1.1 Background 

Mathematical models are the core of any computational engineering activity and models 

are used in various contexts. Traditionally modelling tools attempt to construct process 

models from basic building blocks. The nature of the building blocks is often not 

transparent to the user. The tools are constructed with expecting only basic knowledge 

of the basic building blocks. The actual realisation is usually left to an expert and 

remains mostly hidden from the process model builder. This approach works fine as 

long as the building blocks are matching the behaviour the user expects. If the match is 

not good enough, the user has no hands on learning about the detailed implementation 

and the expert has to be called on the scene.  

Independent on the type of user, it is good practice to provide a complete  

documentation of the building blocks and the resulting process model. It is often 

essential to get the insight on what the person constructing the model assumed and how 

it was "seen". Modelling tools are also mostly integrated with a solver environment, 

which in the past often used to be visible and accessible. Today, a myriad of solvers are 

available and it is often desirable to move from one solver environment to an other, 

which brings the issue of generating code compatible into the limelight. One quickly 

also gets interested using models with different solvers and thus one formalised the 

problem of transferring models between different environments. The CAPE-OPEN 

project (2020) is the most outstanding in chemical engineering, while the Modelica 

community designed functional mock-up interfaces (FIM 2021). In both cases, one 

retains the actual code and resorts to wrapper technology (for example SWIG 2021). 

We have taken a different approach by lifting model documentation and behaviour to a 

higher level. 

2. Foundation: Reductionism 

Chemical engineering software builds on implementing basic principles of physics, 

chemistry and biology, enriched, when necessary, with black-box models. Latter to 

capture behaviours that can for one or the other reason not be captured by a mechanistic 

description. Either it is too complicated, which is probably the most common cause, or 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50170-6 
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it is merely not sufficiently well known what is going on between the excitation and the 

response of the part in question. 

Most simulators have a graphical input language, just because it is easier for people to 

generate models using a graphical interface in contrast to a textual interface. So why 

then a graphical language for documenting/describing models? 

Graphical tools for capturing a plant's behaviour may or may not have models attached 

to the visual object representing them. Some systems are purely focusing on a graphical 

representation (example: ConceptDraw, 2021). Simulators, in contrast, do have models 

linked to the items shown on the screen. Examples are gProms™ (2021), Aspen™ 
(2021), etc., but also Matlab's Simulink to mention a product with another 

background.  

Flowsheet simulators require experts to build the building blocks. The blocks typically 

describe the behaviour of a process entity, like a unit operation. The individual blocks 

are hand written pieces of code including all the necessary mathematical relations that 

describe their behaviour.  Thus these facilities do include mathematical models, but the 

new development of constructing models based on ontologies, opens a whole new 

approach. 

Ontology-based model construction has the flavour of the system theory's concept of 

minimal realisation. It aims, and succeeds, in defining based entities from which models 

are being constructed. The approach is based on using reductionism. Reductionism is a 

commonly applied technology for analysing and describing objects. It takes the object 

of interest and recursively subdivides it into smaller and smaller pieces until a 

granularity is reached that is rich enough to represent the process. We use reductionism 

to define the smallest domain-specific entities required to represent the considered 

classes of processes. The base entities are captured in an ontology, which is used to 

define the mathematical behaviour of the base entities. A small language serves to 

define the equations, and the analysing parser is combined with a template machine 

generating different output codes suitable for different programming environments. 

Once the base entities are associated with a graphical representation, one can use them 

in a visual tool to construct process models on a canvas. This process we have described 

before {references}. 

The graphical language can, though, also be used as a manual design tool. Choosing the 

base entities carefully, keeping in mind a minimal set of objects for the given 

application domain, one generates a powerful graphical language that serves a multitude 

of purposes: Paper and pencil model design, model documentation, and graphical input 

to ProMo’s model composer software.  

The graphical language captures frame information, thus time and space. The time scale 

characteristics, being constant, dynamic and event-dynamic and the space 

characteristics being the distribution nature: 0D for lumped systems, where the relevant 

intensive properties are not a function of the spatial coordinates. 1-3 D where they are a 

function of the named number of spatial coordinates. Defining a set of arcs depicting the 

interactions between the base entities, captures how they interact and what is being 

transported.  
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3. Language as paper-and-pencil tool and documentation 

We shall first use the language to demonstrate the use of the graphical language as a 

discussion and documentation tool. 

3.1. Example espresso maker 

The traditional traditional espresso maker has a 

lower part, where the water is being filled in after 

unscrewing the upper part. In the middle is a filter 

section, where the coffee powder is being added. 

The filter section is connected to the fountain of 

the top section when screwing the top part onto 

the lower.  

When heating at the bottom, the water 

temperature rises until it the pressure in the lower 

gas phase is large enough to push the hot water up 

the immersed pipe into the ground coffee and 

further up to the fountain to the top coffee 

reservoir. Once the water level is low and the 

upwards pipe is not anymore in the water, steam is passing through the pipe, the filter 

cake and spits out the remaining fluid through the fountain. Voila – espresso is ready for 

consumption. 

The topology shows 

the room and the 

electricity source as 

reservoirs. The gas 

phase (G), the water 

(W), the fluid in the 

filter container (B), the 

ground coffee (C), and 

the product (K) are 

shown as lumped 

systems. The operation 

associated with having 

first hot water and in 

the end steam passing 

upwards is shown as a 

control element with 

two switches. This is a 

typical example, where 

the MODEL is controlled, in contrast where there is a physical controller acting on 

some flow. The over pressure valve is a physical element and can be seen as a controller 

that is built into the valve. We use circles for lumped systems, and semi-open olives for 

reservoirs. The arrows stand for the transfer of extensive quantity, like mass or energy 

in one or the other form. Phase interfaces appear as bars. For the control we introduce 

an observer picking information from the inside of a system and the rhomboids are 

control decision elements. Control signals are dotted lines. Arrows are in all cases 

defining a reference coordinate for the represented flow. 

 

Figure 2: A possible topology for the espresso maker 

Figure 1: A typical Italian espresso 

maker 
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The direction of the arrows define a reference coordinate system for the flow. Flow in 

the direction of the arrow is positive, while the flow in the opposite direction is 

negative. The full line arrows show mass flow. Notice that the coffee being leached is 

only one arrow, though the water is flowing in the negative direction and the leached 

product into the positive direction. The dashed arrows are associated with work. The 

arrow from the electricity reservoir to the heating element is an electrical work flow, 

while the same type of arrows between the gas phase, the interface and the water stand 

for volumetric work, as the gas phase increases in volume while the liquid phase 

shrinks. The heating element is shown as and ideal converter of electrical energy into 

heat, latter flowing into the water. Some heat is lost through the lid into the room. The 

capacity effect of the construction is neglected, as no element is shown in the topology 

that represents the construction. 

3.2 Example: A melting process 

Melting of a solid in a heated device is characterised by going through three stages: (i) 

heat the solid (ii) melt the solid (iii) heat the liquid. The first and last stage have only 

one phase, while the second stage is characterised by having two phases. The model is 

being switched with the triggered by the formation of a first liquid phase and the 

completed disappearance of the solid phase. 

The melting of solid topology has three control stuctures. Two are controlling the 

model, namely the two triggering the switching between the stages and one that is a 

physical controller opening the outflow tap once the desired temperature in the liquid is 

achieved. Notice that the model will not work if the product temperature is below the 

melting temperature. The ontology models the two phases as distributed systems, thus 

assuming that the temperature is a function of the position within the respective phase. 

Figure 3: The three stages of melting a solid 
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Notice that that the graphical elements are enriched with olives for the representation of 

distributed systems and connectors to other parts of the model. 

3.3. Example molecular modelling 

The top-level of the molecular-level model has a couple of interesting control structures. 

 

Figure 4: Molecular modelling level of properties 

The overall process is iterative. The state of the molecules in the unit cell is adjusted by 

changing the temperature and the volume until the temperature and the pressure is close 

enough to the required temperature and pressure. The two involved control loops 

include a thermostate and a barostate, which are triggered by the check on the volume 

and the energy change over the iteration period. On the molecular level, we essentially 

only deal with information flows. We thus carefully  mark the individual signals. 

The graphical model contains all the information except than the specification details of 

the unit cell. While it is possible to provide the graphical model for the unit cell, it is not 

very instructive. One better resorts to a modified version in which the number of 

molecules is provided as well as the type of interacting forces and the associated 

assumptions and those forces that are neglected. 

3.4. Corrosion – a moving boundary process 

An interesting class of models deal with moving boundaries. As an example we show a 

corrosion process in which the iron bars in concrete are attacked by an active 

component forming a rust layer. The reaction takes place in the boundary volume on top 

of the iron. It is modelled as a infinite small volume. The interfaces control the species 

transfer. So W, A, R are not transported into the iron, for example. So on the top we 

show the presence of the species while on the lower row, we indicate, which species are 

not transferred. Thus we define semipermeable walls representing the interfaces. The 
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circles again represent lumped systems, here iron. The bars are interfaces with the 

indication of what group of species is not transferred. The dot system is an infinite small 

capacity in which the reaction takes place. 

1.2 Conclusions 

We present a graphical method for representing process models on different scales. On 

the macroscopic level we have capacities on the three time scales: constant, dynamic 

and event-dynamic. The dynamic and the event-dynamic capacities are further detailed 

with the distribution information (1D-3D) and interfaces are abstracted to semi-

permeable walls. An important aspect is the separation of the control of the plant, thus a 

physical object, and the control of the model. Latter implements some logic operations 

into the model, like a state limit is reached and the model changes structure like in the 

melting process. The result is always a directed graph showing the physical part of the 

process, the model control structure and the physical control structure. The directions 

provide the reference coordinate for each flow, which in the physical process are always 

extensive quantities.  
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Abstract
To reduce the CO2 emission of a refinery and lower the production cost of bio-fuels, the
co-processing of vacuum gas oil (VGO) and bio-oil has been proposed to add the
renewable carbon into the co-processing products. However, the accurate CO2 emission
of the co-processing scheme is still unclear. In this work, a simulation of the whole co-
processing scheme is built in Aspen Plus according to the date from actual industrial
operations and reports. Based on the simulation results, the total CO2 emission
consisting of the direct emission from fuel combustions and indirect emission from
utility consumptions is calculated to give a fully understand of co-pressing scheme. This
work not only provides a whole simulation model, but also gives a basic understanding
of the CO2 emission and optimization for the co-processing scheme.

Keywords: Co-processing; Bio-oil; Vacuum gas oil; Aspen; CO2 emission

1. Introduction
Environmental problems such as fossil energy shortage and global warming are
becoming more and more serious. To ensure socially sustainable development, it is
imperative to develop renewable fuels with low CO2 emission. As the only carbon-
containing renewable energy, biomass can be converted into gas, liquid and solid
products, and bio-fuels derived from biomass can partially replace fossil fuels.
Furthermore, as bio-fuels can effectively solve the shortage of resource and
environmental pollution, bio-fuels development has gradually attracted attention.

The prices of bio-gasoline and bio-diesel are generally higher than those of petroleum-
derived gasoline and diesel, because the biomass is more expensive than crude oil and
bio-refinery needs a great deal of capital investment (Nuno, C et al, 2019). In addition,
bio-diesel and bio-gasoline contain only partial fractions of diesel and gasoline and need
further blending processes. Therefore, how to reduce the production costs of bio-fuels
satisfying national fuel standards has become a research hotspot (Vasalos I A et al, 2016;
Kan T et al, 2016).

Generally, there are three advantages in co-processing of bio-oil and vacuum gas oil in
an existing refinery. Firstly, the utilization of the existing refinery infrastructure can
greatly reduce the investment cost of bio-refineries. Secondly, the transportation cost
from bio-fuel blending can be saved by using existing blending processes. Finally, the
refinery mature fuel distribution system can be effectively used for the distribution of
co-processing products. Thus, co-processing of bi-oil and vacuum gas oil is one of the
effective ways to reduce bio-fuel production cost (Wu L et al, 2019).

http://dx.doi.org/10.1016/B978-0-323-85159-6.50171-8 
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According to the previous studies, co- processing of bio-oil and vacuum gas oil in an
FCC to produce diesel and gasoline containing a certain amount of bio-carbon showed a
highly technical feasibility. As fast pyrolysis and catalytic pyrolysis both can be used to
produce bio-oil, they are both investigated for bio-oil co-processing with VGO. For the
co- processing of fast pyrolysis oil and VGO, Pinho et al. (2017) co-fed fast pyrolysis
and VGO directly in FCC. In order to reduce coke yield, the bio-oil co-processing ratio
should less than 20%. Huynh et al. (2016) studied 20% hydrodeoxygenation (HDO)
bio-oil and 80% VGO in FCC and found similar yields of gasoline and diesel were
obtained compared with the yields of pure VGO cracking. Due to the high oxygen
content and low enthalpy value, fast pyrolysis bio-oil needs further hydrogenation
before co-pressing with VGO to ensure the yields of co-processing gasoline and
catalytic diesel.

Due to high enthalpy value as well as low oxygen and water content, catalytic pyrolysis
bio-oil can be directly co-processed with VGO. Wang et al. (2018) drew a conclusion
that the diesel and gasoline yield would not be affected when co-processing 10%
catalytic pyrolysis oil and 90% VGO. According to 14C analysis, there are more than 7%
renewable carbon in gasoline products. Lindfors et al. (2015) analyzed the differences
in the co-processing of fast pyrolysis oil, HDO oil and catalytic pyrolysis oil with VGO
in the FCC. The results showed that if the adding proportion of bio-oil exceeded 20%,
the coke yield increased. The liquid fuel yield of fast pyrolysis oil was the lowest while
the yields of HDO oil and catalytic pyrolysis oil were similar to the yields of pure VGO
cracking (Sauvanaud L et al, 2018).

The key advantage of co- processing technology is to reduce environmental pollution by
introducing renewable energy into fossil fuel refineries, and the technical and economic
analysis of bio-oil co-processing with VGO in FCC by Wu et al. (2019) shows that the
price of gasoline produced by co- processing was only $2.63/gallon. Thus, the further
promotion and application of co-processing technology has attracted great attention.
However, the CO2 emission during co-processing are still not clear, especially in the
context of "carbon peak and carbon neutralization".

In this paper, the co- processing of 10% bio-oil and 90% VGO in an FCC is taken as an
example. The co-processing process of fast pyrolysis, catalytic pyrolysis and pure VGO
was simulated and sensitivity analyzed by using Aspen Plus, and the CO2 emission were
analyzed and compared.

2. Process description
As it is shown in Figure 1, the co-processing process can be divided into two parts, the
bio-oil production process and the co-processing of VGO and bio-oil in the existing
infrastructure of the refinery. Considering that both fast and catalytic bio-oil can co-
processing with VGO in FCC. In this paper, we simulate the fast pyrolysis bio-oil and
VGO co-processing scenario (fast pyrolysis scenario), catalytic pyrolysis bio-oil and
VGO co-processing scenario (catalytic pyrolysis scenario), and pure VGO cracking
scenario (pure VGO scenario) to further compare and analyze the CO2 emission of
different biomass sources and pure VGO cracking, the specific flow is shown in Figure
1.
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Figure 1 Diagram of co-processing of bio-oil and VGO. a) Fast pyrolysis, b) Catalytic pyrolysis, c)
Pure VGO

2.1. Bio-oil production

In the fast pyrolysis scenario, the biomass raw material enters the grinder before
entering the dryer to allow for a more efficient removal of additional water. Then
mixture of dry biomass and hot sand enters the pyrolysis reactor to obtain bio-gas, bio-
oil and biomass carbon. The reaction effluent is separated in a cyclone to obtain sand
and bio-char from the bottom and bio-gas and bio-oil from the top. Bio-oil is separated
with the bio-gas in a separator; the sand and bio-char are reentered into the pyrolysis
reactor to reuse the sand. The biomass raw material and the recycle sand are heated by
the combustion the bio-char and partial bio-gas. Due to the high content of oxygen,
water and low enthalpy values, fast pyrolysis oil requires further hydrogenation
treatment (HDT) to remove excess oxygen and water. Fast pyrolysis oil is pressurized
by the pump and mixed with high pressure hydrogen into a hydrodeoxygenation (HDO)
reactor. Then several separators are used to obtain reaction wastewater, fuel gas and
HDO oil.

In the catalytic pyrolysis scenario, the catalytic pyrolysis process is similar to the fast
pyrolysis process, and the catalyst regenerator is involved besides the above equipment.
Since the high enthalpy values of the catalytic pyrolysis oil can be directly co-processed
with the VGO, the bio-oil hydrogenation device is not included in this scenario.

and vacuum gas oil
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Since the pure VGO scenario feeds only VGO, the scenario does not contain the bio-oil
preparation process.

2.2. Bio-oil co-processing with VGO

According to Figure 1, HDO bio-oil or catalytic pyrolysis oil are co-fed with VGO into
FCC reactor where the reaction effluent was separated into fuel gas, FCC gasoline, FCC
diesel and slurry oil. Separated diesel and gasoline are refined in the corresponded HDT
process to remove sulfur, nitrogen, and oxygen impurities from gasoline and diesel.

3. Aspen Simulation
Massachusetts Institute of Technology developed Aspen software for process simulation
in the late 1970s. The software has been widely used in the chemical field, not only can
conduct production device design, steady-state simulation optimization, but also can
establish a process simulation system, so that the process can get more intuitive
prediction results before operation. Effectively reduce casualty accidents caused by
design errors. The software also establishes model simulation processes, sensitivity
analysis, and physical properties and regression analysis.

3.1. Component provision and material method
The density of VGO is 0.85 to 0.9 g/cm3, distillation range is 350 to 540 ℃; the density
of bio-oil density is 1.1~1.2 g/cm3, distillation range is 140 to 350 ℃. N2, H2O, CO2,
NO2 and CH4, C2H6, C3H8 are conventional fractions and type Conventional. The data in
the oil virtual component is from the reference (Cruz P L et al, 2017). GRAYSON was
selected as the physical property method.
3.2. Process module analysis
Firstly, select the Heater to pretreat the mixed oil; then, mixer module is selected to mix
VGO and HDO oil, separation was performed according to the group shunt rate; select
Plug and Yield reactor to simulate the co-processing process of the bio-oil and VGO;
sep module shall be adopted and used to separate productions.

Figure 2 The process of the simulation by Aspen

3.3. Simulation results
The total CO2 emission in co-processing process is 2.94×106 t∙y-1 and the total CO2

emission is 3.27×106 t∙y-1 in pure vacuum gas oil. The amount of CO2 emission from co-
processing process was 10.36% less than in the case of pure vacuum gas oil. The result
is similar to recent studies, which indicates that the simulation result is accurate.



4. Results and discussion
4.1. CO2 emission
The total CO2 emission consisting of the direct emission from fuel combustions and
indirect emission from utility.
The CO2 emission from fuels are calculated as formula (1).

2

2,1

CO
CO C

C

M
E P

A
 (1)

where
2,1COE is the CO2 emission from raw material or product combustion, in t / a;

2COM and AC is the molar mass of CO2 and C, respectively, in g/mol; P is the raw
material consumption or product generation, in t/a; ωC is the carbon quality fraction in
the raw material or product, in %.
CO2 indirect emission from utility consumption are calculated as formula (2).

22
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HH Stream Stream Water Water Elec Elec
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where Streamu and Wateru is consumption of steam and recycle water, in t/a; 2Hu is
consumption of hydrogen, in m3/a; Elecu is consumption of electricity, in kW/a;

2

Stream
COf and

2

Water
COf is CO2 emission coefficient of steam and recycle water

respectively, in t-CO2/t;
2

Water
COf is CO2 emission coefficient of hydrogen, in t-CO2/m3;

2

Elec
COf is CO2 emission coefficient of electricity, in t-CO2/kW.

4.2. Results
By calculation, we obtained the results in Table 1.

Table 1 CO2 emission

CO2 emission t/y Fast pyrolysis Catalytic pyrolysis Pure VGO

Utility 2.98×105 2.93×105 1.76×105

Product combustion 2.71×106 2.74×106 3.20×106

Total 3.01×106 3.03×106 3.38×106

The results in Table 2 show that the CO2 emission of both co-processing methods, fast
and catalytic pyrolysis, are less than in the case of pure vacuum gas oil. Therefore, the
use of co-processing technology can effectively reduce the amount of CO2. As an
environmental protection technology, co-processing technology has great research
prospects.

5. Conclusion
Using the co-processing process of 10% bio-oil and 90% vacuum gas oil in FCC, the
co-processing process and the CO2 emission were analysed. The results show that the
total CO2 emission at co-processing process was 2.94×106 t∙y-1 and the total CO2
emission was 3.27×106 t∙y-1 for pure vacuum gas oil. To sum up, compared with the
pure vacuum gas oil technology, co-processing technology is an environment-friendly

1031
and vacuum gas oil
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technology which can reduce carbon emissions to some extent. Therefore, when
producing gasoline and diesel fuel which contain biomass, we should not only pay
attention to the carbon emissions of the product, but also the CO2 emissions generated
in the process. While reducing the carbon emissions of the product, we should reduce
the CO2 emissions in the product production process.
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Abstract 

With increasing penetration of renewable energy sources, traditional power plants are 

required to operate more flexibly with higher ramp rates than originally planned for by 

design. A dynamic model for a subcritical coal-fired power plant was developed in the 

open-source, equation-oriented IDAES (Institute for the Design of Advanced Energy 

Systems) modeling framework. PID-based regulatory controllers and a supervisory-

level coordinated control system (CCS) were also implemented. The plant-wide 

dynamic model and controls were used to investigate and optimize flexible operations. 

Plant-wide dynamic simulations were performed under load-ramping cycles from full 

load to 50 % load and back to full load at different ramp rates. In addition, dynamic 

optimizations were performed at ramp rates of 5 % full load per minute. The objective 

of the dynamic optimization was to maintain a stable main steam temperature (MST) at 

the boiler exit while maximizing plant efficiency during ramping. Dynamic simulation 

results show large excursions in MST, which are detrimental to equipment health. The 

CCS implementation leads to a drop in MST during the ramp down and an overshoot 

during the ramp up when attemperator water spray capacity is limited. Through 

dynamic optimization, the maximum MST deviation is reduced from 12 K, at a 5 %/min 

ramp rate from full load to 70 % load, to within 2 K by changing three manipulated 

variable profiles: the furnace stoichiometric ratio, the water spray valve opening, and 

the setpoint for sliding-pressure operation. This improves the average plant efficiency 

slightly, while the reduced MST excursion benefits the health of the steam turbine. 

Keywords: Power Generation; Dynamic Simulation; Optimization; Flexible Operation. 

1. Introduction 

Due to the intermittency of renewable energy, conventional fossil-fueled power plants 

originally designed to operate at full load are increasingly load following. To conduct 

quantitative assessments of flexible operations, predictive nonlinear first-principles 

models are highly desired to capture equipment dynamics for off-design conditions. 

Moreover, distributed-parameter equipment models should be developed to resolve 

temperature and pressure distributions so that health-related performance variables such 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50172-X 
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as thermomechanical stresses can be calculated. The major contributions of this work 

are the development of an open-source, first-principles plant-wide dynamic model and 

its application to large-scale dynamic optimization for maximizing plant efficiency, 

while minimizing equipment degradation during transient load-ramping operation. 

Dynamic models of coal-fueled power plants have previously been reported in the 

literature. Oko and Wang (2014) developed a gPROMS dynamic model for a 500 MW 

subcritical power plant and validated it at full load and three off-design conditions. 

However, the study did not consider optimization and equipment health under flexible 

operations. Chen et al. (2017) developed a 605 MW subcritical plant model in 

Modelica/Dymola and performed dynamic simulations with step changes in fuel flow 

rate. In an extended work, Chen and Bollas (2018) performed dynamic optimization to 

maximize the integral of plant efficiency over a predetermined time horizon of 24 hours 

based on a defined load profile proportional to a typical daily market demand. However, 

the ramp rate is very small and time step size is large (hours). Therefore, the dynamic 

model does not capture the effects of rapid (minutes) load ramping typical of a plant 

dispatch event. For a supercritical plant, Sarda et al. (2018) developed an Aspen Plus 

Dynamics model and compared three control configurations for load decreases from 

100 % to 40 % at a ramp rate of 3 % maximum continuous rating per minute; however, 

no dynamic optimization was reported. 

The work reported here is focused on dynamic simulation and optimization during load 

ramping. A generic (non-plant specific) 300 MW net subcritical coal-fired power plant 

is developed and used to simulate flexible operations at different ramp rates using a 

coordinated control system. To improve plant performance, dynamic optimization is 

conducted based on predefined load ramping profiles at 5 % full-load power output per 

minute. The optimization objectives are to limit deviation of MST from its setpoint to 

avoid high thermal shock to the superheaters and steam turbine while keeping plant 

efficiency as high as possible during ramping. The power plant dynamic flowsheet 

model is described in Section 2, followed by dynamic simulation and optimization 

results in Sections 3 and 4, respectively. Conclusions are drawn in Section 5. 

2. Dynamic model description 

Figure 1 shows the process flow diagram of the 300 MW subcritical power plant (boiler 

subsystem and steam cycle) developed using the open-source IDAES modeling 

framework (Lee et al., 2021). IDAES offers an extensive library of power plant models 

(see https://github.com/IDAES/idaes-pse) and associated documentation at https://idaes-

pse.readthedocs.io/en/stable/technical_specs/model_libraries/index.html. Details of the 

first-principles unit operation models and their validation using operating data from an 

existing subcritical power plant are reported by Eslick et al. (2021). The dynamic 

models implement mass and energy balance equations with temporal or accumulation 

terms to account for fluid inventories in boiler waterwall and heat exchanger tubes and 

in large vessels including the boiler drum, deaerator, feedwater heaters (FWHs), and 

condenser hotwell. Since metal components such as tubes and vessel walls have high 

density and high heat capacity, their thermal holdups are also considered. Distributed-

parameter models are used for convective heat exchangers and the boiler drum and 

waterwalls. Performance equations include first-principles relationships for heat transfer 

and pressure change. Due to its complexity, the boiler fire-side model is a surrogate 

model based on a rigorous 1D/3D hybrid model developed previously (Ma et al., 2016). 
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 Plant During Load

 

Figure 1. Process flow diagram of a 300 MW coal-fired subcritical power plant 

Unit models with relatively small time constants, including the boiler fire-side, turbine 

stages, pumps, and valves, are treated as steady-state models in the dynamic flowsheet. 

Regulatory proportional-integral (PI) controllers are applied to control the water levels 

of the FWHs, condenser hotwell, and deaerator tank. The drum level is controlled by a 

three-element controller involving two cascading PI controllers. The MST is controlled 

by the attemperator through a proportional only controller by default. The power 

demand is met by a CCS with a turbine master controlling the power output by 

adjusting the steam flow through the throttle valve before the high-pressure (HP) 

turbine and a boiler master controlling the fuel and air flow rates to bring the main 

steam pressure to a desired sliding pressure, coordinated with the turbine master. 

3. Dynamic simulations 

Three dynamic simulations were performed for cycling from 100 % load to 50 % and 

back to 100 % using ramp rates of 5 %, 3 %, and 1 % of full load power output per 

minute, respectively. The simulations are based on the default settings of the control 

system with desired sliding pressure defined as a linear function of the load demand. 

Figure 2 shows the dynamic simulation results for the three load ramping cases. Figure 

2(a) shows the predicted MST profiles (solid lines) along with the defined load demand 

profiles as inputs (dashed lines). Figure 2(b) shows the stoichiometric ratio (SR) and the 

attemperator control valve open fraction profiles calculated by the control system. 

  

Figure 2. Dynamic simulation results of three load cycling cases: (a) Load demand and 

main steam temperature (MST), (b) SR and valve opening fraction 
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We observe that the MST drops below the setpoint of 810 K when ramping down. This 

occurs because the coal flow rate is reduced and is lower than the steady-state values 

due to release of stored energy in the system. The drop in MST cannot be corrected 

immediately by the attemperator. The 5 % ramping case has its maximum MST drop 

greater than 21 K during ramp down and the highest MST increase is greater than 8 K 

during ramp up. The deviation of the MST from its setpoint has detrimental effects on 

the health of superheaters and steam turbine. MST deviation can be partially mitigated 

by attemperator control, but it usually cannot eliminate the deviation, especially when 

ramping down at high rates and when the valve opening reaches its 5 % minimum set 

by the model. In the default controller setting, the furnace SR is set to be a polynomial 

function of coal flow rate with a higher SR used at a lower coal flow rate, such that 

MST maintains its setpoint of 810 K at steady-state. The large MST drop when ramping 

down is due to the release of stored energy in the system (mainly in drum and 

waterwalls), which reduces required coal flow rate below the corresponding steady-state 

value. To correct this, the SR can be increased beyond its required steady state value. 

This leads to higher air flow rate, slightly higher coal flow rate, and reduced flame 

temperatures inside the furnace, thus providing reduced heat absorption by the 

waterwalls, increased flue gas flow rate, and increased heat absorption by the 

superheaters. From Figure 2 we observe that higher ramping rates lead to higher MST 

deviations from the setpoint, since the effect of stored energy is stronger.  

4. Dynamic optimization 

While dynamic simulation provides insight into the impact of load ramping on system 

performance—especially MST deviation—dynamic optimization has the potential to 

reduce MST deviation. The 5 % ramp rate was chosen for dynamic optimization, since 

its impact is strongest among the three control cases considered here. To reduce CPU 

time for dynamic optimization, up and down ramps are modelled separately, and the 

load range was confined between 70-100 %. Only ramp down cases are reported here. 

Case A is without dynamic optimization, i.e., based on default controller settings. Case 

B has attemperator spray valve opening and furnace SR as decision variables for the 

optimization. Case C extends Case B with an additional decision variable, sliding-

pressure deviation from the default value calculated as a linear function of load. 

The objectives of the dynamic optimization are to minimize the MST deviation during 

the transient ramp while minimizing the coal flow rate or maximizing the plant 

efficiency. The objective function for the multi-objective optimization is defined as: 

𝑓𝑜𝑏𝑗 = 0.001∑ (𝑇𝑠𝑡𝑒𝑎𝑚,𝑖 − 𝑇𝑠𝑡𝑒𝑎𝑚,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡)
2
+𝑁

𝑖=0 ∑
𝑚̇𝑐𝑜𝑎𝑙,𝑖

𝑚̇𝑐𝑜𝑎𝑙,𝑓𝑢𝑙𝑙_𝑙𝑜𝑎𝑑

𝑁
𝑖=0  (1) 

where 𝑇𝑠𝑡𝑒𝑎𝑚,𝑖 is MST at time point i and 𝑇𝑠𝑡𝑒𝑎𝑚,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡  is the setpoint (810 K). 𝑚̇𝑐𝑜𝑎𝑙,𝑖  

and 𝑚̇𝑐𝑜𝑎𝑙,𝑓𝑢𝑙𝑙_𝑙𝑜𝑎𝑑  are coal flow rate at time point i and at the initial steady-state full 

load, respectively. A weighting factor of 0.001 is adopted for the temperature deviation 

term. Ranges for the manipulated variables are between 1.15 and 1.3 for furnace SR, 5 

% and 95 % for spray valve opening, and ±0.5 MPa for the sliding pressure adjustment. 

The dynamic optimization cases were modelled on the IDAES platform leading to 

nonlinear programs with over 60,000 variables and were solved with IPOPT. The 

simulation problem (Case A) required 7 CPU minutes, while Cases B and C required 

the equivalent of up to 170 simulations. The dynamic optimization results are provided 

in Figure 3. Figure 3(a) shows the coal flow rates required to meet load demand. 



Compared to Case A, the average coal flow rates during the 8-minute period are 

reduced by 0.03 % for Case B and 0.29 % for Case C. Figure 3(b) shows the MST 

profiles. The MST drops as low as 12 K below the setpoint of 810 K near the end of the 

ramp in Case A. In contrast, the maximum MST deviation is reduced to about 1.5 K in 

Case B and to only 1 K in Case C. Figure 3(c) shows the profiles of the spray valve 

open fraction for the three cases. The valve is closed quickly to the minimum open 

fraction of 0.05 at the beginning of the ramp (before 100 s) in the two optimized cases 

(Cases B and C) to offset the MST drop. Figure 3(d) shows the furnace SR profiles. A 

higher SR is used for the two optimized cases, which is the main reason for preventing 

the MST from dropping too low, as discussed in Section 3. Figure 3(e) shows the main 

steam pressure profiles. Note that the profiles of Cases A and B follow the trend of load 

demand since the sliding pressure setpoint is proportional to load demand. In Case C, 

the main steam pressure is optimized to go even lower to improve plant efficiency. 

Figure 3(f) shows the steam temperature at the HP turbine inlet (after throttle valve). 

The temperature drop at the HP turbine inlet is also reduced for the two optimized cases, 

mitigating the negative impact on turbine health during load ramping. 

       

 3(a) Coal flow rate 3(b) Main steam temperature (MST) 

       

 3(c) Spray valve open fraction 3(d) Furnace Stoichiometric ratio 

       

 3(e) Main steam pressure 3(f) HP turbine inlet temperature 

Figure 3. Dynamic optimization results 
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4. Conclusions 

An equation-oriented, plant-wide dynamic model of a subcritical coal-fired power plant 

was developed using the open-source IDAES model library and applied to perform 

dynamic simulations and optimization using state-of-the-art solvers. The nonlinear first-

principles dynamic unit operation models, including distributed-parameter models, 

along with the coordinated control system, provide the ability to predict the excursion of 

performance variables such as the main steam temperature during fast load ramping. 

Through dynamic optimization of three manipulated variable profiles, main steam 

temperature deviation can be dramatically reduced while plant efficiency can be kept 

unchanged or slightly improved, thus mitigating the negative effect on equipment 

health. 
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Abstract 

Solvent extraction plays a crucial role in biorefinery processes, such as the extraction of 

lipids from algae biomass to produce biodiesel. Volatile organic solvents, such as hexane, 

are typically used to extract algae lipids, but this involves high energy consumption for 

solvent recovery and negative environmental impacts due to its hazardous, volatile, and 

flammable nature. This study proposes a systematic methodology combining molecular 

simulation techniques, data classification methods, and process simulation to screen 

solvents for lipid extraction from wet algae biomass. The novelty relies on the integration 

of techno-economic, environmental and safety criteria, such that all three sustainability 

dimensions are considered in solvent selection. First, thermodynamic equilibrium data of 

solvent-lipid systems are predicted with the COSMO-RS method. Then, a clustering 

method (K-means algorithm) is used to identify and select the solvents with the highest 

partition coefficient and selectivity towards lipids. After this, the selected solvents are 

further screened considering their physicochemical properties (solubility in water, 

density, viscosity, boiling point) and health, safety, and environmental performance. 

Finally, the lipid extraction process with the shortlisted solvents is simulated in Aspen 

Plus to obtain techno-economic and environmental sustainability performance indicators. 

Out of 88 initial solvent candidates, limonene and ethyl tert-butyl ether are identified as 

promising alternatives to the benchmark solvent (hexane), as they are non-hazardous and 

have higher selectivity towards lipids. However, their use involves higher energy 

requirements, operating costs, and greenhouse gas emissions in the lipid extraction 

process. This methodology can be applied to other extraction processes to find sustainable 

alternatives for the conventional solvents and identify trade-offs from a techno-economic 

and environmental perspective at the early stages of process design. 

Keywords: COSMO-RS, process simulation, biobased solvents. 

1. Introduction 

Solvent screening methods are used to identify promising solvents depending on 

application-specific technical performance; health, safety, and environmental (HSE) 

criteria; and process-specific economic considerations (Clarke et al., 2018). Solvent 

technical performance (extraction efficiency and selectivity) can be evaluated with 

experimental equilibrium data or molecular simulation methods, such as COSMO-RS 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50173-1 
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(Eckert and Klamt, 2002). The capability of the COSMO-RS method to predict partition 

ratios as a key parameter for solvent selection has been successfully validated in previous 

studies (López-Porfiri et al., 2020). HSE criteria of solvents can be found in solvent 

selection guides, such as CHEM21 (Prat et al., 2016), which give a preliminary ranking 

of solvent "greenness" based on their physical properties and hazard statements. Process-

specific considerations can be captured with process simulation, which is used to calculate 

performance indicators for measuring energy consumption, economic viability and 

environmental sustainability and for exploring design improvements (Sheldon, 2018). 

Key applications of solvent extraction include the downstream processing of biorefinery 

applications, which are challenging due to the broad range of impurities, heat-sensitive 

components, and high dilution of the feed streams, and can account for 15-80% of the 

total costs (Ghosh, 2007). The extraction of lipids from algae biomass to produce 

biodiesel is an important biorefinery application (Chen et al., 2018). Conventional 

processes for lipid extraction use volatile organic solvents derived from fossil resources, 

such as hexane, but its toxicity and high volatility make it environmentally unfavourable 

(Clarke et al., 2018). Alternative solvents, such as terpenes, have been identified in 

experimental screening studies (Dejoye Tanzi et al., 2012) and proposed as ideal 

alternatives to hexane due to their higher extraction efficiency and selectivity. However, 

the impact of these alternative solvents on the economic viability and environmental 

sustainability at a process level has not been considered. This study presents a novel 

approach that combines molecular and process simulation techniques to integrate techno-

economic, environmental and safety indicators to screen solvents for algae lipid 

extraction. The following section describes the methodology, followed by the results and 

the conclusions. 

2. Methodology 

The proposed methodology for solvent screening is illustrated in Figure 1. It consists of 

five steps: liquid-liquid equilibrium (LLE) data calculation using COSMO-RS method, 

LLE data analysis and classification, evaluation of physicochemical properties of 

solvents, evaluation of HSE performance of solvents, and process simulation.  
 

 

Figure 1. Methodology proposed to evaluate solvents at the process development stage 

2.1. Liquid-liquid equilibrium data calculation 

The feed (wet algae biomass) is a dilute aqueous stream with a water content of 80% wt., 

lipid content of 6% wt., and protein and carbohydrates content of 14% wt. It is assumed 

that the lipids are represented by the molecule triolein, which is one of the most common 

triglycerides found in algae lipids (Yao et al., 2015). Glutamine, a polar molecule found 
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in algae biomass, is assumed to represent other components. The extraction conditions 

are set to 25°C and 101.325 kPa, which are typical values for algae lipid extraction. An 

initial solvent database (Sels et al., 2020) is used to propose a 'long list' of candidate 

solvents. Then, solute (triolein and glutamine) activity coefficients at infinite dilution in 

the aqueous and organic phases are calculated using the COSMOthermX software, which 

implements the COSMO-RS method (Eckert and Klamt, 2002). 

The extraction efficiency is expressed as the partition coefficient of the solute between 

the aqueous and organic phases (𝐾𝑖). At low solute concentrations (dilute systems), the 

partition coefficient can be predicted by modelling the solute activity coefficient at 

infinite dilution (γα,∞) according to Eq.(1), where 𝑥 is the mole fraction of the solute i, s 

corresponds to the solvent phase and w to the aqueous phase. The selectivity of the solvent 

between components i and j (𝛽𝑖,𝑗) is defined as the ratio of the partition coefficients of i 

(triolein) and j (glutamine). 

𝐾𝑖 =
𝑥𝑖
𝑠

𝑥𝑖
𝑤 =

𝛾𝑖
𝑤

𝛾𝑖
𝑠 ≈

𝛾𝑖
𝑤,∞

𝛾𝑖
𝑠,∞  (1) 

2.2. LLE data analysis and classification 

A clustering method, namely the k-means method (Bock, 2007), is used to classify the 

solvents according to the partition coefficient of triolein in the aqueous and organic phases 

and the selectivity of solvents to triolein. The number of clusters (seven) is selected based 

on an analysis of the cluster inertia (sum of squared distances of samples to the nearest 

cluster center), aiming for a small inertia value, which is a sign of good and meaningful 

clustering. The solvents belonging to the cluster with the highest partition coefficients 

and selectivity to triolein are selected for further evaluation. 

2.3. Evaluation of physicochemical properties of solvents 

Further screening of the selected solvents resulting from the previous step is conducted 

based on practical considerations: (a) avoiding loss of solvent to the raffinate phase; (b) 

avoiding thermal degradation of the solute; (c) ease of recovery; (d) ease of handling. The 

following limits are defined for the physicochemical properties of solvents: solubility in 

water < 1% wt. (to form a two-phase system and minimize solvent loss to the aqueous 

phase); boiling point < 200 °C (to prevent thermal degradation of triolein), density < 1.5 

kg/L, and viscosity < 2 mPa.s (ease of handling and storage). Solvents that do not meet 

these criteria are discarded. 

2.4. Evaluation of health, safety, and environmental performance of solvents 

The HSE performance of the selected solvents from the previous step is evaluated using 

the CHEM21 methodology (Prat et al., 2016), which considers health, safety, and 

environmental scores, and indicates whether a solvent is 'hazardous', 'problematic' or 

'recommended'. Hazardous solvents are discarded, as their substitution during process 

development is a priority of this work. Finally, a shortlist of potentially useful solvents 

for the application is obtained. 

2.5. Process simulation 

A conceptual process design is proposed for continuous extraction of lipids from 20 t h-

1 of wet algae biomass, using the shortlisted solvents from the previous step. Aspen Plus 

V8.8 is used to simulate the process (see Figure 2). The NRTL activity coefficient model 

Environmental Sustainability criteria for Algae Lipid Extraction      
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is used to simulate phase equilibrium for the lipids-solvent-water system, and missing 

interaction parameters are estimated using the UNIFAC method. Solvents' performance 

is compared by assuming that a counter-current extraction column with five stages is 

needed to extract lipids from algae biomass (Stephenson et al., 2010). The solvent-to-dry 

feed mass ratio is assumed to be 5 to 1 (Davis et al., 2014). 

Mass and energy flows obtained from the process simulation are used to calculate 

technical, economic, and environmental performance indicators of the extraction process. 

Two technical performance indicators are proposed: lipid recovery (LR), the ratio of 

extracted lipids to the total lipids in the feed; and solvent intensity (SI), the ratio of the 

mass of solvent entering the extractor to the extracted lipids. One economic performance 

indicator is proposed: total annualized cost (TAC), including capital and operating costs. 

These are calculated using Aspen Process Economic Analyzer. Two environmental 

indicators are used: energy intensity (EI), the ratio of the energy input to the process (heat 

used in the stripping column for solvent recovery) to the mass flowrate of extracted lipids; 

and global warming potential (GWP), estimated from the greenhouse gas emissions 

resulting from the combustion of fuel (natural gas) used to supply the energy to the 

process. 

3. Results 

Out of 88 initial solvent candidates, 37 solvents are identified in the cluster that exhibits 

the highest partition coefficients and selectivity to triolein. These solvents are selected for 

further evaluation. All these solvents are non-polar and include hydrocarbons derived 

from fossil resources (e.g., heptane); bio-based hydrocarbons (e.g., limonene); ethers 

(e.g., ethyl tert-butyl ether); and esters (e.g., methyl laurate). After evaluating the selected 

solvents' physicochemical properties and HSE performance, 26 solvents are discarded 

due to their solubility in water > 1% wt. (e.g., tetrahydrofuran), boiling point > 200 °C 

(e.g., methyl laurate), density > 1.5 kg/L (e.g., carbon tetrachloride), and hazardous nature 

(e.g., chloroform). As a result, only 11 solvents are shortlisted for further investigation 

via process simulation. Table 1 presents process performance indicators of the shortlisted 

solvents, calculated from the simulation results. The indicators consider the impact per 

unit of product (kg lipid). 

 

Figure 2. Process flow diagram of the lipid extraction process 



Table 1. Process performance indicators of the screened solvents 

Solvent 
LR 

(%) 

SI (kg solvent/ 

kg lipid) 

TAC (USD/kg 

lipid) 

EI (MJ/kg 

lipid) 

GWP (kg CO2 

eq./kg lipid) 

Hexane* 99.9 0.09 2.10 9.48 0.49 

Cyclohexane 99.8 0.09 2.13 10.13 0.52 

Methylcyclohexane 99.7 0.09 2.15 10.46 0.54 

Heptane 99.9 0.09 2.17 10.73 0.55 

Ethyl cyclopentane 99.7 0.09 2.14 10.71 0.55 

Toluene 98.1 0.10 2.14 11.60 0.60 

O-xylene 99.2 0.09 2.22 12.98 0.67 

Limonene 100 0.08 2.67 13.26 0.68 

Cymene 99.9 0.08 2.80 12.73 0.66 

Pinene 96.6 0.09 2.54 14.98 0.77 

ETBE 91.6 0.18 2.29 9.74 0.50 

Dibutyl ether 96.0 0.10 2.57 12.65 0.65 

LR: Lipid recovery; SI: Solvent intensity; TAC: Total annualized costs; EI: Energy intensity; GWP: 

Global warming potential. *Hexane is evaluated for benchmarking purposes 

LR is over 98% for all the fossil-based hydrocarbons (cyclohexane, methylcyclohexane, 

heptane, ethyl cyclopentane, toluene, o-xylene), as they all have a high partition 

coefficient and high selectivity towards triolein. SI of all conventional solvents is 

comparable due to the similar losses of solvent in the extract and raffinate phases. 

Cyclohexane presents the lowest TAC, EI, and GWP among the fossil-based 

hydrocarbons due to the low reboiler duty required for evaporation. For example, TAC 

of cyclohexane is comparable to TAC of hexane (1.5% higher). On the other hand, TAC, 

EI, and GWP of o-xylene are the highest for all fossil-based hydrocarbons due to its high 

boiling point and enthalpy of vaporization. 

LR of terpenes (limonene, cymene and pinene) are over 96%. As Table 1 shows, limonene 

has the highest LR among the solvents due to its high partition coefficient and selectivity 

to triolein. Also, terpenes perform better than hexane in terms of SI due to their lower 

volatility and evaporation losses. For example, SI of limonene is 9% lower. However, 

terpenes have higher TAC, EI, and GWP than hexane: for pinene, TAC, EI, and GWP are 

21%, 58%, and 57% higher. LR of ethers (ETBE and dibutyl ether) are lower than LR of 

terpenes and fossil-based hydrocarbons, which can be attributed to the more polar nature 

of ethers. SI of ETBE is nearly double that of hexane due to the higher losses of ETBE in 

the lipid-extracted algae. However, ETBE is the only alternative solvent that performs 

similarly to hexane in terms of EI and GWP (within 3% of those of hexane). 

Overall, limonene and ETBE are identified as promising alternative solvents to hexane. 

Both are non-conventional solvents that can be obtained from biomass-based resources. 

Limonene performs well in terms of LR and SI. ETBE has the lowest EI and GWP of all 

solvents other than hexane. Even though there is not a clear 'winner' that outperforms 

hexane in every dimension, as evidenced by the trade-offs in the process performance 

indicators, the proposed methodology provides a clear indication of the strengths and 

weaknesses of the solvent candidates, providing a shortlist of potentially attractive 

solvents for a more detailed evaluation. 
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4. Conclusions 

This work proposes a systematic approach combining molecular simulation techniques, 

data classification methods, and process simulation to comprehensively screen solvents. 

The integration of techno-economic, environmental and safety criteria ensure that all 

three sustainability dimensions are considered in solvent selection by using this novel 

methodology. This methodology is demonstrated for the extraction of lipids from wet 

algae biomass to find alternative solvents to the benchmark solvent (hexane), whose use 

involves negative environmental impacts due to its hazardous, volatile, and flammable 

nature. A comprehensive database including 88 alternative solvents is used as a starting 

point, and after evaluation of techno-economic, safety, and environmental performance, 

limonene and ethyl tert-butyl ether are identified as promising alternatives to hexane. 

These solvents are non-hazardous, can be obtained from biomass-based resources, and 

show competitive performance indicators. Overall, the proposed methodology is helpful 

to identify a shortlist of potentially attractive solvents for a more detailed evaluation, 

providing a clear indication of the strengths and weaknesses of the solvent candidates. 

The methodology developed herein can be applied to other solvent extraction processes 

to promote the development and design of sustainable chemical processes using 

alternative solvents. 
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Abstract 

 

Petrochemical-based solvents are one of the main sources of volatile organic compounds 

(VOCs) in the atmosphere, which are reported to be carcinogenic under certain 

conditions. Different alternatives are being studied in order to reduce this problem. 

Special interest has been placed in lactate esters obtained from long chain alcohols like 

propyl, n-butyl and amyl alcohols because they are considered as green solvents due to 

their toxicological and environmental characteristics. These allow their use in many 

applications, especially as chemical feedstock, dairy-related flavouring, and drugs 

administration. Although most of the reported methods for lactate esters production 

include intensification technologies such as reactive distillation. There are not enough 

reports related to the evaluation of lactate esters production in a reactive distillation 

column at pilot plant scale, for obtaining a high productivity and a good quality control 

of the end-product specifications. In this work, a principles-based model, including 

NRTL-Raoult thermodynamic model and a pseudo-homogeneous kinetic model, was 

developed for a reactive distillation column at pilot plant scale located at Universidad 

Nacional de Colombia. The system was simulated in Matlab/Simulink R2020b 

considering the column design. The obtained results were validated with simulations in 

Aspen Plus V11, with a composition of butyl lactate >97% mole fraction. 

 

Keywords: 1-Butyl lactate, Reactive distillation column, Phenomenological based 

model, Pilot plant scale, Optimization. 

1. Introduction 

 

According to the Environmental Protection Agency (EPA), Volatile Organic Compounds 

(VOCs) have proved to have a negative impact on people's health (EPA, 2021). In this 

area, chemical solvents constitute around 80% of compounds used in many important 

chemical processes. A percentage of 0.7% of VOC emissions come from this type of 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50174-3 
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industries, while 21% of these compounds come from the general uses of these solvents  

(Häckl & Kunz, 2018). 

 

New solvents called "green solvents" are compounds with potential to replace VOCs. 

These solvents have advantages over conventional VOCs, such as low toxicity, 

biodegradability, and renewability  (Li et al., 2016). The global market for green solvents 

was valued at $ 5.4 billion in 2015, in products such as bio-alcohols, bio-glycols, and 

lactate esters, among others (Grand View Research, 2016). 

Nowadays, there is a growing interest in lactate esters and their uses in cosmetic, food 

and pharmaceutical applications. The conventional process to produce lactic acid esters 

involves multiple reactions and purification stages. Butyl lactate has great interest due to 

its wide range of industrial applications. Kumar & Mahajani (2007) studied the 

esterification kinetic between lactic acid and 1-butanol in the presence of cation exchange 

resins as a catalyst and assessed the applicability of reactive distillation for this process. 

Peña-Tejedor et al. (2005) and Garcia et al. (2021) studied the equilibrium of the butyl 

lactate – 1-butanol binary system at 1, 5 and 101.325 kPa. Velandia et al. (2021) studied 

the thermodynamic model of the esterification system for butyl lactate production, the 

reactive and nonreactive residue curves maps, and carried out a conceptual design for 

reactive distillation. 

Due to the limited information available for this system, this work evaluates the feasibility 

of producing butyl lactate in a pilot-scale reactive distillation column. A 

phenomenological-based model was developed and implemented in Matlab/Simulink 

2020b. This model was validated with experimental data acquired by Kumar & Mahajani 

(2007) and compared with Aspen Plus V11 simulation.  

2. Process Modelling 

2.1 Model description 

 

The reactive distillation column at pilot plant scale has a reactive core, a structured 

packaging module with the Amberlyst 70 exchange resin and other modules containing 

Nutter Ring No. 07 packaging. Is recirculated the organic phase formed in the decanter. 

The water produced is removed in the aqueous phase. 

 

Figure 1(a) is a representation of the reactive distillation column at the pilot plant located 

in the Laboratory of Chemical Engineering at Universidad Nacional de Colombia. The 

bottom flow rate was fixed at 2.02 kg/h to obtain the higher conversion, while hydraulic 

restrictions are fulfilled. The lactic acid flow rate was fixed at 4.042 kg/h with a mass 

fraction of 0.30 of lactic acid and inlet temperature of 353.15 K. The butanol flow rate 

was fixed at 1.656 kg/h with a mass fraction of 0.99 for butanol and inlet temperature of 

363.15 K. Figure 1(b) is a representation of the column for modelling purposes, where 

stage 1 is the decanter, stage 2 is the condenser and stage 14 is the reboiler. 

García, César et al. 
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Figure 1. Continuous reactive distillation column: a) at pilot plant scale to produce 

butyl lactate. b) Distributed Reactive distillation column. 

 
Figure 2 shows a representation of the equilibrium stage model for a general reactive 

stage. The stages for rectifying, reactive and stripping zones are determined based on the 

evaluated case (Figure 1 a).  

 
Figure 2. Equilibrium stage model 

 
In this case, the reactive distillation column is represented by an equilibrium model 

kinetically controlled, which considers that there is no resistance to internal and external 

diffusive transport over the catalyst and that there is no resistance to transport over the 

fluid phases. For this reason, the phase equilibrium is achieved homogeneously.  

2.2 Model assumptions 

For modelling the liquid phase, NRTL model is used and the vapor phase is assumed 

ideal, as well as a pseudo-homogeneous kinetic model. In the decanter, NRTL model is 

used for predicting the liquid-liquid equilibrium and the k-value method is used to 
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determine compositions in extracted and refined flows. The presence of oligomers is 

neglected as well as the kinetic and potential energy. The reboiler and condenser are 

modelled as trays and the equilibrium controlled by kinetics is considered. Physical 

properties are constant and there is no heat loss from the column. The column pressure 

drop is neglected, and the reaction takes place in liquid phase. 

2.3 Balance Equations 

In this section, the generalized mass and energy balances for reactive and non-reactive 

stages (Eq. 1 to 3) are presented, based on the equilibrium stage model (Figure 2). For the 

three additional stages (decanter, condenser and reboiler), the set of mass and energy 

balances are assumed as equilibrium stages. 

 Total Material balance: 

𝑑𝑍𝑖

𝑑𝑡
= 𝐿𝑖−1 + 𝑉𝑖+1 − 𝐿𝑖 − 𝑉𝑖 + 𝐹𝑖                       (1) 

Molar balance per component: 

𝑑𝑥𝑖,𝑛

𝑑𝑡
=  

(𝑥𝑖−1,𝑛𝐿𝑖−1+𝑦𝑖+1,𝑛𝑉𝑖+1−𝑥𝑖,𝑛𝐿𝑖−𝑦𝑖,𝑛𝑉𝑖+(𝑥𝐹,𝑛)
𝑖
𝑞𝐹,𝑖𝐹𝑖 +𝑅𝑛,𝑖−𝑥𝑖,𝑛

𝑑𝑍𝑖
𝑑𝑡

)

𝑍𝑖
      (2) 

Energy balance: 

𝑑𝑇𝑖

𝑑𝑡
=

ℎ𝑖−1𝐿𝑖−1+𝐻𝑖+1𝑉𝑖+1−ℎ𝑖𝐿𝑖−𝐻𝑖𝑉𝑖+ℎ𝐹,𝑖𝑞𝐹,𝑖𝐹𝑖+𝑄𝑟,𝑖−ℎ𝑖
𝑑𝑍𝑖
𝑑𝑡

𝑍𝑖∗𝐶𝑝𝑚𝑖𝑥,𝑖
           (3) 

Where Fi represents the feed flowrate (Lactic acid +Butanol), Rn,i is  the reaction rate, 

XF,i is the molar fraction of each compound (Lactic /butanol) in the feed and Qr,i the heat 

of reaction. 

3. Model simulation 

 

The column design specifications of the reactive distillation column at pilot plant scale 

located at Universidad Nacional de Colombia - Bogota are presented in Table 1.  

 

Table 1. Reactive Distillation Column - Internal specifications (Sánchez et al., 2020). 

 

Parameter Value 

Diameter [m] 0.0762 

Number of reactive stages (5-8) 4 

Number of non-reactive stages (1-4, 9-14) 10 

Stripping zone length per stage [m] 1.1 

Rectifying zone length per stage [m] 1 

Catalyst (Katapak SP-11 of Sulzer) Amberlyst 70 

Operating pressure [kPa] 74.66 

García, César et al. 
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The thermodynamic information is presented by Garcia et al. (2021) and the NRTL binary 

parameters and kinetic model parameters are presented by Velandia et al. (2021). The 

model evaluation for the system of lactic acid (LA), butanol (BuOH), butyl lactate 

(BuLac) and water (W) was performed using Matlab/Simulink R2020b. The model was 

compared against Aspen Plus V11.  

 

Figure 3 a) shows the composition profiles along the column. Results obtained with the 

developed Matlab/Simulink R2020b model are compared against Aspen Plus V11 

simulator. In both cases, the results are in agreement and present the same tendency. With 

the presented operation conditions, BuLac with a purity of 97% can be obtained, while 

the BuOH is maintained in excess along the column. Figure 3 b) shows the temperature 

profile, where the model simulated in Matlab/Simulink shows good agreement with the 

results obtained in Aspen Plus. 

 
 

 

Figure 3. a) Mole fraction profiles: Aspen Plus V11 (●) W, (■) ButOH, (▲) LA, (♦) 

BuLac and Matlab/Simulink R2020b (⁃⁃⁃) W, (⁃) ButOH, (⁃·⁃) LA, (···) BuLac. b) 

Temperature profile: Aspen Plus V11 (●) and Matlab/Simulink R2020b (⁃). 

4. Conclusions 

Butyl lactate can be obtained in the reactive distillation column at pilot plant scale of 

Universidad Nacional de Colombia. In both simulations, the obtained feeding flow rates 

are in accordance with the technical specifications, which means that these are the 

nominal values of operation. The obtained BuLac, with a purity higher than 97%, follows 

product specifications for commercial purposes. It is important to compare these 

simulations against experimental information and this will be performed in a future work. 
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Abstract 
This study presents an optimization-based framework for the design of offshore wind 
power farms (OWFs). First, the main characteristics of the OWF facilities are decided 
including the size and type of the turbines and the capacity of the inter-array cables. 
Second, a feasible location for installing the facility is identified by considering various 
geographical characteristics such as average wind speed and water depth, with the aid of 
a geographic information system (GIS). Finally, we construct a mixed-integer fractional 
programming (MIFP) optimization model to decide on the exact locations of the wind 
turbines and the offshore substations as well as the routes of the inter-array cables, by 
minimizing the unit cost which is the total installation cost divided by total power 
generated. A case study is conducted based on the 6th regional energy plan of Jeju island, 
South Korea, which plans to construct two 100 MW and one 125 MW OWFs. The 
optimized unit cost of the OWFs turns out to be 2.3 MM$/MW, which is at par with 
existing OWFs. Furthermore, we introduce a stochastic programming model to consider 
various potential wind scenarios directly in the design. The robust design obtained via 
stochastic programming approach showed an improved average unit cost by ~5% 
compared to the nominal design which assumed a specific scenario of wind speed and 
direction. 
 
Keywords: Offshore Wind Power Farm (OWF), Geographical Information System (GIS), 
Stochastic Programming 

1. Introduction 
Offshore wind power farms (OWFs) are becoming popular, with GW-scale projects 
appearing in many parts of the world, owing to its high potential in terms of scale and 
efficiency. The OWF market is expected to grow significantly, i.e., from 23 GW in 2018 
to 228 GW in 2030 which is about a ten-fold increase. However, the high install and 
operating cost of OWF is still a barrier to more widespread adoption. Since the overall 
cost of OWF is greatly affected by its geographical characteristics (e.g., wind speed, water 
depth) as well as its design (e.g., spatial arrangement of the turbines, routes of the inter-
array cables), the location selection and design must be carried out carefully, both for 
economic feasibility evaluation and actual installation.  Also, the intermittency of wind 
speed depending on season and weather must be precisely considered for the optimal 
design of OWF. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50175-5 
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There have been relatively few studies that addressed the design of OWFs using GIS 
under considering wind uncertainty. Recently, a mixed-integer linear programming 
(MILP) optimization model that decides routes of the inter-array cables and locations of 
the substations was suggested and applied to the Navitus Bay Windpark in the U.K by 
Pillai et al. (2015).  However, the locations of the wind turbines, which affect the 
installation cost and power generation greatly, were not considered in this study. 
Spyridonidou et al. (2020) suggested a design framework of OWFs which uses GIS where 
the case study is performed in Greece and, sixteen candidate areas for constructing OWF 
were selected considering geographical criteria. However, the task of determining the 
optimal layout of the OWF was not addressed in this study. Also, Banzo et al. (2011) 
suggested a stochastic optimization model to decide on the location of the substation and 
the cross-sections of cable connection considering wind uncertainty and applied the 
model to a case set in Hrons Rev OWF in Denmark. However, this study did not address 
the micro-siting problem of locating the turbines at the site. 

To overcome the limitations of previous research, this paper suggests a stochastic 
programming based design framework of OWF using GIS and considering the wind 
variability/uncertainty. We screen for candidate locations of OWF utilizing GIS. Then an 
optimization model is formulated for each candidate location where the main decision 
variables are locations of the turbines and the offshore substations, and routes of the inter-
array cable and the objective are to minimize the average unit cost over possible scenarios 
of the wind speed/direction. 

This paper is organized as follows. The design framework for OWF is explained in section 
2. Then the detailed formulation of the optimization is presented in section 3. The results 
of the case study involving the design of OWFs in Jeju Island, Korea are presented in 
section 4. Some conclusions are given in section 5. 

2. Problem definition 
Our research aims to develop an optimization based framework for designing OWFs 
while considering relevant geographical information and wind uncertainty. The 
consideration of geographical characteristics is important as they significantly affect the 
bottom-line economics of OWFs. Previously, Kang et al. (2020) presented a three-stage 
framework for designing a biorefinery, which consists of the steps of facility design, GIS 
analyses, and optimization model development. Firstly, key characteristics of the facility 
such as the sizes of the main processing units and main yield parameters are specified. 
Then, important geographical information such as the land use and climates are 
considered to select candidate locations. Finally, the specified facility and geographical 
information are used to construct a mathematical optimization problem that carries out 
specific designs for economic evaluations. 
In our research, the above three-stage framework is adapted for the design of OWFs. In 
the first step, we select 5 MW wind turbines found in the reference by NREL. The power 
curve of the turbine and the installation costs of the various items of the facility are 
specified. In the second step, candidate locations for installing the facilities are identified 
with the aid of GIS analyses. Key geographical information such as water depth, wind 
speed, and distance data are collected to be used as input data for the optimization model. 
Also, we quantify the wake effect, the reduction in the wind speed as the wind passes 
through other turbines at each candidate location. Lastly, the objective function of the 
optimization model is defined.  In our case, the unit cost, which is the total installation 
cost divided by the total power generation ($/kWh), is to be minimized. Finally, the 
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optimization was solved to obtain the optimal OWF design under 200 wind scenarios 
generated from the stochastic model. To analyze the economics, another 200 wind 
scenarios were generated to compare the average unit costs among the different designs. 

3. Problem formulation 
The power curve of the wind turbine is approximated as a piecewise linear function of 
wind speed as in Eq.(1) where a is the slope, b is the y-intercept, 𝑊𝑊𝑊𝑊𝑖𝑖,𝑎𝑎 is the wind speed 
and 𝑃𝑃𝑖𝑖,𝑎𝑎 is the power generated at location i under scenario a. The installation costs of the 
turbine and the substation are estimated using Eq.(2) and Eq.(3), respectively, which were 
proposed by Gonzalez et al. (2017), where 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total installed power capacity of 
the OWF (MW), 𝑁𝑁 is the number of turbines installed in the OWF, 𝑊𝑊𝑊𝑊 is the water depth, 
𝑃𝑃𝑖𝑖  is the capacity of each turbine (MW), and A, B, C, D are constants. The capacity and 
installation cost of the inter-array cables are summarized in Table 1. 

𝑃𝑃𝑖𝑖,𝑎𝑎 = 𝑎𝑎 × 𝑊𝑊𝑊𝑊𝑖𝑖,𝑎𝑎 +  𝑏𝑏  (1) 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑘𝑘$) = 𝐴𝐴 ×  �𝑃𝑃
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

0.87

𝑁𝑁
+ (𝐵𝐵 × 𝑊𝑊𝑊𝑊2 − 𝐶𝐶 × 𝑊𝑊𝑊𝑊 + 𝐷𝐷) ×  𝑃𝑃𝑖𝑖   (2) 

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘$) = 3040.8 + 106.4 ×  𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   (3) 

Table 1. Installation cost and capacity of electric cables 

Cable type 
Capacity (Maximum 

number of turbines) 

Capital cost 

($/meter) 

Inter-array cable 

5 135 

7 250 

9 370 

Export cable (Offshore) 25  885 

Export cable (Onshore) - 762 

Secondly, the distance data of the wind turbines are obtained from GIS analysis and 
reduced wind speed by wake effect is calculated by Eq.(4), where 𝑑𝑑𝑑𝑑𝑖𝑖,𝑗𝑗,𝑎𝑎 represents how 
much the wind speed of turbine at location i get reduced due to the adjacent turbine j and 
𝑋𝑋𝑖𝑖 is the binary variable representing whether the turbine is installed or not.  

𝑊𝑊𝑊𝑊𝑖𝑖,𝑎𝑎𝑑𝑑 = 𝑊𝑊𝑊𝑊𝑖𝑖,𝑎𝑎 × 𝑋𝑋𝑖𝑖 −  ∑ 𝑑𝑑𝑑𝑑𝑖𝑖,𝑗𝑗,𝑎𝑎 × 𝑋𝑋𝑗𝑗𝑗𝑗   (4) 

For stochastic optimization, wind speed scenarios are generated as following procedures. 
First, at each observatory near the candidate location, the deviation in the annual average 
wind speed compared to the average value of the data for the 12 years was calculated as 
a percentage value. Second, the calculated value of deviation is discretized into 10 steps 
based on the maximum and minimum value of the wind speed deviation. Then, the 
number of  deviation data corresponding to each deviation step is counted to get the 
possibility distribution 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎 , Finally, the wind speed of scenario a is generated by 
randomly selecting one of the deviation steps from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎  and random variable 𝜉𝜉𝑖𝑖,𝑎𝑎  is 
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used to fill the gap of possible wind speed range between each step randomly as presented 
in Eq.(5).  

𝑊𝑊𝑊𝑊𝑖𝑖,𝑎𝑎 = 𝑊𝑊𝑊𝑊𝚤𝚤����� ∗ (1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎 + 𝜉𝜉𝑖𝑖,𝑎𝑎)  (5) 
Finally, a MIFP optimization problem is constructed to decide the locations of the 
substation, wind turbines, and the routes of the inter-array cables. The objective is to 
minimize the unit cost which represents described in Eq.(6), where  𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the 
installation cost of each facility type and 𝑃𝑃𝑖𝑖,𝑎𝑎 is the power generated by the turbine on 
location i under scenario a. Unit cost represents how much power is generated from the 
initial investment capital. 

min 𝐶𝐶
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠+𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝑃𝑃𝑖𝑖,𝑡𝑡𝑖𝑖,𝑡𝑡
 (6) 

The major constraints of our problem are the power flow balance and those arising from 
the spatial limitation. Energy flow 𝐹𝐹𝑖𝑖,𝑗𝑗 is defined as the number of turbines connected 
through the inter-array cable. Notice that the offshore substation has only inflow energy, 
and the turbines have one more inflow of energy than outflows, which is expressed as 
Eq.(7). For each location, at most one facility can be constructed, which is expressed as 
Eq.(8), where 𝑆𝑆𝑖𝑖100 𝑀𝑀𝑀𝑀 and 𝑆𝑆𝑖𝑖125 𝑀𝑀𝑀𝑀are the binary variables representing whether or not a 
substation of the particular scale is installed. 

∑ 𝐹𝐹𝑖𝑖,𝑗𝑗 − 𝐹𝐹𝑗𝑗,𝑖𝑖 = 𝑋𝑋𝑖𝑖 − 20 × 𝑆𝑆𝑖𝑖100 𝑀𝑀𝑀𝑀 − 25 × 𝑆𝑆𝑖𝑖125 𝑀𝑀𝑀𝑀
𝑖𝑖,𝑗𝑗≠𝑖𝑖    (7) 

𝑋𝑋𝑖𝑖 + 𝑆𝑆𝑖𝑖100 𝑀𝑀𝑀𝑀 + 𝑆𝑆𝑖𝑖125 𝑀𝑀𝑀𝑀 ≤ 1  (8) 

4. Case study 
According to the 6th regional energy plan of Jeju Island, two 100 MW and one 125 MW 
OWFs are being planned for construction. We use the three-stage framework to design 
the OWFs in Jeju Island according to this plan. In our case study, the main decision 
variables are the locations of the substation and wind turbines, and the routes of the inter-
array cables. The main assumptions are summarized as below: 

 The wind speed is represented by its annual average value. 

 There is no transmission loss through an electric cable. 

 Seven times the blade diameter is the minimum allowed distance between 
turbines, (882 m) 

 Length of the onshore export cable is 20% longer than the Euclidean distance 

To consider wind uncertainty, 200 scenarios of wind speed are generated and used to 
design the optimal OWF (multi-scenario design) and compared with the design where 
only the average wind speed is used (nominal-scenario design). Another 200 scenarios of 
wind speed are generated for economic analyses of each OWF design. 

In Figure 1, the difference between the multi-scenario design and the nominal scenario 
design is illustrated. Although the average value of wind speed is the same, as the 
specifics of the wind speed differ for each scenario, the average amount of power 
generated is different.  This is because the power curve shows varying slopes for different 

S. Kim et al.
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wind speed ranges. The different OWF layouts lead to different economic results. In all 
zones, the multi-scenario design showed improvements over the nominal scenario design. 
The detailed economic results are presented in Table 2, where the multi-scenario design 
shows ~5% lower average unit cost compared to the nominal scenario design, and the 
percentage of the scenarios showing improvements is about 92%. In all zones, the use of 
100 MW units resulted in a lower unit cost.  Since the number of candidate locations is 
~40, 100 MW units presented more options than 125 MW units which required only 21 
installations. The comparison of the unit cost is given in Figure 2. As a result, we can 
conclude constructing 100 MW OWF in zone 1 and zone 2, and constructing 125 MW in 
zone 3 is the best solution for meeting the plan.   

 
 
 
Table 2. Detailed economic comparison between the nominal scenario design and the multi-
scenario design  

Capacity Zone Scenario 
type 

Average 
Ctotal 

(MM$) 

Average 
Ptotal 

(GWh) 

Average 
Ctotal/Ptotal 
($/MWh) 

Percentage of 
improved 

scenarios (%) 

100MW 

1 
Nominal 223.1 230.4 968.4 7.5 

Multiple 231.4 242.4 954.5 92.5 

2 
Nominal 228.2 245.8 928.4 7.5 

Multiple 231.6 257.3 900.0 92.5 

3 
Nominal 223.6 289.7 771.8 8.5 

Multiple 205.3 281.4 729.6 91.5 

125MW 

1 
Nominal 288.0 290.4 991.7 7.5 

Multiple 283.5 303.6 933.8 92.5 

2 
Nominal 283.7 294.8 962.5 7.5 

Multiple 294.3 315.7 932.1 92.5 

3 
Nominal 286.0 360.8 792.7 8.5 

Multiple 261.1 351.2 743.6 91.5 

(a) (b) Figure 1. Optimized layout of the OWF in zone 1 (a) nominal scenario design (b) multi-scenario design 
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Figure 2. Comparison of the unit cost between the nominal scenario OWF and the multi-scenario 
OWF 

5. Conclusions 
In this paper, we adapt the three-stage framework originally developed for biorefinery 
design to the design of optimal OWFs considering wind uncertainty. Candidate locations 
are selected by using GIS and important geographical data from GIS are used in the 
optimization model. MIFP is constructed to design OWFs according to the 6th regional 
energy plan in Jeju Island as a case study. The economics of two different designs, a 
nominal scenario design and a multi-scenario design using stochastic programming were 
analyzed. In all candidate zones, the multi-scenario design showed improved economics 
with the average unit cost lower by ~5%, and improvements were shown for about 92% 
of the scenarios tried. For future research, the operation of designed OWFs will be 
addressed where various dispatch and storage decisions are made to manage energy 
supply and demand while addressing the intermittency and uncertainty of wind speed. 
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Abstract

Produced water re-injection (PWRI) is an enhanced oil recovery technique which aims to
increase the recovery factor of a reservoir while reducing produced water (PW) discharges
to the ocean. Re-injection of PW is challenging as fouling in pipelines can lead to inef-
ficient operation of the PWRI facility. In this work, we perform sensitivity analysis at a
PWRI facility. As inputs, we have selected the riser roughness coefficient and processed
PW flowrate. Furthermore, we consider two different re-injection strategies and assess the
impact of varying those inputs over key economic and environmental performance indica-
tors. Results show the negative effect that fouling has over several performance indicators.
Furthermore, they suggest that one should constantly re-evaluate the fouling level at the
pipelines of a PWRI facility before performing decision-making for production optimiza-
tion.

Keywords: Sensitivity analysis, Waterflooding, Produced water re-injection, Production
optimization, Fouling

1. Introduction

Produced water (PW) is by far the largest waste stream in the offshore oil and gas indus-
try (Neff et al., 2011). PW can be defined as formation water and/or water that has previ-
ously being injected into the formation. Due to its nature, PW is a complex mixture that
contains dispersed oil, dissolved organic compounds, solid particles, and bacteria (Nasiri
et al., 2017). Moreover, it is considered a continuous source of contaminants to the conti-
nental shelf ecosystems (Beyer et al., 2020). To increase operational environmental safety
level, it is advised that operators follow the best practices for management of PW. These
guidelines are grounded in four pillars: avoid, prevent, reduce, and treat (Miljødirektoratet,
2015).

To reduce marine pollution, several Norwegian operators started using waterflooding as a
primary PW management solution (Steinar et al., 2016). Waterflooding is an enhanced oil
recovery (EOR) technique in which water is injected at a reservoir formation to displace
residual oil towards production wells, increasing oil recovery factors (Bautista and Dahi
Teleghani, 2017). However, continuous re-injection of PW can lead to fouling of scale-
prone or tar-like (i.e. ”schmoo”) substances in the produced water re-injection (PWRI)
facility (Bader, 2007), leading to inefficient operation (Rossini et al., 2020). Inspired by

http://dx.doi.org/10.1016/B978-0-323-85159-6.50176-7 
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operational issues encountered at a real offshore PWRI facility, we investigate the eco-
nomic and environmental impact of fouling in waterflooding operation.

2. Motivating example

The studied PWRI facility is represented in Figure 1. During normal operation, PW en-
ters the system through the separation vessel. From the vessel, PW can be sent to either
the ocean discharge and/or the pumping station (PS). In the PS, there are recycle systems
located downstream of each pump to prevent inadequate pumping operation. When PW
enters the pumping system, it is split between two fixed-speed pumps (FSPs). Down-
stream of the FSPs, the non-recycled PW is mixed and is boosted by the variable-speed
pump (VSP). Downstream of the VSP, throttling valves regulate the passage of PW for
re-injection in the re-injection templates (RITs) α and β. The connections between the
PS and the RITs are performed by risers. Each RIT has choke valves which regulate the
shared re-injection ratio between each re-injection well.

Vessel

Junction

Sink

Valve

FSP

VSP

Pipe

1

2 3

4 5 6 7 8

9

10

11 12 13

14

15

Processed
PW

Pumping station

Ocean discharge

Riser RITβ

RITα

Figure 1: Produced water re-injection facility.

The PWRI model considered in this work is based on Ivo and Imsland (2021). It is desired
to maximize the revenue (R) obtained during operation of the PWRI facility, which is
given by:

R =$oil

(
λα

10∑
i=9

di + λβ

15∑
i=14

di

)
− ($fuel + $CO2Ed)

(
W s

(1,2) +W s
(1,3) +W s

(4,5)

)
,

(1)

with constants $oil as the market oil price; $fuel as the fuel price; $CO2
as the carbon tax;

λα and λβ as respectively the re-injection effectiveness of RITα and RITβ ; and Ed as the
fuel energy content. Furthermore, W s

(1,2), W
s
(1,3) and W s

(4,5) are the pumping shaft-power;
and di is the PW demand at node i.

In addition, we consider key environmental performance indicators which are divided into
two segments. The first is related to PW management, in which re-injection rate accounts
for percentage of PW re-injected; and waste-to-value accounts for the conversion of re-
injected PW to oil produced. These performance indicators are represented below:

RR =

(
10∑
i=9

di +
15∑

i=14

di

)
/ |d1| (2a)

O. F. Ivo and L. S. Imsland
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WtV =

(
λα

10∑
i=9

di + λβ

15∑
i=14

di

)
/ |d1| (2b)

where RR is the re-injection rate; and WtV is the waste-to-value conversion. The second
environmental segment is related to CO2 emissions, in which the total emission of CO2 ac-
counts for total emission; the CO2 production intensity considers the emission rate relative
to oil production; and CO2 re-injection intensity contemplate the emission rate relative to
PW re-injection. These CO2 emission indicators are shown below:

TCO2
= Ef Ed

(
W s

(1,2) +W s
(1,3) +W(4,5)

)
(3a)

Ioil = TCO2
/

(
λα

10∑
i=9

di + λβ

15∑
i=14

di

)
(3b)

IPW = TCO2/

(
10∑
i=9

di +

15∑
i=14

di

)
(3c)

where TCO2
is the total CO2 emission; Ioil is the CO2 production intensity; IPW is the

CO2 re-injection intensity; and Ef is the CO2 emission factor.

To perform sensitivity analysis in the PWRI facility, a parametric optimization problem
was formulated. The problem is represented by the following nonlinear program (NLP):

min
θ

Φ (θ,p) , (4a)

s.t. g (θ,p) = 0, (4b)
h (θ,p) ≤ 0, (4c)

where Φ : Rnθ × Rnp → R is the objective function; g : Rnθ × Rnp → Rng is the vector
of equality constraints; and h : Rnθ × Rnp → Rnh is the vector of inequality constraints.
Moreover, θ ∈ Rnθ is the vector of decision variables; and p ∈ Rnp is the vector of pa-
rameters. The compact form shown in Eq.(4) enables one to perform sensitivity analysis to
study how optimal decision variables θ∗(p) and optimal objective function Φ∗(p) behaves
due to changes performed in parameters.

For the considered application, the sensitivity analysis was done by varying the PW enter-
ing the PWRI facility with d1 ∈ [−480,−1818] m3/h. Moreover, we vary the roughness
coefficient in the Hazen-Williams equation of riser(7,8) to represent an increase in flow
resistance due to fouling, C(7,8) ∈ [140, 80]. Notice that lower values of C(7,8) translates
into more friction. The interval of interest for these parameters were based in operational
data gathered from an offshore producer. Due to that, we analyze two strategies: the
exclusive re-injection strategy (ERI), and the shared re-injection strategy (SRI). In ERI,
re-injection should be performed exclusively at RITα, while in SRI re-injection can be
performed at both RITs.

3. Results and Discussion

3.1. Operational Behavior

Understanding the operational behavior of the PWRI facility is crucial for assessing the
system performance. We showcase in Figure 2a the VSP operation; and in Figures 2b
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and 2c the PW re-injected at the RITs. Each curve is associated with a roughness coeffi-
cient value and a strategy.
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Figure 2: Overview of the PWRI facility operation for different roughness coefficients
of the Hazen-William equation, in which: (a) Head gain of the VSP with operational
envelope and efficiency islands; (b) re-injection flowrate of PW to the RITα; and (c) re-
injection flowrate of PW to the RITβ .

The operational point of a VSP is given by the intersection of the system resistance and
pumping curves (Gülich, 2008). For the lowest value of |d1|, 480 m3/h, the operation point
of the VSP is at the minimum rotation and q∗(4,5) is also at 480 m3/h. Once |d1| increases,
valves(6,7),(8,9),(8,10) widen their opening to re-inject more PW at RITα. This dislocates
the system resistance curve to the right until these valves reach their maximum opening.
At this point, the resistance curve in the ERI strategy cannot be further dislocated to the
right. As for the SRI strategy, valves(11,12),(13,14),(13,15) can be opened to decrease the
system resistance. However, due to the low effectiveness of RITβ , it is instead optimal to
re-injection more PW to RITα by increasing the VSP rotation. This tendency last for both
strategies, until the VSP reaches its maximum operational rotation. For the ERI strategy an
increase in re-injection cannot be achieved as the system lacks degrees of freedom, which
represents a process bottleneck. For the SRI strategy, the valves associated with RITβ

start to open until q∗(4,5) reaches the VSP envelope limit. This point represents a process
bottleneck for the SRI strategy as the VSP reaches its operational limits.

3.2. Economic and environmental performance

The economic and environmental performance of each strategy with distinct roughness
coefficient are shown in Figure 3. Overall, fouling has impacted negatively most of the
considered indicators for both strategies at some interval of |d1|. The only exception is the

O. F. Ivo and L. S. Imsland
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re-injection ratio of the SRI strategy, as shown by the overlapping curves SRI140,110,80 in
Figure 3b.

While the VSP operates at minimum rotation, it is not observed any significant impact
of fouling in the studied indicators. Nevertheless, when the VSP operates strictly inside
its operational envelope, it is seen that fouling impacts negatively the total CO2 emission
in Figure 3d, CO2 production intensity in Figure 3e, and CO2 re-injection intensity in
Figure 3f. This behavior is seen as fouling increases hydraulic losses in the riser(7,8),
requiring additional usage of fuel to re-injection the same quantity of PW in RITα, which
increase CO2 emissions.
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Figure 3: Economic and environmental performance for distinct strategies with different
roughness coefficients of the Hazen-William equation. (a) Total revenue; (b) re-injection
ratio; (c) waste-to-value; (d) total CO2 emission; (e) CO2 production intensity; and (f)
CO2 re-injection intensity.

As the VSP operates at maximum rotation, it is possible to see that fouling has worsened
mostly indicators for the ERI strategy, except for total CO2 emission in Figure 3d, which
improves as less PW is re-injected at RITα. For the SRI strategy, fouling causes worsening
of several indicators, except for re-injection ratio in Figure 3b, total CO2 emission in
Figure 3d, and CO2 re-injection intensity in Figure 3f, in which differences due to fouling
cannot be observed.

4. Conclusion

In this work, we have shown that fouling in PW re-injection can impact significantly the
economic and environmental performance of a PWRI facility. Furthermore, it was shown
that a RIT with lower effectiveness has the potential to mitigate several issues caused by
fouling if included in a decision-making framework. However, it is important to notice



1062

that scaling can also occur at other risers during operation. Thus, monitoring of scaling
and revaluation of decisions should be regularly performed for improving short and long
term decision-making over waterflooding operation.
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Abstract 

Patterned charged membranes with engendered useful characteristics can offer selective 

transport of electrolytes. Chemical patterning across the membrane surface via a physical 

inkjet deposition process requires precise control of the reactive-ink formulation, which 

enables the introduction of charged functionality to the membrane. This study develops a 

new dynamic mathematical model for the primary step of the batch reactive-ink 

formulation considering an ink mixture of copper sulphate and ascorbic acid. Nonlinear 

least squares parameter estimation is performed to infer three kinetic model parameters 

by analysing data from nine dynamic experiments simultaneously. Global sensitivity and 

Fisher information matrix (FIM) analyses reveal only one kinetic parameter is identifiable 

from time-series pH measurements. The fitted model can capture the overall nonlinear 

dynamics of the batch reaction and works best for initial Cu2+ concentrations between 30 

and 50 mM. Time-series Cu2+ or Cu+ concentration measurements are recommended in 

future experiments to elucidate the kinetics of reactive-ink formulation. 

Keywords: Sensitivity analysis, Parameter estimation, Additive manufacturing, Fisher 

information matrix, Nanostructured membrane, Data science 

1. Introduction 

A critical need for more selective membranes has emerged as their applications in modern 

separations and sensing processes continue to expand. To this end, membranes with 

chemically patterned surfaces such as charge-patterned mosaics and Janus membranes 

are an emerging approach for accessing higher selectivity (Qu et al., 2017). The state-of-

the-art fabrication process of such membranes involves printing reactive inks on the 

nanostructured substrates, where the charged functionality is induced through the copper-

catalysed azide-alkyne cycloaddition (CuAAC) reaction mechanism. Hoffman et al. 

(2019) demonstrated that this approach requires precise control of the reactive-ink 

formulation to ensure the membrane manufacturing process remains in the transport-

limited regime. The reactive-ink formulation comprises of a sequence of reactions 

occurring between reactants, i.e., copper sulphate (CuSO4), ascorbic acid (DH2), and an 

alkyne, to facilitate the formation of the dinuclear-copper alkyne complex (DNCAC). The 

concentration of the DNCAC is essential for the CuAAC reaction to proceed and therefore 

should be optimized to achieve a smooth chemical patterning while ensuring a controlled 

charged functionalization rate of the membrane at the same time (Worrell et al., 2013). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50177-9 
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Focusing on the primary step which involves the reaction between CuSO4 and DH2, there 

are only a few models available in the literature that explains the mechanism of the DH2-

CuSO4 reaction (Shtamm et al., 1979; Xu and Jordan, 1990). However, these models are 

limited to either the final Cu2+ reduction or the Cu+/hydronium ions (H+) formation. None 

have discussed a comprehensive and detailed rate law-based model that captures all the 

species involved in the reaction to the best of our knowledge.  

In this paper, we develop a first-principles-based kinetic model for reactive ink 

formulation. Considering the anaerobic reaction scheme for the ascorbic acid dissociation 

as reported in the literature, rate constants that are unavailable in the literature are posed 

as model parameters and related to known equilibrium constants from Shtamm et al. 

(1979). Parameter estimation is performed to identify kinetic rate constants from time-

series pH data. Local and global sensitivity analyses are performed to determine which 

model parameters are identifiable and design future experiments.  

2. Dynamic mathematical model for reactive-ink formulation 

The simplest reactive-ink solution is an aqueous mixture of ascorbic acid and copper 

sulphate. The reaction scheme involves a sequential dissociation of ascorbic acid via two 

reversible reactions in equilibrium as given by Eqs. (I), (II) and a final forward reaction 

as in Eq. (III), which describes the conversion of Cu2+ to Cu+. Shtamm et al. (1979) 

proposed the following reaction scheme for the reduction of Cu2+ to Cu+: 

𝐷𝐻2 

𝑘𝑓1


𝑘𝑏1

𝐷𝐻− + 𝐻+  (I) 

𝐶𝑢2+ + 𝐷𝐻−
𝑘𝑓2


𝑘𝑏2

 𝐶𝑢𝐷𝐻+ (II) 

𝐶𝑢2+ + 𝐶𝑢𝐷𝐻+
𝑘𝑖1
→ 2𝐶𝑢+ + 𝐷 + 𝐻+ (III) 

The equilibrium constants for reaction (I) and reaction (II) reported by Shtamm et al. 

(1979) are 𝐾𝑒1 =
𝑘𝑓1

𝑘𝑏1
⁄ = 5 × 10-5 M and 𝐾𝑒2 =

𝑘𝑓2
𝑘𝑏2
⁄ =  200 M-1, respectively. 

Here, 𝑘𝑓1 and 𝑘𝑓2 denote the forward rate constant, whereas 𝑘𝑏1 and 𝑘𝑏2 symbolize the 

backward rate constants for reactions I and II, respectively. The rate constant for the final 

reaction (III) reported by Shtamm et al. (1979) is 𝑘𝑖1 = 6000 mol-1∙L∙min-1. We consider 

a fully dynamic kinetic model for reactions (I) to (III) with five differential variables and 

five ordinary differential equations: 

𝑑[𝐷𝐻2]

𝑑𝑡
= −𝑘𝑏1𝐾𝑒1[𝐷𝐻2] + 𝑘𝑏1[𝐷𝐻

−][𝐻+] (1) 

𝑑[𝐷𝐻−]

𝑑𝑡
= 𝑘𝑏1𝐾𝑒1[𝐷𝐻2] − 𝑘𝑏1[𝐷𝐻

−][𝐻+] − 𝑘𝑏2𝐾𝑒2[𝐷𝐻
−][𝐶𝑢2+]

+ 𝑘𝑏2[𝐶𝑢𝐷𝐻
+]   

(2) 
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𝑑[𝐻+]

𝑑𝑡
= 𝑘𝑏1𝐾𝑒1[𝐷𝐻2] − 𝑘𝑏1[𝐷𝐻

−][𝐻+] + 𝑘𝑖1[𝐶𝑢𝐷𝐻
+][𝐶𝑢2+] (3) 

𝑑[𝐶𝑢2+]

𝑑𝑡
= −𝑘𝑏2𝐾𝑒2[𝐷𝐻

−][𝐶𝑢2+] + 𝑘𝑏2[𝐶𝑢𝐷𝐻
+]

− 𝑘𝑖1[𝐶𝑢𝐷𝐻
+][𝐶𝑢2+]       

(4) 

𝑑[𝐶𝑢𝐷𝐻+]

𝑑𝑡
= 𝑘𝑏2𝐾𝑒2[𝐷𝐻

−][𝐶𝑢2+] − 𝑘𝑏2[𝐶𝑢𝐷𝐻
+]

− 𝑘𝑖1[𝐶𝑢𝐷𝐻
+][𝐶𝑢2+]     

(5) 

Here, [𝐷𝐻2], [𝐷𝐻
−], [𝐻+], [𝐶𝑢2+], and [𝐶𝑢𝐷𝐻+] denote the concentrations of ascorbic 

acid, anion, hydrogen ion, cupric ion, and the complex, respectively, in unit of M. The 

model includes three unknown kinetic parameters, 𝑘𝑏1 [mol-1∙L∙min-1], 𝑘𝑏2 [min-1] and 

𝑘𝑖1 [mol-1∙L∙min-1], that characterize the reaction progress. 

3. Materials and methods 

3.1. Materials 

Initially, 200 mM ascorbic acid (DH2) and copper sulphate (CuSO4) solutions were 

prepared separately in 5 mL sample vials. Subsequently, the solutions were mixed to form 

10 mL solutions. The pH of the mixtures was measured at every 1 min time interval for 

5 min. The procedure was repeated in triplicate with CuSO4 solutions at 200, 150, 100, 

66.7, 50.0, 40.0, 33.3, 28.6, 25.0 mM for a total of (3 x 9 =) 27 experiments. 

3.2. Parameter estimation with multi-start 

To estimate the three unknown kinetic model parameters, 𝜽 = {𝒌𝒃𝟏, 𝒌𝒃𝟐, 𝒌𝒊𝟏}, we solve 

the least-square nonlinear regression problem, shown in Eq. (6), which minimizes the 

square of the difference between the model predicted and the experimentally measured 

concentration of H+ ions (residuals) for the 9 experimental conditions. 

𝜽̂ = argmin
𝜽
∑∑([𝐻+]𝑝𝑟𝑒𝑑,𝑖,𝑗 − [𝐻

+]𝑒𝑥𝑝,𝑖,𝑗)
2

𝑛𝑡𝑟𝑖

𝑗=1

𝑛𝑒𝑥𝑝

𝑖=1

 (6) 

Eq. (6) is solved numerically using scipy.optimize in Python with a customized multi-

start strategy to help find the (near) global optima.  

3.3. Local and global sensitivity analysis 

The Fisher information matrix (FIM), which is defined as the inverse of the parameter 

covariance matrix, is computed at the best fit parameter values 𝜽̂  based on local 

sensitivities of the model predictions to each parameter. The eigendecomposition of the 

FIM reveals which parameters are identifiable (Rothenberg and Thomas, 1971). 

Similarly, a global sensitivity analysis is conducted via grid search by evaluating the 

objective function over a wide range of model parameters: 𝑘𝑏1 = [400, 900] mol-1∙L∙min-

1, 𝑘𝑏2 = [1E-05, 1] min-1 and 𝑘𝑖1 = [1, 6000] mol-1∙L∙min-1. 

of Charged Membranes
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4. Results and discussion 

4.1. Parameter estimation with multi-start 

Table 1 shows the parameters estimated from regressing time-series pH measurements 

from the 27 experiments simultaneously. When each dataset (experimental condition) is 

regressed independently, parameters 𝑘𝑏1 varies from 260 to 1,100,00 mol-1∙L∙min-1 and 

𝑘𝑖1 varies from 12 to 6,000 mol-1∙L∙min-1. These non-unique parameters motivate both 

simultaneous regression (Table 1) as well as formal identifiability analysis. 

Table 1. Parameter estimation and local sensitivity from analysing 9 experiments simultaneously. 

 

4.2. Local and global sensitivity analysis  

The eigenvalues and eigenvectors of the Fisher information matrix (FIM) are also 

reported in Table 1. Two eigenvalues are near zero, 2.18E-12 and 2.74E-06, which 

implies the FIM is near singular and model is partial non-identifiable. The corresponding 

eigenvectors are predominantly in the direction of 𝑘𝑏1  and 𝑘𝑖1 , respectively, which 

indicate these parameters cannot be reliably estimated from these data. Conversely, the 

eigenvector of the largest eigenvalue, 2.84E+06, is in the direction of  𝑘𝑏2. This difference 

of more than 12 orders of magnitude in eigenvalues implies only 𝑘𝑏2 is identifiable based 

on the pH measurements from 9 experimental conditions considered in triplicate.  

Fig. 1. Global sensitivity of the log10-transformed sum of residuals squared for three model 

parameters.  

Fig. 1 shows the results from a global sensitivity analysis which confirm that 𝑘𝑏2 is the 

most sensitive model parameter. Parameters 𝑘𝑏1 , 𝑘𝑏2  and 𝑘𝑖1  are varied with a grid 

search, and the log10-transformed sum of residuals squared for the 27 experiments are 

computed. The plots with respect to 𝑘𝑏1 and 𝑘𝑖1 show the sum of residuals squared is only 

slightly impacted by the value of 𝑘𝑏1 and 𝑘𝑖1. In other words, for a constant value of 𝑘𝑏1 
or 𝑘𝑖1, the sum of residuals squared changes by two orders of magnitude when varying 

the other two parameters. In a contrast, varying 𝑘𝑏2  causes one to four orders of 

Estimated parameters Residuals 

squared Eigenvalues of 

FIM 

Eigenvectors of FIM 
𝑘𝑏1 𝑘𝑏2 𝑘𝑖1 

(mol-1∙L∙min-1) (min-1） (mol-1∙L∙min-1) (M2) 𝑘𝑏1 𝑘𝑏2 𝑘𝑖1 

17601.30 0.0074 105.69 68.62 

2.18E-12 -1.00 1.55E-09 4.40E-04 

2.74E-06 -4.40E-04 8.35E-07 -1.00 

2.84E+06 -1.92E-09 -1.00 -8.35E-07 

X. Liu et al.
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magnitude changing in the sum of residuals squared. Moreover, the sum of residuals 

squared is minimized around 𝑘𝑏2 = 10-2 min-1. For 𝑘𝑏2 ≤ 10-2 min-1, varying 𝑘𝑏1 or 𝑘𝑖1 

has almost no impact on the sum of residuals squared, but the model becomes sensitive 

to 𝑘𝑏1and 𝑘𝑖1 when 𝑘𝑏2 ≥ 10-2 min-1. A possible physical explanation for this result is 

that reaction (II) is rate limiting when 𝑘𝑏2 ≤ 10-2 min-1, hence the model predictions are 

not sensitive to the other reaction kinetic constants (provided they are sufficiently large 

to not be rate limiting). 

4.3. Partial parameter estimation 

The local and global sensitivity analyses above both show only 𝑘𝑏2  can be reliably 

estimated from the available timeseries pH measurements from the 27 experiments. Since 

𝑘𝑏1 characterize the rate for the ascorbic acid dissociation, it only affects the beginning 

of Cu+ formation and has little influence on the subsequent reaction progress. Therefore, 

we select 𝑘𝑏1 = 600 mol-1∙L∙min-1 for reasonable H+ profiles and 𝑘𝑖1= 6000 mol-1∙L∙min-

1 based on literature (Shtamm et al., 1979).  

   

A. 200 mM AA:200 mM Cu2+ B. 200 mM AA: 150 mM Cu2+ C. 200 mM AA: 100 mM Cu2+ 

   

D. 200 mM AA: 66.7 mM Cu2+ E. 200 mM AA: 50 mM Cu2+ F. 200 mM AA: 40 mM Cu2+ 

   

G. 200 mM AA: 33.3 mM Cu2+ H. 200 mM AA: 28.6 mM Cu2+ I. 200 mM AA: 25 mM Cu2+ 

Fig. 2. Comparison for model predictions and experimental pH measurements for the 27 

experiments (9 initial concentrations A-I repeated in triplicate). 

Fig. 2 shows the results from partial parameter estimation with 𝑘𝑏1 and 𝑘𝑖1 fixed. The 

best fit value for 𝑘𝑏2  is 0.0082 ± 0.0002 min-1. As seen in Fig. 2, the continuous H+ 

concentrations predicted from the fitted model match the overall the reaction progress as 

measured by the timeseries pH data. Experiments with initial Cu2+ concentrations between 

Mathematical Modelling of Reactive Inks for Additive Manufacturing 
of Charged Membranes
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28.6 and 50 mM (Fig. 2E-H) are best predicted with their relative sum of residuals squared 

less than 4%. However, for the experiments conducted with higher [𝐶𝑢2+]0, the model 

overestimates the H+ concentration after 5 minutes (Fig. 2A-D). Also, the relative sum of 

residuals squared increases monotonically from 7 % to 44 % as [𝐶𝑢2+]0 increases from 

66.7 to 200 mM, respectively. Similarly, for [𝐶𝑢2+]0 =  25.0 mM, the model 

overestimates the H+ concentration and the relative sum of residuals squared equals 11%. 

Together, these results suggest that copper complexes, which are not modeled, are 

important. 

5. Conclusions 

We developed a mathematical model for the Cu-DH2 reaction system. Local and global 

sensitivity analysis reveals that only reaction rate parameter, 𝑘𝑏2, can be identified from 

timeseries pH measurements. Partial parameter estimation is performed to estimate 𝑘𝑏2, 
which is, to our knowledge, one of the first reported values for 𝑘𝑏2 in literature.  

While the fitted model captures the overall nonlinear dynamics of the batch reaction, 

several extensions should be considered as future work. We hypothesize measuring 

timeseries Cu2+ or Cu+ concentrations will enable some of the remaining model 

parameters to be identified. Likewise, adding intermediate chemical species such as 

complexes to the model may improve the quality of fit. Ultimately, a predicted dynamic 

model, such as the one presented in this paper, may be used to optimize the ink 

formulations for additive manufacturing of chemically patterned membranes. 
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Abstract 

Efforts to be eco-friendly are becoming essential, and hydrogen is attracting attention as 

an eco-friendly fuel. As the hydrogen demand increases, the interest in liquid hydrogen 

is increasing because it is safer and more efficient for large-scale hydrogen transport 

and storage than compressed gaseous hydrogen. Since hydrogen must be cooled to 

about −253 ℃ to be liquefied, this represents a high proportion of the cost in a 

hydrogen liquefaction plant. Reducing the unit price of hydrogen is the key to achieve a 

hydrogen economy, and it is also important to reduce the cost of the hydrogen 

liquefaction process for price competitiveness of liquid hydrogen. The purpose of this 

study, therefore, is to perform an economic analysis of a hydrogen liquefaction process 

based on both techno-economic and energy-based optimization. The objective functions 

for techno-economic optimization and energy optimization are total annualized cost and 

total power consumption, respectively. The results show that the influence of operating 

expenditure is greater than that of capital expenditures, and the cost of the compressors 

is dominant in the capital expenditures. These results provide technical background data 

that can be used to improve the economic viability of the hydrogen liquefaction process 

as an important element in the hydrogen economy. 

Keywords: Hydrogen liquefaction process; Techno-economic optimization; Energy 

optimization; Economic analysis. 

1. Introduction 

Eco-friendly efforts to solve the climate crisis are becoming an essential factor, leading 

to an era of great energy transition. Accordingly, hydrogen is in the spotlight as a 

promising fuel in the future because of its advantages: 1) abundant amount, 2) higher 

gravimetric energy density than conventional fossil fuels, and 3) eco-friendly fuel with 

no carbon emission (Yin and Ju, 2020). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50178-0 
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The hydrogen value chain can be divided into three areas (production, 

storage/transportation, and utilization), and various research and development efforts 

are underway to lower the unit price of hydrogen in each area. In the hydrogen 

storage/transportation stage, three methods are being discussed as promising means to 

replace the conventional compressed hydrogen gas in order to increase the storage and 

transportation efficiency; i.e. Liquid organic hydrogen carrier (LOHC), Ammonia (NH3) 

and Liquid hydrogen (LH2). LOHC is a method of storing hydrogen in a liquid 

compound, and methylcyclohexane (MCH) is often considered as a candidate for this. 

Similarly, NH3 synthesis is widely considered as a method for storing and transporting 

hydrogen. In LH2, the hydrogen is stored and transported in liquid form, similar to the 

method of liquefied natural gas (LNG). 

Since LH2 has the high volumetric energy density compared to the gaseous hydrogen 

and the high gravimetric energy density compared to the LOHC and NH3, it is expected 

to be the most suitable hydrogen storage method in large-capacity scenarios. However, 

liquefying hydrogen is technically challenging. 

First, hydrogen is liquefied at −253 ℃, and therefore a harsher cryogenic environment 

than LNG is required. Accordingly, a hydrogen liquefaction process requires about 30 

times higher energy consumption compared to a natural gas liquefaction process (e.g. 

typical specific energy consumption (SEC) of natural gas liquefaction is about 0.3 

kWh/kg LNG, while a typical SEC of hydrogen liquefaction is about 10 kWh/kg LH2). 

In addition, hydrogen molecules occur in two different spin isomers, orthohydrogen 

(ortho-H2) and parahydrogen (para-H2). Normal hydrogen (normal-H2) that can be 

observed at room temperature is composed of 75 % ortho-H2 and 25 % para-H2. As 

hydrogen is cooled from room temperature, the ratio of spin isomers forming 

equilibrium hydrogen (equilibrium-H2) changes. As the temperature is reduced, ortho-

H2 is converted into para-H2, which is an exothermic process. Since the natural ortho-

/para-H2 conversion (OPC) process occurs relatively slowly, liquefied non-equilibrium-

H2 can be vaporized by the heat of conversion unless the OPC processes are rapidly 

achieved through catalytic reactions while cooling hydrogen. This is because the heat of 

conversion (about 1063 J/mol) is higher than the heat of vaporization of liquid hydrogen 

(about 954 J/mol) (Zhuzhgov et al., 2018). Therefore, in an actual hydrogen liquefaction 

plant, a catalyst-filled heat exchanger is used to achieve a catalytic reaction for rapid 

OPC, such that the conversion heat can be removed in the cooling process. 

Currently, much effort is made to lower the unit price of hydrogen to achieve a 

hydrogen economy, and thereby it is important to reduce the cost of the hydrogen 

liquefaction process as much as possible in order to have price competitiveness for 

liquid hydrogen. This study, therefore, aims to present technical background data for an 

economical hydrogen liquefaction process design through economic analysis based on 

techno-economic and energy optimization. 

2. Process description 

The Claude cycle presented by Berstad et al. (2021) is selected as a base model for a 

hydrogen liquefaction process in this study. Figure 1 shows the process flow diagram of 

the hydrogen liquefaction process in consideration. First, hydrogen feed gas is 

introduced in the precooling cycle at a rate of 125 ton/day at 20 bar and 298.15 K. The 

hydrogen feed gas is cooled to 114 K by passing PC-HX in the precooling cycle and 

then enter the main cryogenic cycle. Here, it is assumed that any impurities are removed 
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through an adsorber before entering the main cryogenic cycle. A mixed refrigerant (MR) 

is used for the precooling cycle. The MR is composed of nitrogen (N2), methane (C1), 

ethane (C2), propane (C3), n-butane (n-C4), and i-pentane (i-C5). The MR is compressed 

to about 35 bar by two compression stages with intercoolers. It is assumed that the 

adiabatic efficiencies of each compressor and the pump in the precooling cycle are 85 % 

and 75 %, respectively. The high-pressure MR is pre-cooled to 114 K by passing 

PC-HX and then expanded to low pressure by a Joule-Thomson (J-T) valve bringing the 

stream to a lower temperature. The resulting low-temperature MR stream passes 

through PC-HX, cooling the hydrogen, and returns to the compression system.  

After passing through an ortho-/para-H2 conversion unit, the hydrogen gas is cooled 

from 117.9 K to 106 K in MC-HX2. The resulting hydrogen stream undergoes OPC 

through another conversion unit. In the simulation, equivalent heat exchangers using 

conversion reactor units are applied to simulate catalyst-filled heat exchangers for the 

OPCs as shown in Figure 1. The hydrogen is cooled to 22 K through HX3-HX8 with the 

OPCs and then expanded to 1.5 bar by a J-T valve. The final LH2 conditions are 1.5 bar, 

21.7 K, and 97 % para-LH2 concentration. In the main cryogenic cycle, the normal-H2 

refrigerant is compressed to about 30 bar by four compression stages with intercooling 

in between. It is assumed that the adiabatic efficiency of C-3 and C-4 and the adiabatic 

efficiency of C-5 and C-6 are 82 % and 85 %, respectively. Side streams from the 

resulting refrigerant are drawn and expanded to intermediate pressures by expanders. 

The isentropic efficiency of each expander is assumed to be 85 %. The main refrigerant 

stream from MC-HX5 is depressurized by a liquid expander and a J-T valve. The 

resulting refrigerant stream at about 21 K passes through all heat exchangers and is 

returned to the compression system to provide the cooling duty. The side streams are 

mixed with the returning main refrigerant stream at intermediate pressure. The process 

parameters applied in the simulation are shown in Table 1. 

Process modeling was done using Aspen HYSYS®  V10.0. A modified Benedict-Webb-

Rubin equation of state (MBWR) and the Peng-Robinson equation of state (PR) were 

applied to the main cryogenic cycle and precooling cycle, respectively. 

3. Process optimization 

For energy optimization, the net power consumption was used as the objective function, 

as shown in Eq.(1). The net power consumption can be calculated by subtracting the 

power produced in all j expander stages from the power consumed in all i compressor 

stages. 

For techno-economic optimization, the cost estimation methodology presented by 

Turton et al. (2008) was used to calculate equipment cost, module cost and capital 

expenditures (CAPEX) of the hydrogen liquefaction process. Table 2 shows the 

equipment types considered here and their corresponding cost parameters. In this study, 

different types of heat exchangers for the precooling cycle and the main cryogenic cycle 

were selected in consideration of the type of refrigerant used. The cost of the catalyst 

used was assumed to be equal to 15 % of the cost of the heat exchanger without catalyst, 

and this assumption was used to calculate the cost of equivalent heat exchangers to 

which the OPCs are applied. The calculated CAPEX can be converted to an estimated 

annual CAPEX as shown in Eq.(2). Here, it was assumed that the interest rate (i) and the 

lifetime of the plant (L) are 10 % and 20 years, respectively. In addition, operating 

expenditures (OPEX) were estimated considering the total power consumption and the 
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electricity cost (celec = 0.06 USD/kWh) as shown in Eq.(3). Consequently, the total 

annualized cost (TAC) of the hydrogen liquefaction process can be calculated by 

summing annual CAPEX and OPEX. This was used as the objective function for the 

techno-economic optimization, as shown in Eq.(4). 

min ∑ 𝑊̇total = (∑ 𝑊̇𝑖

𝑖

− ∑ 𝑊̇𝑗

𝑗

) (1) 

Annual 𝐶𝐴𝑃𝐸𝑋 = 𝐶𝐴𝑃𝐸𝑋 ∙
(𝑖 ∗ (1 + 𝑖)𝐿)

(1 + 𝑖)𝐿 − 1
 (2) 

𝑂𝑃𝐸𝑋 = 𝑐elec ∑ 𝑊̇total (3) 

min 𝑇𝐴𝐶 = Annual 𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋 (4) 

Here, a genetic algorithm (GA) was used for the optimization, and the process 

optimization was performed by connecting the GA loaded from MATLAB R2021a with 

Aspen HYSYS® . Optimization variables include the discharge pressure of each 

compressor and the expansion pressure of each expander, as well as the MR flow rate 

and normal-H2 flow rate that are the flow rates of refrigerants. 

Table 1. Process parameters used in the simulations 

Parameter Value Unit 

Hydrogen feed pressure 20 bar 

Hydrogen feed temperature 298.15 K 

Hydrogen feed mass flow 125 t/d 

Inlet fraction of para-H2 25 mol % 

Liquid hydrogen pressure 1.5 bar 

Liquid hydrogen temperature 21.6 K 

Outlet fraction of para-H2 ≥ 95 mol % 

Adiabatic efficiency of compressors 82–85 % 

Isentropic efficiency of expanders 85 % 

Minimum temperature approach of heat exchangers 0.5 K 

Intercooler temperature 298.15 K 

 

Table 2. Types and cost parameters for each equipment in the hydrogen liquefaction process 

Equipment Type 
Cost parameters 

𝐾1 𝐾2 𝐾3 

Main cryogenic heat exchanger Flat plate 4.6656 -0.1557 0.1547 

Precooling heat exchanger Spiral tube 3.9912 0.0668 0.243 

Compressor Centrifugal 2.2897 1.3604 -0.1027 

Expander Axial gas turbines 2.7051 1.4398 -0.1776 

H. Son et al.



  

 

Figure 1. Process flow diagram of the hydrogen liquefaction process 

 

4. Results 

The economic analyses of the energy and techno-economic optimization results as well 

as the base model are shown in Figure 2. Since the hydrogen liquefaction process 

consumes a lot of energy, the influence of OP EX  in TA C is greater than that of CA P EX , 

and therefore the compressor cost is dominant in the CA P EX . However, in the case of 

energy optimization, the TA C is larger compared to the base model and techno-

economic optimization because the heat exchanger capacity is excessively increased.  

As a result, for the hydrogen liquefaction process, it is advantageous in terms of TA C to 

increase process efficiency and save OP EX , but care must be taken not to excessively 

increase the capacity of the heat exchangers during energy optimization. 
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Figure 2. Economic analyses for base model, and energy and techno-economic optimization 

 

5. Discussion 

In this study, values for the overall heat transfer coefficient (U values) were assumed 

when estimating the heat exchanger cost in the techno-economic optimization; i.e. U 

value for the main cryogenic heat exchanger was set to 3000 W/m2∙℃, while the U 

value for the precooling heat exchanger was set to 5000 W/m2∙℃. Since these values 

are taken from natural gas liquefaction process data, future studies are required to apply 

more appropriate U values for the hydrogen liquefaction process. In addition, since the 

liquid expander (E-8) cost-wise was treated in the same way as the gas expanders, this 

also needs to be improved in future studies. 

6. Conclusions 

An economic analysis of a hydrogen liquefaction process was performed based on 

techno-economic and energy optimization. The total annualized costs were calculated 

by applying the cost estimation methodology selected for the techno-economic 

optimization. In conclusion, the influence of OPEX on the hydrogen liquefaction 

process cost is high, and thereby it is important to increase the process efficiency. In 

addition, if energy optimization is used for the hydrogen liquefaction process design, it 

should be noted that the heat exchanger capacity can be excessively increased leading to 

an increase in TAC. 
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Abstract 

The digital twin is a technology to digitally transform asset lifecycle in the metals 
industry, from improving project delivery to empowering operational intelligence toward 
next-generation decision-making. In this paper, Hatch’s digital twin framework is 
presented and demonstrated using a real-world blast furnace twin example, followed by 
development practice and lessons learned from our practice experience. 

Keywords: Digital Twin, Analytics, Decision-making, Mining and Metals, Blast Furnace 

1. Introduction 

The metals industry is concerned with the processing of bulk ore resources into various 
basic materials, such as steel, aluminum, copper, etc. It is an asset-centric industry, where 
key assets are heavily invested and have their own lifecycle. With the growing maturity 
of the Industrial Internet of Things (IIoT), Machine Learning and Artificial Intelligence 
(ML/AI) technologies, the digital twin becomes a powerful tool to transform the industrial 
asset lifecycle from process design, construction to operation. It drives the metals industry 
toward better decision-making to improve project delivery, yield and resource efficiency, 
as well as plant operation and maintenance. 

At Hatch, the digital twin is often considered under a bigger picture of industrial asset 
lifecycle and enterprise value chain. As shown in Figure 1, it first contextualizes the asset 
information during the process design, engineering, and construction phase. Such 
information like asset structure, Piping and Instrumentation Diagrams (P&IDs), design 
basis, equipment information, etc. are all connected to static and dynamic process models 
as well as discrete event simulation models to optimize project design, Capex/Opex, and 
schedule. The dynamic process models (with possible expansion to include thermo- and 
fluid dynamics) are further integrated with a control system emulator to build digital twins 
for operator training and accelerate the process commissioning phase. Once processes are 
in operation, the above models together with data-driven, ML/AI algorithms are used to 
develop digital twins to support operational intelligence, for example, “process twins” for 
anomaly detection, scenario analysis, and operational guidance; “asset twins” for 
predictive maintenance, and risk management; and “connected twins” considering 
integrated mass flow, energy flow, cash flow, and carbon flow for end-to-end value chain 
simulation and optimization.  

This paper focuses on the digital twins of operating assets. It starts with a review of three 
selected digital twin frameworks and then presents a commercial digital twin use case for 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50179-2 
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ironmaking blast furnaces. Hatch’s digital twin development approach and lessons 
learned are also shared from an industrial practitioner’s perspective. 

 
Figure 1. Digital twins across industrial asset lifecycle and enterprise value chain 

2. Understand Digital Twin Technology 

The digital twin concept has been around for many years, and it is always evolving with 
the latest development of Industry 4.0 technologies. Many different digital twin 
definitions and frameworks have been presented recently by technology vendors and 
industrial practitioners. Three representative digital twin frameworks are selected and 
discussed in this section. Each of them has its own foci, but they share some common 
components, which are crucial to digital twin design and development. 

Deloitte is one of the early practitioners in applying digital twin technology to help their 
manufacturing clients create new values. In its definition, the digital twin framework is a 
near real-time comprehensive integration between the physical and digital worlds 
(Mussomeli, et al., 2020). Such integration relies on four key components: sensors and 
actuators from the physical side, and data and analytics from the digital side. Sensors are 
distributed throughout the industry processes, continuously generating real-time data to 
represent the current situation of physical assets. The data are ingested into a digital twin 
platform and consumed by analytical algorithms and models to produce actionable 
insights. The insights can be implemented by actuators to apply direct changes to physical 
processes in an automatic or semi-automatic way. DNV is an independent assurance and 
risk management organization, who proposed a unique framework by decomposing a 
digital twin into multiple manageable functional elements (DNV-GL, 2020). Each 
element contains five key components: (1) data streams, (2) asset information model, (3) 
computation models, (4) dashboard and quality indicator, and (5) need and key decision. 
These components normally serve one specific purpose (i.e., use case) but may also be 
shared across multiple elements. In DNV’s view, the digital twin is a collection of 
functional elements, which work together holistically to provide decision support over 
the entire life cycle of a physical asset. Hatch 3I’s digital twin framework is presented in 
Figure 2 (Zhang, et al. 2021), which consists of Integration, Intelligence, and Interaction. 

Integration is to establish a dynamic visualization environment, where all sources of 
engineering, production, maintenance, environment, health, and safety data together with 
high-fidelity 2D/3D asset models are combined to create a “Single Source of Truth”. It 
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presents on-demand, contextualized information and ensures data transparency and 
availability for all designated users through a secured cloud infrastructure. 

Intelligence is the key differentiator between the previous generation of BI dashboards 
and a digital twin. The latter provides a fully and meaningfully connected analytical 
platform to effectively combine first-principle models, big data, and ML/AI technology 
to generate actionable insights and make intelligent decisions related to the physical 
twin’s safety, reliability, efficiency, and profitability.  

Interaction focuses on value connectivity. A digital twin adds value to business by 
creating innovative and more meaningful points of interaction between humans and 
machines through rich visualization and services, for example, augmented operator 
training, remote expert support, and collaborative decision-making. 

 
Figure 2. Hatch 3I’s Framework of Digital Twin 

Some common components of digital twin are evident based on the above frameworks 
and should be considered for every digital twin implementation. They are: (1) Data is a 
fundamental component of digital twins. Effective decision-making requires insights 
based on true and contextualized data from multiple sources. It becomes critically 
important that a well-designed data platform is utilized by digital twins for data 
connection, ingestion, manipulation, and storage. (2) Model is the core of digital twins. 
The models based on first principles, ML/AI algorithms, simulation, and/or optimization 
technology are used in different digital twin use cases to generate insights and make 
decisions for specific purposes. (3) Visualization is the aspect that describes the user 
interface of a digital twin. It represents actionable insights through various technologies, 
from widely used business intelligence dashboards, 3D visualization, to the latest virtual 
and augmented reality.  

3. An Industrial Example: Blast Furnace Digital Twin 

Several digital twins have been successfully implemented at Hatch clients’ sites by a joint 
digital and process engineering team following Hatch 3I’s framework, for example, blast 
furnace digital twins for the steel industry, autoclave digital twins for the refractory gold 
industry, and others. In this section, one use case of blast furnace digital twin is presented 
as an example to demonstrate digital twin’s value through timely decision-making.  

Decision-Making: A Practitioner’s View
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Casting is an important part of blast furnace stable operation. It is a critical task for cast-
house floor operators to control hearth liquid heights and avoid large liquid accumulation. 
The presence of excessive liquids can exert back-pressure on the tuyere raceways in the 
furnace, distort the gas flow, and create an overall negative impact on furnace operations, 
such as slow burden movement, hanging and slipping, elevated heat load on the bosh and 
lower stack leading to increased coke consumption and carbon emissions. Many blast 
furnace operators follow casting rules that are enacted from experience but in most cases, 
there are no real-time measurements of hearth liquid heights to validate the rules.  

As part of the blast furnace digital twin, a casting guidance use case was developed for a 
better understanding of the accumulation and drainage of iron and slag. It integrated real-
time furnace operational data (e.g., hot metal smelting rate, hot blast pressure, slag and 
blow time, etc.) with the first-principle model developed by Cameron, et al. (2020) to 
establish a true representation of blast furnace hearth and provides an operational 
intelligence tool with the following three key functions. 

Real-time monitoring and prediction of hearth liquid heights to improve process safety 
and stability. As illustrated in Figure 3, this function provides a 3D visualization of the 
blast furnace hearth together with real-time casting information, hot metal/slag heights, 
and their predictions. High liquid height alerts, operational recommendations, and non-
adherence to casting Standard Operating Procedures (SOPs) will be sent to operators 
directly either through an on-screen notification center or mobile text messages.   

 
Figure 3. Example of blast furnace digital twin 

Scenario analysis of future cast operations to provide operational guidance towards 
optimal production. With this function, process engineers and/or cast-house planners can 
develop a custom response to the current material heights by adjusting some operational 
levers such as taphole sequence, cast start time, drill bit size, hot metal production rate, 
etc. Through various scenario analyses based on the current operating conditions, they 
can experiment with the ideal response to a challenging hearth condition, for example, 
high slag heights. 

Model parameter auto-tuning based on real-time data to minimize plant-model 
mismatch. This function is performed at the end of each cast to automatically update key 
process model parameters such as taphole roughness and wear rate to make the digital 



 

twin a true representation of its physical twin through consistent self-learning. Our study 
showed that the auto-tuning function contributed to a 17% improvement in model 
prediction accuracy.     

The casting guidance use case has been rolled out to the client’s Blast Furnace Command 
Center since late 2020, which provided a data-centric decision tool to furnace/shift 
coordinators and also enabled Hatch experts to provide remote technical support. Some 
tangible benefits have been observed, including more consistent hot metal and slag 
heights inside the blast furnace, a 45% decrease of non-casting time along with a notable 
reduction in furnace hearth temperature and energy consumption. 

4. Development Approach and Lessons Learned 

It has been a very challenging but rewarding journey over the past three years to establish 
digital twin as one of the service offerings at Hatch Digital. We have made some great 
successes to deploy digital twins across a plant site but also failed by mistakes. This 
session discusses some lessons learned as a way of sharing our experience from a 
practitioner’s perspective.  

Focusing on value delivery is the only way to meaningfully apply a digital twin. At the 
beginning of digital twin development, it is critically important to identify digital twin 
values specific to users and differentiate them from other technologies such as Business 
Intelligence (BI) dashboard or simulation applications. The values need to be tangible and 
measurable to justify potential investments. We have experienced a predictive 
maintenance use case, in which the initial costs of developing a failure prediction model 
are difficult to justify due to the low probability of the failure occurrence. 

Digital twins are always evolving so as the development approaches – be agile. It should 
be completely fine to start with a Minimum Viable Product (MVP) just to address one or 
two key features, and then add new ones gradually based on users’ feedback. Taking the 
casting guidance as an example, along the six-month development process, we added new 
features almost every month, from 3D unity model for enhanced visualization, real-time 
notification via mobile text messages, to model tuning and auto-tuning functions. Today 
we are developing a new AI technology to characterize the changes of taphole based on 
image analysis to further improve the model accuracy. 

Accelerate your time-to-value by adopting a low-code digital twin platform. Developing 
a digital twin requires the connection of real-time data, orchestration of process models, 
and customization of user interfaces to support data visualization and user interactions. 
We found that some low-code digital twin platforms (such as XMPro, etc.) have 
developed great built-in data connection and visualization features, allowing us to 
concentrate more on intelligence and insight development and help our clients realize 
benefits sooner and faster, which is key to the success of digital twin projects.   

Make your digital twin a trustworthy tool to operators. The most common failure in 
digital twin implementation is that users stopped using it for decision support after the 
initial commissioning stage because the digital twin can no longer represent its physical 
processes. This can be caused by several different reasons related to, for example, data 
quality, model/algorithm robustness, and/or digital system stability. To prevent this 
situation from happening, certain quality assurance measures need to be incorporated into 
digital twin design. Some of them may include real-time validation of input operational 
data, continuous monitoring of model health, built-in model self-learning capabilities to 
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adapt to possible process changes over t.me, and/or a consistent and meaningful way to 
interpret and present digital twin results to avoid any ambiguity and misunderstanding 
from users’ point of view.  

Last but not least, your commercial model is either a roadblock or a lubricant to the 
success of digital twin projects. Although this is not a technical issue, we often found that 
in many cases, a promising digital twin project may quickly lose the support either from 
the developer- or client-side as the commercial model is not sustainable. In other words, 
the costs of creating and running a digital twin are not met by the values created. We have 
to respect that there is no one commercial model that can fit all. A flexible commercial 
model with a focus on long-term benefits will help solve the issue.  

Keep these lessons learned in mind, we have established a proven, agile development 
approach to transforming a conceptual idea into a real-world digital twin solution, which 
consists of the following five steps: 

(1)  focusing our attention on understanding a wide range of user needs, and grouping 
them into multiple categories such as functional requirements, data requirements, user 
experience requirements, or security requirements, etc.  

(2) conducting persona workshops to identify goals, key users, and pain points for each 
use case, and prioritizing them based on their potential benefit and implementation cost.  

(3) proposing a solution with high-priority use cases, and using an interactive mockup as 
a communication tool to visualize different ideas and solicit stakeholders’ feedback.  

(4) commissioning an MVP through plant trials, targeting a quick delivery with added 
values, and continuously improving it during the following development.  

(5) comparing with the original requirements to ensure all needs are fully satisfied by 
MVP or its further improved versions. It is worth mentioning that this step often serves 
as a new round of innovation process that may lead to further design improvements.  

5. Conclusion 

Our view on digital twins, development practice as well as lessons learned from the past 
project experience are shared from an industrial practitioner’s perspective in this paper.  
We believe, with strong support from Industry 4.0 technologies, the digital twin will 
continue to be a powerful technology tool to solve different plant operation, maintenance, 
and value chain optimization challenges, and provide a good starting point of the digital 
journey of driving toward next-generation decision-making for the metals industry. 
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Abstract 

 As regulation of ship emission established, using liquefied natural gas (LNG) as ship fuel 

is one of the method to reduce ship emission. For LNG carrier, boil-off gas (BOG) 

generated from the storage tank can be used as fuel and it is economical to adopt BOG 

re-liquefaction system on the vessel. In this study, we investigate the feasibility of hydro-

fluoroolefins (HFO) refrigerants in the BOG re-liquefaction system. We simulate BOG 

re-liquefaction system and optimize it to minimize energy consumption. Then, the global 

warming potential(GWP) generation during lifecycle of the ship is estimated. As the 

results, HFO refrigerants has similar performance in BOG re-liquefaction system in terms 

of energy consumption compared to hydrocarbon refrigerants. In case using HFO 

refrigerants, the specific power consumption (SPC) of re-liquefaction process is 0.479 

kWh/kg and in case using hydrocarbon refrigerants it is 0.471 kWh/kg. However, 

although HFO refrigerants has lower GWP than hydrocarbons, the total GWP generation 

is larger than when using hydrocarbons due to GWP generation caused by CO2 emission. 

 

Keywords: BOG re-liquefaction process, hydro-fluoroolefin refrigerants, optimization, 

the global warming potential.  

1. Introduction 

For long distance, it is economical to transport liquid form of natural gas (NG) by LNG 

carriers. However, LNG is stored in the storage cargo tank at -160 °C under ambient 

pressure (Lim et al, 2013), so part of LNG is vaporized to boil-off gas (BOG) by heat 

ingress into the tank. For LNG carrier, it is economical to use BOG as fuel and re-liquefy 

the remaining BOG to recover it to the tank. There are two types of gas propulsion engines 

mounted on ships: a high-pressure gas propulsion engine (ME-GI) developed by MAN 

B&W and a low-pressure gas propulsion engine (X-DF) developed by WIN-GD. In the 

initial gas propulsion engine market, the market share of high-pressure gas propulsion 

engines was high, but as emission regulations for nitrogen oxides (NOx) and sulfur oxides 

(SOx) were tightened (IMO, 1999, 2016, 2017), interest in low-pressure gas propulsion 
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engines is increasing (IGU, 2019). For low pressure gas propulsion engine, it is 

advantageous in terms of energy consumption to liquefy and recover BOG using an 

external refrigerant cycle due to its low operating pressure. 

Meanwhile, hydro-fluoroolefins (HFO) are consider as suitable alternative to 

conventional refrigerants established through the Montreal Protocol and other such 

treaties in heating, ventilation and air-conditioning (HAVC) and automobile industries. 

The conventional refrigerants in HAVC and automobile industries include 

hydrofluorocarbons (HFCs), chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons 

(HCFCs) which have high global warming potential (GWP) or ozone depletion 

potential(ODP). The HFOs have double bonds in its molecular structure, so the rate of 

decomposition in the air is high. Thus they have little environmental impact, resulting in 

low GWP and ODP. 

Currently, there is little research on the re-liquefaction of BOG using HFO refrigerants, 

so it is worth studying their feasibility in the BOG re-liquefaction system. In this study, 

BOG re-liquefaction process using HFO refrigerants is modeled and optimized to 

minimize the energy consumption. Then, GWP generation during lifecycle is estimated 

and compared to case of using conventional hydrocarbon refrigerants.   

2. Process design 

2.1 Design basis 

The LNG and BOG composition is assumed as shown in Table 1. ASPEN HYSYS V10 

is used as a software for process simulation, and this study uses the Peng–Robinson 

equation of state, which is suitable for simulating LNG, a light hydrocarbon, up to high 

pressure and cryogenic conditions.  

Table 1. LNG (Aspelund et al, 2010) and BOG composition. 

Type Unit Value 

LNG composition   

Nitrogen mol% 0.37 

Methane mol% 95.89 

Ethane mol% 2.96 

Propane mol% 0.72 

Butane mol% 0.06 

BOG composition   

Nitrogen mol% 0.48 

Methane mol% 99.49 

Ethane mol% 0.03 

The amount of BOG generated from the tank can be estimated the Equation (1).  

BOGtank = V ∙ Lv ∙ ρ ∙ V𝛾   (1) 

where  BOGtank is the rate of BOG generated from the storage tank,  V is the volume of 

the storage tank, Lv is the liquid level, ρ is the average density of the LNG, and V𝛾 is the 
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evaporation rate of the storage tank. Assuming that the tank volume is 170,000 m3, the 

liquid level is 95%, the average density is 437.9 kg/m3, and the evaporation rate is 

0.1%/day, the amount of BOG generated per hour could be estimated to be about 2938 

kg/h.  

To determine the BOG consumption rate for the main propulsion engine and auxiliary 

power generation engine, the following Equation (2) could be used.  

BOGfuel =
Pe∙SFOC∙l

LHV
   (2) 

where BOGfuel is the fuel consumption in kg/hr, Pe is the engine power in kW, SFOC is 

the specific fuel oil consumption in kJ/kWh, LHV is the lower heating value of BOG in 

kJ/kg based on the BOG composition, and 𝑙 is the engine load in %. Table 2 shows the 

corresponding values of each engine are assumed.  

Table 2. Engine specification (Wartsila, 2019) (WinGD, 2018). 

Type Unit Main Engine Aux. Engine 

Manufacturer  WinGD Wartsila 

Model  X62DF 16V34DF 

Power kW 11,925 x 2 8,000 

SFOC kJ/kWh 7,132 7,679 

Load % 40 50 

LHV of BOG kJ/kg 42,900 

Fuel consumption kg/h 1,586 716 

 

By subtracting the fuel consumption obtained from through the above calculation from 

the BOG generation, the amount of BOG supplied to the BOG re-liquefaction system can 

be estimated as 639 kg/h.  

In this study, the basic process configuration set as the single mixed refrigerant (SMR) 

cycle. Figure 1 shows the BOG re-liquefaction process.  

HEX-2
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Phase separator

To LNG tank

R6
VLV-2
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K-6 E-5

R3

R5
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R2 R1
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K-1 E-1
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B4B3 B5B1
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Figure 1. Process flow diagram of BOG re-liquefaction system. 
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2.2 Optimization 

 One of main purpose of this study is to investigate the cooling efficiency of HFO 

refrigerants. To do this, the specific power consumption (SPC), one of the key indicator 

of energy consumption in liquefaction process, is optimized. The SPC can be estimated 

as following Equation (3).  

𝑆𝑃𝐶 =
∑ 𝑊̇

ṁLNG
   (3) 

 where ∑ 𝑊̇ is the total power consumption of the liquefaction system, and ṁLNG is the 

the total mass flow of LNG generated at the rear end of the phase separator. After 

selecting SPC as the objective function for comparative analysis, the optimum point to 

minimize SPC is found in each process. The process variables are the pressure ratio of 

the compressors (K-1 to K-4), expansion pressure at the rear end of the valve (R7), 

cooling temperature (R6), and the composition and mass flow rate of the mixed 

refrigerant. The constraint set the minimum temperature difference of the heat exchanger 

to 3 °C to prevent oversizing of heat exchanger and the vapour fraction of compression 

inlet stream to 1 to prevent malfunction of compressors.   

2.3 Environmental assessment 

In this study,  total GWP generation during the lifecycle of an LNG carrier is estimated 

by two parts: (1) GWP caused by the disposal of refrigerants (GWP𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙) after life cycle 

of the ship and (2) GWP caused by CO2 emission for power generation (GWP𝐶𝑂2). The 

lifecycle of an LNG carrier is assumed to be 20 years. The GWP𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙  is the GWP 

generation from a disposal of refrigerants after lifecycle of the ship. Equation (4) shows 

GWP value due to the disposal of the refrigerants.  

𝐺𝑊𝑃disposal = 𝐺𝑊𝑃 ∙ V𝑟𝑒−𝑙𝑖𝑞 ∙ 𝜌mr ∙ fdisposal  (4) 

where GWP𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 is the GWP generation due to the disposal of refrigerants, 𝐺𝑊𝑃 is 

the value of the global warming potential of the mixed refrigerants,  V𝑟𝑒−𝑙𝑖𝑞  is the 

inventory of the re-liquefaction system, and fdisposal is the percent of refrigerant disposed 

and assumed 30% for medium and large commercial refrigeration (U.S. EPA, 2014). To 

estimate the inventory of the refrigeration in the system (V𝑟𝑒−𝑙𝑖𝑞), Equation (5) can be 

used. 

V𝑟𝑒−𝑙𝑖𝑞 = 𝑉𝐻𝐸𝑋 ∙ 𝜌mr ∙ 𝑓   (5) 

where 𝑉𝐻𝐸𝑋 is the volume of the heat exchanger and estimated by using ASPEM EDR 

V10 as the heat exchanger simulation program. 𝜌mr is the density of the mixed refrigerant. 

𝑓 is the factor to estimate total amount of refrigerant from inventory of the heat exchanger 

and is assumed to be 2.38. 

The 𝐺𝑊𝑃CO2 is the GWP generation due to CO2 emission for power supply to the re-

liquefaction system in per year, and it can be estimated by Equation (6) (Trozzi, 2010). 

𝐺𝑊𝑃CO2 = 𝑃𝑒  ∙ EF  (6) 

where 𝑃𝑒   is the power consumed in the re-liquefaction process and EF is the carbon 

emission factor of the fuel. It refers to the amount of CO2 generated to produce a unit of 

energy depending on the type of fuel and is assumed as 61.0 for LNG fuel (Australia. 

 T. Yu et al.
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Department of Industry, Science, Energy and Resources, 2017). Availability of the re-

liquefaction process is assumed to be 50% per year.  

3. Results and discussion 

In this section, cases are classified according to the combination of refrigerants. Case 1 

uses the mixture of conventional hydrocarbons. It consists nitrogen (N2), methane (C1), 

ethane (C2), propane (C3), and normal butane (nC4). In case 2, C3 and nC4 are replaced 

with HFO refrigerants: HFO 1234yf, HFO 1234ze, HFO 1233zd. Table 3 shows the 

results of the SPC optimization.  

Table 3. Results of SPC optimization. 

Parameter Unit Case3 Case3 

Composition 

mol% N2 11.1  N2 15.9  

mol% C1 28.2  C1 26.3  

mol% C2 29.5  C2 29.8  

mol% C3 0.0  HFO 1234yf 12.2  

mol% nC4 31.2  HFO 1234ze 2.4  

   HFO 1234zd 13.4  

MR flow rate kg/h 4074 4886 

BOG feed pressure bar 90.33 95.02 

MR compression 

pressure 

inlet bar 3.7 4.3 

outlet bar 22.8 41.8 

BOG temperature after 

HEX 
 -156.8 -156.9 

Total power consumption kW 268.0  272.6  

SPC kWh/kg 0.471 0.479 

In Case 1, the total flow of the MR is 4074 kg/h. The BOG is compressed to 90.33 bar 

and then flow into the heat exchanger and cooled to -156.8 °C and expanded in the valve. 

The total power consumption is 268.0 kWh, and SPC is 0.471 kWh/kg. In Case 2, the 

total flow rate of the MR is 4886 kg/h, and after BOG is compressed 95.02 bar, it is cooled 

down to -156.9 °C. The MR requires compression 41.8 bar, the total power consumption 

is 272.6 kWh, and SPC is 0.479 kWh/kg. As shown in the results, the total power 

consumptions of each case similar. There is only 1.7% difference when replacing C3 and 

nC4 with HFO refrigerants. After the optimization of energy consumption, GWP 

generation is estimated. Table 4 shows the results of GWP estimation.  

Table 4.  GWP generation during the lifecycle. 

Case 𝐺𝑊𝑃disposal 𝐺𝑊𝑃CO2 
Total GWP  

(during life cycle) 

Case1  2,973  217,207  4,347,121  

Case2  1,762  220,936  4,420,473  
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Case 2 has the lower 𝐺𝑊𝑃𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙  compared to Case 1 due to lows GWP values of HFO 

refrigerants. If an HFO refrigerants are used, GWP generated by disposal of refrigerants 

after the lifecycle can be reduced by 40% compared to the hydrocarbon mixture. Although 

𝐺𝑊𝑃𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙  of Case 2 is lower than that of Case 1, the total GWP generation during 

lifecycle is much larger due to 𝐺𝑊𝑃𝐶𝑂2 proportional to energy consumption. This means 

that the use of low GWP materials for refrigerants may not contribute to reduce the GWP 

generation, keeping low SPC is more effective to decrease the annual GWP.  

4. Conclusion 

In this study, we investigate the feasibility of HFO refrigerants in the BOG re-

liquefaction system. We modelled BOG re-liquefaction system and optimized it to 

minimize the specific power consumption of the process. Then, we estimated GWP 

generation during the lifecycle of the ship. As the results, when HFO refrigerants replaces 

hydrocarbon refrigerants, there is no large difference in energy consumption. The 

conventional hydrocarbon mixture has the SPC of 0.471 kg/kWh and the mixture of HFO 

refrigerants and hydrocarbon has 0.479 kWh/kg. However, this small difference effects 

on GWP generation. Although HFO refrigerants generate lower GWP when disposed, it 

has larger GWP value totally due to GWP generation caused by CO2 emission. When 

using HFO refrigerants, 𝐺𝑊𝑃𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙  is 1762 and when using hydrocarbons, it is 2973. 

𝐺𝑊𝑃𝐶𝑂2 is 217,207 and 220,936 in each case. Consequently, total GWP generation is 

4,437,121 in case of HFO refrigerants and 4,420,473 in case of hydrocarbon refrigerants. 

This means that energy consumption has a greater influence on GWP production than 

GWP of refrigerant. 

References 

Aspelund. A, Gundersen. T, Myklebust. J, Nowak. M, Tomasgard. A, An optimization-simulation 

model for a simple LNG process, Comput. Chem. Eng, 34, 1606–1617. 

Austraila. Department of Industry, Science, Energy and Resources, 2017, National greenhouse 

accounts factors. 

EPA, 2014, Direct Fugitive Emissions from Refrigeration, Air conditioning, Fire Supression, and 

Industrial Gases, Environmental Protection Agency, US.  

IGU, 2019, World LNG Report 2019, Internatinal Gas Union.  

IMO, 1999, International Convention for the Prevention of Pollution from Ships MARPOL 73/78: 

The Regulations for the Prevention of Air 

Pollution from Ships (AnnexVI), Internatinal maritme organization, London, UK, 1999. 

IMO, 2016, Marine Environment Protection Committee (MEPC), 70th Session, Internatinal 

maritme organization, London, UK. 

IMO, 2017, Prevention of Air Pollution from Ships, Internatinal maritme organization, London, 

UK. 

Lim. W, Choi. K, Moon.I, 2013, Current Status and Perspectives of Liquefied Natural Gas (LNG) 

Plant Design, Ind. Eng. Chem. Res, 52, 3065-3388. 

Trozzi. C, 2010, Emission Estimate Methodology for Maritime Navigation, T. Consulting, Editor. 

Wartsila, 2019, Wärtsilä 34DF Brochure; Wartsila, Helsinki, Finland. 

WinGD, 2018, Low-Pressure X-DF Engines FAQ, WinGD, Winterthur, Switzerland. 

 T. Yu et al.



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Crude Oil Blending Process Optimization with Precise Consideration 

of Fraction Properties 

ZHENG Wanpenga, GAO Xiaoyong a*, KUI Guofenga, ZUO Xina, ZHU Guiyaoa,XIE Yib  

a Department of Automation, College of information Science and Engineering, China University of 

Petroleum, Beijing 102249, CHINA 
bBeijing pipeline company of national pipeline network group, Beijing 100101,CHINA 

x.gao@cup.edu.cn 

Abstract 

Crude oil blending process is an integral part of the petroleum supply chain, including multiple industrial 

processes such as crude oil distribution, transportation, storage and blending in the production process 

of refinery enterprises. The optimization of crude oil blending process scheduling has high academic and 

industrial application value, and its related research work is currently a hot topic of academic interest. 

However, there are still urgent problems to be solved in the current research work. Crude oil blending 

process not only needs to consider a variety of delivery and distribution of crude oil, but also considers 

the constraint conditions that the blended product meets the production demand. Therefore, based on the 

continuous-time representation, a crude oil blending optimization model that precisely considers the 

properties of the fraction is proposed in this paper. Firstly, the important achievements in the research 

field of crude oil blending process optimization are briefly introduced, and the development trend and 

defects of the current research work are summarized. Subsequently, the MINLP model is described in 

detail. The model especially considers the properties demand and supply demand of mixed products in 

the secondary process. Finally, we verified the effectiveness of the proposed model in solving the actual 

blending formula optimization problem. The simulation results of a real case of a fuel refinery show that 

a product formulation is used to optimize the crude oil blending process, which can effectively improve 

the overall yield of petroleum fractions while meeting the demands of the secondary processing device. 

Keywords: Optimization; Model; Simulation. 

1. Introduction 

Due to the variety of crude oils purchased by most 

refineries, properties of the material exist significantly 

different, while the refinery requires homogeneous and 

stable materials to ensure the quality and yield of the 

subsequent secondary processing process. Therefore, the 

refinery mixes crude oil according to different blending 

formulations in proportion during the crude oil blending 

process, to make the material properties meet the demand 

of the secondary processing device. In the 1980s, to adapt 

to the competitive global market, oil refining enterprises 

began to focus on the adjustment and optimization of 

industrial structure and production process. Crude oil 

blending can improve the quality grade of oil products, and 

then achieve higher economic benefits for refining 

enterprises. Therefore, the research on crude oil blending 

optimization has gradually become the focus of related 

fields. 

In recent years, many achievements have been made in the 

research of crude oil blending optimization. The in-house 

center discretization method is proposed to deal with the 

long-horizon tank blending scheduling problem (Beach et 

al., 2020). The Lagrangean decomposition algorithm is 

used to solve the integration of crude oil scheduling and 

refinery planning (Yang et al., 2020). The operation 

optimization of crude oil blending and intermediate oil 

processing is solved to achieve the collaborative optimization 

of materials processing and product deployment (Li et al., 

2020). With desalination as a separate task, the crude oil 

refinery operation of feeding a single desalination tank to 

multiple crude oil distillation units is studied (Bayu et al., 

2020). The crude oil selection scheduling optimization is 

solved by two-stage stochastic programming (Li et al., 2021). 

Zhao et al. (2017) proposed a modelling method based on 

priority slots for crude oil scheduling with inconsistent 

component concentrations. Castillo et al. (2017) proposed a 

global optimization algorithm to solve a continuous-time 

MINLP blending scheduling model. The algorithm uses 

piecewise McCormick relaxation and normalized multipara-

metric disaggregation to calculate the global optimal estimate. 

Menezes et al. (2017) proposed a quantitative analysis 

method to optimize crude oil blending in oil refining 

enterprises to narrow the decision-making gap between crude 

oil procurement and production scheduling operations. 

Menezes et al. (2019) integrate scheduling operation details 

and time steps into different types of PSE solutions to get 

solutions to industrial problems faster. Franzoi et al. (2018) 

realized the effective optimization of complex process 

systems by means of parameter feedback after data 

coordination calculation. Franzoi et al. (2019) studied the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50181-0 
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factors affecting scheduling production performance and 

proposed a detailed design of a hybrid scheduling and 

processing unit considering flexibility, responsiveness, 

and management capabilities. 

The optimization of the crude oil blending process 

generally has two main points that need to be paid attention 

to: one is a typical scheduling problem, such as stock 

limitation and device processing capacity, and the other is 

the properties of the blended products. During the 

operation of the refinery, the blended product is separated 

by the atmospheric and vacuum distillation unit, and then 

become the material for the secondary processing device. 

Material properties that do not meet the demand of the 

processing devices will bring serious problems, affect the 

production of the factory. For example, for catalytic 

reforming device, when producing BTX, the required 

material is petroleum fraction between 60-145°C intervals. 

When producing high-octane gasoline, the required 

material is petroleum fraction between 80-200°C intervals. 

In addition, the catalytic reforming device has different 

limits on the sulfur content, nitrogen content, heavy metal 

content and molecular structure of the materials when 

producing different pro-ducts. Therefore, according to the 

demands of secondary processing devices, it is valuable to 

consider the properties of petroleum fractions precisely, 

but the current research work is too simple to consider the 

properties of petroleum fractions.  

In this paper, we precisely consider the demand for 

secondary processing devices on the properties of 

materials. Inspired by Mendez's work in the field of 

gasoline blending optimization, based on continuous-time 

representation method, a crude oil blending optimization 

model is proposed considering the yield of blending 

products, sulfur content, nitrogen content, molecular 

structure and other properties, and minimizes the gap 

between the blended product and the desired product as the 

objective function (Mendez et al., 2006). According to an 

actual case, we obtained the results through program 

simulation, and verified that the model can be applied to 

different types of refining enterprises, provide reliable 

blending formula, and ensure that the properties of 

blending products can meet the demands of the secondary 

processing device. 

2. Model description 

In the production process of refining enterprises, different 

secondary processing devices always have different 

demands on the properties of petroleum fractions obtained 

by constant vacuum distillation of blended products. For 

example, catalytic cracking mainly uses heavy distillates 

and residuals as processing materials, while hydrocracking 

mainly uses VGO, CGO and residuals as processing 

materials. There are great differences in the properties of 

these petroleum fractions. In the atmospheric and vacuum 

distillation process, the main influencing factor that 

determines the distribution of petroleum distillates is to 

adjust the yield of crude oil in each fraction interval. In 

addition, high sulfur content will cause catalyst pollution and 

inactivation, affect the quality of petroleum products and 

cause device corrosion, high nitrogen content can cause 

catalyst poisoning and affect the stability of petroleum 

products, heavy metal content (Ni+V) will cause catalyst 

deactivation and bed blockage, the difference in molecular 

structure will affect the production process and the selection 

of catalysts. Therefore, according to the processing demands 

of the secondary processing device, the model not only needs 

to consider the yield of the blended crude oil in each fraction, 

but also needs to consider whether the sulfur content, nitrogen 

content，heavy metal content and molecular structure in the 

blended crude oil meet the demand of the device.  

Before presenting the proposed mathematical models, the 

nomenclature in the model formula is explained as follows: 

Indices 

e –  secondary processing device 

i – crude oil component 

p – CDU device processed product 

t – time slot 

Sets 

I – set of the crude oil component 

P – set of CDU device processed product 

dT  – set of time slots postulated for the sub-interval ending at 

due date d 

Parameters 

d – due dates of product demand  

h – time horizon 

w – fraction temperature 

,p tcor  – correction factor of product p in time slot t 

max
,i pcp ,

min
,i pcp – maximum/minimum concentration of 

component i in product p 

,p dD – demand of product p 

,lp dD , ,cp dD , ,hp dD – demand of light/middle/heavy fraction of 

product p at the end 

,p dd – demand of product p to be satisfied at due date d 

if – constant delivery rate of component i 

max
pfr ,

min
pfr – maximum/minimum flowrate of product p in 

time slot t 

,p tgra  – specific gravity of product p in time slot t 

pin , iin  – initial inventory of product p/component i  

max
pmet , max

pN , max
pS –maximum heavy metal/nitrogen/sulfur 

content specified by device e 

imet , iN , iS – heavy metal/nitrogen/sulfur content of 

component i 
max

,p emst , min
,p emst  – maximum/minimum molecular structure 

(hydrocarbon or gum composition) ratio specified by device 

e 
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imst  – molecular structure ratio of component i 

tn – maximum number of blenders that can be working in 

parallel in time slot t 
max
pV ,

min
pV – maximum/minimum storage capacity of 

product p 
max

iV , min
iV – maximum/minimum storage capacity of 

component i 

,p wvin – ideal yield of product p at temperature w 

lpTEP
, cpTEP

,
 

hpTEP – the initial boiling point of the light/ 

middle/heavy fraction of product p 

pTIBP – the final boiling point of product p 

lpTIBP
, cpTIBP

, hpTIBP  – the final boiling point of the 

light/middle/heavy fraction of product p 
max

,p wtbp , min
,p wtbp – maximum/minimum yield of product p at 

temperature w 

,i wtbp – yield of component i at temperature w 

itbploss – yield loss of component i 

i  –  density of component i 

Variables 

,Ap t – binary variable denoting that product p is blended 

in time slot t 

te – ending time of time slot t 

, ,
I

i p tF – the amount of component i being transferred to 

product p in time slot t 

,
P
p tF – the amount of product p being blended in time slot t 

ts – starting time of time slot t 

,
P
p tV – the amount of product p stored at the end of time slot 

t 

,
I

i tV , ,
I

i tV

– the amount of component i stored at the end/ 

beginning of time slot t 

, ,p w tTBP – yield value of product p at time t, temperature w  

,p iTBP – yield value of product p 

pTEP – the initial boiling point of product p 

The MINLP model we proposed partitions the entire time 

horizon into a predefined number of sub-intervals, the 

length of each sub-interval will depend on the product due 

dates. In addition, the proposed model has the following 

features: 1)Divide the scheduling horizon into multiple 

sub-intervals, and set a set of time slots with unknown time 

and location for each sub-interval; 2) Assuming that the 

flow of components and product is constant throughout the 

scheduling horizon; 3) Final product properties are based 

on a volumetric average and a correction factor computed 

through the proposed iterative process; 4)  A particular 

product demand can be satisfied by one or more periods. 

The constraints and variables of the model are described as 

follows: 

2.1. Composition and material balance constraint 

To ensure that the product p is mixed with the crude oil 

component i of a limited type, the component equation 

constraint is as shown in constraint (1); to meet product 

quality demands and crude oil supply constraints, upper and 

lower limits can be imposed on the component concentration 

of product p, as shown in Constraint (2); to ensure the material 

balance of product p, the constraint of material balance 

equation can be applied, as shown in constraints (3); to ensure 

the material balance of component i, the constraint of material 

balance equation can be applied, as shown in constraints (4) 

and (5). 

, , , , ,I P
i p t p t

i

F F p t=   (1) 

min max
, , , , , , , , ,P I P

i p p t i p t i p p tcp F F cp F i p t    (2) 

, , , , ,P P
p t p p t p dV in F d p t= + −   (3) 

, , , , ,I I
i t i i i pt tV in f F ie t= + −   (4)  

, , , , ,I I
i t i i i p ttV in f F is t

= + −   (5) 

2.2. Device and inventory constraint 

To meet the operating limits of the device, the upper and 

lower limit is imposed on the volume flow of product p, as 

shown in constraint (6); to meet the inventory limit, the upper 

and lower limit constraints are imposed on the quantity of 

product p and component i, as shown in constraint (7), (8) and 

(9); to ensure the balance of the productivity of the CDU 

device, equation constraints are proposed as shown in (10) 

and (11). 

( )

( )

min min

max
,

(1 , )

, ,

p t t p

P
p t p t t

fr e s fr Ap t

F fr e s p t

h −− −

  − 
 (6) 

min max
, , ,p

P
tp pV V V p t    (7) 

min max
, , ,I

i i t iV V V i t    (8) 

min max
, , ,I

i i t iV V V i t


    (9) 

, 1p i i
p

TBP tbploss+ =  (10)  

,,

p

p w

p

TEP

p i
w TIBP

TBP tbp
=

=   (11) 

2.3. Supply constraint 

To meet the total supply-demand of subsequent secondary 

processing process, a lower limit constraint can be imposed 

on the quantity of product p, as shown in Constraint (12); in 

addition, the supply constraints of light fraction, middle 

fraction and heavy fraction processed by CDU device are 

shown in constraints (13), (14) and (15); the demands for 

different fractions must be less than or equal to the total 

demand, as shown in constraint (16). 

, ,
P

p p t p d
t d

ini F D


+   (12) 

, , ,lp w

l

l

p
P
p t p d

t d

TEP

w PpTIB

t F Dbp
=

  (13) 

, , ,

pc

c

pc

p w

P
p t p d

t

TE

w Pd

P

TIB

t F Dbp
 =

  (14) 
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, , ,hp w

h

h

p
P
p t p d

t d

TEP

w PpTIB

t F Dbp
=

  (15)  

, , , ,h c lp d p d p d p dD D D D+ +  (16) 

2.4. Yield and property constraint 

To meet the processing demands, the upper and lower 

limits can be imposed on the product yield, as shown in 

constraint (17); to meet the demand of secondary 

processing device for the properties of materials, the upper 

limits on sulfur content, nitrogen content, and heavy metal 

content (Ni+V) can be imposed, as shown in constraint 

(18), (19) and (20). 
min

, , , ,

max
, ,

,

, , ,

i w
i

p

P I
p w p t i p t

P
p w t

F tbp F

F i p t

tbp

tbp



 


 (17) 

max
, , , , ,, ,I P

i p t p ei
i

p tF F i p tS S   (18) 

max
, , , , , , ,I P

i p t p e ti
i

pF N F i p tN    (19) 

max
, , , , , , ,I P

i p t p
i

ti e pF met F i p tmet    (20)  

In particular, the distribution of sulfur, nitrogen and heavy 

metal elements is similar: with the increase of boiling point, 

their content will increase, mainly concentrated in residual 

oil. Therefore, sulfur content, nitrogen content and heavy 

metal content in different fractions can be estimated 

roughly according to the material balance equation and 

analytical test results. 

2.5. Set of molecular structure constraints  

To meet the production needs and device limitations of the 

secondary processing process, the upper and lower limits 

can be imposed on the molecular structure of the product, 

as shown in constraints (21) and (22). 
min

, , , , , ,

max
, ,

,

, , ,

P I I
p e p pt i p t i p t

P
p e p t

i t
i

F mst F F

F i p t

mst cor

mst

+

 


 (21) 

,

, ,

, ,

,

, , = , ,,
i

i
i p t

i
I

i p t
I I

p

i p t i p
i

t

t

mst F

m icor
gra

st F F p t



+


  (22) 

In particular, for light fraction, middle fraction and heavy 

fraction, the molecular structure constraints are different. 

For light fraction, the main molecular structure constraints 

include the ratio of alkanes, cycloalkanes and aromatic 

hydrocarbons; for middle fraction, the constraints include 

the ratio of alkanes, cycloalkanes, aromatic hydrocarbons 

and alkenes; for heavy fraction, the constraints include the 

ratio of saturated hydrocarbons, aromatic hydrocarbons 

and gums. Since the crude oil distillation process is purely 

physical, the molecular structure of the product depends on 

the concentration of the crude oil in the blending process. 

For the secondary processing process, molecular structure 

constraints are necessary, which can effectively guarantee 

the stable operation of processing devices and improve 

efficiency and profitability. 

The molecular structure constraint was first proposed in 

the relevant research on crude oil blending optimization. 

Although the current constraint still needs to be 

compensated and corrected, the modified result can still 

ensure that the product properties of fractions can meet the 

needs of secondary processing devices, which is of great 

significance. 

2.6. Set of time slot timing constraints 

To allow more flexible solutions and avoid overlapping time 

slots, correct order and sequence between postulated time 

slots must be established through the next set of constraints. 

Time slot duration constraint is shown in constraint (23); time 

slot sequencing constraint is shown in constraint (24); sub-

interval bounds constraint is shown in constraint (25) and (26); 

time slot assignment constraint is shown in constraint (27). 

, ,pt
p

t te As h t−    
(23) 

( 1) ,t te s t+   (24) 

1,ts d t −   (25) 

,te d t   (26)  

,( 1) , , ( , 1)p t t p t d
p p

A n A t t T+   +    
(27) 

2.7. Objective function 

While satisfying all the above constraints, the objective 

function of the optimization model is to minimize the gap 

between the blended crude oil yield of each fraction and the 

expected ideal crude oil yield, as shown in equation (28). 

, ,

,

min
p w p w

w p w

tbp vin

vin

−


）（
 (28) 

In particular, the expected ideal yield
,p wvin  is the product 

optimal value obtained under a certain operating mode 

assuming that the refinery has sufficient reserves for each 

type of crude oil, and the inventory capacity and processing 

capacity of the device can meet the demands. But in reality, 

due to inventory, devices and other factors, the yield of ideal 

products is impossible to achieve.  

3. Simulation case 

In order to verify the effectiveness and stability of the model 

in solving practical problems, we use a set of real fuel-based 

refinery devices data for simulation, the initial product is p. 

The production materials of the fuel-based refinery device 

come from the petroleum distillate separated from the CDU 

device: the material of catalytic reforming unit is naphtha and 

gasoline distillate in the range of 80-200℃; the material of 

catalytic cracking unit is heavy distillate and residual 

distillate in the range of 450-530 ℃ ; the material of 

hydrocracking unit is CGO distillate and VGO distillate in the 

range of 200-450℃ ; the delayed coking unit the vacuum 

residuum fraction above 530℃. The simulation device set 

includes ten storage tanks, three blending tanks, one crude oil 

distillation unit, one catalytic reforming unit, one catalytic 

cracking unit, one hydrocracking unit, one delayed coking 

unit. The simulation components and product data set include 

ten crude oil components and two products. An illustrative 

view of the set of simulation devices is shown in Figure 1. 
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The yield of each component and product is divided into 

23 interval ranges according to actual production needs. In 

the simulation process, we consider two real production 

situations, the first situation is that the process plan is 

mainly used to produce gasoline, and the by-product is 

liquefied petroleum gas, petroleum coke, etc., the 

petroleum fraction product is p1 at this time. The second 

situation is the process plan mainly produces diesel, with 

by-products such as gasoline, petroleum coke, etc., and the 

petroleum distillate product currently is p2.  

 

Fig.1. The illustrative view of the fuel-based refinery device 

According to the optimization model proposed above, the 

two production situations can be expressed as minimizing 

the yield gap between the actual product and the ideal 

product in the objective function on the premise of 

satisfying the constraint (1-25). In order to better illustrate 

the results, we selected three optimization models 

proposed by research work related to the optimization of 

crude oil blending process between 2018 and 2021, and 

simulated and solved the above case. It should be noted 

that for the selected model, usually, only a few types of 

crude oil participate in the blending process. Therefore, 

increasing the types of crude oil participating in the 

blending process will have a huge negative impact on the 

solution results. In order to ensure the validity of the 

solution results, we performed relaxation and 

disaggregation on some constraints of the selection model. 

The solution results are compared with the model proposed 

in this paper. Table.1. details the product yield in a 
specific distillation interval according to the solution 

results.  

Table.1. Product yield in specific distillation interval 

Product name p p* p(m) p(m1) p(m2) p(m3) 

The first situation: mainly produce gasoline 

80-100℃ interval 2.97  4.95  4.41  4.12  3.62  4.00  

100-130℃ interval 4.65  6.25  5.85  5.56  5.18  5.47  

130-160℃ interval 4.73  6.00  5.76  5.42  5.16  5.51  

160-180℃ interval 3.55  3.84  3.78  3.72  3.64  3.66  

180-200℃ interval 2.97  3.09  3.09  3.04  3.01  3.04  

80-200℃ interval 18.87 24.13 22.89  21.86  20.60  21.68  

The second situation:  mainly produce diesel 

350-365℃ interval 2.70  2.53  2.60  2.60  2.52  2.68  

365-395℃ interval 4.35  4.65  4.46  4.52  4.46  4.47  

395-425℃ interval 4.94  5.28  5.17  5.03  5.09  4.98  

425-460℃ interval 4.28  4.89  4.72  4.43  4.57  4.38  

460-475℃ interval 2.43  2.65  2.58  2.46  2.47  2.49  

475-500℃ interval 3.49  3.62  3.62  3.59  3.54  3.57  

350-500℃ interval 22.19 23.61  23.14  22.61  22.65  22.57  

(p - Initial blended product; p* - Blended product with ideal yield; 

p(m) - Blended product optimized by the model proposed in this 

paper; p(m1), p(m2), p(m3) - Blended products were optimized by 

the models proposed in the other three papers) 

Solved by the simulation program, the gap of gasoline 

fraction yield between p(m) and p* is 0.23, and the yield of 

the fraction used to produce gasoline is increased by 4.02% 

compared to the original product p; the gap of diesel fraction 

yield between p(m) and p* is 0.62, and the yield of the fraction 

used to produce diesel is increased by 0.95% compared to the 

yield of the original product p. Compared to the model 

proposed in this paper, the blended products obtained by the 

other three optimization models have a larger gap with the 

ideal product, and the target fractional yield is less improved 

than the initial product: the gap of gasoline fraction yield 

between p(m1), p(m2), p(m3) and p* is 2.27, 3.52, 2.45, and 

the yield of the fraction used to produce gasoline is increased 

by 2.99%, 1.73%, 2.82% compared to the original product p; 

the gap of diesel fraction yield between p(m1), p(m2), p(m3) 

and p* is 1.00, 0.94, 1.04, and the yield of the fraction used 

to produce diesel is increased by 0.42%, 0.46%, 0.38% 

compared to the yield of the original product p. The 

comparison between the p(m1), p(m2), p(m3) and p(m) is 

shown in Figure 2 and Figure 3.  

 

Figure.2. Simulation result comparison of  the first situation 

 

Figure.3. Simulation result comparison of the second situation 



                                                                                          

According to the comparison of simulation results, the 

optimization model proposed by us can effectively reduce 

the yield gap between the blended product and the 

expected ideal product, and ensure that the properties of 

the blended product are stable. And in different cases, our 

model improved the yield of the blended product in the 

ideal fraction, effectively optimized the product 

distribution of the blended product after being processed 

by the CDU unit, and then met the material requirements 

of the subsequent secondary processing unit. Combined 

with the previous simulation results, we verified the 

effectiveness of the proposed model in solving the actual 

blending formula optimization problem, and can reduce 

the fluctuation of distillate properties, improve the yield of 

distillate required by the secondary processing unit, greatly 

improve the production efficiency of oil refining 

enterprises, and ensure the stable operation of production 

and processing.  

4. Conclusions 

This paper first briefly summarizes the main research 

results and progress in the field of crude oil blending 

optimization in recent years. Subsequently, this paper 

considers the constraints of typical scheduling issues such 

as material balance, device constraints, and inventory 

constraints in the crude oil blending process. On this basis, 

it also considers the product yield, sulfur content, nitrogen 

content, heavy metal content and molecular structure 

constraints. These constraints are closely related to the 

secondary processing process. A MINLP model based on 

continuous-time representation is described in detail 

through constraints and variables. Finally, through 

simulation, this paper verifies that the model has certain 

advantages in maximizing the yield of the target 

fractionation interval. It can provide refiners with more 

accurate blending plans, optimize blended crude oil 

formulas, and meet the demands of subsequent secondary 

processing devices. However, current research work also 

has shortcomings. The model we proposed does not 

consider the economic benefits of the entire blending 

process, which leads to the higher cost of the crude oil 

blending formula. In the next stage, we will consider the 

multi-objective optimization of the economic benefits and 

properties of the crude oil blending process. 
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Abstract 

The current dyeing process uses steam to heat the fresh water used for reactive dyeing. 

After the dyeing process, the wastewater is forcibly cooled and discharged for biological 

treatment. A large amount of energy is consumed for heating the fresh water and cooling 

the wastewater owing to the absence of a heat recovery process. This study suggests a 

novel design of optimum heat exchanger networks for textile dyeing process to maximize 

wastewater heat recovery efficiency. First, a process model was developed by integrating 

a heat exchanger with a heat pump. The model was designed to recover high-temperature 

and low-temperature wastewater through a heat exchanger and a heat pump, respectively. 

Second, the heat exchanger network of the developed process model was retrofitted based 

on pinch analysis to reduce operating costs. From the simulation results, the hot and cold 

utility consumption of the proposed model was quantitatively analyzed. Finally, a techno-

economic analysis (TEA) was conducted to confirm the appropriateness of the proposed 

process model. The total annualized cost (TAC), based on the equivalent annual cost and 

the total product cost, was determined for both the current and potential future economies. 

As a result, the TAC was reduced by 43.2 %, and the economic efficiency of the proposed 

energy-saving measures demonstrates a payback period (PBP) of up to 0.65 y. 

Keywords: Textile dyeing process; Wastewater heat recovery; Modeling, Analysis, and 

Simulation; Heat integration; Techno-economic analysis. 

1. Introduction 

The exhaust dyeing method is commonly used in the textile dyeing process for increased 

productivity. Here, a reactive dye is dissolved in a solution containing cellulose fibers, 

and is fixed to the surface of the fiber. The advantage of this method is that a large amount 

of fibers can be dyed over a short period. However, the fresh water must be heated for 

reactive dyeing, and the wastewater must be forcibly cooled for biological treatment after 

the dyeing process, resulting in high operating costs. To reduce the high operating costs, 

active research has been undertaken recently to recover the heat from the large amount of 

wastewater discharged and reuse it in the dyeing process. This is because the discharged 

wastewater has a significant amount of heat that can be recycled, so if it is used to preheat 

fresh water, operating costs for heating fresh water and cooling wastewater can be 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50182-2 
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reduced. Rakib et al. (2017) reduced the operating costs of 47,100 $/y by installing a 

counter-flow heat exchanger to utilize the wastewater heat during the dyeing process. 

They confirmed the feasibility of installing a heat exchanger through a short payback 

period (PBP) of approximately 11 months. Pulat et al. (2009) reduced the total annualized 

cost (TAC) by 423,837 $/y by designing a system that recovered the heat of the collected 

wastewater. They confirmed the validity of the wastewater heat recovery (WWHR) 

system through a PBP of approximately four months. 

Despite the contributions of conventional WWHR systems to increase energy efficiency, 

several challenges remain. First, because the textile industry discharges wastewater at 

different temperatures over time, the energy efficiency of the WWHR system varies 

depending on how the wastewater heat is recovered. However, few studies have 

considered the various method of recovering heat from wastewater. Second, the 

conventionally developed WWHR system is not optimally configured, so the energy 

recovery efficiency cannot be maximized. Thus, heat recovery from wastewater in 

different ways and maximizing the energy recovery efficiency by optimally configuring 

a WWHR system is crucial. 

To address these challenges, we propose a novel design of optimum heat exchanger 

networks for textile dyeing process to maximize WWHR efficiency. First, to improve the 

energy efficiency of the WWHR system, a process model was designed to recover high-

temperature wastewater through a heat exchanger and low-temperature wastewater 

through a heat pump. Second, to maximize the energy efficiency of the wastewater, the 

heat exchanger network of the developed process model was modified through pinch 

analysis. Finally, techno-economic analysis (TEA) was conducted to confirm the 

appropriateness of the proposed process.  

The novelty of this study is as follows. First, the WWHR system integrated a heat pump 

with a heat exchanger is proposed for the first time to improve heat recovery efficiency. 

Second, since the developed WWHR system was modified by pinch analysis to maximize 

heat recovery efficiency, this study can contribute to economic and environmental 

improvement in the textile dyeing industry. 

2. Process description 

Currently, the textile industry is largely classified into the pre-treatment, dyeing, and 

after-treatment processes to improve the quality of the final dyed products. First, in the 

pre-treatment process composed of bleaching, washing, and acidification, bleaching 

agents are used to remove impurities in the fibers that interfere with dyeing and to make 

the fibers white. Second, in the dyeing process, the fibers whose impurities have been 

removed are dyed. Finally, in the after-treatment process, consisting of cold rinsing, 

washing, hot rinsing, and finishing, reactive dyes and residues in the dyed fabric are 

removed. Table 1 shows the operation time, discharged wastewater temperature, and flow 

rate during each stage of the textile industry. 

Table 1. The operation time, temperature and flow rate during each stage of the discharged 

wastewater 

 Process Process time [min] Temperature [℃] Mass flow rate [kg/h] 

1 Bleaching 30 96 2,900 

2 Washing 20 96 4,350 

3 Acidification 10 50 8,700 
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4 Dyeing 60 96 1,450 

5 Cold rinsing 10 30 8,700 

6 Washing 20 90 4,350 

7 Hot rinsing 10 70 8,700 

8 Finishing 20 40 4,350 

The dyeing process was performed in several steps. First, the fresh water was heated from 

18 °C to 60 °C before the dyeing process, and then with reactive dyes, additives, and 

fabrics, it was heated to 96 °C to operate the dyeing process. Finally, because the 

wastewater discharged at each stage contains chemicals such as reactive dyes, discharging 

without additional treatment can have a fatal impact on the environment. Therefore, to 

treat the dyeing wastewater discharged from each stage, it was cooled to 40 °C. 

3. Methodology 

3.1. Development of the process model 

In this study, Aspen Plus V 11.0 was used to model a process model of the WWHR system. 

In the process model, the Peng-Robinson equation was used as the thermodynamic model 

to consider the equilibrium among the various mixed substances in dyeing wastewater.  

 

Figure 1. Process model of the WWHR system 

Figure 1 presents the process model of the WWHR system. To recover the heat from the 

wastewater discharged at different temperatures and flow rates over time efficiently, a 

heat pump was used when the temperature of the wastewater was below 30 °C. Above 

this temperature, the heat was recovered through a heat exchanger (Kemp, 2007). Finally, 

to satisfy the target temperature of wastewater and fresh water, they were passed through 

a cooler and a heater, respectively. 

3.2. Model modification by pinch analysis 

The process model of the WWHR system was modified by pinch analysis to increase its 

energy efficiency. This method is used to modify the configuration of the heat exchanger 

network (HEN) to increase the efficiency of the heat recovery process. The more the 

energy recovery from the heat exchange between the streams, the lower the energy 

consumption, thus lowering the operating costs. However, the capital cost of the heat 

recovery process increases with increasing the heat exchange area to exchange more heat; 

thus, there is a trade-off relationship between the capital cost and the operating cost. 

Therefore, it is crucial to apply the supertargeting method that derives the targets of 
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designing a cost-optimal heat recovery process with improved energy efficiency to pinch 

analysis.  

In this study, first, after deriving the cost-optimal pinch point through supertargeting, the 

energy target, heat transfer area target, the number of units target, and cost targets for the 

process modification were obtained. Then, the process was modified according to the 

targets by re-sequencing and re-piping existing heat exchangers, installing a new heat 

exchanger, and adding a stream split. 

3.3. Techno-economic analysis 

In this section, the TEA was conducted to confirm the feasibility of the proposed WWHR 

system through pinch analysis. The TAC and PBP of the proposed WWHR system were 

calculated by considering both the capital cost and the operating costs. The equations for 

the TAC and PBP are as follows (Eqs. 1-3) (Lim et al., 2021):  

𝑇𝐴𝐶 = 𝐴𝐹 × 𝐶𝐶 + 𝑂𝐶 (1) 

𝐴𝐹 =
(
𝑅𝑂𝑅
100

) × (1 +
𝑅𝑂𝑅
100

)
𝑃𝐿

(1 +
𝑅𝑂𝑅
100

)
𝑃𝐿

− 1

 (2) 

𝑃𝐵𝑃 =
𝐶𝐶

𝑂𝐶 − 𝑂𝐶0
 (3) 

where 𝐶𝐶  and 𝑂𝐶  represent the capital cost and operating cost of WWHR system, 

respectively. 𝐴𝐹, 𝑅𝑂𝑅, and 𝑃𝐿 represent the annualization factor, rate of return, and plant 

life, respectively. This study assumed a 𝑅𝑂𝑅 of 10 % and a 𝑃𝐿 of 5 years. 𝑂𝐶0 represents 

the operating cost of the conventional dyeing process in the textile industry without a 

WWHR system.  

4. Results and discussion 

 

Figure 2. The cost targets of the HEN 

according to ∆Tmin 

Table 2. Model modification targets at cost-optimal 

∆Tmin 

Targets Units Value 

Heat exchanger area m2 25.9 

The number of units - 4 

Hot utility kJ/h 3,916,942 

Cold utility kJ/h - 

Capital cost $/y 217,569 

Operating cost $/y 320,285 

TAC $/y 377,679 
 

Figure 2 shows the cost targets of the HEN of the WWHR system process model 

according to ∆Tmin. First, the operating cost when ∆Tmin of the HEN falls below 21.46 ℃ 



does not change by the threshold problem requiring only hot utilities because the heat 

exchange between the streams is sufficient. However, if ∆Tmin is higher than 21.46 ℃, 

the operating cost increases because both hot and cold utilities are required. Therefore, 

when ∆Tmin falls below 21.46 ℃, the operating cost does not change, but it increases 

when ∆Tmin is higher than 21.46 ℃. Second, the capital cost of the HEN increases as 

∆Tmin decreases. If ∆Tmin becomes higher than 21.46 ℃, the capital cost of the HEN also 

increases because both the heater and the cooler are required. Therefore, the cost-optimal 

∆Tmin of the HEN of the proposed process model was 21.46 ℃. Table 2 lists the model 

modification targets at the cost-optimal ∆Tmin.  

 

Figure 3. Grid diagram – HEN of the WWHR 

system before modification 

 

Figure 4. Grid diagram – HEN of the WWHR 

system after modification 

Figure 3 shows the grid diagram – HEN of the WWHR system before modification, and 

Fig. 4 shows the grid diagram – HEN of the WWHR system after modification according 

to Table 2. 

 

Figure 5. Modified process model of the WWHR system 

Table 3. The specification of the modified process model of the WWHR system 

  Units Value 

Heat exchanger area of HEN m2 27.3 

The number of units of HEN - 6 

Hot utility of HEN kJ/h 3,916,942 
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Cold utility of HEN kJ/h - 

Total capital cost $ 217,569 

Total operating cost $/y 320,285 

TAC $/y 377,679 

Figure 5 shows the modified process model of the WWHR system, and Table 3 shows 

the specifications of the HEN modification results. As a result, the TAC of the suggested 

WWHR system was $ 377,679, which reduced the TAC by 43.2 % compared to the 

conventional textile industry. Also, the PBP of the proposed WWHR system was 0.65 y, 

confirming the feasibility in applying the WWHR system to the textile industry. 

5. Conclusions 

In this study, we propose a novel design of an optimum WWHR system in the textile 

industry to maximize energy efficiency. This study makes two major contributions to the 

literature. First, this work is the first attempt to integrate a heat exchanger with a heat 

pump to effectively recover wastewater heat. Second, a pinch approach is suggested to 

maximize the energy efficiency of the WWHR system. Through this novel 2-step 

approach, the optimum WWHR system reduced the TAC by 43.2 % compared to the 

conventional textile industry without the WWHR system, and the PBP was 0.65 y 

confirming the validity of the proposed system. This study provides a guideline for future 

WWHR system designs. 
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Abstract 

The physical properties of the crystal are affected by the crystal morphology, and the 

morphology will be affected by the crystallization environment. To obtain the expected 

physical properties, it is necessary to study the relationship between crystal growth 

conditions and crystal morphology. As snowflake is rich in crystal morphology, it is very 

suitable for studying this relationship. Crystal growth kinetics can be used to explore the 

mechanism of how the crystal growth conditions influence on crystal morphology. 

However, due to the impact of growth conditions in both time and space coordinates, it is 

difficult to identify the kinetic parameters of the crystallization process. In this work, the 

dynamic equation of snowflake growth was established through data regression, and the 

relationship between snowflake morphology and snowflake growth conditions was 

studied. In general, cellular automata (CA) is used to simulate the growth process of 

snowflakes, and the data of whether different positions are in crystallization state and the 

change of water vapor density with time are extracted, so as to avoid the interference of 

complex growth conditions on the growth data. Then, data are regressed from the 

perspective of the reaction-diffusion system, and the crystallization kinetics in the form 

of partial differential equation (PDE) related to time and space is obtained. This equation 

is solved by finite difference method to simulate the complex snowflake morphology 

under different conditions, to analyse the influence of different reaction rate and diffusion 

rate on the crystal morphology. This work provides a new way to study how crystal 

morphology is impacted by process parameters, which could be a reference for the 

planning of crystallization experiments to obtain the specified crystal morphology.  

Keywords: Crystal morphology; Reaction-diffusion system; Crystal growth kinetics; 

Finite difference method. 

1. Introduction 

Crystallization is an important unit operation in the chemical industry. Different growth 

conditions during the crystallization process, such as solvent, temperature, 

supersaturation, etc., will impact the crystal morphology, which is an important factor to 

determine the physical properties of crystals, including melting point, solubility and 

dissolution rate (Variankaval et al., 2008). These changes not only affect subsequent 

process operations, but also cause differences in crystal quality. Therefore, how to prepare 

crystals with specific morphology is becoming more and more important in academia and 

industry (Yang and Han, 2016). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50183-4 
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Crystal growth kinetics can be employed to predict the crystal morphology by its growth 

conditions, so it is very helpful for exploring methods to control the morphology of 

crystals. However, it is difficult to find a suitable growth kinetics equation to describe it. 

With the development of computer technology and data-based methods, it provides a new 

way to find the kinetic equation for crystal growth, bypassing the complicated mechanism. 

Nonlinear dynamic partial differential equation function identification (PDE-FIND) is 

such a method proposed by Samuel H. Rudy in 2017. It finds the governing partial 

differential equation(s) of a given system by sparse regression of time series 

measurements in spatial domain and has been successfully applied to reaction-diffusion 

systems. From the perspective of systems engineering, the crystallization process can be 

regarded as a generalized reaction-diffusion system, as the process of solute attaching to 

the surface of the growing crystal and changing phase is considered as a reaction, and the 

process of solute moving randomly to the surface of crystal is treated as diffusion. Both 

are important factors affecting the crystal morphology (Wang et al., 2013). Therefore, 

this method can be used to explore the crystallization kinetic equation. 

Snowflakes are ice crystals that grow from water vapor. They form a large number of 

exquisite, symmetrical, and complex patterns in atmosphere, with rich crystal 

morphologies (Libbrecht, 2017). At the same time, it is almost only affected by the 

density of water vapor in the atmosphere. Therefore, snowflake is a good research object 

for exploring crystallization conditions and crystal morphology. In order to obtain the 

crystallization kinetic equation, it is necessary to obtain the dynamic information of solid-

liquid two phases, especially the accurate measurement of water vapor density data. 

However, there are several difficulties in obtaining the accurate real-time data because of 

the error of the crystal growth in the experiment, and the challenges of identifying the 

crystallinity, concentration and density in the solution from the actual images. With the 

fast development of computer technology, crystallization process can be simulated with 

appropriate computational tools. Therefore, it is possible to study and fit the kinetic 

equation based on simulated crystallization data. In our previous work, the snowflake 

growth process was simulated by cellular automata (CA) (Liu et al., 2020). 

In this work, the relationship between crystal growth conditions and crystal morphology, 

especially the effects of diffusion coefficient and reaction coefficient on crystal 

morphology, is discussed by establishing a kinetic equation, which is obtained from the 

process data of snowflake growth. The paper is organized as follows: in the Section 2, 

how to obtain water vapor density data through simulated images is introduced, including 

a CA method for simulating an ideal snowflake formation system. Then, PDE-FIND 

algorithm is used to find the dynamic equation of this process, which is put into the 

Section 3. In the Section 4, the kinetic equation is divided into two parts: diffusion and 

reaction, and the effects of each part on snowflake morphology are discussed respectively. 

The last part is a summary of the full work. 

2. Data for snowflake formation process: CA simulation 

For the snowflake formation process, its morphology is closely related to the water vapor 

density. If the water vapor density during the formation of snowflakes is recorded as an 

image, a series of real images of crystal growth process can be used as data for studying 

crystal crystallization kinetics. However, it is still hard to experimentally obtain such 

images in time series with the required quality for model establishment according to 

literatures. Here, images of snowflake growth under ideal conditions simulated by CA 

were chosen as the substitute for the real picture of snowflake growth. 
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First of all, in order to establish the model, the ideal system is framed by selecting fewer 

variables and parameters for research. The system is assumed with a constant temperature 

and unaffected by impurities. Without considering the influence of stirring and the 

external environment of the crystallizer on the crystallization process and crystal 

dissolution, the ideal process of crystallization of water vapor into snowflakes is 

simulated. According to the conservation of mass and classical diffusion theory, the rules 

of CA are established. The model mainly consists of two variables, water vapor density 

𝛼  and three-dimensional increment 𝛽 . References for specific simulation methods is 

available in the work of Liu (2020) et al. . Here, the model parameters 𝛼 = 0.4 and 𝛽 =
0 are selected, and the result is shown in Fig.1. 

     
N=0 N=975 N=1950 N=2925 N=3900 

Fig.1. Simulated time series of snowflake growth by CA, where water vapor density 

α = 0.4 and three-dimensional increment β = 0. N represents different simulation time 

steps. 

Matlab is used to encode and integrate the data. By identifying the grey value of each 

point in the simulated image, the water vapor density and crystallization state are obtained. 

Therefore, an image can be converted into a two-dimensional data matrix, in which each 

element of the matrix corresponds to one pixel, and a large three-dimensional array is 

obtained from a series of images with equal time intervals. In order to show the snowflake 

growth mechanism better and remove the influence of the background on PDE 

recognition, only the 80 × 80 pixel area in the centre of images are identified, and the 

images here are 100 images with 10 time step interval. 

3. The dynamic equation of snowflake formation based on data: the 
establishment of partial differential equations 

In order to obtain the dynamical equations of the snowflake reaction-diffusion system, 

the PDE-FIND algorithm proposed by Rudy et al. is applied to obtain the partial 

differential equations of time and space. For this algorithm program, the data at each 

position in the time series are collected and numerically differentiated, and then the data 

are combined into a large matrix, and PDE candidates are also combined. Specific 

calculation methods and mathematical details are in Rudy 's work. The data in the three-

dimensional array obtained in the second part are imported into the PDE-FIND algorithm 

program and got the PDEs as follows. 

𝑑𝑛

𝑑𝑡
= 𝑎1𝑛3 + 𝑏1𝑛2 + 𝑐1𝑛 + 𝑑1 + (𝑎2𝑛3 + 𝑏2𝑛2 + 𝑐2𝑛 + 𝑑2)(

𝜕𝑛

𝜕𝑥
+

𝜕𝑛

𝜕𝑦
) +

(𝑎3𝑛3 + 𝑏3𝑛2 + 𝑐3𝑛 + 𝑑3)(
𝜕2𝑛

𝜕𝑥2 +
𝜕2𝑛

𝜕𝑦2) + (𝑎4𝑛3 + 𝑏4𝑛2 + 𝑐4𝑛 + 𝑑4)(
𝜕2𝑛

𝜕𝑥𝜕𝑦
)  

(1) 

𝑎1 = 1.3 × 10−3  𝑎2 = −9.2 × 10−2  𝑎3 = 8.4 × 10−2  𝑎4 = 3.7 × 10−2  

𝑏1 = 1.5 × 10−3 𝑏2 = 2.0 × 10−2 𝑏3 = −2.0 × 10−2 𝑏4 = −1.2 × 10−2 
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𝑐1 = −1.5 × 10−3 𝑐2 = 7.3 × 10−2 𝑐3 = −7.6 × 10−2 𝑐4 = −2.5 × 10−2 

𝑑1 = 0 𝑑2 = 5.6 × 10−6 𝑑3 = −2.8 × 10−6 𝑑4 = −4.2 × 10−6 

The finite difference (FD) method is used to discretize and approximate the partial 

differential term. For the Laplace operator, a five-point difference scheme is adopted, and 

forward difference method is adopted for the rest.  The specific difference format is shown 

in the Eq.(2-5). The time interval 𝜃 is 0.01, and the space interval ℎ is 0.5. The simulation 

results are shown in Fig.2. 

𝑑𝑛

𝑑𝑡
=

n(𝑖,𝑗)𝑡+1−n(𝑖,𝑗)𝑡

𝜃
  (2) 

𝜕𝑛

𝜕𝑥
+

𝜕𝑛

𝜕𝑦
=

(n(𝑖−1,𝑗)𝑡−n(𝑖+1,𝑗)𝑡+n(𝑖,𝑗−1)𝑡−n(𝑖,𝑗+1)𝑡)

2ℎ
  (3) 

𝜕2𝑛

𝜕𝑥2 +
𝜕2𝑛

𝜕𝑦2 =
1

ℎ2 (n(𝑖 − 1, 𝑗)𝑡 + n(𝑖 + 1, 𝑗)𝑡 + n(𝑖, 𝑗 − 1)𝑡 + n(𝑖, 𝑗 + 1)𝑡 −  

4n(𝑖, 𝑗)𝑡)  

(4) 

𝜕2𝑛

𝜕𝑥𝜕𝑦
=

1

ℎ2 (n(𝑖 − 1, 𝑗 − 1)𝑡 + n(𝑖 + 1, 𝑗 + 1)𝑡 + n(𝑖 + 1, 𝑗 − 1)𝑡 +  

n(𝑖 − 1, 𝑗 + 1)𝑡 − 4n(𝑖, 𝑗)𝑡)  

(5) 

     
a b1: N=100 b2: N=200 b3: N=300 b4: N=500 

Fig.2. Simulated time series of snowflake growth by FD, where water vapor density α =
0.4 and three-dimensional increment β = 0. N represents different simulation time 

steps. a: compare the pictures in Figure 1 and Figure 2 when the time step is 3900. b: 

Simulation results at different time steps. 

It can be seen that the simulation result in Fig.2(b) is similar to those of CA method in 

Fig.1. Therefore, the equation is considered to be the kinetic equation of snowflake crystal 

growth when the water vapor density is 0.4. 

4. The influence of process parameters on snowflakes morphology: from the 
perspective of the reaction-diffusion system 

From a mathematical point of view, the reaction-diffusion system can be described by the 

following equation: 

𝑑𝑥

𝑑𝑡
= ∇2𝑥 + 𝐹(𝑥)  (6) 
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According to Eq.(6), the position-independent part in Eq.(1) is regarded as the reaction 

term denoted by 𝑔(𝑛), and the position-related part is regarded as the diffusion term 

denoted by 𝑓(𝑛). Then 𝑓(𝑛) and 𝑔(𝑛) are as Eq.(7) and Eq.(8), respectively. 

𝑓(𝑛) = (𝑎2𝑛3 + 𝑏1𝑛2 + 𝑐1𝑛 + 𝑑1)(
𝜕𝑛

𝜕𝑥
+

𝜕𝑛

𝜕𝑦
) + (𝑎3𝑛3 + 𝑏1𝑛2 + 𝑐1𝑛 +

                𝑑1)(
𝜕2𝑛

𝜕𝑥2 +
𝜕2𝑛

𝜕𝑦2) + (𝑎4𝑛3 + 𝑏1𝑛2 + 𝑐1𝑛 + 𝑑1)(
𝜕2𝑛

𝜕𝑥𝜕𝑦
)  

(7) 

𝑔(𝑛) = 𝑎1𝑛3 + 𝑏1𝑛2 + 𝑐1𝑛 + 𝑑1  (8) 

4.1. The influence of reaction parameters on the morphology of snowflakes 

The reaction related terms were multiplied by 0.9 and 1.1 respectively, and simulated by 

the finite difference method to study the effect of the change of the reaction coefficient 

on the morphology of the snowflake. The simulation results are shown in Fig.3 and Fig.4. 

     
N=0 N=140 N=280 N=420 N=560 

Fig 3. Simulated time series of snowflake growth by FD, where g(n) × 0.9 and f(n) not 

changed.  

     
N=0 N=100 N=200 N=300 N=400 

Fig 4. Simulated time series of snowflake growth by FD, where g(n) × 1.1 and f(n) not 

changed. 

It can be seen that with the increase of reaction rate, snowflakes tend to form very dense 

hexagons, while when the reaction rate decreases, snowflakes tend to form hexagons with 

obvious branching. 

4.2. The influence of diffusion  parameters on the morphology of snowflakes 

The diffusion related terms were multiplied by 0.99 and 1.01 respectively, and simulated 

by the finite difference method to study the effect of the change of the deffusion 

coefficient on the morphology of the snowflake. The simulation results are shown in Fig.5 

and Fig.6. 

     
N=0 N=130 N=260 N=390 N=520 

Fig 5. Simulated time series of snowflake growth by FD, where f(n) × 0.99 and g(n) 

not changed. N represents different simulation time steps. 

Study on the Kinetic Parameters of Crystallization Process Modelled by Partial 
Differential Equations   
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It can be seen that as the increase of diffusion rate, snowflakes tend to form hexagons 

with obvious branches, while when the diffusion rate decreases, snowflakes tend to form 

tight branches of hexagons. 

     
N=0 N=120 N=240 N=360 N=480 

Fig 6. Simulated time series of snowflake growth by FD, where f(n) × 1.01 and g(n) 

not changed. N represents different simulation time steps. 

5. Conclusions 

In this paper, the reaction-diffusion equation of snowflake formation is established by 

using the method of data regression, and the effects of different reaction rates and 

diffusion rates on the morphology of snowflakes are studied. The ideal state of the 

snowflake growth images simulated by CA is used as a substitute for the real image to 

obtain the time series data in the spatial domain. Meanwhile, by adjusting the diffusion 

and reaction coefficients in the kinetic equation, different snowflake morphologies are 

formed. With the increase of the reaction rate, snowflakes tend to form very compact 

hexagons, and on the contrary, dendrites become sparser. When the diffusion rate is high, 

snowflakes are more likely to form with distinct branches and buds, and conversely, the 

branches are denser. In other words, if a crystal product with a sparse network structure 

is a better choice, some methods could be used to achieve this, such as changing the 

medium to gel to increase the diffusion rate; If a crystal product with a dense block 

structure is a better choice, some methods could be used to realize this, such as increasing 

the degree of supersaturation and lowering the crystallization temperature to increasing 

the reaction rate. By studying the formation of different crystal morphologies in the 

crystallization system under the adjustment of diffusion and reaction rate, it is hoped to 

provide reference for the reasonable synthesis and structural design of materials.  

Acknowledgements: The National Natural Science Foundation of China (Grant No. 

21878012). 
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Abstract 

Fermentation is a complex process highly influenced by many variables whose effects 
usually are not accounted for in mathematical models, hindering their accuracy. As an 
alternative to surpass this issue, empirical models, especially deep learning algorithms, 
can extract abstract hidden information from real data, enhancing the model accuracy. 
We present a freeware graphical user interface that enables any user to develop a long 
short-term memory (LSTM) network to model the dynamics of a fermentation process 
based on macro variables usually monitored in industrial plants. The algorithm is coded 
in Python, ensuring platform independence, easy installation, and flexibility to include 
new variables if required. It also allows the use of the model as a software sensor, assisting 
in the decision-making of changes. The results are provided in graphics that can be saved 
as high-definition images or in spreadsheets. 

Keywords: Fermentation, Long Short-Term Memory, Graphical User Interface. 

1. Introduction 

Fermentation is a biotechnological process widely employed in the pharmaceutical, food, 
and energy industries. Although fermentation and its phenomenological models have 
been extensively studied over the years, the continuous operation is highly susceptible to 
the effects of several unaccounted variables, making the phenomenological models less 
accurate due to simplifications. In this regard, empirical modeling based on deep learning 
algorithms represents a viable alternative to phenomenological modeling and permits the 
introduction of the effects of important operational factors. These deep learning models 
can be obtained from information commonly monitored through the supervisory control 
system and saved in highly dense databases, making the generated models more relatable 
to the real system.  
 
Among the deep learning algorithms, Long Short-Term Memory (LSTM) networks 
represent a powerful tool for developing dynamic models, due to the introduction of 
recurrent patterns of the predictions through the network. Moreover, LSTM networks are 
less amenable to problems often observed during the optimization phase in comparison 
to other recurrent networks, guaranteeing a more reliable model. These networks were 
successfully applied for generating models in many fields such as the stock market 
(Althelaya, El-Alfy and Mohammed, 2018; Ghosh, Neufeld and Sahoo, 2021), rainfall-

http://dx.doi.org/10.1016/B978-0-323-85159-6.50184-6 
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runoff (Yin et al., 2021), prediction and reconstruction of ocean wave heights (Jörges, 
Berkenbrink and Stumpe, 2021), COVID-19 transmission (Ibrahim et al., 2021; Luo et 
al., 2021) and fermentation process (Sousa, Fonseca and Silva, 2021), indicating their 
high applicability and accuracy in complex-forecasting processes. Although widely 
studied, this technique does not seem to be made available for larger audiences, especially 
in chemical and biochemical plants. 
 
This work aimed at developing an intuitive graphical user interface (GUI) for users 
unfamiliar with deep learning techniques that permits the generation of LSTM models for 
the prediction of volume, cell content, and substrate and ethanol concentrations (referred 
to as endogenous variables from now on) in a fermentation process based on the user’s 
available database concerning flowrate, cell content and substrate concentration 
(exogenous variables) in the inlet flow. 

2. Program overview and technical description 

The developed GUI focus on 1) facilitating the acquisition of transient models for the 
fermentation process employing LSTM networks, 2) applying the real data obtained from 
the process, 3) providing qualitative and quantitative performance analysis of the models, 
and 4) applying the model as a software sensor. 
 
The software was developed using Python, an interpreted language, ensuring a free tool 
with easy installation and platform independence. The program is distributed as a source 
code, permitting the addition and change of the model variables if necessary. As an 
interpreted language, the changes can be written and tested in small section and does not 
require compilation. 
 
The LSTM models are developed using Tensorflow and Keras, specialized and free 
libraries for deep learning applications. Besides these, a few other libraries are utilized 
during the complete run of the GUI and must be installed on the computer. A description 
of all required libraries is available in a READ.ME file that accompanies the source code. 

3. The Graphic User Interface (GUI) 

The main window of the program (Figure 1) is divided into two sections. At the top left 
corner, an entry bar requires the specification of the number of timesteps used in an 
already saved model employed that will be utilized as a software sensor. This information 
is needed before the selection of any other option concerning the software sensor 
application. A button bar to invoke the different program routines is placed right below 
the entry bar. These routines include data acquisition, model training, performance 
assessment, saved model upload, and software sensor prediction.   
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Figure 1 – The main window of the program. 

The hyper-parameters for the development of a new LSTM model can be set in a pop-up 
window, as illustrated in Figure 2. This GUI permits to choose the number of timesteps 
for the new model, neurons in the output layer of each LSTM gate, weights for the L1 
and L2 regularizations, dropout rate, initial weight distribution, percentage of training and 
test split, the maximum number of epochs for training, batch size, percentage of the 
training dataset saved for using in early-stopping algorithm and its maximum number of 
successive errors to cease the training.  
 

 

Figure 2 – Pop-up window for setting the network’s hyper-parameters during the training 
stage. 

 
The database for training must be provided in an Excel® spreadsheet and can have any 
number of vectors. Due to the transient nature model, the division between training and 
test datasets is sequential, as presented in the spreadsheet. The data is kept unshuffled 
during the training and test stages.  
 
The program provides a help window (Figure 3) that briefly explains the function of each 
hyper-parameter aforementioned and their valid inputs. It also illustrates the structure that 
must be followed in the spreadsheet containing the complete database.   
 

process applying long short-term memory networks
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Figure 3 – Help menu for selection of the LSTM model’s hyper-parameters.  

The use of the GUI for software sensor applications demands an initial state that must be 
provided in a pop-up window (Figure 4). This window is accessed through the ‘create 
spreadsheet’ button available in the main menu (Figure 1). The number of rows is 
determined by the timestep value defined in the entry bar of the main window, and this 
information can be quickly acquired from an Excel® spreadsheet. The GUI also requires 
uploading files in the formats .json and .h5 specifying the LSTM structure and weight 
values. It must be mentioned that the GUI keeps the last values for the exogenous 
variables throughout the length of the prediction. 

 

 

Figure 4 – Definition of the initial state for software sensor application. 

4. Network performance and results visualization 

The results from the training stage can be visualized in the window shown in Figure 5 
and accessed through the ‘show train results’ button (Figure 2). The window generates 
comparative graphics showing the performance of the model for all four predicted 
variables using the training and test databases and the cost function using the training and 
validation sets. The test database can also be used and compared in the software sensor 
application. All graphics can be saved in PNG format and 600 dpi. The window also 
allows the user to zoom in and change specific graph settings. 
 

Felipe M. M. Sousa et al. 



 

Figure 5 – Results window for training stage and generalization analysis.  

Figure 6 illustrates the results window for the software sensor application. This window, 
accessed through the ‘offline simulation’ button (Figure 1), shows the predicted results 
for the endogenous variables using a previously saved model and new data acquired. The 
results can be viewed, zoomed and saved as PNG images or in an Excel® spreadsheet. 

 

.  

Figure 6 – Results window for prediction as software sensor. 

5. Availability 

The GUI described is available free of charge to all users and can be used in any operating 
system to run Python code. The program can be obtained at 
https://github.com/msousaeq/etGUI. 

Graphical user interface for development of dynamics model of fermentation
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6. Conclusions 

In this work, we developed an easily used Graphical User Interface employing Python 
code for obtaining the dynamics model of fermentation processes using long short-term 
memory networks.  
 
The GUI allows the user to train a new model based on their database, defining the major 
hyperparameters of the model. Its performance is quickly assessed quantitative and 
qualitatively, saving the generated model for future uses. The rendered graphics for the 
qualitative analysis of all output variables and the cost function throughout the 
optimization stage can be saved, zoomed in, and changed.  
 
The GUI also permits the use of the LSTM model as a software sensor for longer 
predictions, assisting in the decision-making of changes in operating conditions of the 
fermentation process from an initial state. The results obtained in this application can be 
graphically analyzed and saved in a spreadsheet for posterior uses. 
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Abstract 

Processing pineapple field residues (PR), a significant waste from the pineapple industry, 
into multiple value-added products based on the biorefinery concept can reduce waste 
disposal and contribute to sustainable development goals. Although PR has been used to 
produce several added-value products, the production of ethanol, citric acid, and xanthan 
gum, with its economic feasibility at an industrial scale, has not been investigated so far. 
The present study evaluates the viability of a biorefinery process of PR by performing a 
comparative techno-economic analysis of three processing scenarios: (1) a whole 
biorefinery process that fully utilizes PR biomass and produces ethanol, citric acid, and 
xanthan gum (E+CA+XG) (2) a process that produces CA and XG, and (3) a process that 
produces only E. A plant capacity of 4 metric tons/hour was considered in the analysis to 
mimic an intensive pineapple plantation size. Each processing scenario was modeled 
using SuperPro Designer, and the economic performance was evaluated based on the 
internal rate of return (IRR), net present value (NPV), and payback period. Among the 
three scenarios, the whole biorefinery process (CA+XG+E) showed the highest techno-
economic performance with the net present value (NPV), internal rate of return (IRR), 
and payback period of 122.3 million US-$, 34.8%, and 3.5 years, respectively, due to the 
diverse revenues and minimized waste disposal cost. On the other hand, the E plant 
showed the lowest economic performance with a negative NPV. 
 
Keywords: Pineapple biorefinery; Modeling; Simulation; Techno-economic analysis. 

1. Introduction 

Globally nearly 76 million tons of pineapple field residues (PR) are generated every year 
and end as waste (Satyanarayana et al., 2007). Therefore, the vast number of PR calls for 
cost-effective and environmentally friendly management options, such as transforming 
them into multiple value-added products based on the concept of biorefinery (Elbersen, 
and Hengsdijk, 2019; Russland et al., 2017; Zhang et al., 2011). A growing body of 
research evidence that PR is full of valuable molecules such as cellulose, hemicellulose, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50185-8 



1112 J. Murcia et al. 

and soluble mono-sugars (glucose and xylose), amino acids, vitamins, and minerals, 
which are a potential feedstock for microbial conversion to produce fuels (i. e., alcohol) 
and value-added products (i.e., organic acids and hydrocolloids). Although PR has been 
used to produce single-cell protein, ethanol, energy (Chen et al., 2020), and substrates of 
fiber, among other end-products under the broad concept of biorefinery (Roda and 
Lambri, 2019; Banerjee et al., 2019), the production of ethanol, citric acid, and xanthan 
gum, with its economic feasibility at an industrial scale have not been investigated. 

A biorefinery concept that integrates processes and technologies to produce multiple 
value-added products from pineapple stubble have the potential to manage this residual 
biomass due to the following advantages: 1) synergistic effects among processes for the 
reduced energy consumption and labor demands; 2) minimal waste generation because 
the waste discarded by one process could be the input for another process; 3) diverse 
revenues due to the generation of multiple products (Jin et al.,2018b). The techno-
economic assessment of biorefinery concepts has been used to evaluate the bioprocess 
viability of lignocellulosic biomass conversion into several products such as ethanol, 
xylitol, furfural, and others (Giuliano et al., 2018, Giuliano et al., 2014). 

The present study aims to evaluate the economics of a biorefinery process of PR by 
performing a comparative techno-economic analysis of three processing scenarios: (1) a 
whole biorefinery process that fully utilizes PR biomass and produces ethanol, citric acid, 
and xanthan gum (E + CA + XG), (2) a process that produces citric acid and xanthan gum 
(CA + XG), and (3) a process that produces only ethanol (E). Each processing scenario 
was modeled in detail using SuperPro Designer. The economic performance was 
evaluated based on the internal rate of return (IRR), net present value (NPV), and payback 
period. Results from this study will provide information to the pineapple industry to help 
direct their residual biomass management. 

2. Biorefinery process description 

Approximately 250 metric tons of fresh pineapple plant residues (wet basis, mainly 
leaves) are removed every two years per hectare (Elbersen and Hengsdijk, 2019). 
Therefore, the first step is collecting pineapple leaves from different plantations and 
transporting them to the processing plant. After receiving, pineapple leaves are 
transferred by a conveyor to a crusher, where the juice is extracted. After the extraction, 
two streams of juice (192.5 tons) and fibrous material (45 tons) were obtained (Chen et 
al., 2020). Although pineapple leaves bagasse, the solid fraction obtained from the juice 
extraction, can be further processed into its main components or sent directly to a thermal 
valorization route, these options were beyond the scope of this study. 

The composition of pineapple stubble used in the simulations and reactor data assumed 
from the literature on citric acid, xanthan gum, and ethanol fermentation are presented in 
Table 1. A plant capacity of 4 metric tons/hour was considered in the analysis to mimic 
an intensive pineapple plantation size. The plant has an operation period of 330 days (11 
months) per year and 24 h per day, corresponding to a processing capacity of 31,680 
metric tons (equivalent to 35,000 tons) of pineapple field residues per year. 

The process simulation of the biorefinery was carried out by implementing a process 
flowsheet in SuperPro Designer v12. Figure 1 reports the general simplified biorefinery 
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Block Flow Diagram (BFD), including possible process pathways. Each block 
corresponds to a SuperPro Designer flowsheet containing a specific process section of the 
plant. 

The designed biorefinery process generates three significant products: ethanol, citric acid, 
and xanthan gum. The process block diagram, flow diagram, and critical parameters 
applied in the process are shown in Figures 1 and 2 and Table 1. The biorefinery process 
can fully utilize pineapple leaves to produce multiple products for maximal revenue. 
However, the large number of unit operations involved in producing various products 
increases the capital and operating costs, which may negatively affect economic 
performance. Therefore, the biorefinery process was compared with another two 
processes where only citric acid and xanthan gum were produced from pineapple leaves 
to understand economic competitiveness better. Thus, three processing scenarios were 
considered in this study (1) a whole biorefinery process that fully utilizes PR biomass and 
produces ethanol, citric acid, and xanthan gum (E + CA + XG), (2) a process that produces 
citric acid and xanthan gum (CA + XG), and (3) a process that produces only ethanol (E). 
 

 

Figure 1 General Flowsheet of the multi-product pineapple biorefinery  

 

2.1 Ethanol Production Steps 
Glucose and xylose in the pineapple leaves juice to produce bioethanol with the 
Zymomonas mobilis bacteria, appropriate microorganisms for pentose and hexose 
fermentation. The fermentation process is carried out at 32°C for 48h in a bioreactor 
inoculated with 2% Z. mobilis (Aden and Foust, 2009). Following centrifugation of the 
fermentation medium, the produced bioethanol is distilled in a two-stage process using 
conventional distillation columns.  
 
2.2 Xanthan Gum Production Steps 
The fermentation process is carried out at the conditions of 0.01 vvm oxygen for 48 h and 
a temperature of 32 °C by inoculating the bioreactor with 2% Xanthomonas campestris. 
In downstream processing, the bacterial cells are inactivated by pasteurization and 
removed from the system in the solid phase by centrifugation. In the liquid phase, XG is 
obtained in solid form by precipitation with ethanol and separated by centrifugation. The 
solid XG is dried with a drum dryer, ground, and packaged. Finally, the liquid phase is 
distilled to recover and recycle the ethanol (Saydam et al., 2020). 

co-producing ethanol, citric acid, and  xanthan gum: a technoeconomic
analysis
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2.3 Citric Acid Production Steps 
The microorganism used to carry out the aerobic transformation of glucose and xylose 
into citric acid is Aspergillus niger. The fermentation is carried out under the following 
parameters: aeration rate of 1.25 vvm, stirring speed of 250 rpm, pH of 4.0, and a 
temperature of 30º C. When the fermentation is completed, the citric acid present in the 
fermentation product liquor is separated by two reaction-filtration stages, first with 
sulfuric acid and later with calcium hydroxide, to be purified in a crystallization stage. 
Finally, the separated citric acid crystals are dehydrated in a rotary dryer, obtaining the 
final product (granulated citric acid) with ~99% purity (Heinzle et al., 2006).  
 

Table 1. Pineapple stubble data, conversion data of process simulations 

Major components in the pineapple leaves, juice, and 
fibrous material 

Whole leaf Juice Wet fibrous 
material  

%Total solid (TS) 13.8 6.2 51.6 

Cellulose (%TS) 22.6 --- 36.8 
Hemicellulose (%TS) 26.1 --- 28.1 
Lignin (%TS) 7.3 --- 5.1 
Glucose (g/L) --- 10.6 --- 
Xylose (g/L) --- 16.4 --- 

Crude Protein (%TS) 6.9 14 5.7 
Crude Fat(%TS) 3.0 3.5 4.0 
Ash (%TS) 6.1 10 1.7 
Potassium (%TS) 2.6 3.8 0.6 
Total carbohydrates (%TS) --- 72.5 --- 

Reactor’s data Conversion (%) residence time 
(h) 

  

Xylose to ethanol 70 18   
Glucose to ethanol 93 18   
Xylose to citric acid 80 160   

Glucose to citric acid 85 160   
Xylose to xanthan gum 55 80   
Glucose to xanthan gum 60 80   

3. Economic Analysis 

Economic analysis of the several cases was performed by estimating capital and operating 
costs. The purchased equipment, together with equipment installation, instrumentation 
and controls, processing piping, electrical systems, buildings, yard improvements, and 
service facilities, makes up the total plant direct cost. The total fixed capital investment 
consists of whole plant direct and complete plant indirect costs. With working capital and 
land, the fixed capital investment makes up the total capital investment (Peters et al., 
2003). 
 
Capital costs were estimated by power-law correlations based on unit capacity. In 
addition, data relevant to biorefinery sections were taken from the literature. Finally, the 
factorial method was applied to obtain the total investment cost. Raw materials mainly 
give operating costs. Therefore, a 40 US$/ton purchase cost for pineapple stubble was 
assumed. 
 
Moreover, the prices of microorganisms, chemicals, and water required for pretreatment 
were also accounted for. In addition, the costs of salaries, maintenance, and insurance 
were assessed by the factorial method. The summary of the parameters used to carry out 
each process’s technoeconomic assessment is presented in Table 2. 

J. Murcia et al.



Revenues consist of products sales (ethanol, citric acid, and xanthan gum). Linear 
depreciation was assumed. A discounted cash flow analysis was carried out to obtain 
ethanol’s Payback Selling Price (PSP) provided the price of the other possible by-
products. The PSP was calculated as the value that makes the Present Net Value equal to 
zero after 20 years of plant life. 
 

Table 2. Parameters for the techno-economic assessments 

Economic data 

Plant life (y) 20 
Ethanol Price (USD/L) 1 
Citric Acid Price (USD/kg) 2 
Xanthan gum Price (USD/kg) 9 
Biomass Price (USD/ton) 40 
Discount Rate (%) 7 
Electricity cost (USD/MWhe) 100 

4. Results 
 
Based on the results of total capital costs, total operating costs, and revenues, the 
economic performances of the three plants were evaluated using NPV, IRR, and payback 
period as the indicators. Although the E + CA + XG plant had the highest total capital 
cost, it provided multiple products to generate revenue. From Table 3, we can see that the 
IRR for the E + CA + XG plant was 34.8%, with an NPV of 122.3 million US-$ and a 
payback period of 3.5 years. Although the biorefinery process of PR is new to the industry 
at the current stage, the products (ethanol, citric acid, and xanthan gum) from the process 
already have an established market. The positive NPV, the 34.8% of IRR, and the payback 
period of 3.5 years obtained from the techno-economic analysis suggested an 
economically feasible investment for this biorefinery process. Compared with the E + CA 
+ XG plant, the CA + XG plant had lower revenue with the NPV, IRR, and payback 
period of 54.3 million US-$, 23.5%, and 4.3 years, respectively. The E plant produced 
ethanol as the sole product and had the worst economic performance among the three 
plants, showing a negative NPV of −15.6 million US-$, the lowest IRR of −2.1%, and the 
most extended payback period of 18.0 years, which was considered as economically 
unfavorable. 
 

Table 3 Economic indicators (NPV, IRR, and payback period) 

Item E+CA+XG CA+XG E 

NPV (million US-$) 122.3 54.3 -15.6 

IRR (%) 34.8 23.5 -2.1 

Payback period (year) 3.5 4.3 18 

5. Conclusions 

A techno-economic analysis was carried out on a biorefinery processing pineapple leaves 
to obtain ethanol, citric acid, and xanthan gum. The techno-economic model of pineapple 
stubble biorefinery process was developed with three scenarios: a single-product scenario 
(ethanol, E), a dual-product scenario (Citric Acid and Xanthan Gum, CA + XG), and an 

The biorefinery concept for the industrial valorization of pineapple leaves
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integrated biorefinery scenario (Ethanol, Citric Acid, and Xanthan Gum, E + CA + XG). 
Among the three scenarios, the E + CA + XG scenario showed the best economic 
performance with the NPV, IRR, and payback period of 122.3million US-$, 34.8%, and 
3.5 years, respectively, which was considered economically viable. Overall, this study 
demonstrated that the biorefinery of GP to produce multiple products is technically and 
financially feasible at a commercial scale. However, we are aware that this result might 
be significantly affected by the plant capacity, products price, and juice sugars content 
and deserves a sensitivity analysis, which will be addressed in future works.  
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Abstract 

In this work, we developed a simultaneous hybrid model with a novel error correction 

model for distillation columns that can be used in process monitoring, scheduling, and 

optimization. The proposed hybrid model consists of two parts a simplified first principles 

model (SFPM) and an error correction term. The SFPM is specific for distillation columns 

and consists of mass, energy, and equilibrium equations for all the trays of the column. 

For the error correction term, we used a traditional residual model that predicts the 

differences between the flow outputs of the SPFM and plant flow outputs, and we 

introduced a novel multiplicative correction model (MCM). The MCM corrects the output 

mass fractions predictions of the SFPM using a multiplicative factor. The advantage of 

using the MCM is that the predictions of the hybrid model are physically meaningful and 

more accurate than the residuals model when inputs are extrapolated beyond the training 

region. The proposed hybrid multiplicative model has a mean relative percentage error of 

less than 2% compared to rigorous simulations for interpolation and extrapolation inputs. 

Keywords: Hybrid modeling; Distillation column; Process optimization; Process 

monitoring; Error correction models 

1. Background 

Optimal operation of refining and petrochemical plants requires that distillation towers 

meet product quality targets while minimizing energy consumption, which requires that 

accurate models of distillation towers be included in the plant-wide optimization models. 

Over the last decade, there has been a growing realization that rigorous plant models used 

in real-time optimization (RTO) lead to large-scale and challenging to maintain models. 

In addition, due to the model complexity, it is not possible to model an entire refinery via 

rigorous models and optimize such a model. In addition, if the distillation tower efficiency 

changes over time, the parameters of the rigorous models need to be adjusted by an expert. 

All of this indicates a need for simpler and yet accurate distillation models that can be 

used for inferential monitoring of plant operation and optimization. 

Early work on approximate models of distillation towers employed partial least squares 

(PLS) models to predict product compositions from tray temperatures (Mejdel et al., 

1991). Kano et al. (2000) introduced a dynamic PLS model which employed tray 

temperatures and manipulated variables. Even though these approaches lead to reasonable 

predictions in the region where training data is available, they do not extrapolate well if 

the tower moves to a region of increasingly nonlinear behavior.  

Hybrid models of distillation tower employ first-principles mass and energy balances and 

approximate models of separation (Mahalec and Sanchez, 2012). In this work, we 

developed a simultaneous hybrid model for distillation columns consisting of a simplified 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50186-X 
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first principles model and an error correction model. The hybrid model can be used for 

process monitoring or optimization applications. We introduce a multiplicative correction 

term to demonstrate that it performs better than the traditionally used additive error 

correction term. 

2. Case study 

A butane splitter was selected as the study case for this work. A butane splitter is a 

standard unit in natural gas processing plants. It is the last distillation column of a 

separation train of natural gas liquid streams. The function of the butane splitter is to 

separate a binary mixture of isobutane iC4 and normal butane nC4. The relative volatility 

between these two components is close to one. Thereby, a distillation column with a high 

number of trays is required to achieve a successful separation.  

Aspen plus steady-state simulations were used as a substitute for actual plant data. Due 

to the distillation column's components and pressure, the Peng-Robinson was selected as 

the property package in the simulations. The tower specifications are presented in Table 

1 based on the work of (Aljuhani, 2016). The feed pressure, flow rate, and temperature 

were kept constant in the simulation, whereas the composition of the feed and product 

purities are varied in the simulation. Two datasets were created for the same butane 

splitter an interpolation and an extrapolation dataset, the difference being the feed mass 

fraction of iC4. The interpolation range of the feed mass fraction of iC4 is 0.20-0.35, 

whereas the extrapolation values of the feed mass fraction of iC4 are 0.15 and 0.4. 

3. Modeling approach 

Traditionally, series hybrid models have been used for modeling chemical units. We 

present a simultaneous hybrid model that combines the series approach (i.e., estimation 

of parameters of the model) with the parallel approach (i.e., correction model), as shown 

in Figure 1. The reason for combining both approaches is to obtain a hybrid model that is 

easy to train, update and compute while leveraging the knowledge and structure of 

fundamental equations and that can be updated for different tower conditions. The 

model's outputs are the mass fraction and mass flow for each of the components in the 

distillation tower. 

Table 1 Butane splitter specifications 

3.1. Simplified first principles model 

Distillation rigorous models consist of mass, equilibrium, summation, and heat (MESH 

equations). However, one of the main challenges of solving these equations is the non-

linearity of the equilibrium equations (Biegler et al., 1997). Therefore, we introduce 

parameters estimated using data-driven models to reduce the complexity of the MESH 

equations while keeping the structure of mass, energy, and equilibrium equations. The 

SFPM can be applied to all distillation columns with the following characteristics: one 

feed, no sides streams, total condenser, and partial reboiler. The SFPM consists of two 

different matrices of linear equations. In the first matrix, the overall mass balances 

Tower conditions Tower design Operation range 

Feed pressure 12.1 bar Number of trays 101 Feed xF,iC4 0.15-0.40 

Pressure drop 1 bar Feed tray 50 Distillate  xD,iC4 0.96-0.99 

Temperature 44 °C Murphree 

efficiency 
100 % Bottoms xB,nC4 0.96-0.99 
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equations Eq.(1) and energy equations Eq.(2) for each of the trays alongside the reflux 

ratio  𝑅𝑅 =  𝐿1/𝐷 and the specific reboiler duty 𝑞𝑟𝑒𝑏  =  𝑄𝑟𝑒𝑏/𝐹  are used to find the 

total liquid and vapor flow in each of the distillation column trays. Where 𝐿𝑖 denotes the 

total liquid flow in tray 𝑖 numbered from top to bottom, 𝑉𝑖 total vapor flow, 𝐻𝑖  the liquid 

enthalpy, and the ℎ𝑖 vapor enthalpy. The temperature 𝑇 of each tray is estimated using a 

data-driven model. It is assumed that it is possible to linearly approximate the enthalpies 

around one base operation as shown in and Eq.(3) and Eq.(4).  Where the ° denotes 

standard operation and 𝐶𝑝 is the heat capacity. 

𝐹𝑖 + 𝑉𝑖+1 + 𝐿𝑖−1 − 𝐿𝑖 − 𝑉𝑖 = 0 (1) 

 

𝑭𝒊𝑯𝒊 + 𝑽𝒊+𝟏𝒉𝒊+𝟏 + 𝑳𝒊−𝟏𝑯𝒊−𝟏 − 𝑳𝒊𝑯𝒊 − 𝑽𝒊𝒉𝒊 = 𝟎 (2) 

 

𝐻𝑖 = 𝐻𝑖
∘ + 𝐶𝑝𝑖,𝑙𝑖𝑞

∘ (𝑇𝑖 − 𝑇𝑖
∘) (3) 

 

ℎ𝑖 = ℎ𝑖
∘ + 𝐶𝑝𝑖,𝑣𝑎𝑝

∘ (𝑇𝑖 − 𝑇𝑖
∘) (4) 

 

The second matrix consists of the equilibrium equations, the mass balances for each 

component, the reflux ratio for each of the components, and the summation equations 

(e.g., the sum of the flow of each of the components in the liquid has to be equal to the 

total liquid flow). This matrix is used to solve the mass flows of each of the components. 

The equilibrium equations are presented in Eq.(5) where the 𝑗 subindex is the number of 

components and 𝛽 is the equilibrium factor predicted with the empirical model. The mass 

balance equation for each of the components is presented in equation Eq.(6). 

𝑉𝑖,𝑗 =
𝑉𝑖

𝐿𝑖
𝛽𝑖,𝑗𝐿𝑖,𝑗  

(5) 

 

𝐹𝑖,𝑗 + 𝑉𝑖+1,𝑗 + 𝐿𝑖−1,𝑗 = 𝐿𝑖,𝑗 + 𝑉𝑖,𝑗 (6) 

 

3.2. Error correction models  

Parallel hybrid models have been used in the literature to correct the predictions of FPM. 

In this work, in addition to modeling the residuals (i.e., the difference between the actual 

flows for each of the components and the predictions of the SFPM), we present a 

multiplicative correction model.  

The problem with using traditional residual models is that they don't have restrictions on 

feasible predictions. Therefore, it is possible in certain instances to obtain negative flows 

for some of the components that are in a lower proportion in the distillation column. For 

that reason, we introduced the multiplicative correction model (MCM). The objective of 

MCM is to predict the ratio between the actual mass fraction and the prediction mass 

fraction of the SFPM of each of the components. 
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Figure 1 Hybrid multiplicative model structure for predicting and for training the multiplicative 

correction model 

3.3. Training data-driven models 

The temperature and equilibrium factor for each of the trays are estimated with empirical 

models. Neural networks (NN) and partial least squares (PLS) were used to predict those 

parameters. Although NN models are nonlinear mappings that can approximate any 

continuous function, they have several drawbacks, including the large amount of data to 

train them, local minima, and the overfitting problem. Therefore, linear models are often 

preferred as empirical models. The empirical models were trained using two different sets 

of inputs. The first set of inputs consists of the operating variables (reflux ratio and 

reboiler duty). The second set of inputs extends the first set with the addition of 

temperature measurements. The included temperatures are the temperatures next to the 

reboiler and condenser and the temperatures of the key trays. The key trays were 

determined using sensitivity analysis (Aljuhani, 2016). The models were trained using 

80% of the interpolation dataset. The number of components for the PLS and the 

architecture of the NN was determined using the testing dataset, which is 10% of the 

interpolation dataset. The validation interpolation dataset determines the performance of 

the different hybrid models. The extrapolation performance of the models was evaluated 

using the extrapolation dataset. The metrics used to assess the models are the coefficient 

of determination R2, root mean squared error RMSE, mean relative percentage error 

MeanRE%, and the maximum relative percentage error MaxRE%. 

4. Results and discussion 

The first step of the hybrid model is the prediction of the parameters. The models for the 

parameters were trained using the set of inputs with temperatures and without 

temperatures of the key trays. The R2 of the prediction of the equilibrium factors 

evaluated using the validation dataset of the PLS models without the temperatures is 

0.765 and 0.75 for the predictions of the temperatures. The R2 of the NN models without 

the temperatures of the key trays is 0.988 for the temperature and 0.984 for the 

equilibrium factors. The inclusion of the temperatures of the key trays in the inputs, 

increases the R2 of PLS models to 0.993 and 0.992 for the equilibrium factors and 

temperatures, respectively. Therefore, it is possible to estimate the temperature and 

C. Rodriguez et al.



 

equilibrium factors of the trays only using linear models instead of nonlinear models. For 

that reason, PLS models were selected for the prediction of the parameters of the SFPM.  

Table 2 Summary results predictions using different surrogate models for the mass fraction of 

nC4 in the distillate 

 Interpolation Validation Extrapolation 

 SFPM Hybrid 

additive 

Hybrid 

multiplicative 

SFPM Hybrid 

additive 

Hybrid 

multiplicative 
R2 0.998 0.9997 0.9996 0.988 0.9861 0.9984 
RMSE 4.677e-4 1.915e-4 2.018e-4 1.095e-3 1.174e-3 3.956e-4 
MeanRE% 1.69 0.694 0.694 3.5 4.91 1.41 
MaxRE% 7.27 2.35 3.30 12.46 28.79 4.52 

 

Table 3 Summary results predictions using different surrogate models for the mass fraction of iC4 

in the bottoms 

 

  Interpolation Validation Extrapolation 

 SFPM Hybrid 

additive 

Hybrid 

multiplicative 

SFPM Hybrid 

additive 

Hybrid 

multiplicative 
R2 0.9962 0.9999 0.9987 0.9922 0.9996 0.9978 
RMSE 6.132e-4 9.107e-5 3.558e-4 8.84e-4 2.08e-4 4.743e-4 
MeanRE% 2.02 0.243 0.915 2.46 0.76 1.25 
MaxRE% 5.36 0.84 2.37 11.74 5.26 9.16 

 

A PLS model was developed for the additive correction model (i.e., correction of the mass 

flow of each of the components) and the multiplicative correction model. A summary of 

the results for the prediction of the mass fraction of the products of the butane splitter is 

presented in table 2 and table 3. For inputs within the training region (interpolation), both 

hybrid models perform better than only using the SFPM. However, when using the model 

outside of the training region, the predictions of the hybrid additive model are worse than 

the SFPM predictions for the nC4 in the distillate. In contrast, the hybrid multiplicative 

model corrects the predictions of the SFPM even for extrapolation inputs. Another 

advantage of hybrid multiplicative is that the predictions of concentrations can never 

become negative after the correction. The observed versus predicted plots for both 

components are shown in figure 2. We can observe from this figure that the differences 

between observed and predicted values are low for the validation interpolation inputs and 

the extrapolation inputs. 

5. Conclusions 

A novel simultaneous hybrid model for distillation columns is presented in this work. The 

hybrid model consists of a SFPM based on mass, approximate energy, and approximate 

equilibrium equations, and an error correction term. Separation factor and temperature 

profiles at the new operating state (which are predicted by using empirical models) are 

used in SFPM to predict product composition. The prediction of the SFPM is improved 

by using a multiplicative correction model. The presented hybrid model predicts product 

compositions with MeanRE% of less than 2% relative to the rigorous tower model, and 

it extrapolates well beyond its training region. 

 

1121 First Principles Based Development of Hybrid Models of Distillation Towers



1122  

 

Figure 2 Observed versus predicted plots for the product composition of the distillates and bottoms. 

The results on the left represent the results of the validation dataset. The results on the right 

represent the results of the extrapolation dataset. 
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Abstract 

Fuel cell (FC) system controllers for stack, air, H2, and cooling systems are developed, 

and integrated with the system hardware models. These controllers allow flexible changes 

of system hardware specifications and operating conditions under a closed-loop 

simulation. The virtual FC-system hardware and controller design and system 

performance evaluation were demonstrated and confirmed to be beneficial for the actual 

product system development process. 

Keywords: Fuel cell system; Model-based development; Physical modeling; Controller 

design 

1. Introduction  

The role of the FC-system controller is to ensure the optimal conditions in the FC stack 

by manipulating the system component considering the hardware limitations to achieve 

the maximum system performance such as the system efficiency and acceleration 

response. In many FC-system manufacturers, the controller design activities can be 

conducted only after the prototypes of system testbeds are manufactured. Since it takes a 

long lead-time as well as a great expense for the preparation of the system testbeds, the 

integrated FC-system simulator for the virtual controller development and evaluation has 

been strongly demanded. Though studies on control system are of such great importance, 

the fuel cell itself has been more intensively investigated (Weber et al., 2014), and much 

less research has been done on the FC stack, the FC system including the system 

components of air, H2, and cooling systems, and the FC-system controllers. The authors 

have developed the integrated FC-system simulator with the physical models of the FC 

stack (Hasegawa et al., 2021a) and the system components of air, H2, and cooling systems 

(Hasegawa et al., 2021b). This simulator can estimate the dynamic behavior of the entire 

FC system of 2nd-generation MIRAI, the latest commercial fuel cell electric vehicle 

(FCEV) shown in Fig. 1 (Takahashi et al., 2021), with the acceptable accuracy and 

allowable calculation time. The simulator can be utilized for the wide range of application 

system development of passenger vehicles, commercial vehicles of buses and tracks, 

railways, marine vessels, aviation, and stationary power generator purposes, though it 

consists of only hardware models of the FC stack and the FC-system components and the 

controllers are not included.  

 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50187-1 
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In this study, the entire FC-system controller with a streamlined configuration was 

developed, where the setpoints of the FC-system net power, the FC-stack state variables, 

and the actuation values of the FC-system components can be determined independently 

and it is remarkably easy to modify, replace, add, and remove the controller specifications. 

These controllers were integrated with the FC-system hardware model described above 

to obtain the closed-loop FC-system simulator. The simulator reduces the lead-time of 

the entire FC-system and controller development and the expenses for the prototypes of 

different applications systems. The effect of the coolant radiator size on the FC-system 

performance, the dynamic setpoint tracking performance of the FC-system net power and 

the FC-system net efficiency, were investigated by using the developed closed-loop 

simulator.  

 
Fig. 1. Flow diagram of the FC system implemented in 2nd-generation MIRAI  

 

In the FC-system applications, a setpoint of net power is given to the controller, and the 

setpoint tracking performance and high system net efficiency are the primary 

requirements.  

The FC-system net power is defined by Eq. (1),  

 

𝑃FC
net = 𝑃FC

gross
− (𝑃ACP + 𝑃HP + 𝑃WP + 𝑃others) (1) 

 

where 𝑃FC
net is the FC-system net power [W], 𝑃FC

gross
 is the FC-stack gross power, 𝑃ACP, 

𝑃HP, 𝑃WP are the consumed power by the air compressor, hydrogen pump, and water 
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pump [W], and 𝑃others is the consumed power by the other system components such as 

a DC–DC convertor [W]. The FC-system net efficiency is defined as Eq. (2) 
 

𝜂FC
net =

𝑃FC
net

𝑃FC
gross

+ 𝑞̇FC

 (2) 

 

where 𝜂FC
net is the FC-system net efficiency [-], and 𝑞̇FC is the heat generation rate from 

the FC stack [W]. 𝑃FC
gross

 and 𝑞̇FC are expressed by Eqs. (3) and (4), 

 

𝑃FC
gross

= 𝐼FC𝑉FC (3) 

𝑞̇FC =  𝐼FC(𝑉FC
OC − 𝑉FC) (4) 

 

where 𝐼FC, 𝑉FC,  and 𝑉FC
OC are the FC-stack current [A], voltage [V], and open-circuit 

voltage [V]. They can be measured by the current and voltage sensors shown in Fig. 1. 

2. FC-system controller and closed-loop simulation of the entire FC system 
The configuration of the closed-loop FC-system simulator which consists of the FC-

system controllers developed in this study and the FC-system hardware model is shown 

in Fig. 2. In this simulator, setpoint of the FC-system net power, the ambient temperature, 

and atmospheric pressure are inputs to the electric power controller. The calculated FC-

system net power is output as well as the other calculated values in the FC system, the  

FC-stack polarization states such as current, voltage, and resistance, the distributions of 

state variables across the system such as pressure, flowrate, temperature, and gas 

composition, and the actuation values of the FC-system component such as pump speed 

and valve opening. 

 

 
Fig. 2. Flow diagram of the closed-loop simulation of the entire FC system 
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The controllers in Fig. 2 consist of the electric power controller, the FC-stack controller, 

and the actuator controllers for the system components in air, H2, and cooling systems. 

The electric power controller determines the setpoint of FC-current to minimize the error 

between the setpoint and calculated values of system net power. The FC-stack controller 

consists of air, H2, and cooling state controllers. Each state controller determines the 

setpoints of the state variables such as pressure, flowrate, temperature, and gas 

composition at the inlet and outlet of the FC stack based on the FC-stack current and 

coolant outlet temperature measured by the sensors depicted with I and TI in Fig. 1 and 

pre-calibrated functions. The actuator controllers of air, H2, and coolant determine the 

setpoints of actuation values such as the pump speed and valve opening to minimize the 

error between the setpoint of the state variables from the FC-stack controller and the 

actual value of state variables measured by the sensors shown in Fig. 1. Such a simple 

and streamlined controller configuration enables independent investigations of the 

optimal stack operating conditions and hardware specifications.  

 
Fig. 3 is the algorithm of the electric power controller included in the Simulink flow 

diagram. Firstly, the setpoint of the FC-system net power is mediated with the upper limit, 

lower limit,  minimum, and the gradient limitations determined by the system hardware 

limitations. Then the control error of the FC-system net power is compensated by 

determining the setpoint of the FC-stack current by a simple PI-control method including 

the supplemental functions of integral anti-windup and integral reset methods for the 

stable operation. 

 

Fig. 3. Flow diagram of the electric power controller 

 
Fig. 4 is the air pressure determination algorithm included in the Simulink flow diagram. 

The setpoints of the FC-stack current and temperature were given to the pre-determined 

functions, which were built based on experimental data to achieve the maximum FC-

system net efficiency considering the electric power consumption and loss of air 

compressor. Then, the setpoint of air pressure is calculated. Pre-determined functions are 

used also for the determination of the setpoints of the other state variables. In the air, H2, 

and cooling system controllers, the setpoints of the state variables outputted from the FC-

stack controller are converted to the actuation values such as pump speed and valve 

opening by the same PI-control based algorithm in the electric power system controller 

shown in Fig. 3. By virtue of the closed loop simulator shown in Fig. 2, the pre-

determined functions and the PI-controller parameters could be optimized and determined 
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without manufacturing the integrated FC-system hardware. This reduces the considerable 

effort and expense for the hardware preparation.   

 

 

Fig. 4. Simulink flow diagram of air pressure setpoint determination  
in the FC-stack controller 

3. Simulation results and discussion 
Fig. 5 shows the results of the closed loop simulation shown in Fig. 2 to confirm the 

setpoint tracking performance of the FC-system net power when the vehicle speed is kept 

constant at 160 km/h and the coolant radiator size is varied. It was confirmed that the FC-

system net power could trace the setpoint within an acceptable deviation less than 1 % in 

the case of the base-size radiator as shown in Fig. 5 (a). Fig. 5 (b) shows the 3 % deviation 

of the FC-system net power from the setpoint occurs during 660 – 670 s when the coolant 

radiator size is 70 % of the base size. In this period, the average coolant temperature is 

raised to 105 ℃ as shown in Fig. 5 (c), where IV performance of the FC stack deteriorated 

due to the severe dry condition as shown in Fig. 5 (d). From these results, it was suggested 

that the limitation of the radiator size reduction is around 85 % in the given operating 

condition.  

 
Fig. 5. Closed loop simulation results of the sensitivity of the coolant radiator size 

on (a) the setpoint and calculated value of the FC-system net power, (b) the 
deviation between the setpoint and calculated value of FC-net power, (c) the 

average coolant temperature, and (d) the FC-stack IV performance 
 

Fig. 6 shows closed-loop simulation results of the FC-system efficiency described in 

Eqs. (1) and (2). The FC-system net efficiency was confirmed to be around 40–70 % in 

20–90 kW with every radiator size, which was sufficiently high compared with 

conventional internal combustion engine systems.  

Model-Based Development of Fuel Cell Stack and System Controllers 



1128  S. Hasegawa et al. 

 
Fig. 6. Closed loop simulation outputs of the FC-system net efficiency 

It was shown by the examples in Figs. 5 and 6 that the closed-loop simulation of the entire 

FC system in this study enabled the detailed system hardware and control investigation 

before manufacturing the costly FC-system testbed and test vehicles. On the other hand, 

control parameters, such as the gains in PI-control in Fig. 3 and the pre-determined 

function of target state variables in Fig. 4, were calibrated by the time-consuming trial-

and-error and the maximum FC-system net efficiency cannot be ensured theoretically. 

The more efficient and sophisticated controller parameter determination process should 

be implemented by introducing the state-of-art optimization technologies such as model 

predictive control (MPC).   

Conclusions 
The controllers for the entire FC system were developed. These controllers were 

integrated with the FC-system hardware models to serve a closed-loop simulation. It 

enabled the design of the hardware and controllers in the entire FC system without 

manufacturing the costly system prototypes. The control parameters were calibrated on 

the developed simulator until the prospective controller performance was confirmed. The 

sensitivity of coolant radiator size on the setpoint tracking performance of the FC-system 

net power and the FC-system net efficiency were investigated with the calibrated 

controller as the demonstration of the model-based FC-system development. 
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Abstract 
This work develops an algorithm for solving multiperiod optimization (MPO) problem 
using a nested Schur decomposition (NSD) approach. The NSD approach decomposes 
MPO using a Schur complement and allows us to solve the decomposed nonlinear 
programming (NLP) problem in parallel. The NSD partitions the MPO into a two-level 
problem with individual NLPs at the lower level. The problem-level decomposition 
facilitates the flexible selection of the lower-level solver.  

In this paper, the NSD approach is demonstrated with different process models for MPO 
in parallel computation. The solutions are also compared with the direct approach, 
which solves the entire MPO problem simultaneously. The demonstration shows IPOPT 
could be more efficient than CONOPT when the problem is well-conditioned. 
Moreover, it is noted that the NSD outperforms the direct approach when the size of the 
process model is large with CONOPT as the lower-level solver. From those results, we 
observe that NSD is well-suited to solve large MPO problems for chemical processes in 
an efficient, flexible, and robust manner. 

Keywords: Optimization; Multiperiod; Applications. 

1. Introduction 
MPO problems are an important class of optimization problems that often consider 
design and operating plans for predicted demands over a given time horizon. For 
chemical processes, rigorous process models are highly integrated with multiple unit 
models and thermodynamic property models, which lead to a large system of nonlinear 
equations. MPO problems of such process models could be significantly larger and 
more complex than a single process model. The chemical industry highly demands 
strategies to extend a single process model to MPO in a robust, flexible, and efficient 
way over their process development.  

To solve such a large-scale nonlinear problem in efficient and tractable ways, several 
decomposition approaches have been developed in the past. Those approaches can be 
classified into internal and external decompositions. The former internal decomposition 
approaches for an interior-point algorithm have been developed. The overview of the 
developments and the applicable problem structures can be seen in (Kang et al., 2015). 
The approach utilizes block-angular or general block-bordered structure in the solution 
of the augmented system for decomposition at the linear algebra level. Hence, the 
internal decomposition approach can fully utilize the advantage of interior-point 
methods in solving large-scale nonlinear problems. The methods, however, face 
difficulties when there are degeneracies in the problem constraints. In such case, we 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50188-3 
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often rely on active set methods such as CONOPT (Drud, 1985), which handles 
dependent constraints efficiently as part of the active set selection.  

On the other hand, external decomposition approaches decompose the problem at the 
problem formulation level. The external approach could be more flexible and easier in 
the implementation than the internal one because the approach is less intrusive. For 
example, Benders decomposition and the alternating direction method of multipliers 
(ADMM) are one of the external decompositions. These methods utilize only the first 
order information of the decomposed problems. Thus, the methods are inefficient due to 
the lack of the exact Hessian information from the lower problem, which is fully 
utilized in the internal decomposition approach.  

To address this problem, we develop the nested Schur decomposition (NSD) approach 
and demonstrate it with MPO problems for chemical processes. The approach applies an 
external decomposition so that we can flexibly utilize interior-point or active set solvers 
for the lower-level problem. On the other hand, as a Schur decomposition approach it 
has the same KKT structure and fast convergence properties which allows us to use the 
Hessian information of the lower-level problem as the internal Schur decomposition 
approach. Moreover, it retains the computational advantage of the parallelization in the 
external decomposition framework. 

2. Problem statement 
We consider the general MPO problem of the form 

min       𝑓𝑓0̅(𝑥𝑥) + �𝑓𝑓𝑖̅𝑖(𝑥𝑥, 𝑧𝑧𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

s. t.         ℎ0(𝑥𝑥) = 0 
               ℎ𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝑑𝑑𝑖𝑖) = 0 
               𝑔𝑔𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝑑𝑑𝑖𝑖) + 𝑠𝑠𝑖𝑖 = 0,   𝑠𝑠𝑖𝑖 ≥ 0 
               𝑧𝑧𝐿𝐿 ≤ 𝑧𝑧𝑖𝑖 ≤ 𝑧𝑧𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑁𝑁 
               𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑈𝑈 

(1) 

where 𝑁𝑁 is the number of periods, 𝑥𝑥 ∈ ℝ𝑛𝑛𝑥𝑥  is the vector of global variables and 𝑧𝑧𝑖𝑖 ∈
ℝ𝑛𝑛𝑧𝑧,𝑖𝑖  are the decision variables in each period 𝑖𝑖 . Some of the global variables are 
exposed to process constraints ℎ𝑖𝑖 and 𝑔𝑔𝑖𝑖 of each period via 𝑑𝑑𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖. The coupling (or 
complicating) variables 𝑑𝑑𝑖𝑖 are also included in the global variable vector 𝑥𝑥. 𝑠𝑠𝑖𝑖 are the 
slack variables for the inequality constraints 𝑔𝑔𝑖𝑖 . The global constraints ℎ0  could be 
linking, common, and demand constraints, and the linking constraints use the 
information of adjacent periods to describe inventory updates. The common constraints 
enforce the same value for all periods such as design parameters. The demand 
constraints reflect the limitation of the sales for the demand with given demands or 
demand forecast models.  

For the problem level decomposition, we reformulate Problem (1) as a two-level 
optimization problem by disaggregating the complicating variable 𝑑𝑑𝑖𝑖and introducing 
artificial variables 𝛿𝛿𝑖𝑖 and dummy constraints. The upper level problem is written as: 
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min       Φ0(𝑥𝑥) ≡ 𝑓𝑓0(𝑥𝑥) + �𝑓𝑓𝑖𝑖�𝑧𝑧𝑖𝑖(𝑥𝑥), 𝛿𝛿𝑖𝑖(𝑥𝑥)�
𝑁𝑁

𝑖𝑖=1

+ �𝛽𝛽𝑞𝑞𝑖𝑖(𝑥𝑥)𝑇𝑇𝑒𝑒
𝑁𝑁

𝑖𝑖=1

 

s. t.         ℎ0(𝑥𝑥) = 0 
               ℎ𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝑑𝑑𝑖𝑖) = 0 
               𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑈𝑈 

(2) 

where 𝑧𝑧𝑖𝑖(𝑥𝑥),𝛿𝛿𝑖𝑖(𝑥𝑥) and 𝑞𝑞𝑖𝑖(𝑥𝑥) are solutions from each lower-level problem 𝑖𝑖 = 1, … ,𝑁𝑁: 

min       Φ𝑖𝑖(𝑥𝑥) ≡ 𝑓𝑓𝑖𝑖�𝑧𝑧𝑖𝑖(𝑥𝑥),𝛿𝛿𝑖𝑖(𝑥𝑥)� + 𝛽𝛽𝑞𝑞𝑖𝑖(𝑥𝑥)𝑇𝑇𝑒𝑒 
s. t.         ℎ𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝑑𝑑𝑖𝑖) = 0 
               𝑔𝑔𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝑑𝑑𝑖𝑖) + 𝑠𝑠𝑖𝑖 = 𝑞𝑞𝑔𝑔,𝑖𝑖 ,   𝑠𝑠𝑖𝑖 ≥ 0 
               𝑧𝑧𝐿𝐿 ≤ 𝑧𝑧𝑖𝑖 ≤ 𝑧𝑧𝑈𝑈 ,   𝑖𝑖 = 1, … ,𝑁𝑁 
               ℎ𝑑𝑑,𝑖𝑖 = 𝛿𝛿𝑖𝑖 − 𝐺𝐺𝑖𝑖𝑥𝑥 − 𝐶𝐶𝑑𝑑,𝑖𝑖�𝑞𝑞+,𝑖𝑖 − 𝑞𝑞−,𝑖𝑖� = 0,   𝑞𝑞𝑖𝑖 = �𝑞𝑞+,𝑖𝑖

𝑇𝑇 ,𝑞𝑞−,𝑖𝑖
𝑇𝑇 ,𝑞𝑞𝑔𝑔,𝑖𝑖

𝑇𝑇 �𝑇𝑇 ≥ 0 

(3) 

where 𝐺𝐺𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖×𝑛𝑛𝑥𝑥  is a mapping matrix to assign the global variables 𝑥𝑥  onto each 
period and 𝐶𝐶𝑑𝑑,𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖×𝑛𝑛𝑑𝑑,𝑖𝑖 is a scaling matrix whose diagonal elements have scaling 
factors for 𝛿𝛿𝑖𝑖 . 𝑞𝑞+,𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖  and 𝑞𝑞−,𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖  represent positive and negative violation 
values for the relaxation of the dummy constraints. 𝑞𝑞𝑔𝑔,𝑖𝑖 ∈ ℝ𝑛𝑛𝑔𝑔,𝑖𝑖 is also positive violation 
value for the relaxation of the inequality constraints. The values are penalized in the 
objective along with the penalty constant 𝛽𝛽 and 𝑒𝑒𝑇𝑇 = [1,1, … ,1]. The purpose of the 
relaxation is to avoid an infeasible solution of the process model in each period. 
Furthermore, the original objective 𝑓𝑓̅  is also modified to 𝑓𝑓  so that the problem is 
separated into two parts. 

3. Solution strategy 
In order to collect the lower-level problems’ information Φ𝑖𝑖  into the upper-level 
problem, inequality constraints in the lower-level problems are replaced by barrier terms 
and the lower-level problems are assumed to be solved with interior point strategies. By 
considering the KKT conditions for each barrier problem of lower-level problem, the 
assembled Newton step is written as:  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐾𝐾1 𝐸𝐸1

𝐾𝐾2 𝐸𝐸2
⋱ ⋱

𝐾𝐾𝑁𝑁 𝐸𝐸𝑁𝑁
𝐸𝐸1𝑇𝑇 −𝐺𝐺1

𝐸𝐸2𝑇𝑇 −𝐺𝐺2
⋱ ⋮

𝐸𝐸𝑁𝑁𝑇𝑇 −𝐺𝐺𝑁𝑁
−𝐺𝐺1𝑇𝑇 −𝐺𝐺2𝑇𝑇 ⋯ −𝐺𝐺𝑁𝑁𝑇𝑇 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝑦𝑦1
Δ𝑦𝑦2
⋮

Δ𝑦𝑦𝑁𝑁
Δ𝛾𝛾1
Δ𝛾𝛾2
⋮

ΔγN 
Δ𝑥𝑥 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= −

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
⋮
0
0
0
⋮
0
𝑚𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (4) 

where 𝛾𝛾𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖 is the dual of the dummy constraints and the other primal and dual 
variables are represented 𝑦𝑦𝑖𝑖 ∈ ℝ𝑛𝑛𝑦𝑦 . 𝐸𝐸𝑖𝑖 = ∇𝑦𝑦𝑖𝑖ℎ𝑑𝑑,𝑖𝑖 ∈ ℝ𝑛𝑛𝑑𝑑,𝑖𝑖×𝑛𝑛𝑦𝑦 . 𝐾𝐾𝑖𝑖 ∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑦𝑦  is the KKT 
matrix where 𝐸𝐸𝑖𝑖 is excluded. Furthermore, the right-hand side is set to zero except for 𝑚𝑚 
because we can solve problem (3) for each period individually. 𝑚𝑚  is the gradient 
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information with respect to 𝑥𝑥 and is written as 𝑚𝑚 = −∑ 𝐺𝐺𝑖𝑖𝑇𝑇𝛾𝛾𝑖𝑖𝑁𝑁
𝑖𝑖=1  . By pivoting the block 

matrices in (4) we obtain: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐾𝐾1 𝐸𝐸1

𝐾𝐾2 𝐸𝐸2
⋱ ⋱

𝐾𝐾𝑁𝑁 𝐸𝐸𝑁𝑁
−𝑃𝑃1 −𝐺𝐺1

−𝑃𝑃2 −𝐺𝐺2
⋱ ⋮

−𝑃𝑃𝑁𝑁 −𝐺𝐺𝑁𝑁
−𝐺𝐺1𝑇𝑇 −𝐺𝐺2𝑇𝑇 ⋯ −𝐺𝐺𝑁𝑁𝑇𝑇 𝑀𝑀 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝑦𝑦1
Δ𝑦𝑦2
⋮

Δ𝑦𝑦𝑁𝑁
Δ𝛾𝛾1
Δ𝛾𝛾2
⋮

ΔγN 
Δ𝑥𝑥 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= −

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0
0
⋮
0
0
0
⋮
0
𝑚𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5) 

where 𝑀𝑀 = ∑ 𝐺𝐺𝑖𝑖𝑇𝑇𝑃𝑃𝑖𝑖−1𝐺𝐺𝑖𝑖𝑁𝑁
𝑖𝑖=1 , 𝑃𝑃𝑖𝑖 = 𝐸𝐸𝑇𝑇𝐾𝐾𝑖𝑖−1𝐸𝐸. Note that 𝑃𝑃𝑖𝑖−1𝐺𝐺𝑖𝑖 can be generated directly by 

solving the following equation. 

�
𝐾𝐾𝑖𝑖 𝐸𝐸𝑖𝑖
𝐸𝐸𝑖𝑖𝑇𝑇 0 � �

𝑋𝑋1
𝑋𝑋2
� = � 0

−𝐺𝐺𝑖𝑖
�  (6) 

where 𝑋𝑋2 = 𝑃𝑃𝑖𝑖−1𝐺𝐺𝑖𝑖  and 𝑀𝑀 = ∑ 𝐺𝐺𝑖𝑖𝑇𝑇𝑋𝑋2𝑁𝑁
𝑖𝑖=1 . 𝑀𝑀 and 𝑚𝑚 are the Hessian and gradient of the 

objective for the part of the lower-level problem. Thus, the augmented Hessian of the 
objective in the upper-level problem is ∇2Φ0(𝑥𝑥) = ∇2𝑓𝑓0(𝑥𝑥) + 𝑀𝑀. The gradient of the 
objective is ∇Φ0(𝑥𝑥) = ∇𝑓𝑓(𝑥𝑥) + 𝑚𝑚. 

When the lower-level problems’ information augments the upper problem’s objective, 
the upper-level problem becomes just a constrained nonlinear optimization problem. 
The upper problem can be solved with Newton-type solvers, an interior-point solver 
such as IPOPT, or a trust region solver such as trust-constr from Scipy by providing the 
augmented Hessian and gradient information. For the lower problem, each period is 
solved individually, as seen from the zero residuals on the right-hand side of Eq. (4). 
Although the approach is derived based on the interior point strategy with the barrier 
approach, any NLP solver such as IPOPT or CONOPT can be used, as long as the lower 
problem successfully converges and the KKT information can be retrieved. This is 
because the barrier parameter is equivalent to a Hessian projection upon convergence of 
the lower-level problem. 

4. Implementation
As mentioned in Section 3, we can use any solver as long as the upper problem solver is 
a globally convergent Newton-type solver for constrained optimization. Here, we 
present the implementation scheme with cyipopt (Aides et al., 2021) as the solver of the 
upper problem, which is a python wrapper for IPOPT. The lower problems (3) are 
formulated in Pyomo (Hart et al., 2017), and solved with CONOPT or IPOPT. Then, the 
primal, dual values and the bound multipliers are extracted. The solution is utilized for 
the initial values of the next inner problem to use a warm start. After that, the part of the 
Hessian of the Lagrangian and the Jacobian of the constraints in the KKT system is 
evaluated with Pynumero (Laird et al., 2019). The Hessian of the bounded variables in 
the barrier term is separately evaluated in Python with the extracted primal and 
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multiplier values. The evaluation method follows the procedure of IPOPT (Wächter and 
Biegler, 2006). 

5. Case study
In this section, we demonstrate the NSD approach with MPO problems for Williams-
Otto (WO) process and benzene chlorination (BC) process. The upper level of the MPO 
problem consists of the inventory update and demand constraint which are set over the 
entire period. The lower level of the MPO problem consists of the process models for 
each time period to evaluate the production rate. The detailed problem formulation can 
be seen in (Yoshio and Biegler, 2021). Here, we focus on the computational 
performance. Different problem sizes are used from 𝑁𝑁  = 3 to 𝑁𝑁  = 14 periods and 
the problem size increases with N, as shown in Table 1 for the cases of both WO and 
BC processes. The WO process model is relatively small model. On the other hand, the 
BC process is considerably large model. In the performance test, the parallelized NSD 
approach uses 𝑁𝑁 processes for solving each period in parallel. The computational t ime 
is compared with the direct solution that solves the entire MPO problem simultaneously 
without decomposition. For the lower-level solver, CONOPT is used for both the WO 
and BC processes, and IPOPT is used for the WO process. For comparison a direct 
solution of problem (1) is obtained with CONOPT. 
The computational comparison can be seen in Figure 1. For the WO process, Figure 1(a) 
compares the computational time for the direct approach and NSD with both IPOPT and 
CONOPT as lower-level solvers. As seen in the figure, the direct approach is 
approximately 10-20 times faster than the NSD approaches. This is because the problem 
size of the WO process model is relatively small and the overhead of the NSD 
dominates any savings gained from the parallel solution of the lower-level problems. On 
the other hand, for parallel NSD, IPOPT outperforms CONOPT on the lower problems. 
This result indicates IPOPT for the lower problem solver could be more efficient than 
CONOPT for this well-conditioned problem. For the BC process, Figure 1(b) compares 
the computational time for the direct approach and NSD with CONOPT as a lower-level 
solver. The computational result shows that the computational time proportionally 
increases in the direct approach as 𝑁𝑁 increases. For the parallel NSD approach, the wall 
clock time remains constant as the number of periods 𝑁𝑁 increases. We note that parallel 
NSD outperforms the direct approach when N > 8. 

Table 1 The number of variables in MPO problems 

6. Conclusions
We have developed and demonstrated an NSD algorithm for solving large-scale 
nonlinear optimization problems, especially MPO problems. The NSD facilitates the 
parallelization of the decomposed problem within the algorithm by utilizing the 
structure of the KKT system. The approach was applied to MPO problems of the WO 
process and BC process. The studies show the capability of flexible solver choice for 
the inner problem. NSD is a reliable option to parallelize large-scale nonlinear problems 
because the flexible solver choice enables us to utilize robust active set solvers 
efficiently for degenerate problems. 

N 3 4 5 6 7 8 9 10 11 12 13 14 
WO  149 198 247 296 345 394 443 492 541 590 639 688 
BC 
(× 104) 2.8 3.7 4.6 5.5 6.5 7.4 8.3 9.2 10 11 12 13 
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solving mathematical programs in python. Mathematical Programming Computation 3 (3), 
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Figure 1 The comparison in the computational time for MPO of (a) WO process and (b) BC 
process. 

 Furthermore, the NSD approach has the computational advantage of the 
parallelization when the lower-level problem is large. This flexible, robust, and 
efficient approach could provide a number of benefits for current practical process 
development. In the future, NSD will be considered for a number of large-scale 
nonconvex NLP applications, including multiset and multi-effect parameter estimation 
problems, stochastic programming problems for process optimization under 
uncertainty, decomposition of integrated site-wide optimization problems with 
complex subsystems, and decomposition for optimization of spatially distributed 
energy networks. 
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Abstract 

The process of liquefying natural gas is associated with many design and optimisation 

challenges. The formation of so-called boil-off gas (BOG) due to the difference in the 

bubble point of LNG and the surrounding ambient temperature around storage tanks, is 

one of the most challenging issues. Industries around the world are investigating the 

recovery of BOG to enhance the economy of design and reduce environmental impacts 

due to flaring. The BOG composition forms a crucial aspect of the recovery process where 

the nitrogen and methane content can affect the location of recovery in addition to the 

economy and mechanism of the recovery process. This study addresses the design and 

optimisation of the BOG recycling flowsheet configuration in the LNG production 

process. Multiple sensitivity analyses are considered to study the effect of changing 

temperature and mass flow of recycled BOG, in addition to the temperature and pressure 

of LNG feed. The observed parameters include final methane content, nitrogen content, 

mass flow and temperature of LNG product and fuel gas along with the Wobbe Index of 

LNG product. The BOG utilisation strategy focuses on recycling BOG prior the 

liquefaction unit with three different nitrogen rejection unit (NRU) configurations, 

namely, the double distillation columns, single distillation column and flash drum. To 

show the significance of the proposed recycling strategy, an illustrative case study is 

analysed and evaluated for recycling 52,000 metric tonnes of BOG annually while 

optimising the design conditions of the BOG and LNG streams. The results indicate the 

huge effect of BOG to natural gas blending ratio on the purity of the LNG product. Hence, 

the increase in BOG mass flow rate demonstrates to increase the methane content on the 

produced LNG and reduce the nitrogen content for the flash drum and double columns 

configurations. This highlights the potential of BOG recovery on enhancing the 

performance of the LNG process despite the need for an additional economic and 

environmental investigation. 

Keywords: LNG, BOG, Flare management, Simulation, Optimisation, NRU. 

1. Introduction 

The global consumption of natural gas (NG) continuous to rise with the growing 

forecasted demand on energy and the increase in economic growth and world population. 

The low environmental impacts of NG relative to other fossil fuels place it as the 

favourable energy alternative. The liquefaction of NG in the well-known Liquefied 

Natural Gas (LNG) process dominates the energy market despite the intensive energy 

requirement. The LNG process is essential to ensure easier transportation and shipping of 

liquefied NG worldwide. The process comprise treatment of sour field NG to remove the 

presence of CO2, H2S and water, separation and liquefaction of sweet NG from the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50189-5 
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associated heavier hydrocarbons, extraction of left-over nitrogen and helium components, 

and finally the storage, loading and transportation of LNG product. The volume of the 

LNG product constitute 1/600 of its gas-form volume. The common employed 

liquefaction technology in LNG process is C3-MR consisting of propane and mixed 

refrigerant cryogenic cooling loops. The A-PX technology has emerged as an 

improvement from C3-MR. LNG process is associated with a number of challenges; one 

of which is the formation of boil-off gas (BOG) during LNG storage loading and shipping 

operations. The large difference between LNG storage conditions (-160 oC) and ambient 

surrounding (~25oC) in addition to sudden pressure changes and unloading operation act 

as driving force for the heat transfer despite advanced insulation mechanism and the 

partial evaporation of stored LNG producing BOG. Therefore, BOG consist mainly of 

methane (93wt%) and nitrogen (7wt%) and accounts for 1-3 vol% of LNG product. 

Venting and flaring of BOG is the common mitigation in global industries that is 

associated with environmental and economic concerns (Al-Sobhi et al., 2021). 

Scholars have approached the aspects of BOG management from various perspectives 

including minimisation, recycling and quantification. For example, Kurle et al. (2015) 

explored different BOG recycling strategies in C3-MR process to establish optimum 

temperature for BOG minimisation and recycle. An optimal temperature of -166 oC found 

to reduce the total cost associated with the minimisation and recovery of BOG.  Similarly 

Bao et al. (2019) compared three BOG management strategies from power output 

perspective while examining the effect of electricity cost, interest factor, and BOG 

content on the net present value (NPV). The results demonstrated an increasing trend for 

NPV with BOG content and a decreasing trend with interest rate. Shin et al. (2007) studied 

from a safety-driven objective the optimisation of BOG compression system to verify 

adequacy through a mixed-integer linear model. The results revealed an energy recovery 

potential of 11.5% from the current operating compressors. 

Despite the high literature studies on BOG management, there is still a necessity to 

establish the optimum pathway of BOG recovery and utilisation within A-PX LNG 

process. This study explore the optimisation of key design parameters involved in the 

recovery and utilisation of BOG within different recycling configurations in the LNG 

production process. The liquefaction flowsheet model with recycled BOG stream is 

established to study the effect of changing temperature, pressure and mass flow of 

recycled BOG, in addition to the temperature and pressure of LNG feed on the final 

methane content, nitrogen content, mass flow and temperature of LNG product and fuel 

gas along with the Wobbe Index of LNG product. Traditional LNG plants practice the 

flare of BOG streams due to the intensive energy associated with liquefaction and 

recycling. However, flaring is not a sustainable mitigation due to the high associated NOX 

and CO2 emissions and the global burden to apply stringent environmental regulations. 

Hence, this study aims to establish an optimum pathway for the recovery of BOG.  

2. Methodology 

The overall methodology to design and optimise the BOG recycling strategy in LNG 

production line consist of 1) estimation of BOG rate of formation, 2) Simulation of 

LNG/BOG recycling scenarios, 3) execution of key sensitivity analyses, 4)  formulation 

of optimisation problem, and 5) conclusion of optimal parameters. The BOG utilisation 

strategy focuses on recycling BOG prior the liquefaction section with three different 

nitrogen rejection unit (NRU) configurations, namely, the double distillation columns, 

single distillation column and flash drum. The base models have been emphasised in an 
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earlier work (Al-Sobhi et al., 2021) with the detailed description of process models and 

economic and environmental benefits of BOG recycling. This study forms an extension 

to optimise the BOG utilisation with the variation of key design parameters. To show the 

significance of the proposed recycling strategy, an illustrative case study representing the 

state of Qatar LNG plants is analysed and evaluated for various design alternatives of 

recycling 52,000 metric tonnes of BOG annually while optimising the conditions of the 

BOG and LNG streams. BOG is assumed to be generated from five 300,000 m3 storage 

tanks at a vaporisation rate of 0.5vol% per day. Aspen HYSYS is utilised to construct the 

integrated LNG-BOG flowsheets of different schemes. Qatar is currently producing 

approximately 77 million metric tonnes per annum (MMTPA) with planned future 

expansion up to 110 MMTPA in 2025 placing Qatar as the largest global LNG producer 

and exporter (Qatargas, 2019). Multiple sensitivity analyses are considered to study the 

effect of changing temperature and mass flow of recycled BOG, in addition to 

temperature and pressure of LNG feed. The observed parameters the final methane 

content, nitrogen content, mass flow and temperature of LNG product and fuel gas along 

Wobbe Index (WI) of LNG product. WI is used to correlate the high heating value (HHV) 

of a gas mixture to the square root of the gas specific gravity; density of mixture relative 

to air, as expressed in Eq. (1). It is utilised in this study as a representative of the 

significance of BOG recycling in enhancing energy content. 

𝑊𝐼 =
𝐻𝐻𝑉

√
𝜌

𝜌𝑎𝑖𝑟

        (1) 

Aspen HYSYS is used to assess the variations in each operating parameter. Results of the 

sensitivity analyses are used to construct regression models relating WI of LNG product 

and methane content of fuel gas to changes in each operating parameter. The functions of 

the WI and methane content of LNG product for each operating parameter are employed 

where the weighted average of these functions is calculated to characterise the objective 

functions of the proposed optimisation model. The singular objective function of WI and 

methane content of LNG product, expressed in Eqs. (1 and 2), is then maximised to 

produce the optimal decision variables for each objective. Later, optimal solutions for the 

simultaneous computing objectives of WI and methane content of LNG product are 

achieved using Matlab Genetic Algorithm tool and a Pareto front is generated for each 

recycling configurations. 

Variables:  

Ṫ𝑓𝑢𝑒𝑙 𝑔𝑎𝑠: Fuel gas final temperature (oC) 

Ṫ𝐿𝑁𝐺 : LNG final temperature (oC) 

ṁ𝑓𝑢𝑒𝑙 𝑔𝑎𝑠: Fuel gas production rate (t/h) 

ṁ𝐿𝑁𝐺: LNG production rate (t/h) 

𝑚̇𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛,𝑓𝑢𝑒𝑙 𝑔𝑎𝑠: Nitrogen content in fuel gas (t/h) 

𝑚̇𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛,𝐿𝑁𝐺: Nitrogen content in LNG (t/h) 

𝑚̇𝑀𝑒𝑡ℎ𝑎𝑛𝑒,𝑓𝑢𝑒𝑙 𝑔𝑎𝑠: Methane content in fuel gas (t/h) 

𝑚̇𝑀𝑒𝑡ℎ𝑎𝑛𝑒,𝐿𝑁𝐺: Methane content in LNG (t/h) 

𝑊𝐼: Wobbe Index (WI) of LNG product (MJ/Nm3) 

Decision variables:  

Ṫ𝐵𝑂𝐺 : BOG inlet temperature (oC) 

Ṫ𝐿𝑁𝐺 : LNG feed temperature (oC) 

ṁ𝐵𝑂𝐺 : BOG inlet rate (t/h) 

Ṗ𝐵𝑂𝐺 : BOG inlet pressure (bar) 

Natural Gas Production
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Ṗ𝐿𝑁𝐺: LNG feed pressure (bar) 

Objective function:  
Maximise: 𝑊𝐼        (2) 

Maximise: 𝑚̇𝑀𝑒𝑡ℎ𝑎𝑛𝑒,𝐿𝑁𝐺      (3) 

 Constraints: As illustrated in Table 1 

 
Table 1. Optimisation problem raw data 

Parameter Flow (t/h) Variation (t/h) T (oC) Variation (oC) P (bar) Variation (bar) 

NG Feed 890.4 - -84 -100:-200 41 1:20 

BOG Feed 5.94 0.5:20 -162 -100:-200 1 1:20 

3. Results 

The output of sensitivity analyses and singular optimisation of WI and methane content 

of LNG product demonstrated a variation in the resulted key decision variables. Table 1 

illustrates the complete set of decision variables of the two optimisation problems for the 

different configurations.  

Table 2. Singular optimisation results 

Parameter Ṫ𝐵𝑂𝐺(oC) Ṫ𝐿𝑁𝐺(oC) ṁ𝐵𝑂𝐺(t/h) Ṗ𝐵𝑂𝐺(bar) Ṗ𝐿𝑁𝐺(bar) 
Objective 
function 

Objective Flash drum configuration  

WI -100 -100 20 20 20 80.28 

CH4 content -200 -200 20 2 3 884 (t/h) 

Objective Single column configuration  

WI  -165 -199 20 1 20 53.00 

CH4 content -102 -166 0.5 19 2 578 (t/h) 

Objective Double columns configuration  

WI  -200 -167 0.5 20 2 52.61 

CH4 content -168 -166 20 2 20 705 (t/h) 

The flash drum configuration demonstrated the highest in terms of WI and CH4 content 

results followed by double columns configuration and lastly single column configuration. 

The optimal parameters for the flash drum configurations demonstrate the requirement to 

feed the NG and recycled BOG at the highest temperature, pressure and flowrate of the 

range, -100 oC, 20 and 20, respectively, to achieve the highest value of WI and a flowrate 

of BOG at 0.5 t/h. Vase versa, the highest CH4 content is achieved at the lowest 

temperature and pressure of the range, -200 oC, 2 and 3, respectively and the highest 

flowrate of BOG at 20 t/h. This represents the importance to maintain the recycle process 

at high pressure and low temperature to ensure achieving highest content of methane in 

the LNG product with highest WI. Whereas, the optimal parameters for the single column 

configurations demonstrate the requirement to feed the NG and recycled BOG at the 

temperature, pressure and flowrate of -165 oC, -199 oC, 20 and 1, respectively, to achieve 

the highest WI. Vase versa, the highest CH4 content for the single column configurations 

is achieved at the temperature and pressure of -102 oC, -166, 19 and 2, respectively and a 

flowrate of BOG at 0.5 t/h. The results indicate the possibility to feed the BOG at 

atmospheric pressure condition with -165 oC to achieve the carryover of nitrogen content 

in the fuel gas while increasing these conditions will ensure the maximum methane 

content in the LNG product. The last configuration of double columns demonstrate the 

requirement to feed the NG and recycled BOG at the temperature, pressure and flowrate 

A. AlNouss et al. 



of -200 oC, -167 oC, 20 and 0.5, respectively, to achieve the highest WI. Vase versa, the 

highest CH4 content for the double columns configurations is achieved at the temperature 

and pressure of -168 oC, -166, 2 and 20, respectively and a flowrate of BOG at 20 t/h. The 

main reason behind these results is the fact that both columns of the configuration are 

operated at atmospheric pressure. Hence, feeding the BOG at cold temperatures and low 

pressure ensures to separate most of the methane out to the LNG stream. Opposite of that 

ensures to have the highest WI. 

Utilising the formulation to solve the two computing objectives simultaneous results on 

the trade-off between WI and methane content of LNG product. The optimal solutions for 

each recycling configurations, generated using Matlab Genetic Algorithm tool, are 

presented as Pareto fronts in Figures (1-3). The three figures demonstrate the trade-off 

between WI and methane content of LNG product where the increase in one leads to the 

decrease of other. These solutions represent the possible operating points of the integrated 

LNG-BOG system to achieve BOG recycling while maintain the process design specs. 

 

Figure 1: Pareto curve of WI and methane content objectives for flash drum configuration. 

 

Figure 2: Pareto curve of WI and methane content objectives for single column configuration. 
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Figure 3: Pareto curve of WI and methane content objectives for double columns configuration. 

4. Conclusions 

The liquefaction of NG in the well-known Liquefied Natural Gas (LNG) process 

dominates the energy market despite the intensive energy requirement. LNG process is 

associated with a number of challenges; one of which is the formation of boil-off gas 

(BOG) during LNG storage loading and shipping operations. This study explore the 

optimisation of key design parameters involved in the recovery and utilisation of BOG 

within different recycling configurations in the LNG production process. The flowsheet 

models are established to study the effect of changing temperature, pressure and mass 

flow of recycled BOG, in addition to the temperature and pressure of LNG feed on the 

final methane content, nitrogen content, mass flow and temperature of LNG product and 

fuel gas along with the WI of LNG product. The Pareto fronts generated from the multi 

objective optimization demonstrate the trade-off between WI and methane content of 

LNG product where the increase in one leads to the decrease of other. These solutions 

represent the possible operating points of the integrated LNG-BOG system to achieve 

BOG recycling while maintain the process design specs 
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Abstract 

Melamine production produces tail gas with a significant amount of both NH3 and CO2. 

Benefiting from the development of green solvents, using ionic liquids instead of 

traditional solvents as water for NH3 and CO2 separation has attracted wide attention. 

Multi-objective optimization (MOO) is employed to optimize the ionic liquid-based 

process in this work. In order to decrease the energy consumption in the ionic liquid-

based separation process, a MOO research was carried out using Aspen Plus and Matlab 

software in this work. 

In this work, one ionic liquid-based process was simulated and optimized by the 

nondominated sorting genetic algorithm II (NSGA-II) algorithm. The minimum total 

separation cost (TSC) and total process CO2 emission (TPCOE) were set as two objective 

functions. With the constraints and several operational parameters optimized, the Pareto 

front displays a set of nondominated, optimal design parameters that satisfy the 

specification of the NH3 concentration standard in outlet gas. 

The results show that the effect of desorption pressure and the ratio of lean solvent to total 

solvent are critical for both TSC and TPCOE. After the MOO, the TSC of the ionic liquid 

process can be decreased by 5%, and TPCOE is reduced by 12% compared with the base 

case. The optimization results support the optimal design and operation of the NH3 and 

CO2 separation process with ionic liquids considering environmental and economic 

objectives. 

Keywords: Ionic liquid; Process Design; Multi-objective optimization. 

1. Introduction 

Melamine is an important industrial raw material that can be prepared by condensation 

polymerization of melamine resin, widely used in tableware, heat insulation materials, 

coatings, adhesives, etc. However, for the treatment of melamine tail gas containing NH3 

and CO2, the reaction of these two gases leads to ammonium bicarbonate crystals that 

cause operational difficulties. Water scrubbing and some co-productions technologies 

such as urea co-production, ammonia bicarbonate co-production are the primary gas 

treatment method employed in the industry. However, they have disadvantages such as 

high energy and water consumption, equipment corrosion, secondary pollution, and 

difficulty reaching standard discharge. Ionic liquids is a new green material and medium 

for the industry's gas separation and purification process. Ionic liquids have the advantage 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50191-3 
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of low vapor pressure, being structurally designable, good stability. Therefore, it is 

interesting to use its advantage to develop new technology. Based on the functional IL 

[Bim][NTf2], it can achieve the target of high absorption capacity, good selectivity of 

NH3 and CO2, no water discharge, low energy consumption, and high purity of recovery 

gas. 

A posteriori techniques using multi-objective approach are mostly population-based 

stochastic optimization techniques (C.A. Coello Coello, 2007). These include NSGA-II 

(elitist non-dominated sorting GA), SPEA2 (strength Pareto evolutionary algorithm-2), 

MOEA (multi-objective evolutionary algorithm), and MOPSO (multi-objective PSO) (K. 

Deb, 2001). Each iteration ranks the solutions based on objective values to obtain many 

Pareto-optimal solutions at the end of the given stopping criterion (usually, the maximum 

number of iterations), all in one run of the optimizer/program. A simplified flow chart of 

NSGA-II is presented in Figure 1(Rangaiah et al, 2015). In the process of optimization, 

non-repetitive and dominant solutions and frontier sets are found in the iteration operation 

to retain the optimal results. 

Start

Initialize population(size N)

Evaluate Objective Functions 

and Constraints

Ranking Initial Population

Selection for Reproduction

Crossover and Mutation

Evaluate Objective Functions 

and Constraints

Combine Parent and Child 

Populations(size 2N)

Select N Individuals using Non-

dominated Sorting and Crowding 

Distance Calculations(if required)

Stopping Criteria Met?Stop

Generation of Child 

Population

 
Figure 1. A flowchart of NSGA-II for MOO. 

To lower the energy consumption and analyze relationships of operational parameters 

with TSC and TPCOE of the ionic liquid process, MOO research was carried out in the 

separation of NH3 and CO2 with the ionic liquid process using Aspen Plus and Matlab 

software in this work. Because of the internal relationship with different operating 

parameters in the ionic liquid process, the optimization may go into the local optimization 

solution instead of the global optimization solution. In applying chemical engineering, 

most practical problems usually seek to satisfy this under multiple design goals—the 

MOO problem of the best design scheme for these objectives. On the one hand, MOO 

can give full play to the role of decision-making participants, and on the other hand, it is 

more in accordance with reality(C.A. Coello Coello, 2007). Researchers usually integrate 

mathematical software and process simulation software to solve the optimization problem 

of multiple objective functions.  
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Recently, many researchers have used MOO techniques for the analysis of chemical 

processes. Li et al. (2021) used a MOO strategy to integrate the design and control of 

ionic liquid-based extractive distillation processes. The Pareto front shows the 

optimization results, which are based on trade-offs between controllability and 

economics. Zhan et al. (2021) investigated the ammonia-containing gas separation and 

ammonia recovery with ionic liquids. MOO was employed to finish the optimization and 

the result showed that using functional ionic liquids could greatly decrease purification 

cost and energy consumption. 

However, there is limited research on MOO for the separation of NH3 and CO2 by the 

ionic liquid process. In this work, the MOO of the ionic liquid-based NH3 and CO2 

separation process was made, using the nondominated sorting Genetic algorithm 

II(NSGA-II). 

2. Methods 

2.1 Process flow chart of NH3/CO2 separation with ionic liquids  

The base case has been previously established and the flow chart of the NH3/CO2 

separation process with ionic liquids is shown in Figure 2(Duan et al, 2021). The 

melamine tail gas contains 7.6 % nitrogen (N2), 0.4 % water (H2O), 55 % ammonia (NH3) 

and 37 % carbon dioxide (CO2) in mole fractions. The conceptual process consists of two 

sections, which are the NH3 absorption section and absorbent desorption section. The tail 

gas flows to the bottom of the absorber and meets the ionic liquid in counter current flow 

and then NH3 is released due to increased pressure and decreased temperature in Flash 1 

and Flash 2. After tail gas separation, the NH3 concentration below 6000 ppm (mole 

fraction) in the purified gas. The NH3 product purity is set over 0.996 mass fraction. 

 

Figure 2. The flow chart of NH3/CO2 separation process with ionic liquids (Duan et al, 2022). 

2.2 MOO of NH3/CO2 separation with ionic liquids 

In order to investigate the internal relationship among different parameters and TSC of 

the ionic liquid-based process, MOO was carried out. In this work, the NSGA-II is 

employed in the MOO of the NH3 and CO2 separation process. MOGA can be employed 

to solve MOO to avoid falling into a local optimal solution when sequential iteration was 
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used in the iterative process. As a bridge between Aspen Plus and Matlab, ActiveX is 

used in the MOO process. Six design parameters are simultaneously optimized, including 

pressure of absorption, ratio of lean solvent to total solvent, total usage of solvent, 

temperature of Flash1, pressure of Flash1 and 2 (P, RLT, F, T , PF1, PF2), the value range 

of each parameter is shown in Table 1. In this study, the tray number of absorption is not 

used as a decision variable, it is fixed at 8. 

Table 1. Range of parameters of NH3/CO2 separation with ionic liquid. 

Operation parameters P (kPa) RLT F (t/h) T (K) PF1 (kPa) PF2 (kPa) 

Lower bound 101 0.2 10 363.15 10 1 

Higher bound 405 0.8 100 383.15 50 10 

In process optimization, objective functions consist of the minimization of TSC(Total 

Separation Cost) and TPCOE(Total process emission of CO2), the constraints are that 

yNH3, purified ≤ 6000 ppm, x NH3, wt ≥ 0.996, TSC ≥ 0, TPCOE ≥ 0, the ratio of gas and liquid 

1 (GL1) ≤ 1000, the ratio of gas and liquid 1(GL2) ≤ 500. The MOO procedure of ionic 

liquid-based process is shown in Figure 2. The selection type is binary tournament 

selection. The crossover probability is 0.8. The variation method is Gaussian variation, 

and the variation probability is 0.1, the population size is set as 100, and the number of 

generations is set as 15. 

 

Figure 3. The MOO procedure of ionic liquid-based process. 

3. Results and discussion 

Based on the sensitivity analysis of the ionic liquid-based process, the MOO is conducted 

to obtain the solution for this chemical process, which can realize the two optimal 

objective functions: TSC and TPCOE. Figure 4(a) shows the relationship between TSC 

and TPCOE. The Pareto optimal solution of the NH3 and CO2 separation process indicates 

that TSC rises with the increasing of TPCOE. In the separation process, low TSC means 

low energy consumption, which leads to lower TPCOE. 

 Y. Duan et al.
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Figure 4. The MOO results. (a) The Pareto optimal result of NH3 and CO2 separation of TSC and 

TPCOE. (b) Effects of key variable ratio of lean solvent to total solvent (RLT). (c) Effects of key 

variable pressure of Flash 2(PF2). (d) Relationship between Pressure of absorption (P) and Flow 

rate of ionic liquids (F). 

Figure 4(b) and (c) show the effects of crucial input variables (PF2, RLT) on TSC. From 

Figure 4(b), the pressure change of Flash 2 will lead to the diversification of objective 

function TSC. From Figure 4(c), TSC change with RLT because higher RLT means more 

lean solvent will flow into the Flash 2 and give more burden to Flash 2 with lower 

pressure. 

For effect among the input parameters, Figure 4(d) shows the relationship between 

absorption pressure and flow rate of ionic liquids. With the increase of pressure, more 

NH3 will be absorbed by ionic liquids, then less ionic liquids will be used in this process. 

Although increasing flow rate of ionic liquid can gain the solvent cost, it is observed that 

the operation can reduce the absorption pressure. These two parameters have a balance 

with each other about the effect on TSC.  

Because there are two objective functions, we select the designs in the Pareto optimal 

solution named case 1 and 2 with the lowest TSC and TPCOE. Table 1 offers TSC and 

TPCOE of all configurations of the ionic liquid process. As the calculation, case 1 shows 

the lowest TSC as 170.87 $/t NH3 which decreased by 5% of the base case, and case 2 

has the lowest TPCOE decreased by 12% as 779.85 kg/h of the base case. In summary, 

the optimized results could give more detail information of ionic liquid-based NH3/CO2 

separation process, which provides a perspective for separation technology for the future. 
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Table 2. Optimization results of NH3/CO2 separation with ionic liquid. 

Operation parameters Case 1 Case 2 Unit 

Theoretical stage of absorption 8 8 - 

Feed stage position of semi-lean 4 4 - 

Total ionic liquid flow rate 47.09 43.90 t·h-1 

Absorption pressure 128 142 kPa 

Pressure of Flash 1 10 10 kPa 

Temperature of Flash 1 366.10 363.98 K 

Pressure of Flash 2 1 2 kPa 

Temperature of Flash 2 366.10 363.98 K 

RLT 0.47 0.57 - 

TSC 170.87 222.91 $·t-1 NH3 

TPCOE 831.29 779.85 kg·h-1 

4. Conclusion 

In this work, MOO was carried to separate NH3 and CO2 using the ionic liquid. The result 

showed that desorption pressure and the ratio of lean solvent to total solvent affects TSC. 

In addition, the pressure of absorption and flow rate of ionic liquid have conflict and 

balance with each other. After optimization, the TSC and TPCOE decreased 5% and 12% 

compared with the base cases, respectively. The optimization results provide information 

for optimal design and operation of NH3 and CO2 separation processes with ionic liquids 

considering environmental and economic objectives. In next step work, the different 

algorithm will be employed to compare the effect to the identification of critical 

parameters. 
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Abstract 

This work proposes a strategy to track steady-state changes in active constraints and 

minimize dynamic constraint violations in order to achieve system-wide optimal 

operation using simple feedback control structures and logic blocks. The strategy is based 

on the recently proposed primal-dual feedback-optimizing control scheme that optimally 

handles steady-state changes in active constraints. However, the constraints are controlled 

in a slow time scale by updating the dual variables (Lagrange multipliers). To reduce 

dynamic constraint violations, we propose a “fix-up” to the primal-dual scheme with 

direct control of hard constraints. We show that the improved method can reduce profit 

loss in the long run by allowing for smaller back-off from hard constraints. The 

application is to coordinated control of gas-lifted oil wells. 

Keywords: Distributed feedback-optimizing control, Oil/gas, Production optimization. 

1. Introduction 

The optimal process operation involves making decisions in real-time to meet production 

goals. This is typically done in the context of real-time optimization (RTO) using 

mathematical concepts, process models, and real-time measurements. In the 80s, there 

was an increasing interest in replacing model-based numerical solvers with a simple 

feedback loop, named feedback-optimizing control. The idea is to translate the economic 

objective into a process control objective by finding a function of the controlled variables 

(CVs), and when it is held constant, it leads to the optimal adjustment of the manipulated 

variables (MVs). These MVs drives the process to optimal operating condition (Morari 

et al., 1980). Twenty years later, Skogestad (2000) suggested replacing the term “optimal 

adjustments” with “acceptable adjustments” (in terms of the loss). This idea is known as 

self-optimizing control (SOC). In SOC, “when the optimum lies at some constraints, we 

use active constraint control where the available MVs tightly control the constrained 

variables”. When the optimum may be unconstrained, the self-optimizing CVs are 

measured variables or combinations of them. We need a good model to determine 

(offline) an accurate self-optimizing CV, and it can be time-consuming if we have a 

complex and large-scale system. Not considering noise, the ideal self-optimizing CV is 

the gradient of the cost function w.r.t. the control input, that when we keep at a constant 

setpoint of zero, it satisfies the necessary conditions of optimality (Halvorsen et al., 2003). 

In constrained cases, the process reaches ideal optimal operating conditions when the 

gradient of the Lagrange function w.r.t. to control input is kept at a constant setpoint of 

zero. If the objective function is additively separable, we can decompose the problem and 

let each local system controls its local gradients of the Lagrange function w.r.t. local 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50192-5 
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control input. In this framework, we need a central coordinator to update the shadow 

price of shared constraints and broadcast it to every subsystem (Wenzel et al., 2016). 

2. Recent Works and Problem Statement 

Consider the following steady-state optimization problem of 𝑁 different subsystems. 

min
𝐮

 𝐽(𝐮, 𝐝) = ∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁

𝑖=1
 (1a) 

𝑠. 𝑡.   𝐠s(𝐮, 𝐝) ≤ 𝟎 (1b) 

where 𝐮𝑖 ∈ ℝ𝑛𝐮𝑖  denotes the MVs for subsystem 𝑖 , 𝑛𝐮𝑖
 is the number of MVs in 

subsystem 𝑖, and 𝐮 = [𝐮1 . . . 𝐮𝑁]T, 𝐝𝑖 ∈ ℝ𝑛𝐝𝑖  denotes the disturbances in subsystem 

𝑖 , 𝑛𝐝𝑖
 is the number of disturbances in subsystem 𝑖 , and 𝐝 = [𝐝1 . . . 𝐝𝑁]T , 

𝐽𝑖: ℝ𝑛𝐮𝑖 ×  ℝ𝑛𝐝𝑖 →  ℝ  is a function that denotes the local objective of subsystem 𝑖 , 

𝐠𝐬: ℝ𝑛𝐮 ×  ℝ𝑛𝐝 →  ℝ𝑛𝐠𝐬 is a function that denotes the inequality (shared) constraints. 𝑛𝐠𝐬
 

is the number of constraints. The Lagrangian function of problem (1) is ℒ(𝐮, 𝐝, 𝝀𝒈,𝒔) =

∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁
𝑖=1 + 𝝀𝒈,𝒔

𝑇 𝐠s(𝐮, 𝐝) , where 𝝀𝒈,𝒔 ∈ ℝ𝑛𝐠𝐬  is the shadow price of the (shared) 

resource constraints. The goal of problem (1) is to determine optimal MVs to achieve 

system-wide steady-state optimal operation. Our motivation is to solve problem (1) using 

a feedback control structure that handles changing active constraints.  

One possible approach is the reduced gradient approach or region-based control (Jäschke 

and Skogestad, 2012). This method is easy to implement for a simple case with a few 

regions, and the result usually converges faster than the decomposed one for a large-

scale problem. However, this method can be problematic for a complex and large case 

as the number of the region is equal to 2𝑛𝐠𝐬 . Another attractive framework is distributed 

feedback-based real-time optimization, which is also known as primal-dual feedback-

optimizing control (Dirza et al., 2021; Krishnamoorthy, 2021). This method can avoid 

solving numerical optimization problems online by having real-time iteration of 

dual/Lagrange decomposition (e.g., Wenzel et al. (2016)). Consequently, it has a central 

coordinator acting as a "slow" central constraint controller. This structure makes primal-

dual flexible in the presence of changing active constraints. The problem with this method 

is that the constraint is controlled only on the slow time scale through the manipulation 

of the shadow prices, which is only indirectly through the unconstrained optimization 

layer that affects the (physical) MVs. This causes the shadow prices (broadcasted to the 

actual plant) to be suboptimal during the transient. This condition may lead to dynamic 

violation during the transient, and later lead to an infeasible operation. This violation is 

unacceptable when we have a hard constraint. Thus, it is necessary to introduce a “back-

off” from that constraint. Note that this back-off will also apply at a steady-state 

condition, and it may then result in a considerable economic penalty, which can lead to 

profit loss. This work addresses this violation issue and aims to minimize the profit loss. 

3. Proposed Control Structure 

Mathematically, the profit loss scale is linear with the back-off parameter. One can 

express this as 𝐿𝑜𝑠𝑠 =  −𝝀𝒈,𝒔
𝑇𝜻𝒃𝒐, where 𝜻𝒃𝒐 is the back-off parameter, which means 

that by reducing the back-off parameter, one can reduce the profit loss in the long run. 
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Therefore, this paper proposes an additional structure to control a hard constraint tightly 

in the primal-dual framework to minimize the back-off parameter. 

Because the primal-dual approach only has a central constraint controller that control the 

constraints on a slow time scale, we introduce direct constraint control as a ”fix-up” to 

reduce dynamic constraint violation. The direct constraint control is based on pairing the 

constraint with a particular MV using a selector. This tightly controls any active (shared-

) hard constraints on a fast time scale. This structure automatically switches back to the 

unconstrained mode when none of those existing constraints turns active. We introduce 

this proposed control structure as primal-dual feedback-optimizing control with direct 

constraint control. The implementation is discussed in detail in Section 4 (see Fig. 2(b)). 

Selectors, which are well-known tools in the industries, are used for active constraint 

switching (Krishnamoorthy and Skogestad, 2020). The switching determines the assigned 

value to the specified MV. When using selectors, only one of some control actions is the 

actual input to the plant at any given time. For the ones that are not selected, the feedback 

loop is “broken”. Consequently, the integral term is possibly building up. Thus, it is 

essential to implement anti-windup using a back-calculation scheme. 

4. Implementation in Subsea Oil Production Network 

We consider a subsea gas-lifted oil well 

production system, consisting of 𝑁 clusters, 

that lift oil from the different reservoirs, 

completed with a fixed shared gas-lift 

compressor with limited available power. The 

production system model is like the one used 

in Dirza et al. (2021) and an additional model 

to calculate power consumption of the 

compressor as a linear function: 𝑃𝑜𝑤𝑔𝑙 =

𝜃 ∑ ∑ 𝑤𝑔𝑙,𝑖,𝑗
𝑁𝑖
𝑗=1

𝑁
𝑖=1 , where 𝜃 is a function of a 

fixed ratio of outlet and inlet pressure of the 

compressor. Further, 𝑁𝑖 is the total number of 

wells in cluster 𝑖, and 𝑤𝑔𝑙,𝑖,𝑗 is the gas-lift rate 

injected to well 𝑗 in cluster 𝑖.  

The objective function is to maximize the oil production income while minimizing the 

cost of the gas lift. The optimization problem is as follows. 

min
𝐰𝑔𝑙

 ∑ (− 𝑝𝑜,𝑖 ∑ 𝑤𝑝𝑜,𝑖,𝑗

𝑁𝑖

𝑗=1
+ 𝑝𝑔𝑙,𝑖 ∑ 𝑤𝑔𝑙,𝑖,𝑗

𝑁𝑖

𝑗=1
)

𝑁

𝑖=1
 (2a) 

𝑠. 𝑡.   𝐟(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝟎 (2b) 

         𝐠(𝐱, 𝐰𝑔𝑙 , 𝐝) ≤ 𝟎 (2c) 

        𝐠s(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝑃𝑜𝑤𝑔𝑙 - 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 ≤ 0 (2d) 

where 𝑝𝑜,𝑖 , 𝑝𝑔𝑙,𝑖 , and 𝑤𝑝𝑜,𝑖,𝑗  are the price of produced oil, the cost of gas-lift, and the 

produced oil rate of well 𝑗 in cluster 𝑖, respectively. 𝑃𝑜𝑤𝑔𝑙  is the total power consumed 

by the fixed compressor to inject the total gas-lift rate 𝑖, and 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 is the maximum 

available power, which can also be a function of back-off parameter, 𝜁𝑏𝑜. Further, 𝐱 ∈

 

Figure 1: Field illustration 
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ℝ𝑛𝐱 , and 𝐝 ∈ ℝ𝑛𝐝  are the vectors of states, and disturbance (i.e., gas-oil-ratio) for the 

entire system. 𝐰𝑔𝑙 ∈ ℝ
𝑛𝐰𝑔𝑙  is the vector of inputs for the entire system, which can be seen 

as a vector of gas-lift rate from each well, 𝐰𝑔𝑙 = [𝑤𝑔𝑙,1,1 . . . 𝑤𝑔𝑙,𝑁,𝑁𝑁]T. 

Constraint (2b) and (2c) 

represent model and physical 

constraints, respectively. We 

assume that one locally 

manages constraint (2c) to 

maintain the focus of the 

discussion. The objective 

function (2a) is additively 

separable. Moreover, Eq. (2d) is 

a linear and hard constraint. 

Thus, we can decompose the 

problem into 𝑁  subproblems. 

This case study considers 𝑁 =
3  subsea clusters, where each 

cluster has two production 

wells (see Fig. 1) and has 

different oil prices to indicate 

the type of oil produced by each 

reservoir is different. 

As primal-dual can converge to 

optimal steady-state conditions 

(Dirza et al., 2021; 

Krishnamoorthy, 2021), this 

simulation compares primal-

dual (as shown in Fig. 2(a)) 

with the proposed control 

structures (as shown in Fig. 

2(b)). Note that 𝐲 indicates the real-time measurements set. The grey boxes represent the 

physical system. The white boxes with solid blue lines represent a faster timescale 

computation block, and the white boxes with dashed red lines represent the slower ones. 

In the proposed control structure, we assume that well 1 of cluster 1 is technically more 

feasible to control hard constrained variables tightly. We have the original constraint 𝐠s ≤
0, and by using step response, we obtain that 

𝑑𝐠𝑠

𝑑𝑤𝑔𝑙,11
> 0. This means that a small value of 

𝑤𝑔𝑙,1,1 is good in terms of satisfying the constraint and a min selector is needed,  

 

Figure 2: (a) Primal-dual control structure; (b) 

Proposed control structure which combines primal-dual 

optimization with direct constraint control. 

Table 1: Controlled Variables, Setpoints, and Manipulated Variables 

Well 𝐶𝑉 𝐶𝑉𝑆𝑃 Calculated 𝑀𝑉 Physical 𝑀𝑉 

1,1 (indirect) 𝐶𝑉1,1,𝑖𝑛𝑑 = 𝛻𝑤𝑔𝑙,1,1
ℒ1,1 0 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑 𝑤𝑔𝑙,1,1 

1,1 (direct) 𝐶𝑉1,1,𝑑𝑖𝑟 = 𝑃𝑜𝑤𝑔𝑙  𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 𝑤𝑔𝑙,1,1 

𝑖, 𝑗∗ 𝐶𝑉𝑖,𝑗,𝑖𝑛𝑑 = 𝛻𝑤𝑔𝑙,𝑖,𝑗
ℒ𝑖,𝑗 0 𝑤𝑔𝑙,𝑖,𝑗,𝑖𝑛𝑑 𝑤𝑔𝑙,𝑖,𝑗  

*: For the remaining well 𝑗 in cluster 𝑖 
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𝑤𝑔𝑙,1,1 =  𝑚𝑖𝑛(𝑤𝑔𝑙,1,1,𝑑𝑖𝑟, 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑), where 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 is the MV computed by the direct 

constraint controller, and 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑 is the primal MV by the optimization block. Note that 

we, at the optimal steady-state, must have 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 ≥ 𝑤𝑔𝑙,1,1,𝑖𝑛𝑑  or equivalently 𝐠̃s =

𝑤𝑔𝑙,1,1,𝑖𝑛𝑑 − 𝑤𝑔𝑙,1,1,𝑑𝑖𝑟 ≤ 𝟎 . This is the constraint controlled in the proposed new 

structure. Table 1 shows the CVs, Setpoints, and the MVs in this case study, where 

∇𝑤𝑔𝑙,𝑖,𝑗
ℒ𝑖,𝑗 = ∇𝑤𝑔𝑙,𝑖,𝑗

𝑱 + 𝜆𝒈,𝒔
𝑇 ∇𝑤𝑔𝑙,𝑖,𝑗

𝐠𝑠. Additionally, we use the same method as Dirza et 

al. (2021) to estimate steady-state cost and constraint gradient, labelled by ∇𝑤𝑔𝑙,𝑖,𝑗
𝑱̂ and 

∇𝑤𝑔𝑙,𝑖,𝑗
𝐠̂𝑠, respectively. 

The key idea is that we adjust the shadow price 𝜆𝑔,𝑠 so that on the long run the value of 

the MV computed by the direct constraint control (when it is active) is equal to the optimal 

primal value computed by the layer above (see Fig. 2(b)). To determine the applied 𝜆𝑔,𝑠, 

one can use a PI controller as a central constraint controller equipped with a max selector 

that gives 0 when the constraint is no longer active. The anti-windup is necessary to avoid 

𝜆𝑔,𝑠  keeps changing in this case. Thus, this selector selects either 0 or the calculated 

shadow price 𝜆̂𝑔,𝑠. Further, that shadow price 𝜆̂𝑔,𝑠 at iteration 𝑘 is as follows. 

𝜆̂𝑔,𝑠 = 𝜆𝑔,𝑠
𝑘 + 𝐾𝑝𝐠̃s

𝑘 + ∑ (𝐾𝐼𝐠̃s
𝜏 + 𝐾𝑎𝑤(𝜆𝑔,𝑠  −  𝜆̂𝑔,𝑠)

𝜏
)

𝑘

𝜏=𝑘−1
 (3) 

where 𝐾𝑝, 𝐾𝐼 , and 𝐾𝑎𝑤  are proportional, integral, and anti-wind-up gain, respectively.  

PI controllers are tuned using the SIMC tuning method introduced by Skogestad (2003). 

The local controllers and the direct constraint controller have a sampling time of 1 sec. 

The central constraint controller updates the shadow price every 2.5 min because it may 

take more time to gather information from every cluster. 

 
Figure 3: Left: Both Primal-dual and Proposed structure reach optimal steady-state 

conditions, but the constraint violation is much smaller for the proposed structure. Right: 

After implementing back-off from the power constraint. 

Fig. 3 (left subplot) shows the simulation results when we consider 𝜁𝑏𝑜 = 0. At time t =
3  hrs, the available power increases, and the shared constraint becomes inactive. 

Consequently, the gas-lift injection rates respond accordingly to achieve the optimal total 

available gas-lift allocation. Both primal-dual and proposed structure result in no dynamic 

violation at this time. At time t = 7 hrs, GOR dramatically decreases in all wells and 

causes extreme responses by the associated PI controllers. As a result, primal-dual 

significantly violates the constraint during the transient. We obtain a different result when 

applying the proposed control structure where Fig. 3 shows no dynamic constraint 

violation. At time t = 12 hrs, the GOR in most wells decreases, and the constraint is still 

active. The primal-dual has significant constraint violation during the transient for some 

time. As a comparison, the proposed structure responds accordingly and can reduce the 

magnitude and duration of that violation. At time t = 18 hrs, the GOR in most wells  

Primal-dual F eedback-optimiz ing Control w ith Direct Constraint Control
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increases, and the constraint is still active. Both methods have no dynamic violation at 

this time. In general, the proposed structure can reduce those dynamic violations (in 

constrained cases) because (conceptually) direct constraint control selects the calculated 

direct constraint control input instead of the indirect one, which is calculated based on 

suboptimal shadow price during the transient.  

In terms of dynamic violation magnitude, primal-dual and proposed structure can reach 

7.4955 MW and 1.0329 MW, respectively. When the maximum available pow er is a 

hard constraint, the proposed structure outperforms primal-dual as it can reduce more 

' req uired'  back-off, 𝜁𝒃𝒐 or even eliminate it (see F ig.3 ). Fig. 4 shows the profit obtained 

by both methods in this simulation. The result indicates that 

the proposed one can reduce profit loss as much as 22,207.00 

price unit (0 .18  % ) in 24 hours when one implements a back-

off strategy for the same case and duration. 

5 . Conclusions 

This work shows that the proposed structure with direct 

constraint control and primal-dual decomposition for 

optimization, is able to provide both tight constraint control 

on a fast timescale and optimal operation on a slow timescale. 

This strategy offers the possibility to reduce the back-off from 

constraints, which can give a large economic benefit. 
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Abstract 

Coordinating decision-making capacities using optimization is a key factor in the success 

of chemical companies. However, this coordination is often inhibited by expensive, 

legally-constrained, or proprietary subproblem models. We propose two variations on 

how model-based (surrogate) derivative-free optimization (DFO) methods can be used to 

coordinate subproblems with few connecting variables. When these surrogates are convex 

quadratic, they can be efficiently exploited using semidefinite programming techniques. 

We compare the performance of these two variations with a distributed optimization 

solver (ADMM), a model-based, and a direct DFO solver (Py-BOBYQA and DIRECT-

L). This comparison is done on four variations of an economic-environmental feedstock 

blending optimization case study. While ADMM seems to display faster initial 

convergence, explorative DFO optimization solvers seem promising in escaping local 

minimizers, especially in lower dimensions. 

Keywords: Expensive black-box; Surrogate optimization; Derivative-free optimization 

1. Introduction 

Model-based optimization of operations is key for chemical enterprises to remain 

competitive in an environment of increasingly complex economical, sustainability, and 

safety considerations. In enterprise-wide optimization, previously disconnected chemical 

engineering optimization models are integrated into a single model, wherein subproblems 

are coupled via few complicating variables and constraints. When the complicating, also 

called shared or global, variables are sparse compared to the number of local, or private, 

subproblem variables, these applications lend themselves well to distributed optimization 

and decomposition techniques (Tang and Daoutidis, 2019). Examples include the 

planning of supply chains or the operation of interconnected processing units where 

regional agents decide on the shared material streams that minimize a local, private cost. 

Distributed optimization is a powerful tool that allows for the solution of large-scale 

nonlinear problems with significant computational savings using only limited information 

exchange. Augmented Lagrangian methods, such as the Alternating Direction Method of 

Multipliers (ADMM), have garnered special attention (Boyd et al., 2010). These methods 

iterate between a coordination step and the parallel solution of local subproblems. While 

these methods have proven convergence properties on convex problems, they lose 

convergence guarantees on nonconvex problems. Despite this, they can often be applied 

in practice (Rodriguez et al., 2021).  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50193-7 
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As such, Houska et al. (2016) have proposed an Augmented Lagrangian based algorithm 

for distributed nonconvex optimization (ALADIN) algorithm and conditions for 

convergence to local minimizers on nonconvex problems. ALADIN iterates between the 

parallel optimization of subproblems and a sequential quadratic programming (SQP) step 

for the coordination. This has been applied to nonconvex model predictive control and 

optimal power flow (Engelmann et al., 2020), as well as sensor localization problems 

(Houska et al., 2016). 

Both algorithms display drawbacks that impede practical applicability: ADMM, as a 

subgradient method, requires many iterations to converge. ALADIN requires cheap 

gradient expressions and an approximation of the Hessian of the subproblems for the SQP 

step. Derivative information might not be available if the optimal solution of the 

subproblems requires ‘expensive black-box’ evaluations. This is the case in many process 

systems engineering (PSE) applications when the subproblems sample the output of 

proprietary simulation queries, or if expressions for the local objectives and constraints 

are not available for security, privacy, organizational, or other reasons: multiple business 

entities having to coordinate on the design of a supply chain while respecting local 

constraints and privacy; or in multi-objective optimization, where each objective is given 

by a different black-box simulation or optimization model. 

Black boxes are often optimized using derivative-free optimization (DFO). DFO 

algorithms do not require gradient information and can be broadly classified into two 

classes (Larson et al., 2019): direct methods which approach the optimum by handling 

function evaluations directly; and model-based methods which rely on the intermediate 

construction of surrogates. In a coordination problem, we can then use DFO to find the 

shared variables that minimize the sum of local subproblem objectives. The key 

distinction between this DFO-based coordination and distributed optimization algorithms 

(like ADMM) lies in how the shared variables are updated in the coordination step. 

In this work, we consider the coordination of black-box subproblems using no model 

information except for input-output data. We propose 1) the use of DFO algorithms for 

the coordination step instead of distributed optimization, and 2) two purely `data-driven’ 

DFO strategies that rely on quadratic surrogates used within a trust region framework.. 

These methods are compared with ADMM, as well as a model-based, and direct DFO 

algorithm on all four combinations (lower- and higher-dimensional, convex and 

nonconvex) of a coordination problem consisting of an an economic blending and an 

environmental impact simulation subproblem. 

2. Methodology 

We are interested in solving problems of the following generic form:  

min
𝐳∈Z, 𝒙∈𝑋

 ∑ 𝑓𝑖(𝒙𝒊,  𝒛)

𝑖

  (1) 

where 𝒛 ∈ 𝑅𝑛𝑧 is the vector of global, shared, variables within the feasibility set Z, and 

𝒙 ∈ 𝑅𝑛𝑥 is the vector of local, private variables within the feasibility set 𝑋. This can be 

reformulated as the following min-min problem: 
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min
𝐳∈Z

 min
𝐱∈X

∑ 𝑓𝑖(𝒙𝒊,  𝒛)

𝑖

  (2) 

After fixing 𝒛, the problem becomes block separable, which makes the problem amenable 

to primal decomposition and distributed optimization. In fact, Eq. (2) is equivalent to the 

following constrained (bi-level) optimization problem: 

min
𝐳∈Z

 F(𝒛)    subject to:  F(𝒛) =   min
𝐱∈X

∑ 𝑓𝑖(𝒙𝒊,  𝒛)

𝑖

  (3) 

Decomposition techniques rely on iteratively updating 𝒙 and 𝒛 with the other set of 

variables fixed (Gauss-Seidel sweeps) (Palomar and Chiang, 2006). In the Alternating 

Direction Method of Multipliers (ADMM) – a distributed optimization technique - local 

copies of 𝒛 are introduced 𝒚𝒊. These are then penalized in the objective of (2) as added 

Lagrangian and Augmented Lagrangian terms. This problem can then be solved 

iteratively in its consensus form: 

𝒙𝒊
𝒌+𝟏 = argmin

𝐱𝐢∈Xi,   𝒚𝒊∈𝑍
 𝑓𝑖(𝒙𝒊,  𝒚𝒊) +

𝜌

2
‖𝒙𝒊 − 𝒛𝒌 + 𝒖𝒊

𝒌‖
𝟐

𝟐
 (4a) 

𝒖𝒊
𝒌+𝟏 = 𝒖𝒊

𝒌 + 𝒙𝒊
𝒌+𝟏 − 𝒛𝒌+𝟏 (4a) 

where 𝒛𝒌+𝟏 is the average of 𝒙𝒊
𝒌+𝟏, and 𝒖𝒊

𝒌 ∈ 𝑅𝑛𝑧 are the scaled dual variables of iteration 

k and subproblem i. This method is used as a base case to compare our proposed 

algorithms to. What we suggest is the use of derivative-free optimization (DFO) to solve 

for 𝒛 that minimizes the objective  F(𝒛) in Eq. (3) where the latter is extended with an 

Augmented Lagrangian term to ensure convergence of the subproblem: when there is no 

feasible 𝒙𝒊 for the proposed 𝒛, the solution converges to the nearest feasible 𝒙𝒊 and the 

associated deviation from 𝒛 is penalized in the 
𝜌

2
‖𝒙𝒊 − 𝒛‖𝟐

𝟐 term: 

Fi(𝒛) =   min
𝐱∈X

 𝑓𝑖(𝒙𝒊,  𝒛) +
𝜌

2
‖𝒙𝒊 − 𝒛‖𝟐

𝟐 (5) 

For this work, we choose Py-BOBYQA and DIRECT-L as promising model-based and 

direct DFO solvers respectively. The interested reader is referred to van de Berg et al. 

(2021) where we have described these solvers and benchmarked them on a handful of 

chemical engineering applications. We have also introduced CUATRO as a trust region-

based convex quadratic surrogate DFO algorithm. There are two different ways that 

surrogate models (such as CUATRO) could be used for the derivative-free optimization 

of problem (3). In both ways, a set of shared variables is broadcast to the subproblems, 

where the associated local objective functions (Eq. (5)) are evaluated in private. All 

evaluations within the trust region are then used to fit a quadratic surrogate to the 

evaluations. The difference lies in whether one single surrogate is fitted over the sum of 

the subproblem evaluations as in Eq. (6a), or whether each subproblem fits its own 

surrogate Eq. (6b), whose sum is then coordinated in the objective. The approach used in 

Eq. (6a) is similar to (Li et al., 2021), and could be loosely referred to as a `Data-driven 

ADMM’, while the other version, with one surrogate per subproblem, resembles a `Data-

driven ALADIN’. 
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min
𝐳∈Z

 F̂(𝒛)    subject to:  F̂(𝒛) = 𝒛𝑻𝐴𝒛 + 𝒃𝑻 𝒛 + 𝑐 ≈ ∑ 𝐹𝑖(𝒛)

𝑖

 (6a) 

𝑚𝑖𝑛
𝒛∈𝑍

 ∑ 𝐹𝑖̂(𝒛)

𝑁

𝑖

    subject to:  𝐹̂𝑖(𝒛) = 𝒛𝑻𝐴𝑖𝒛 + 𝒃𝑖
𝑻 𝒛 + 𝑐𝑖 ≈ 𝐹𝑖(𝒛) (6b) 

These surrogates are then optimized within a trust region, and the best iterate and trust 

region radius are updated as in van de Berg et al. (2021) for the CUATRO algorithm. 

When A, 𝒃, and 𝑐 are fitted to be convex, semidefinite programming can be leveraged for 

the training and exploitation of the surrogates. This way, the algorithm overhead remains 

tractable compared to the expensive subproblem evaluations. 

Our synthetic case study is inspired by an industrial problem where the composition of 

chemical feedstock needs to be optimized based on cost and environmental impact. The 

decision variables represent feedstock composition. The solution also needs to satisfy 

product performance constraints. The practitioners however only have access to the two 

separate problems as the output of expensive, proprietary black-boxes, preventing the two 

models from being integrated and exploited using conventional mixed-integer solvers. 

We present here a simplified case study involving 10 or 28 decision feedstocks as the 

shared variables z. The economic optimization problem takes the following form:   

min
𝐲 ∈{0,1}𝑛𝑥; 𝒛,𝒙 ∈𝑅𝑛𝑥

 ∑ (𝑥𝑖𝐶𝑜𝑠𝑡𝑖𝑖 + 𝜌 (𝑥𝑖 − 𝑧𝑖)
2)              (7a) 

𝑠. 𝑡.     𝑥𝑖 ≤ 𝑦𝑖,    ∑ 𝑦𝑖 ≤ 𝑁𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑖 ,    ∑ 𝑥𝑖𝑖 = 1,    𝐿𝑖 ≤ ∑ 𝑥𝑖 𝐴𝑖 ≤ 𝑈𝑖𝑖                (7b) - (7e) 

where the objective function (Eq. (7a)) constitutes of linear cost terms and an Augmented 

Lagrangian term to ensure convergence of the subproblem for all proposed z. Eq. (7e) 

includes lower and upper bounds on blending quality; Eq. (7d) ensures that the total 

composition adds up to one; Eq. (7b) and (7c) ensure that only Ninteger variables are non-

zero if there is a cap on the number of feeds in the mix. The latter constraints can be 

relaxed to make the problem convex. The environmental impact subproblem involves a 

simulation whose output is the result of linear and square terms in the composition 

variables with the optional addition of bilinear terms to introduce nonconvexity. The two 

objective evaluations are then scalarized into a single objective using a scalarization 

factor for the environmental impact output. We take 𝜌 to be 1 ∙ 106  and start from an 

initial guess where all components weigh the same, 0.0357 and 0.1 respectively. 

The next section compares the convergence of the two versions of DFO solvers 

CUATRO, Py-BOBYQA, and DIRECT-L with ADMM in its consensus form. Each 

comparison is made on all four combinations of lower- and higher-dimensional as well 

as convex and nonconvex versions of the coordination problem. 

3. Results and Discussion 

Figure 1 shows the convergence of the best function evaluation with respect to the number 

of function evaluations of all methods on the four variations of the coordination problem. 

ADMM stands out as the method that makes the most progress in the least number of 

evaluations. Within ten evaluations, ADMM manages to approach a solution that is 

feasible (to an acceptable numerical tolerance) and near-optimal in all four cases. The 

next-best performing method, Py-BOBYQA, takes around 50 evaluations to get as close 
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in the convex lower-dimensional case, and around 200 in the higher-dimensional 

nonconvex case. Otherwise, the final convergence of Py-BOBYQA is close to that of 

ADMM in the lower-dimensional case. It is slightly worse in the higher-dimensional 

convex, and slightly better in the higher-dimensional nonconvex case. It is expected that 

these methods perform better in the first evaluations as they are exploitative without 

explicit exploration. 

In the lower-dimensional convex case, DIRECT-L and CUATRO with subproblem 

surrogates converge to the same optimum as ADMM and Py-BOBYQA, but require more 

evaluations. In the two higher-dimensional cases, DIRECT-L converges to a slightly 

worse optimum than ADMM and Py-BOBYQA in significantly more evaluations. For 

most cases, CUATRO constructing subproblem surrogates performs better than its single 

`coordinated surrogate’ counterpart. However, the lower-dimensional nonconvex case 

stands out, as both DIRECT-L and CUATRO employing a single coordinated surrogate 

perform best, converging to a better optimum than both Py-BOBYQA and ADMM. 

This observation attempts to answer the central question of this work. Generally. while 

subgradient methods (ADMM) are slow to converge in terms of iterations, in higher 

dimensions, subgradient information still leads to quicker convergence than using data 

on its own. However, the lower-dimensional nonconvex case study suggests that 

derivative-free optimization solvers could shine for nonconvex applications with very few 

decision variables, where exploration is encouraged, and additional evaluations required 

to escape local minimizers. While the discussion of the relative performance of DFO 

algorithms is in line with that of van de Berg et al. (2021), we are not aware of any 

previous literature that directly compares DFO and distributed optimization coordination 

approaches. Additionally, since CUATRO has the capacity to explicitly handle black-box 

C D 

A B 

Figure 1. Convergence plots: Best function evaluation versus number of evaluations on the 10-d 

convex (A), 10-d nonconvex (B), 28-d convex (C), and 28-d nonconvex (D) case study using 

CUATRO_1 with a single coordinated surrogate (cyan dotted lines with X markers), CUATRO_2 
with local subproblem surrogates over each subproblem (dark blue dotted lines with squares), 

ADMM (solid black line), Py-BOBYQA (dotted orange line), and DIRECT-L (dotted red line with 

shaded min-max range over 10 runs) 

Data-driven coordination of expensive black-boxes 
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constraints, CUATRO could become useful for the navigation of more complex private 

constraints, e.g. when the subproblems can only access binary constraint information – is 

this set of global variables feasible or not? Finally, CUATRO, as a regression- rather than 

interpolation-model (such as Py-BOBYQA), could lead to better convergence when the 

subproblems involve stochasticity.  

4. Conclusion 

We have proposed alternatives to using distributed optimization in the case where 

subproblems need to be coordinated using input-output data as the only accessible 

information from the subproblem. It is possible to use DFO solvers that converge to the 

same optimum as the distributed optimization solver ADMM. However, only under 

specific conditions is the use of DFO solvers encouraged over that of ADMM, namely 

when the subproblems are highly nonconvex and connected by few shared variables. As 

for the DFO solvers, Py-BOBYQA displays the quickest and most reliable convergence, 

but as an exploitative method also regularly gets stuck in the same local minima as 

ADMM. DIRECT-L usually displays slow but still consistent convergence, escaping 

many local minima due to its partition-based nature. Finally, CUATRO should not be 

dismissed as a potential solver for more complex coordination problems involving 

stochasticity, and black-box constraints. 
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Abstract 

In this paper, we propose a novel robust unit commitment (UC) framework with data-
driven disjunctive uncertainty sets for volatile wind power outputs, assisted by machine 
learning techniques. To flexibly identify the uncertainty space for wind power forecast 
error data with disjunctive structures, the uncertainty data are grouped using K-means 
and density-based spatial clustering of applications with noise. The disjunctive 
uncertainty sets are constructed accordingly as the union of multiple basic uncertainty 
sets, including conventional uncertainty sets, and data-driven uncertainty sets using 
Dirichlet process mixture model, principal component analysis coupled with kernel 
density estimation, and support vector clustering. The problem is formulated into a two-
stage robust UC model with data-driven disjunctive uncertainty sets and with a multi-
level optimization structure. To facilitate the solution process, a decomposition-based 
optimization algorithm is developed. The effectiveness of the proposed framework is 
illustrated using a case study based on the IEEE 39-bus system. 

Keywords: Unit commitment, robust optimization, machine learning, disjunction. 

1. Introduction 

The United States is planning to use wind energy to provide 20% electricity in 2030 and 
35% in 2050. Considering the intermittent nature of wind power (Ning and You, 2022), 
including the forecast uncertainties in the unit commitment (UC) decision-making 
process can help ensure power systems reliability and reduce the economic costs 
(Padhy, 2004). Robust UC has gained attention in recent years, owing to its robustness, 
flexible conservatism control, computational efficiency (Qiu et al., 2020), and effective 
utilization of large-scale uncertainty data (Ning and You, 2019). The robust UC 
problem is generally formulated into a two-stage adaptive robust optimization (ARO) 
model. The first stage determines the on-off decisions, and the second stage provides 
power output and dispatch decisions according to the worst case (Bertsimas et al., 
2013). Note that the wind power forecast errors can have complex and disjunctive data 
structures, and studies found that it could be more appropriate to depict such uncertainty 
using more general distributions, such as the Gaussian mixture model (Wang et al., 
2017). The finding indicates that the traditional “one-set-fits-all” approach for 
constructing a single uncertainty set based on all uncertainty data may not flexibly and 
accurately capture the uncertainty space. From a machine learning perspective, 
clustering has been a useful tool in detecting the disjunctive structure of a data set. To 
the best of our knowledge, there is no existing literature on robust optimization-based 
UC that systematically and effectively captures the uncertainty space based on 
uncertainty data with disjunctive structures by integrating clustering techniques with the 
ARO models. To fill the knowledge gap, this study aims to propose a novel two-stage 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50194-9 
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adaptive robust UC framework that has the potential of leading to better optimization 
solutions by incorporating data-driven disjunctive uncertainty sets to deal with the 
uncertain wind power forecast error data, which are independent and identically 
distributed (Bludszuweit et al., 2008) and have disjunctive structures. A tailored 
decomposition-based optimization algorithm is developed to iteratively solve the 
resulting robust UC problems. To illustrate the effectiveness of the proposed 
framework, an application on the IEEE 39-bus system is presented. 

2. Data-driven robust unit commitment with disjunctive uncertainty sets 

A two-stage ARO framework with data-driven disjunctive uncertainty sets is proposed 
in this work for UC with uncertain wind power forecast errors, as shown in Figure 1. 
First, the optimal number of uncertainty data clusters is determined using the Calinski-
Harabasz index. Next, the uncertainty data are clustered according to the optimal 
number of clusters using machine learning techniques. After integrating the uncertainty 
data with the clustering results, the data-driven disjunctive uncertainty sets are then 
constructed. Subsequently, the ARO problem is formulated by incorporating the data-
driven disjunctive uncertainty sets. Lastly, the proposed ARO problem is solved 
iteratively using a tailored decomposition-based optimization algorithm. 

 

Figure 1. Flowchart of the proposed ARO framework with disjunctive uncertainty sets.  

The objective function is minimizing the total UC cost under uncertainty. Note that the 
optimization model has a two-stage structure. Specifically, the “here-and-now” 
decisions for the first stage represent the commitments of generators that are determined 
24 hours ahead, including online status, start-up status, and shutdown status of 
generators. The “wait-and-see” decisions determined after the uncertainty is realized in 
the second stage depict the economic dispatch process, including the power output of 
generators, power dispatch of a wind farm, and slack variables for balance constraints. 
The constraints of the robust UC model include the logic relations of generators, the 
minimum uptime and downtime of generators, the minimum and maximum power 
outputs of a generator, the ramping rates, the energy balance of the system, the 
capacities of transmission lines, the maximum outputs from wind farms that equal to the 
summation of forecasted wind power generation and the uncertain forecast errors, the 
initial commitment status and power outputs of generators, and the feasible region of 
decision variables. The maximum output constraint for wind farms holds for all 
potential realizations of the uncertainty, which guarantees the robustness of solutions. 
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A novel approach for developing data-driven disjunctive uncertainty sets is developed 
in this study. The conventional robust optimization adopts the “one-set-fits-all” 
approach that constructs a single uncertainty set to depict the uncertainty space. In 
contrast, the disjunctive uncertainty sets consist of multiple basic uncertainty sets (Ning 
and You, 2018), and the uncertainty space is represented by the union of these 
uncertainty sets, as shown in Eq.(1). L is the set of uncertainty data clusters. 

l
lU U  (1) 

To determine the optimal number of clusters, the Calinski-Harabasz index is calculated, 
which finds the optimal number of clusters by pursuing a balance between the 
compactness of a data group and the distribution of all data groups. Specifically, the 
uncertainty data are first grouped using K-means for a range of k, and the one with the 
highest Calinski-Harabasz index represents the optimal number of clusters. For data 
clustering, two machine learning techniques, namely K-means and density-based spatial 
clustering of applications with noise (DBSCAN), are used to group the uncertainty data 
according to the optimal number of clusters. K-means is an unsupervised, non-
deterministic, iterative, and centroid-based clustering algorithm, while DBSCAN is a 
density-based clustering algorithm. 

Based on the resulting uncertainty data clusters, five types of basic uncertainty set can 
be constructed, including the traditional box and budget uncertainty sets, and three types 
of data-driven uncertainty sets using a variational inference algorithm for the Dirichlet 
process mixture model (DPMM) (Ning and You, 2017), principal component analysis 
(PCA) coupled with kernel density estimation (KDE) (Ning and You, 2018), and 
support vector clustering (SVC) (Shang and You, 2017, 2019). These data-driven 
uncertainty sets are widely adopted in the robust optimization community because of 
their remarkable performances in capturing the uncertainty space (Ning and You, 2019).  

The two-stage robust UC with the proposed disjunctive uncertainty sets have an 
objective function with a multi-level structure, semi-infinite constraints, and non-
convex uncertainty sets. Therefore, to facilitate the solution process, a decomposition-
based optimization algorithm is developed and applied. Specifically, a master problem 
and a set of subproblems are iteratively solved in the decomposition-based optimization 
algorithm. The master problem optimizes the UC decisions under multiple optimality 
cuts that correspond to a partial enumeration of the extreme points of the basic 
uncertainty sets and provides a lower bound to the original robust UC problem. 
Subsequently, we fix the values of first-stage decision variables following the optimal 
solutions of the master problem and develop a set of subproblems to investigate 
economic dispatch under the worst case. Note that each basic uncertainty set Ul 
corresponds to an individual subproblem. To reformulate the subproblem into a single-
level maximization problem that can be solved directly by off-the-shelf solvers, the 
classical Karush-Kuhn-Tucker (KKT) conditions and the big-M method are used. The 
solutions of subproblems provide upper bounds of the original problem. A set of 
additional optimality cuts is then generated based on the uncertainty realization in the 
worst case and is updated in the master problem for the next iteration. Eventually, the 
algorithm terminates when the relative optimality gap is below the tolerance level ξ. 
Furthermore, to improve the computational efficiency, the master problem and 
subproblem are constructed only once during the solution process, and a part of the 
variables and constraints are updated in the following iterations. 
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3. Case study based on IEEE 39-bus systems 

To illustrate the effectiveness of the proposed framework with disjunctive uncertainty 
sets, a case study based on the IEEE 39-bus system is investigated. The system includes 
39 buses, 10 generators, 46 lines, and 3 wind farms. 800 uncertainty data samples are 
generated from a Gaussian mixture model. The two-stage robust UC problem is coded 
using Pyomo in Python on a PC with an Intel i7-8700 @ 3.20 GHz CPU and 32GB 
RAM, running on a 64-bit Windows 10 Enterprise operating system. The reformulated 
master problems and subproblems are solved using Gurobi 9.1. 

 

Figure 2. Uncertainty data, determination of optimal group number, clustering results, and 
uncertainty sets for application on IEEE 39-bus system. (a) Uncertainty data samples. (b) Elbow 
method. (c) Calinski-Harabasz index. (d) K-means results. (e) DBSCAN results. (f) Conventional 
box. (g) Conventional budget. (h) Conventional DPMM. (i) Conventional PCA & KDE. (j) 
Conventional SVC. (k) K-means + box. (l) K-means + budget. (m) K-means + DPMM. (n) K-
means + PCA & KDE. (o) K-means + SVC. (p) DBSCAN + box. (q) DBSCAN + budget. (r) 
DBSCAN + DPMM.  (s) DBSCAN + PCA & KDE. (t) DBSCAN + SVC. 

Figure 2 presents the uncertainty data, the data clustering results, and the uncertainty 
sets. Wind forecast error data are shown in Figure 2(a). According to the elbow method 
and the Calinski-Harabasz index method in Figure 2(b)-(c), the optimal number of data 
groups is 4. Next, K-means and DBSCAN are applied individually to group the data 
into 4 data groups in Figure 2(d)-(e). Conventional and disjunctive uncertainty sets are 
shown in Figure 2(f)-(t). All types of data-driven uncertainty sets have the same level of 
conservativeness, which can be chosen by the decision makers to balance risk and 
robustness. The level of conservativeness is set to be 90%, represented by the same data 
coverage level of 90% across all types of data-driven uncertainty sets. The UC problem 
is solved using the proposed decomposition-based optimization algorithm. The solution 
time for the conventional uncertainty sets without clustering ranges from 46 to 182 
seconds, and the problems with the proposed disjunctive uncertainty sets take 60-85 
seconds to solve. Compared to the conventional approach that updates the entire models 
during the iterative solution process, the proposed algorithm can significantly improve 
the computational efficiency by reducing the solution time by around 70%. The optimal 
objective values, namely the minimum UC costs, are listed in Table 1. Higher values 
correspond to more conservative solutions. For comparison, the minimum cost for the 
deterministic case with no uncertainties is $426,443. To investigate the effectiveness of 
the proposed approach, we apply the price of robustness (PoR) to measure the level of 
additional cost for the robust optimization cases compared to the deterministic case. The 
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proposed approach reduces PoR by 28-38%, 7.6%, 23%-29%, 27%-31%, and 21%-22% 
for the problems with box, budget, DPMM, PCA coupled with KDE, and SVC 
uncertainty sets, respectively, compared to the conventional approach. Also, the 
problems with disjunctive uncertainty sets constructed using DBSCAN tend to have 
lower optimal costs than the problems with K-means-based disjunctive uncertainty sets, 
showing that DBSCAN may handle the outliers of the uncertainty data more efficiently. 

Table 1. Optimal objective values under uncertainty sets with different approaches. 

minimum cost ($) Box Budget DPMM PCA & KDE SVC 

No Clustering 461,020 441,155 445,741 455,089 444,191 

K-Means 451,178 440,041 441,277 447,271 440,508 

DBSCAN 447,712 440,041 440,092 446,121 440,217 

 

Figure 3. Simulation results under the optimal solutions from ARO and SP approaches. 

To benchmark the performance of the proposed approach, we simulate the UC costs 
under the optimal solutions from both the ARO models and the conventional two-stage 
stochastic UC models. We obtain the optimal stochastic UC solutions through 30 and 
100 random scenarios, denoted as SP-30 and SP-100 solutions, respectively. The 
stochastic UC problems tend to be more computationally demanding, as obtaining SP-
30 and SP-100 solutions take 342 CPUs and 1,194 CPUs, which are more than three 
times longer than the solution time using the proposed framework with disjunctive 
uncertainty sets. Figure 3 presents the simulated UC costs following ARO and SP 
solutions throughout 100 randomly generated out-of-sample scenarios, where the 
horizontal lines indicate the average out-of-sample costs. The SP-30 solution cannot 
handle the systems contingencies effectively, as shown by two scenarios with UC costs 
over $500,000. As for the proposed approach, the solution corresponding to the K-
means-based disjunctive box uncertainty sets shows a noticeably lower average UC cost 
than the solution using the conventional box uncertainty set. The differences of average 
simulated UC costs between the SP-100 solution and the robust UC solutions using the 
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proposed data-driven disjunctive uncertainty sets are below 0.001%, while the solution 
time of SP-100 is 13 times longer than the proposed approach.  

4. Conclusions 

This paper proposed a novel robust UC framework with data-driven disjunctive 
uncertainty sets for the wind power forecast errors with disjunctive structures. The 
uncertainty data were grouped using K-means and DBSCAN, and the proposed 
disjunctive uncertainty sets were constructed accordingly as the union of multiple basic 
uncertainty sets, including conventional uncertainty sets and data-driven uncertainty sets 
using DPMM, PCA coupled with KDE, and SVC. The resulting problem was 
formulated as a two-stage robust UC model with disjunctive uncertainty sets. To 
facilitate the solution process, a tailored decomposition-based optimization algorithm 
was developed. A case study based on the IEEE 39-bus system was performed. The 
results presented that the price of robustness reduced by 8-48% with the proposed 
framework, compared to the traditional “one-set-fits-all” approach. 
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Abstract 

This work presents a mixed-integer linear programming (MILP) heat integration model 

tailored to superstructure optimization. It includes energy targeting based on a 

transshipment model combined with linearized heat exchanger capital costs. A variable 

number of heat utilities at different temperature levels can be implemented. In addition, 

the model facilitates the utilization of high temperature heat pumps to benefit from low 

exergy waste heat. The heat integration model is part of the Open sUperstrucTure 

moDeling and OptimizatiOn fRamework (OUTDOOR) and thus can be accessed easily 

using its intuitive excel-based interface. A model evaluation of the MILP shows low cost 

deviations of 1–14 % compared to more complex models, with fast solution times. 

Additionally, a practical superstructure case study is presented, where internal heat 

recovery reduces the external heat consumption of a power-to-methanol process by 40 %, 

thus underlining the relevance for adequate consideration. 
 

Keywords: Superstructure optimization, Heat integration, MILP, Open-source 

1. Introduction 

Heat integration and the optimization of heat exchanger networks (HEN) is an important 

domain in chemical engineering and process synthesis. It includes three major steps: 1) 

minimization of external utility demand, 2) minimization of heat exchanger (HEX) area 

and 3) minimization of the HEX matches (Yee and Grossmann, 1990). Different 

approaches, from simple pinch analysis to complete simultaneous optimization of all 

three tasks exist, the latter resulting in complex MINLP’s (Mixed-Integer Non-Linear 

Programming models). Renowned MINLP approaches were developed by Yee and 

Grossmann as well as by Ciric and Floudas (Ciric and Floudas, 1991; Yee and 

Grossmann, 1990). However, the integration of MINLP’s in tools for preliminary process 

design, like superstructure models, tends to increase their complexity. A superstructure 

model is a simplified representation of many possible flowsheets that is used for process 

synthesis (Kenkel et al., 2021a). Solving MINLP superstructures is generally much 

slower if not even impossible for large models. Thus, heat integration is often omitted, 

which can lead to suboptimal solutions if flowsheets include considerable heat integration 

potential. This work presents a novel MILP heat integration model tailored to 

superstructure models. It is implemented in the Open sUperstrucTure moDeling and 

OptimizatiOn fRamework (OUTDOOR) and provides fast solution times, easy code 

implementation and data input together with reasonable accuracy (Kenkel et al., 2021b). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50195-0 
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2. Methodology 

2.1. Energy targeting model  

The heat integration model is part of OUTDOOR’s MILP superstructure model for 

process synthesis which is described in detail by Kenkel et al. (Kenkel et al., 2021a). 

OUTDOOR can be used to derive optimal flowsheets based on interaction of different 

unit-operations using mass and energy balances as well as cost and emission functions 

(Kenkel et al., 2021b, 2021a). The underlying energy targeting model is based on a 

transshipment model and depicted in Figure 1. Prior to optimization, the inlet and outlet 

temperatures of unit-operations, external heating and cooling utilities as well as heat 

pump (HP) inlet and outlet temperatures are defined. Those temperatures form a 

temperature grid. To account for a minimum temperature difference of Δ𝑇𝑚𝑖𝑛 = 10 K 

within the temperature grid, the inlet and outlet temperatures of the hot/cold units are 

reduced/increased by 5 K. The required heating and cooling demands of the individual 

unit-operations are defined by the calculated (case specific) mass flow rates (in t/h) and a 

predefined specific energy demand (in MWh/tinput). These are partitioned into the different 

temperature intervals on the temperature grid. Heat can be exchanged in the different 

temperature intervals. Residual heat at high temperatures can be cascaded down to lower 

intervals. If a heat deficit persists, it has to be satisfied by external heat. Residual heat in 

the lowest temperature interval is cooled down by the cooling water utility. For every heat 

interval that exchanges heat, a virtual HEX is calculated, which is used for the cost 

calculation of the virtual HEN. The HP can raise low temperature heat to higher 

temperature intervals based on predefined HP inlet and outlet temperature and coefficient 

of performance (COP). 

 

Figure 1: Representation of OUTDOOR’s energy targeting model. 

2.2. Heat integration costs  

The heat integration costs are calculated on an annual basis using the total external utility 

demand and capital costs for a virtual HEX depicting the HEN. Additional costs are added 

for the HP if it is utilized. Heating costs are calculated based on derived heat deficits in 

the different temperature intervals; cooling costs are derived from the residual heat in the 
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lowest temperature interval. Annual capital costs of virtual HEX are determined by a 

linear cost function presented in Eqs. (1) – (3). Here, 𝑄ℎ𝑖
𝐸𝑋 depicts the exchanged heat flow 

in temperature interval hi, 𝑀ℎ𝑖  represents a large Big-M parameter and 𝑌ℎ𝑖  a binary 

variable that defines if heat is exchanged in temperature interval hi. m and b are linear 

coefficients which are derived from several pre-simulated, sized and costed HEX using 

Aspen Plus. Their default values are m = 13.459 k€ MW-1 yr-1 and b = 3.3893 k€ yr-1. The 

costs of the HP are derived from its electricity demand, which depends on the defined 

COP and utilized heat, plus the capital costs, which result from a linear correlation with 

the heat output. 

𝐶_𝐻𝐸𝑋ℎ𝑖 ≤ 𝑚 ⋅  𝑄ℎ𝑖
𝐸𝑋 + 𝑏 + 𝑀ℎ𝑖 ⋅ (1 − 𝑌ℎ𝑖) (1) 

𝐶_𝐻𝐸𝑋ℎ𝑖 ≥  𝑚 ⋅  𝑄ℎ𝑖
𝐸𝑋 + 𝑏 − 𝑀ℎ𝑖 ⋅ (1 − 𝑌ℎ𝑖) (2) 

𝐶_𝐻𝐸𝑋ℎ𝑖 ≤  𝑀ℎ𝑖 ⋅ 𝑌ℎ𝑖  (3) 

3. Model evaluation 

Two performance tests are performed for the MILP using well-known cases provided by 

Linnhoff et al. and Floudas and Grossmann (Floudas et al., 1986; Linnhoff et al., 1982).  

3.1. Performance test cases 

The first performance test is a simple HEN optimization given by Linnhoff et al. including 

two hot/cold streams together with external utilities. (Linnhoff et al., 1982). It was tested 

by Linnhoff et al., by usage of the MAGNETS software and the rigorous MINLP by Yee 

and Grossmann. (Floudas et al., 1986; Linnhoff et al., 1982; Yee and Grossmann, 1990). 

The second test is more complex, considering five hot streams and one cold stream. This 

case is an example from the MAGNETS user manual also tested by Yee and Grossmann 

as well as Ciric and Floudas, among others (Ciric and Floudas, 1991; Floudas et al., 1986; 

Yee and Grossmann, 1990). Initial data for the tests is given in Table 1 and 2. 

Table 1: Initial data for performance test 1 taken from Linnhoff et al. (Linnhoff et al., 1982) 

Stream name TIN (°C) TOUT (°C) Fcp (kW K-1) Costs ($ kW-1 yr-1) 

H1 169.85 59.85 30 – 

H2 149.85 29.85 15 – 

C1 19.85 134.15 20 – 

C2 79.85 139.85 40 – 

Steam 176.85 176.85 – 80 

Cooling water 19.85 39.85 – 20 

Table 2: Initial data for performance test 2 taken from MAGNETS user manual (Floudas et al., 

1986) 

Stream name TIN (°C) TOUT (°C) Fcp (kW K-1) Costs ($ kW-1 yr-1) 

H1 226.85 46.85 6 – 

H2 206.85 106.85 4 – 

H3 186.85 86.85 6 – 

H4 106.85 86.85 20 – 

H5 106.85 46.85 12 – 

C1 16.85 386.85 18 – 

Steam 426.85 426.85 – 140 

Cooling water 26.85 46.85 – 10 
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3.2. Results 

The implementation of the stream data in OUTDOOR only takes ca. 5 minutes due to its 

ready-made excel-templates. To enable a fair cost comparison, the virtual HEX capital 

costs are first adjusted to the according reference year by applying the chemical 

engineering cost plant index (CECPI) and further transformed from € to $. 

The total run time of the OUTDOOR program for performance test 1 is 1.33 s of which 

0.33 s are solver time by Gurobi. The calculated total annual HEN costs are 102,123 $ 

which is about 14 % higher than the results from Linnhoff et al., the MAGNETS solution 

and one case of Yee’s and Grossmann’s MINLP (Yee and Grossmann, 1990) (ref. Figure 

2). Annual external utility costs are equal to Linnhoff’s and the MAGNETS solution, 

whilst annual capital costs are about 20–25 % higher (Yee and Grossmann, 1990).  

Total run time of the OUTDOOR program for performance test 2 is 1.96 s of which 0.72 s 

are solver time by Gurobi. For this case the annual HEN costs are 569,651 $ which is only 

about 1 % smaller than the reported solutions in literature (Ciric and Floudas, 1991; Yee 

and Grossmann, 1990). The total heat exchange of 3040 kW is in the range of solutions 

recorded by Yee (2984 kW) and Ciric (3068 kW) and depicts the energy target for a 

minimum approach temperature of Δ𝑇𝑚𝑖𝑛 = 10 K (Ciric and Floudas, 1991; Yee and 

Grossmann, 1990). The two examples show that the computing time of the proposed 

approach is very fast, while the energy targeting along with the HEN costs provide 

acceptable accuracy. It is further expected, that the total cost deviation would be lower in 

a real process synthesis case, where HEN costs only make a minor share of the overall 

costs.  

 

Figure 2: Cost results from performance tests. 

4. Applied case study 

To demonstrate the capability of the MILP to a real-world problem a case study is 

developed. The selected case study describes a power-to-methanol (PtM) process which 

was introduced in Kenkel et al. (Kenkel et al., 2021a). 

4.1. Power-to-Methanol application 

The superstructure optimization aims to synthesize the flowsheet of a methanol 

production by direct hydrogenation of CO2. As depicted in Figure 3, different water 

electrolysis technologies are considered for H2 production: Low- and high-pressure 

alkaline and proton exchange membrane electrolysis as well solid oxide electrolysis. 

Available CO2 sources are ambient air and flue gases from an oil refinery or oxyfuel fired 
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cement factory. Methanol synthesis is included as a tripartite process (reaction, purge 

separation, purification) based on data from Wassermann et al. (Wassermann et al., 2020). 

The purge stream is combusted to produce either steam or electricity, which can be used 

internally or sold. For a detailed description of the superstructure, as well as bi-criteria 

flowsheet optimization we refer to Kenkel et al. (Kenkel et al., 2021a). In total 18 unit-

operations are implemented in the superstructure. 10 units are potentially exothermic and 

3 processes are potentially endothermic. The complete superstructure model consists of 

30,145 constraints, 23,709 variables of which 5,437 are binary. It was solved on a 

MacBook Pro with a 2 GHz-Dual Core Intel Core i5 processor and 8 GB RAM. 

 

Figure 3: Simplified PtM superstructure adopted from Kenkel et al. (Kenkel et al., 2021a) 

4.2. Flowsheet synthesis and heat integration results 

An economic optimization of the PtM superstructure takes about 9 s on the defined 

computer system utilizing Gurobi (Kenkel et al., 2021a). The proposed flowsheet captures 

CO2 from a refinery by absorption and provides H2 by low pressure alkaline electrolysis 

with subsequent multi-stage compression. The purge stream as well as waste heat from 

methanol synthesis and H2 compression is utilized for heat integration. The net production 

costs of the methanol are 892 € t-1, where the utility supply (external heat, cooling water 

and HEN) makes up only 3 % of the total costs. The emerging excess heat is employed 

in the desorption process of the CO2 capture, which requires heat at temperatures of about 

120°C. Waste heat from methanol synthesis and H2 compression provide ca. 28 % of the 

required heat, while purge stream combustion supplies further 12 %, leading to a total 

utility reduction of ca. 40 %. Only slightly lower shares were calculated in a detailed 

process analysis by Wassermann et al. (Wassermann et al., 2020).  

4.3. Model limitations  

The model evaluation and the applied case study show that the MILP heat integration 

model presents a possibility for easy implementation and fast calculation in superstructure 

models. Nonetheless, this formulation also comes with certain drawbacks. The main 

disadvantage is that only a virtual HEN is calculated, which gives good indication on the 

total costs, but neglects practical stream matching. A second drawback originates from 

the pre-calculated virtual HEX capital costs function. It is based on average 

gas/liquid/phase changing exchangers. If a superstructure with low pressure gas-gas HEX 
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above all is considered the required exchange area will probably be higher, which leads 

to underestimation of HEN costs. 

5. Conclusion 

This work presents a MILP model for heat integration in superstructure models, which is 

part of the automated Open sUperstrucTure moDeling and OptimizatiOn fRamework 

(OUTDOOR). Model evaluation determines fast solution times, intuitive data input and 

acceptable accuracy of total HEN costs. A practical study on a PtM case with 30,145 

constraints and 23,709 variables, which is solved in 9 s, emphasizes the benefits of 

OUTDOORs heat integration model. The results indicate that 40 % of required heat can 

be supplied by heat recovery, hence highlighting the relevance of heat integration in 

superstructure optimization. Model limitations, concerning simplified capital costs 

calculation and virtual HEN construction are outweighed by benefits of considering heat 

recovery with first indication of additional HEN costs. This is especially true for 

superstructure optimization, where many different flowsheets are investigated as part of 

preliminary design and HEN costs only make up small shares of total costs. Additionally, 

heat integration adds value to process synthesis by minimizing the environmental burden 

from external utilities, which is particularly relevant for the design of sustainable 

processes. Therefore, this work can provide the basis for selecting specific process 

alternatives for detailed process simulation and analysis. 
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Abstract 

The delay in action to mitigate climate change has resulted in a greater dependence on 

carbon dioxide removal (CDR) to achieve net-zero carbon targets by 2050. This work 

reports a newly developed optimal decarbonisation software framework that is based on 

a superstructure targeting approach to energy planning. The novel mathematical 

optimisation tool, which is formulated as a mixed-integer linear program (MILP), 

determines the optimum deployment of renewable energy sources, negative emission 

technologies (NETs), and CO2 capture and storage (CCS) for long-term regional energy 

planning, subject to budget and emissions constraints. The software can be used by 

policymakers to determine long-term energy decarbonisation strategy including when to 

decommission which plants, what technologies to employ when, and which fuels could 

be replaced by lower-carbon alternatives. The application of the software framework is 

demonstrated with a case study containing seven power plants. In this multiperiod work, 

CCS deployment is favoured for coal-based power plants due to their high CO2 intensity, 

while energy-producing NETs is deployed for all periods.  

Keywords: Multiperiod Energy Planning; Negative Emission Technologies; Process 

Integration; Policymaking; Decarbonisation Software 

1. Introduction 

In 2015, 196 countries adopted the Paris Agreement, which aimed to limit global warming 

below 2 °C and preferably 1.5 °C above pre-industrial levels. Given the delay of major 

mitigation actions, there is an increasing urgency for countries to cut their emissions by 

45 % by year 2030 from 2010 baseline levels (United Nations, 2021). The long-term 

target should be to achieve net-zero CO2 emissions by 2050. At the current trajectory, 

achieving net-zero emissions would require the deployment of CDR, typically achieved 

via NETs. Examples of CDR methods are bioenergy with CCS and direct air capture. The 

former is categorised as energy-producing NETs (EP-NETs), while the latter is 

categorised as energy-consuming NETs (EC-NETs).  

In the seminal work of carbon emissions pinch analysis (CEPA), Tan and Foo (2007) 

proposed the use of a graphical targeting tool to determine the minimum renewable 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50196-2 
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energy sources in satisfying the emission limit in a geographical region. This graphical 

CEPA approach was later extended for the incorporation of CCS in energy planning (Tan 

et al., 2009). Lee et al. (2009) developed the automated targeting model (ATM) to 

complement the limitation of CEPA, which was then extended by Ooi et al. (2013) for 

targeting CCS retrofit during energy planning. Most recently, the deployment of NETs 

during energy planning was proposed using both graphical (Nair et al., 2020) and 

algebraic targeting approaches (Nair et al., 2021).  In the past, several software had been 

developed to aid in energy planning, covering both technical and economic approaches. 

The novelty of this decision-making software framework lies in the possibility of 

allowing potential retrofit of various CCS technologies at point sources of CO2, and 

deployment of NETs, via a multiperiod planning formulation. The framework is built on 

mathematical programming models, where optimal energy planning scenarios may be 

generated. The interpretable results can act as guides for policymakers on the optimal 

decarbonisation strategies to be employed at a national level.  

2. Problem Statement 

For period 𝑘 ∈ 𝐾, the demand and CO2 emission limits of the energy planning system are 

specified as 𝐷𝑘 and 𝐿𝑘 respectively. Power plant 𝑖 ∈ 𝐼 with a lower bound energy output 

𝐹𝑖,𝐿𝐵, upper bound energy output 𝐹𝑖,𝑈𝐵, CO2 intensity 𝐶𝑆𝑖 and cost 𝐶𝑇𝑖  make up the energy 

planning system for period k. The removal of the CO2 emissions in period 𝑘 is aided with 

the deployment of CCS technology 𝑛 ∈ 𝑁, EP-NETs technology 𝑝 ∈ 𝑃 and EC-NETs 

technology 𝑞 ∈ 𝑄. In this work, the superstructural mathematical formulation is 

optimised to synthesise an optimal decarbonisation plan.  

3. Mathematical Optimisation Formulation 

For period k, the summation of the energy output from power plants 𝑖 ∈ 𝐼 must be 

equivalent to the demand of a specified geographical region (𝐷𝑘), as shown in Eq.(1). 

Also, the energy output from power plant i in period k (𝐹𝑆𝑖,𝑘) should be in the range of 

lower (𝐹𝑖,𝐿𝐵) and upper bound of energy output (𝐹𝑖,𝑈𝐵). 

∑ 𝐹𝑆𝑖,𝑘 = 𝐷𝑘  

𝑖

          ∀𝑘 (1) 

Next, the carbon intensity of power plant i with CCS technology n in period k (𝐶𝑅𝑖,𝑛) is 

determined from Eq.(2) (Ooi et al., 2013).  

𝐶𝑅𝑖,𝑛 =  
𝐶𝑆𝑖  ×  (1 − 𝑅𝑅𝑛)

1 − 𝑋𝑛

          ∀𝑖 ∀𝑛 (2) 

where 𝑅𝑅𝑛 and 𝑋𝑛 is the removal ratio and parasitic power loss of CCS technology n. 

The net energy output from power plant i with CCS technology n in period k (𝐹𝑁𝑅𝑖,𝑘,𝑛) 

is calculated from Eq.(3). Note that the reduced energy output from power plant i is due 

to the parasitic power losses during CCS. Also, 𝐹𝑁𝑅𝑖,𝑘,𝑛 should not exceed its upper 

bound of energy output in period k, as shown in Eq.(4). 

𝐹𝑅𝑖,𝑘,𝑛  ×  (1 − 𝑋𝑛) = 𝐹𝑁𝑅𝑖,𝑘,𝑛          ∀𝑖 ∀𝑘 ∀𝑛 (3) 
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𝐹𝑅𝑖,𝑘,𝑛  ≤ 𝐹𝑖,𝑈𝐵  × 𝐵𝑖,𝑘,𝑛          ∀𝑖 ∀𝑘 ∀𝑛 (4) 

where 𝐹𝑅𝑖,𝑘,𝑛  is the extent of CCS retrofit technology n on power plant i in period k while 

𝐵𝑖,𝑛 is a binary variable for selection of power plant i with CCS technology n in period k. 

The summation of the extent of CCS retrofit of power plant i with all CCS technologies 

in period k (𝐹𝑅𝑖,𝑘) is calculated from Eq.(5). Also, the total extent of CCS retrofit of 

power plant i should not exceed the energy output from power plant i in period k, as 

shown in Eq.(6). 

∑ 𝐹𝑅𝑖,𝑘,𝑛𝑛 = 𝐹𝑅𝑖,𝑘          ∀𝑖 ∀𝑘  (5) 

𝐹𝑅𝑖,𝑘  ≤ 𝐹𝑆𝑖,𝑘           ∀𝑖 ∀𝑘 (6) 

For a given period k, The summation of the net energy output by power plant i without 

CCS retrofit (𝐹𝑁𝑆𝑖,𝑘) and the extent of CCS retrofit of power plant i with CCS technology 

n (𝐹𝑅𝑖,𝑘,𝑛) should equate to the energy output from power plant i; shown in Eq.(7). 

𝐹𝑁𝑆𝑖,𝑘 + ∑ 𝐹𝑅𝑖,𝑘,𝑛

𝑛

= 𝐹𝑆𝑖,𝑘          ∀𝑖 ∀𝑘  (7) 

For a given period k, the summation of the energy output from all energy sources e.g., 

compensatory energy (𝐹𝐶𝑘), EP-NETs (𝐹𝐸𝑃𝑘,𝑝) etc. must fulfil the total demand of the 

energy system; the latter includes the total power requirement (𝐷𝑘) and that required by 

EC-NETs (𝐹𝐸𝐶𝑘,𝑞 ) etc. as demonstrated in Eq.(8). Equally, the total CO2 load 

contribution from all energy sources is equivalent to the total CO2 emissions at the end of 

energy planning for period k (𝑇𝐸𝑘), shown in Eq.(9). 

∑ ∑(𝐹𝑁𝑆𝑖,𝑘 +  𝐹𝑁𝑅𝑖,𝑘,𝑛 )

𝑛

+ 𝐹𝐶𝑘 + ∑ 𝐹𝐸𝑃𝑘,𝑝

𝑝

=  ∑ 𝐹𝐸𝐶𝑘,𝑞 + 𝐷𝑘

𝑞

 

𝑖

∀𝑘 (8) 

∑ ∑ (𝐹𝑁𝑆𝑖,𝑘𝐶𝑆𝑖 +  (𝐹𝑁𝑅𝑖,𝑘,𝑛 𝐶𝑅𝑖,𝑛))

𝑛

+ 𝐹𝐶𝑘  𝐶𝐼𝐶𝑘

𝑖

+ ∑ 𝐹𝐸𝑃𝑘,𝑝 𝐶𝐼𝐸𝑃𝑘

𝑝

 +  ∑ 𝐹𝐸𝐶𝑘,𝑞 𝐶𝐼𝐸𝐶𝑘

𝑞

= 𝑇𝐸𝑘      ∀𝑘 
(9) 

where 𝐶𝐼𝐶𝑘, 𝐶𝐼𝐸𝑃𝑘 and 𝐶𝐼𝐸𝐶𝑘 represent the carbon intensities of compensatory energy, 

EP-NETs technology p and EC-NETs technology q  in period k respectively.  

Meanwhile, the total energy costs at the end of energy planning in period k (𝑇𝐶𝑘) are 

calculated from Eq.(10). 

∑ ∑ (𝐹𝑁𝑆𝑖,𝑘𝐶𝑇𝑖,𝑘 +  (𝐹𝑁𝑅𝑖,𝑘,𝑛 𝐶𝑇𝑅𝑖,𝑘,𝑛) + (𝐶𝐹𝑋𝑖,𝑘,𝑛𝐵𝑖,𝑘,𝑛 ))

𝑛

+ 𝐹𝐶𝑘 𝐶𝑇𝐶𝑘

𝑖

+ ∑ 𝐹𝐸𝑃𝑘,𝑝 𝐶𝑇𝐸𝑃𝑘

𝑝

 +  ∑ 𝐹𝐸𝐶𝑘,𝑞 𝐶𝑇𝐸𝐶𝑘

𝑞

= 𝑇𝐶𝑘           ∀𝑘 
(10) 
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where 𝐶𝑇𝑅𝑖,𝑘,𝑛 and 𝐶𝑇𝑖,𝑘 represent the cost of energy output by power plant i with and 

without CCS technology n in period k respectively, while 𝐶𝑇𝐶𝑘, 𝐶𝑇𝐸𝑃𝑘 and 𝐶𝑇𝐸𝐶𝑘 

represent the cost of compensatory energy, EP-NETs technology p, and EC-NETs 

technology q in period k respectively. Meanwhile, 𝐶𝐹𝑋𝑖,𝑘,𝑛 represents the fixed cost of 

power plant i with CCS technology n in period k.  

The extent of CCS retrofit on power plant i at a later period is at least equal to that in its 

previous period, as shown in Eq.(11). This ensures that a decision taken to CCS retrofit 

power plant i in period k would not be reversed in the subsequent periods. 

(𝐹𝑅𝑖)𝑘+1  ≥  (𝐹𝑅𝑖)𝑘           𝑘 = 1,2, … , 𝑛 − 1 (11) 

The constraints regarding the total CO2 emissions and total energy costs in period k are 

presented in Eq.(12) and Eq.(13). 

𝑇𝐸𝑘 = 𝐿𝑘           ∀𝑘 (12) 

𝑇𝐶𝑘 ≤ 𝐵𝐷𝑘           ∀𝑘 (13) 

where 𝐵𝐷𝑘 is the budget allocation in period k.  

The mathematical formulation may be optimised according to either Eq.(14) or Eq.(15). 

For Eq.(14), the total energy cost is minimised subject to constraints in Eq.(1) to Eq.(12). 

In other words, the minimisation of the total energy costs would ensure that the CO2 

emission limit in a geographical region in period k is satisfied. Meanwhile, for Eq.(15), 
the total CO2 emissions are minimised subject to the constraints in Eq.(1) to Eq.(11) and 

Eq.(13). In other words, the minimisation of the total CO2 emissions is conducted subject 

to the budgetary constraint for period k. Therefore, the CO2 emission limit in a 

geographical for period k may or may not be satisfied.  

𝑚𝑖𝑛 𝑇𝐶𝑘            ∀𝑘 (14) 

𝑚𝑖𝑛 𝑇𝐸𝑘           ∀𝑘 (15) 

The resulting mathematical formulation is a mixed-integer linear programming (MILP) 

model. The model is implemented in Pyomo, with an easy-to-use input spreadsheet to 

formulate one’s problems. A user guide is available, including installation instructions 

for the Octeract solver, and the code is available at https://github.com/mchlshort/DECO2.  

4. Case Study 

The application of the optimal decarbonisation software framework is demonstrated with 

a hypothetical case study. Seven power plants with various energy sources generate 

electricity to satisfy the demand of a geographical region. The data relating to these power 

plants were approximately based on the data in the work by Tan et al. (2009). The energy 

planning is conducted across three periods, each with a specified demand, emission limit 

and budget allocation. The CO2 load reduction is achievable with the potential 

deployment of three types of EP-NETs and EC-NETs, alongside two choices of CCS 

technologies. Also, there is a choice of incorporating additional renewable energy 

(compensatory energy) for satisfying the CO2 emission limit. The superstructure 

optimisation of the MILP model provides an overview regarding the optimal deployment 
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of CCS, EP-NETs, EC-NETs, and compensatory energy for each period. Table 1, Table 

2, and Table 3 present the data related to the power plants, NETs, and energy planning 

respectively, which was approximated based on the work by Tan et al. (2009).   

Table 1: Power plant data 

Power Plant 1 2 - 4 5 6 - 8 

Fuel 

𝐹𝑖,𝐿𝐵 / TWh y-1 

𝐹𝑖,𝑈𝐵 / TWh y-1 

𝐶𝑆𝑖 / Mt (TWh)-1 

𝐶𝑇𝑖,𝑘 / mil USD y-1 

𝐶𝑇𝑅𝑖,𝑘,1 / mil USD y-1 

𝐶𝑇𝑅𝑖,𝑘,2 / / mil USD y-1 

Renewable 

10 

40 

0 

38 

0 

0 

Natural gas 

0 

40 

0.5 

25 

34 

29 

Oil 

0 

10 

0.8 

49 

68 

59 

Coal 

0 

20 

1.0 

12 

20 

16 

 

Table 2: NETs data 

Period k 
𝐶𝐼𝐸𝑃𝑘 / 

Mt (TWh)-1 

𝐶𝐼𝐸𝐶𝑘 / 

Mt (TWh)-1 

𝐶𝑇𝐸𝑃𝑘 / 

mil USD y-1 

𝐶𝑇𝐸𝐶𝑘 / 

mil USD y-1 

1 

2 

3 

-0.8 

-0.6 

-0.4 

-0.6 

-0.4 

-0.2 

43 

40 

37 

49 

37 

24 

Table 3: Energy planning data 

Period k 
𝐷𝑘 /  

TWh y-1 

𝐿𝑘 /  

Mt y-1 

𝐵𝐷𝑘 /  

mil USD y-1 

𝐶𝐼𝐶𝑘 /  

Mt (TWh)-1 

𝐶𝑇𝐶𝑘 /  

mil USD y-1 

1 

2 

3 

60 

75 

90 

15 

8 

3 

1,500 

2,000 

2,500 

0 

0 

0 

38 

38 

38 

 

In addition to the power plant data in Table 1, the value of 𝐶𝐹𝑋𝑖,𝑘,𝑛 is assumed as 200 mil 

USD y-1. The case study was solved for both objective functions i.e., minimum budget 

(Eq.(14)) and minimum emissions (Eq.(15)). For the minimum budget objective 

(Eq.(14)), the total costs for periods 1, 2 and 3 were determined as 1,790, 2,463 and 3,116 

mil USD y-1 respectively, while emission limits for all periods are satisfied. Note that 

CCS technology 1 was solely deployed for the coal-based power plants for all periods. In 

other words, the optimisation model favoured the costlier CCS technology 1 due to its 

highest removal ratio (0.85) and lower parasitic power loss (0.15). All three periods 

involved the deployment of EP-NETs, specifically technology 2 in periods 1 and 2, and 

technology 1 in period 3. The energy requirement of EC-NETs made it less favourable 

for its deployment in any period. Due to the decreased CO2 emission limit, the 

deployment of EP-NETs increased from 5.59 TWh y-1 in period 1 to 9 TWh y-1 in period 

A Software Framework for Optimal Multiperiod Carbon-Constrained
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3. As for the minimum emissions objective (Eq.(15)), the optimisation is conducted 

subject to the budget constraints for each period. The total CO2 emissions in periods 1, 2 

and 3 are 27.1, 29.8 and 29.6 Mt y-1 respectively. Note that the total CO2 emissions for all 

periods are higher than their limits, due to insufficient budget for the deployment of CCS 

and/or NETs. For this case, EP-NETs technology 1 was deployed, while CCS technology 

1 was deployed for coal-based power plants in all periods.  

5. Conclusions 

The optimal decarbonisation software framework developed in this work is based on 

mathematical optimisation models for energy planning. The decision-making software 

framework is expected to aid policymakers in drafting suitable decarbonisation plans for 

a national/sectoral level. The MILP optimisation model provides rigorous solutions for 

optimal deployment of EP-NETs, EC-NETs, CCS and compensatory energy for the 

satisfaction of the CO2 in each period. The case study results demonstrated that CCS 

technology 1 was favoured due to its highest removal ratio and lower parasitic power loss 

despite it being more expensive than technology 2. On the other hand, EC-NETs was less 

preferable due to its energy-consuming characteristic. Therefore, it is evident that this 

software framework could play a role in the achievement of the net-zero carbon target by 

2050. Regardless, uncertainties that often arises with energy planning data and forecasts 

should be considered in future work for more realistic energy planning scenarios and 

projections.  
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Abstract 

Carbon capture and utilisation (CCU) appeared as an attractive complementary scenario 

to carbon capture and storage for CO2 sequestration and climate change mitigation. CCU 

covers various routes that use CO2 as a feedstock for the generation of value-added 

commodities, which are classified under four main categories: chemical conversion, 

mineral carbonation, enhanced oil recovery and biological conversion. CCU networks 

encompass a variety of material, process, and technology options at every node of the 

supply chain. This forms a superstructure network of multiple CO2 sources, carbon 

capture and separation methods, transportation links, and CO2 utilisation routes (sinks). 

The purpose of this work is to investigate the economic performance of different CCU 

pathways and to determine the most optimal CCU integrative configuration. A mixed 

linear integer programing (MILP) model is developed that aims at optimising the CCU 

supply chain.  A case study for the State of Qatar is presented in this work to illustrate the 

application of this optimisation framework, with the use of real data for existing CO2 

sources and sinks, and transportation networks along with potential CO2 sinks. Findings 

indicate that for high CO2 concentration and gas flowrates such as the ones studied in the 

case study, adsorption provides the most economical option for carbon capture. 

Moreover, the chemical conversion to GTL route presented the best economic 

performance amongst the other CO2 utilisation pathways despite the low readiness level. 

However, biological conversion in agricultural greenhouses could be a more 

environmentally viable utilisation route with the potential of a carbon-neutral network.  

Keywords: Carbon capture and utilisation, CO2 sequestration, optimisation, MILP. 

1. Introduction 

Economic and population growth are considered as one of the main drivers of the 

continued increase of greenhouse gas emissions (GHG) in the atmosphere which lead to 

further warming and irreversible changes in the climate system (IPCC, 2007). Global 

greenhouse gas emissions from anthropogenic activities have significantly increased with 

emissions from fossil-fuel burning activities representing a large share. Carbon dioxide 

is considered as a major contributor of GHG emissions from burning fossil-fuels. The 

share of CO2 emissions from the energy sector accounts for more than 80% of the total 

CO2 emissions (Ghiat et al., 2021a). With the COVID19 pandemic and the associated 

decline in oil and coal demands, CO2 emissions have declined by 5.8% in 2020 which 

represents the largest ever decline. Despite the pandemic, annual CO2 emissions in the 

atmosphere originating from the energy sector are still at their peak with amounts as high 

as 31.5 Gt, representing a concentration of around 412.5 ppm during 2020 (IEA, 2021). 

The undeniable evidence of the anthropogenic influence on the climate is perceived in 

the growing vulnerability of the natural and human systems. This suggests that it is a 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50197-4 
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collective action problem that requires collaborative adaptation and mitigation measures 

between the different stakeholders and agents in the energy, water, and food (EWF) 

sectors. Co and tri-benefits can be exploited, and trade-offs can be avoided by having 

aligned objectives that tackle climate change challenges and deliver holistic sustainable 

solutions to all EWF sub-systems (IPCC, 2014). The intergovernmental panel on climate 

change (IPCC) recommends, as one of the Representative Concentration Pathways 

(RCP2.6), stabilizing the surface temperature increase below 2°C to limit CO2-eq 

emissions to 450 ppm in the atmosphere by 2100 (IPCC, 2014). Carbon capture and 

storage or utilisation (CCUS) is considered as one of the most important CO2 cutting 

schemes that can help achieve these global warming targets. CCU alone can reach a CO2 

sequestration potential of 878 Mt/year by 2060 in the case where CO2 storage is limited. 

Moreover, CO2 utilisation can also sequester CO2 in different time-scale periods 

depending on the utilisation of the final product. CO2 source-sink matching in CCU 

networks is a crucial and complex work that requires careful analysis and optimisation of 

the CCU supply chain (Ghiat and Al-Ansari, 2021b). The complexities of CCU supply 

chains lay in the multi-scale components of the network each having different options and 

being assessed separately, which renders the economic feasibility of the hybrid network. 

For example, the CO2 source node can entail different CO2 sources with different gas 

flowrates, CO2 compositions and moisture contents (Hasan et al., 2015). Thus, there is a 

need to optimally design CCU supply chains using an inclusive and multi-scale approach 

that will ensure the best economic and environmental performance. 

Several studies attempted to tackle the supply chain related complexities of CCU 

networks to reduce the associated costs and environmental impact and achieve 

decarbonised pathways. Kalyanarengan Ravi et al. (2017) proposed an economic 

optimisation model to minimise the overall costs related to a carbon capture and storage 

(CCS) network and implemented it for a nationwide CO2 reduction scenario. Hasan et al. 

(2015) developed a multi-scale framework for the economic optimisation of CCU 

pathways encompassing enhanced oil recovery (EOR) and storage in both saline 

formation and unmineable cobalt as CO2 sink opportunities. Similarly, Zhang et al. (2020) 

proposed an optimisation-based framework for assessing CCUS pathways that include 

more utilisation routes other than just EOR and proved its application on a network with 

15 utilisation candidates. Both CCUS studies concluded that the CO2 storage option was 

more economically optimal solution as compared to CO2 utilisation, although this latter 

could offer a better environmental performance with a carbon-neutral cycle (Hasan et al., 

2015; Zhang et al., 2020). While many studies tackled the economic optimisation of 

multi-scale CCUS networks, only few considered CO2 utilisation in chemical conversion 

such as methanol, GTL, and urea production (Al-Yaeeshi et al., 2020). Moreover, the 

biological conversion of CO2 has been neglected as a possible utilisation route within 

CCUS supply chains. In this work, we introduce three different CO2 utilisation routes; 1) 

enhanced oil recovery (EOR), 2) chemical conversion, and 3) biological conversion; and 

study their integration within a multi-scale CCU network encompassing different CO2 

sources, different carbon capture (CC) technologies and CO2 transportation. A mixed 

linear integer programming (MILP) model is developed to maximise the overall profit of 

the integrated CCU network and identify best economic pathway. 

2. System description 

In this study, a CCU optimisation model is developed that can encompass different CO2 

large-scale industrial sources, different carbon capture technologies and materials, CO2 

compression and transportation via pipeline, and varying CO2 utilisation options as shown 
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suplly chains

in Figure 1. The aim is to optimise the overall profit of the integrated CCU network and 

determine the optimal source to sink integration. The CO2 source node can be perceived 

as a group of CO2 suppliers to the network which entails different capacity restrictions 

and exhaust gas characteristics. Each CO2 source can be linked to a carbon separation 

method and material. The integration of the CO2 source and carbon capture nodes is 

implemented with the assumption of both nodes being in the same location. Moreover, 

each CO2 source can only be coupled with one carbon capture technology. CO2 

transportation from source to sink is only considered via pipeline. The choice of pipeline 

transportation is mainly motivated by its economic feasibility over other means. In 

addition, CO2 sources can deliver to as many sinks with no restrictions apart from the 

availability of CO2. Three CO2 utilisation routes are proposed in this work; 1) enhanced 

oil recovery (EOR), 2) chemical conversion to methanol, GTL, and urea, and 3) biological 

conversion in agricultural greenhouses. The proposed optimisation model is implemented 

for a case study in the state of Qatar comprising of three existing large scale industrial 

CO2 sources (Qatargas, QAFAC and QAFCO), three different carbon capture 

technologies (chemical absorption with MEA or PZ, adsorption PSA with AHT or MVY  

and membrane separation with FSC PVAm or PEO1 or PEO2), CO2 transportation via 

pipeline, and three chemical conversion routes including EOR in an existing oil well, 

chemical conversion to methanol, GTL and urea in existing process plants within 

QAFAC, QSGTL, Oryx and QAFCO, and chemical conversion in an existing agricultural 

greenhouse that uses CO2 enrichment.  Different scenarios are studied; scenario 1 is the 

baseline scenario with no added constraints, scenario 2 considers the optimisation without 

the CO2 chemical conversion options given their low readiness level, scenario 3 

constraints the optimisation problem to supply greenhouses with CO2 to meet at least 21% 

of Qatar’s self-sufficiency in vegetable production, and scenario 4 couples the constraints 

of both scenario 2 and 3.  
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Figure 1: Carbon capture and utilisation network. 
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3. CCU optimisation model 

A mixed integer linear programming (MILP) model is developed for the CCU supply 

chain network that aims at maximising the profit of the integrated system which is defined 

as the difference between the total annual cost and total revenue as shown in Eqs.(1&2).  

𝑀𝑎𝑥 ∑ (𝑇𝑅 − 𝑇𝐶)𝐹𝑖,𝑗,𝑘         (1) 

= [∑ 𝑇𝑅𝑘𝑘 − ∑ 𝐷𝐶𝑖 + 𝐼𝐶𝐶𝑖,𝑗 + 𝑂𝐶𝐶𝑖,𝑗 + ∑ 𝑇𝑇𝐶𝑗,𝑘𝑗,𝑘𝑖,𝑗 + ∑ 𝑈𝐶𝑘𝑘 ]𝐹  (2) 

Subject to:  

∑ 𝐹𝑖,𝑗𝑗 ≤ 1         (3) 

The subscripts i,j,k correspond to the CO2 sources, carbon capture technologies and CO2 

sinks respectively. TR and TC are the total annual revenues and costs respectively and F 

is the CO2 flowrate. The total costs include the cost of flue gas dehydration (DCi), carbon 

capture (ICCi,j and OCCi,j), compression and transportation (TTCj,k), and CO2 utilisation 

(UCk). TRk and UCk are taken from process-based studies conducted by Ogden et al. 

(2014) for EOR, Al-Yaeeshi et al. (2020) and AlNouss et al. (2021) for chemical 

conversion, and Ghiat et al. (2021a) for biological conversion. The presented constraint 

ensures that each CO2 source is coupled with only one carbon capture technology.  

• Cost of dehydration 

Chemical absorption can handle saturated streams; however, adsorption and membrane 

separation techniques require less than 0.1% of water content. The cost of dehydration to 

reduce the water content to less than 0.1% is taken as 10.2$/t of CO2 using tri-ethylene 

glycol (TEG) absorption (Hasan et al., 2015).  

• Cost of CO2 capture and compression 

ICCi,j and OCCi,j are the investment and operational costs of carbon capture respectively 

depending on the carbon capture technology and material used. These costs also include 

the cost of CO2 compression to a supercritical state, approximately 15 MPa. 𝛼, 𝛽, 𝛾, 𝛼’, 

𝛽’, 𝛾’ are parameters of each carbon capture technology and material based on the 

optimised economic model presented by Hasan et al. (2015).  

𝐼𝐶𝐶𝑖,𝑗 = 𝛼𝑗 + (𝛽𝑗𝑥𝑐𝑜2

𝑛𝑗

𝑖
+ 𝛾𝑗)𝐹𝑚      (4) 

𝑂𝐶𝐶𝑖,𝑗 =  𝛼𝑗′ + (𝛽𝑗′𝑥𝑐𝑜2

𝑛𝑗′

𝑖
+ 𝛾𝑗′)𝐹𝑚′     (5) 

• Cost of CO2 transportation  

The investment and operational costs of transportation via pipeline are estimated by the 

levelised cost in Eq.(6). This cost is estimated based on an inlet CO2 pressure of 15 MPa 

and outlet CO2 pressure of 10 MPa (Ogden, 2004).  

𝑇𝑇𝐶𝑗,𝑘($/𝑦) = (𝐶𝑅𝐹 + 𝑂𝑀)𝐶𝑃𝑏𝑎𝑠𝑒 (
𝑄

𝑄𝑏𝑎𝑠𝑒
)

0.48
𝐿𝑗,𝑘 (

𝐿𝑗,𝑘

𝐿𝑏𝑎𝑠𝑒
)

0.24

   (6) 

where CRF is the capital recovery factor taken as 15% and OM is the fractional 

operational and management costs per investment cost and is taken as 4%. CPbase is the 

pipeline base capital cost taken as 700 $/m. Q is the CO2 flowrate and Qbase is the CO2 

base flowrate taken as 16,000 ton/day. Lj,k is the length of the pipeline (m) from the carbon 

capture technology j to the sink k, and Lbase is the base length of the pipeline taken as 100 

km (Ogden, 2004).  



   
4. Results 

The results of the optimization problem concerning the maximum profit from competing 

CO2 capture and utilisation pathways revealed different results based on the applied 

constraints. The first scenario where no constraints on the CO2 utilisation are applied, the 

results demonstrate a complete domination of GTL as the CO2 sink and adsorption with 

PSA-AHT as the carbon capture technology and material with a high economic profit of 

$38,067. However, when constraints of technology readiness level are applied, results 

shift to a complete domination of EOR as the CO2 sink and adsorption with membrane 

POE2 as the carbon capture technology and material with a much lower objective function 

estimated at $553. This reflects the importance in the technology investment to increase 

the readiness level of the chemical conversion as a potential sink for emitted CO2. Further, 

with the application of the 21% self-sufficiency constraint in agriculture, the results of 

the third scenario indicate the utilisation of adsorption with PSA-MYV as the carbon 

capture technology and material to feed the greenhouse with the required CO2 to achieve 

the self-sufficiency objective as illustrated in Figure 2a. In addition to the greenhouse, 

GTL is presented as the major CO2 sink as presented in Figure 2a, achieving an overall 

profit of $29,083. The fourth scenario demonstrates a shift towards EOR with the 

elimination of GTL due to the readiness level constraint while achieving the self-

sufficiency objective and with $435 profit through feeding the greenhouse with 71% of 

the CO2 emitted from QAFAC source and captured using adsorption PSA MYV 

technology as illustrated in Figure 2b. Findings have also indicated that for high CO2 

concentration and gas flowrates such as the ones presented in the case study, adsorption 

provides the most economical option for carbon capture (Figure 3). 

 

 

Figure 2: Optimal CO2 source-sink allocation for a) scenario 3 and b) scenario 4. 

Figure 3: Total CAPEX and OPEX for CC and compression for each technology and material 

with a gas flow rate of 1000 mol/s. 
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5. Conclusions 

While the principal goal of carbon capture and utilisation technologies is to mitigate CO2 

emissions, it is also important to develop CCU networks that can run on economically 

feasible supply chains.  Hence, this study proposes a multi-scale optimisation model for 

CCU routes encompassing enhanced oil recovery, chemical conversion, and biological 

conversion as possible utilisation pathways. The aim of the model is to maximise the 

overall profits of the integrated CCU supply chain and determine the best optimal CCU 

integration. The model demonstrates its practicability as it involves different CO2 sources, 

different carbon capture technologies and materials, CO2 transportation via pipeline and 

finally different possible utilisation sinks. This model can be applied to specific CCU 

supply chains as it is the case in this study. The results of the optimisation model applied 

to the case study in Qatar reveal the economic feasibility of carbon capture using 

adsorption for the selected high CO2 concentration and high gas flowrate sources coupled 

with chemical conversion for GTL production. The model can also be tailored to 

investigate different scenarios which can aid in the decision-making process for the 

deployment of CCU technologies. Finally, it is important that decision-makers help 

facilitate the deployment of CCU technologies by building the necessary infrastructure 

for CO2 transportation and storage and by creating CO2 source-sink clusters and networks 

that will use the same shared infrastructure and benefit from a circular economy. 
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Abstract 

Stochastic programming (SP), a popular approach for solving optimization problems 
under uncertainty, is commonly used to tackle chemical engineering problems, e.g., in 
production planning or process synthesis. Scenarios, which represent uncertain 
outcomes, significantly impact the SP solution. This study evaluates seven methods to 
generate scenarios for a two-stage stochastic program where the decision-maker only 
sees benefits within the rare-event space of the uncertainty. The methods belong to one 
of three main categories: Monte Carlo sampling, space-filling sampling, and clustering. 
We assess the methods using (1) the difference between the optimum objective values 
and (2) the distance between the decision variable values of the optimum SP solution 
and the best-known solution for the problem. The results revealed that the SP solutions 
obtained using the scenarios generated by the clustering-based approaches were close to 
the best-known solutions and did not change significantly as the number of scenarios 
increased. The SP solution for the scenarios generated by Latin Hypercube sampling 
was the closest to the best-known solution for the maximum number of scenarios. 

Keywords: Stochastic Programming; Rare-event Sampling; Scenario Generation. 

1. Introduction 

Stochastic programming (SP) is a common approach to solve optimization problems 
under uncertainty. Such problems arise when the decision-maker incorporates aspects of 
a problem that are not fully known or cannot be controlled, e.g., the weather, demand, 
or estimated process parameters. This uncertain information is modeled as a random 
distribution based on previous data or expert opinion. Generally, the SP models estimate 
the distribution using a discrete set of outcomes, or scenarios, generated by sampling 
from the distribution. Naturally, the better a set of scenarios depicts the underlying 
distribution, the more accurate the SP solution becomes. However, as the number of the 
scenarios grows, so does the problem size, resulting in computationally intractable 
models. An efficient scenario generation (SG) approach would balance the model size 
and the accuracy of the distribution estimation (Park et al., 2019; Shapiro et al., 2014). 

In many stochastic programs, the most likely scenarios are enough to estimate the 
distribution for a high-quality solution. There are, however, some problems, such as 
those in safety and reliability engineering (e.g., Moskowitz et al. 2018), supply chain 
resilience (e.g., Ehrenstein et al. 2019), and health services, in which the least likely 
events have the most impact on the optimal decisions. These events occur in the tail-
end(s) of the distributions. In general, a large number of scenarios would need to be 
generated to ensure their presence in the SP scenario set. How to properly represent the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50198-6 
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events associated with the tails of the distributions in the SP scenario set while 
maintaining a computationally tractable model is an open challenge. 

Two recent studies assess different methods for SP scenario generation. The aim of Park 
et al. (2019) was to find the best scenario reduction method assuming the full scenario 
set was known. They concluded that a reduced scenario set generated by a distance-
based method yields the closest solution to the optimum. Generating the full scenario 
set may be infeasible due to the sheer number of possible uncertainty realizations for 
some problems. Li et al. (2020) performed a comprehensive review of SG methods that 
have been used in energy systems SP problems. They outlined the characteristics of the 
methods and assessed them based on the solution stability. However, they have not 
considered the ability of the SG methods to capture rare events.  

This paper evaluates seven SG methods (Section 3) for SP problems where the least 
likely events significantly impact the optimal decisions, and generating the full scenario 
set is infeasible. We carry out the evaluation using a healthcare-related problem 
(Section 2) by comparing the solutions identified by the SP models with scenarios 
generated using the SG methods to the best-known solution of the problem (Section 4). 

2. Optimization Model – Screening Plan for Colorectal Cancer 

The problem is to identify the ages at which screening for colorectal cancer (CRC) 
should occur to maximize the expected gain in Quality-Adjusted Life-Years (QALY). It 
is modeled as a two-stage stochastic program with fixed recourse. The general model 
form is given in Eqns. 1-4. The uncertain vector, 𝝎௦, describes the lifetime of individual 
𝑠 through various health states to track the progression of CRC (Fig. 1). The first stage 
decision variables, 𝒙, are the age(s) at which screening with a colonoscopy takes place. 
The second stage variables, 𝒚𝒔, represent the modified lifetime of individual 𝑠 based on 
the outcome of the recommended screening. 

The objective function, Eqn. 1, calculates the expected change in QALY given the 
implementation of screening over every scenario, considering the loss of years due to 
the implementation of the screening and the gain in life due to early detection or 
prevention of the disease. Eqn. 2 places restrictions on the screening decisions, i.e., the 
maximum number of screens in a lifetime, ordering of the screenings, and only one 
screening test per year. Eqn. 3 implement the fixed recourse (clinical) actions following 
the implementation of the screening decisions, 𝒙. They modify an individual’s lifetime. 

𝑚𝑎𝑥 𝐸𝑄𝐴𝐿𝑌 ≈ 𝑚𝑎𝑥 ∑ 𝑔ଶ(𝒙, 𝒚𝒔, 𝝎𝒔)௦∈ௌ   (1)

𝑠. 𝑡. 𝐴ଵ𝒙 + 𝑏ଵ ≤ 0 (2)

 𝐴ଶ𝒙 + 𝐵𝒚௦ + 𝐶𝝎௦ + 𝑏ଶ ≤ 0 ∀𝑠 ∈ 𝑆 (3)

 𝒙 ∈ 𝐗 = ℝ୬ , 𝒚௦ ∈ 𝐘 = ℝ୫ ∀𝑠 ∈ 𝑆 (4)

A defining feature of the problem is the impact of uncertainty on the solution. Only a 
small percentage of the population, 4-4.5 % (American Cancer Society, 2020), develops 
CRC within their lifetime, meaning that screening for CRC is a burden for most of the 
population. When only considering the most likely scenarios, the solution to this 
problem is to do nothing, as the detriments of screening outweighing the benefits. Many 
studies have shown that the implementation of screening for CRC is overall a benefit 
for society (e.g., Knudsen et al., 2016). Therefore, to properly represent the expected 
benefit of screening, it is essential to portray the lower probability scenarios accurately. 
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Figure 1 Colorectal cancer progression flow chart (Loeve et al., 1999) 

3. Scenario Generation Methods and Their Application to the Model 

The problem uncertainty space was constructed using data from a microsimulation 
model (Young et al., 2021; Young and Cremaschi, 2018) that simulates the progression 
of CRC within a population. We used the model to simulate 400 replications of a 
population of 1,000,000 males and recorded the values of a cancer progression random 
vector for each person. The vector includes the age of the first adenoma, time from the 
first adenoma to the first case of preclinical cancer, time from the first preclinical cancer 
to the first clinical cancer, and cancer survival time. This data was used to construct an 
empirical distribution, where each outcome of the random vector was considered a 
potential realization. Another empirical distribution was constructed using the US 
lifetables (Arias, 2002) to represent the age of death from sources other than CRC. 

The SG methods fall under three main categories: Monte Carlo, space-filling, and 
clustering. The Monte Carlo and the space-filling methods utilized the empirical 
distributions to generate the scenarios. The clustering approaches used the raw data (the 
vectors) from the microsimulation to construct the scenarios. 

3.1. Monte Carlo Methods 

We consider the Crude or naïve Monte Carlo (CMC) approach and importance 
sampling. In the CMC approach, the scenarios are generated by directly sampling from 
the uncertain distributions. Importance sampling is a variance reduction technique. The 
random samples are generated from an auxiliary distribution, known as the importance 
distribution (ID), and reweighted using the likelihood ratio to tie the sample probability 
back to the original distribution. The construction of the ID is a challenge, as the 
theoretical optimal distribution requires accurate knowledge of the expectation of the 
distribution. We construct the ID following the work of Papavasiliou and Oren (2013) 
by first generating a large number of samples from the distribution and then estimating 
the ID using the expectation over the samples. We then resample from the estimated ID 
to generate the scenarios. We name this approach M-N-IS, where M refers to the initial 
large sample size, N to the number of samples from the ID, and IS to importance 
sampling. 

3.2. Space-filling Methods 

In space-filling methods, a quasi-Monte Carlo approach, samples are generated to avoid 
over-grouping or sparsity. This study considers Sobol sampling, Halton sampling, and 
Latin hypercube sampling (LHS). Sobol and Halton sampling techniques utilize Sobol 
(Sobol, 1967) and Halton sequences (Halton, 1960), low-discrepancy sequences, where 
discrepancy measures the uniformity of a set of samples. Latin hypercube sampling 
generates 𝑁 samples by subdividing each distribution of a 𝑑-dimensional hypercube 
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into 𝑁 bins of equal probability and ensures that no two samples are in the same bin on 
any axis of the hypercube (McKay et al., 1979). 

3.3. Clustering Based SG Methods 

Clustering is an unsupervised machine learning approach that groups data into subsets, 
or clusters, of points with similar characteristics. Clustering can be used as a SG method 
by grouping a large dataset sampled from the uncertain distribution and generating 
representative samples, or “cluster centers,” for each cluster. The representative samples 
are then used as the scenarios for the SP problem(B. Li et al., 2020). We employed k-
means and x-means algorithms for determining the cluster centers. The k-means 
algorithm separates the data set into 𝑘 (an input to the algorithm) different clusters 
based on the distance between the mean vectors of the data (Yadav and Sharma, 2013). 
We used the elbow method with the sum of the squared distance from the nearest cluster 
center as the metric to determine 𝑘 (Yuan and Yang, 2019). As an extension of k-
means, the x-means algorithm also determines the number of clusters, 𝑘, using the 
Bayesian Information Criterion. 

4. Results and Discussion 

Each sampling method was used to generate 128, 512, and 1024 scenarios, except for 
the k-means and x-means algorithms, where the algorithms automatically determine the 
number of scenarios. The scenario cases are powers of two due to Sobol sequence 
convergence properties. The maximum number of scenarios, 1024, was set to keep the 
SP solution time below 24 hours. We also studied the impact of the sample size, 
100,000, 1,000,000, and 2,000,000, for M-N-IS, k-means, and x-means SG methods. 

The SP solutions obtained using scenarios generated by different SG methods are 
assessed using the best solution located when a derivative-free optimization (DFO) 
framework was used with the CRC microsimulation (Young et al., 2021; Young and 
Cremaschi, 2018) for a maximum budget of 1,500 evaluations. The performance metrics 
are the absolute percent difference in the objective function values and the Euclidian 
distance between the SP and the best solution. 

For each SG method, a summary of the resulting absolute percent difference is plotted 
in Fig. 2, and the Euclidian distance in Fig. 3. In general, as the number of scenarios 
increases, the percent difference decreases for each method, except for the Sobol and 
Halton methods. The SP solution obtained using 128 scenarios generated by the Sobol 
sampling has the lowest percent difference (Fig. 2) but the greatest distance when 
compared to the best solution (Fig. 3). The largest reduction in percent difference with 
the increase in the number of scenarios is observed for LHS. The SP solution obtained 
using 1024 LHS generated scenarios has the second-best object function value with a 
28.8% difference. There are no significant improvements in the SP objective function 
value with increases in the number of scenarios generated using either the CMC 
approach or the two clustering approaches. The SP solutions obtained using the CMC-
generated scenarios had worse percent difference values than most methods (Fig. 2). 

Similar to the percent difference measure, as the number of scenarios increases, the 
distance from the optimum decreases (Fig. 3), except for the clustering algorithms, 
where the distance stays relatively constant. At 1024 scenarios, there are small 



Efficient Scenario Generation for Stochastic Programs with Extreme Events  

differences in the distances to the best solution amongst different methods, with CMC, 
Sobol, and Halton sampling methods yielding slightly larger Euclidian distances. The 
SP solutions obtained using the scenarios generated by LHS are the closest to the best 
solution both at the minimum and the maximum number of scenarios. When the 
distances of the SP solutions obtained using CMC approach are compared to the rest, 
similar trends to the percent difference are observed (Figs. 2 and 3). At 1024 scenarios, 
the SP solutions obtained using the CMC-generated scenarios are close to the solutions 
obtained using other methods with at most an 11 % difference in distance. 

The number of samples used by the clustering algorithms changes the number of 
scenarios, i.e., the number of clusters identified (Figs. 2 and 3). While the number of 
scenarios identified by the k-means algorithm does not change significantly, the number 
reaches the upper bound for the x-means algorithm for one and two million samples. 
This observation suggests that the scenarios identified by the x-means algorithm could 
be improved if a larger scenario size were allowed. For the M-N-IS method, with more 
samples to construct the ID, both percent difference and distance from optimal metrics 
are improved as the number of scenarios increase (Figs. 2 and 3). Both percent 
difference and distance from optimal solution improve as the samples increase for 1024 
scenarios, but the inverse is observed for 124 scenarios. Using more samples to 
construct the ID yields a better estimate. Conversely, introducing more samples into the 
ID creates more possible realizations of uncertainty, requiring a greater number of sub-
samples, scenarios, to better represent the ID. 

 
Figure 2 Summary of the absolute percent difference in the objective function values of the SP 
solutions obtained using scenarios generated by different SG methods and the best solution 

 
Figure 3 Summary of the Euclidian distance between the SP solutions obtained using scenarios 
generated by different SG methods and the best solution 
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5. Conclusions and Future Directions 

This paper evaluated seven scenario generation methods for identifying the optimal 
solution and the objective value for a two-stage stochastic program where rare events 
significantly impact the objective. Scenarios generated by the Latin Hypercube 
sampling yielded the closest solution to the optimum at the largest scenario sizes. The 
clustering algorithms yielded solutions that were consistently close to the optimum. 
Future work will consider different clustering algorithms. 
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Abstract 

The global situation forces to design processes based on sustainable metrics and capable 

to respond to constant changes in the world. Particularly, the field of chemical processes 

requires an intensive energetic demand. These requirements force the scientist to 

develop systematic frameworks focused on mathematical formulations and computer-

aided tools. The aim of this work is to develop and implement a systematic framework 

for multi-objective optimization under uncertainty based on four steps, first step: a 

mathematical formulation is defined, second step: the uncertainty identification and 

sampling are implemented, third step: a computational platform is generated based on 

commercial computer-aided tools (aspen plus & matlab) interconnected using a COM 

interface, fourth step: making decision criteria and data analysis. The results showed 

that the framework and employed criteria (The 80 % of cumulative distribution function 

value) for making decision are adequate for sustainable process design under 

uncertainty scenarios.  

Keywords: Sustainable process design, 4E analysis, MOGA, Optimization under     

uncertainty. 

1. Introduction  

Currently, the design of chemical processes demands precise guidelines related with 

sustainable development targets. Nevertheless, these goals have not been properly and 

completely associated with rigorous mathematical models, forcing the scientists to reach 

metrics and making-decision reliable criteria for sustainable targets (Al et al, 2020). The 

chemical processes and mainly bioprocesses are characterized for having, variable 

yields and unexpected behaviours due to inherent and external effects, which are 

directly associated with uncertainty sources; therefore, a process that is optimal under a 

nominal condition may be suboptimal, or infeasible, once the process conditions 

change. Thus, to ensure the capability to maintain feasible process operation over a 

range of uncertainty factors, it is necessary to introduce a flexibility approach in process 

design, employing mathematical formulations focused on representing these phenomena 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50199-8 
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to obtain reliable and feasible designs (Adams et al, 2018). To tackle the concerns 

mentioned above, disciplines as process systems engineering promote the problem 

solution through systematic frameworks, based on optimal process design, integrating a 

collaborative and adaptable synergy between computer-aided tools (v. g. Chemical 

process simulators, programming environments) and mathematical strategies (v. g. 

multi-objective optimization, uncertainty optimization) (Avraamidou et al, 2019). 

Therefore, based on the state of the art, the objective of this work is developed and 

implement a systematic framework for multi-objective optimization under uncertainty 

(MOOUU), through a mathematical formulation using a platform based on commercial 

computer-aided tools, as well as the evaluation of statistical indicators as making-

decision criteria for process design under uncertainty. 

2. Case study  

Nowadays, the use of conventional distillation continues like the principal separation 

and purification technique, which process large amounts of chemical products, but it is 

still a high energy consumption stage in the chemical industry. The preliminary 

structural and operational design of tray distillation columns aims to obtain their 

optimal specifications to meet product specifications (Gozálvez-Zafrilla et al, 2021). 

The production of Acetone-Butanol-Ethanol (ABE) using fermentation consortiums 

continues being an attractive pathway, for obtaining diverse intermediate chemical 

compounds to synthesize biofuels, bioplastics, etc. But the low and variable production, 

high diluted products, and the intensive energy requirements is still a challenge to tackle 

at industrial level. Thereby, the ABE separation and purification scheme (SPS) 

represents an interesting challenge, and it is employed as a case study to implement and 

evaluate the performance of the proposed sustainable framework for optimal and 

flexible design under uncertainty based on the analysis of exergy, energy, economic and 

environmental aspects (4E).  

3. Framework description  

The sustainable framework for optimal and 

flexible design under uncertainty in separation 

processes based on the 4E aspects is illustrated 

in the Figure 1. The framework employs the 

principles of stochastic programming using 

wait-and-see strategy, and simulation-

optimization approach. The systematic steps of 

the framework can be summarized as follows: 

1) Process simulation: rigorous thermodynamic 

description, process design, and state of the art 

update. 2) Stochastic modelling: mathematical 

strategies and formulation, uncertainty 

identification. 3) Optimizer: generation of a 

computational platform and algorithm selection 

to solve the problem, mathematical model 

integration. 4) Optimal design: Data analysis 

using graphical representations and statistical 

metrics as making-decision criteria for process 

design under uncertainty. 

 
Figure 1. Visual representation of        

the sustainable framework. 
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3.1. Process simulation  

Aspen plus was employed for the design of the separation process considering heuristic 

rules, which consists in hybrid arrangement, composed by a liquid-liquid column (C-

101), followed by four conventional distillation columns (D-101, D-102, D-103, and D-

104) focused on the recovery and purification of the extracting agent, acetone, ethanol, 

and butanol, respectively. The thermodynamic model NRTL and the equation of state 

Hayden-O’Connell were selected to describe the phase equilibrium (Ponce-Rocha et al, 

2021). This work does not used surrogate models, the generated simulation was used 

directly in the optimization section to calculate the objective functions values. 

3.2. Stochastic modelling: mathematical formulation 

The MOOUU was formulated as follow [Eq. (1)]:  

Min 
x

 Ẕ = [ Zk(x, θ*)], s. t.   h(x, θ*) = 0;  g(x, θ*) ≤ 0; x ∈ X, θ* ∈ Θ*  (1) 

Where 𝑍, describes the vector of k objective functions under uncertainty (Exergy, 

energy, economy, and environment), 𝑥 represents the vector of n-dimensional states 

linked with structural and operational conditions (FA: extracting agent mass flow, NS:  

number of stages, FS: feed stage, RR: reflux ratio, DF: distillate flow, or BF: bottom 

flow), 𝜃∗ is the vector of s-dimensional uncertainties present in the selected variables. h 

& g represent the vectors of equality and inequality constraints associated with 

operational and structural limitations. 

3.2.1 Uncertainty representation & sampling 

Latin hypercube sampling method was used for the generation of seventy-five random 

scenarios, all variations in the composition vectors for the feed stream (100) were 

generated simultaneously obtaining the following sample space: acetone (A) 2,275±112 

kg/h, butanol (B) 5,931±276 kg/h, ethanol (E) 1,592±135 kg/h, water (W) 10,479±498 

kg/h, and carbon dioxide (CO2) 82±5 kg/h. The boundaries of the sampling in each flow 

value were obtained and adapted from previous experimental results (Valdez-Vazquez 

et al., 2015). 

3.2.2 4E aspects: Exergy, energy, economic, and environmental analysis  

The 4E analysis was reported as a tool to analyse and optimize processes, which 

allowed improving indicators of life cycle impact assessment (LCIA) (Ponce-Rocha et 

al, 2021). 4E analysis was integrated as a tool and each component was added in the 

objective function employing the following mathematical equations. 

3.3. Exergy 

The exergy losses are a thermodynamic metric to detect the inefficient energy use in any 

process due to system irreversibility. The exergy losses balance was used on the process 

design considering heating and cooling processes (Q), separation (Sep) and 

concentration changes (Conc), over all process streams and equipment [Eq. (2)]. 

𝜎𝑇0 = 𝛥𝐸̇𝑥𝐼𝑛 − 𝛥𝐸̇𝑥𝑂𝑢𝑡 

𝜎𝑇0 = ∑ ∑[𝛥𝐸̇𝑥𝑄,𝑗 + 𝛥𝐸̇𝑥𝑆𝑒𝑝,𝑖 + 𝛥𝐸̇𝑥𝐶𝑜𝑛𝑐,𝑖]

𝑚

𝑖=1

𝑛

𝑗=1

 [𝑘𝑊] (2) 
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3.4. Energy 

The ratio between total heat requirements and the total amount of purified products 

(ER) is a common metric to evaluate the performance of the process separation, mainly 

in fuel recovery [Eq. (3)]. 

𝐸𝑅 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠  [𝑀𝐽] 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 [𝑘𝑔]⁄  (3) 

3.5. Economy  

Total annual cost (TAC) is a typical economic indicator that allows to relate the capital 

cost, payback period (set at five years), and annualized cost of utilities, as described in 

Eq. (4).  

𝑇𝐴𝐶 = 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑⁄ + 𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (4) 

3.6. Environment 

The E-factor (Efactor) was used to evaluate the environmental impact, due to includes the 

waste and products ratio [Eq. (5)].  

𝐸𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑊𝑎𝑠𝑡𝑒  [𝑘𝑔] 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 [𝑘𝑔]⁄  
(5) 

3.7. Optimizer: Multi-Objective Genetic Algorithm   

To solve each optimization scenario, the matlab suite: gamultiob (a variant of NSGA-II) 

was used in the multi-objective optimization. Each optimization considered 50 

generations, 200 individuals, and a crossover fraction of 0.8 and an adaptative feasible 

mutation function. In addition, each design specification vector generated in the multi-

objective genetic algorithm is evaluated into a defined simulation scheme, to validate 

the thermodynamic feasibility and estimate the values of the objective functions through 

a computational interface. The mass purity (P) and mass recovery (R) constraints are 

specified for Eq. (6) & (7). 

[𝑃𝐻𝐸𝑃 , 𝑃𝐴, 𝑃𝐵 , 𝑃𝐸] ≥ [0.999, 0.950, 0.995, 0.900] 
[𝑅𝐻𝐸𝑃 , 𝑅𝐴, 𝑅𝐵, 𝑅𝐸] ≥ [0.999, 0.995, 0.000,0.992] 

(6) 

(7) 

3.8. Optimal design under uncertainty: Making decision criteria 

The results obtained by each scenario generate a distribution of optimal designs, 

therefore the use of statistical indicators was employed as a tool for the selection and 

making decisions to obtain a single design derived from MOOUU for each evaluated 

scenario. In this sense, three criteria were evaluated: mean, mode and a value of 80 % 

for cumulative distribution function (CDF), due to provides the basis for a probabilistic 

interpretation of the results.  

4. Results 

Each optimal design specification for each scenario under uncertainty was evaluated in 

the process configuration, the optimal results were represented using histograms plots, 

and a cumulative distribution function (see Figure 2 a and b, respectively). The 

statistical metrics were remarked in CDF plot, identified as follow: mean (blue dots), 



  

mode (red dots), and 80 % of CDF (green dots). The structural designs of the process 

are reported in Table 1, where previous results without considering uncertainties are 

also illustrated (nominal design) (Ponce-Rocha et al, 2021). 

2.a  

2.b  

Figure 2. a) Histogram plots for structural specifications; b) Cumulative distribution function for 

structural specifications, mean (blue dot), mode (red dot), and 80 % of CDF (green dot). 

Table 1. Comparative structural designs for each design and operating variables.  

Variable 
NS 

C101 

FA 

kg/h 

NS 

D101 

NF 

D101 

NS 

D102 

NF 

D102 

NS 

D103 

NF 

D103 

NS 

D104 

NF 

D104 

Nominal 41 64,332 33 18 38 21 41 18 41 7 

Mean 47 59,272 33 14 35 18 44 20 40 13 

Mode 43 65,451 34 16 38 20 45 19 45 13 

80 % 

CDF 
47 68,080 37 17 40 20 46 20 49 14 

 

To identify the most robust and reliable specifications of each process configuration, the 

obtained designs reported in Table 1 were evaluated using three flowrate vectors of the 

samples: minimum (Min), average (Avg), and maximum (Max) values. The results of 

the objective functions are reported in Table 2. These results show that the use of 

nominal and mean designs did not satisfy the requirements when the maximum flowrate 

vector is employed, in contrast to the designs using the mode and 80 % CDF value, 

which are robust enough to be able to fulfil the separation and purification requirements 

for the most extreme uncertain conditions. 

Table 2. Evaluation of feed flow to SPS specifications, and objective functions values. 

Design 

parameter 
Flow 

TAC 

(USD/year) 

Exergy 

(MW) 

Energy 

(MJ/kg) 
Efactor 

Nominal 

Min 7.88 1.91 12.36 0.24 

Avg 8.05 1.93 11.83 0.25 

Max - - - - 

Mean  

Min 7.63 1.85 12.01 0.24 

Avg 7.80 1.87 11.51 0.25 

Max - - - - 
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Design 

parameter 

Flow 
TAC 

(USD/year) 

Exergy 

(MW) 

Energy 

(MJ/kg) 
Efactor 

Mode 

Min 7.94 1.92 12.44 0.24 

Avg 8.12 1.95 11.91 0.25 

Max 8.42 2.03 11.68 0.24 

80 % CDF 

Min 8.11 1.95 12.65 0.24 

Avg 8.29 1.98 12.08 0.25 

Max 8.59 2.06 11.84 0.24 

5. Conclusion 

The proposed systematic framework allowed to identify that the use of statistical 

indicators as mode and 80 % CDF value, guarantee the convergence of each evaluated 

flow vector. Both indicators could be employed as metric to making-decision criteria to 

design separation process under uncertainty, however, the use of 80 % CDF is 

considered as a better criterion, due to using probabilistic fundamentals instead of a 

major value frequency in a set of data values, where the propagated uncertainty is 

presented. Additionally, it is necessary to evaluate each feed flow vector generated on 

the 80 % CDF design with the aim to validate the flexibility of the selected design 

specifications versus the specified feed flow variation. 
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Abstract 

Carbon capture and utilization (CCU) can solve recent global climate change, allowing 

large-scale mitigation of carbon emission. Estimation of cost and carbon reduction for 

CCU systems is an essential step as most of them are energy-intensive and costly, 

hindering further adaptation. Nonlinear surrogate models can help identification of 

sustainability for each CCU pathway without rigorous simulations. The surrogate model 

as a simple equation allows being incorporated into multiscale decision-making. This 

work applies nonlinear surrogate models on decision making of CCU through the 

construction of a CCU superstructure systemization of the best CCU pathway selection 

problem as mathematical programming. The surrogate models that predict the capture 

energy and cost from the flue gas condition and CO2 removal rate are incorporated into 

the network. A case study as a small CCU superstructure is performed to test ability and 

complexity of the CCU superstructure optimization problem as mixed-integer-nonlinear-

programming (MINLP). 

Keywords: Carbon capture and utilization; Superstructure; Network optimization; 

Surrogate model; Mined-integer nonlinear programming. 

1. Introduction 

Carbon capture and utilization (CCU) is a promising option for global climate change by 

capturing a large amount of CO2 from plantwide flue gases and utilizes it to useful 

products. CCU attracts industries for its potential economic benefits in addition to 

reduction of carbon emission. A number of researches have been studied in carbon 

capture as well as carbon utilization in both technology level and process level to reduce 

the energy consumption and cost (Boot-Handford et al, 2014; Cuellar-Franca and 

Azapagic, 2015). Despite the efforts, many CCU pathways from flue gas to capture, 

conversion, and product are not sustainable in terms of economics and carbon reduction. 

The major concern in industries is on which technologies should they invest in to achieve 

best expected carbon reduction and profit. 

A systemic approach that analyzes multiple CCU technologies as mathematical 

programming is extensively studied to solve the concern. CCU superstructure where the 

CCU pathway is identified and evaluated is constructed so that mathematical solver can 

optimize the superstructure and find out the best CCU pathway (Kim et al, 2013; Bertran 

et al, 2017; Roh et al, 2019). Those works formulated superstructure optimization 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50200-1 
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problems as mixed-integer linear programming (MILP) and a pathway is represented as 

a set of binary integers.  

The MILP approach has a limitation on flexibility in process level. The CCU processes 

are simulated before superstructure construction and the key performance indicators of 

the processes such as CO2 capture rate and capture energy are treated as constant 

parameters. As a chemical process, a CCU process is nonlinear and the performance 

indicators change not linearly as the process input changes. To reflect this nonlinearity, 

the superstructure optimization problem must be formulated in mixed-integer nonlinear 

programming (MINLP), the most difficult type of problem. As far as our knowledge, 

there is little attempt to solve the problem in MINLP. Hasan et al (2015) incorporated 

nonlinear cost models of CO2 capture processes on a CCU supply chain network and 

solved them as MILP with piecewise linearization. As direct incorporation of full process 

models in the systemic framework is not realistic, it is essential to apply the nonlinear 

cost models or surrogate models instead, and it is worthy to investigate the problem 

complexity of the superstructure optimization problem as MINLP. 

In this work, a CCU superstructure is formulated with known surrogate models for 

capture processes from literature. Then the MINLP problem is formulated and solved to 

identify the feasible pathways. Several industrial sectors with a different number of CO2 

sources are selected and optimized in several scenarios to test the complexity of the 

optimization problem. 

2. Optimization problem formulation 

A superstructure model is defined as a network model and the embedded process interval 

model. The network model formulates the topology of the superstructure as a graph, 

treating the CO2 source, processing interval, and products as nodes and their connections 

as directed arcs. The processing interval model is a set of equations where the key 

performances of the CCU processes are captured as interval parameters and the process 

cost can be calculated from the interval flowrates. The decision variable for the 

superstructure optimization problem is binary variable 𝑧 which represents the selection 

of the nodes and their connections. Inside 𝑁, the user can set constraints on 𝑧 using binary 

parameters 𝑦 to prevent the selection of undesired connections as Eq (1, 2) 

𝑧𝑣 ≤ 𝑦𝑣    ∀𝑣 ∈ 𝕧 (1) 

𝑧𝑎 ≤ 𝑦𝑎    ∀𝑎 ∈ 𝕧 × 𝕧 (2) 

where 𝕧 is the set that contains the feeds, intervals, and products, 𝑣 is the node, and 𝑎 is 

the arc. The feed-feed connection and product-product connection are prevented by 𝑦 

(e.g. 𝑦𝑓,𝑓2
= 0 ∀𝑓, 𝑓2 ∈ 𝕗, where 𝕗 is the set of feeds). The logical constraints that 𝑧 = 1 

if and only if the flow is larger than zero is described by the big M method as Eq (3 and 

4). 

𝐹𝑣 ≤ 𝑧𝑣𝑀    ∀𝑣 ∈ 𝕧 ∪ 𝕧 × 𝕧 (3) 

𝑧𝑣 ≤ 𝐹𝑣𝑀    ∀𝑣 ∈ 𝕧 ∪ 𝕧 × 𝕧 (4) 

 

where 𝐹𝑣 is the corresponded flow to 𝑧𝑣. 
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capture and utilization network

The interval models consist of raw material mixing, reaction, and separation steps (e.g. 

Bertran et al, 2017). The previous MILP approach only allows linear equations for all 

three steps with constant parameters. Instead, nonlinear surrogate models can be 

incorporated.  

Appropriate labeling on each arc can handle the assignment of outlets after separation 

(Quaglia et al, 2012). The connections are labeled so that an outlet can only be assigned 

to one of the connections with the same label. These allocations are modeled by Eq (5 

and 6) 

∑ 𝑧𝑣,𝑣2
𝑦𝑣,𝑣2,𝑛

𝑣2∈𝕧
≤ 𝑧𝑣    ∀𝑣 ∈ 𝕧, 𝑛 ∈ 𝕟 (5) 

∑ 𝑦𝑣,𝑣2,𝑛
𝑣2∈𝕧

≤ 𝑧𝑣    ∀𝑣 ∈ 𝕧, 𝑛 ∈ 𝕟 (6) 

where 𝕟 is the set of labels for arc and the labeling is determined by binary parameter 

𝑦𝑣,𝑣2,𝑛. For example, in Figure 1, Interval A has two outlets after separation. The first 

outlet is labeled as 1 and the second outlet is labeled as 2. The interval is connected with 

four intervals B to E, where the first outlet can only flow through connection A-B or A-

C. Likewise, the second outlet can only flow through connections A-D and A-E.  

 

Figure 1. Labeling of arcs in the superstructure. The connections between A-B and A-C 

are labeled 1 (solid line) and the connections between A-D and A-E are labeled 2 

(dashed line).  

The objective function is to maximize the gross profit ( 𝐺𝑃 ) with nonnegative CO2 

reduction (𝐸Red) 

max
𝑧

𝐺𝑃(𝑧, 𝐹) s.t. 𝐸Red(𝑧, 𝐹) ≥ 0, 𝐼(𝐹, 𝜆) = 0 and 𝑁(𝑧, 𝐹, 𝑦) ≥ 0 (7) 

with process interval model (𝐼) being equality constraints with the interval parameters (𝜆) 

and network model ( 𝑁 ) being inequality constraints so that 𝐺𝑃  and 𝐸Red  can be 

calculated from the interval flowrates (𝐹). 

The multiple pathways can be identified using integer cuts (Kim et al, 2013). The 

optimization problem finds an optimal pathway in the superstructure. The next optimal 
pathway is identified by adding additional logical constraints as Eq (8) 

∑ 𝑦𝑝,𝑣𝑧𝑣
𝑣

≤ ∑ 𝑦𝑝,𝑣
𝑣

− 1    ∀𝑝 ∈ 𝕡 (8) 

where 𝒚𝒑,𝒗 is a binary parameter as the previous selection result of interval 𝒗 for pathway 
𝒑 in pathway set 𝕡, and 𝒛𝒗 is a binary variable as a selection of interval 𝒗 for the newly 
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optimal pathway. After the optimization, the newly identified pathway is stored by 
expanding 𝕡. This integer cut can be repeated until no feasible pathway is identified. 

3. Case study 

A case study is performed for the refinery (Figure 2). The superstructure has four flue 

gases with different flowrates and CO2 mole fractions from 0.04~0.5% mol. (furnace off-

gas, utility plant off-gas, fluidized catalytic cracker (FCC) off-gas, and hydrogen 

processing unit (HPU) off-gas, Table 1). Three capture processes are considered: 

monoethanol (MEA) based amine scrubbing, piperazine (PZ) based amine scrubbing, and 

membrane separation. Three utilization intervals are considered: combined reforming 

(CR) process that produces syngas (H2:CO=2) from CO2 CH4, and H2O, CO2 

hydrogenation (CH) process that produces methanol from CO2 and H2, and methanol 

synthesis (MeOHsyn) process from syngas from CR. One dummy interval (Dummy) is 

added that collects waste gas from intervals. Three products are considered: it is assumed 

that CO2 can be directly sold with $100/ton, methanol with $293/ton, and waste gas with 

zero price. The superstructure has eight compounds (CO2, N2, O2, H2O, H2, CO, MeOH, 

and CH4) and three compounds (H2, CH4, H2O) are treated as raw materials in utilization 

intervals. 

Table 1. Summarization of flue gases in the case study. 
 

Mass flowrate Mass fraction  
(ton/sec) CO2 N2 O2 H2O 

Furnace off-gases 0.160 12.3% 73.5% 7.8% 6.3% 

Utility plant off-gas 0.237 6.2% 74.4% 13.6% 5.7% 

FCC off-gas 0.035 28.2% 69.1% 2.1% 0.6% 

HPU off-gas 0.035 61.1% 38.9% 0.0% 0.0% 

 

Furnace 
off-gas

Utility plant 
off-gas

FCC off-gas

HPU off-gas

MEA

PZ

Membrane

Combined 
reforming

CO2 
hydrogentaion

Dummy

MeOHsyn

CO2

Methanol

Waste gas

 

Figure 2. A CCU superstructure with four flue gases, three capture processes, three 

conversion processes, and two products with dummy interval and waste gas. The solid 

line and the dashed line indicate labeling of arc as 1 and 2, respectively. 
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Chung et al (2020) suggests model formula as Eq (9) and Eq (10) 

𝑈k,steam = 𝛼(ln 𝑥𝐶𝑂2 + 𝛽 ln(1 − 𝑟k,CAP)) + 𝑓k,steam,0, 𝑘 ∈ {MEA, PZ} (9) 

ln 𝐸𝑃𝐶k = 𝛼(ln 𝑥𝐶𝑂2 + 𝛽 ln(1 − 𝑟MEA,CAP) − 1 𝑟k,CAP⁄ ) + 𝛾 ln 𝐹𝐶𝑂2,𝑘

+ 𝑓𝑘,𝐸𝑃𝐶,0, 𝑘 ∈ {MEA, PZ} (10) 

for steam consumption (𝑈k,steam) and equipment purchase cost (𝐸𝑃𝐶k) from inlet CO2 

mole fraction (𝑥𝐶𝑂2), flowrate of captured CO2 (𝐹𝐶𝑂2,𝑘), and CO2 capture rate (𝑟k,CAP) 

with model parameters (𝛼, 𝛽, 𝛾, 𝑓0). The model is valid for 0.03 ≤ 𝑥𝐶𝑂2 ≤ 0.5. Hasan et 

al (2015) suggests model formula as Eq (11) 

𝐼𝐶k or 𝑂𝐶k = α + (𝛽𝑥𝐶𝑂2
𝑛 + 𝛾)𝐹𝑖𝑛

𝑚 (11) 

for operating cost and capital cost from inlet CO2 mole fraction (𝑥𝐶𝑂2) and feed gas 

flowrate (𝐹𝑖𝑛,𝑘 ) with model parameters (𝛼, 𝛽, 𝛾, 𝑚, 𝑛). The model is valid for 0.01 ≤

𝑥𝐶𝑂2 ≤ 0.7 . The interval data for utilization processes are assumed to be constant, 

referred from Roh et al (2019). The case study is formulated as MINLP in Pyomo and 

solved by BARON (Kilinc and Sahinidis, 2018) using AMD Ryzen 9 5950X. 

4. Results and discussion 

There are 30 feasible pathways in the superstructure. The pathways from HPU to PZ and 

MEA are infeasible as the CO2 mole fraction of HPU exceeds 0.5. A test is performed to 

test whether the framework can identify all the feasible pathways. Without the constraint 

for nonnegative CO2 reduction, all the 30 pathways are identified within 346.262 seconds. 

Then, with the nonnegative CO2 reduction constraint, the six sustainable pathways are 

identified (Table 2). Pathway No. 7 is at the nonnegative CO2 reduction constraint with 

small production rate of methanol and a small annual profit ($ 6.0M/yr). This pathway is 

originally the most profitable but non-CO2-reducing, and the capture rate is adjusted so 

that the constraint is satisfied. A dummy pathway is identified (pathway No. 8) with a 

non-integer solution of 𝑧. This is due to the integer relaxation algorithm of BARON. 

Table 2. The identified sustainable CCU pathways in the case study in order of 

identification by the solver. Furn means furnace off-gas. Pathway No. 7 and 8 are 

dummy pathways. 

No. Feed Capture Conversion-

product 

Profit 

(M$/yr) 

CO2 reduction 

(MtCO2/yr) 

Computational 

time (sec) 

1 HPU Membrane CR-MeOH 785.5 3.361 15.663 

2 FCC PZ CR-MeOH 391.1 1.078 1.419 

3 FCC MEA CR-MeOH 389.2 1.058 16.457 

4 FCC Membrane CR-MeOH 355.2 0.994 1.160 

5 HPU Membrane CH-MeOH 162.8 0.019 1.346 

6 HPU Membrane CO2 45.0 0.671 1.817 

7 Furn PZ CR-MeOH 6.0 0.000 30.383 

8* FCC MEA CR-MeOH -4.0 0.000 18.229 

No more feasible pathway is identified 17.165 

 

Application of nonlinear surrogate models on optimization of carbon

 capture and utilization network
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Despite superstructure with small size (210 integer variables, 2710 continuous variables, 

and 2094 constraints), it takes several minutes to identify all the pathways in the case 

study. If more CO2 sources, capture intervals, utilization technologies, and products are 

added, the size of the superstructure can be very large and the computational time may 

take hours or days. MILP approach takes only minutes to solve such a large superstructure 

(>100,000 variables) (Bertran et al, 2017). Other algorithms instead of solving MINLP 

directly (e.g. piecewise linearization) will reduce the computational time. 

5. Conclusions 

An optimization problem of a CCU system for the purpose of identifying sustainable 

pathways is formulated in MINLP. The nonlinear surrogate models for capture processes 

allow more accurate identifications. A case study is performed with four flue gases, three 

capture processes, and three utilization options to test the complexity of the problem. The 

results suggest that the MINLP approach can successfully identify the pathways; 

however, the computational times can be issues for large CCU superstructure. 
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Abstract 

The development of new technologies for chemical process systems is essential to  
achieve the sustainable development goals. To ensure the path forward is viable,  
technology development includes a rigorous evaluation stage that contrasts the benefits 
of the proposed technology with existing or alternative systems. Energy efficiency and 
the extent of heat integration are key indicators that directly influence the evaluation and 
implementation of process system technologies. Methodologies such as the pinch analysis 
together with mathematical optimization have been extensively applied to determine the 
degree of heat integration potentially achievable by chemical processes. The aim of these 
methodologies is to find optimal heat exchange networks (HENs) within a plant or 
process by minimizing the use of external utilities for heating or cooling. However, since 
the mathematical formulation of the conventional optimization procedure excludes 
factors considered important in decision-making processes (operability of complex HEN, 
plant configurations, safety, etc.), process evaluations fail to fully reflect the 
consequences of technologies that alter the process conditions. In order to close this gap, 
an alternative methodology for process energy optimization is proposed in this study 
which ranks near-optimal HENs solutions, and also considers external factors for 
decision-making. The methodology proposed consists of heat integration over multiple 
levels (e.g., sub-process level, plant level) using two major methods of mathematical 
optimization: the Stage-Wise Superstructure (SWS) and the Integer-Cuts Constraint 
(ICC). Results from the application of the proposed methodology to a case study of a 
methanol production process show the possibility of reducing the external utilities 
consumption by more than 55% compared to the non-integration scenario.  

Keywords: Heat Exchange Network, Energy Optimization, Heat Integration, 
Superstructure, Methanol Synthesis. 

1. Introduction 

Making a comprehensive evaluation of the impacts of a new technology over the whole 
process is one of the key factors in the success of technologies for chemical systems in 
real-life applications. Among the most important aspects to consider when evaluating 
these systems are the investment cost of the technology, operation costs, environmental 
impacts, safety, and energy efficiency. Heating requirements, cooling requirements, and 
heat exchange networks are determinants for all aspects of the evaluation, especially when 
assessing the sustainability of a new process technology.   

http://dx.doi.org/10.1016/B978-0-323-85159-6.50201-3 
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Heat exchanger networks have the role of transferring energy among high-temperature 
streams that require cooling (hot process streams) and low-temperature streams that 
require heating (cold process streams) to reduce the consumption of external utilities for 
heating or cooling. Improving energy efficiency through effective heat utilization in 
process systems is known as "heat integration". The variations in the extent of heat 
integration influence significantly the evaluation of new technologies because utility 
reduction leads to reductions in cost and/or environmental impact. Methodologies like the 
“pinch analysis” serve as a target-based design tool for revealing the minimal utility 
consumption (MUC) potentially achieved.  Actual process systems are rarely developed 
considering the MUC from initial stages. Moreover, conventional optimization 
procedures exclude factors considered important in the decision-making processes 
(operability of complex HEN, plant configurations, safety, etc.). Besides, given the 
complexity of actual process systems, HENs determination is commonly limited to the 
interaction among streams within a level of sub-processes and does not extend to the 
whole plant. While process evaluations based on designs without any HENs may deliver 
some insight, such evaluations typically fail to fully reflect the consequences of process 
technologies that alter process conditions. Therefore, this study introduces a scheme that 
systematically presents multiple near-optimal HENs solutions for interaction among 
multiple levels (at the sub-process level and plant level). 

The framework proposed by this study consists of three major steps: segmentation of the 
process plant in functional sub-processes, an independent heat integration at the sub-
process level, and a global heat integration at the plant level. The heat integration 
objective at both levels is to find a rank of combinations among process streams that 
minimize operational costs in terms of utility consumption. For that purpose, this study 
employs a novel methodology that consists of a combination of two major methods of 
mathematical optimization. One method commonly used for HEN synthesis, known as 
the Stage-Wise Superstructure (SWS) (Yee & Grossmann, 1990), considers heat 
exchange over multiple stages, and another method used to rank the synthesized HENs, 
proposed by Maronese S. et al. (2015), is called the Integer-Cuts Constraint (ICC). Heat 
integration is performed as a bottom-up hierarchical sequence, from the sub-process level 
to the plant level. Here, one of the near-optimal solutions is selected for each sub-process 
according to a certain design criterion (safety, heat exchanger size, network configuration, 
etc.), and then taken for further integration at the plant level. 

2. Background on heat integration and optimization  

2.1 Pinch analysis 

The pinch analysis is a method developed to reveal the minimal utility consumptions 
potentially achieved (Linnhoff & Hindmarsh, 1983). It reveals the utility consumptions 
when heat exchange in a process system is performed to the maximum. In this method, 
the heat loads of all existing streams over any given temperature range are added together 
in what is referred to as a "composite curve". When performing heat exchange, some 
temperature difference is required as a driving force. The minimum value of the 
temperature difference, the minimum approach temperature (Δ𝑇୫୧୬), is often set 
empirically based on the industrial field or the combination of streams (Tatsumi & 
Matsuda, 2002). The maximum amount of heat exchange between process streams can 
be known graphically by superposing the hot composite curve and the cold composite 
curve separated by Δ𝑇୫୧୬. However, the pinch analysis provides only the maximum value 
of the heat exchangeable in the processing system and the minimum value of the utility 
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amounts achieved. The pinch analysis does not determine how hot and cold streams 
should be paired or to what extent heat should be exchanged. Thus, it is necessary to 
implement optimization methods that explicitly synthesize the heat exchanger networks 
based on operational and investment cost criteria. 

2.2 Mathematical optimization 

The mathematical optimization methods employed for HEN design usually adopt the 
concept of superstructure optimization (Fig. 1). Superstructure is defined as a structure 
that contains all possible structures as its substructures. By performing optimization, a 
structure containing some substructures which has the best objective function value can 
be obtained. By using superstructure in heat exchanger network synthesis, it is possible 
to know the combination of streams to exchange the heat and the amount of each heat 
load explicitly. There are basically two approaches to the heat exchanger network 
synthesis using mathematical optimizations (Escobar, M. & Trierweiler, 2013). One is to 
perform optimization multiple times (Papoulias & Grossmann, 1983; Floudas et al. 1986), 
and the other is to perform all optimizations at once (Ciric et al., 1991; Yee & Grossmann, 

1990). In the former approach, the 
utility consumptions are first 
determined by minimizing the utility 
cost. Next, the heat exchange area is 
determined using the objective 
function of minimizing the investment 
cost or the sum of heat exchanger area. 
In the latter approach, however, the 
quantity of utilities, the combination of 
streams to be heat-exchanged, each 
heat load, and each heat exchanger 
area are determined by a single 
optimization. In this case, the objective 

function is to minimize the total annual cost of the plant. 

By employing mathematical optimization, only a single optimal solution can be obtained. 
However, whether the solution obtained can be implemented, or even to determine if it is 
actually optimal, remains unknown. This is because the introduction of heat exchanger 
networks is often subject to factors externalized from the mathematical formulation of the 
design problem, such as operability, plant configuration, and safety. These factors need 
to be considered when deciding on whether to introduce the heat exchanger network 
obtained by optimization. 

3. Method for process energy optimization via multi-level heat integration  

The purpose of the present study was to develop a tool that systematically presents 
multiple heat exchanger networks for a process system. Among the methods reported 
which show multiple solutions in mathematical optimization, none are applied to 
synthesize multiple HENs. Therefore, we developed a model to synthesize multiple HENs 
with the intention of providing decision-makers with multiple options (near-optimal 
solutions) to choose from when selecting a heat exchanger. Also, in the event that there 
are common characteristics in the near-optimal solutions, the common characteristics 
highlight what should be achieved with priority when implementing the heat exchanger 
network. The procedure of this study is illustrated schematically in Fig. 2: 

Figure 1. HEN Superstructure (4 Stages) 

A case study on low-temperature reforming for methanol systhesis
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The method proposed employs mathematical optimization for multiple heat exchanger 
networks. We adopted a method proposed by Yee & Grossmann (1990) that considers 
heat exchange over multiple stages. This method is called the “Stage-Wise 
Superstructure” (SWS). A conceptual diagram of the SWS over four stages is shown in 
Fig. 1. This diagram presents a structure with two hot process streams (HPs), two cold 
process streams (CPs), one hot utility (HU), and one cold utility (CU). The solution of 
this SWS is a combination of heat exchangers that minimizes the total costs and satisfies 
the thermodynamical constraints of heat transfer. The objective function is the 
minimization of the total annual cost related to heat exchange (𝐶୲୭୲ୟ୪). The first and 
second terms in Eq. (1) are the operation costs, which represent the cold utility costs and 
hot utility costs, respectively. The third and fourth terms are the investment and 
operational costs. 

min  𝐶୲୭୲ୟ୪ =   ቌ ෍ ෍ ෍ 𝐶୙,௝ ∙

௞∈௄௝∈஼௎

𝑞௜,௝,௞ 

௜∈ு௉

+  ෍ ෍ ෍ 𝐶୙,௜ ∙

௞∈௄௝∈஼௉

𝑞௜,௝,௞ 

௜∈ு௎

ቍ

+ 𝐹୅ ቌ෍ ෍ ෍ 𝐶୊,௜௝ ∙

௞∈௄௝∈஼

𝑦௜,௝,௞ 

௜∈ு

+  ෍ ෍ ෍ 𝐶୅,௜௝ ∙

௞∈௄௝∈஼

𝑎௜,௝,௞ 

௜∈ு

ቍ 

(1) 

Where 𝐶୅,௜௝ represents the area cost coefficient for heat exchangers, 𝐶୊,௜௝  is the fixed cost 
for heat exchangers, and 𝐶୙ is the annual cost per unit of utility, respectively. 𝐹୅ is the 
annualization factor for investment, 𝑎௜,௝,௞ , 𝑞௜,௝,௞ , and 𝑦௜,௝,௞ represent the variables for 
area, heat load, and exchanger existence respectively. The subscript I, j, and k indicates 
the hot streams, the cold streams, and number of stages, respectively. 
 
3.1 Optimization using the Integer-Cut Constraint method 

The Integer-Cut Constraint (ICC) is a suitable method for obtaining multiple solutions in 
optimization problems of system synthesis (Maronese et al. 2015). For this study, the ICC 
method was adopted to perform system synthesis of the energy system with rank order. 
In the ICC method, after obtaining the optimal solution, a constraint is added to the 
original problem, then it prohibits the identical combination of variables as the already 
obtained solution (Eq. 2). 

Where 𝑦
𝑖,𝑗,𝑘
𝑛  is the value of 𝑦

𝑖,𝑗,𝑘
 of the 𝑛-th solution, 𝑁 is the number of obtained solutions, 

i represents the heat transfer operation, 𝑦௦ is binary variable representing the existence of 

෍ ෍൫2𝑦௜,௝,௞
௡ − 1൯𝑦௜,௝,௞

௝∈஼௜∈ு

≤ ቌ෍ ෍ 𝑦௜,௝,௞
௡

௝∈஼௜∈ு

ቍ − 1        ∀ 𝑛 = 1, … 𝑁 (2) 

Figure 2. Optimization procedure via multi-level heat integration  



the unit for heat transfer (𝑦௦ = 1: exist，𝑦௦ = 0: not exist), and 𝑘 is the number of 
optimizations. After this procedure, the HEN optimization is performed again to obtain 
the next best solution, which has a different combination of units from the previous 
solutions. In summary, the overall procedure proposed by this study consists of three 
major steps: an initial segmentation of the process plant in functional sub-processes, an 
independent heat integration at the sub-process level applying the combination of SWS-
ICC, and, a global heat integration at the plant level. The heat integration is then 
performed as a bottom-up hierarchical sequence, from the sub-process level to the plant 
level. Here, one of the near-optimal solutions is selected for each sub-process according 
to design criteria and then taken for further integration at the plant level. 

4. Implementation for Methanol Synthesis 

To demonstrate the potential relevance of the scheme developed, the method was applied 
to the task of assisting in the development of a large-scale methanol production plant (50 
kt/day) that employs a sub-process of low-temperature methane reforming. The plant was 
segmented primarily into six major subprocesses: a looping system, hydrogen production, 
syngas compression, methanol synthesis, combustion and steam generation, and methanol 
purification. Table 1 provides a sample of the input data for the looping system. Here, the 
minimum approach temperature (𝛥𝑇୫୧୬) was 5 K and the number of stages was set to 
four. The cost parameters were the area cost coefficient for heat exchangers (𝐶୅,௜,௝) and 
fixed cost for heat exchangers (𝐶୊,௜,௝), set at 350 $/mଶ and $10000, respectively.  

Table 1. Sample of input data for the looping system 

Stream Type 
Supply 

Temp. [K] 
Target 

Temp. [K] 
Flowrate 
 [𝐤𝐖/𝐊] 

𝒉 [𝐤𝐖
/(𝐦𝟐𝐊)] 

CH4F- CH4I Cold 298.15 573.15 99.80 0.8 
Water-Steam Cold 417.15 573.15 377.68 0.8 

FR1-FR2 Hot 571.75 427.15 324.11 0.8 
SR1-SR2 Hot 572.85 465.55 317.21 0.8 

 

4.1 Results and Discussion 

Figures 3a and 3b show a summary of the results obtained for the methanol case. As 
shown in Fig. 3a, the amount of total utility consumption achieves a reduction of 55% 
compared to the case when heat integration was not performed. In addition, although the 
empirical integration achieves a significant reduction of utilities consumption in 
comparison to a non-integration case, further reduction is viable by applying 
superstructure modeling. Fig. 3b presents a ranking of solutions for the heat integration 
of the looping system in terms of the transition of the objective function value. For this 
sub-process, the total annual cost of the first rank was 3.287 M$/year, and that of the 10th 
rank  was 3.298 M$/year. In the optimal solution. In the optimization using SWS, it is 
possible to explicitly provide the configuration of the heat exchanger network and the 
values of each variable. It is possible to determine whether the solution can be actually 
implemented considering the factors externalized from the mathematical formulation. 

5. Conclusions 
In this study, a tool that presents multiple heat exchanger networks systematically was 
developed. By combining a method to obtain multiple solutions with different 
combinations of binary variables with rank order (ICC method) and a method to obtain 

Systematic process energy optimization via multi-level heat integration:
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the range of variables keeping the objective function value within a specified range and 
modifying them, heat exchanger networks were systematically synthesized for multiple 
system levels. Using this model, even if the single optimal heat exchanger network 
determined by optimization cannot be implemented due to factors not included in the 
mathematical formulation of the design problem, a heat exchanger network can be 
selected from a range of choices reflecting the intentions of the decision makers. 
Additionally, the common characteristics of the higher ranked solutions will help in the 
decision-making process by highlighting what should be achieved with priority in the 
actual implementation of heat exchanger networks. 
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Abstract 

In this study, we propose an efficient computational methodology for developing 

Selective catalytic reduction (SCR) with high NOx conversion and resistance to 

hydrothermal aging, using Bayesian optimization (BO). In order to focus on the 

catalytic performance at low temperature, Cu-Fe bimetallic catalyst supported by SSZ-

13 (Si/Al = 12) is targeted. An initial surrogate model is constructed by referring 

experimental data from previously published papers. The next sampling points are 

determined from the Bayesian optimization algorithm. NOx conversion is observed 

under fresh condition and hydrothermally aged condition after manufacturing a catalyst 

sample consisting of suggested metal compositions. We also consider the catalytic 

activity after hydrothermal aging in the air of 900 ℃ containing 10 % water for 16 

hours. In this way, the optimal composition for bimetallic SCR catalyst is discovered, 

maximizing NOx conversion and hydrothermal resistance in only a few steps of 

experimentation. The proposed SCR catalyst can reduce 95.86 % of nitrogen oxides at 

250 ℃. After hydrothermal aging, it can eliminate 88.83 % of nitrogen oxides at the 

same temperature. 

Keywords: Bayesian optimization (BO); Selective catalytic reduction (SCR); Activity; 

Hydrothermal aging 

1. Introduction 

Diesel engines typically show higher fuel efficiency than gasoline engines, but they 

emit more air pollutants, such as nitrogen oxides (NOx). The emission standards for 

nitrogen oxides become stringent recently to decrease air pollutants emitted from 

automobile exhaust gas. Euro 6 regulations have already been implemented since 2014 

and more strict restriction, Euro 7, is to be introduced in the near future. Selective 

catalytic reduction (SCR) with urea injector is a standard after-treatment system which 

reduces the nitrogen oxides in the exhaust gas emitted from the diesel engines. The 

performance of the SCR catalyst is excellent at high temperature, removing more than 

90 % of nitrogen oxides in the exhaust gas. However, catalytic activity in low 

temperature range is a major challenge in the automobile aftertreatment catalyst field. 

Low NOx conversion at low temperature causes air pollution when the exhaust gas is 

not hot enough, for example, during cold start and on travelling short distances (Shan 

and Song, 2015). Furthermore, for the actual diesel engine exhaust system, the SCR 

catalyst suffers from the deactivation caused by hydrothermal aging due to H2O content 

with high temperature exhaust gas. Therefore, achieving hydrothermal stability is also 

crucial for commercial SCR catalyst. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50202-5 
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For commercial SCR for diesel vehicle, urea solution is usually applied to generate 

ammonia. The hot exhaust gas stream from diesel engine evaporates water droplet and 

thermally decomposes urea to ammonia. 

(𝑁𝐻2)2𝐶𝑂 ⟶ 𝑁𝐻3 + 𝐻𝑁𝐶𝑂   (1) 

𝐻𝑁𝐶𝑂 + 𝐻2𝑂 ⟶ 𝑁𝐻3 + 𝐶𝑂2    (2) 

The generated ammonia is adsorbed on the active sites of the catalyst to remove 

nitrogen oxides from the exhaust gas. The SCR reactions are usually described in three 

types of reactions: the standard, fast, and slow SCR reactions. (Pant and Schmieg, 2011) 

4𝑁𝐻3 + 4𝑁𝑂 + 𝑂2 ⟶ 4𝑁2 + 6𝐻2𝑂   (3) 

2𝑁𝐻3 + 𝑁𝑂 + 𝑁𝑂2 ⟶ 2𝑁2 + 3𝐻2𝑂   (4) 

4𝑁𝐻3 + 3𝑁𝑂2 ⟶ 3.5𝑁2 + 6𝐻2𝑂   (5) 

Nitrogen monoxide is oxidized to nitrogen dioxide at high temperature (above 250℃). 

Since the extent of NO oxidation to NO2 under low temperature is small, NO2 

concentration at the SCR inlet gas can be negligible (Olsson et al., 2008). 

Many SCR catalysts have been explored to improve NOx removal efficiency. It is 

reported that SCR catalysts containing transitional metal, particularly Cu and Fe, show 

good activity at low temperature (Li et al, 2011). However, in the case of catalytic 

system with bimetallic components, finding the optimal composition with both excellent 

activity and hydrothermal stability is too inefficient and time-consuming to be 

proceeded only experimentally. 

In this study, we propose an efficient computational methodology for developing SCR 

catalyst with high NOx conversion and resistance to hydrothermal aging, using 

Bayesian optimization (BO). 

2. Methodology 

2.1. Experimental condition 

In this study, we focus on Cu-Fe bimetallic catalyst for SCR. In terms of catalytic 

structure for SCR, various types of zeolite structures have been studied: Beta, ZSM-5, 

and SSZ-13. Among them, Kwak et al. (2010) have reported that SSZ-13 demonstrates 

superior activity in comparison with beta and ZSM-5. Therefore, we prepare Cu-Fe 

SCR catalyst supported by SSZ-13 (Si/Al = 12) to maximize NOx conversion at low 

temperature. 

The catalytic performance is measured using lab-scale reactor system. The feed gas 

contained 500 ppm NO, 500 ppm NH3, 10 % O2, 5 % H2O, and balance N2. The total 

gas flow rate is 200ml/min, and the gas hourly space velocity (GHSV) is 200,000/h. 

Most importantly, the temperature of the feed gas is maintained at 250 ℃. The resistant 

ability to hydrothermal aging is also measured after exposure to 900 ℃ gas containing 

10% water for 16 hours. 
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Figure 1. Experimental results for nitrogen oxides conversion of Cu/Fe SCR. Gray bar for fresh 

condition and black bar for hydrothermally aged (HTA) condition. 

The experimental results of initial samples for Bayesian optimization are shown in 

Figure 1. As the copper content of SCR catalyst increases, the number of active sites on 

the surface of the catalyst also increases, which leads to higher NOx conversion. 

However, high metal content reduces catalytic stability simultaneously, making SCR 

catalyst susceptible to catalytic deactivation by the high temperature and water in the 

exhaust gas. Thus, it is required to optimize performance of the catalyst with respect to 

the content of active sites. The effect of two metals coexisting is also difficult to grasp 

intuitively. The performance of a catalyst with a specific metal content is not known 

until experimentally observed. A large number of trials and errors are required to 

develop SCR catalyst with high activity and hydrothermal resistance. 

2.2. Bayesian optimization 

Bayesian optimization is a useful algorithm to optimize a black-box function. It is 

usually employed to optimize hyperparameters of neural network. This method balances 

exploitation and exploration utilizing information obtained from a series of experiments 

(Snoek et al., 2012). Table 1 shows Bayesian optimization procedure, described by 

Brochu et al. (2010). 𝑢(𝑥) means the acquisition function, 𝑓(𝑥) stands for the function 

to be maximized, and 𝒟1:𝑡 is the observed dataset from iteration 1 to t.  

Table 1. Bayesian optimization procedure adopted from Brochu et al. (2010) 

Algorithm 1 Bayesian optimization 

1: for 𝑡 = 1,2, … do 

2: Find 𝑥𝑛 that maximizes the acquisition function over the GP (Gaussian process):  

𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑢(𝑥|𝒟1:𝑡−1). 

3: Sample the objective function: 𝑦𝑡 = 𝑓(𝑥𝑡) + 𝜀𝑡. 

4: Augment the data 𝒟1:𝑡 = {𝒟1:𝑡−1, (𝑥𝑡 , 𝑦𝑡)} and update the GP. 

5: end for 
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As the acquisition function, the expected improvement (EI) is chosen, which is the 

widely used one. The improvement I at the point x can be expressed as follows (Jones et 

al., 1998): 

𝐼(𝑥) = max (𝑓𝑚𝑖𝑛 − Y, 0)   (6) 

where 𝑓𝑚𝑖𝑛 is the current best function value and Y is the random variable ~𝒩(𝑦̂, 𝑠2) 

that corresponds to the function value at x. Since Y follows a Gaussian distribution, by 

taking the expected valued, we can obtain the expected improvement, 𝑢𝐸𝐼(𝑥). 

𝑢𝐸𝐼(𝑥) ≡ 𝐸(𝐼(𝑥)) = E[max(𝑓𝑚𝑖𝑛 − Y, 0)]   (7) 

𝑢𝐸𝐼(𝑥) = (𝑓𝑚𝑖𝑛 − 𝑦̂)Φ (
𝑓𝑚𝑖𝑛−𝑦̂

𝑠
) + 𝑠𝜙(

𝑓𝑚𝑖𝑛−𝑦̂

𝑠
)   (8) 

where 𝜙(∙) and Φ(∙) are the standard normal density function and distribution function, 

respectively. 

In this research, the optimization variable x is weight percent of copper and iron (Cu wt% 

and Fe wt%). The objective of the suggested algorithm is to maximize the catalytic 

activity in fresh condition and hydrothermally aged condition. For minimization 

problem, the objective function can be expressed as follows: 

𝑓(𝐶𝑢, 𝐹𝑒) = −(DeNOx𝐹𝑟𝑒𝑠ℎ + DeNOx𝐻𝑇𝐴)   (9) 

where DeNOx stands for NOx conversion efficiency, 

DeNOx =
NOx𝑖𝑛𝑙𝑒𝑡−NOx𝑜𝑢𝑡𝑙𝑒𝑡

NOx𝑖𝑛𝑙𝑒𝑡
∗ 100   (10) 

3. Results 

We conduct Bayesian optimization for the optimal metal composition that shows the 

best NOx conversion at low temperature (250 ℃) and resistance to hydrothermal aging. 

Initial dataset for the surrogate model is based on the experimental data from previously 

published papers (Shishkin et al., 2014, Yin et al, 2016, Wang et al., 2019). As shown in 

Figure 2, Bayesian optimization algorithm proposes the next experimental point that 

maximizes the acquisition function, 𝑢𝐸𝐼. The Cu/Fe-SSZ-13 catalyst with the suggested 

metal composition is evaluated for its catalytic performance though the experimental 

process mentioned in section 2.1. The objective function is calculated from NOx 

concentration of outlet gas flow. The surrogate model of BO is updated with the newly 

added data. These processes are repeated until the stopping criterion is met. 

S. Lim et al. 
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Figure 2. Bayesian optimization procedure for Cu-Fe SCR. a) objective function model of 5th step, 

b) acquisition function of 5th step, c) objective function of 6th step, d) Acquisition function of 6th 

step 

After only seven steps of experiments, we found a high-performance catalyst for SCR. 

The optimal catalyst proposed by Bayesian optimization consists of 2.0 wt% Cu and 2.0 

wt% Fe. As a result of a total of five experiments, the NOx conversions under fresh 

condition are 94.75 %, 94.54 %, 93.52 %, 93.71 % and 93.80 %, respectively. After 

hydrothermal aging of this Cu-Fe catalyst at 900 ℃ for 16 hours, the catalyst removes 

87.75 %, 89.92 %, 89.75 %, 88.92 % and 87.81 % of nitrogen oxides. These results 

show as good catalytic performance as the SSZ-13 zeolite SCR catalyst presented in the 

recent paper. By using Bayesian optimization algorithm, automobile catalyst with high-

performance can be found efficiently. The methodology suggested in this research can 

reduce time and cost of catalyst development. 

4. Conclusions 

In this work, we show that Bayesian optimization can efficiently support the 

experimental design to discover the optimal catalytic composition for the aftertreatment 

system of diesel vehicle. The target catalyst is Cu-Fe bimetallic catalyst for selective 
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catalytic reduction (SCR), supported by SSZ-13 zeolite structure. The bimetallic 

catalyst proposed by Bayesian optimization has high performance to reduce nitrogen 

oxide, showing 95.86 % conversion. The catalyst also has resistance to the 

hydrothermal aging. After 16 hours of exposure to 900 ℃ of air containing 10 % water, 

the catalyst converts 88.83 % of NOx to N2. The optimal catalyst is discovered in only 

seven experiments. The suggested method reduces time and cost of catalyst 

development. We expect that our methodology can be applied to other automobile 

catalyst system, such as three-way catalytic converter for gasoline vehicle. 
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Abstract

The development and deployment of renewable technologies are key to achieving decar-
bonization. Optimal capacity expansion requires complex decision making that accounts
for future cost reduction with increased deployment, which is also termed technology
learning. Having a perfect foresight over the technology cost reduction, however, is highly
unlikely. This has motivated us to develop a capacity planning model that incorporates
such uncertainty. To this end, we apply a multistage stochastic programming approach
with endogenous uncertainty, which results in a mixed-integer linear programming (MILP)
formulation. The proposed model is applied to a case study on power capacity expansion
planning, highlighting the differences in expansion decisions for low- and high-learning
scenarios, which indicates the importance of stochastic optimization.

Keywords: stochastic optimization, endogenous uncertainty, technology learning

1. Introduction

Over the past few decades, the unfavorable shift in global climatic conditions has driven us
to focus on renewable technology development to lower carbon emissions. The increasing
energy demand has further aggravated the need for alternatives to traditional fossil energy
sources. However, in addition to developing new technologies, making them economical
as fast as possible remains a challenging task. In general, the cost of a technology is a
function of several interrelated factors, including pricing and the number of competitors,
government regulations and policies, the scale of production, and demand. The reduction
in the cost of a new technology due to these factors is often termed technology learning.

Of all the stated, the scale of production constitutes a major driving force for cost reduction
in new technologies. The reduction in cost as a function of installed capacity is often
expressed using learning curves. Learning curves have often been used as a tool to estimate
the time for a new technology to become cost-competitive. For example, Rubin et al.
(2007) utilize learning curves for cost projection of power plants equipped with carbon
capture and storage technology.

A less considered aspect is utilizing learning curves to make optimal capacity expansion
decisions for driving down the cost of a plant or a technology in the least possible time.
Most of the literature on optimization concerning learning curves assumes that they can
be constructed deterministically. For example, Heuberger et al. (2017) present a power ca-
pacity expansion formulation assuming fixed learning curves for various power generation

http://dx.doi.org/10.1016/B978-0-323-85159-6.50203-7 
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and storage technologies. However, the lack of reliable historical data, the dependence
of learning on the decisions made in real time, and the influence of other external factors
make it very difficult to predict the learning curves. Therefore, decisions obtained based
on deterministic learning curves may be severely sub-optimal.

To increase the practical relevance of capacity expansion models, our work incorporates
uncertainty in technology learning curves. Uncertainty in learning rates has been ac-
counted for, if at all, using methods such as sensitivity analysis and Monte Carlo sim-
ulation (Kim et al., 2012). Even though such methods provide valuable insights, their
inability to account for non-anticipativity constraints demands a more rigorous optimiza-
tion framework. For this reason, we explore the feasibility of stochastic programming in
incorporating uncertain learning curves for multiperiod capacity expansion problems.

Uncertainty is generally classified as either exogenous or endogenous. The uncertainty
not affected by decisions is termed exogenous, whereas decision-dependent uncertainty
is termed endogenous. Endogenous uncertainty is further classified as type-1 and type-2.
Type-1 uncertainty arises when decisions alter the probability distribution of the uncer-
tain parameters (Peeta et al., 2010), whereas type-2 uncertainty affects the timing of the
realization of the uncertain parameters (Goel and Grossmann, 2006). In a capacity expan-
sion problem with an uncertain learning curve, the uncertainty in expansion cost resolves
only when the capacity is actually increased; thus, the uncertainty here classifies as type-2
endogenous. In this work, we develop a multistage stochastic programming model for
capacity planning with uncertain endogenous technology learning and apply it to a power
expansion case study.

2. Stochastic programming model

To capture the interconnectivity of technologies, model their simultaneous availability to
satisfy product demand, and optimize their selection for capacity expansion and opera-
tions, we consider a general process network comprising process and resource nodes as
illustrated in Figure 1. Processes and resources are denoted by square and circular nodes,
respectively. The arcs in the network denote the directed flow of resources. Process nodes
can represent chemical and manufacturing processes or, generally, technologies. Resource
j ∈ J from a process k ∈ K can either serve as an input resource to process k′ ∈ K\{k},
be discharged from the process network, or be purchased from outside the network.

The goal is to determine optimal capacity expansion decisions during the planning horizon
T , and devise optimal operational decisions in each scheduling horizon Ht based on each
process’s installed capacity, demand of resources, and all the involved costs. Uncertainty
in technology learning curves is accommodated by considering different possible scenarios
(combination of learning curves for multiple uncertain technologies).

2.1. Capacity expansion constraints

Based on the process network in Figure 1, we define binary variable xkits that equals 1
if process k undergoes capacity expansion to (at least) the permissible point i ∈ Ik in
time period t ∈ T of scenario s ∈ S. We further define the variables Ckts and ∆kts such
that they represent the cumulative installed capacity and additional capacity installed of
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Figure 1: A general process network and an illustrative uncertain learning curve. Each
discrete expansion point i acts as a source of uncertainty. In this case, we have two, four,
and eight possible unit expansion costs at i = 1, 2, and, 3 respectively.

a process k in time period t of scenario s, respectively. Then, the following constraints
control the timing and extent of capacity expansion for each technology:

Ck0s = Ck0 ∀k ∈ K, ∀s ∈ S (1a)
Ckts = Ck,t−1,s +∆kts ∀k ∈ K, t ∈ T , ∀s ∈ S (1b)

∆kts =
∑
i∈Ik

xkit∆ki ∀k ∈ K, t ∈ T , ∀s ∈ S (1c)

∆kts ≤ bkt ∀k ∈ K, t ∈ T , ∀s ∈ S (1d)

xkits ≤
t∑

τ=1

xk,i−1,τs ∀k ∈ K, i ∈ Ik\{1}, t ∈ T , ∀s ∈ S (1e)

t∑
τ=1

xkiτs ≤ 1 ∀k ∈ K, i ∈ Ik, t ∈ T , ∀s ∈ S (1f)

g(Qhts, Ckts) ≤ 0 ∀k ∈ K, h ∈ Ht, t ∈ T , ∀s ∈ S (1g)
xkits ∈ {0, 1} ∀k ∈ K, i ∈ Ik, t ∈ T , ∀s ∈ S (1h)
Ckts,∆kts ≥ 0 ∀k ∈ K, t ∈ T , ∀s ∈ S (1i)

Qhts ∈ R|J ||K| × Z|K| ∀t ∈ T , h ∈ Ht, ∀s ∈ S (1j)

where Ck0 denotes the initial installed capacity of process k. The incremental capacity for
process k from point i− 1 to i is denoted by ∆ki. Constraints (1a)-(1c) together represent
the capacity balance. Constraints (1d) limit the capacity expansion of a process k by the
available budget bkt in time period t. Constraints (1e) ensure that we move in the positive
direction on the learning curve in a sequential fashion, i.e., we can only install additional
capacity corresponding to point i if we have already installed the additional capacity cor-
responding to point i − 1. Constraints (1f) imply that investment at any point i ∈ Ik
cannot be made more than once in any time period. Constraints (1g) are a condensed
representation of all the operational constraints, including production scheduling, inven-
tory management, scheduling startup/shutdown of units, limiting emissions and storage,

Endogenous Technology Learning
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to name a few. Operational decision variables Qhts can be both continuous and discrete
and are constrained by the installed capacities of the processes in the network.

2.2. Non-anticipativity constraints

Non-anticipativity constraints (NACs) ensure the equality of decisions for all pairs of in-
distinguishable scenarios at any point in time during the planning horizon. Mathematically,
NACs are represented as follows:

xki1s = xki1,s+1 ∀k ∈ K, i ∈ Ik, s ∈ S, s < |S| (2a)[
Zs,s′

t

xki,t+1,s = xki,t+1,s′ ∀k ∈ K, i ∈ Ik

]
∨
[
¬Zs,s′

t

]
∀(s, s′) ∈ P ′, t ∈ T \{T}

(2b)

Zs,s′

t ⇐⇒
∧

(r,i)∈D(s,s′)

[
t∧

τ=1

(¬xriτs)

]
∀(s, s′) ∈ P ′, t ∈ T \{T} (2c)

Zs,s′

t ∈ {true,false} ∀(s, s′) ∈ P ′, t ∈ T \{T} (2d)

where D(s, s′) is the set containing sources of endogenous uncertainty (expansion points
in our case) that distinguish scenario s from s′. The Boolean variable Zt

s,s′ is true if
uncertainty has not been realized in any of the uncertain parameters that belong to the
set D(s, s′). Further, P ′ denotes the minimum or reduced set of scenario pairs that is
sufficient to express all the NACs. The details on the disjunction and logic-based formula-
tion of NACs for endogenous uncertainty problems can be found in Goel and Grossmann
(2006). Also, we refer the reader to Hooshmand and MirHassani (2016) for redundant
NAC removal strategies in case of endogenous uncertainty and an arbitrary scenario set.

2.3. Objective function

The objective is to minimize the expected net cost over the entire planning horizon; thus,
the overall stochastic optimization problem can be summarized as follows:

min
∑
s∈S

ps
∑
t∈T

αt

[∑
k∈K

∑
i∈Ik

(∫ Φki

Φk,i−1

fks(Φk)dΦk

)
xkits+

∑
h∈Ht

∑
k∈K

∑
j∈J

ujkhts(Qhts, Ckts)

]
s.t. Eqs. (1a) - (1j), (2a) - (2d)

where ps denotes the probability of scenario s and αt denotes the discount factor for time
period t. The learning curve for process k is encoded in the model as fk(Φk) and Φki :=∑i

i′=1 ∆ki. Note that we make no assumptions on the form of the learning curve since the
integral term (expansion cost on increasing capacity from point i−1 to i) is a parameter that
can be pre-calculated. The cost function u captures all operating costs including the cost
of specific modes of operation, utilizing storage, purchasing and discharging resources,
tax on emissions, etc.



3. Industrial case study

The proposed framework is applied to a capacity expansion case study for a network of
power generation technologies. Specifically, we consider seven technologies and cate-
gorize them into one of the following three categories – conventional (no cost reduction),
deterministic (known learning curve), and uncertain technology (uncertain learning curve).
Nuclear, coal, combined cycle gas turbine (CCGT), and open cycle gas turbine (OCGT)
are considered conventional, onshore wind and solar are assumed to be deterministic, and
offshore wind is assumed to have an uncertain learning curve. The model and data for this
case study are partially adapted from Heuberger et al. (2017). The planning problem was
modeled using JuMP v0.21.10 in Julia v1.6.3 and was solved using Gurobi v9.1.2. The
model was solved to optimality (0.01% tolerance) in 3,150 s.

The planning horizon spans eight 5-year time periods from 2015 to 2055. The capacity
expansion decisions are made at the start of each of these time periods. Figure 2 illustrates
the eight possible learning curves for offshore wind technology and the eventual scenario
tree based on the expansion decisions made. The scenario tree indicates that the offshore
wind capacity increases by 2.5 GW at t = 1; however, as expected, we do not see any
further expansion for the low-learning case (high-cost scenarios). On the contrary, for the
high-learning case (low-cost scenarios), at t = 2, the capacity further expands by 5.8 GW,
resulting in four scenario tree nodes. Thus, stochastic programming adapts its decisions to
the future expansion cost, generating practically viable solutions in the process.
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Figure 2: The possible learning curves considered for offshore wind are illustrated on the
left. Scenario tree (right) reveals expansion decisions for offshore wind.

Next, Figure 3 illustrates the distribution of capacity for all technologies throughout the
planning horizon. Clearly, in comparison to the high-learning scenario, the low-learning
scenario does not favor offshore wind expansion. This reduced capacity expansion in
offshore wind is compensated by expansions of conventional technologies such as nuclear
and OCGT. Note that the expansions are governed not only by the expansion cost but
also by the expansion budget, lifetime of each technology, and the time-varying power
generation capacity. The proposed stochastic programming model effectively integrates
the above factors with the uncertain cost to generate the optimal capacity distribution.

1223Capacity Planning for Sustainable Process Systems with Uncertain
Endogenous Technology Learning



1224 T. Rathi and Q. Zhang

Figure 3: Capacity distribution of power generation technologies under low- and high-
learning scenarios.

4. Conclusions

In this work, we proposed a rigorous optimization framework for a general process net-
work that can be utilized to model energy systems containing both renewable and non-
renewable technologies. We utilize stochastic programming to account for the long-neglected
aspect of uncertainty in technology learning curves. The case study on power capacity ex-
pansion showcases the adaptability of stochastic programming in providing decisions op-
timal to individual scenarios. The difference in decisions also indicates that any solution
obtained through a deterministic model, which essentially is a single scenario case, would
often be sub-optimal for any perturbation in the assumed deterministic learning curves.
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Abstract

We present a novel algorithm (SDNBI) to tackle the numerical challenges associated
with the solution of bi-objective mixed-integer nonlinear programming problems (BO-
MINLPs), with a focus on the exploration of nonconvex regions of the Pareto front. The
performance of the algorithm as measured by the accuracy of the resulting approximation
of the Pareto front in the disconnected and nonconvex domain of Pareto points is assessed
relative to two multi-objective optimisation (MOO) approaches: the sandwich algorithm
(SD) and the modified normal boundary intersection (mNBI) method. The features of
these MOO algorithms are evaluated using two published benchmark models and a molec-
ular design problem. Initial results indicate that the new algorithm presented outperforms
both the SD and the mNBI method in convex, nonconvex-continuous, combinatorial prob-
lems, both in terms of computational cost and of the overall quality of the Pareto-optimal
set.

Keywords: Multi-objective optimisation, Mixed-integer nonlinear programming,
Computer-aided molecular design

1. Introduction
Multi-objective optimisation (MOO) techniques have been applied to problems across a
wide range of engineering fields to identify trade-offs between conflicting decision criteria
that cannot easily be placed on the same quantitative footing. Some of the most widely
used approaches to solving MOO problems are based on scalarisation methods and include
the weighted sum method (Marler and Arora, 2004), the normal boundary intersection
(NBI) method (Das and Dennis, 1998) and the sandwich (SD) algorithm (Rennen et al.,
2011). However, these methods suffer from limitations that prevent them from being used
to reliably producing optimal solutions along the nonconvex or discrete regions of a Pareto
front. As a result, the performance of these methods during the solution of many practical
problems is limited when nonconvexities are arise due to the presence of discrete decision
variables and/or nonlinear model equations.

In this work, we present a robust bi-objective optimisation approach, SDNBI algorithm
that combines features of the SD and NBI methods in order to overcome difficulties in
converging to the true Pareto front and maintaining a well-distributed set of solutions. The
main improvements introduced are the identification of regions where no further optimal
solution exists, i.e., disconnected parts of the Pareto front, and the exploration of noncon-
vex parts of the Pareto front. The proposed approach is evaluated using two published
benchmark problems with different levels of complexity in terms of problem size and
numerical difficulty. The performance of the algorithm is compared with that of the SD
method and of the mNBI algorithm, a modified version of the NBI method (Shukla, 2007).
The comparison is based on the accuracy of the approximation of Pareto fronts generated.

http://dx.doi.org/10.1016/B978-0-323-85159-6.50204-9 
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The efficiency of the proposed algorithm is further investigated through a computer-aided
molecular and process design (CAMPD) problem. This provides an opportunity to exam-
ine the applicability and reliability of the proposed algorithm in a mixed-integer nonlinear
setting.

2. Background and motivation
The generic mathematical formulation of the MOO problem is defined as:

min (f1(x), . . . , fm(x))
⊤

subject to x ∈ X := {x ∈ Rn1 × Nn2 | g(x) ≤ 0,h(x) = 0}, (MOP)

where objective functions fj : Rn → R, j = 1, 2, ...,m, x is an n-dimensional vector
consisting of n1 continuous variables and n2 discrete variables (K = n1 + n2), X ̸= ∅
is an nonempty feasible set, g(x) is a p-dimensional vector of inequality constraints and
h(x) is a q-dimensional vector of equality constraints, q ≤ K. In this paper, we are
specifically interested in bi-objective problems, i.e., m = 2.

2.1. The Sandwich Algorithm

The sandwich (SD) algorithm proposed by Rennen et al. (2011) provides an efficient way
to approximate a convex Pareto front based on the successive solution of weighted-sum
sub-problems in which the multiple objective functions are scalarised into a single objec-
tive function through a weight vector, w, as follows:

min
x∈X

w⊤f(x) =
m∑
i=1

wifi(x). (WSPw)

Within the algorithm, the Pareto front is approximated by recursively improving inner and
outer approximations, with the Pareto surface “sandwiched” between them. The inner
approximation, which provides an upper bound of the Pareto front in the objective space,
is constructed by generating a convex hull from the current set of the Pareto points, while
the outer approximation, which supports the Pareto front, is improved at each iteration by
adding a hyperplane tangential to any new Pareto point z identified. At each iteration, the
parameters of the next sub-problem to be solved, i.e., the weight coefficients w are chosen
based on the normal vector of facets derived from the inner approximation.

2.2. The Normal Boundary Intersection Method

The NBI method was proposed by Das and Dennis (1998) to generate uniformly-spread
nondominated solutions of a general nonlinear MOO problem. In the NBI method, the
individual minima ZAi, i = 1, . . . ,m, of the objective functions are found as a first step.
The convex hull of individual minima (CHIM) is then generated as a set of all convex
combinations of those extreme points. The CHIM can be expressed as f id + {Φβ : β ∈
Rm

+ ,
∑m

j=1 βj = 1}, where f id is a so-called ideal point, Φ ∈ Rm×m is a matrix with
ith column zAi − f id. Next, the NBI sub-problem is solved for the set of reference
points Φβ uniformly distributed over the CHIM, searching for the maximum distance
t∗ along the normal vector n̄ to the CHIM at each reference point. Here, we make use
of a modified NBI subproblem suggested by Shukla (2007) to prevent convergence to a
dominated boundary point of the set of feasible objective functions. The formulation of
the mNBI sub-problem is as follows:

max
x∈X,t

t

s.t. Φβ + tn̄ ≥ f(x)− f id

t ∈ R, n̄ ∈ Rm

(mNBIβ)

where n̄ is the outer normal direction at some point on the CHIM pointing toward f id.
Note we assume the problem is such that a constraint qualification holds.
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3. Proposed Algorithm
We present a novel adaptive MOO approach, the SDNBI algorithm, for the solution of bi-
objective problems. It is an improvement on the sandwich algorithm in that it is applicable
to nonconvex problems, in particular to those with a disconnected Pareto front and feasible
region. A new feature is the use of the mNBI sub-problem such that the mNBI parameters
(β, n̄) are systematically determined by the SD algorithm, in an adaptive fashion. The
main aspects of the proposed methodology are explained in this section.

3.1. Inner and outer approximation

In the original SD algorithm, the outer approximation is improved at each iteration k by
solving problem (WSPw) whereby a hyperplane H(wk, bk) tangential to the Pareto front
at zk (where bk = zkwk) is added. The inner approximation is obtained by polyhedral
approximation of a current set of Pareto points ZE . The polyhedral approximation is
defined as the set of all convex combinations of points in ZE in the space of feasible
objective function values (the “objective space”) and is denoted as convhull(ZE). This
approach requires a convexity assumption on the Pareto front. In the nonconvex case, the
hyperplane H(n̄k, bk) generated as a solution of problem (mNBIβ) may not be tangential
to zk, leading to an erroneous lower bound. To overcome this, the generation of the inner
and outer approximations is modified such that: 1) the tangential hyperplane with a normal
vector w is identified as a solution of problem (mNBIβ) using a relationship arising from
the Karush-Kuhn-Tucker (KKT) optimality conditions of sub-problem; and 2) a systematic
decomposition of the objective space is introduced, such that the supporting hyperplanes
can be used to approximate the Pareto front within each subregion.

Given an efficient solution x∗, obtained by solving an mNBI subproblem and at which
t = t∗, there exist µ∗ and ν∗ such that the KKT optimality conditions for optimisation
problem (mNBIβ) are satisfied and therefore:

∇xL = µ∗⊤∇xf (x∗) + ν∗⊤∇xĥ (x∗) = 0 (1)

∇tL = −1 + µ∗⊤n̄ = 0 (2)

where L(x, t,µ,ν) = −t + µ⊤ (
f(x) − f id − Φβ − tn̄

)
+ ν⊤ĥ(x), µ ∈ Rm rep-

resents the vector of the Lagrange multipliers corresponding to the augmented objective
constraints f(x) − f id − Φβ− tn̄ ≤ 0, and ν ∈ Rs is the vector of Lagrange multipli-
ers for the s active constraints in the set {g(x) ≤ 0,h(x) = 0}, represented by the vector
ĥ(x) ∈ Rs, q ≤ s ≤ p+ q.

From equation (2), it can be deduced that at least one of the augmented objective con-
straints must be active. This can be shown by contradiction. Let us assume that all con-
straints of the augmented objective constraints are inactive, i.e., f(x) − f id − Φβ −
tn̄ < 0 and µ∗ = 0. Then, equation (2) is reduced to ∇tL = −1 ̸= 0, which is the vio-
lation of the KKT necessary conditions. Therefore, if we solve problem (mNBIβ) for any
choice of parameters (n̄, β), there exists a corresponding normal vector w ≥ 0, where
the inequality is understood component-wise, that defines a tangent to the Pareto front at
the nondominated solution, z, and is given by:

w =
1∑m

i=1 µ
∗
i

µ∗,
∑m

i=1 wi = 1. (3)

3.2. Decomposition of the search space

The principle behind the decomposition strategy is to divide the objective space into sub-
regions whenever there exist Pareto points that are non-interior points of the intersection of

nonlinear programming problems and application to molecular design
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supporting hyperplanes and their half-spaces. At the initial step of the SDNBI algorithm,
it is assumed that the Pareto front is convex in the objective search space Cl. The search
space is then investigated whenever a new Pareto point is obtained to determine whether
the assumption holds or the current space needs to be decomposed, so that valid approx-
imations of the Pareto front can be provided, i.e., to sandwich the Pareto front. This can
be done based on the rule derived from the supporting hyperplane theorem (Luenberger,
1997):

Suppose convex set C is a polyhedron defined by a finite number of half-spaces and hy-
perplanes C = {z | wk⊤

z ≥ wk⊤
zk, k = 1, . . . ,K}. If each point zk is supported

by the hyperplane H(wk, bk) where bk = wkzk, then every point z ∈ C must satisfy
(wk)⊤z ≥ bk for all k.

If there is a Pareto point z ∈ Cl that violate the condition above, then the current search
space Cl is decomposed into two sub-spaces Cl and Cl+1. The convexity or concavity of
each decomposed space is postulated based on the sign of the inequalities – for example,
if all Pareto points in Cl+1 satisfy (wk)⊤z ≥ wkzk, then the Pareto front in the region
Cl+1 is assumed to be convex, whereas the Pareto front in Cl+1 is assumed to be concave
if (wk)⊤z ≤ wkzk.

3.3. Modification of the mNBI sub-problem

Although the use of the mNBI method makes it possible to avoid the unnecessary investi-
gation of some boundary points that are dominated by others, the mNBI method may not be
efficient when a Pareto front consists of many disconnected regions. This is because it be-
comes difficult to identify the next search direction where as-yet unknown nondominated
points exist in the absence of a clear criterion. To address this, the following sub-problem
(mNBIn̄), which is a modification of the original mNBI sub-problem, is introduced to
fathom regions where no Pareto optimal solutions exist:

max
x∈X,t

t

s.t. Φβ + tn̄ ≥ f(x)− f id

f1(x) ≥ zk11 + ϵz or f1(x) ≤ zk11 − ϵz

(mNBIn̄)

where zk1, zk2 ∈ ZE are nondominated points obtained at previous iterations and the
inequality zk11 < zk21 holds. Given a Pareto front, whenever the solution of sub-problem
(mNBIβ) for a current facet generates a previously identified solution zk1 or zk2, the facet
is further explored by solving (mNBIn̄), thereby excluding the empty part of the subspace
from the search space. Note that only one constraint between f1(x) ≥ zk11 + ϵz and
f1(x) ≤ zk11 − ϵz is imposed in (mNBIn̄) and the choice of the constraints depends on the
solution of the problem (mNBIβ) i.e., whether it converges to zk1 or zk2, respectively. If
the solution of (mNBIn̄) converges to a point that was obtained at a previous iteration, the
entire facet is discarded from the search space in subsequent iterations.

4. Performance of the SDNBI algorithm
To assess the performance of our proposed algorithm, we apply it to two well-known
benchmark problems, SCH2 and ZDT5 (Natarajan, 2003), and compare solution statistics
with those of the SD algorithm and mNBI method. In addition, the applicability of our
SDNBI to a CAMPD problem is examined for the simultaneous design of optimal working
fluids and organic rankine cycle processes (Lee et al., 2020; Bowskill et al., 2020) (CS1).
For a detailed description of the formulation of the test problems, the reader is referred to
Natarajan (2003) and to Bowskill et al. (2020) and case study 2 (Table 1) therein.

Five criteria are chosen as quality measures for the comparison of the Pareto points pro-
duced by each algorithm: (1) the number of unique non-dominated solutions (Nunq); (2)
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the distribution metric (DM), which captures the extent of the spread over the Pareto front
approximation and the extent of the front Pareto front covered by the nondominated points;
(3) the hypervolume (HV), which is the volume of the m-dimensional region in the objec-
tive space enclosed by the obtained non-dominated solutions and a reference point; (4) the
average CPU time to generate a nondominated point (tCPU,a); and (5) the total CPU time
to generate all solutions (tCPU,t).

The MOO algorithms used here are implemented in Matlab 2018a, using common sub-
functions. For problems SCH2 and ZDT5, each scalarised sub-problem is solved through
GAMS interfaced with the DICOPT solver, while the CAMPD problem is implemented
in C++ interfaced with gPROMS ModelBuilder 7.0.7. To increase the likelihood of iden-
tifying globally optimal Pareto points, a multi-start approach is adopted for the solution of
the sub-problems. The multiple starting points are generated by a Sobol’ sequence (Sobol’
et al., 2011) to achieve well-distributed coverage in the space of design variables x. For
the SD and the mNBI methods, the stopping criterion is defined as the fixed number of
iterations Niter chosen as the number of iterations taken for SDNBI to reach a pre-defined
error tolerance for each test problem.

5. Results and Discussions
The performance of the SD, mNBI, and SDNBI methods for all test problems is sum-
marised in Table 1 and Figure 1. For SCH2, the Pareto-optimal set consists of one point
and one continuous region, in which a large nonconvex and a disconnected area are present.
As is apparent from Table 1, the highest HV value and the lowest DM value are achieved
when using SDNBI. The performance of mNBI is similar to that of SDNBI in terms of
HV and DM, but fewer points are identified within the fixed number of iterations. This is
mainly because some iterations using mNBI fail to identify new points in the region where
Pareto points do not exist. The strong performance of SDNBI is further highlighted in test
problem ZDT5, where the true Pareto front is a set of 31 integer Pareto points. The use
of SDNBI guarantees the identification of the complete set of solutions for a given fixed
number of iterations, while the mNBI and SD methods appear to be relatively ineffective
in achieving high accuracy in HV and Nunq. After iterating 40 sub-problems, all 31 Pareto
points are generated by SDNBI, confirming its reliability in finding a diverse and reliable
Pareto approximation, i.e., the highest HV, Nunq, and the lowest DM. It is noticeable that
all regions where Pareto points do not exist are removed from the search space after 61
iterations, which allows the search procedure within SDNBI to terminate the algorithm,
even though the stopping criteria are not satisfied.

The similar trends of the performance for all algorithms are evident for the CS1 where
three nonconvex and two disconnected parts are potentially involved. By analysing the
results shown in Table 1 and Figure 1, we can conclude that the SDNBI outperforms the
SD and mNBI methods in all comparison criteria, with the exception of the CPU time.
The SDNBI method is capable of recognising the region where no additional Pareto points
are placed (see the two disconnect regions near 0.8 ≤ f2 ≤ 0.85 and 0.58 ≤ f2 ≤ 0.62

Table 1: Performance metrics for problems SCH2, ZDT5 and CS1 using SD, mNBI and
SDNBI. Each test problem is evaluated for a fixed number of iterations Niter=27 for SCH2,
40 for ZDT5 and 61 for CS1, respectively.

SCH2 ZDT5 CS1
SD mNBI SDNBI SD mNBI SDNBI SD mNBI SDNBI

Nunq 26 25 26 23 23 31 59 58 60
HV / 10−2 53.09 62.70 62.94 89.46 89.48 89.57 91.23 91.47 91.44
DM 0.2512 0.0998 0.0910 0.1377 0.1230 0.0944 0.1130 0.0472 0.0387
tCPU,a / s 9.35 9.46 9.41 73.40 52.86 51.92 12.41 20.26 29.07
tCPU,t / s 2.43×102 2.35×102 2.44×102 1.69×103 1.22×103 1.61×103 7.21×102 8.21×102 9.04×102

1229Development of a bi-objective optimisation framework for mixed-integer
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Figure 1: Pareto points in a bi-objective space generated by the (a) SD (×), mNBI (⋄), and
SDNBI (△) methods for CS1. Grey markers (◦) indicate best-known Pareto points.

in Figure 1), making it possible to improve the Pareto approximation efficiently. The
higher CPU time with the SDNBI and mNBI can be attributed to the fact that additional
constraints are used in their sub-problems and so it is difficult to find feasible regions that
satisfy all the constraints.

6. Conclusions
We have proposed a novel algorithm applicable to nonconvex and discrete bi-objective
problems. The algorithm is based on the combination of features from the SD algorithm
and the mNBI method. It has been tested on two benchmark functions and one CAMPD
application to assess its performance in approximating the Pareto front. The comparative
results have highlighted the robustness of the SDNBI algorithm in terms of generating a
more diverse and better-distributed set of Pareto points. Future work will involve testing
the proposed approach on more case studies to derive general conclusions on its perfor-
mance on MINLP problems, and the extension of the algorithm to solve optimisation prob-
lems with more than two objectives.
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Abstract 

The efficient exploitation of large amount of data for the uncertain parameters 

constitutes a crucial condition for effectively handling stochastic programming 

problems. In this work we propose a novel data-driven mixed-integer linear 

programming (MILP) model for the Distribution Matching Problem (DMP). Ιn cases of 

multiple uncertain parameters, sampling using copulas is conducted as preliminary step. 

The integration of clustering methods and DMP in the proposed model is proven to 

improve the computational efficiency. For the evaluation of the performance of the 

proposed scenario generation approaches several case studies of a two-stage stochastic 

programming problem are examined. Compared with state-of-the-art scenario 

generation (SG) approaches the proposed model is shown to achieve consistently the 

lowest errors regarding the expected values when compared to full-space stochastic 

solutions as well as manages to preserve good accuracy in the resulting probabilistic and 

statistical qualities of the reduced generated sets.   

Keywords: Scenario Generation; Stochastic Programming; Distribution Matching; 

Mixed-Integer Linear Programming (MILP). 

1. Motivation 

The increasing volatility in modern-day process industries and the access to large 

amounts of historical data have led to an intensive study of optimisation problems under 

uncertainty (Li and Grossmann, 2021). Among the various optimisation-based 

approaches, these problems can be solved as two-stage or multi-stage stochastic 

programming problems, in which the uncertain parameters are considered though a 

discrete number of their possible realisations. These realisations are also referred to as 

scenarios. Although such stochastic programming models can be easily formulated, 

their ability to capture the uncertainty relies on the number of scenarios considered 

which in turn tends to grow exponentially with the number of parameters under study. 

To this end, there has been an increasing interest from the research community, aiming 

at either the reduction of the uncertainty set or the generation of a representative and 

smaller in size set of scenarios to be implemented in the problem (Römisch, 2009).  

OSCAR (Li and Floudas, 2014) and SCANCODE (Medina-González et al., 2020) are 

two recently presented methods for scenario aggregation which employ clustering 

techniques and distance metrics to preserve the quality of the stochastic solution whilst 

minimizing the number of required scenarios. With respect to scenario generation 

approaches, a nonlinear programming-based moment and distribution matching method 

was presented by Calfa et al. (2014). In this work, we employ an initial uncertain 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50205-0 
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sample and select a reduced set which matches optimally the statistical moments and the 

cumulative distribution functions of the marginal distributions. In case of multiple 

uncertain parameters, preliminary copula-based sampling is employed to account for 

correlations among multiple parameters. The remainder of the article is organised as 

follows: in Section 2 a brief literature review and problem statement are outlined while 

key methodological contributions are outlined in Section 3. In Section 4, we employ the 

proposed model and compare its performance with state-of-the-art models for scenario 

generation. Finally, conclusions are drawn in Section 5.  

2. Literature review 

Optimisation problems under uncertainty are dealt in the open literature with a wide 

range of mathematical techniques including stochastic programming (Sahinidis, 2004). 

The most common version of the risk-neutral stochastic programming is the two-stage 

stochastic programming, in which the target is to optimise the objective function of the 

first-stage costs while optimizing the expected value of the second-stage costs when 

uncertainty is revealed. The second stage expected value, when there are known 

probability distributions of the uncertain parameters, i.e., scenarios 𝜉1, . . . , 𝜉𝑘, with 

respective probabilities 𝑝1, . . . , 𝑝𝑘, is formulated as: 

𝔼[𝐹(𝑥, 𝜉)] = ∑ 𝑝𝑘 · 𝐹(𝑥, 𝜉𝑘)

𝐾

𝑘=1

 (1a) 

and analogously the two-stage stochastic programming problem (TSSP) is modelled as: 

𝑚𝑖𝑛
𝑥,𝑦1,...,𝑦𝑘 

       𝑐⊤ · 𝑥 + ∑ 𝑝𝑘 · 𝑞𝑘
⊤ · 𝑦𝑘

𝐾

𝑘=1

 

𝑠. 𝑡.       𝑇𝑘 · 𝑥 + 𝑊𝑘 · 𝑦𝑘 = ℎ𝑘,     𝑦𝑘 ≥ 0,     𝑘 =  1, . . . , 𝐾 

            A· 𝑥 = 𝑏,     𝑥 ≥ 0 

(1b) 

In the above formulation, every scenario 𝜉𝑘 = (𝑞𝑘 , 𝑇𝑘 , 𝑊𝑘, ℎ𝑘), 𝑘 =  1, . . . , 𝐾, results to 

a two-stage decision vector 𝑦𝑘  and by solving the two-stage problem an optimal first-

stage solution 𝑥̅ is obtained (Shapiro et al., 2014). The existence of a very large number 

of possible realisations could render the problem computationally intractable and 

motivates the use of scenario generation and/or reduction techniques. These methods 

aim at the creation of a smaller in size set of scenarios for the uncertain parameters, with 

certain values and probabilities which are representative of the original uncertainty set 

(Li and Grossmann, 2021). 

Moment Matching Problem (MMP) constitutes a well-known scenario tree generation 

approach (Høyland et al., 2003). It is based on the minimisation of the errors regarding 

the statistical moments between the original uncertain set and the final reduced set. In 

general, MMPs are modelled as nonlinear programming (NLP) problems. Moreover, the 

parallel matching of the stochastic distribution of the uncertain parameter (DMP), by 

minimizing the errors regarding the cumulative density function, has been proposed and 

enhances the effectiveness of the approach (Calfa et al., 2014). Recently an MMP MILP 

model for scenario selection from an original scenario set was proposed in the literature 

(Kaut, 2021). 
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Copula based capture of the multivariate structure of data and dependence between 

marginal distributions constitutes another concept for the scenario generation methods 

(Kaut and Wallace, 2011).  

3. Methodology and mathematical developments 

MMP constitutes an error minimisation problem where the errors regarding the first 

four statistical moments, e.g. mean, variance, skewness, and kurtosis are considered. In 

particular, the errors between the values of the moments calculated from the data and 

the ones computed by the final reduced set are minimised. Finally, the errors can be 

quantified by various distances such as the Euclidean distance (L2-norm), Manhattan 

distance (L1-norm) or the Chebyshev distance (L∞-norm) and weights may be 

considered for the errors of different moments (Calfa et al., 2014). An extended version 

of the MMP, referred as Distribution Matching Problem (DMP), matches additionally 

the marginal Empirical Cumulative Distribution Function (ECDF) between the reduced 

and the original dataset. Calfa et al. (2014) employed a nonlinear approximation of the 

ECDF using simplified Generalised Logistic Function. 

The proposed MILP model considers the original distributions of the uncertain 

parameters to generate discrete original scenarios as input for the model. Considering 

multidimensional data sets, copula-based sampling is implemented, generating tuples as 

original scenarios. Theoretically, an n-dimensional copula expresses the joint 

cumulative distribution function (CDF) for which the marginal distributions of each 

variable are uniform on the interval [0,1]. Denoting multivariate CDF as 𝐹 and marginal 

distributions as 𝐹1, . . . , 𝐹𝑛, the copula C is defined as (Kaut and Wallace, 2011): 

𝐹(𝑥1, . . . , 𝑥𝑛)  =  𝐶(𝐹1(𝑥1), . . . , 𝐹𝑛(𝑥𝑛)) (2) 

The dependence between two variables can be captured by various parametric bivariate 

copula families, e.g. Gaussian, Archimedean and Student t. For multivariate cases, 

appropriate pairwise copula families along with the structure of the data set can be 

considered leading to a vine copula. 

For each uncertain parameter 𝑖 ∊ 𝐼 let us consider a set of equiprobable original 

scenarios 𝑛 ∊ 𝑁 with values denoted as 𝑥̃𝑖,𝑛 and ECDF as 𝐸𝐶𝐷𝐹𝑖,𝑛. In a pre-processing 

step k-means clustering is utilised to cluster the original set into as many clusters as the 

desirable size of the reduced set 𝑐 ∊ 𝐶. Hence, we introduce a set 𝐶𝐿𝑐,𝑛, which maps 

each scenario 𝑛 ∊ 𝑁 to one 𝑐 ∊ 𝐶. From the original scenarios only one is selected at 

each prespecified cluster 𝑐 ∊ 𝐶, through binary variables 𝑦𝑐,𝑛. The corresponding 

probabilities of occurrence are denoted as 𝑝𝑐,𝑛 and the cumulative probability sums up 

to 1. The latter are imposed by Eqs. (4)-(7). For the presented models only L1-norm or 

L∞-norm are used to quantify the errors. The objective function in the following 

formulation contains the errors regarding the statistical moment using L1-norm and the 

summation of the maximum errors of the selected scenarios regarding the ECDF.  

𝑚𝑖𝑛
𝑦𝑐,𝑛,𝑝𝑐,𝑛

      ∑ 𝑊𝑚
𝑠𝑚 · (𝑑𝑖,𝑚

+ + 𝑑𝑖,𝑚
− )

𝑖∊𝐼,𝑚∊𝑀

 + ∑ 𝑊𝑖
𝑝𝑟𝑜𝑏

· 𝑒𝑑𝑖

𝑖∊𝐼

 (3) 

s.t.  

∑ 𝑦𝑐,𝑛

𝑛∊𝐶𝐿𝑐,𝑛

= 1          ∀ 𝑐 ∊ 𝐶 (4) 
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∑ 𝑦𝑐,𝑛

𝑐∊𝐶𝐿𝑐,𝑛

≤ 1          ∀𝑛 ∊ 𝑁 (5) 

𝑃𝑚𝑖𝑛 · 𝑦𝑐,𝑛 ≤ 𝑝𝑐,𝑛 ≤ 𝑃𝑚𝑎𝑥 · 𝑦𝑐,𝑛          ∀𝑐 ∊ 𝐶 , 𝑛 ∊ 𝑁 (6) 

∑ 𝑝𝑐,𝑛

𝑐,𝑛∊𝐶𝐿𝑐,𝑛

= 1 (7) 

∑ 𝑥̃𝑖,𝑛 · 𝑝𝑐,𝑛

𝑐,𝑛∊𝐶𝐿𝑐,𝑛

 + 𝑑𝑖,𝑚
+ − 𝑑𝑖,𝑚

− = 𝑀̃𝑖,𝑚             ∀𝑖 ∊ 𝐼, 𝑚 = 1 (8) 

∑ (𝑥̃𝑖,𝑛 − 𝑀̃𝑖,1)
𝑘

· 𝑝𝑐,𝑛

𝑐,𝑛∊𝐶𝐿𝑐,𝑛

+ 𝑑𝑖,𝑚
+ − 𝑑𝑖,𝑚

− = 𝑀̃𝑖,𝑚             ∀𝑖 ∊ 𝐼, 𝑚 > 1 (9) 

∑ 𝑦𝑐,𝑛 · 𝐸𝐶𝐷𝐹𝑖,𝑛

𝑐∊𝐶

− ∑ 𝑝𝑐′,𝑛

𝑐,𝑛′∊𝐶𝐿𝑐,𝑛′  ⋀ 𝑥𝑖,𝑛′  ≤𝑥𝑖,𝑛

= 𝛷𝑖,𝑛              ∀𝑖 ∊ 𝐼, 𝑛 ∊ 𝑁 (10) 

𝑒𝑑𝑖 ≥ 𝛷𝑖,𝑛 − (1 − ∑ 𝑦𝑐,𝑛

𝑐∊𝐶𝐿𝑐,𝑛

)          ∀𝑖 ∊ 𝐼, 𝑛 ∊ 𝑁 (11) 

𝑒𝑑𝑖 ≥ −𝛷𝑖,𝑛 − (1 − ∑ 𝑦𝑐,𝑛

𝑐∊𝐶𝐿𝑐,𝑛

)            ∀𝑖 ∊ 𝐼, 𝑛 ∊ 𝑁 (12) 

−1 ≤  𝛷𝑖,𝑛 ≤ 1         ∀𝑖 ∊ 𝐼, 𝑛 ∊ 𝑁 (13) 

𝑒𝑑𝑖 ≥ 0          ∀𝑖 ∊ 𝐼 (14) 

0 ≤  𝑝𝑐,𝑛 ≤ 1            ∀𝑐 ∊ 𝐶, 𝑛 ∊ 𝑁 (15) 

𝑦𝑐,𝑛 ∊ {0,1}             ∀𝑐 ∊ 𝐶 , 𝑛 ∊ 𝑁 (16) 

𝑑𝑖,𝑚
+ , 𝑑𝑖,𝑚

− ≥ 0           ∀𝑖 ∊ 𝐼, 𝑚 ∊ 𝑀 (17) 

Eqs. (8)-(9) calculate the moments of the selected scenarios and the corresponding 

errors. Eq. (10) defines to variables 𝛷𝑖,𝑛 the deviations regarding the ECDF curve till 

the occurrence of each data point 𝑛 ∊ 𝑁 of each uncertain parameter 𝑖 ∊ 𝐼. However, 

Eqs. (11)-(12) are implemented, along with the minimization objective function Eq. (3), 

to define the maximum absolute errors regarding each parameter 𝑖 ∊ 𝐼 to variables 𝑒𝑑𝑖 .  

For the case of one uncertain parameter (|𝐼| = 1) and sorted original data points, the 

computational efficiency is drastically enhanced by substituting 𝛷𝑖,𝑛 to 𝛷̅𝑖,𝑐 and Eq. 

(10)-(13) to the following ones: 

∑ 𝑦𝑐,𝑛 · 𝐸𝐶𝐷𝐹𝑖,𝑛

𝑛∊𝑁

− ∑ 𝑝𝑐′,𝑛

𝑛,𝑐′∊𝐶𝐿𝑐′,𝑛

= 𝛷̅𝑖,𝑐              ∀𝑖 ∊ 𝐼, 𝑐 ∊ 𝐶 (18) 

𝑒𝑑𝑖 ≥ 𝛷̅𝑖,𝑐            ∀𝑖 ∊ 𝐼, 𝑐 ∊ 𝐶 (19) 

𝑒𝑑𝑖 ≥ −𝛷̅𝑖,𝑐             ∀𝑖 ∊ 𝐼, 𝑐 ∊ 𝐶 (20) 

∑ 𝑦𝑐−1,𝑛

𝑛∊𝐶𝐿𝑐,𝑛

· 𝑥̃𝑖,𝑛 ≤ ∑ 𝑦𝑐,𝑛

𝑛∊𝐶𝐿𝑐,𝑛

· 𝑥̃𝑖,𝑛             ∀𝑖 ∊ 𝐼, 𝑐 > 1 (21) 

−1 ≥  𝛷̅𝑖,𝑐   ≥ 1          ∀𝑖 ∊ 𝐼, 𝑐 ∊ 𝐶 (22) 

Weights of the errors regarding the moments are calculated as 𝑊𝑖,𝑚
𝑠𝑚 = 𝑤̅𝑖,𝑚 |𝑀̃𝑖,𝑚 |⁄ , 

where 𝑤̅𝑖,𝑚 is chosen arbitrarily equal to 1 in this report. 𝑊𝑖
𝑝𝑟𝑜𝑏

 is also considered equal 

to 1. The presented formulation will be denoted as DMP MILP using L1-norm. When 
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the model is reformulated to minimise the summation of the maximum absolute errors 

regarding the moments (of all 𝑖 ∊ 𝐼, 𝑚 ∊ 𝑀) and the maximum absolute ECDF error (of 

all 𝑖 ∊ 𝐼), we refer to it as DMP MILP using L∞-norm. 

4. Case studies – Capacity Planning under uncertainty 

In this section, a capacity planning problem under uncertainty is studied. The 

mathematical model along with the process description, data and different uncertain 

cases can be found in Li and Floudas (2014). Briefly, 5 products are produced by 5 raw 

materials using 11 candidate processes. The objective function aims at the maximisation 

of profit. We consider endogenous uncertainty, regarding production yields of 

processes. For case study 1 is considered only one uncertain parameter and the scenario 

set is reduced from 1,000 data points of the original uncertain distribution to 5 selected 

scenarios. For case studies 2 and 3 we consider 2 and 4 uncertain parameters, generating 

20 scenarios by an initial set of 1,000 and 2,000 copula-based generated scenarios 

respectively.  Regarding the computational efficiency of the SG approaches, in the first 

case study the presented models are solved to optimality after short execution times 

(<10 seconds) using GUROBI 9.1 in GAMS 30.3. As far as case studies are considered, 

a time limit of 1,800s and an optimality gap tolerance of 5% are set.   

To evaluate the quality of the scenarios generated by the different algorithms the 

expected value of the two-stage stochastic program is computed using the reduced and 

the full-space set of scenarios. The results regarding the errors for each case study are 

summarised in Figure 1. 

 
Figure 1: Errors on expected values of the TSSP problem for each case study.  

The scenarios of the proposed DMP MILP model consistently result to the lowest 

errors. The second case study considers a reduction from 1000 original sets to 20 and 

DMP models seem to behave similarly. However, DMP MILP using L1-norm results to 

the lowest error. For the third case study with four uncertain parameters DMP MILP 

using L∞-norm leads to the lowest error.  

The proposed approach integrating clustering and distribution matching resolves the 

issue of under-specificity of original MMP (Calfa et al., 2014). The combined impact 

prevents the assignment of a value to multiple scenarios and/or zero probabilities for 

scenarios regardless of the number of the prespecified scenarios/clusters. Overall, 

although higher total error regarding the moments may be obtained, the ECDF is 

matched properly and the results indicate enhanced performance of the reduced sets.   
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The impact of ECDF matching through this approach on the reduced set is visualised in 

Figure 2. For instance, in case study 2 and the uncertain parameter regarding Process 

“7”, the reduced set of 20 final scenarios obtained by the proposed model matches the 

ECDF of the original marginal distribution remarkably better than the set obtained by 

using OSCAR. It is noted that for OSCAR the explicit ECDF marching is not 

considered. 

 

Figure 2: ECDF matching comparison on case study 2.  

5. Conclusions and future work  

The proposed MILP model is proven to be competitive to the existing scenario 

generation/reduction approaches in terms of errors regarding TSSP problems and 

statistical properties matching. The integration of copula-based simulation in the 

framework constitutes a crucial asset as this is not feasible for NLP formulations which 

also suffer from numerical and under-specificity issues. Future work within our group 

focuses on the use of decomposition techniques to enhance the computational 

performance of the proposed model. 
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Abstract 

A neural network-based approach is proposed in this work for joint chance-constrained 

optimization (JCCP) problems. In the proposed approach, a joint chance constraint 

(JCC) is first reformulated as a quantile-based inequality to reduce the complexity in 

approximation. Then, the quantile function (QF) in the inequality is replaced by an 

empirical QF through sample average approximation. The empirical QF is further 

approximated by a ReLU artificial neural network (ANN). Afterwards, the ReLU ANN 

is incorporated into the optimization model that enables the JCCP to be solved as a 

deterministic optimization problem. To demonstrate the proposed approach, a case 

study on ethylene glycol (EG) production process yield maximization is studied. The 

results show that the proposed approach can efficiently solve a nonlinear JCCP problem 

with non-conservative constraint satisfaction.  

Keywords: Machine Learning and Big Data; Artificial Neural Network; Joint Chance 

Constrained Optimization; Stochastic Optimization; Sample Average Approximation 

1. Introduction 

Practical process optimization often faces uncertainties. Chance constrained 

optimization is a popular technique for addressing uncertainty (Wendt et al., 2002). It 

enforces that the optimal solution should satisfy the uncertain constraint with a certain 

probability level. There are two types of chance constraint: the individual chance 

constraint (ICC) and the joint chance constraint (JCC). The JCC is more general in 

engineering applications than the ICC since the JCC ensures that all constraints are 

satisfied simultaneously to a certain confidence level, which is more natural in many 

applications (You et al., 2021). However, the JCC is generally difficult to solve as it 

requires dealing with multidimensional distributions. Thus, joint chance-constrained 

optimization problems (JCCP) are generally solved through approximations. There are 

two main approximation methods: analytical approximation methods and sampling-

based methods (Yuan et al., 2017).  

We focus on sampling-based methods in this work because they can avoid overly 

conservative solutions occurring in analytical approximation methods (van Ackooij et 

al., 2014). Among all sampling-based methods, the sample average approximation 

(SAA) is a powerful and widely used method (Pagnoncelli et al., 2009). While adopting 

the SAA to address a JCCP problem, the empirical joint constraint satisfaction 

probability is enforced to be greater than or equal to the required value. In this work, we 

extend the concept of the SAA to construct the empirical quantile function (QF) in the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50206-2 
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proposed approach. The key contributions of the proposed approach are as follows: The 

presented approach involving the empirical QF and ReLU artificial neural network 

(ANN) approximations can generate a solution without over-conservatism for a JCCP. 

Also, the presented method can be widely applied to different problems, including those 

with black-box functions. Finally, the proposed approach can make a stochastic JCCP 

deterministically solvable. 

2. Problem formulation 

The general formulation of a JCCP problem is given as: 

min
𝑥

𝑓(𝑥) 

s.t.   Pr(𝑔𝑖(𝑥, 𝜉) ≤ 0, 𝑖 = 1, … , 𝑝) ≥ 1 − 𝜀 
(1) 

where 𝑥  represents the decision variable. 𝑓(𝑥)  and 𝑔(𝑥, 𝜉)  are the objective and 

constraint functions. 𝜉  is the uncertain parameter vector. Pr(∙) is the probability 

measure. The JCCP shown above enforces that all constraints 𝑔𝑖=1,…,𝑝(𝑥, 𝜉) are satisfied 

simultaneously to a certain confidence level 1 − 𝜀.  

The above JCC can be rewritten as the following individual chance constraint form: 

Pr(𝑔̅(𝑥, 𝜉) ≤ 0 ) ≥ 1 − 𝜀,      with     𝑔̅(𝑥, 𝜉) = max
𝑖=1,…,𝑝

𝑔𝑖(𝑥, 𝜉) (2) 

which can be further reformulated as the following equivalent constraint: 

𝑄1−𝜀(𝑔̅(𝑥, 𝜉)) ≤ 0 (3) 

where 𝑄1−𝜀(𝑔̅(𝑥, 𝜉)) is the 1 − 𝜀 quantile of 𝑔̅(𝑥, 𝜉). The benefit of rewriting the JCC 

as the quantile-based form is shown through Figure 1: 𝑄1−𝜀(𝑔̅(𝑥, 𝜉))  has better 

convexity property than 1 − 𝜀 − Pr(𝑔̅(𝑥, 𝜉) ≤ 0 ). Accordingly, 𝑄1−𝜀(𝑔̅(𝑥, 𝜉)) will be 

used for surrogate modelling in the proposed work. 

The quantile 𝑄1−𝜀(𝑔̅(𝑥, 𝜉)) in Eq.(3) can be approximated by the empirical QF value 

𝑄̃1−𝜀(𝑔̅(𝑥, 𝜉)) given as: 

 

1 − 𝜀 = 0.8 

𝜉1~𝑁(0,1),   𝜉2~𝑈(−2,2) 
𝑔̅(𝑥, 𝜉)

= max{𝑔1(𝑥, 𝜉1), 𝑔2(𝑥, 𝜉2)} 
𝑔1(𝑥, 𝜉1) = 1.5𝜉1𝑥2 − 3 
𝑔2(𝑥, 𝜉2) = 2𝜉2𝑥2 − 2 

Figure 1. Comparison between 𝑄1−𝜀(𝑔̅(𝑥, 𝜉)) and 1 − 𝜀 − Pr(𝑔̅(𝑥, 𝜉) ≤ 0). 
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𝑄̃1−𝜀(𝑔̅(𝑥, 𝜉)) = inf {𝛾|
1

𝑁
∑ 𝕀(𝑔̅(𝑥, 𝜉𝑗) ≤ 𝛾) ≥ 1 − 𝜀𝑁

𝑗=1 } = 𝑔̅⌈𝑀⌉(𝑥)  (4) 

where 𝑀 equals to 𝑁(1 − 𝜀), and 𝑁 is the number of collected samples of 𝜉. 𝕀 is the 

indicator function defined as 𝕀(𝑔̅(𝑥, 𝜉𝑗) ≤ 𝛾) = {
0,   for 𝑔̅(𝑥, 𝜉𝑗) > 𝛾

1, for 𝑔̅(𝑥, 𝜉𝑗) ≤ 𝛾
. 𝑔̅⌈𝑀⌉(𝑥) 

represents the 𝑀-th smallest component of {𝑔̅(𝑥, 𝜉1), … , 𝑔̅(𝑥, 𝜉𝑁)}.  

3. Neural network approximation-based optimization 

The quantile term 𝑄̃1−𝜀(𝑔̅(𝑥, 𝜉)) in Eq.(4) can be further approximated by an ANN 

which is essentially a nonlinear function of 𝑥. The max operator for defining 𝑔̅(𝑥, 𝜉𝑗) 

and the indicator function involved in Eq.(4) can be well approximated through ANN. 

The ReLU ANN is one type of fully connected feed-forward neural network which is 

shown in Figure 2. In Figure 2, layer 0 and layer 𝐾 are the input and output layers, 

respectively. The rest of the layers are namely hidden layers. 𝑥1, … , 𝑥𝑙  and 𝑌̂ are the 

inputs and output (predicted QF value). Besides the input layer, all the neurons in each 

layer are fully connected with all the neurons in the previous layer. The output of one 

neuron in each layer (except the input layer) is computed using the following equation: 

𝑜𝑠
𝑘 = 𝜎(∑ 𝑊𝑟𝑠

𝑘𝑜𝑟
𝑘−1 + 𝑏𝑠

𝑘𝑅
𝑟=1 ),    𝑘 = 1, … , 𝐾  (5) 

where 𝑘, 𝑟, and 𝑠 are the indices of each layer, each neuron in the previous layer, and 

each neuron in the current layer, respectively. 𝑜, 𝑊, 𝑏, and 𝑅 represent the output of the 

neuron, weights between the current and previous layers, the bias for each neuron in the 

current layer, and the number of neurons in the previous layer, respectively. 𝜎 

represents the ReLU activation function given as: 𝜎(𝑦) ≔ max{0, 𝑦}. 

 

Figure 2. Schematic diagram of fully connected feed-forward neural network 

The ReLU ANN for approximating the empirical QF is incorporated into the 

optimization model in Eq.(1) to predict the quantile value for the quantile-based 

inequality reformulated from the original JCC. Since the ReLU ANN model can be 

written as a mixed-integer linear program (MILP), the optimization model involving 

the ReLU ANN can be written as the formulation shown in Eq.(6). 
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min
𝑥

𝑓(𝑥) 

s.t.   𝑌̂ ≤ 0 

       𝑜𝑙
0 = 𝑥𝑙 ,   𝑙 = 1, … , 𝐿 

        𝑎𝑠
𝑘 = ∑ 𝑊𝑟𝑠

𝑘𝑜𝑟
𝑘−1 + 𝑏𝑠

𝑘

𝑅

𝑟=1

, 𝑠 = 1, … , 𝑆, 𝑘 = 1, … , 𝐾 − 1 

       0 ≤ 𝑜𝑠
𝑘 ≤ 𝐻(1 − 𝑧𝑠

𝑘) 

        𝑎𝑠
𝑘 ≤ 𝑜𝑠

𝑘 ≤ 𝑎𝑠
𝑘 + 𝐻𝑧𝑠

𝑘  

       𝑧𝑠
𝑘 ∈ {0,1} 

       𝑌̂ = ∑ 𝑊𝑟
𝐾𝑜𝑟

𝐾−1 + 𝑏𝐾𝑅
𝑟=1  

(6) 

In the above formulation, 𝑌̂ is the quantile value predicted from the embedded ReLU 

ANN. The embedded ReLU ANN is described by the second to the last constraints. The 

second and last constraints represent input and output layers, respectively. 𝑙 is the index 

of each neuron in the input layer. 𝐿 is the number of neurons in the input layer. 𝑆 and 𝑅 

are the numbers of neurons in the current layer and in the previous layer, respectively. 

𝑎𝑠
𝑘 is the linear combination of outputs from the previous layer. 𝐻 is a big number. 𝑧𝑠

𝑘 is 

a binary variable. The third to the sixth constraints represent the hidden layer model. 

The fourth to sixth constraints are for the ReLU activation function. The proposed 

approach for solving JCCP is based on the solution of the above deterministic problem. 

Notably, since 𝑔̅(𝑥, 𝜉) = max
𝑖=1,…,𝑝

𝑔𝑖(𝑥, 𝜉) is used in the quantile-based reformulation, the 

proposed approach can be applied to the problem with any number of constraints in the 

JCC. In addition, the proposed method is applicable to different problems, including 

those with black-box functions. 

4. Case Study 

This case study is the yield maximization of the EG production process shown in Figure 

3. According to Figure 3, ethylene oxide (EO) and water are fed into the CSTR to 

produce EG. The following reactions occur in the CSTR: 

𝐸𝑂 + 𝐻2𝑂 → 𝐸𝐺 

𝐸𝐺 + 𝐸𝑂 → 𝐷𝐸𝐺 

𝐷𝐸𝐺 + 𝐸𝑂 → 𝑇𝐸𝐺  
(7) 

DEG and TEG are diethylene glycol and triethylene glycol, respectively, which are 

undesirable by-products. The output of the CSTR is connected to the flash separator, 

and the product (EG) is collected from the bottom of the flash separator. Meanwhile, 97 

% of the top flash vapor stream is recycled to mix with the feed flow. The vapor-liquid 

equilibrium in this process is assumed as ideal phase behaviour. More details about this 

process can be found in (Kahrs et al., 2007). In this case study, the entire EG production 

process is simulated as a nonlinear black-box model using Aspen Plus. 

In this problem, the objective is to maximize the EG molar flowrate (𝐹̇𝐸𝐺, unit: kmol/h) 

in the bottom of the flash separator. The decision variables 𝐹̇𝑤, 𝑉𝐶𝑆𝑇𝑅 , and 𝑇𝑓  are the 

water feed flowrate (unit: kmol/h), the CSTR volume (unit: 𝑚3), and the temperature in 
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the flash separator (unit: K), respectively. The pressure inside the flash separator is 

fixed at 30 kPa. 𝑋𝐸𝑂 and 𝑥𝐸𝐺  are the EO conversion rate and the mole fraction of EG in 

the bottom flow of the flash separator, respectively. 𝜉𝑋𝐸𝑂
 and 𝜉𝑥𝐸𝐺

 are uncertain 

parameters following Gaussian distributions 𝑁(0,0.03) and 𝑁(0,0.015), respectively.   

The optimization problem of this case study is given as: 

max
𝐹̇𝑤,𝑉𝐶𝑆𝑇𝑅,𝑇𝑓

𝐹̇𝐸𝐺  

s.t.   Pr (
−𝑋𝐸𝑂 − 𝜉𝑋𝐸𝑂

+ 0.5 ≤ 0

−𝑥𝐸𝐺 − 𝜉𝑥𝐸𝐺
+ 0.5 ≤ 0

) ≥ 1 − 𝜀 

        700 ≤ 𝐹̇𝑤 ≤ 5000 

        221 ≤ 𝑉𝐶𝑆𝑇𝑅 ≤ 321 

        300 ≤ 𝑇𝑓 ≤ 390 

(8) 

We first gather 2000 samples of 𝐹̇𝐸𝐺, 𝑋𝐸𝑂, and 𝑥𝐸𝐺  corresponding to different sets of 

decision variables, from the Aspen Plus simulator. Then, we collect 1000 samples of 

[𝜉𝑋𝐸𝑂
, 𝜉𝑥𝐸𝐺

]from the assumed distributions. The 2000 samples of 𝐹̇𝐸𝐺 corresponding to 

different decision variables are used to train the first ReLU ANN to predict 𝐹̇𝐸𝐺 in the 

objective function. For addressing the JCC in the above optimization, based on a 

confidence level 1 − 𝜀 , the 2000 samples of 𝑋𝐸𝑂  and 𝑥𝐸𝐺  are combined with 1000 

samples of [𝜉𝑋𝐸𝑂
, 𝜉𝑥𝐸𝐺

] to generate 2000 quantile values based on Eq.(4). Then, we use 

the 2000 quantile values paired with different decision variables to train the second 

ReLU ANN to predict the quantile value for the quantile-based inequality reformulated 

from the JCC. Finally, the two mentioned ReLU ANNs are incorporated into the above 

optimization to form a MILP problem based on the optimization model shown in Eq.(6). 

The MILP problem is solved by using CPLEX in GAMS. The attained results are 

shown in Table 1. 

 

Figure 3. Flowsheet of the studied EG production process 
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Table 1. Optimization results  

1 − 𝜀 𝐹̇𝑤 𝑉𝐶𝑆𝑇𝑅 𝑇𝑓 𝐹̂𝐸𝐺/𝐹̇𝐸𝐺 Pr(𝑔̅ ≤ 0) 

0.8 1048.887 321 365.415 427.134 / 426.261 0.8006 

0.95 916.229 321 368.191 396.610 / 395.247 0.9508 

a 𝐹̂𝐸𝐺 is computed by the first ReLU ANN. 𝐹̇𝐸𝐺 is from the Aspen Plus simulator. 

b 𝑔̅ = max {−𝑋𝐸𝑂 − 𝜉𝑋𝐸𝑂
+ 0.5, −𝑥𝐸𝐺 − 𝜉𝑥𝐸𝐺

+ 0.5} in the last column. 

c The probabilities in the last column are based on 106 samples of uncertain parameters. 
 

According to Table 1, the joint chance constraint satisfaction probabilities of the 

optimal solutions (in the last column) are very close to the required probability targets 

(in the first column). Also, the 𝐹̂𝐸𝐺 computed from the first ReLU ANN are very close 

to the corresponding 𝐹̇𝐸𝐺  computed from the true model (Aspen Plus simulation). 

Therefore, by using the presented method, the JCCP in this case study can be reliably 

handled without over-conservatism. 

5. Conclusions 

A novel method involving the empirical quantile reformulation of JCC and the ReLU 

ANN approximation is proposed in this work to address JCCP problems. The presented 

method relies on the sampled data of objective and constraint function values, which 

can be obtained from explicit process model equations or black-box process simulators. 

Hence, the method can be used for different process optimization problems, such as 

problems with explicit model or black-box constraint functions. In the meantime, there 

is no restriction on the number of constraints in the JCC. The problem is finally 

converted to the solution of a deterministic MILP problem. Through a case study, it is 

shown that the developed method can efficiently solve a nonlinear joint chance-

constrained process optimization problem without over-conservatism. 
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Abstract 
Gaussian Processes present a versatile surrogate modeling toolbox to address simulation-
based optimization and uncertainties arising from non-converged simulations. In this 
work we present a black-box optimization methodology framework in which Gaussian 
Process Regression is used to model complex underlying process performance models 
and Gaussian Process Classification is used to model feasibility constraints based on 
converged and non-converged simulations. Additionally, we present a conservativeness 
parameter to enable tuning of the feasible region based on the trade-off between process 
performance and the risk of infeasibility due to non-converged simulations. 

Keywords: Gaussian Processes, Optimization, Surrogate Modeling. 

Introduction 
Modeling complex process systems has long been of interest in industry and the research 
community (Sahinidis, 2004). As a result, commercial simulation software has been 
developed, enabling engineers to quickly evaluate process designs without the capital 
costs associated with pilot studies (Cozad et al., 2014). Such simulation-based process 
design can be categorised into decomposition techniques (Douglas, 1988) and 
optimization methods (Bhosekar and Ierapetritou, 2018). The former involves 
sequentially designing each stage of the process using design heuristics to obtain a quick 
solution. Conversely, optimization methods simultaneously design stages of the process, 
offering guarantees of optimality at the expense of computational cost. 

Simulation-based optimization is also known as black-box optimization where the 
simulator is treated as a black-box, embedding complex underlying functions not 
accessible to the user. Black-box optimization is widely used for the optimization of 
complex systems and generally follows either an evolutionary approach or a surrogate-
based approach. The former uses heuristics to select subsequent samples in the search 
space until convergence, however, this approach has problems finding globally optimal 
solutions. In surrogate-based optimization, sampled data is used to fit a surrogate model, 
representative of the underlying complex model, and then rigorous optimization methods 
are used on the surrogate (Jones et al., 1998). However, fitting a surrogate model 
introduces additional uncertainty to be considered, between surrogate model predictions 
and the true underlying function. 

Surrogate modeling can be partitioned into 2 stages: sampling and surrogate model fitting. 
The former aims to sample input-output information from the black-box function whilst 
minimising function evaluations (Sacks et al., 1989). A trade-off between homogenous 
coverage of the design space and non-correlated input variables has led to quasi-random 
sampling techniques being developed such as Latin Hypercube Sampling (LHS) (McKay 
et al., 1979). For the choice of surrogate model, the trade-off between model accuracy 
and computational tractability within an optimization problem must be considered. Whilst 
linear and polynomial models offer computationally tractable surrogate models, they can 
fail to accurately represent non-linearities in the underlying complex model. Conversely, 
Gaussian Process Regression (GPR) or “kriging” has gained popularity as a more robust 
surrogate modeling framework, albeit with reduced computational tractability within 
optimization problems (Caballero and Grossmann, 2008). 

An additional challenge of black-box optimization is addressing the fact that not all 
samples within the search space are guaranteed to return a converged result when 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50207-4 
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evaluated by the simulator. In response to this problem, feasibility constraints can be 
constructed to confine the optimization search space to a region where designs are more 
likely to have converged during sampling, and therefore are more likely to represent a 
feasible design. To build such feasibility constraints, classification machine learning 
models, such as support vector machines or Gaussian Process Classification (GPC), can 
be trained on the binary classification data from converged/non-converged simulations 
(Ibrahim et al., 2018). 

In this work, we present a computational modeling framework harnessing GPR and GPC 
for simulation-based optimization and robust design against uncertainties in infeasibility 
due to non-converged simulations. Specifically, GPR was used to represent process 
performance in the optimization objective function, whilst GPC was used to represent 
process feasibility constraints. Additionally, we introduce a “conservativeness” 
parameter to enable tuning of the process robustness. The GPR and GPC models were 
embedded in an optimization problem to determine minimum cost solutions that are 
robust to the uncertainty from non-converged simulations. 

This article proceeds with an overview of Gaussian Processes. We then present the 
methodology framework developed in this study followed by a demonstrative application. 
Finally, we discuss the results and make some concluding remarks on the implications of 
this work. 

Gaussian Processes 
Gaussian Processes (GPs) provide a framework for modeling complex black-box 
functions. By not assuming any model characteristics, GPs are not restricted to a fixed 
(and potentially incorrect) functional form, nor a finite set of parameters. Instead, GPs 
assume a prior probability distribution over an effectively infinite number of functions, 
where certain characteristics can be favored, and expert knowledge can be incorporated 
(for example favor smooth/periodic/noisy functions). The combination of the prior with 
some observed data yields a posterior distribution over functions, from which it is 
possible to extract a mean function and the variance in these functions. For the modeling 
of black-box functions, the GP posterior mean function can be used for predictive 
purposes whilst the GP posterior variance provides the uncertainty in these predictions. 

The GP prior is defined via the specification of a covariance function of the GP which 
fixes some properties of the functions in the distribution and defines a set of 
hyperparameters that enable learning based on observed data. For a stochastic GP, 𝑍(∙), 
Eq.(1) shows the covariance function (𝐑 between two points 𝒙!, 𝒙"), for the squared 
exponential correlation function containing the tuneable parameter 𝑙#, scaled by the 
tuneable process variance, 𝜎$%. Specifically, 𝑙# represents the sensitivity of the covariance 
function to dimension 𝑘, where a smaller value of 𝑙# represents higher sensitivity, 
ensuring that even two points far away are correlated. Additionally, Eq.(1) has the 
property that if two points are very close, the covariance approaches the process variance, 
and as the distance between two points increases, the covariance approaches zero. 

𝐑*𝑍(𝒙!), 𝑍,𝒙"-. = 𝜎$%exp3−5𝑙#,𝑥!,# − 𝑥",#-
%

'

#()

7 (1) 

GPR models process input-output relationships, 𝑦(𝒙), by utilising a stochastic GP with 
covariance given by Eq.(1) and with expected value equal to zero, 𝐸,𝑍(𝒙)- = 0, to model 
the deviations from a constant term, 𝜇 (Eq.(2)). 

𝑦(𝒙) = 𝜇 + 𝑍(𝒙) (2) 

Modeling the deviations from a constant term in this way, after optimizing the fit of 
hyperparameters (𝜇, 𝜎$%, 𝑙#) to observed data via Maximum Likelihood Estimation 
(MLE), it can be shown that the GPR posterior mean function (used for surrogate model 
predictions, 𝑦=(𝒙new)) and variance (used to quantify uncertainty in predictions, 𝑠%(𝒙new)) 
are given by Eq.(3) and Eq.(4), respectively, where 𝒓 is the vector of covariances between 
𝒙new and training data, obtained by evaluating Eq.(1) at	𝐑(𝒙new, 𝒙),	𝒚	 is the vector of 
observations, and 𝟏 is a vector of ones (6). 
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Table 1. Optimization problem statement. 

Given… Samples i = 1, …, n 

Converged samples j = 1, …, m 

Input dimensionality k = 1, …, q 

Process cost training data for GPR 𝑥!,#$%&, 𝑦! 

Convergence target labels for GPC 𝑥',#$%(, 𝑡' 

Fitted GPR parameters 𝜇, 𝑙#$%&, 𝑅!,!)*+ 

Fitted GPC parameters 𝑙#$%(, 𝑓(', 𝑃',')*+ 

Conservativeness parameter 𝜀 

Determine… Process design variables 𝑥#new 

Intermediate GPC variables 𝛼', 𝑣 

GPC probability of feasibility 𝑝 

To optimize… GPR predicted process cost 𝑦. 

Using sampled performance data and convergence target labels from computer 
experiments, GPR and GPC models were fitted by MLE, respectively. Specifically, only 
converged samples were used to train the GPR to obtain an accurate model within the 
feasible region without influence from non-converged samples. In this way, the complex 
black-box functions could be represented functionally within a mathematical 
optimization formulation whilst simultaneously restricting the search space to more 
probable feasible designs. 

The functional predictive forms of the GPR and GPC models were embedded within a 
Non-Linear Programming (NLP) optimization problem. The matrix algebra of the GPR 
and GPC models, spanning vectors over training samples and input dimensions, were 
expanded into summation notation to ensure compatibility with NLP solver IPOPT 
(Wächter and Biegler, 2006), using Pyomo (Bynum et al., 2021). The optimization 
problem statement can be written as shown in Table 1 whilst the generalised NLP 
formulation is shown by Eq.(7) to Eq.(11). 

Eq.(7) represents the GPR predictive function in Eq.(3) expanded into summation 
notation for use as the optimization objective function. Eq.(8) is the feasibility constraint 
where the probability of process feasibility, predicted by GPC, must be greater than the 
given conservativeness parameter. Eq.(9) is the implementation of Eq.(6) for the GPC 
predictions, expanded into summation notation for use as an optimization constraint. 
Eq.(10) and Eq.(11) are constraints to calculate intermediate variables within the 
optimization implementation of GPC. 

min 𝑦= = 𝜇 +55 𝑅","/.),𝑦"/ − 𝜇-
'

"!()

'

"()

exp3−5𝑙#012,𝑥#new − 𝑥",#012-
%

3

#()

7 (7) 

 
s.t. 𝜀 − 𝑝 ≤ 0 (8) 

 

 𝑝 = 𝜎

⎝

⎛
∑ *𝑡! − 𝜎,𝑓K!-.𝛼!4
!()

*1 + 𝜋8 𝜈.
)
%

⎠

⎞ (9) 

 

 𝑣 = 1 −5𝛼!

4

!()

5𝑃!,!/.)𝛼!/

4

!/()

 (10) 

 

 𝛼! = exp3−5𝑙#015,𝑥#new − 𝑥!,#015-
%

3

#()

7 (11) 
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Conclusions 
In this work, we presented a GP-based optimization methodology framework embedding 
GPR for process performance and uncertainty predictions, and GPC for tuneable 
feasibility constraints for robust design. GPR has previously been shown to be an 
effective surrogate model for simulation-based optimization (Caballero and Grossmann, 
2008), but we couple this, for the first time (to the best of our knowledge), with GPC 
feasibility constraints. We show that the probabilistic predictions from trained GPC 
models enable the definition and tuning of a conservativeness parameter depending on 
process infeasibility risk and process performance tolerances. Ongoing research includes 
incorporation of the GP uncertainty into a robust optimisation framework, and 
applications of the developed methodology to simulation-based superstructure 
optimization problems, formulated as mixed integer non-linear programs, for the 
optimization of integrative processes to recover resources from wastewater. This work 
contributes process systems engineering knowledge to other interesting applications of 
GPs to wastewater treatment research such as (Kocijan and Hvala, 2013; Oyebamiji et 
al., 2017). 
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Abstract 
In this work surrogate assisted optimization is utilized to calibrate predictive molecular 
models, called force fields, used in molecular simulations to reproduce the liquid density 
of a hydrofluorocarbon refrigerant molecule. A previous calibration workflow which 
relied on Gaussian process regression models and large Latin hypercube samples to 
screen force field parameter space is extended to include Bayesian optimization methods 
to efficiently guide the search for force field parameters. In comparison to the previous 
work, the Bayesian-based calibration workflow finds a parameter set which results in a 
lower objective function value than the original workflow after evaluating approximately 
50% fewer parameter sets. It is envisioned that this updated workflow will facilitate rapid 
force field optimization enabling screening of vast molecular design space. 
  
Keywords: Bayesian optimization, Gaussian process regression, Molecular simulation 

1. Introduction 
Molecular simulation is a powerful tool for studying the thermodynamic and dynamic 
properties of materials. For example, molecular simulation shows great promise for 
screening vast molecular design spaces which could be expensive or infeasible to probe 
experimentally. However, to utilize molecular simulation in this capacity requires 
accurate predictive molecular models, called force fields. Force fields use a functional 
form and parameters to describe the potential energy of a system and are utilized in 
classical molecular simulations to model intra- and intermolecular interactions. 
Developing generalized, or transferable, force fields to describe large swaths of chemical 
space has historically been a laborious endeavour, often taking months to years to 
complete. Though these off-the-shelf force fields offer accurate predictions for some 
systems, they inevitably lack accuracy across the extraordinary range of molecules found 
in the natural and synthetic world. Further optimization of force field parameters is often 
necessary to ensure the model has the required accuracy for the molecules and properties 
of interest (Wang and Kollman, 2001). Thus, force field optimization represents a 
bottleneck to applying molecular simulation to new systems. 
 
Emerging computational frameworks promise to greatly accelerate the calibration of 
highly accurate, physics-based force fields from experimental data. Efforts to calibrate 
force fields encompass gradient-based, stochastic search, analytical, and ad hoc 
optimization approaches (Befort et al., 2021). Often, a barrier to efficiently calibrating 
force fields is the expense of calculating the objective function, which quantifies the 
difference between the simulation prediction and experimental value of a property of 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50208-6 



1250  B. J. Befort et al. 

interest. The time requirement of simulations, ranging from minutes-to-hours (e.g., liquid 
density calculations) to days-to-weeks (e.g., vapor-liquid equilibrium), often makes the 
objective function calculation cost prohibitive. This cost only increases as more 
objectives, state points (e.g., temperatures, pressures), and parameters are incorporated in 
the optimization procedure. Recently, machine learning (ML) methods have been 
harnessed to address this challenge by mapping microscopic coordinates to a microscopic 
potential. This functionality enables ML force fields (Unke et al., 2021), but their black 
box nature often prevents physical insights that can be gained from a physics-based 
functional form and parameters of a traditional force field. 
  
ML techniques also facilitate surrogate-assisted optimization. Recently, we developed 
Gaussian process regression (GPR) and support vector machine models to emulate 
molecular simulations to calibrate force fields (Befort et al., 2021), hereafter referred to 
as the JCIM workflow. Our surrogate-assisted optimization JCIM workflow successfully 
screened millions of potential parameter sets, generated through iterative batches of space 
filling Latin hypercube sampling (LHS). Compared to a force field calibrated via hand-
tuning, our workflow enabled the screening of 𝒪(10%) times more parameter sets while 
requiring five times fewer simulations. However, this semi-automated workflow required 
generating large parameter set samples each iteration as well as user input to select which 
parameter sets to consider in the next iteration (i.e., batch of molecular simulations).  
 
In this work, we explore automating our ML-enabled force field calibration framework 
by leveraging Bayesian optimization (BO) (Wang and Dowling, 2022) to intelligently 
propose new parameter sets. Instead of relying on large 𝒪(10' − 10)) LHS batches of 
parameter sets and user-driven decisions to screen parameter space, BO automatically 
balances the search for optimal parameter sets between regions which improve the 
molecular simulation agreement with experimental data (exploitation) and regions which, 
if sampled, will reduce the uncertainty of the ML model (exploration). As a demonstration 
case, we optimize force field parameters for a hydrofluorocarbon (HFC) refrigerant 
molecule, difluoromethane (HFC-32). HFCs are a motivating application because they 
are subject to recent mandates which require the phaseout of high global warming 
potential (GWP) materials. Molecular simulation can aid in the sustainable 
implementation of this phaseout, but this is contingent upon highly accurate force field 
models for HFCs. Here, we consider optimization of a force field for HFC-32 which is 
widely used in many refrigerants and will play a significant role in the transition to next-
generation refrigerants due to its low GWP relative to other commonly used HFCs. 

2. Methods 
2.1. Force Field Model 
This work calibrates a classical molecular mechanics force field for HFC-32 with the 
functional form:  
 

𝑈(𝒓) = - 𝑘/(𝑟 − 𝑟1)2
34567

+ - 𝑘9(𝜃 − 𝜃1)2
;5<=>7

+ - 𝜐@[1 + cos(𝜂𝜙 − 𝛾)]
6IJ>6K;=7

+--
𝑞M𝑞N

4𝜋𝜖1𝑟MNNRMM

+--4𝜀MN TU
𝜎MN
𝑟MN
W
X2

− U
𝜎MN
𝑟MN
W
)

Y
NRMM

 

 

Here, 𝑈 is the potential energy and 𝒓 is the vector of position coordinates within the 
configuration space. The first three terms in this equation represent intramolecular 



interactions and the fourth term represents Coulombic intermolecular interactions. The 
parameters in these terms are not calibrated and are reported in Befort et al. (2021). The 
final term of this force field functional form contains VMN and SMN  which parameterize the 
Lennard-Jones potential describing the van der Waals repulsion-dispersion 
intermolecular interactions between atoms Z and [. Here, we focus on rapidly generating 
an accurate force field, i.e., improving *"+&, for HFC-32, by calibrating the like-
interaction Lennard-Jones parameters, VMM and SMM, to reproduce experimental HFC-32 
liquid density. These parameters are calibrated for the three atom types (C, F, and H) of 
HFC-32, resulting in six total fitting parameters. A description of the model, parameters, 
and general system setup can be found in Befort et al. (2021).  System changes in this 
work include: first, performing simulations using the LAMMPS molecular dynamics 
package and, second, expanding the parameter bounds as follows (V in \, S in kcal/mol): 
]^$ _ V` _ O^$, a^b _ Vc _ ]^b, #^d _ Ve _ a^d, $^$f _ S` _ $^#f, $^$O _ Sc _ $^#O, 
$^$ _ Se _ $^$b. While this paper only focuses on optimizing the intermolecular 
Lennard-Jones parameters, which are the least accurate when force fields are traditionally 
parameterized using quantum calculations, we emphasize the proposed BO calibration 
workflow is applicable to any parameters in the force field.   

2.2.!Bayesian Optimization Workflow 
The goal of this work is to refine *"+&gby optimizing force field parameters, h, such that 
the objective function, i"h&, is minimized. For this case study, h , "jkl jml jnl okl oml on&. 
Figure 1 shows the BO-enabled force field calibration workflow. First, ten initial 
parameter sets are generated via LHS. In step one, molecular simulations compute the 
liquid density, pqMr, of HFC-32 fromg*"+&gat multiple state points of interest. Depending 
upon the quality of *"+&l p7Is may or may not be close to the experimental values, ptuv, 
and this discrepancy is quantified as the mean squared error objective function, i"h& ,
w xyMqMr"h& ( yM

tuvz@
M{X

2
, where | is the number of state points considered. After the initial 

molecular simulations, for each parameter set, pqMr and the subsequent objective function 
i"}& are computed from the simulation output. At some state points the parameters used 
in the simulation are so poor that the vapor, not liquid, density of HFC-32 is the simulation 
result, leading to a discontinuity in objective function value that may be difficult for a 
surrogate model to capture. To prevent this discontinuity, if a simulation outputs a density 
lower than the critical density of HFC-32, the simulation density is reported as the critical 
density. This formulation results in a sufficiently poor objective function value, indicating 

 

Machine Learning-Enabled Optimization of Force Fields for 1251

 
Figure 1: Overview of the proposed BO-enabled force field calibration workflow. 

Stop: Terminate when 
desired accuracy achieved 

for experimental metrics
1. Perform molecular 

simulations with 
physics-based force 

fields 

Start: Specify initial 
parameter sets

2. Train surrogate 
models to predict 

simulation results from 
force field parameters

3. Apply acquisition 
function to select next 

parameter set for 
evaluation

Pr
op

er
ty

 S
ur

ro
ga

te

Property Simulated
Input Parameter(s)

Su
rro

ga
te

 O
ut

pu
t

Hydrofluorocarbons 



1252  

a poor parameter set, while preventing a discontinuity. In step two, a GPR model is trained 
to predict i"}& as a function of calibrated parameters } (Befort et al., 2021). In step three 
a BO acquisition function is optimized to determine the next parameter set to evaluate. 
Here, the expected improvement (EI) acquisition function is used to select the next 
optimal parameter set for simulation (Wang and Dowling, 2022). Upon applying the EI 
acquisition function, a new parameter set is generated which is used in new simulations, 
and the workflow continues iteratively until the desired simulation accuracy is reached or 
no improvement can be achieved in the objective function. 

3.!Results 
We begin by comparing our automated BO workflow to our prior semi-automated JCIM 
workflow. Figure 2 plots the best (lowest) objective function value found after simulating 
110 trial parameter sets (i.e., initial ten LHS parameter sets plus one hundred EI-generated 
samples) in the BO workflow compared to the best objective function values found after 
evaluating 200, 400, 600, and 800 total parameter sets in the JCIM workflow. Figure 2 
shows the improvement in objective function value for both workflows as more parameter 
sets are evaluated and the surrogate models are trained on more data. After 101 parameter 
sets are evaluated in the BO-based workflow, the objective function is 1.20 x 10-4 g2/cm6 

while the lowest objective function for the JCIM workflow’s initial 200 parameter sets, 
which were generated via LHS, was 1.24 x 10-4 g2/cm6. This indicates that the BO 
workflow can achieve a lower objective function value after evaluating approximately 
50% fewer parameter sets, and therefore performing less simulations, than a space filling 
sample of parameter space. We hypothesize this is the result of the adaptive nature of BO 
acquisition function, which can effectively explore and exploit parameter space to more 
efficiently find optimal parameter sets. We expect that as more simulations are performed, 
the GPR models in the BO workflow will improve such that this workflow will 
additionally require fewer simulations to surpass the objective function values found after 
evaluating 400, 600, and 800 samples in the JCIM workflow. 
 
GPR model improvement for the BO workflow is seen in Figure 3, which shows the 
absolute error between the GPR model prediction of the objective and the actual 
simulation result for each trial parameter set. The standard deviation in the GPR model 
prediction is plotted and shows a decreasing trend. The discrepancy between the GPR 

Figure 2: Comparison of the best objective function value after evaluating a certain number of 
parameter sets using the proposed BO workflow (black x, black line) versus our prior JCIM 

workflow (colored markers, dashed lines). 
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model prediction and actual simulation result also shows a decreasing, although less 
obvious, trend. This indicates GPR model improvement as more training data and regions 
of parameter space are sampled via the guidance of BO. Figure 4 compares the GPR 
model predictions and the actual simulation results of the objective for each evaluated 
parameter set, with the GPR model uncertainty plotted as error bars. This figure provides 
an example of how the BO-based workflow balances exploration and exploitation, 
showing how GPR model predictions for certain trial parameter sets result in objectives 
very close to simulation results (exploitation) while other predictions are significantly 
different than simulations and have high uncertainty, indicating exploration. Thus, instead 
of relying on GPR models to generate batches of new trial parameter sets in the original 
workflow, the BO-based workflow systematically samples parameter sets to gain 
information about the parameter regions which result in the lowest objective function 
values. We believe this approach both reduces the burden of the user by automatically 
selecting new parameter sets to sample and improves the efficiency of the workflow by 
decreasing the number of parameter set samples and subsequent simulations required to 
calibrate force fields. 

 

 
Figure 3: Absolute error between GPR model and simulation (green x) and GPR prediction 

uncertainty (black •) change as more parameter sets are evaluated. 

 
Figure 4: Comparison of GPR model prediction mean (red •) and standard deviation (red | , error 

bar) versus molecular simulation results (blue x) as more parameter sets are evaluated. 
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Further analysis is required to benchmark the BO-based calibration workflow. The BO 
results shown in Figure 2 were generated using the gradient based L-BFGS (scipy) 
optimizer to calibrate the GPR model hyperparameters for the first 80 iterations. Then, 
the hyperparameter optimization failed due to a Cholesky factorization error (the GP 
kernel became negative semi-definite) and was switched to an ADAM (BOTorch) 
optimizer. Reproducing this result using only the BOTorch optimizer is a work in 
progress; with only the BOTorch optimizer, the GPR model error remains 𝒪(10~2) 
whereas the JCIM workflow was 𝒪(10~�) after 200 samples. Ongoing work is 
investigating the differences in trained GP hyperparameters and overall BO performance 
using these two optimizers. Additional opportunities for further improving this 
framework include determining the minimum amount of data and initial parameter set 
samples necessary for efficient GPR model improvement, exploring various formulations 
for the objective function, kernel function, and the vapor-liquid density discontinuity, and 
evaluating the capabilities of various GPR model optimizers. We expect these analyses 
to improve the overall efficiency of the BO calibration workflow.  

4. Conclusions 
In this paper, we prototype a fully automated BO framework for force field calibration. 
Results show that after evaluating 101 parameter set samples with the BO workflow, the 
lowest mean squared error between simulation and experimental values for the liquid 
density of HFC-32 is 1.20 x 10-4 g2/cm6. This objective was 0.04 x 10-4 g2/cm6 smaller 
than the best objective found in the initial 200 parameter set LHS used in our prior JCIM 
workflow. This result suggests the BO techniques enhance the efficiency of force field 
calibration. Additionally, BO has enabled automated sampling of parameter space 
removing the need for user decisions for generating trial parameter sets. We expect that 
as more parameter sets are sampled, improvement within the GPR models will continue 
to show that fewer simulations will yield equally accurate force fields as the original 
workflow. Ultimately, this framework can be used to develop accurate force fields for 
multiple HFCs and other classes of molecules for which accurate molecular models are 
lacking. 
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Abstract 

In event-driven rescheduling, new re-optimization procedures are triggered when 
obtaining new information that indicates the current schedule to be outdated. Critical 
design aspects of such an algorithm are the definition of the trigger event and the 
allocated computing time for a new rescheduling procedure. We treat both of these 
design aspects as continuous control parameters. Nevertheless, finding the best-suited 
control parameter combination for a given operating environment may be 
computationally expensive, as it requires simulating the process with many candidate 
combinations. We use surrogate-based optimization to reduce the computing cost of 
optimizing the control parameters. We demonstrate the method on real-time rebalancing 
of a bike sharing system and investigate the sensitivity of the optimized parameters to 
changes in the operating environment. 

Keywords: optimization, event-driven rescheduling, surrogate modelling, logistics, bike 
sharing rebalancing. 

1. Introduction 

Online process scheduling is real-time decision-making of operational decision, such as 
the set of tasks to be executed, their timing and resource allocation. As processes are 
inherently stochastic, reaction or anticipation is required to deviations (e.g., in batch 
durations and material yields), disturbances and new orders. Gupta et al. (2016) review 
the literature of online scheduling and propose a framework for the classification of the 
online scheduling design aspects. One of the design aspects is the re-computation 
trigger, which is also referred to as the when-to-schedule decision (Sabuncuoglu and 
Kizilisik, 2003). Commonly used methods to trigger a re-computation procedure are 
periodic and event-driven (also event-triggered) rescheduling, and their hybrids. 

In this work, our focus is on event-driven rescheduling. In the literature, Touretzky et al. 
(2017) propose a framework where process level deviations and disturbances trigger re-
computing procedures at the scheduling level. Katragjini et al. (2013) investigate 
heuristic schedule repair algorithms on flow shop scheduling problems. New 
rescheduling procedures are triggered if new events (e.g., a machine disruption, a new 
order, or a deviation in a task processing time) affect the current schedule. Gupta et al. 
(2016) demonstrate a case where a rescheduling procedure is needed even if a trigger 
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event is not present. Pattison et al. (2017) propose a closed-loop production 
rescheduling framework combining the two categories of re-optimization triggers. 
Periodic rescheduling is conducted when receiving updates of price and demand 
forecasts, whereas event-driven rescheduling is conducted in the case of a market or 
process disturbance. 

The design of an event-driven rescheduling algorithm requires a definition of an event 
that triggers a re-optimization procedure. One approach is to define a quantitative metric 
for the importance of the event, such that when this metric exceeds a given threshold a 
re-optimization is triggered. Typically, event-driven rescheduling involves also other 
continuous control parameters, such as the allocated computing time and the used 
prediction horizon length. The evaluation of the closed-loop performance of just one 
control parameter combination requires simulation of the process and repeatedly 
performed optimization procedures. Thus, optimization of these control parameters may 
require a long computing time, as many candidate combinations need to be evaluated. 

In our earlier work, we propose surrogate-based optimization to be used to reduce the 
computational cost of optimizing (continuous) control parameters of a periodic 
rescheduling algorithm (Ikonen et al., 2021). In this paper, we extend the work to the 
design of an event-driven rescheduling algorithm. We investigate three continuous 
control parameters, including the threshold of event importance and the allocated 
computing time. Further, we investigate how sensitive the optimized parameters are to 
small changes in the operating environment.  

2. Bike sharing rebalancing 

Urban bike sharing systems are expanding in cities around the world. The users of the 
system can pickup a bike for a short-term use from (typically fixed location) stations 
and return them to a station in the same system after cycling. As the pickup and return 
rates at different stations are asymmetric, the operators of the system need to rebalance 
the distribution of bikes by, e.g., trucks.  

We investigate event-driven rescheduling on the dynamic bike sharing rebalancing 
problem (BRP), in which the rebalancing actions are performed during the day when the 
system is in use. We have chosen the application because in it new information of the 
state of the system is obtained frequently and it (like typical online production 
scheduling) involves solving mixed-integer programming (MIP) problems within a 
limited time. Last but not least, real process data of the bike sharing systems is publicly 
available. 

We use the framework by Schuijbroek et al. (2017) to optimize the rebalancing actions. 
The framework consists of 1) a prediction model for the bike levels at different stations, 
2) a MIP model to decompose the routing problem into smaller problems, each of which 
includes only one vehicle, and 3) an MIP model for optimization of the rebalancing 
actions of a vehicle. In this work, we formulate the dynamic BRP for only a single 
vehicle. Thus, we use the probabilistic prediction model and the MIP model for 
rebalancing operations from the framework by Schuijbroek et al. (2017). 

The prediction model for the bike inventory at station 𝑖 ∈ 𝑆 is based on the 𝑀௧/𝑀௧/1/𝐾 
queuing system, where the arrivals of new ‘customers’ (here: bikes) and their service 
are both non-stationary Markovian processes. Both events are assumed to be 
exponentially distributed with time-dependent rates, which are determined based on 
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historical data. One machine is serving the ‘customers’ and there is a total of 𝐾 waiting 
spaces (here: the capacity 𝐶௜ of station 𝑖). The transient probabilities for the bike levels 
can be solved by the Kolmogorov forward equations and the fourth order Runge-Kutta 
method. Figure 1 shows the predictions of the bike levels at a station, located in a 
residential area, in the Helsinki bike sharing system in the morning and afternoon of 
August 5, 2020. The predictions are based on the data recorded in June 2020. The white 
path shows the actual realization of the bike level on August 5, 2020. 

 

a) 92 stations lying within coordinate 
ranges [60.15…60.19] °N and 

[24.90…25.00] °E. 

b) Morning 6:00 to 10:00 

c) Afternoon 14:00 to 18:00 

Figure 1: The selected stations from the Helsinki bike sharing system, Finland, (Subfigure a) and 
four-hour probabilistic predictions (b and c) made at 6:00 and 14:00 on August 5, 2020 at the 
Toinen Linja bike sharing station (number 149 in Subfigure a) (Helsinki Region Transport, 2016) 
(Kainu, 2017). The white paths show the actual bike levels. 

The MIP model for the rebalancing actions minimizes the rebalancing time to bring the 
system to a state where all stations fulfil a given service level requirement (SLR) 𝛽 for 
both pickup and return demand during a predefined prediction horizon T. The service 
level is the fraction of satisfied pickup/return demand. It can be determined based on the 
probabilistic prediction for the station levels. For detailed descriptions of the prediction 
and MIP model, the reader may consult the papers by Schuijbroek et al. (2017) and 
Ikonen et al. (2021).  

We trigger a new rebalancing procedure when the service level of a station, having no 
scheduled visit, drops below a certain threshold 𝛽୲୰୧୥ (abbreviated as SL trigger). This 
value, as well as the SLR 𝛽 and the allocated computing time 𝑡ୡ for solving the MIP 
model, are the continuous control parameters of our event-driven rescheduling 
algorithm. The objective is to minimize the total time the stations in the system, 𝑆, are 
either empty of full, Σ௜ ∈ ௌ𝑡௜

ୣ୤, where 𝑡௜
ୣ୤ is the time station 𝑖 is empty/full. The next 

section introduces surrogate-based optimization, which we use to optimize the control 
parameters. 

3. Surrogate-based optimization 

Surrogate-based optimization is a sample efficient search method, suitable for black box 
type objective functions that are expensive to evaluate. Figure 2 shows a generic 
illustration of surrogate-based optimization. First, after identifying important decision 
variables, the initial sampling plan is generated using a design of experiment method. 
Second, each candidate solution is evaluated and used to construct a surrogate of the 
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objective function in the search space. Third, an 
iterative process is started where new candidate 
solutions (also referred to as infill points) are 
identified based on an infill criterion and evaluated. 
The obtained data is used to update the surrogate. 
The iterative process is continued until a predefined 
termination criterion. We refer the reader to the 
paper by Forrester and Keane (2009) for a review of 
surrogate-based optimization and to that by McBride 
and Sundmacher (2019) for review of surrogate 
modelling in chemical process engineering. 

In this work, we use the efficient global optimization (EGO) algorithm by Jones et al. 
(1998). We generate the initial sampling plan with 𝑛଴ points using Latin hypercube 
sampling. We then identify the first 𝑛ୣ୧ infill points by maximizing the expected 
improvement and the following 𝑛୷ෝ points by seeking the point where the predicted 
value from the surrogate is the smallest. We use the implementation of the EGO method 
by Bouhlel et al. (2019). 

4. Results 

We evaluate the proposed method on optimization problems formulated based on real 
process data recorded in Helsinki bike sharing system (Helsinki Regional Transport, 
2016, Kainu, 2017). We consider a subset of the stations (92), the coordinates of which 
lay within [60.15…60.19] °N and [24.90…25.00] °E (see Figure 1a), the rebalancing of 
which is to be conducted by one vehicle. The predictions of station levels are based on 
data recorded in June 2020. When optimizing the control parameters, we evaluate each 
control parameter combination on 9 to 10 weekdays in August-September 2020. The 
objective function value is the average of the obtained results. Each day, the rebalancing 
is conducted from 6:00 to 15:00. We evaluate the objective Σ௜ ∈ ௌ𝑡௜

ୣ୤ from 6:00 to 22:00. 

In order to investigate also the sensitivity of the results, we consider three different time 
windows (TW1: August 3 - 14 (data from August 11 is missing), TW2: August 17 - 28, 
TW3: August 31 - September 11). Weekends are excluded. TW2 is comparable to the 
case studied by periodic rescheduling in Section 4.1 of Ikonen et al. (2021). We use the 
prediction horizon of 𝑇 = 1.738 h, which was the optimized value with the periodic 
rescheduling algorithm. Further details of the test case are given in Ikonen et al. (2021).  

The search space is defined by the following bounds: SL trigger 𝛽୲୰୧୥ ∈ [0.2 … 0.9], 
SLR 𝛽 ∈ [0.2 … 0.9], computing time 𝑡ୡ ∈ [0.05 … 3.0] h. We allocate a total of 32 
evaluations for each optimization procedure by the EGO method (𝑛଴ = 15, 𝑛୷ෝ = 15, 
𝑛୷ෝ = 2). We use full factorial sampling as a reference method, for which we allocate 64 
evaluations (a 4 × 4 × 4 grid). The evaluations were performed on a high-performance 
computing facility, such that each run was allocated one thread of an Intel Xeon E5 
2680/2690 v3 node with 4 GB of memory. We solve the MIP models using Gurobi 
9.1.2. 

Figure 3 visualizes the obtained results by the EGO method and full factorial sampling 
for TW2. Table 1 shows the numerical results for all three time windows. On the 
studied time windows, EGO method yields 1.2 to 5% smaller objective function values 
than full factorial sampling. In the optimized parameter combinations, obtained by the 

Figure 2: An illustration of 
surrogate-based optimization. 



 

EGO method, the SLR 𝛽 has the smallest variation (all values are within 1.3% from 
each other). The optimized SL trigger 𝛽୲୰୧୥ and allocated computing time 𝑡ୡ have more 
variation depending on the time window. Figure 4 shows the realized and planned route 
of the vehicle at the first two time points it receives operations updates on August 17, 
2020 (TW2). The used parameters are those obtained by the EGO method. 
 

 
a) EGO b) full factorial 

Figure 3: Optimization results by the EGO method and the full factorial sampling for TW2. 
Subfigure (a) shows isosurfaces obtained from a surrogate that is trained with all observed data. 
In Subfigure (b), the best parameter combination is circled. 

Table 1: The optimized control parameters (i.e., service level trigger 𝛽୲୰୧୥, service level 
requirement 𝛽, computing time 𝑡ୡ) for the three time windows by EGO the method and full 
factorial sampling.  

time 
window 

   objective parameters 
days method evals. Σ௜ ∈ ௌ𝑡௜

ୣ୤ [h] 𝛽୲୰୧୥ [-] 𝛽 [-] 𝑡ୡ [h] 
  EGO 32 120.62 0.701 0.730 0.050 

TW1 9 full factorial 64 125.54 0.667 0.667 0.050 
  EGO 32 127.75 0.722 0.732 0.420 

TW2 10 full factorial 64 129.33 0.900 0.667 0.050 
  EGO 32 95.53 0.810 0.739 0.370 

TW3 10 full factorial 64 100.63 0.667 0.667 0.050 
 

 
a) 6:00:00 

 
b) 6:25:12 

Figure 4: Realized (solid line) and planned route (dashed line) of the vehicle when obtaining the 
first two operations updates on August 17, 2020.  
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5. Conclusions 

In this work, we investigated surrogate-based optimization of three parameters of an 
event-driven rescheduling algorithm, using the EGO method. On the three tested time 
windows, the EGO method yielded 1.2 to 5% smaller objective function values than full 
factorial sampling, when allocated 50% fewer function evaluations. The optimized 
service level requirement 𝛽 has only small variation between the tested time windows, 
whereas the other two optimized parameters have larger variation. 
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Abstract 

The current global availability of water resources is able to sustain human activities, 

however, its uneven distribution causes scarcities in some regions of the world, leading 

to the hindrance of industrial and agricultural operations. In addition to that, water 

undergoes multiple volatilities and dynamics owing to its dependence on precipitations 

and weather conditions which are now accentuated due to climate change. To overcome 

water shortage, water scarce countries have deployed tremendous efforts in enhancing 

their water sectors by developing novel technologies substituting the renewable water 

base. Wastewater reuse represents a sustainable opportunity to alleviate water scarcity in 

arid regions by providing additional reserves. Nevertheless, public perception is the major 

obstacle to implement such practices due to social constraints. This study presents a two-

stage methodology to evaluate the socio-economic and environmental aspects of reusing 

treated wastewater (TW) generated from different municipal wastewater treatment plants 

in an arid climate country. The first step consists of assessing the social acceptance of 

TW use in different applications to preselect the highly socially welcomed ones. Selected 

uses are then assessed economically and environmentally using a multi-objective network 

optimization model that aims to reduce the cost associated with the treatment process and 

the transportation of TW, and to minimize the engendered environmental burden. The 

TW allocation is constrained by the social acceptance, the capacity of treatment and 

production along with the quality of the TW. Firefighting, athletic fields irrigation and 

street cleaning were the uses that obtained the highest social acceptance amongst the 

studied sample. As for the environmental and economic aspects, the network involving a 

high contribution of treated municipal wastewater represents the optimum plan. 

Keywords: Treated wastewater, social acceptance, multi-objective network optimization, 

sustainability. 

1. Introduction  

1.1 Background  

Water security is the ability to maintain a continuous access to sufficient and safe water 

resources to preserve ecosystems and humans’ wellbeing for a guaranteed social 

development and economic prosperity. While water is the backbone of all the vital 

industrial and economic activities and processes such as agriculture and power 

generation, it represents a threatened commodity due to several factors. In fact, the ever-

increasing population, along with its associated growing demand for water resources, 

induce tremendous pressure on the water base leading to scarcities in many regions, 

particularly the arid ones. Climate change is also another issue that further intensifies 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50210-4 
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water scarcity leading to water insecurity. It is, indeed, the direct cause of volatile rainfall 

patterns, droughts, floods, and many sudden environmental events that reduce the 

replenishment of renewable water sources. As a response to the multiple risks governing 

water security, alternative water sources have been introduced to ensure the satisfaction 

of the current and future water demands. Desalination is one of the exhaustively deployed 

technologies to provide water in water-scarce regions. For instance, the Golf Cooperation 

Council Countries (GCC) which suffers from very limited water reserves, are principally 

adopting desalination to cover most of their water needs. Although this technique is 

efficient in alleviating water insecurity, it represents an energy intensive option that 

engenders significant environmental impact. As part of the efforts to shift to more 

sustainable water provision technologies, wastewater reuse represents a promising 

substitute to reduce the environmental and economic costs of desalination methods. In 

fact, producing water from a treatment facility can cost nine times less that providing it 

from a thermal desalination plant. However, social perception is still a hinder hampering 

the deployment of this technology in all domains, counting agriculture and drinking, and 

the usage is only restricted to activities not including direct human consumption or 

involvement such as landscaping and firefighting.  

1.2 Literature review 

The investigation of the potential of utilising TW as an alternate water source was 

significantly investigated in literature. Studies have addressed the topic from different 

perspectives representing the three sustainability pillars, counting economic, social and 

environmental aspects (Lahlou et al., 2021). Considering the economic viewpoint, works 

have mainly shed the light on the feasibility analysis and the economic benefits of 

wastewater use in different domains. In this regard, Lahlou et al. (2020a; 2020b), with a 

focus on agricultural activities, have examined the potential of utilising TW for irrigation 

purposes such that the nutritional intake of the crops and their water requirement are both 

satisfied simultaneously. Minhas et al. (2015) have also proven the efficiency of using 

TW in minimising fertilisers in agriculture through supplying sufficient amounts of 

Nitrogen and Phosphorus(Minhas et al., 2015). Wang et al. (2020) suggested two-stage 

model based on a genetic algorithm that optimises the efficiency of a system integrating 

wastewater reuse and power generation. Adopting an environmental perspective, Canaj 

et al. (2021) conducted a Life Cycle Analysis (LCA) to assess the environmental viability 

of the adoption of TW for irrigation purposes. Similarly, Almanaseer et al. (2020) 

investigated the impact of the wastewater treatment and reuse on water basins by 

quantifying the microbial  biological of the surrounding environment of the plant. As for 

the social aspect, the focus of TW studies was mainly to assess the social perception and 

acceptance of adopting TW in certain applications. For instance, Lahlou et al. (2021) 

examined through a survey analysis, the social perception on TW usage generated from 

oil and gas industries, in addition to the impact of newly-identified factors on the reuse 

acceptance. All these studies have looked at the TW utilisation from a single perspective 

or considering the combination of two sustainability pillars, however, in order to 

holistically assess the sustainability performance of wastewater reuse, there is a need to 

aggregate the three aspects in one model. In this paper, a two-stage approach is adopted 

to determine the optimal allocation of wastewater from different sources into diverse 

sectors considering economic and environmental constraints and relying on the social 

perception. 
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2. Methodology 

2.1 Problem Formulation 

The two-stage methodology consists first of conducting a survey to assess the acceptance 

level of reusing treated sewage effluent generated from municipal WWTPs. The results 

from the social study can then feed into the second stage of the methodology which is 

based on a multi-objective optimization model. The first objective of the model is 

represented by equation 1. It aims at reducing the cost associated with the transportation 

of the TW from the different sources to the different sinks which were identified during 

the initial stage. The second objective is the minimization of the global warming potential 

which is engendered by moving the water. If one of the applications requires N 

fertilization, the amount of carbon footprint offset using the TW for fertigation is taken 

into consideration in the carbon footprint calculation. The second objective is formulated 

in equation 2. Finally, the last objective, equation 3, is to maximize the total nitrogen 

uptake by the sinks that require this resource in order to reduce the material and 

environmental costs associated with the energy intensive commercial fertilizers. 

𝐶𝑜𝑠𝑡 = ∑ ∑ 𝑥𝑖𝑗  𝑑𝑖𝑗𝜕𝐽
𝑗=1

𝐼
𝑖=1         ( 1 ) 

𝐶𝐹 = ∑ ∑ 𝑥𝑖𝑗𝑑𝑖𝑗𝜁𝐸𝐽
𝑗=1

𝐼
𝑖=1 − ∑ ∑ 𝑥𝑖𝑗𝑛𝑖

𝑍
𝑧=1

𝐼
𝑖=1 𝑁𝜁       ( 2 ) 

𝑁𝑇 = ∑ ∑ 𝑥𝑖𝑗𝑛𝑖𝑗
𝑍
𝑧=1

𝐼
𝑖=1           ( 3 ) 

Where: 

• 𝑥𝑖𝑗  is the decision variable such that 𝑖 and 𝑗 are the indices for the source and the 

sink, respectively; 

• 𝑅𝑗 is the total water requirement for sink j [m3];  

• 𝐼 and 𝐽 represent the total number of sources and sinks, respectively; 

• 𝑑𝑖𝑗  represents the distance from course 𝑖 to sink 𝑗 [km]; 

• 𝜕 is the average price to transport 1 m3 of water across 1 km using a pipeline 

[USD.m-3km-1]; 

• 𝐸 is the energy required to transport 1 m3 of water across 1 km using a pipeline 

[kWh.m-3km-1]; 

• 𝜁 represents the carbon footprint associated with producing 1kWh of energy [CO2-

eq.kWh-1]; 

• 𝑛𝑖 represents the N concentration in source N [kg/m3]; 

• 𝑁𝜁 represents the carbon footprint associated with the production packaging and 

transportation of 1kg of N fertilizer [CO2-eq.kgN]; 

• 𝑧 represents the indices of the sinks which require N fertilization. 

Subject to the following set of constraints: 

∑ 𝑥𝑖𝑗𝑅𝑗
𝐽
𝑗 ≤  𝜉𝑖  ,  ∀𝑖 ∈ (1, 𝐼) 

∑ 𝑥𝑖𝑗  𝐽
𝑗 = 1 ,  ∀𝑖 ∈ (1, 𝐼)  

Where 𝜉𝑖 is the total capacity of the source 𝑖.  

2.2 Case study 

The State of Qatar is one of the most water scarce countries in the world, thereafter, effort 

is required to develop water resources management while respecting the triple bottom line 

of sustainable development. In the context of Qatar, developing such water planning 
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framework involving the reuse of alternative water resources as a function of social 

acceptance represents an opportunity for water stress alleviation at reduced environmental 

and economic costs.  

The public acceptance for TW reuse was assessed using a survey which initial purpose 

was to investigate newly identified factors, mainly maternal altruism, and their 

association with the public acceptance of reusing treated industrial wastewater and bio-

solids generated from oil and gas industries (F.Z. Lahlou et al., 2021). The findings of 

part of the survey which focused on the willingness to use TW from municipal WWTPs 

will feed into this paper. In this study, Doha and Um-Salal municipalities are chosen 

which are two of the most populated ones in the State of Qatar. There are three different 

WWTP in the chosen municipalities. While two of them perform tertiary treatment with 

N and P removal, the third WWTP performs tertiary treatment without N and P removal. 

Hence, the N concentration is higher in the latter.  

Table 1: Water requirements of different wastewater applications (sinks) and their distances from 

WWTPs (sources). 1Price, 2019; 2Bauer et al., 2020; 3Clark Tanks, n.d.; 4Shublaq and Sleiti, 2020 

  Water 

Requirements 

Distances from 

 Sinks Doha North 

WWTP 

Lusail 

WWTP 

Doha south 

WWTP 

 (m3.year-1) (km) 

Athletic fields irrigation 1,6641    

 Al Tamama Stadium 43.2 27.9 4.5 

 Ras Abu Abud Stadium 45.3 28.8 19.3 

Street Cleaning 927,4652    

 Ministry of Municipality and Environment 37.9 16.9 22.5 

Firefighting 290,4003    

 Fire Station 36.3 16.9 23.2 

District Cooling 8,486,2004    

 Plant P1 36.3 18.7 25.9 

 Plant P2 40.2 18.4 21.4 

 Plant P3 36.5 20.4 19.7 

 Plant Pearl  37.4 15.6 33.3 

3 Results 

The survey was answered by 1040 respondents which socio-demographic characteristics 

are significantly representative of the population of the state of Qatar in terms of gender 

and age group. The applications which scored the highest public acceptance for TW are 

athletic fields irrigation, street cleaning, firefighting, and district cooling as at least 70% 

declared to be willing to use TMW for these applications.  

Water requirements of the different sinks considered and their distances from the three 

various sources of WWTP are listed in Table 1. The sinks that require the highest amount 

of water are the district cooling plants of which each uses over 8 million m3 of water per 

year.  

The results of the developed multi-objective optimization model are illustrated in Figure 

1. The optimum solution comes at low economic and environmental cost as opposed to 

the current scenario which involves the use of energy intensive desalinated water in some 

of the applications. The optimum solution allocates TMW to the eight different sinks for 

a yearly cost of 71 thousand USD. The associated carbon footprint emissions is equivalent 

to less than 3700 t-CO2-eq.year-1. This optimum solution also allocates almost 10% of the 

nitrogen fertilization requirements of the stadium (Taylor et al., n.d.). In order to achieve 

these results, only two WWTP’s water resources are required which are Doha South and 
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Doha North. As a matter of fact, the produced water of Lusail WWTP is not required as 

the two other plants provide sufficient water resources at lower economic and 

environmental costs. Figure 2 illustrates the distribution of water from the different 

sources to the different sinks. Most of the water comes from Doha South due to its 

location which happens to be closer to all the sinks considered in this study. For the case 

of Doha North, it is the major contributor for District cooling plant P2 and Al-Tammama 

Stadium.  

 

Figure 1: Three-dimensional pareto front water allocation model. 

Figure 2: Summary of resource allocation to the different sinks. 

4 Conclusions 

In the light of the ever-increasing socio-economic and environmental stressors that 

threaten the availability of the renewable water base and considering the environmental 

burden associated with some alternative energy-intensive sources such as desalination, 

there is an imminent need to consider other sustainable options that can meet the demand 

while reducing the emissions. In this paper, the usage of TW as an alternate water supplier 

is investigated using a two-stage method. First, the acceptance of utilising TW in different 
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domains was assessed by means of a survey analysis. Afterwards, a multi-objective 

optimisation model was conducted to optimally allocate water between different accepted 

water sources and multiple application sinks counting firefighting, district cooling, street 

cleaning and stadiums’ irrigation. The optimal solution generated exhibits relatively 

reduced economic and environmental costs which do not exceed 71 thousand USD and 

3700 t-CO2-eq.year-1 while supplying the stadiums with over 10% of their nitrogen 

requirements.  
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Abstract 

In this work, we propose an iterative framework to solve superstructure design problems, 
which includes surrogate models, with a custom implementation of the Logic-based 
Outer- Approximation algorithm (L-bOA). We build surrogate models (SM) using the 
machine learning software ALAMO exploiting its capability for selecting low-
complexity basis functions to accurately fit sample data. To improve and validate the SM, 
we apply the Error Maximization Sampling (EMS) strategy in the exploration step. In this 
step, we formulate mathematical problems that are solved through Derivative Free 
Optimization (DFO) techniques. The following step applies the L-bOA algorithm to solve 
the GDP synthesis problem. As several NLP subproblems are solved to determine the 
optimal solution in L-bOA in the exploitation step, the corresponding optimal points are 
added to the SM training set. In case that an NLP subproblem turns out to be infeasible, 
we solve the Euclidean Distance Minimization (EDM) problem to find the closest feasible 
point to the former infeasible point. In this way, the entire information from NLP 
subproblems is exploited. As original model output variables are required, we solve EDM 
problems using DFO strategies. The proposed methodology is applied to a methanol 
synthesis problem, which shows robustness and efficiency to determine the correct 
optimal scheme and errors less than 0.2% in operating variables. 

Keywords: superstructure optimization; surrogate models; disjunctive programming; 
derivative free optimization 

1. Introduction 

Advances in computers and mathematical modeling have enabled the detailed 
representation of process systems, and thus, the development of fundamental tools for 
decision making in process design. This scenario also presents new challenges. In 
mathematical programing, the standard method to formulate a problem is to declare all 
process unit equations to perform the optimization. However, when formulating highly 
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accurate models, some constraints or even the objective analytic function may not be 
available if they are evaluated through simulators or special programs. These functions 
that are not analytically available, are referred to as black-box models. When a 
mathematical problem includes both, explicit and black-box equations, it is referred to as 
hybrid or grey box model. A common approach to address this kind of problems includes 
building surrogate models (SMs) to replace the black-box models. SMs are simplified 
functions that can estimate output data from a set of input variables, requiring small CPU 
times. 
When working with surrogate models, there is a trade-off between exploration and 
exploitation steps. Exploration strategies improve the global performance of the SM in 
the entire feasible region to reduce the probability of excluding the global optimum. On 
the other hand, exploitation-based methods refine the SM in regions where optima could 
be potentially found.  
The interest of the Process Systems Engineering (PSE) community in developing efficient 
methods to address the formulation and solution of black/grey box problems has increased 
significantly in recent years (Bhosekar and Ierapetritou, 2018). Kim and Boukouvala 
(2020) developed a surrogate-based optimization procedure to solve mixed-integer 
nonlinear problems focused on avoiding the binary variable relaxation. Pedrozo et al. 
(2021a) proposed an iterative framework to address hybrid problems, replacing highly 
nonlinear equations for SM in order to reduce problem complexity. Thus, it was assumed 
that the analytic function was available for the exploration and exploitation steps.  
In this work, we include Derivative Free Optimization (DFO) techniques (Zhao et al., 
2021) in the exploration and exploitation steps to avoid using the analytic functions. 
Numerical results show that the strategy is efficient and accurate to address the synthesis 
problems and the generation and refinement of SMs. 

2. Methodology 

The proposed optimization framework is outlined in Fig. 1. Initially, lower and upper 
bounds are set for the input variables of each SM. The Latin Hypercube Sampling (LHS) 
technique is employed in MATLAB to generate sampling data. Output variables 
corresponding to each sampling point are obtained by performing simulations of the true 
or original model. When working with hybrid problems, a filtering step is required to 
discard infeasible sample points. Then, an initial SM is built in the machine learning 
software ALAMO (Wilson and Sahinidis, 2017) considering simple algebraic regression 
functions (SARFs).  
Since the accuracy of this initial SM may not be good enough in all sampling points, we 
evaluate the corresponding relative errors, and we add Gaussians Radial Basis Functions 
(GRBFs) to represent those points whose errors are greater than a tolerance. In this way, 
we build the first SM based on both, SARFs and GRBFs, and then, we carry out the first 
exploration step. The Error Maximization Sampling (EMS) (Wilson and Sahinidis, 2017) 
strategy is applied in the exploration step. This method consists of maximizing the relative 
error of the SM in the feasible region. In this work, this optimization is performed through 
the DFO solver (Powell, 2009), which makes use of black-box simulation models. As a 
result, low-accuracy points of the domain are identified, and then interpolated by means 
of GRBF to improve the SM performance in that region, until the relative error is less 
than a tolerance or a maximum number of EMS problems is solved. 
In the following step, we solve the hybrid model-based Generalized Disjunctive 
Programming (GDP) problem in GAMS. A custom implementation of the Logic-based 
Outer-Approximation (L-bOA) algorithm is employed (Pedrozo et al., 2021b, Pedrozo et 
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al., 2020). We exploit the information of the L-bOA subproblems to refine the SM in the 
exploitation step. The feasible NLP subproblem solutions are compared to the rigorous 
black-box simulations to assess the SMs accuracy in that region. As some NLP 
subproblems or black-box simulations might be infeasible due to the performance of the 
SMs, we formulate an optimization problem to determine the feasible sampling point that 
minimizes the Euclidean distance to the NLP subproblem solution, and this point is then 
added to the training set. This optimization problem is also solved using DFO solvers 
(Powell, 2009). 
The iterative algorithm, which is shown in Fig. 1, stops when the specified convergence 
criterion is met. Otherwise, the exploration step is carried out again (the number of major 
iterations of the algorithm is equal to the times the GDP problem is solved). 
 

 
Figure 1: Iterative optimization framework  

2.1. Software resources 
The solution procedure is automated using MATLAB as a core for data transferring (see 
Fig. 2). In this way, ALAMO is run from MATLAB to generate the corresponding initial 
SMs. These functions and their derivatives are transferred to GAMS to formulate the 
hybrid GDP problem for process synthesis, and to solve it with the custom 
implementation of the L-bOA algorithm. To improve the SMs, we solve DFO problems 
for black-box models in the exploration and exploitation steps. In these cases, we employ 
the algorithms developed by Powell (2009), through the package provided by Ragonneau 
and Zhang (2021). Since these algorithms do not explicitly handle constraints, the Bound 
Optimization BY Quadratic Approximation (BOBYQA) algorithm is used. 

Disjunctive Programming
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Figure 2: Software integration 

3. Case Study 

The methanol synthesis problem (Chen and Grossmann, 2019) is used as case study to 
test the proposed iterative algorithm. Figure 3 shows the process superstructure, where 
discrete decisions are represented using dashed lines for both, equipment and streams. 
The objective function is profit maximization. 
In order to illustrate the algorithm, reactor models (units 9 and 10) are replaced by 
surrogate models to calculate conversion in each reactor. In this way, a hybrid 
formulation, which includes first principles and two SMs, is obtained.  

 
Figure 3: Superstructure for methanol synthesis (Chen and Grossmann, 2019) 

4. Results 
In order to show the robustness of the method and to consider the random component of 
the sampling technique, the problem is solved using ten different initial sampling data 
sets. In addition, we test 100 and 1,000 initial sampling points to assess the impact of the 
initial SM in the algorithm performance. 
We observe that the iterative algorithm of Fig. 1 determines the optimal solution of the 
problem in each run (1,840 M$/y), and the error in the objective value is less than 0.2 % 
even in the worst case. Moreover, we observe that for the runs with 100 initial sampling 
points, the algorithm generally requires two major iterations (in 7 runs of 10, Fig.4) to 
satisfy the convergence criterion. Thus, these SMs are refined only one time in the 
neighbourhood of the optimal solution during the exploitation step to make them accurate 
enough. However, in the worst case, four major iterations are required to meet the 
convergence criterion. On the other hand, considering large initial sampling data (1,000 
points), the proposed method generally converges in one iteration (in 5 runs of 10, Fig.4). 



Accordingly, the initial SM after exploration step has enough accuracy, so no data points 
are included in the exploitation step. In the worst cases, four iterations are also required. 
This analysis indicates that we cannot guarantee the quality of the initial SM. Even 
working with a large initial sampling data set, SM refinement during the exploration and 
exploitation steps can be required to achieve the desired accuracy of the generated SMs. 
Regarding the algorithm performance, Fig. 5 shows the corresponding CPU time 
distributions. On average, 11.9 and 2.5 minutes are the total CPU time for 100 and 1,000 
initial sampling points, respectively. The exploration step is the most time consuming, 
followed by the exploitation step, while CPU times associated with the initial fit and the 
GDP problem solution are negligible. These results are related to the use of DFO 
strategies in the refinement steps. Solving either an optimization problem for the 
exploration or exploitation step with DFO methods, requires 40 s approximately. Thus, 
the quality of initial SMs strongly influences the method’s performance. When the 
algorithm is run with a large initial sampling data set (1000 points), the SMs require less 
refinement, and consequently, fewer problems must be solved using DFO strategies, as 
compared to the case of using 100 initial sampling points. These results are in agreement 
with those from Wilson and Sahinidis (2017). 
When comparing this strategy with the case of using NLP solvers (CONOPT) for the 
exploration and exploitation steps (Pedrozo et al. 2021a), there is a significant increase in 
CPU time, i.e., 15 s vs. 2.5 min for 1,000 initial sampling points on average. 
 

 
Figure 4: Major iterations of the iterative framework from different initial LHS sets 

 
Figure 5: CPU time distribution. a) 100 initial sampling points. b) 1000 initial data sampling points. 
CPU times corresponding to initial fit and GDP problem solution are less than six seconds, so they 
are not easily distinguishable in the figure 

Surrogate Modeling for Superstructure Optimization with Generalized
Disjunctive Programming
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5. Conclusions  
In this work, we propose an algorithm for SMs generation and refinement using DFO 
strategies in the exploration and exploitation steps for the synthesis of process flowsheets 
using Generalized Disjunctive Programming with surrogate models. The algorithm has 
been tested with a methanol synthesis case study. The optimization tool has been proven 
to be robust and effective in generating solutions with relative errors lower than 0.2 % for 
the objective function in the worst cases, and obtaining the same optimal flowsheet as the 
rigorous model. The CPU time can be reduced by using a larger initial sampling point set. 
This strategy paves the way to efficiently refine SMs by the use of black-box models and 
DFO solvers. 
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Abstract  

Industry 4.0 is no longer a distant concept but an ongoing paradigm shift. Thus, it seems 

essential to prepare future engineers by fine-tuning our current educational approach. For 

example, advanced modelling, programming, and data analysis are now becoming 

fundamental skills. Therefore, it is essential to integrate these elements/subjects in the 

graduate and undergraduate curriculums. For a dynamic and active experience, 

educational computer-aided tools could be an excellent platform to teach fundamental 

engineering concepts and other essential tools for digitalization. 

In this work, we propose the customization of the current curriculum and introduce those 

prerequisites for Industry 4.0’s realization through an on-line and open-source 

educational computer-aided platform/simulator (BioVL). Hence, BioVL is built upon: (i) 

the identification of learning requirements; (ii) a learning design; and, (iii) a motivation 

strategy that includes gaming elements and an agile microlearning approach. BioVL 

(available at www.biovl.com) is in its prototype stage and under continuous development 

and refinement. Some of the ongoing and future steps include implementing AI-powered 

adaptive learning so that the students can receive immediate feedback and prevent error 

propagation.  

To conclude, we encourage building on the pillars of a successful transition towards a 

digitalized industry by upgrading the curriculum and integrating on-line educational 

computer-aided tools to prepare future engineers to be fluent in data analysis and process 

modelling. 

Keywords: biomanufacturing, digital models, digital platform, BioVL, education 

1. Introduction  

Industry 4.0, also frequently referred to as the Industrial Internet of Things or smart 

manufacturing, is no longer a distant concept but an ongoing paradigm shift. Among other 

processing industries, the biomanufacturing/biochemical industry now has the 

opportunity to adopt the technologies supporting smart manufacturing and intelligent 

automation. This leads increasingly to the introduction of digital solutions that focus on 

data communication/transfer, process modelling, and AI to predict and optimize the 

behavior of the process at all life cycle stages in real-time (Gargalo et al., 2021). 

Henceforth, for this to be a reality, there is a high demand for qualified engineers. Today's 

engineers need to be ready for such developments, which poses a challenge since the 

typical engineering undergraduate and graduate curriculum is not yet ready. There is a 
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need to fine-tune the current educational approach in order to prepare engineers for a 

digitalized industry (Cameron et al., 2019; Narayanan et al., 2020). However, existing 

studies in the PSE field do not present neither propose a comprehensive perspective on 

how and what needs to change regarding education. Thus, we must answer a critical 

question: what do (bio)chemical engineers need to learn to contribute positively to 

making Industry 4.0 a reality?  

Industry 4.0 entails implementing the concept of digital twins, which is, in a perfect 

world, a flawless digital replica of the physical process (Figure 1).  It is a cyber-physical 

loop system where the different units in a manufacturing process interact with one 

another, share information, simulate outcomes that strengthen decision-making, and thus 

make adaptive decisions without, or with minimal, human intervention Presently in its 

prototype stage, BioVL (www.biovl.com, Figure 2) has been built to support blended 

learning. The main intention of this software platform is to provide more modelling and 

programming exercises to graduate and undergraduate students in the chemical and 

biochemical engineering study line. It focuses on explaining, solving, and enabling the 

modification of conditions and parameters in mechanistic models for bioprocesses-

focused education (Deloitte, 2021; Gargalo et al., 2021; Narayanan et al., 2020; Udugama 

et al., 2021). Some of its enabling tools and methods are big data, data sharing, the Internet 

of Things, artificial intelligence (AI), and the development of process models, among 

many others. All the tools mentioned above share a common element: the demand for a 

computer platform/approach. Hence, we are convinced that educational computer-aided 

tools have the potential to become the preferred platform to teach, through an active 

experience, not only engineering fundamental concepts but also the essential tools for 

digitalization such as data analysis and basic and advanced modelling. For example, in a 

smart factory, engineers must now know how to combine process knowledge with the 

benefits brought by advanced data analysis (i.e., big data analytics). Big data analytics 

allows examining large data sets to uncover hidden patterns and trends and quickly 

identify a faulty batch or any other process faults in order to make informed decisions.  

Although the available methods and tools for data analysis and other digitalization 

enablers are numerous and highly complex, they are not different among fields (e.g., 

mechanical engineering, business). However, process models are system-specific and 

highly depend on conditions and process boundaries. Therefore, the teaching of basic and 

advanced modelling should be rigorous and requires the selection and proper 

implementation of process models. This entails that, firstly, the students must understand 

the system and its requirements, as well as the adequate modelling strategy (e.g., first 

principles, hybrid model, surrogate model, etc.). Thus, when the appropriate model is 

chosen (depending on the complexity level required), it can be derived and described 

through a set of mathematical expressions to be further applied for process control and 

optimization, among other tasks. Therefore, for future engineers to be an active part of 

the Industry 4.0 movement and implementation, it is essential that there is a detailed 

understanding of process modelling and more complex computer-aided methods. In this 

study, we recommend and propose that the students acquire practical experience 

throughout their curriculum in order to be able to: (i) observe and recognize trends and 

patterns in the data; (ii) propose a model; (iii) implement it; (iv) test it; and finally, (v) 

use the model (e.g., for optimization purposes). Consequently, an educational computer-

aided platform can be used which embeds these steps and provides a structural and 

theoretical frame for learning the needed methods and tools (e.g., big data, AI, etc.). Thus, 

the authors have developed BioVL (Bioprocess Virtual Laboratory), an educational 

platform whose goal is to tackle these challenges (Figure 1) and train the users in applied 
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modelling and programming (Cañ o De Las Heras et al., 2019). BioVL, presently in its 

prototype stage, is an open-source online simulator that aims to explain, solve, and modify 

bioprocess models and support the users in creating their own models. Features, as well 

as software design and targets, are discussed at length in the following sections. We 

believe this is a valuable tool to face the knowledge needs and challenges for the transition 

and continuous operation of smart biomanufacturing facilities. 

 

Figure 1: Industry 4.0 and the simplified relationship between the physical process and its Digital 

Twin. Orange: Knowledge gap in the (bio)chemical engineering curriculum (modelling and 

programming). Blue: BioVL contribution. Graphic illustration used elements from 

www.flaticon.com.  

2. Methodology  

As previously stated, educational platforms must become active enablers of the ongoing 

digital transformation (Cañ o De Las Heras et al., 2021b; Gargalo et al., 2021; Narayanan 

et al., 2020). To develop such a platform, as detailed in (Cañ o de las Heras et al., 2021), 

there are three main steps: identification of learning requirements, formulation and 

implementation of the learning design, and validation. The educational platform 

developed in this work is based on the mentioned steps, as described in the following sub-

sections.  

2.1. Identification of Learning requirements  

Previous studies by the authors (Cañ o De Las Heras et al., 2021b, 2021c), as well as 

others (Balamuralithara &  Woods, 2009; Dyrberg et al., 2017; Feisel &  Rosa, 2005), have 

collected and quantified the students'  perception on building on essential skills (e.g., 

programming) and on the use of simulators in their education. The study by (Cañ o De 

Las Heras et al., 2021b, 2021c) has revealed that, according to the students'  opinion, the 

programming content in the curriculum is not sufficient to cover the industry' s future 

needs. Furthermore, (Cañ o De Las Heras et al., 2021b) also reported that Python is the 

preferred language for modelling and optimization subjects. Further, based on the 

students’ and teachers’ perceptions, other topics are lacking, such as the use of 

collaborative learning; the students miss the social elements of traditional education  

(Cañ o de Las Heras et al., 2020) and/or wish for a more dynamic and iterative simulator 

for open-ended exploration/investigation.  

The mentioned learning needs are used as the foundation for the learning design 

definition. 

2.2. Learning Design formulation 

A learning design is developed to overcome the mentioned pedagogical needs. It is built 

upon the (i) learning goals, (ii) background describing how the learning will occur, (iii) 
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learning content, theory and methods used, (iv) evaluation method, and (v) learning 

prerequisites (Caño de las Heras et al., 2021; Caño De Las Heras et al., 2021b; Hiim, H 

and Hippe, 1997). This didactic framework was first proposed (Hiim, H and Hippe, 1997) 

and later expanded (Weitze, 2016). Besides, the learning goals include the higher levels 

of the Bloom taxonomy associated with meta-cognitive knowledge (Caño De Las Heras 

et al., 2021b; Krathwohl, 2002). 

The learning design is embedded in our educational computer-aided platform (BioVL). 

A central objective of BioVL is to teach applied modelling and programming in Python 

to graduate and undergraduate (bio)chemical students/engineers and potentially 

technicians. Hence, BioVL has several features such as multimedia resources, 

questionnaires, and activities described in detail in the Results and Discussion section.   

2.3. Learning Design verification 

Learning design is mostly based on “if…, then…” rules (Berggren et al., 2005) and 

commonly requires verification that it is valuable for the students. Therefore, many 

validation strategies have been previously proposed. However, in this work, we decided 

to intrinsically involve the students during different steps of the process. This strategy, 

known as co-participatory design, integrates the students as co-designers for content and 

platform development. It has also been proven that students can develop a sense of 

ownership and empowerment, while misunderstandings, confusions, and false 

impressions are minimized  (Yamauchi, 2012).  

3. Results & discussion: BioVL  

Presently in its prototype stage, BioVL (www.biovl.com, Figure 2) has been built to 

support blended learning. The main intention of this software platform is to provide more 

modelling and programming exercises to graduate and undergraduate students in the 

chemical and biochemical engineering study line. It focuses on explaining, solving, and 

enabling the modification of conditions and parameters in mechanistic models for 

bioprocesses-focused education (Caño De Las Heras et al., 2021b). BioVL includes the 

following features: (a) collaborative learning through a chatbot; (b) information about 

bioprocess model formulation; (c) a simulator where realistic operational problems might 

occur requiring the student to propose a solution (Caño De Las Heras et al., 2019, 2021b); 

(d) a library of mechanistic models in the form of a functional database (Caño De Las 

Heras et al., 2021a); and, (e) a set of coding tasks in Python specifically related to 

bioprocess problems. Furthermore, to make the software engaging and easy to use, it 

employs gamification elements and agile microlearning (learning content is broken down 

into smaller segments that can be achived in minutes). In addition, students are active 

agents in the design of the content and layout of the software through co-participatory 

design. Due to the highlighted collaboration with students and teachers to make the best 

possible software, BioVL is far from finished. Future steps for BioVL’s continuous 

improvement include introducing and teaching the students (i) more advanced modelling 

strategies by including optimization exercises; (ii) to develop a suitable control strategy 

for the system; and (iii) data analysis and its practical aspects by, for instance, introducing 

small experiments for the development of hybrid models. Furthermore, we are in the first 

stages of implementing AI-powered adaptive learning so that the students can receive 

immediate feedback and prevent error propagation. 

 

 

 C. L. Gargalo et al.



 

 
Figure 2: BioVL welcome screen. More at www.biovl.com. 

4. Conclusions & Future perspectives  

Educational computer-aided tools should be the preferred platform to teach, through an 

active experience, not only engineering fundamental concepts but also the essential tools 

for digitalization such as data analysis and advanced modeling. Engineers need to 

combine their process knowledge with the benefits of advanced data analysis to actively 

and dynamically contribute to the ongoing digitalization efforts and effective operation. 

Although AI methods do not vary among fields, process models are system-specific. 

Thus, background knowledge is essential for the successful selection, 

implementation/formulation, and use of process models (e.g., for advanced control and 

optimization purposes). Therefore, it is fundamental to integrate the teaching of basic and 

advanced modeling, as well as programming, in the graduate and undergraduate 

curriculums. To tackle the mentioned prerequisites of Industry 4.0-related activities, in 

this work, we propose to expand/customize the current curriculum (learning 

requirements), customize it to the current needs (learning design), and dynamically 

include the students in the process (learning verification). To achieve this, the authors 

have developed an online and open-source educational platform (BioVL) that, among 

other strategies, integrates gamification elements and an agile microlearning as a 

motivation approach. BioVL is in its prototype stage and under continuous development 

and refinement. Some of the ongoing and future steps include implementing AI-powered 

adaptive learning so that the students can receive immediate feedback and prevent error 

propagation. To conclude, we encourage building on the pillars of a successful transition 

towards a digitalized industry by upgrading the curriculum by integrating online 

educational computer-aided tools to empower future engineers to be fluent in data 

analysis and process modelling. 
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Abstract 
This manuscript introduces a Logic-based Discrete-Steepest Descent Algorithm (LD-
SDA) to tackle problems arising from process superstructure optimization. These 
problems often appear in Process Systems Engineering and become challenging when 
addressing Process Intensification applications. The current algorithm considers a 
disjunctive interpretation of these optimization problems through Generalized 
Disjunctive Programming (GDP). This formulation allows further analysis of the solution 
method as a tailored approach for GDP and results in a general open-source 
implementation of the method relying on the modeling paradigm Pyomo.GDP. 
Complementing our previous studies in the subject, we compare the LD-SDA against 
other well-known GDP solution methods and a D-SDA that does not consider the 
disjunctive nature of these problems. The results showcase the advantages of LD-SDA 
when dealing with superstructure problems arising from process intensification. 

Keywords: superstructure optimization; process intensification; convex discrete analysis. 

1. Introduction 
The optimal design of processes is a challenge the Process Systems Engineering (PSE) 
community faces. Chemical processes require a systematic procedure to find optimal 
designs to remain competitive. Recent developments from Process Intensification (PI) 
have shown to be promising alternatives to traditional processes by integrating and 
interconnecting units and achieving superior processes in terms of economic, 
environmental, and efficiency objectives (Sitter et al., 2019). Different process flowsheets 
can be integrated into a single process superstructure, where potential units and 
interconnections are considered. Superstructure models allow the units and 
interconnections' equations to be constraints in optimization problems. 
Since these equations can involve nonlinear functions and depend on both continuous 
(e.g., flowrates or temperatures) and discrete variables (e.g., equipment choice, 
interconnection location), the mathematical models become Mixed-Integer Nonlinear 
Programs (MINLP). The solution to these optimization problems is challenging given 
their combinatorial and nonconvex nature. Generalized Disjunctive Programming (GDP) 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50213-X 
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has been proposed to tackle specific modeling and solution challenges of MINLP. In 
GDP, the modeling capabilities of traditional mathematical programming are extended 
by introducing Boolean variables involved in propositions and disjunctions. 
The novelty of this work is to frame a Discrete-Steepest Descent Algorithm (D-SDA) for 
the solution of discrete nonlinear problems within the scope of GDP and use it to address 
process superstructure problems with ordered interconnections. Such problems arise in 
PI applications, such as studying a series of units with interunit refluxes, e.g., tray-by-tray 
distillation column models. 

2. Generalized Disjunctive Programming 
In general, a GDP problem can be written as 

min
𝐱𝐱,𝐘𝐘,𝐳𝐳

f(𝐱𝐱, 𝐳𝐳) + ∑ ckk∈K

s. t. 𝐠𝐠(𝐱𝐱, 𝐳𝐳) ≤ 0;  𝛀𝛀(𝐘𝐘) = True

∨i∈Dk �
Yik

𝐫𝐫ik(𝐱𝐱, 𝐳𝐳) ≤ 0; ck = γik
� ∀ k ∈ K

𝐱𝐱 ∈ X ⊆ ℝnx ;𝐘𝐘 ∈ {True, False}ny; 𝐳𝐳 ∈ Z ⊆ ℤnz ; 𝐜𝐜 ⊆ ℝ|K|

  (1) 

Where the continuous variables are denoted by the nx-dimensional vector 𝐱𝐱 bounded by 
the finite set X, and the discrete variables are denoted by the nz-dimensional vector 𝐳𝐳, 
bounded by the finite set Z. The function f:ℝnx × ℝnz → ℝ is the objective function, and 
the vector function 𝐠𝐠:ℝnx × ℝnz → ℝnl  denotes the global inequality constraints. 𝐘𝐘 is a 
ny-dimensional vector of logic variables, where for each disjunct i ∈ Dk of each 
disjunction (∨) k ∈ K the individual logic variable Yik enforce the set of inequalities 
𝐫𝐫ik:ℝnx × ℝnz → ℝnik  and the fixed cost γik. Logical constraints 𝛀𝛀: {True, False}ny →
{True, False} encode logical relationships among the logical variables. 
Besides offering a more intuitive modeling paradigm of discrete problems through 
disjunctions, a GDP model can inform computational solution tools of the original 
problem's underlying structure of the original problem, thus leading to improved solving 
performance. The GDP framework has successfully addressed problems derived from 
process superstructure optimization (Chen et al., 2021). 
GDP problems are often solved by reformulating them as MINLP problems, by adding a 
binary variable yik for each Boolean variable Yik, and reformulating the constraints 𝐫𝐫ik 
within the disjunctions to be enforced when the corresponding variable yik = 1 or 
trivially satisfied otherwise. The two best-known cases are the Big-M and the Hull 
reformulation, for which the Big-M case requires fewer continuous variables while the 
Hull reformulation is always at least as tight as the Big-M reformulation. 
The tailored solution methods for GDP are usually based on generalizing algorithms for 
MINLP. The optimization problems are decomposed in a way where the discrete variables 
are fixed into what we call a discrete combination and allow to solve the problem only in 
terms of the continuous variables. Different methods are used to select the combination 
of these discrete variables, including branching across the different values the discrete 
variables can take (i.e., Branch-and-Bound) or solving a linear approximation of the 
original problem (Kronqvist et al., 2019). For GDP algorithms, contrary to the case in 
MINLP, these (possibly Mixed-Integer) Nonlinear Programming (NLP) subproblems that 
arise when fixing a particular discrete combination, now including the logical variables, 
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only include the constraints that concern the logical variables within each combination. 
Namely, for a given logical combination 𝐘𝐘� the subproblem becomes 

min
𝐱𝐱,𝐳𝐳

f(𝐱𝐱, 𝐳𝐳) + ∑ γikik if  Y�ik=True

s. t. 𝐠𝐠(𝐱𝐱, 𝐳𝐳) ≤ 0
𝐫𝐫ik(𝐱𝐱, 𝐳𝐳) ≤ 0 if Y�ik = True ∀i ∈ Dk, k ∈ K

𝐱𝐱 ∈ X ⊆ ℝnx , 𝐳𝐳 ∈ Z ⊆ ℤnz

  (2) 

Notice that in the most general case, the problem in Eq.(2) is an MINLP, although in most 
applications, nz = 0, leading to the problem being an NLP. This problem avoids 
evaluating numerically challenging nonlinear equations whenever its corresponding 
logical variables are irrelevant (i.e., "zero-flow" issues). 
The different tailored algorithms for GDP are defined in the strategy to find the logical 
combination 𝐘𝐘� such that subproblems as in Eq.(2) solve to the optimal solution Eq.(1). 
One alternative is using gradient-based linearizations of the nonlinear constraints at the 
optimal solution of Eq.(2) to approximate the original problem feasible region. This 
defines a Mixed-Integer Linear Program (MILP) whose optimal solution returns values 
for the integer combinations. This method is known as the Logic-based Outer-
Approximation (LOA) method. One can also systematically explore the values of the 
Boolean variables in a search tree where the nodes correspond to partial fixations of these 
variables, whose solutions provide bounds to the optimal solution, in a method called the 
Logic-based Branch-and-Bound (LBB) method (Chen et al., 2021). Both methods seek 
to find potentially optimal combinations of logical variables efficiently. 

3. Discrete Steepest Descent Optimization 
In a previous study, we presented the D-SDA (Liñán et al., 2020a) based on the theory of 
discrete convex analysis (Murota, 1998). The algorithm aims to solve Mixed-Binary 
Nonlinear Programs (MBNLP) and relies on reformulating the original discrete problem, 
in terms of binary variables, into a problem of integer choices, referred to as external 
variables. This reformulation was designed for binary variables defined in an ordered set 
constrained to an assignment constraint, meaning that only one of these ordered binary 
variables can be 1. These external variables, which are no longer representable in the 
original problem constraints, provide a concise representation of the discrete feasible 
region. This structure often appears in process superstructure optimization problems, e.g., 
when a set of binary variables define the location of a reflux stream within a stages 
sequence, implicitly defining the existence of left-over stages after them. 
Exploring discrete neighborhoods of the external variables provides the D-SDA with an 
efficient approach to choose which combination of the discrete variables should be 
considered to solve the subproblems that appear by fixing such values, NLPs in this case, 
thus efficiently searching the combinatorial space of the discrete variables. The D-SDA 
uses the integrally local optimality as a termination criterion (Murota, 1998), enabling the 
efficient solution of process superstructure optimization problems. 
When considering a series of continuously stirred tank reactors (CSTR), the D-SDA 
outperforms MINLP solvers in solution time and quality (Liñán et al., 2020a). 
Furthermore, we applied the algorithm to the optimal design of a PI application involving 
reactive distillation, where we tackled the production of Ethyl tert-butyl ether (ETBE) 
from iso-butene and ethanol through the optimal design of a catalytic distillation column. 

Optimization: a GDP Analysis and Applications in Process Intensification
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The D-SDA revealed a better performance against MINLP solvers when optimizing an 
economic objective in this problem (Liñán et al., 2020b). This allowed us to consider 
more complex models for this system, i.e., modeling multi-scale phenomena through a 
rate-based model for mass and energy transfer (Liñán et al., 2021). 

Figure 1. Pictorial representation of (a) different search neighborhoods in external variables lattice 
and (b) D-SDA with the neighbor and line search using 𝑘𝑘 = ∞ 

4. Discrete-steepest descent optimization as a disjunctive algorithm LD-SDA 
The problem in Eq. (1) suggests that the structure fitting for the D-SDA algorithm appears 
naturally in GDP, namely the disjunctions (∨i∈Dk Yik) enforce the assignment constraint, 
ExactlyOne�Y1k, … , Y|Dk|k�, which would enable the reformulation with external 
variables if {Yik|i ∈ Dk} represents an ordered decision. The reformulation is also possible 
across other ordered sets of Boolean variables, i.e., ∨S(a)∈S YS(a) defined over the ordered 
set S = {s1, … , s|S|} with the element of S in its a-th position denoted S(a). These sets are 
common within process superstructure problems and the reformulation into external 
variables 𝐳𝐳E ∈ {1, … , |S|} ⊆ ℤ becomes YS(a) ⇔ zE = a. Notice that this reformulation 
allows the external variables to be interpreted as indicators of position within the set. 
Such a reformulation allows us to map the Boolean variables into a lattice of integer 
variables, on which we can perform exploration based on ideas from discrete convex 
analysis (Murota, 1998). This leads to the Logic-based D-SDA (LD-SDA), which 
compares the objective function of each problem solved at a lattice site with its neighbors, 
defined by either a 𝑘𝑘 = 2 or 𝑘𝑘 = ∞ norm as seen in Fig.(1a), together with a line search 
along the direction provided by the best objective improvement after a complete neighbor 
search, as seen in Fig.(1b). The local optimality of the solution determines the stopping 
criterion compared to its neighbors (Murota, 1998). 
From a GDP perspective, the external variables delineate a branching rule in the 
disjunctions, informing the problem structure. Notice that the more ExactlyOne(YS) 
constraints the problem have, the more effective this reformulation is, with the limiting 
case of not having any other apart from the disjunctions, making it equivalent to LBB. 

5. Numerical Experiments 
We implement this method in open-source code using Python, available in 
https://github.com/bernalde/dsda-gdp. This code automatically transforms Pyomo.GDP 
(Chen et al., 2021) models, reformulates the disjunctions and the logical constraints 
ExactlyOne�YS(1), … , YS(|S|)� automatically and solves the models using LD-SDA. We 
present the following two case studies after solving these problems with the solvers in 
GAMS 34.2 and using an Intel Core i7-7700 @ 3.6GHz PC with 16 Gb of RAM Memory. 
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5.1. Continuously Stirred Tank Reactors in series superstructure 
We consider a superstructure of NT CSTR in series where its total volume is minimized 
given an autocatalytic reaction A + B → 2B with 1st order reaction rate. This example is 
generalized from the one presented in (Liñán et al., 2020a). This example is illustrative 
given that we have an analytical solution at the limit of NT → ∞ equivalent to the Plug 
Flow reactor, and that we can explore the behavior in instances varying the value of NT. 
Fig.(2) presents a scheme of the problem and its GDP formulation, together with its 
external variables reformulation. For this problem, there is a locally optimal solution with 
five reactors and reflux before the first reactor, 𝐳𝐳𝐸𝐸 = (5,1). 

Figure 2. Scheme of (a) CSTR reactor superstructure and (b) Case with NT = 5 and reformulation 
using external variables zE,1 the number of reactors, zE,2 the relative position of the reflux 

We considered a set of different solver approaches to this problem with NT = [5, … ,25], 
including reformulating it into MINLP via Big-M and Hull reformulations, using LBB, 
LOA, and GLOA, and LD-SDA with two different norms, as seen in Fig.(3). We also 
include the total enumerations through the external variable reformulation. 

 
Figure 3. Execution time to achieve global minimum vs NT for optimization of CSTR 
superstructure problem using different combinations of NLP solvers and reformulation methods. 

From Fig.(3), one can see that LD-SDA provides the most efficient methods to solve this 
problem to global optimality. For this problem, the 𝑘𝑘 = 2 norm neighborhood does not 
obtain the optimal solution. Notice that the external variable reformulation leads to a 
better search procedure, as seen when a total enumeration in the external variable space 
can be more efficient than other GDP solution alternatives. 
5.2. Rate-based catalytic distillation column 
The economic objective maximization of a catalytic distillation column to produce ETBE 
from butenes and methanol was solved using a D-SDA (Liñán et al., 2021). This test case 
is relevant since it deals with a PI design problem, where several traditional optimization 
methods fail even to compute feasible solutions (Liñán et al., 2021). The derivation of the 
D-SDA method was initially motivated to address this PI superstructure optimization 
problems, leading to a series of papers as seen in (Liñán et al., 2020b, 2020a, 2021). 
The previous D-SDA would tackle the problem as an MBNLP, fixing and unfixing binary 
variables and including constraints of the form yg(x) ≤ 0 to enforce the logic constraints. 

Process Superstructure Optimization through Discrete Steepest Descent  
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Here we show that considering the problem from a disjunctive point of view as in LD-
SDA leads to the solution of subproblems as in Eq.(2) instead of including irrelevant and 
numerically challenging nonlinear constraints. 
Table 1. Execution time of Catalytic distillation optimal design problem from (Liñán et al., 2021) 

 
D-SDA: (Liñán et al., 2021) LD-SDA: This work 

NLP Solver CONOPT MSNLP CONOPT MSNLP 
Neighborhood k=2 k=inf k=2 k=inf k=2 k=inf k=2 k=inf 

Time [s] 367.1 16880.0 3626.0 102030.7 118.7 6751.1 2000.0 38532.5 

As seen in Table (1), the proposed LD-SDA method leads to speedups up to 3x in this 
challenging PI problem. We could obtain the same solution to all subproblems more 
efficiently, given that only the relevant constraints were included for each problem. 
Adding to the fact that the previous results using the D-SDA were already beating state-
of-the-art MINLP solution methods shows the advantages of the LD-SDA. 

6. Conclusions 
The current manuscript presents the usage of a disjunctive discrete steepest descent 
optimization algorithm LD-SDA to tackle process superstructure problems. This 
algorithm is presented from the perspective of Generalized Disjunctive Programming 
solution methods, showing its relationship with existing algorithms for GDP. Moreover, 
this allowed for the algorithm to be implemented in Python and through the modeling 
paradigm of Pyomo.GDP. With this implementation, we solved problems of 
superstructure optimization, a series of CSTR volume minimization, and a rate-based 
catalytic distillation column economical design more efficiently than other proposed 
solution methods, including MINLP reformulations, GDP-tailored algorithms, and a D-
SDA aimed at MBNLP problems. The results in this manuscript show how LD-SDA 
becomes a valuable tool to address process superstructure problems, of which many 
challenges instances arise from PI applications. 
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Abstract 
This manuscript presents the recent advances in Mixed-Integer Nonlinear Programming 
(MINLP) and Generalized Disjunctive Programming (GDP) with a particular scope for 
superstructure optimization within Process Systems Engineering (PSE). We present an 
environment of open-source software packages written in Python and based on the 
algebraic modeling language Pyomo. These packages include MindtPy, a solver for 
MINLP that implements decomposition algorithms for such problems, CORAMIN, a 
toolset for MINLP algorithms providing relaxation generators for nonlinear constraints, 
Pyomo.GDP, a modeling extension for Generalized Disjunctive Programming that allows 
users to represent their problem as a GDP natively, and GDPOpt, a collection of 
algorithms explicitly tailored for GDP problems. Combining these tools has allowed us 
to solve several problems relevant to PSE, which we have gathered in an easily installable 
and accessible library, GDPLib. We show two examples of these models and how the 
flexibility of modeling given by Pyomo.GDP allows for efficient solutions to these 
complex optimization problems. Finally, we show an example of integrating these tools 
with the framework IDAES PSE, leading to optimal process synthesis and conceptual 
design with advanced multi-scale PSE modeling systems. 

Keywords: superstructure optimization; generalized disjunctive programming; MINLP. 

1. Introduction 
Process superstructure optimization is a challenging problem within Process Systems 
Engineering (PSE). Using a mathematical programming formulation, the problem of 
superstructure optimization can be written as a set of constraints to be satisfied by 
selecting the values of variables while optimizing an objective function. These variables 
can be continuous, and represent properties of a process (e.g., temperature, pressure), or 
discrete, representing discrete choices (e.g., selecting a piece of given equipment). The 
constraints include the superstructure model equations (e.g., mass and energy balances, 
thermodynamic equations), and the objective function is a goal to reach by selecting the 
decision variables (e.g., maximize profit, minimize environmental impact). It is 
particularly challenging to obtain the globally optimal solutions to problems whose 
nonlinear constraints describe a non-convex region (Kronqvist et al., 2019). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50214-1 
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This paper covers two different modeling paradigms for such superstructure optimization 
problems, Mixed-Integer Nonlinear Programming (MINLP), which relies only on 
algebraic functions of discrete and continuous variables, and Generalized Disjunctive 
Programming (GDP) that considers disjunctions, logical variables, and constraints for 
these problems. After mentioning the different solution methods for each paradigm, we 
present a set of examples of process superstructure optimization problems that have been 
modeled and solved using each of these approaches. The modeling has been done through 
the open-source software Pyomo.GDP (Chen et al., 2021), and made available as part of 
the problem library GDPLib. Finally, we demonstrate how these modeling tools and 
solution methods can be applied to a more intricate model created through the advanced 
modeling framework IDAES PSE (Miller et al., 2018). 

2. Mixed-Integer Nonlinear Programming 
The optimization models obtained from process superstructures have traditionally been 
written in algebraic equations and variables with both continuous and discrete domains. 
Mathematical optimization models with these characteristics are known as Mixed-Integer 
Nonlinear Programs (MINLP). The solution methods for this challenging type of 
optimization problem usually rely on the separate treatment of the two sources of 
complexity of the problem, the nonlinearity of the constraints and the integer variables' 
discreteness. Among the best-known deterministic solution strategies for these problems, 
we can count the Branch-and-Bound (BB) method and decomposition methods. 

Both methods rely on finding bounds to the optimal objective function value through 
relaxations and restrictions of the original problem. A relaxation accounts for a different 
optimization problem whose feasible region is larger than the one of the original problem, 
whose solution is an optimistic bound of the optimal solution. Among these relaxations, 
the usual ones are continuous relaxations, where the discreteness of the integer variables 
is ignored, yielding a continuous problem, and linear relaxations, where the nonlinearities 
of the problems are replaced by linear feasible region that encompasses the feasible region 
of the original problem. These relaxations are not unique, and the successful solution of 
these problems can strongly depend on how close the relaxation approximates the original 
feasible region, known as its tightness, and other factors such as its size. The restriction 
of the original problem usually appears when fixing the value of some of the discrete 
variables, leading to a continuous problem in a lower-dimensional space. In the case that 
the original problem's objective is minimized, the optimal solution of a relaxation yields 
a lower bound of the optimal objective function, while any feasible solution to the 
problem, usually found through a partial or total fixing of the discrete variables and an 
optimization on the remaining variables, leads to an upper bound of the optimal solution. 

In the BB method, starting from the solution of the continuous relaxation of the original 
MINLP, one systematically enforces values on the discrete variables to explore 
increasingly smaller and restricted subproblems. The solution of specific subproblems 
allows the derivation of extra inequalities that can help better approximate the original 
problem's feasible region, improving the quality of the lower bound obtained by solving 
it. Although effort has been made to derive strong inequalities, or cuts, for the nonlinear 
case and this can be generalized for branching on continuous variables, the BB method is 
better known for its highly successful implementations in modern solvers when 
addressing Mixed-Integer Linear Programming (MILP). 
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The decomposition methods for MINLP usually rely on MILP relaxations, which can be 
efficiently solved through BB, and continuous subproblems. As with BB, the MILP 
relaxations can be improved iteratively using cuts derived from the solution of the 
continuous restrictions. Eventually, if the relaxations are rigorous and each subproblem 
is solved optimally, either the decomposition methods or the BB methods will find the 
optimal solution in a finite number of steps/iterations. These two algorithms are the main 
ingredients of most known MINLP solvers (Kronqvist et al., 2019). 

Considering this, a solver for MINLP is usually a meta-solver, where the solution of the 
original problem relies on other solvers to tackle subproblems. This observation has led 
us to develop the open-source Mixed-Integer Nonlinear Decomposition Toolbox in 
Pyomo - MindtPy (Bernal et al., 2018). This solver uses the interface that the Python-
based algebraic modeling language Pyomo (Hart et al., 2017) has to solvers of continuous 
problems and MILP solvers and provides a flexible implementation of several of the 
decomposition methods known in the literature, such as the Outer-Approximation 
method. Furthermore, it includes implementations of heuristic techniques and 
enhancements such as single-tree solution methods and regularization-based algorithms. 
Furthermore, the derivation of strong relaxations to nonlinear terms is vital to solving 
these problems efficiently. We have also developed the open-source software CORAMIN 
(Bynum et al., 2019), which generates easily refinable relaxations of a Pyomo model's 
nonlinear constraints. These relaxations can be integrated within MINLP algorithms. 

The convergence to the optimal solution of the MINLP is guaranteed when the relaxations 
are valid and can be further refined after each subsequent iteration and when the 
continuous subproblems are guaranteed to be solved to global optimality. This is easier 
to achieve when assuming well-behaved nonlinearities, e.g., convexity in the nonlinear 
functions. In this case, the linear relaxation can be found through the 1st-order Taylor 
expansions of the nonlinear functions in a method known as the Outer-Approximation 
(OA). When the convexity assumption is not satisfied, disciplined relaxations can still be 
derived as implemented in CORAMIN or through generalized McCormick relaxations 
(Scott et al., 2011) available in the software MC++. These allow our methods to solve 
even non-convex MINLP problems using a Global Outer-Approximation (GOA). 

3. Generalized Disjunctive Programming 
A more natural framework to represent superstructure optimization problems is 
Generalized Disjunctive Programming (GDP), which extends the modeling capabilities 
of traditional mathematical programming by incorporating logic variables involved in 
propositions and disjunctions. In general, a GDP problem can be written as 

min
𝐱𝐱,𝐘𝐘,𝐳𝐳

f(𝐱𝐱, 𝐳𝐳)

s. t. 𝐠𝐠(𝐱𝐱, 𝐳𝐳) ≤ 0;  Ω(𝐘𝐘) = True

∨i∈Dk �
Yik

𝐫𝐫ik(𝐱𝐱, 𝐳𝐳) ≤ 0� ∀ k ∈ K

𝐱𝐱 ∈ X ⊆ ℝnx ;𝐘𝐘 ∈ {True, False}ny; 𝐳𝐳 ∈ Z ⊆ ℤnz

  (1) 

where the continuous variables are denoted by the nx-dimensional vector 𝐱𝐱 within a 
bounded set X, the discrete variables are denoted by the nz-dimensional vector 𝐳𝐳 within a 
bounded set Z, the function f:ℝnx × ℝnz → ℝ is the objective function, and the vector 
function 𝐠𝐠:ℝnx × ℝnz → ℝng  denotes the global constraints. Besides, the logical 
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structure of the problem includes 𝐘𝐘 as a ny-dimensional vector of logic variables, where 
for each disjunct i ∈ Dk of each disjunction k ∈ K the set of inequalities 𝐫𝐫ik:ℝnx × ℝnz →
ℝnik  are enforced by the individual logic variables Yik, and Ω: {True, False}ny →
{True, False} that encodes logical relationships among the logical variables. Notice that 
if the disjunctions set K is empty, Eq.(1) represents an MINLP problem. 

The modeling framework of GDP allows for a more intuitive representation of the 
problems arising from superstructure optimization. The structure of such a representation 
can be exploited by a tailored solution algorithm to solve these problems more efficiently. 
First, reformulations can convert a GDP into MINLP, such as the Big-M and the Hull 
reformulations. These reformulations include all the constraints in the GDP and enforce 
or make trivially satisfiable constraints depending on the values of newly introduced 
binary variables yik ∈ {0,1} ↔ Yik ∈ {True, False}. The capability of writing a model 
directly as a GDP is included in the open-source code Pyomo.GDP (Chen et al., 2021). 

We present two algorithms that generalize ideas from MINLP for GDP: the Logic-based 
Branch-and-Bound (LBB) and the Logic-based Outer-Approximation (LOA) algorithms. 
Like their MINLP counterpart, these algorithms have a search strategy for the values of 
the discrete variables, including the logic variables 𝐘𝐘, but consider the logical constraint 
Ω, pruning it. On the other hand, by leveraging the existing structure provided by the 
disjunctive formulation of the GDP, some algorithms selectively remove constraints that 
are not involved in each combination of the logical variables while exploring that 
combination. This approach is beneficial given the numerical issues that can appear from 
evaluating nonlinear constraints on vanishing variables, i.e., "zero-flow". 

Similar to the MINLP case, if the subproblems are solved to optimality, for example, 
through the global solvers mentioned earlier, the relaxations of the nonlinear constraints 
are built rigorously, using MC++ or tailored relaxations as those in CORAMIN, these 
algorithms can solve non-convex problems to global optimality. We call this method 
Global Logic-based Outer Approximation (GLOA). These algorithms are implemented 
in the open-source GDP solver GDPOpt (Chen et al., 2021). 

4. GDPLib, the library for GDP models 
Finally, we highlight the usability of our framework and solution methods by solving 
different process superstructure problems. These problems have been previously 
presented in the literature, mainly as MINLPs. We included several instances as 
Pyomo.GDP problems in the repository github.com/grossmann-group/gdplib. 

The library currently contains nine different examples of process or unit superstructure 
optimization, including a Methanol production process (Türkay & Grossmann, 1996), a 
Hydrodealkylation (HDA) process to produce Toluene (Kocis & Grossmann, 1989), a 
biofuel processing network, a heat exchanger network evaluating modular process design, 
a plant capacity expansion model, a synthesis gas production plant from methane, a 
Kaibel distillation column, and a tray distillation column design. Several examples 
include a few test cases leading to 25 GDP problems related to PSE. These instances 
range from nx ∈[6,31968], ny ∈[2,516], nz ∈[0,5040], ng ∈[30,14927]. 

We show two cases with more detail related to process superstructures. The first detailed 
case for the process superstructure optimization is the profit maximization of a methanol 
production process (Türkay & Grossmann, 1996). Mass balances define the global 
constraints of the problem, and there are 4 disjunctions in this problem as seen in Fig.(1a), 
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one associated with the feed choice, another one choosing between a high-cost and high-
conversion reactor or a low-cost and low-conversion reactor, and having a single or two-
stage compression for the feed and the recycle. This problem involves 285 variables, of 
which 8 are Boolean and the remaining continuous. The total number of configurations 
is 24 but GDPOpt using LOA requires only two iterations to find the optimal solution. 

Figure 1. Flowsheet superstructure for (a) Methanol production and (b) Hydrodealkylation of 
Toluene. Alternatives highlighted correspond to optimal solutions. 

The second example is the profit maximization of the Toluene production through the 
HDA process (Kocis & Grossmann, 1989). This superstructure, shown in Fig.(1b), 
considers 6 disjunctions: the choice to pretreat the hydrogen feed, whether to use an 
adiabatic or isothermal reactor, whether to purge or treat a methane stream for it to be 
recycled, considering the installation of an absorber or recycle a vapor stream, using a 
stabilizing column or a flash to remove extra methane from the process, and whether to 
use a distillation column to separate Toluene or a flash to obtain Diphenyl as a byproduct. 
There are 733 variables, with 12 being Boolean and the rest continuous, and 728 
constraints, of which 12 are nonlinear. The MINLP transformation of this model is quite 
challenging for solvers, and both ANTIGONE and BARON fail to solve this problem to 
global optimality. Through LOA, GDPOpt was able to find the globally optimal solution, 
verified via enumeration. When using IPOPT and Gurobi as subsolvers, LOA converged 
to that solution in 17 iterations and 1 minute of computation in a standard desktop. 

We highlight that the modeling paradigms and algorithms presented here, given their 
roots in Pyomo, can be used within more complicated process modeling alternatives. That 
is the case of the next-generation multi-scale PSE framework IDAES. By being based on 
Python and Pyomo, this framework leads to supporting our implementations natively. 
This results in the potential use of detailed process models, including property and 
thermodynamic packages and a disjunctive framework. We do this through the Methanol 
production example, which has been reimplemented as an IDAES PSE model and is 
available in GDPLib. The integration with IDAES PSE allows considering rigorous 
thermodynamic properties, resulting in more challenging optimization problems. 

5. Conclusions 
This paper presents two modeling paradigms for process superstructure optimization 
problems: Mixed-Integer Nonlinear Programming (MINLP) and Generalized Disjunctive 
Programming (GDP). MINLP is traditionally used and for which powerful solvers have 
been developed. On the other hand, GDP can be not only transformed into MINLP 
through different reformulations, leading to a difference in solution performance but can 
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also be solved directly by algorithms that take advantage of the disjunctive and logical 
structure encoded in it. We have developed open-source software tools for such models 
to be implemented, as is the case for Pyomo.GDP, and solved, which is the case for 
MindtPy and GDPOpt, within the algebraic modeling language in Python, Pyomo. 

Moreover, this paper presents process superstructure optimization problems that have 
been implemented using GDP. These Python implementations are available in the 
repository GDPLib and are freely available and installable through the package manager 
pip (pip install gdplib). We show two examples of flowsheet superstructure optimization, 
namely Methanol and Toluene production processes. Finally, we include the Methanol 
production process case implemented using the IDAES PSE framework. This example 
highlights the applicability of this paper's modeling and algorithmic ideas to an advanced 
process modeling framework, enabling conceptual process design through superstructure 
optimization integrated with rigorous property models and unit operations blocks. 

We hope this library leads process designers to adopt these modeling paradigms and 
algorithm developers to use these examples as a testbed to improve solution methods for 
these optimization problems. We envision more models becoming part of GDPLib, 
leading to a richer resource for the process design and optimization communities. 
Disclaimer: Sandia National Laboratories is a multimission laboratory managed and operated by 
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of 
Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security 
Administration under contract DE-NA-0003525. This paper describes objective technical results 
and analysis. Any subjective views or opinions that might be expressed in the paper do not 
necessarily represent the views of the U.S. Department of Energy or the United States Government. 

References 
Bernal, D. E., Chen, Q., Gong, F., & Grossmann, I. E. (2018). Mixed-Integer Nonlinear 
Decomposition Toolbox for Pyomo (MindtPy). In Computer Aided Chemical Engineering. 
Bynum, M., Castillo, A., Laird, C., Watson, J.-P., & USDOE. (2019). Coramin v. 0.1 Beta, Version 
v. 0.1. 
Chen, Q., Johnson, E. S., Bernal, D. E., Valentin, R., Kale, S., Bates, J., Siirola, J. D., & Grossmann, 
I. E. (2021). Pyomo. GDP: an ecosystem for logic based modeling and optimization development. 
Optimization and Engineering, 1–36. 
Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hackebeil, G. A., Nicholson, B. L., 
Siirola, J. D., & others. (2017). Pyomo-optimization modeling in Python (Vol. 67). Springer. 
Kocis, G. R., & Grossmann, I. E. (1989). Computational experience with dicopt solving MINLP 
problems in process systems engineering. Computers and Chemical Engineering, 13(3), 307–315. 
Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019). A review and comparison of 
solvers for convex MINLP. Optimization and Engineering, 1–59. 
Miller, D. C., Siirola, J. D., Agarwal, D., Burgard, A. P., Lee, A., Eslick, J. C., Nicholson, B., Laird, 
C., Biegler, L. T., Bhattacharyya, D., Sahinidis, N. V., Grossmann, I. E., Gounaris, C. E., & Gunter, 
D. (2018). Next Generation Multi-Scale Process Systems Engineering Framework. In Computer 
Aided Chemical Engineering. 
Scott, J. K., Stuber, M. D., & Barton, P. I. (2011). Generalized McCormick relaxations. Journal of 
Global Optimization. 
Türkay, M., & Grossmann, I. E. (1996). Logic-based MINLP algorithms for the optimal synthesis 
of process networks. Computers & Chemical Engineering, 20(8), 959–978. 

D. E. Bernal et al.



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

 

Designing Novel Structured Packings by Topology 

Optimization and Additive Manufacturing 

Andreas Langea*, Georg Fiega 

aHamburg University of Technology, Am Schwarzenberg-Campus 4, 21073 Hamburg, 

Germany 

a-lange@tuhh.de 

Abstract 

Additive manufacturing (AM) reveals a completely new freedom in design and 

development of structured packings for thermal separation columns. This potential might 

lead to the next generation of high-performance packings, but it can only be fully used if 

novel design methods are developed. One of these innovative design methods is presented 

in this contribution. A topology optimization approach based on the coupling of a 

stochastic optimization algorithm and computational fluid dynamics (CFD) simulations 

is applied to generatively design structured packings. By its application, novel structured 

packing shapes may be found. Binary elements, which are either defined as packing 

material or as empty elements, are considered as design variables in a defined design 

space. A multi-objective genetic algorithm with tailored process- and manufacturing-

related constraints is used to identify the best packing material distribution within the 

column shell, revealing minimized pressure drop and maximized surface area. In this 

paper, the optimization tool and CFD model are presented before selected results of an 

exemplary topology optimization study are given. The objective of this study is the 

development of a packing element for a lab scale distillation column. The promising 

results prove the viability of the design method, showing that it is possible to generatively 

design structured packings algorithm-based and without any well-defined initial packing 

geometries as starting point.  

Keywords: Generative Design; Topology Optimization; Structured Packings; Additive 

Manufacturing 

1. Introduction 

Structured packings are column internals, which are widely applied in thermal separation 

apparatuses like distillation columns to intensify the mass transfer between the present 

fluid phases. Besides maximized separation efficiency, minimal pressure drop and 

maximal capacity are essential parameters in leading to a successful separation process. 

Improvements in these key parameters directly affect the performance of the entire 

column, resulting in a more efficient and sustainable separation process.  

The three highlighted performance parameters are directly correlated to the flow 

behaviour of the fluid phases, which is in turn strongly affected by the specific shape of 

the structured packing. For this reason, the shape of structured packings has been of 

research interest for decades (Spiegel and Duss, 2014), but previous developments were 

restricted by the limitations of conventional manufacturing methods. Additive 

manufacturing as a class of innovative manufacturing processes makes it now possible to 

realize novel packing shapes, which are not feasible to manufacture by conventional 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50215-3 
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methods due to the high complexity of the shapes. Accordingly, a new freedom in design 

is available, which can result in the next generation of high-performance structured 

packings using AM as the key technology. However, the main challenge is the 

identification of novel packing shapes in a systematic and targeted way. Therefore, 

advanced design methods based on mathematical optimization techniques and tailored 

computational tools for the targeted identification and systematic development of 

structured packings are essential. These design methods and tools need to use the potential 

of the high freedom in design, while simultaneously considering the specific constraints 

of both the additive manufacturing process and thermal separation applications.  

In general, three different structural optimization approaches, classified as sizing 

(Neukäufer et al., 2019), shape optimization (Lange and Fieg, 2020; A. Courtais et al., 

2020), or topology optimization (Rosinha et al., 2015) approaches can be applied to 

structurally optimize or identify novel packings. In the following, a method for the 

generative and hence algorithm-based design of structured packings is presented. Using 

a topology optimization approach, a multi-objective genetic algorithm is applied to 

develop novel structured packings with minimized pressure drop and maximized surface 

area. Rigorous CFD simulations are conducted to evaluate the key performance 

parameters of the packings and determine the values of the objectives. To present the 

design method, the optimization problem is defined and the topology optimization 

approach is presented in the next chapter. Then, first results of an optimization study are 

shown in chapter 3.  

2. Generative Packing Design 

For the design of structured packings several objectives and constraints need to be 

considered to meet the specific demands of the separation task as well as the additive 

manufacturing process. The minimization of the pressure drop across the packing as well 

as the maximization of the separation efficiency are essential objectives in packing 

design, especially in the case of vacuum distillation applications. This results in a complex 

constrained multi-objective optimization problem. To solve this task and to targeted 

identify novel structured packing shapes, a topology optimization algorithm and a 

rigorous analysis model for the evaluation of the values of the objective functions are 

needed. In the following the optimization problem is formulated before focussing on the 

optimization tool and the parametrisation of an exemplary topology optimization study.  

2.1. Optimization Problem Formulation 

For the formulation of the optimization problem the design variables and the design space 

need to be defined first, before focussing on the objective functions. The design space is 

defined by the given separation column diameter and the defined height of a single 

packing element. The resulting volume is discretized by a finite number of volume 

elements, where each element can either act as a packing material element or an empty 

element. The entirety of the material elements builds the structured packing, whereas fluid 

can flow through the empty elements. This behaviour is described by a binary code, 

defining a material element as a one and a fluid element as a zero. Then, each packing 

can be described by a matrix E of binary elements, where n describes the number of binary 

elements eijk in the direction of the cartesian coordinates of x, y and z. In turn, the matrix 

E can be reduced to a vector xE. 
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E: (1, … , nx) × (1, … , ny) × (1, … , nz) → S      (i, j, k) ↦ eijk     eijk ϵ [0,1] (1) 

xEi+(j−1)⋅ny+(k−1)⋅nx⋅ny
= eijk (2) 

The resulting matrix E would describe a packing element with a squared cross-sectional 

area. Due to the fact that separation columns have a circular cross-sectional area, the 

coordinates of the packing are projected on the unit circle.   

xCirc = x ⋅ √1 −
y2

2
, yCirc = y ⋅ √1 −

x2

2
 (3) 

Based on the vector xE of binary elements as design variables, the objective function is 

defined. Besides a minimum pressure drop across the packing, the separation efficiency 

should be maximized. Assuming perfect wetting of the packing surface, perfect mixing 

of the present phases, an infinitesimal small liquid film thickness on the packing and no 

dead volumes, the geometric surface area is equal to the interfacial mass transfer area. In 

this case, the separation efficiency of the packing is a function of the geometric surface 

area. Also, in the assumed case the multiphase system can be simplified as a first 

approximation to a single-phase vapour system. Accordingly, the objective is the 

minimization of the dry pressure drop ΔpP,d and the reciprocal of the geometric surface 

area AP of the packing. 

f(xE,Opt) = min
xE

(ΔpP,d,
1

AP

) (4) 

The geometric surface area AP of the packing is defined as the sum of all faces of the 

material elements. These faces are either aligned parallelly to the main flow direction of 

the vapour phase or orthogonally directed to the main flow. It can be assumed, that the 

impact of the latter on the pressure drop is higher than the former. To consider the effect 

of the different face orientation of every single material element on the dry pressure drop, 

the objective function is complemented by a weighting factor β. This constant can take 

values between 0 and 1. The relevant surface area is then defined as the sum of the parallel 

AP,par and orthogonal AP,orth surface area weighted by β and one minus β. Accordingly, 

the objective function reads as follows. 

f(xE,Opt) = min
xE

(ΔpP,d,
1

β ⋅ AP,par + (1 − β) ⋅ AP,orth

) ;        0 ≤ β ≤ 1 (5) 

After defining the design space and the objective function of the optimization problem, 

the basic details of the optimization tool will be presented in the following.  

2.2. Optimization Tool  

The optimization tool is a combination of a developed modular control program 

implemented in MATLAB, using the PlatEMO platform (Tian et al., 2017) and 

OpenFOAM. The coupling between the optimization platform and the analysis model 

implemented in OpenFOAM is done by the tessellated packing data in STL-data format 

via the control program. The stochastic multi-objective genetic Strength Pareto 
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Evolutionary Algorithm 2 (SPEA2) is used as optimization algorithm, which was 

developed by Zitzler et al. (2001). As a genetic algorithm it mimics the evolutional theory 

by evaluating a fitness function and using the operators mutation, crossover and selection 

to generate a new generation of individuals. Also, process and manufacturing related 

constraints are considered. Every material element needs to be connected to another 

material element or to the boundaries of the design space, because unconnected material 

cannot be manufactured. Also, a minimum number of free flow channels needs to be 

available, because otherwise the mass transfer would be near zero. If these constraints are 

violated, the individual of the generation is punished.  

2.3. Analysis Model  

To predict the stationary flow behaviour of air flowing through the packing and to 

evaluate the resulting pressure drop over the created packings, rigorous CFD simulations 

are necessary. A laminar single-phase air flow at ambient conditions passes the packing 

from the lower to the upper end. Simplified Navier-Stokes equations in a finite-volume 

method implementation are solved using the SIMPLE-algorithm. The fluid is considered 

as incompressible and isothermal. No-slip condition at the surface of the packing and the 

column wall are assumed. A constant velocity at the inlet of the packing which correlates 

to a certain gas load or F-factor is defined and at the outlet a constant pressure is assumed.  

The pressure drop is evaluated over the inlet and outlet of the packing as an area-averaged 

mean value. The total surface area of the packing as well as the surface area parallel and 

orthogonal to the main flow direction are also determined. OpenFOAM is used to conduct 

pre- and post-processing and for solving the model equations. Due to the high number of 

necessary CFD simulations for each evaluated generation, the simulations are performed 

at the North-German Supercomputing Alliance (HLRN). 

2.4. Topology Optimization Study 

In an exemplary optimization study, a packing for a lab scale distillation column should 

be generatively designed by the presented topology optimization approach. The column 

diameter is 54 mm and the height of a single packing element is 100 mm. The edge length 

of the quadratic material elements is chosen to 2.3 mm, assuming 23 elements in x- and 

y-direction and 43 material elements in z-direction. A preferred porosity of 0.8 for the 

randomly created initial generation is defined. The population size is 300 individuals per 

generation and the weighting factor β is 1/3. All CFD simulations are conducted at an 

F-factor at the inlet of the packing of 0.5 √Pa. In the following chapter, the results of the 

topology optimization study are presented. 

3. Results 

Selected results of the topology optimization study are shown in Figure 1 by plotting the 

specific pressure drop against the specific surface area of the evaluated packings for the 

three selected generations 0, 9, and 19. Having a look at the initial generation, the 

diversity of the individuals is quite low, due to the defined preferred packing porosity. Up 

to generation 20, the range of specific surface areas of the individuals rises up to a range 

of 370 m2/m3 to almost 420 m2/m3. Hence, the diversity also rises significantly. From 

generation to generation, the front is moving constantly into the lower right direction 
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showing a good convergence behaviour. The best compromise individual regarding dry 

pressure drop and specific surface area reveals a specific dry pressure drop of 

0.546 mbar/m and a specific surface area of 371.3 m2/m3. The appearance of this packing 

is shown in Figure 2 as STL-data in the side and top view. It becomes clear, that as 

expected, the packing consists of quite large material elements. Repetitive or regular parts 

are not visible yet. Hence, the optimization run needs to be continued. However, it can be 

stated that a packing element for the lab scale distillation column is successfully 

generatively designed, algorithm-based without any starting geometry.  

In further studies, the edge length of the material elements will be lowered. Also, 

optimization studies for the development of tailored packings for specific separation tasks 

depending on the assumed boundary conditions and the selection procedure of the 

packings will be performed. 

4. Conclusions 

In this paper, an innovative method for the generative design of structured packings as a 

tool for the systematic identification of novel structured packing shapes was presented. 

The method is based on a topology optimization approach using the multi-objective 

genetic algorithm SPEA2 in combination with CFD simulations for the evaluation of the 

packings. A first optimization study for the development of a packing element for a lab 

scale distillation column was presented. First results show that it is possible to 

successfully design structured packings generatively without a well-performing packing 

as a starting point.    

Figure 1: Specific dry pressure drop plotted against the specific surface area of the evaluated 

packings of the selected generations 0, 9 and 19 
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(a) (b) 

Figure 2: STL-data of the packing element which shows the best compromise between pressure 

drop and surface area of generation 19 shown in (a) side view and (b) top view 
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Abstract 

 Treating the explosive waste using fluidized bed reactor, the design and operating 

conditions have highly effect to emission of pollutants (e.g. nitrogen oxides). Although 

it is possible to reduce the amount of pollutants through additional unit processes and 

extreme design and operating conditions, there are many practical difficulties because it 

causes an increase in cost. In addition, because of the explosive properties of waste, 

designing the process through actual experiments has many risks. Therefore, 

computational fluid dynamics (CFD) is used to simulate the reactor with high accuracy 

and to observe the internal temperature characteristics. While CFD shows high accuracy, 

it is difficult to obtain sufficient data for optimization because it requires a long 

computation time. Bayesian optimization repeats surrogate model optimization and 

infill criteria optimization and adaptively constructs the surrogate model. It shows good 

performance for time-consuming or expensive experiments. This study is to identify the 

design and operating conditions that minimize nitrogen oxides and cost through multi-

objective Bayesian optimization. Multi-objective optimization problems generally do 

not have a single global optimization solution, but multiple solutions. This set of 

solutions forms a pareto front, which derives various solutions and gives decision-

makers many options. 

Keywords: explosive waste, nitrogen oxides, Bayesian optimization, multi-objective 

1. Introduction 

Explosive waste is treated via fluidized bed reactors. In this process, major air 

pollutant(e.g. nitrogen oxides, NOx) such as nitrogen oxides are generated. Taking 

environmental benefits through extremely high costs may present impractical solution. 
The fluidized bed reactor has the advantage of being easy to control the temperature of 

the reactor, so it was judged to be suitable for the incineration process of explosive 

waste. In addition, a hot spot with a rapid increase in temperature causes a significant 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50216-5 
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amount of nitrogen oxide to occur instantaneously, and computational fluid dynamics 

was used to simulate this phenomenon with high accuracy. It aims to minimize the 

emission of nitrogen oxides and the cost of the process by optimizing the design of the 

reactor as well as the operating conditions of the incineration process. In the case of 

changing the design of the reactor, it takes a lot of time to set up the mesh of the system 

a new, so there are many practical difficulties in optimization. The surrogate model is 

widely used in the engineering field as a method of simulating the underlying function 

inherent in an actual system with high accuracy through data. However, the surrogate 

model, whose accuracy is determined by the quality and quantity of data, has many 

difficulties in the data collection stage when sufficient data are not secured. Therefore, 

the importance of the design of experiment is further emphasized in this case. Adaptive 

sampling is a suitable method when it is difficult to obtain high-quality data due to cost 

and time issues. Bayesian optimization is a method that simultaneously performs 

adaptive design of experiment and optimization. In the case of multi-objective 

optimization that minimizes NOx emission and cost at the same time, the next 

experiment point is allocated through optimization of filling criteria, and a pareto front 

composed of a set of points that maximizes (or minimizes) the value of the Gaussian 

process-based surrogate model is drawn. Through this, several optimal solutions can be 

obtained, and it can help a lot in decision-making in real-world problem. 

2. Mathematical model : Fluidized Bed Reactor 

2.1. Governing equation 

The mass and momentum transport phenomenon is based on Eq. (1) (mass transport) 

and Eq. (2) (momentum transport). 
𝜕𝜃𝑓𝜌𝑓

𝜕𝑡
+  ∇  ∙ (𝜃𝑓𝜌𝑓𝒖𝑓)  =  𝛿𝑚̇𝑝 

(1) 

𝜕(𝜃𝑓𝜌𝑓𝒖𝑓)

𝜕𝑡
+  ∇  ∙ (𝜃𝑓𝜌𝑓𝒖𝑓𝒖𝑓)  =  −∇𝑝 + 𝑭 +  𝜃𝑓𝜌𝑓𝒈 + ∇  ∙ (𝜃𝑓𝝉𝑓)  

(2) 

In case of Newtonian fluid, the stress is calculated by Eq. (3) and the acceleration of the 

particle is calculated by Eq. (4). 

𝜏𝑓,𝑖𝑗  = 2𝜇𝑆𝑖𝑗 − 
2

3
𝜇𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘

 (3) 

𝑑𝒖𝑝

𝑑𝑡
=  𝐷𝑝(𝒖𝑓 − 𝒖𝑝) −  

1

𝜌𝑝

∇𝑝 + 𝒈 −  
1

𝜃𝑝𝜌𝑝

∇𝜏𝑝 +  
𝒖̅𝑝 − 𝒖𝑝

𝜏𝐷

 (4) 

The drag function 𝐷𝑝 is expressed by Eq. (6) and it is calculated using drag coefficient 

𝐶𝑑(Eq. (7))and the Reynold number 𝑅𝑒.  

𝐷𝑝 =  
3

8
𝐶𝑑

𝜌𝑓|𝒖𝑓 −  𝒖𝑝|

𝜌𝑝𝑟𝑝

, 𝑅𝑒 =  
2𝜌𝑓𝑟𝑝|𝒖𝑓 − 𝒖𝑝|

𝜇𝑓

 
(5) 

To calculate the drag coefficient, the Wen-Yu/Ergun blend model that combines the 

Wen-Yu model and the Ergun model is used and the specific information about these 

models is explained in (C. Wen et al., S. Ergun et al.). Several gas phase pollutants such 
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as NOx and CO occur through a complex mechanism consisting of 131 reactions and a 

total of 25 components(N. E. Ermolin et al, S. Cho et al(2020).). 

2.2. Cost estimation 

In order to adjust the temperature of the air flowing into the fluidized bed reactor, a 

compressor and a heater are additionally needed in front of the fluidized bed reactor. 

The cost according to the operating conditions of the heater and the compressor and the 

gas mixture (oxygen/nitrogen) was considered. Each compressor is an isentropic type, 

with isentropic efficiency of 0.72 and mechanical efficiency of 1.0. It operates on 

electricity and is 0.0775 $/kWh. The heater is a fired heater operated at a cost of 

0.0153$/kWh. The cost is calculated via Aspen Plus and the specific information about 

cost estimation is described in (S. Cho et al(2021).) 

3. Methodology : Multi-objective Bayesian optimization 

3.1. Gaussian process 

The Gaussian Process(GP) is a Bayesian regression approach that predicts a system 

value by quantifying uncertainty of data. Let  𝑥𝑛 = {𝑥𝑖|𝑖 = 1, 2, ⋯ , 𝑛} be the input of 

the training set, and 𝑦𝑛 = {𝑦𝑖|𝑖 = 1, 2, ⋯ , 𝑛} the output of the training set. If we do not 

know the Bayesian statistics of a certain system, it is assumed that 𝑥𝑛 , and 𝑦𝑛  are 

randomly selected from a specific prior probability distribution. GP regression is a non-

parametric approach that assumes the prior probability distribution as a multivariate 

normal distribution (Ν), and the mean (μ) and variance (=Kernel, Κ) are expressed as 

functions. Therefore, it is possible to calculate the distribution 𝑝(ℱ) of the function ℱ 

through GP. A detailed description of GP is described in (Rasmussen and Williams). 

𝑝(ℱ) = 𝛮(𝜇(𝑥), 𝛫(𝑥, 𝑥′) ) (8) 

3.2 Multi-objective Bayesian optimization : 𝑞-Expected Hypervolume Improvement 

Multi-objective optimization does not have only one global optimum but forms a set of 

several global optimums, which is called a pareto front. Bayesian optimization consists 

of two stages, and it proceeds while optimizing a certain function in each stage. First, a 

surrogate model is generated by quantifying uncertainty through the GP model. The 

maximum value of the objective function is implemented through GP optimization. 

 

Figure 1. Multi-objective Bayesian optimization loop 

Fluidized Bed Reactor
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The key to Bayesian optimization is to know the next design of experiment. The Nadir 

point (=Reference point) gives information about the range of objectives in the Pareto 

front stage in multi-objective optimization (Fig.2.(b)). These are the worst objective 

values determined by the decision maker, and since it is difficult to determine compared 

to the ideal point (=Utopia), it must be decided by domain knowledge (Kalyanmoy Deb 

et al). 

Optimize the infill criteria that determine the next design of experiment and receive 

feedback on the next experiment with the most information. q-Expected Hypervolume 

Improvement (q-EHVI) (Samuel Daulton et al) is shown in Fig. 2. Find the experiments 

that maximizes the hypervolume in the initial objective function scatter (Fig.2.(a)) 

constructed as shown in Fig.2.(c) and repeat the optimization loop as shown in Fig.1. to 

maximize the hypervolume. As a result, when a part of the pareto front appears as 

shown in Fig.2.(e), the loop is terminated. 

The number of next experiments has a trade-off between the quality of the data and the 

overall research time and cost. As the number increases, the research process time 

decreases, but the quality of the data decreases, so more experiments may be required 

than the optimal design of experiment. On the other hand, if the number of experiments 

is reduced, the sampling time increases, but the cost can ultimately be reduced because 

the data quality is good. Therefore, one or two experiment(s) is preferred. 

 

Figure 2. Sequence of q-EHVI algorithm and pareto front 

4. Results 

The reference point was selected based on domain knowledge among the factors that 

have a huge influence on the quality of the solution set identified through multi-

objective Bayesian optimization. Based on Republic of Korea's air pollutant emission 

standard of 90 ppm, 100 ppm was selected with a margin of 10 ppm, and the cost 

standard was assumed to be 8,000,000 dollars. 100 initial data sets for GP model 

generation were selected, and the distribution of two objective values in the initial 

dataset is shown in Fig. 3. The reactor was a cylinder-type fluidized bed reactor, and 3 

variables related to reactor design were selected and 7 variables related to operating 

were selected (Table 1.). In addition, although the objective is to minimize both NOx 

emission and cost, it has been transformed into a maximization problem by applying a 

negative sign for the efficient application of the optimization algorithm. 



  

 

Figure 3. Reference point and Pareto front region 

 

Through iteration of the Bayesian optimization loop, the maximum value of each 

objective function value farther from the reference point can be obtained compared to 

the initial dataset, and it shows a convex shape. Also, except for some points, a solution 

set is obtained within the preset reference point range. 

 
Category Parameter (Unit) Lower bound Upper bound 

Operating 

parameter 

Inlet gas velocity(m/s) 1 3.5 

Temperature(K) 400 800 

Pressure(bar) 2 4 

Particle radius(mm) 2 4 

Particle mass ratio 0.25 0.75 

Filled sand ratio 0.1 0.7 

O2 composition ratio in inlet gas 0.1 0.8 

Design 

parameter 

Fluidized bed diameter(m) 0.2 1 

Fluidized bed height(m) 1 5 

Sparger area/Fluidized bed cross sectional area(m2) 0.1 4 

Table 1. Operating and Design parameters 

The objective function values for 40 dataset extracted through Bayesian optimization 

excluding the initial dataset are shown in Fig. 4. In order to make the range of the two 

objective functions the same, it was converted through a standard score (Z score). Most 

of the two objective function values show a trade-off relationship. However, in the 31st 

experiment (Red mark), it can be seen that both values are high. This can be seen as a 

stage of exploration to reduce the uncertainty of the surrogate model rather than 

performing exploitation that maximizes the values of the two objective functions. Also, 

for various solution sets, the particle radius is mostly calculated as the lower bound of 2 

mm. That is, when minimizing both cost and NOx emission, the smaller the particles of 

explosive waste, the better. 

  Multi-Objective Bayesian Optimization for Design and Operating of 
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Figure 4. Trade-off between cost and NOx emission 

5. Conclusions 

Here, we optimize the amount of NOx emission and the cost of operation and design 

simultaneously to identify the practical reactor design and operating conditions. When 

the design of the reactor is changed, it is necessary to reconfigure and execute the mesh 

of the CFD structure, which is a highly time-consuming task. To overcome this problem, 

the GP model was adaptively improved through Bayesian optimization. This can be 

used very efficiently not only in CFD but also in actual experimental situations. 
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Abstract 

On-line optimization of Fluid Catalytic Cracking Units (FCCU) is essential in modern 

refineries, because of high commercial value of cracking products. Within Real-Time 

Optimization (RTO) the on-line optimization module plays a fundamental role since 

operational conditions must be frequently adjusted. The performance of this module 

must guarantee good solutions in a sufficiently short time to allow on-line 

implementation.  

This work presents an assessment of some deterministic and stochastic optimization 

algorithms into a three-layer RTO strategy for a virtual FCCU. The implementation 

begins with definition of an economic objective function, a sensitivity analysis to 

evaluate how profit is affected by variations on operational variables and concludes with 

a performance comparison of some algorithms.  

Results from deterministic algorithms confirm that there are multiple local solutions in 

FCCU optimal operation problem, and deterministic search methods could be trapped in 

these solutions. On the other hand, GA allowed to obtain satisfactory solution, but with 

the default values for stopping parameters, it doesn´t generate the solution in the 

available time for an RTO implementation. As alternative to obtain good solution in a 

reasonable time, some GA parameters were adjusted and a hybrid strategy was assessed. 

With these approaches, execution time was satisfactorily reduced, and the hybrid strategy 

was confirmed as an interesting option for optimization modules in on-line applications.  

Keywords: On-line Optimization; Optimization Methods Assessing; GA Parameter 

Adjusting; Hybrid Algorithms. 

1. Introduction      

Optimization has received important attention as a tool for increasing competition, 

reducing production costs, improving quality, and satisfying environmental 

requirements and regulations. The use of optimization has been extended in the 

engineering of process systems since it is not easy to find an optimal solution that leads 

to more profitable and competitive operating conditions (Biegler and Grossmann, 2004).  

Optimization in process design and equipment specification is usually performed prior 

to the implementation of the process (off-line). On the other hand, optimization of 

operating conditions is carried out monthly, weekly, daily, hourly, or even, in the 

extreme, every minute. In that way, on-line optimization makes decisions in different 

levels of the organization for improving the performance of industrial processes during 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50217-7
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their execution. RTO is an on-line optimization executed at an intermediate level, 

between the production scheduling and the control system (Rodríguez, 2019). While 

scheduling defines detailed programming to fulfill the strategic planning, the RTO 

defines the operational conditions that provide the highest performance of the process, 

and the control system must adjust the operation of the process to these optimal 

conditions. 

Since disturbances affect the process performance, RTO develops a continuous 

reevaluation of any alteration on operating conditions, so that the economic productivity 

of the process is maximized. RTO cycle starts as soon as a steady state is detected after 

an external disturbance or a control action and, because of new disturbances could affect 

the process at any time, this cycle needs to be concluded as fast as possible.  

In oil and gas industry, Fluid Catalytic Cracking (FCC) optimization has led to a 

significant increase in the performance. In FCCU applications, the on-line optimization 

problem usually comprises the maximization of the operational profit subject to a set of 

constraints and a non-linear programming problem (NLP), with additional complexity 

generated by a strong interaction between riser and regenerator (Fernández et al., 2007). 

Therefore, FCCU is a good candidate for RTO applications. This work presents a brief 

analysis of some optimization algorithms as candidates for implementing the 

optimization module into an RTO. 

2. Methodology        

This study was developed on the MATLAB platform, taking advantage of its toolboxes 

(MathWorks, 2018), optimization runs were developed on an Intel® Xeon® CPU E3-

1241 v3 @ 3.5GHz. The FCCU model is presented with detail in Rodriguez (2019). A 

sensitivity analysis allowed selecting the optimization variables, as well as their limits 

and an approximate value for the objective function. The objective function in Eq.(1) is 

the FCCU profit (US$/s), it includes prices for products, feed and utilities used in the 

unit for the gas oil conversion. Additionally, a penalty factor considering the Lyapunov 

stability criterion (Torgashov et al., 2003) was added to punish unstable points, allowing 

to discard them, as it is shown in Eq.(2).   

𝑚𝑎𝑥    𝐹𝐶𝐶𝑈𝑝𝑟𝑜𝑓 = 𝑓(𝐹𝑎𝑖𝑟 , 𝐹𝑐𝑎𝑡 , 𝐹𝑓𝑒𝑒𝑑,𝑇𝑓𝑒𝑒𝑑 , 𝑇𝑎𝑖𝑟)

𝑠. 𝑡.  {
𝐹𝐶𝐶𝑈 𝑀𝑜𝑑𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠

     (1) 

where  𝐹𝐶𝐶𝑈𝑝𝑟𝑜𝑓 = (∑𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − ∑𝑃𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 − ∑𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠) ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (2) 

As candidates, two deterministic algorithms (SQP and Interior Point), a metaheuristic 

algorithm (Genetic Algorithm) and a Hybrid strategy were analyzed. These algorithms 

were selected because of their proven capacity to solve NLP problems, and their 

availability in MATLAB, these and other analysis on the RTO modules implementation 

are presented in our complementary works (Reyes et al., 2015; Rodríguez, 2019). 

3. Results and analysis      

Results from a previous work (Rodríguez, 2019) revealed that product value as a 

function of its quality (octane number) is fundamental for the estimation of the optimal 

operational conditions, and the significance order of the variables for this purpose is:  

A. L. Rodríguez et al.
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ratio catalyst flow/feed flow (Fcat/Ffeed) > feed flow (Ffeed) > feed temperature (Tfeed) > 

air flow (Fair) > air temperature (Tair).  

3.1. Sensitivity analysis 

From this analysis, optimization variables and their limits were stablished, some key 

effects of optimization variables on objective function are shown in Figures 1 and 2. 

The effect of Fcat/Ffeed on FCCU profit is the strongest, when this ratio goes from 2 to 

6.8 a high increase on profit is observed; however, beyond 6.8 the profit drastically 

falls. This is mainly due to the fact that the increment in the Fcat/Ffeed ratio generates a 

continuous increase in temperature at the riser outlet, a high riser temperature favours 

cracking but an over cracking diminishes the gasoline fraction (results not shown).  

Effects of Tfeed and Ffeed on profit are important too and the variables Fair and Tair have 

smaller, but not insignificant, effect on profit. These analyses show the high non-

linearity of the FCCU system, which generates local optima as observed in next results. 

3.2. Assessment of optimization algorithms  

In a comparative assessment of some optimization algorithms, it was observed that 

Genetic Algorithm (GA) allows to obtain satisfactory operational conditions, but it does 

not generate the solution in the available time for an RTO implementation. In contrast, 

the assessed deterministic algorithms (Interior Point, and SQP) generated solutions in 

short calculation time but with worse objective function values (Table 1).  

Table 1. Performance of standard optimization algorithms 

 Lower 

bound 

Upper 

bound 

Initial 

Point 

Method 

Int. Point SQP G A 

Fcat  (kg/s) 115.0 390.0 294.0 290.7 294.0 385.3 

Ffeed  (kg/s) 20.0 60.0 40.6 58.8 40.6 59.6 

Fair  (kg/s) 20.0 46.0 25.4 45.9 25.4 37.6 

Tfeed  (K) 400.0 670.0 434.6 448.5 434.7 656.8 

Tair  (K) 310.0 525.0 360.0 373.8 360.0 360.0 

Tris  (K) 755.0 840.0 779.2 753.8 779.2 833.5 

Trgn  (K) 810.0 1090.0 972.0 1006.6 972.0 1001.3 

Octane Number 85.0 100.0 91.7 89.0 91.7 97.3 

Profit  (US$/s) - - 9.7 12.1 9.9 19.9 

Run time  (s) - - -      148      185  13,932 
 

  
Figure 1. Effect of Fair and Fcat/Ffeed ratio on profit. Figure 2. Effect of Ffeed and Tfeed on profit. 

on the Model of a Fluid Catalytic Cracking Unit
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Results from each algorithm propose operational conditions with remarkable 

differences, e.g. conditions obtained by GA include high flow of catalyst, feed and air, 

and high feed temperature; in other way, IP suggests medium catalyst flow, high feed 

and air flow and low feed temperature, and SQP suggests medium catalyst and feed 

flow, low air flow and feed temperature. These results confirm the complexity and high 

non-linearity of this optimization problem which is a challenge for on-line applications. 

Analysing the performance of GA with default parameters, the hypothesis that it is 

possible to obtain a satisfactory optimization for on-line implementation by adjusting 

the stopping parameters is formulated. A satisfactory optimization implies to reduce the 

convergence time without damaging the quality of the solution. Results obtained for 

several GA runs (Figure 3 shows two of these) were used to analyse the performance 

and the confidence of the GA. Evolution of Best and Mean fitness shows that the 

diversity of the population is highly reduced by the 10th generation, and after the 20th 

generation, no significant change in the profit function value was observed. 

From this analysis, Generation and Stall Generations were selected as adjustable 

stopping parameters. GA stops when the total number of evaluated generations reaches 

the value of Generations, as on the right side in Figure 3 or when the improvement in 

the fitness over Stall Generations is less than a tolerance (MathWorks, 2018). 

Analysing these criteria and the evolution of the best and mean fitness, the number of 

stall generations was adjusted to 10 and the maximum of generations to 20, this 

generates a reduction from 3.9 to 0.5 hours in the average computation time. 

Optimization results with the adjusted value for stopping parameters are presented in 

Figure 4 and Table 2. This figure shows that improvement in best fitness was very 

modest since 4th generation. Analysing values for operational variables from GA with 

default values (Table 1) and adjusted values (Table 2), it can be observed that both 

solutions propose similar operational conditions: high values (near or on the upper limit) 

for the flows of catalyst, feed and air, as well as high and medium values for temperatures 

of feed and air, respectively. Therefore, calculates values for riser and regenerator 

temperatures are similar (883.5 vs 829.4 and 1001.3 vs 996.3 K). These results suggest 

that a deterministic search starting on the best point identified by GA algorithm must be 

considered as an alternative to improve the whole optimization procedure. 

  
Figure 3. Convergence in two GA runs with default parameters. 

A. L. Rodríguez et al.



 
Figure 4. GA convergence with adjusted parameters. 

 

Table 2. Solution from adjusted GA. 

Variable Value 

Fcat  (kg/s) 388.7 

Ffeed  (kg/s) 60.0 

Fair  (kg/s) 43.6 

Tfeed  (K) 651.7 

Tair  (K) 360.0 

Tris  (K) 829.4 

Trgn  (K) 996.3 

Octane Number 97.3 

Profit  (US$/s) 19.8 

Run time  (s)       1,800 

3.3. Hybrid optimization strategy  

The hybrid strategy considers a first step with GA and a second one with a deterministic 

algorithm (Interior Point or SQP). Initial search with GA must allow identifying the 

region where the global solution is in, and final search with deterministic algorithm 

must allow to reach the optimal point. To confirm the viability and robustness of this 

strategy multiple hybrid runs were developed changing the number of total GA 

generations and the deterministic algorithm.  

In general, operational conditions obtained from hybrid runs are similar to the ones 

previously obtained only by GA (section 3.2). To analyse the ability to identify the 

global solution, Figure 5 shows the profit obtained after the GA step and after the 

complete hybrid run, employing 10 GA generations and IP. Some important 

characteristics of these results are: i) only in 50% of runs deterministic step generates a 

significant improvement in profit, and ii) the performance of deterministic step does not 

depend on the results generated from GA: in run 3, instead of the relatively low profit 

from GA, IP didn´t improve the solution.  

 

Figure 5. Profit obtained from hybrid 

strategy: 10 GA Gen + IP. 

Table 3. Solutions from hybrid strategy. 

Variable Mean / MAPD (%) 

10GA+IP 5GA+IP 5GA+SQP 

Fcat  (kg/s) 378.0 / 2.8 381.8 / 1.5 374.4 / 3.7 

Ffeed  (kg/s) 59.3 / 0.9 58.4 / 1.2 57.4 / 2.8 

Fair  (kg/s) 40.8 / 5.6 39.8 / 7.2 37.9 / 6.8 

Tfeed  (K) 659.5 / 1.2 651.3 / 2.1 651.7 / 1.2 

Tair  (K) 412.7 / 9.1 391.1 / 12.9 386.1 / 11.0 

Profit (US$/s) 19.6 / 0.7 19.2 / 1.4 18.8 /2.7 

AvImpPro 0.14 0.32 0.19 
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Table 3 presents average values and the mean absolute percentage deviations (MAPD) 

for some operational variables and the final profit from hybrid strategy with 10 and 5 

GA generation and IP or SQP, as well as the average improvement in profit (AvImpPro) 

obtained in the deterministic step. These results show that this hybrid strategy doesn´t 

rigorously guarantee to reach the global optimum because of differences in operational 

variables values are small but not negligible. The average and the mean absolute 

percentage deviation (MAPD) show that characteristics of feed (flow and temperature) 

are the most stable, while characteristics of air have the biggest variation. Improvement 

in profit obtained with IP and SQP have not significant differences.  

Results from hybrid strategy and GA with adjusted parameters show that both strategies 

could be good alternatives for on-line optimization, and inspirate new studies to analyse 

their advantages and the challenge to reach, with confidence, the global solution. 

Additional results, not showed, suggest that stopping criteria for GA must guarantee a 

minimum number of generation and that iteration time is not a good stopping criterion. 

4. Conclusions      

Optimization allows to identify optimal operational conditions for a FCCU which 

improves its profit, and the algorithm choice is key in the success of this search, 

especially for on-line implementations. 

Results from studied algorithms propose operational conditions with remarkable differences 

and show the complexity and high non-linearity of the FCCU optimization problem, this 

non-linearity generates local solutions in which deterministic algorithm could stop. 

Operational conditions proposed from GA with default and adjusted stopping parameter 

values confirm that execution time can be reduced in GA, when stopping parameters are 

adjusted. However, a minimum of generations must be guaranteed to do not reduce the 

quality of the solution.  

Performance of hybrid strategy shows that it isn´t easy to reach the global convergence, 

and that new studies are necessary to generates reliable strategies.    
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Abstract 
Bayesian hybrid models (BHMs) fuse physics-based insights with machine learning 
constructs to correct for systematic bias. In this paper, we demonstrate a scalable 
computational strategy to embed BHMs in an equation-oriented modelling environment. 
Thus, this paper generalizes stochastic programming, which traditionally focuses on 
aleatoric uncertainty (as characterized by a probability distribution for uncertainty model 
parameters) to also consider epistemic uncertainty, i.e., mode-form uncertainty or 
systematic bias as modelled by the Gaussian process in the BHM. As an illustrative 
example, we consider ballistic firing using a BHM that includes a simplified glass-box 
(i.e., equation-oriented) model that neglects air resistance and a Gaussian process model 
to account for systematic bias (i.e., epistemic or model-form uncertainty) induced from 
the model simplification. The gravity parameter and the GP hypermeters are inferred from 
data in a Bayesian framework, yielding a posterior distribution. A novel single-stage 
stochastic program formulation using the posterior samples and Gaussian quadrature rules 
is proposed to compute the optimal decisions (e.g., firing angle and velocity) that 
minimize the expected value of an objective (e.g., distance from a stationary target). 
PySMO is used to generate expressions for the GP prediction mean and uncertainty in 
Pyomo, enabling efficient optimization with gradient-based solvers such as Ipopt. A 
scaling study characterizes the solver time and number of iterations for up to 2,000 
samples from the posterior.  

Keywords: Hybrid model; Bayesian uncertainty quantification; Optimization; Gaussian 
process; Pyomo 

1. Introduction 
Predictive models play a key role in control and decision-making (Adjiman et al., 2021). 
While the glass-box models are constructed from scientific principles and have a deeper 
understanding of the underlying processes, they are often complex to form and solve. 
Many glass-box models contain unknown parameters that are inferred from experimental 
data. These data are often subject to random phenomena such as variability between 
experiments or observation noise (Kalyanaraman et al., 2015), which gives rise to aleatory 
(i.e., parametric) uncertainties. Stochastic programming and robust optimization are 
routinely used to directly incorporate parametric uncertainty into decision-making 
frameworks. However, to maintain computational tractability, glass-box models are often 
simplified or replaced with surrogate models in multiscale engineering frameworks 
(Biegler et al., 2014). The systematic bias from model inadequacy arising from such 
simplifications is often referred to as model-form or epistemic uncertainty (McClarren, 
2018).  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50218-9 
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Bayesian hybrid models (BHM) offer a principled framework to quantify, propagate, and 
mitigate aleatoric and epistemic uncertainties by combining physical glass-box models 
with black-box surrogate models. In their seminal work, statisticians Kennedy and 
O’Hagan (2001) proposed a (Bayesian) hybrid modelling framework using Gaussian 
process models: 

𝑦 = 𝜂(𝒙|𝜽) + 𝛿(𝒙|𝝓,𝑫) + 𝜀		 (1) 

The prediction 𝑦	consists of three components: the inadequate (simplified or reduced 
order) glass-box model 𝜂(𝒙|𝜽)  which depends on the state variables 𝒙  and model 
parameters 𝜽 ; the Gaussian process discrepancy 𝛿(𝒙|𝝓,𝑫)  which models epistemic 
uncertainty as a function of the state variables 𝒙, hyperparameters 𝝓, and data 𝑫 = [𝒙𝒐𝒃𝒔,	
𝒚𝒐𝒃𝒔]; and, finally, the observation error 𝜀 which is modeled as a random variable with 
known probability distribution. Unlike other hybrid model architectures, such as a neural 
differential equation, the probabilistic nature of the GP enables the use of Bayesian 
calibration (Higdon et al., 2004) to infer the model parameters and hyperparameters and 
provides readily interpretable uncertainty information. The joint posterior distribution of 
model parameters resulting from Bayesian model calibration informs the uncertainty in 
the models; specifically, the distribution of model parameters 𝜽 and observation error 𝜀 
quantifies aleatory uncertainty while the GP output quantifies epistemic uncertainty. We 
emphasize that prior applications of the Kennedy-O’Hagan framework in chemical 
engineering (Mebane et al., 2013, Kalyanaraman et al., 2015, Kalyanaraman et al., 2016, 
Bhat et al., 2017) predominately considers model calibration and uncertainty propagation 
and not decision-making under uncertainty.  

2. Methods  
2.1 Stochastic Programming Formulation 

In this work, we develop and implement a single-stage stochastic program formulation in 
Pyomo (Hart et al., 2017) to optimize decisions using BHMs by minimizing the expected 
values of an arbitrary objective function 𝑢(𝑦) in the form of Eqs. (2a): 

min
𝒙

E
𝜽,𝝓
[𝑢(𝑦)] ≈

1
√𝜋

<<𝑤(𝑤)𝑢(,)
)∈+(∈,

 (2a) 

𝛿) = 𝜇(𝒙|𝝓,𝑫) + √2	𝑧) 	𝜎(𝒙	|𝝓,𝑫), ∀𝑗 ∈ 𝐽	 (2b) 

𝜂( = 𝜂(𝒙|𝜽(),			∀𝑠 ∈ 𝑆	 (2c) 

𝑦(,) = 𝑓I𝜂(, 𝛿)J, ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽 (2d) 

𝑢(,) = 𝑢(𝑦(,))	, ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽 (2e) 

In Eq. (2a), the expectation E  of 𝑢(𝑦)  is approximated using scenario weights 𝑤( =
1 |𝑆|⁄ . Set 𝑆 contains samples from the posterior distribution (trace) of 𝜽. Set 𝐽 contains 
Gauss-Hermite quadrature nodes 𝑧)  and weights 𝑤) , which are used in Eq. (2b) to 
approximate the GP output distribution characterized by GP prediction mean 𝜇  and 
standard deviation 𝜎. In Eq. (2c), the glass-box model is evaluated at samples 𝜃(. In Eqs. 

J. Wang et al.
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(2d) and (2e), the BHM output 𝑦 and objective function 𝑢(𝑦) are evaluated over the set 
𝑆 × 𝐽. This formulation is computationally attractive because the highly nonlinear GP 
prediction mean and standard deviation are evaluated only once, while the glass-box 
model, and the objective function are evaluated |𝑆|, and |𝑆| × |𝐽| times, respectively.  

2.2 Ballistics Firing Example 

We apply the stochastic program to the ballistics example from Eugene et al. (2020):   

𝜂( =	
-.!"

/#
∙ sin𝜓 ∙ cos𝜓, ∀𝑠 ∈ 𝑆 (3a) 

𝑦(,) = 𝜂( 	+ 𝛿) , ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽	 (3b) 

𝑦(,) − 𝑦T = 𝑢(,)0 −	𝑢(,)1 , 		𝑢(,) = 𝑢(,)0 +	𝑢(,)1 ,			𝑢(,)0 , 𝑢(,)1 ≥ 0, ∀𝑠, 𝑗 ∈ 𝑆 × 𝐽 (3c) 

Eqs. (3a, b) describe the BHM. The state variables are 𝒙 = [𝑣2, 𝜓], where 𝑣2 (m/s) is the 
firing velocity and 𝜓	(°)	is the firing angle. The glass-box model has one uncertain 
parameter, the acceleration due to gravity 𝑔. 𝑦 (m) is the distance to the impact location 
of the projectile measured horizontally from 𝑦=0 which is the firing location of the 
projectile. We seek to predict the optimum conditions 𝒙 to hit a target a fixed distance 
𝑦T = 100	m away, despite neglecting air resistance (epistemic uncertainty) in the glass-
box model. The objective function 𝑢(𝑦) = |𝑦 − 𝑦T| is reformulated using slack variables 
in Eq. (3c) to provide differentiable constraints for gradient-based optimization. By 
combining Eqs. (2) and (3), the expectation of 𝑢 is minimized to find the optimum 𝒙 =
[𝑣2, 𝜓] to hit the target.  

The observed data 𝑫 = [𝒙𝒐𝒃𝒔,	𝒚𝒐𝒃𝒔] is generated from the true physical model which 
includes the effects of air-resistance on the projectile resulting in its non-parabolic 
trajectory as described by Eugene et al. (2020). Six data points corresponding to 
observations from experiments 1 to 5 and 6c in Table 1 of Eugene et al., 2020 were used 
for the sequential Bayesian calibration of the hybrid model. First, the glass-box model is 
calibrated using the data 𝑫, a likelihood function, and priors (see Eugene et al. 2020 for 
details) via Hamiltonian Monte Carlo in PyMC3 (Salvatier et al., 2016) which returns a 
trace of 2,000 samples from the posterior distribution of the glass-box model parameter 
𝑔. Next, using the mean value of 𝑔 from the trace, 𝑔̅, we compute the residuals 𝒚𝒐𝒃𝒔 −
	𝜂(𝒙𝒐𝒃𝒔, 𝑔̅) which represents the systematic bias in the model due to epistemic uncertainty. 
These residuals are used to train a discrepancy function for which we assume a Gaussian 
process with kriging kernel: 

𝒚𝒐𝒃𝒔 − 	𝜂(𝒙𝒐𝒃𝒔, 𝑔̅) = 	𝛿(𝒙|𝝓,𝑫) ∼ 𝒢𝒫(𝜇, 𝑘(⋅,⋅)) (4a) 

𝑘I𝑥) , 𝑥3J = 	𝜎4-		exp d−∑ 𝛽5g𝑥5) − 𝑥53g
-6

578 h , 𝑗, 𝑘 ∈ 1,…	,𝑚, 𝛽5 ≥ 0   (4b) 

where 𝜇 and 𝜎4- are the prediction mean and the variance of the GP model, respectively 
and 𝛽5 is the kriging weight. 𝑛=2 denotes the number of input dimensions for 𝒙 = [𝑣2, 𝜓	], 
and m = 6 is the number of observations in the training data set for the GP. The GP model 
hyperparameters 𝝓 = l𝜇, 𝜎4-, 𝛽8, 𝛽-m =  [-0.68, 2.28, 1.53, 0.13] are trained using 
maximum likelihood estimation (MLE) (Forrester et al., 2008) implemented in the 
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Abstract 

Distillation is by far the most important separation process in the chemical industries, but 

is also one of the most energy intensive units, thus significant efforts are being placed on 

optimizing the design and operation of both new and existing distillation systems to 

achieve potentially significant energy and/or capital savings. This work introduces an 

optimization strategy based on combining a preliminary stochastic optimization method, 

either Particle Swarm Optimization (PSO) or Genetic Algorithm (GA), which is used to 

perform a global search, with a deterministic optimization method, Outer Approximation 

method (OAERAP), for the local search. A dividing wall distillation column and a hybrid 

distillation/pervaporation superstructure is used to illustrate the methodology. The 

performance of stand-alone PSO, stand-alone GA, combined PSO/OAERAP and 

combined GA/OAERAP, are compared and it is shown that the PSO/OAERAP 

combination provides the optimal design in a significantly shorter time and can also 

optimize a superstructure efficiently. This work also presents the use of a parallel 

computing function when performing stochastic optimization, which significantly speeds 

up the optimization. 

Keywords: Particle Swarm Optimization, Parallel Computing, Distillation, Dividing 

Wall Column, Hybrid Distillation  

1. Introduction 

The optimization of a distillation system is a highly non-convex Mixed Integer Nonlinear 

Programming (MINLP) problem due to the tight coupling between different parts of the 

mathematical model (thermodynamic equations, MESH equations, etc.) and the existence 

of discrete (number of stages, feed location, existence of a unit in the superstructure, etc.) 

and continuous variables (reflux ratio, heat input, flowrates, etc.). The solution is thus is 

a very challenging task, not only from a computational point of view, particularly for 

initialization, but also due to the existence of multiple local optima (Javaloyes-Anton et 

al., 2013). In a previous work (Chia et al., 2021), a combined approach between stochastic 

(Genetic Algorithm, GA) and deterministic (Outer Approximation / Equality Relaxation 

/ Augmented Penalty, OAERAP) methods was proposed where the preliminary optimal 

design obtained from the stochastic method acts as the initial values in the deterministic 

method. It was found that the combined approach can effectively reduce the optimization 

difficulty, the computational effort, and the overall CPU time. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50219-0 
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In this work, the GA/OAERAP approach is extended, replacing the GA with a Particle 

Swarm Optimization (PSO) which has a faster convergence speed than GA (Mesloub and 

Mansour, 2009). Two case studies will be used to illustrate the strategy, including a 

dividing wall column (DWC) and a hybrid distillation/pervaporation process. 

2. Methodology 

The combined optimization strategy starts with the stochastic optimization method for 

the global search, followed by the deterministic optimization method for the local search. 

Figure 1a shows the GA/OAERAP strategy also studied in a previous work (Chia et al., 

2021), where the concept of a preliminary stochastic optimization was initially proposed. 

A looser fitness tolerance (10−2) is utilized in the preliminary stochastic optimization 

(preliminary GA) while a tighter fitness tolerance (10−4) is used in the deterministic 

optimization (OAERAP). In this work, another stochastic optimization (Particle Swarm 

Optimization, PSO) is also considered in order to evaluate the relative optimization 

performances of the different methods and method combinations. 

The flowsheet of the PSO/OAERAP strategy is shown in Figure 1b and the inner box is 

the procedure for (preliminary) PSO. The PSO is developed in MATLAB (The 

MathWorks Inc., 2019), and several classical mathematical functions (Schwefel function 

and constrained Rosenbrock function) and literature (Deb, 2000; Deep et al., 2009) have 

been used for validation (not shown). 

Figure 1: Flowcharts of the optimization procedures for (a) GA/OAERAP strategy (Chia et al., 

2021), and (b) PSO/OAERAP strategy. 
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The swarm size in PSO and the population size in GA are set to be the same, which is 

five times the optimization variables, for fair comparison. For the stopping criteria, both 

PSO and GA are terminated once the fitness value stays constant within the fitness 

tolerance for 20 consecutive iterations. Other settings of GA can be found in Chia et al. 

(2021), while the other settings for PSO are given below. The inertia is dynamically 

varied by randomly choosing a value from a Gaussian distribution of 𝑤 ∼ 𝑁 (0.72, 𝜎) at 

each iteration (the “random adjustments” method by Engelbrecht (2007), where 𝜎 should 

be small enough to prevent w predominantly larger than one) with 𝜎 = 1 used in this 

work. The two acceleration coefficients, 𝑐1  (cognitive) and 𝑐2  (social), are linearly 

changed between 0.5 and 2.5, where 𝑐1 decreases while 𝑐2 increases (Engelbrecht, 2007). 

All particle locations are initialized using uniform randomization and all particle 

velocities are initially set as zero. The boundary handling method used in this work is the 

random forth method (Gandomi and Kashani, 2018) and the penalty function utilized is 

as proposed by Deb (2000). Moreover, the dynamic bound proposed in Chia et al. (2021) 

is also applied in PSO to reduce the chance of infeasible designs and simulations. For 

example, the feed location can never exceed the total number of stages in a column, so 

the upper bound of the feed location is dynamically changed to be equal to the total 

number of stages. The outer box in Figure 1b shows the OAERAP procedure. The results 

from the preliminary PSO are used as initial values in OAERAP. The constraint 

tolerances in both preliminary PSO and OAERAP, and the fitness tolerance in OAERAP, 

are set as 10−4, although the fitness tolerance in preliminary PSO is set as 10−2. 

The GA and PSO are developed in MATLAB, and OAERAP is built-in in gPROMS 

ProcessBuilder (Process Systems Enterprise, 2020). All rigorous simulations are 

performed in gPROMS ProcessBuilder, and gO:MATLAB (Process Systems Enterprise, 

2019) is used to transfer data between gPROMS ProcessBuilder and MATLAB. 

Moreover, the parallel computing function is activated in MATLAB to use 18 workers 

while doing the stochastic optimization to speed up the optimization. 

 

Figure 2: Superstructure of the hybrid distillation/pervaporation process. 
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Table 1: Case Study 1, Dividing Wall Column - Comparison between optimization methods 

Items GA PSO 
GA/OAERAP PSO/OAERAP 

Prelim. Final Prelim. Final 

Prefractionator 

Total stages 23 24 22 23 21 23 

Feed stage 12 14 13 14 12 12 

Main Column 

Total stages 42 44 41 42 42 43 

Feed stages 8/32 8/33 8/31 7/31 9/31 7/31 

Liq. sidedraw stages 18/8 18/8 18/6 19/7 18/9 19/7 

Vap. sidedraw stage 32 33 31 31 31 31 

Liq. side † (kmol h-1) 332/178 332/176 330/183 330/182 332/186 330/173 

Vap. side † (kmol h-1) 614 627 632 641 645 623 

Distillate (kmol h-1) 333 333 334 336 333 336 

Molar reflux ratio 2.29 2.24 2.30 2.22 2.38 2.22 

Fitness and Time 

TAC (M $ y-1) 6.0374 5.9924 6.0646 5.9852 6.0206 5.9879 

Generation/Iteration 190 97 86 - 61 - 

Unparallel CPU time (s) 20346 25704 15764 128 14746 117 

Parallel CPU time* (s) 2052 2341 1697 - 1465 - 

Total CPU time* (s) 2052 2341 1825 1582 

* Parallel computing used, number of workers/cores = 18 

† Liquid/vapor side draw from the main column to the prefractionator 

3. Case Studies 

The proposed PSO/OAERAP optimization strategy is compared with stand-alone GA, 

stand-alone PSO, and a GA/OAERAP optimization strategy using two different 

distillation structures including a dividing wall column (DWC) and a hybrid 

distillation/pervaporation process. In the stand-alone GA and PSO, the tolerance of both 

constraints and fitness is set as 10−4. All optimization tasks are repeated several times and 

the designs with the most common fitness and CPU time are chosen for comparison. All 

calculations are performed using a desktop with an AMD Ryzen 9 3900X CPU (24 logical 

processors) with 3.79 GHz and 64 GB memory. 

3.1. Description 

Case study 1 is the separation of equi-molar benzene/toluene/o-xylene (UNIQUAC as 

thermodynamic model) in a dividing wall column. The feed flowrate is 1000 kmol h−1 

and the feed condition is saturated liquid at 0.37 bar. The column is operated at 0.37 bar, 

and pressure drop is neglected. Since there is no commercially available DWC library in 

gPROMS ProcessBuilder, a thermodynamically equivalent Petlyuk structure is used 

instead. Case study 2 is a hybrid distillation/pervaporation process (Figure 2) and the 

membrane model is a user-defined lumped hollow fiber model (validated against the 

experimental data by Tsuyumoto et al. (1997), not shown) to separate a feed of 200 kmol 

h−1 saturated liquid ethanol/water mixture at 1 bar with 10 mol % ethanol (UNIQUAC as 

thermodynamic model). The membrane network allows optimization of number of 

membrane stages in series, number of membrane modules in parallel at each stage, and 

the existence of membrane stage feed heaters. Due to computational limitations, a 

simplified optimization method proposed by Marriott and Sorensen (2003) is used, with 

the upper bound of the number of membrane stages studied set as eight stages. The 



number of membrane stages is first fixed, with all the other variables optimized 

simultaneously. This procedure is then repeated for each number of membrane stages that 

are being studied and the optimized total annualized costs (TACs) are recorded. Finally, 

the structure which gives the lowest TAC is considered as the optimal design, and its 

optimized variables, CPU time, and TAC are shown in the Results section.  

3.2. Results and Discussion 

The optimized designs of each case study using the different optimization methods are 

shown in Tables 1 and 2, respectively. The TAC and CPU time are chosen as the main 

performance indicators. The optimization is significantly sped up with the use of parallel 

computing with 18 workers, where it is up to 11 times and 12 times faster for the two case 

studies, respectively. Comparing stand-alone GA and PSO, and preliminary GA and PSO, 

it shows that PSO and preliminary PSO usually require fewer iterations but a longer CPU 

time per iteration than GA. GA requires lesser time per iteration due to its algorithm 

where a few chromosomes in the current generation will appear in the next generation 

(elite parents and low mutation probability at the end), leading to a higher rate of feasible 

simulation and lower CPU time for each generation, owing to the “sequential 

initialization” algorithm in gPROMS ProcessBuilder (subsequent simulation is initialized 

using the results from the previous simulation, and the simulation will be easier with 

similar initial values). However, by considering the parallel CPU time, PSO and 

preliminary PSO show similar CPU times with GA and preliminary GA, indicating a 

Items GA PSO 
GA/OAERAP PSO/OAERAP 

Prelim. Final Prelim. Final 

Column 

Total stages 21 21 20 19 21 21 

Feed stages 17/17 17/18 17/17 16/18 17/17 17/20 

Distillate (kmol h-1) 23 23 23 23 23 23 

Molar reflux ratio 1.15 1.19 1.45 1.34 1.19 1.16 

Membrane Network * 

No. membrane stages 5 5 5 5 5 5 

No. modules in stage 1 8 7 8 8 9 7 

No. modules in stage 2 11 9 11 10 13 8 

No. modules in stage 3 9 11 8 8 12 12 

No. modules in stage 4 17 14 14 15 14 15 

No. modules in stage 5 18 20 19 20 15 20 

Total membrane area (m2) 378 366 360 366 378 372 

Fitness and Time 

TAC (M $ y-1) 0.7575 0.7506 0.7690 0.7606 0.7593 0.7527 

Generation/Iteration 93 86 45 - 34 - 

Unparallel CPU time (s) 7308 9082 4140 22 4303 9 

Parallel CPU time †  (s) 813 828 433 - 371 - 

Total CPU time †  (s) 813 828 455 380 

* Existence of membrane stage feed heater is not shown due to space limit, but all the 

optimization results show that feed heaters exist for all stages except for stage 1 

†  Parallel computing used, number of workers/cores = 18 

 

 

Table 2: Case Study 2, Hybrid Distillation - Comparison between optimization methods 
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better paralleling computing performance than PSO and preliminary PSO. Comparison 

between stand-alone GA and PSO shows that PSO can yield a better design. However, 

for GA/OAERAP and PSO/OAERAP, the final TACs are similar. The comparison 

between combined optimization strategies and their corresponding stand-alone methods 

shows that the combined optimization strategies can achieve good optimal designs in a 

shorter CPU time, where the time savings for GA/OAERAP and PSO/OAERAP are up 

to 44 % and 54 %, respectively. The PSO/OAERAP is even faster than GA/OAERAP 

with time saving up to 16 % for the combined PSO strategy compared to the GA strategy. 

In our experience, the optimization of distillation using PSO and preliminary PSO also 

has a much higher chance to converge into a good optimal design and the results from 

several repeated optimizations are close. 

4. Conclusions 

This work considers a combined optimization strategy of a stochastic optimization 

method (GA or PSO) followed by a deterministic optimization method (OAERAP) for 

the optimisation of different distillation systems, implemented using parallel computing. 

The comparison between stand-alone stochastic methods (GA and PSO) and the 

combined strategy (GA/OAERAP and PSO/OAERAP) shows that PSO/OAERAP can 

yield an optimal design within a significantly shorter CPU time. With the help of the 

parallel computing function (18 workers), the optimization speed can be about 11 times 

faster and the effect is even better for PSO than for GA. Moreover, a simple superstructure 

optimization of a hybrid distillation/pervaporation process (case study 2) showed that the 

combined optimization strategy is also capable of handling superstructure optimization 

of distillation systems. 
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Abstract 

Model reusability and integration with datasets are major contributors towards their 

interoperability, the concepts that follows process established by computer aided process 

engineering (CAPE) community (Belaud & Pons 2002). This paper proposes a semantic 

approach which enables model/data registration, their discovery and concomitantly model 

their integration. The functionality of the process is fully controlled by a biorefining 

domain ontology implemented using Ontology Web Language (OWL) and tested using 

biorefining related scenarios. 

Keywords: biorefining, semantic repository, model integration, OWL-S. 

1. Introduction 

Significant efforts are applied on modelling to support synthesis and design, planning and 

scheduling, process monitoring and control in biorefining. Modelling addresses the 

complexity in characteristics of various types of feedstock and associated processing 

technologies and respective pathways, including thermochemical, chemical, biochemical 

and hybrid conversion routes, among other aspects. As a result, there are many 

contributions from modelling and experimental prospective and a large number of 

custom-made models and data are available to be used and hence reused. Integrating 

existing models and data developed/generated by different tools and processes, sharing 

and reusing them towards a common aim is still a challenge. To address this problem, we 

introduce a semantic approach towards model and data integration, all coordinated by a 

biorefinery ontology. The concept follows on the principle of service integration which 

in consequence benefits from respective Ontology Web Service (OWL-S) framework. 

2. Theoretical formulation of model/data integration 

A superstructure approach is used to represent models by their functionality, inputs, 

outputs and auxiliary inputs (Figure 1a), whereas datasets are characterised by their 

functionality in relation to what they describe, outputs representing actual data and 

auxiliary inputs (Figure 1b). The model inputs and the model and data outputs and 

auxiliary inputs are characterised by 𝑛𝐼 input properties 𝑃𝑖
𝑛𝐼 , 𝑛𝑂 output properties 𝑃𝑖

𝑛𝑂  

and 𝑛𝐸 auxiliary properties 𝑃𝑖
𝑛𝐸 as shown in (Figure 1) (Koo at al, 2017).  

The whole process of matching and then model and data integration is coordinated by the 

InterCAPEmodel ontology defined as a 6-tuple structure 𝑂 = 〈𝐻𝐼 , 𝐻𝐶 , 𝑅𝑖
𝐶 , 𝑅𝐶 , 𝐸𝐶 , 𝑆𝑖

𝐼〉 of 

i) instances 𝑠𝑗 formed of 𝑛𝑀 models and 𝑛𝐷 datasets, organised into classes 𝑆𝑖
𝐼 with 𝑁𝑖

𝐼 

distinct names representing concepts, ii) a graph 𝐻𝐶 = (𝑆𝑖
𝐼 , 𝑖𝑠 − 𝑎) forming a 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50220-7 
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subsumption hierarchy in ontology sense, iii) class relationships 𝑅𝑖
𝐶  which form a set of 

bijective relationships 𝑟𝑖,𝑗 between all the elements of domain classes, iv) a subsumtion 

𝑅𝐶  of properties 𝑅𝑖
𝐶  , and v) extension 𝐸𝐶  of a class 𝑆𝑖

𝐼 which is defined by the relationship 

𝑅𝑖
𝐶  profiling the structural properties of the class by its relations with other classes. 

 

Figure 1 Model and data representation 

Model and data matching is performed on the request of the user for model/data discovery 

or formed by the input properties of requesting model for model/data integration. The 

matching process is based on i) metrics defined over model/data output properties 𝑃𝑖
𝑁𝑂 =

{𝑝𝑖,𝑗|𝑝𝑖,𝑗 ∈ ℝ, 𝑖 = 1,⋯ , 𝑛𝐶}𝑗=1
𝑁𝑂

 characterising them (only numerical output properties 

are taken into account) and representing the domain explicit knowledge, and ii) metrics 

defined over mutual position (distance measured in number of edges) of respective classes 

in the domain ontology, the InterCAPEmodel ontology, and representing the domain tacit 

knowledge. For matching the properties 𝐩𝑛, we define ℎ-metric ℎ𝑘
𝑉 as 

ℎ𝑘
𝑉 = {

𝐩𝑖⋅𝐩𝑗

‖𝐩𝑖‖‖𝐩𝑗‖
}
𝑖,𝑗=1

n

, 𝑘 = 1,2,⋯ , 2n (1) 

representing the measure known as the vector similarity. For metrics measuring the 

mutual position of respective 𝑆𝑖
𝐼 and 𝑆𝑗

𝐼 classes in the ontology, we define ℎ-metric ℎ𝑘
𝐶  as 

ℎ𝑘
𝐶 = min

𝑆𝐶
𝐼∈𝐻𝐼

[𝛿(𝑆𝑖
𝐼 , 𝑆𝐶

𝐼) + 𝛿(𝑆𝑗
𝐼 , 𝑆𝐶

𝐼)] (2) 

where 𝛿(𝑆𝑖
𝐼 , 𝑆𝐶

𝐼) (𝛿(𝑆𝑗
𝐼 , 𝑆𝐶

𝐼)) is the distance between classes 𝑆𝑖
𝐼 (𝑆𝑗

𝐼) and another class 𝑆𝐶
𝐼  

measured in number of intermediate edges in graph sense along subsumption 𝐻𝐶  and 

along selected 𝑅𝑖
𝐶  relationships. Final match is obtained as an aggregated similarity 

measure ℎ𝑘 as 

ℎ𝑘 =
𝛼ℎ𝑘

𝑉+𝛽ℎ𝑘
𝐶

𝛼+𝛽
 (3) 

where 𝛼 and 𝛽 are weighting factors deepening the semantics of the ontology similarity 

and their values are dictated by the application. The similarity ℎ𝑘 is then used to support 

decision in model and data integration and/or reuse. 

3. Implementation 

The semantic based decision support platform was implemented using semantic web 

technologies and knowledge graphs. The core functionalities include: i) Model/data 

Registration for registering a model with their Inputs, Outputs, Preconditions and Effects,  

ii) Model/data Publishing for sharing models and data, iii) Model/data Discovery for 

creating a set of candidate models and data for integration and/or reuse, iv) Model/data 

Selection towards most appropriate integration, and v) Model composition for integration 

and data exchange between the selected models and datasets. The architecture (Figure 1) 

Model
Inputs Outputs

Auxiliary 
inputs

Data
Outputs

Auxiliary 
inputs

a) Model representation b) Data representation

𝑃𝑖
𝑛𝐼  𝑃𝑖

𝑛𝑂  

𝑃𝑖
𝑛𝐸  

𝑃𝑖
𝑛𝑂  

𝑃𝑖
𝑛𝐸  
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of the platform follows the semantic web application principles in which various and 

heterogeneous data sources are considered, their mapping to the corresponding schema 

or ontology for providing a knowledge graph of concepts and associated instances 

(Kalemi et al. 2017). The platform is organised around the InterCAPEmodel domain 

ontology and well established OWL-S ontology. The InterCAPEmodel ontology defines 

a common vocabulary to capture the knowledge of various biorefining models or the 

supply chain network using taxonomy, attributes, and relations of the models and 

datasets. OWL-S framework (Martin et al. 2007), is a set of interlinked ontologies used 

to semantically describe web services. In the approach proposed in this paper, each model 

or dataset is considered as a web service and hence making use of OWL-S which 

semantically describes them in terms of their functionality, inputs required for successful 

execution, outputs generated in the course and after the execution, and preconditions 

(auxiliary inputs) needed for models to run. The model/data knowledge is acquired 

through the registration phase and concomitant assigning as ontology instances.  

The Model/data Discovery module is a core part of the platform based on the match-

making process. We have adopted a semantic matching which follows the three-stage 

input/output matching approach: i) elimination, where all datasets and models which do 

not satisfy the critical criteria are excluded from the selection list, ii) semantic matching 

by calculating similarity measures which defines the level of compatibility between the 

requested model/data and the candidate models/data as defined by eq. (3), and iii) ranking 

of the candidate models/data by similarity measure. The critical criteria is defined by the 

user during the formulation of the requesting model. Semantic matching process 

calculates the semantic relevance between the requesting model and all the models 

published in the repository. This is calculated as an aggregated value of distance measure 

(eq. (2)) signifying semantic similarity and property similarity (eq. (1)) (Koo et al., 2017). 

JAVA programming language and GraphDB in the form of a native RDF graph database 

are the key technologies used to implement this platform. The interfaces are designed 

using Bootstrap and Java Server Pages technologies and can be accessed through web 

browsers. OWLAPI, a Java library for manipulating OWL ontologies is used to verify the 

consistency of the knowledge base, perform reasoning and disseminate queries to the 

knowledge base via SPARQL Protocol. In collaboration with the reasoner (Pellet) and 

other supporting Java classes, OWLAPI, are checking the domain knowledge for 

consistency, parsing the inferred ontology for passing it to further elaboration from the 

front end, expanding the knowledge base with new instances of models or integrated 

models. 

Figure 4 demonstrates the platform interface for model/data discovery and concomitant 

integration. As the first step, the user defines the request, which contains the functionality 

of the requesting model, the characteristics and the inputs that it needs. In Step 2 a list of 

most suitable candidate models/data is provided ranked according to the matching level 

with justification of the match level. 
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Figure 2 Semantic based decision platform architecture. 

 

Figure 4 Model/data discovery interface 

4. Demonstration 

 

The performance of the proposed model and data integration is demonstrated by a 

commercial scale process flowsheet for biodiesel production from virgin vegetable oil 

and waste cooking oil (Zhang et al., 2003; Nguyen and Demirel, 2011). Each stage of the 

process, such as i) transesterification reaction, ii) methanol recovery, iii) glycerol 

separation and (iv) fatty acid methyl esters (FAME) purification, are separately registered 

as an instance in the repository to demonstrate the possible discovery of the models. Here, 

the model representing FAME purification is the last in chain and therefore identified as 

a requesting model. The required input component of this model is FAME, hence, the 

models that have FAME as an output are discovered as a potential match to the FAME 

Figure 3 Model discovery interface. 

 Step 2 

Step 1 

E. Vakaj et al. 



   

purification model. The discovery process was performed by backward matching process 

and the profiles of discovered models are listed in Table 1. The restriction to the FAME 

purification process is the presence of glycerol, therefore, the streams that contain 

glycerol are eliminated, as illustrated in Figure 5. Therefore, the user is presented with 

three models that have FAME as an output stream without the presence of glycerol in the 

stream. The combination of hexane extraction, water washing and glycerol separation 

processes represents a glycerol separation process. The second stage of backward 

matching is conducted to run the discovered models, which requires FAME and glycerol 

as inputs in the stream. As a result, a model representing methanol recovery process that 

obtains a good separation of methanol from FAME and glycerol was identified. In 

addition, as a final stage of matching, transesterification models using four different 

catalysts were discovered as potential matches to the methanol recovery model to form a 

network of process models representing biodiesel production from feedstock to final 

product. 

Table 1 Profile of processes offering potential match 

Process Model # Input 
Stream 

Input components per 
stream 

# 
Output 
Stream 

Output components per 
stream 

Hexane Extraction 2 S1. FAME, Glycerol 
S2. Hexane 

2 S1. FAME 
S2. Glycerol 
 

Water Washing 2 S1. FAME, Glycerol 
S2. Water 

Glycerol Separation 1 S1. FAME, Glycerol 

Methanol Recovery 1 S1. Methanol, FAME, 
Glycerol  

2 S1. Methanol (Recycle) 
S2. FAME, Glycerol 

Transesterification 1 3 S1. Waste Oil 
S2. Methanol 
S3. Catalyst: T1 - H2SO4 

                     T2 - H2SO4, 
NaOH 

2 S1. FAME, Glycerol, 
Methanol 
S2. Catalyst (Recycle) 

Transesterification 2 

Transesterification 3 3 S1. Virgin Oil 
S2. Methanol 
S3. Catalyst: T1 - NaOH 

                     T2 - Ca3La1 

Transesterification 4 
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Figure 5 Process of Elimination of the Models with Glycerol 

5. Conclusion 

The concept of using ontology in model and data integration was introduced to improve 

upon previous research with particular focus on i) flexibility (partial matching) and 

reusability (reuse of existing models and data), ii) coordination of every step in the 

process of model and data integration starting with model and data registration up to their 

invocation and execution. The semantic algorithm for establishing interoperability 

between the models and data is presented to reflect the knowledge based on technical 

compatibility and functional feasibility. The domain ontology embeds both tacit and 

explicit knowledge in the domain of biorefining modelling. Process models and data are 

semantically annotated in terms of input(s), output(s), precondition(s), the software 

environment in which they operate, as well as the functionality they perform. The 

ma5tching concept is fully justified and its implementation explained.  
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Abstract 

In this work, we focus on the problem of designing non-redundant sensor network for 

steady state nonlinear processes where minimum number of sensors are placed to ensure 

reliable estimation of all process variables. We propose to use an equation-variable 

matching approach as the basis for designing sensor networks. This approach is based 

only on the structural information of the system of equations and hence can be used for 

nonlinear systems without requiring any linearization or knowledge of operating values 

of the process variables and process parameters. Based on the obtained equation-

variable matching, a signal flow graph which represents the sequence of computation of 

various variables is constructed. Reliability of estimating each variable is then computed 

based on information extracted from the signal flow graph. The approach is applied to a 

nonlinear process case study to design optimal sensor network. 

Keywords: Reliability, Equation variable matching, Structural equations, Optimization. 

1. Introduction 

In a typical chemical process, it is generally not possible to measure each and every 

variable due to technical and economic issues, as well as due to complexities associated 

with collecting, and processing a large amount of data in real-time. Choosing 

appropriate variables to be measured in a process, is the sensor network design problem 

and is the focus of this work. Sensor networks can be designed to ensure satisfaction of 

various requirements such as those related to observability, estimability, reliability, etc 

[Bagajewicz and Sanchez, 1999]. For a well-designed sensor network, it is important to 

be able to estimate all the variables with high reliability, either based on their direct 

measurement or relationships with other variables as captured by a process model, given 

that sensors are prone to failure. The current work focuses on this aspect of reliable 

estimation. For linear flow processes, many graph-theoretic concepts based on spanning 

trees, cycles, cutsets, chord sets, etc. have been used to aide in the design of sensor 

networks for reliable estimation [Ali and Narasimhan, 1993, Prakash et. al., 2020]. 

Most of the real-world systems are nonlinear in nature. For nonlinear processes, the 

literature is comparatively scarce. While an approach to design sensor network based on 

cost and precision is available [DuyQuang and Bagajewicz, 2008], there is no reported 

work on ensuring reliable estimation for nonlinear processes. In this work, we focus on 

the problem of designing non-redundant sensor network for steady state nonlinear 

processes where minimum number of sensors are placed to ensure reliable estimation of 

all process variables. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50221-9 
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We propose to use equation-variable matching approach as the basis for designing 

sensor networks. Equation-variable matching approach is widely used in flowsheeting 

(process design) literature [Stadtherr et. al., 1984]. This approach is based only on the 

structural matrix of the system of equations and hence can be used for nonlinear systems 

without requiring any linearization or even the knowledge of operating values of the 

process variables and process parameters. Given a set of variables on which sensors 

have been placed, we propose to use equation-variable matching approach to match 

unmeasured variables to equations. A full matching ensures that based on the structural 

relationships amongst variables, the unmeasured variables can be estimated with the 

given set of sensors. Based on the obtained matching, a signal flow graph capturing the 

sequence of computation of various variables is constructed. This in turn allows us to 

compute the reliability of estimation of each variable given the failure probabilities of 

sensors on the measured variables. The optimal sensor network design then corresponds 

to the set of measurements which maximize the minimum reliability of estimation 

amongst all variables. The proposed approach is generic in the sense that it can be 

applied to any nonlinear process as it does not make any assumption about the form of 

the equations. 

The rest of the paper is organized as follows. The sensor network design problem for 

reliable estimation in nonlinear systems is discussed in Section 2. The proposed 

approach to compute reliability of estimation is discussed in Section 3. An example 

based on proposed approach is shown in Section 4. Further, case study is presented in 

Section 5., followed by conclusions and discussions in Section 6. 

2. Problem Definition 

Consider a nonlinear steady state process modeled as: 

𝑓(𝑥) = 0 (1) 

where 𝑥 ∈ 𝑅𝑛 are the process variables, and 𝑓 ∶  𝑅𝑛 → 𝑅𝑚represents the model 

equations which are nonlinear in nature. Further it is assumed that 𝑛 ≥ 𝑚. Given the 

model equations as Eq.(1), the sensor network design problem is to choose 𝑛 − 𝑚 

variables to be measured so as to maximize the minimum reliability of estimation 

amongst all variables. This is stated as: 

max
𝑞1,𝑞2,…,𝑞𝑛

   min
1≤𝑖≤𝑛

 𝑅𝑖 ∶  𝑠. 𝑡.  ∑ 𝑞𝑖
𝑛
𝑖=1 = 𝑛 − 𝑚, with 𝑞𝑖 ∈ {0, 1}, 𝑖 = 1, 2, … , 𝑛 (2) 

where, 𝑅𝑖 is the reliability of estimation of variable 𝑥𝑖 and 𝑞𝑖 is a binary variable 

indicating if variable 𝑥𝑖 is measured (𝑞𝑖 = 1) or unmeasured (𝑞𝑖 = 0). For linear mass 

flow system, computation of 𝑅𝑖 is well understood using graph theoretic concepts [Ali 

and Narasimhan, 1993, Prakash et. al., 2020]. However, for nonlinear systems this issue 

has not been addressed in literature and is the focus of the current work. 

3. Proposed Methodology 

Given a set of 𝑛 − 𝑚 measurements in a nonlinear process, we now propose an equation 

variable matching followed by depth-first search of a signal flow graph to compute 

reliabilities of estimation of all variables. These ideas are discussed next. Let 𝑀 be the 
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set of measured variables 𝑚𝑗 ∈ 𝑀, 𝑗 = 1, 2, … , 𝑛 − 𝑚, and 𝑈 be the set of unmeasured 

variables 𝑢𝑖 ∈ 𝑈, 𝑖 = 1, 2, … , 𝑚. 

3.1. Equation-Variable Matching 

As a first step in the proposed approach, each equation is matched to one of its incident 

unmeasured variable, i.e. to an unmeasured variable which occurs in that equation. This 

matching is done such that no two equations are matched to the same unmeasured 

variable, and similarly no two unmeasured variables are matched to the same equations. 

Matching problem is a well studied problem in literature with several applications and 

several tools to obtain maximum cardinality matchings [Hopcroft and Karp, 1973, 

Irving et. al., 2006]. The equation variable matching is based on structural matrix Z 

representation of the system of equations in the form of Eq.(1), such that 𝑍𝑖,𝑗 = 1 if 

variable 𝑥𝑗 appears in equation 𝑓𝑖, and is 0 otherwise. A full equation-variable matching 

where all the 𝑚 equations are matched ensures that the system of equations is 

structurally solvable to yield the values of the unmeasured variables. Lack of full 

matching implies that at least one unmeasured variable cannot be estimated. For the 

given set of measurements, to simplify the notation, assume that equation 𝑓𝑖 is matched 

to unmeasured variable 𝑢𝑖 , 𝑖 = 1, 2, … , 𝑚. The reliability of estimation of each variable 

can now be computed as discussed next. 

3.2. Reliability Computation 

The equation-variable matching information provides a sequence in which the variables 

can be estimated. In particular, variable 𝑢𝑖 can be estimated by solving 𝑓𝑖 for 𝑢𝑖. This in 

turn will need estimates of all other variables appearing in equation 𝑓𝑖 and thus 

reliability of estimation of 𝑢𝑖 can be obtained in principle by knowing the reliabilities of 

estimation of other variables occurring in 𝑓𝑖. However, the other unmeasured variables 

are also computed from their corresponding matched equations using similar concept 

and their reliabilities are dependent on the variables appearing in those equations. Only 

the measured variables are not matched to any equation. This sequential nature of 

variable computation can be represented by a signal flow graph [Robichaud et. al., 

1962] 𝐺 = (𝑉, 𝐸). A signal flow graph 𝐺 is a digraph, with 𝑉 being the set of vertices, 

and 𝐸 being the set of directed edges. Each vertex corresponds to a variable in the 

original system. An edge from node 𝑣𝑖 (corresponding to variable 𝑥𝑖) to 𝑣𝑗 

(corresponding to variable 𝑥𝑗) exists if variable 𝑥𝑖 appears in the equation which is used 

to compute variable 𝑥𝑗. Since measured variables are not computed from the equations, 

they will be the root nodes [Cormen et. al., 2001] (nodes with only output edges) in the 

signal flow graph. 

Depth first search based graph traversal [Reif, 1985] from a root node corresponding to 

measured variable 𝑚𝑖 in the signal flow graph is now performed to obtain the set of 

nodes which can be reached from this root node. The unmeasured variables belonging to 

this set of reachable nodes are the ones which require the value of 𝑚𝑖 for their 

computation. This depth first search traversal is performed from each root node. The 

reliability of estimation of any unmeasured variable 𝑢𝑖 is then simply the product of 

reliabilities of sensors of those measured variables from where 𝑢𝑖 is reachable, i.e. 

𝑅𝑢𝑖
= ∏ 𝑅𝑚𝑗

𝑚𝑗∈𝑆𝑖

, 𝑢𝑖 ∈ 𝑈 (3) 
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where, 𝑆𝑖 is the set of measured variables from which there is a path to variable 𝑢𝑖 in the 

signal flow graph. For the measured variables, the reliability of estimation is simply the 

reliability of the corresponding sensor being in working condition, i.e. 

𝑅𝑚𝑗
= (1 − 𝑠𝑗), 𝑚𝑗 ∈ 𝑀 (4) 

with 𝑠𝑗 being the failure probability of sensor used to measure variable 𝑚𝑗. For the 

given set of measurements, the system reliability is then the minimum reliability 

amongst all measured and unmeasured variables. We now present an example to 

illustrate the proposed ideas. 

Remark 1: In the above discussion, it has been assumed that the sensor failure events 

across different sensors are independent events. 

Remark 2: If full equation-variable matching is not obtained in the equation-variable 

matching step, then system reliability can be directly assigned a value of 0 without any 

further processing. 

4. Example 

Consider ammonia flow process [Ali and Narasimhan, 1993] for illustration here. The 

process is a mass flow process consisting of eight variables (flow rates) and five process 

units- each corresponding to a mass balance. The process graph is shown in Figure 1(a). 

The structural matrix of the system of equations is: 

 

(5) 

This process has eight variables and five equations, and hence three variables need to be 

measured for a non-redundant sensor placement. For illustration let the measurements 

be of variables {𝑥1, 𝑥4, 𝑥6}. Equation-variable matching is then performed using 

Dulmage-Mendelsohn decomposition (dmperm function in Matlab) [Dulmage and 

Mendelsohn, 1958]. The signal flow graph corresponding to this matching is shown in 

Figure 1(b). In particular, unmeasured variables 𝑥2, 𝑥3, 𝑥5, 𝑥7, 𝑥8 can be matched to 

equations 2, 3, 4, 5, and 1, respectively. Depth first search traversal is now performed 

on this graph to compute the set 𝑆𝑖 of measured variables from which there is a path to 

unmeasured variable 𝑖 in the signal flow graph. For example, set 𝑆8 for unmeasured 

variable 𝑥8 is 𝑆8 = {𝑥1, 𝑥6} and thus the reliability of estimation of variable 𝑥8 is 𝑅8 =
𝑅1𝑅6 = (1 − 𝑠1)(1 − 𝑠6). Similarly, the reliability expressions for all other variables 

can be computed and are listed as: 

𝑅2 = 𝑅1,  𝑅3 = 𝑅1,  𝑅5 = 𝑅1𝑅4,  𝑅7 = 𝑅1𝑅4,  𝑅8 = 𝑅1𝑅6  (4) 



where, 𝑅1 = (1 − 𝑠1), 𝑅4 = (1 − 𝑠4), 𝑅6 = (1 − 𝑠6) with 𝑠1, 𝑠4, 𝑠6 being the failure 

probabilities of sensors used to measure variables 𝑥1, 𝑥4 and 𝑥6, respectively. 

 

Figure 1: (a) Ammonia process graph [Ali and Narasimhan, 1993] (b) The signal flow 

graph with sensors on {𝑥1, 𝑥4, 𝑥6}  

We now present a case study of a nonlinear system to perform optimal sensor placement 

for reliable estimation. 

5. Case Study 

Consider a steady state nonlinear process shown in Figure 2(a) explained by [Maurya et. 

al., 2003]. The variables considered in the process are 𝑓, 𝑣, 𝑤, 𝑇, 𝑃, 𝑚, 𝑥𝑑1 , 𝑥𝑑2 , 𝑥𝑤1, 𝑥𝑤2 

with the sensor failure probabilities as 0.11, 0.12, 0.14, 0.21, 0.24, 0.32, 0.35, 0.38, 

0.30, 0.37, respectively. The mathematical model describing the process is given in 

Figure 2(b). 

 

Figure 2: (a) Flash Vaporizer [Maurya et. al., 2003] (b) Mathematical Model 

This process has ten variables and seven equations, hence the minimum number of 

measured variables is three. Thus, there are a total of (10
3

) = 120 choices. For each 

choice, the reliabilities of all the variables are computed using the equation-variable 

matching and signal flow graph traversal approach discussed in section 3. The minimum 

reliability across all the variables is the system reliability for that measurement 

combination. By solving the problem given in Eq.(2), the optimal reliability of system, 

𝑅𝑠𝑦𝑠 is 0.266. The variables chosen for optimum sensor placement are {𝑚, 𝑥𝑑2, 𝑥𝑤2}. 

Design of Non-Redundant Sensor Networks for Reliable Estimation in

Nonlinear Systems  
1331

 



1332  G. Patel et al. 

6. Conclusions 

A method to design non-redundant sensor network for reliable estimation for nonlinear 

processes has been proposed in the current work. Based on the concept of equation 

variable matching, the approach utilizes only structural information about the nonlinear 

equations and is hence applicable at the design stage as well. The utility of the approach 

was demonstrated by applying it to a nonlinear case study. Extension of the approach to 

optimally design redundant sensor networks is being currently investigated. 
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Abstract 
Due to the rapid increase of complexity in industrial process, feature extraction plays an 
important role in process monitoring. In conventional process monitoring methods, 
represented by multivariate statistical process monitoring (MSPM) method, global feature 
of process data is mainly considered, such as variance information. By contrast, the local 
feature of process data, obtained by preserving neighbourhood information, is preferred 
in newly emerging manifold learning method. Process monitoring methods with both 
global and local features of data were then proposed. Theoretically, better monitoring 
results can be expected with the consideration of both global and local features, but 
methods can be significantly different for the extraction of global or local feature, which 
requires better mathematical description of the global and local features ahead. However, 
there is no specific discussion on this topic in literature yet. To address this issue, A novel 
global-local feature preserving projection (NGLFPP) method based on adaptive linear 
local tangent space alignment is proposed. The neighbourhood of each sample is given 
adaptively by considering the local distribution of data. The local feature of data is 
obtained by modified tangent estimation. On the basis of the adaptive neighbourhood, 
geodesic distance is introduced to represent global feature of data. In order to extract 
global and local features of data simultaneously, a dual objective optimization function is 
constructed. Tennessee Eastman (TE) process is employed to validate the proposed 
method. 

Keywords: Global local feature preserving projection; Feature extraction; Local tangent 
space alignment; Adaptive neighbourhood; Geodesic distance. 

1. Introduction 
With the increase in the scale and complexity of industrial processes, process safety has 
become more and more important than ever. Process monitoring technologies, which aim 
at early detection of process faults, are attracting further attention. Due to the extensive 
use of distributed control system and advanced measuring instruments, large amounts of 
operational data were collected, which provides a foundation for data-driven process 
monitoring technology (Qin and Chiang, 2019). MSPM methods, represented by 
principal component analysis (PCA) and its variants, are the most intensively and widely 
studied data-driven process monitoring technique. However, the MSPM methods only 
focus on the global feature of the data represented by variance information and high-order 
statistics, while ignoring the local feature of the data expressed by neighbourhood 
information. In recent years, the emergence of manifold learning makes it possible to 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50222-0 
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preserve the local feature of data. Many manifold learning methods were first proposed 
for pattern recognition and their linear variants are further applied for process monitoring, 
such as local preserving projection (LPP) and neighbourhood preserving embedding 
(NPE). However, the global feature of data is not explicitly considered by the 
aforementioned methods. 

In view of the above problems, several monitoring methods were proposed, which can 
preserve the global and local features of data simultaneously. A unified framework 
namely global-local preserving projection (GLPP) was built based on LPP and it relies 
on a heat kernel function to provide neighbourhood information based on distance (Luo, 
2014). From another perspective, NPE based on neighbourhood reconstruction weights 
is also extended to preserve both global and local features of the data (Ma et al., 2015). 
As an effective local feature extraction method, linear local tangent space alignment 
(LLTSA) has rarely been extended to global-local feature extraction for process 
monitoring (Zhang et al.,2007). The main reason is that the performance of LLTSA is 
closely related to the accuracy of local tangent space estimation. PCA-based tangent space 
estimation in LLTSA assumes that the data are uniformly distributed, and that the 
neighbourhood space is locally linear. However, the above assumptions are often violated 
in real data. In addition, LLTSA only relies on the alignment of the neighbourhood 
tangent space to extract data feature, ignoring global feature of the data. 

To further improve the performance of methods in this category, a novel global-local 
feature preserving projection method is proposed. The adaptive neighborhood based on 
distribution density is first constructed. Weight based on distance and manifold curvature 
is introduced to improve PCA-based neighborhood tangent space estimation. With 
LLTSA, local feature of the data is obtained by aligning the tangent space coordinates. 
Based on the constructed adaptive neighborhood, geodesic distance is introduced to 
obtain the global feature of data. A dual-objective optimization function is constructed to 
fully retain the global and local features of data. Process monitoring method based on 
NGLFPP is then built for real-time process monitoring. 

2. NGLFPP Algorithm 
2.1. Neighbourhood Construction  

Among monitoring methods that preserve global and local features simultaneously, the k 
nearest neighbour (KNN) method is most commonly used to construct a neighbourhood 
for each sample. Since the local density distribution of data is usually different in real 
process, it is hard to describe the nearest neighbour for any data sample by a universal k. 
In addition, global feature represented by non-neighbourhood relations also depends on 
neighbourhood construction. Therefore, a density-based adaptive neighbourhood 
construction method is introduced to describe neighbourhood information of data (Ji and 
Yang, 2019). Given a data set 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛] ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, initial value k of the nearest 
neighbor is selected. The local density of sample xi is defined as follows: 

Dld(𝑖𝑖) = 1
𝑑𝑑𝑖𝑖1+𝑑𝑑𝑖𝑖2+⋯+𝑑𝑑𝑖𝑖𝑖𝑖

                                                                                                     (5) 

where dij denotes the Euclidean distance between data sample xi and its jth nearest 
neighbour. The average local density is calculated by the mean of local density as Eq.(6). 

Dald = 1
𝑛𝑛�Dld(1)+Dld(2)+⋯+Dld(𝑛𝑛)�                                                                                     (6) 



 
 

As shown in Eq.(7), the coefficient derived from the ratio of the local density to the 
average local density is calculated to adjust the initial number of nearest neighbors. The 
number of the nearest neighbor for data sample xi is computed as Eq.(8). The ceil function 
in Eq.(8) indicates that the number in the parentheses is rounded upward. 

𝐷𝐷𝑒𝑒𝑒𝑒(𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒 �(𝐷𝐷𝑙𝑙𝑙𝑙(𝑖𝑖) − 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎)/𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎�                                                                           (7) 

𝑘𝑘𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑘𝑘 × 𝐷𝐷𝑒𝑒𝑒𝑒(𝑖𝑖)�                                                                                                  (8) 

2.2. Local Feature Extraction  

Based on the above method, the local distribution of data has been considered. Further 
considering the inconsistent contribution of samples in the neighbourhood to the tangent 
space estimation, Zhang et al. (2011) proposed an improved local tangent space alignment 
(ILTSA) method based on distance weights. In addition, the assumption of local linearity 
for PCA-based local tangent space estimation will be violated when the curvature of the 
data manifold in the neighbourhood is large. So, weights based on distance and curvature 
in the neighbourhood are employed simultaneously to improve the accuracy of local 
tangent space estimation. The weight w is defined as Eq.(9). 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖𝐷𝐷 × 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐷𝐷𝐸𝐸�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖�
2/𝑡𝑡� × 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝐷𝐷𝐺𝐺�𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖𝑖𝑖�−𝐷𝐷𝐸𝐸�𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖𝑖𝑖�

𝐷𝐷𝐸𝐸�𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖𝑖𝑖�
�                  (9) 

where w𝑖𝑖𝑖𝑖
𝐷𝐷  and 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶  denote the weight based on distance and manifold curvature. 

𝐷𝐷𝐸𝐸�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�  and 𝐷𝐷𝐺𝐺�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖�  represent the Euclidean distance and geodesic distance 
between xi and its jth nearest neighbour xij. The value of the t is identified as the average 
value of the Euclidean distance between xi and its ki nearest neighbor samples. The 
optimization objective in tangent space estimation can be reformulated as follows: 

�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄
∑ 𝑊𝑊𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖 − 𝑄𝑄𝑇𝑇𝑄𝑄�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖��2

2𝑘𝑘𝑖𝑖
𝑗𝑗=1

𝑠𝑠. 𝑡𝑡.       𝑄𝑄𝑇𝑇𝑄𝑄 = 𝐼𝐼                                                      
                                                         (10) 

Similar to ILSTA, Eq.(10) can be transformed into Eq.(11), and projection matrix Q can 
be calculated by eigenvalue decomposition for each neighborhood Xi.  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄𝑇𝑇𝑄𝑄=𝐼𝐼

𝑡𝑡𝑡𝑡(𝑄𝑄𝑇𝑇(𝑋𝑋�𝑖𝑖𝑊𝑊𝑖𝑖)(𝑋𝑋�𝑖𝑖𝑊𝑊𝑖𝑖)𝑇𝑇𝑄𝑄)                                                                                 (11) 

where Wi is a diagonal matrix and Wi(j,j)=wij.Xi is defined as [𝑥𝑥𝑖𝑖1 − 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖2 −
𝑥𝑥𝑖𝑖 ,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖]. Consistent with the LTSA, the alignment of local tangent coordinates is 
calculated by minimizing global reconstruction error. The objective function of local 
feature extraction can be further represented as follows: 

𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ‖𝐸𝐸𝑖𝑖‖22𝑛𝑛
𝑖𝑖=1 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑟𝑟(𝑌𝑌𝑌𝑌𝑌𝑌𝑊𝑊𝑇𝑇𝑆𝑆𝑇𝑇𝑌𝑌) = 𝑚𝑚𝑚𝑚𝑚𝑚  𝑡𝑡𝑟𝑟(𝐴𝐴𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋𝑇𝑇𝐴𝐴)                 (12) 

where 𝑆𝑆 = [𝑆𝑆1, 𝑆𝑆2,⋯ , 𝑆𝑆𝑛𝑛] and YSi=Yi. W is a diagonal matrix consisting of Wi and A is a 
projection matrix which is defined as Y=ATX. 
2.3. Global Feature Extraction 

Inspired by GLPP, the distance between non-neighbouring samples is retained as a 
representation of global feature. Compared to Euclidean distance, geodesic distance is 
introduced due to its more accurate estimation of the non-neighbouring distance on the 
data manifold. Dijkstra algorithm is used to estimate the geodesic distance by calculating 
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the shortest path distance based on the adjacency graph. The objective function of global 
feature extraction is constructed as follows: 

𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑎𝑎𝑎𝑎𝑥𝑥 ∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖�
2𝑊𝑊�𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡(𝐴𝐴𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋𝑇𝑇𝐴𝐴)                                            (13) 

𝑊𝑊�𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐷𝐷𝐺𝐺�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
2/𝑡𝑡�   ( ) ( )  and i jj iif x x x x∉Ω ∉Ω

 

                                         (14) 

where DG(xi, xj) denotes the geodesic distance between xi and xj, and the value of t is given 
by the average value of the geodesic distance between non-neighboring samples. And L 
denotes a Laplacian matrix, which can be calculated as 𝐿𝐿 = 𝐷𝐷� −𝑊𝑊� . 𝐷𝐷�  represents the 
diagonal matrix, which can be calculated by 𝐷𝐷�(𝑗𝑗, 𝑗𝑗) = ∑ 𝑊𝑊�𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗 . 

2.4. Unified Objective for NGLFPP 

In order to preserve both local and global features of the data, a dual-objective 
optimization function is constructed as Eq.(15)： 

𝐽𝐽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = min 𝜂𝜂𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − (1 − 𝜂𝜂)𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = min 𝑡𝑡𝑡𝑡(𝐴𝐴𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋𝑇𝑇𝐴𝐴)                                  (15) 

where 𝑀𝑀 = 𝜂𝜂𝜂𝜂𝜂𝜂𝑋𝑋𝑇𝑇 − (1 − 𝜂𝜂)𝑋𝑋𝑋𝑋𝑋𝑋𝑇𝑇, η is a tradeoff parameter which can be determined 
adaptively by the spectral radius of the matrix. The orthogonal constraint ATA=I is 
introduced due to its computational advantages in the statistics and residual space. The 
above-mentioned optimization problem can be transformed into solving of the eigenvalue 
problem by the Lagrange multiplier method, and projection matrix A consists of the 
eigenvectors corresponding to the d smallest eigenvalues. 

3. NGLFPP-Based Process Monitoring  
As training dataset, normalized normal condition data set X is applied to NGLFPP 
algorithm so as to obtain the projection matrix A. In online monitoring, according to F-
distribution and χ2-distribution, two popular monitoring statistics of new sample xnew and 
their control limits are calculated as follows: 

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛2 = 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑇𝑇 𝐴𝐴𝛬𝛬−1𝐴𝐴𝑇𝑇𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 𝑑𝑑(𝑛𝑛−1)
𝑛𝑛−𝑑𝑑 𝐹𝐹𝛼𝛼(𝑑𝑑,𝑛𝑛 − 𝑑𝑑)                                                          (16) 

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛2 = ‖(𝐼𝐼 − 𝐴𝐴𝐴𝐴𝑇𝑇)𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛‖2 ≤ 𝑔𝑔𝜒𝜒ℎ,𝛼𝛼
2                                                                             (17) 

where 𝛬𝛬 = 𝑋𝑋𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇𝑋𝑋/(𝑛𝑛 − 1)  denotes the covariance matrix of Y. The complete 
procedure of NGLFPP-based monitoring method is presented as Figure 1. 

4. Case Study  
TE process is a well-known benchmark test for evaluating monitoring performance of 
different methods, and more details on TE process can be found in (Downs and Vogel, 
1993). 33 variables, including 22 measurement variables and 11 operation variables, are 
selected for monitoring purpose. Training dataset with 960 normal samples is used for 
model construction. The test dataset includes 21 fault types, and each test data contains 
960 samples. The performance of the proposed NGLFPP-based method is compared with 
PCA-based and GLPP-based monitoring methods. For PCA, nine latent variables are 
selected by cross validation (Lee et al., 2006). For a fair comparison, the same number of 
latent variables is chosen for GLPP and NGLFPP. The same number of nearest neighbors 
k=10 is determined for GLPP and NGLFPP. The confidence level for control limits of T2 
and Q statistics are set as 99 % for three monitoring methods. 



 
Figure 1 Monitoring diagram based on NGLFPP algorithm  

Table 1 FDRs (%) of different method on TE process 
 NGLFPP GLPP PCA 

Fault num T2 Q T2 Q T2 Q 

1 99.75 99.5 99.75 99.5 99.125 99.75 
2 97.25 98.5 94 98.5 98.5 96.125 
3 1.75 11.875 1.75 11.5 1.625 1.375 
4 84.25 96.625 41.375 96.625 6.5 99.875 
5 100 34.375 99.75 34.5 24.75 17.5 
6 100 99.625 100 99.5 99.25 100 
7 100 100 67.875 100 42.125 100 
8 96.125 98.625 79.375 98.625 96.75 89.25 
9 1.25 8.875 0.875 8.875 1.625 1.375 

10 72.375 54.375 80.875 54.875 31.875 16.75 
11 56.625 71.625 28 71.625 22.125 72.25 
12 99.125 99.375 94.75 99.375 97.25 89.75 
13 94.5 94.625 94.125 94.625 93.375 95.25 
14 99.875 100 92.5 100 81 100 
15 2.5 14.25 1.5 14 1.125 1.625 
16 78 39.875 87.875 38.75 13.75 16.375 
17 93 91.75 90.125 91.625 74 93.125 
18 90 90.625 89.875 90.75 89.125 89.75 
19 66.125 14.25 89.25 12.875 0.5 29.375 
20 81.75 58 73.875 57.125 32 44.875 
21 36.5 46.75 8.75 47.75 33.625 45.75 

Average 85.847 77.139 78.451 77.035 57.535 71.986 

Table2 Average FAR (%) of different method on TE process 
 NGLFPP GLPP PCA 

Fault num T2 Q T2 Q T2 Q 
Average 0.625 4.028 0.729 4.097 0.486 0.833 
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The fault detection rates (FDRs) of three monitoring methods for TE process are shown 
in Table1. Previous studies have shown that faults 3, 9 and 15 are difficult to detect 
because of their small magnitudes. The monitoring performances of the rest 18 faults is 
compared and their average values are calculated. The bolded numbers in Table1 
represent the best FDR for the corresponding statistic under each fault condition. For T2 
statistics, the proposed method gives the highest detection rate for 13 of 18 faults, and 
significant improvement for fault 4, 7 and 14. For Q statistics, the proposed method gives 
similar FDRs to GLPP-based method and higher FDRs compared to the PCA-based 
method on 10 of 18 faults, especially on faults 8,10,12. The performance of the proposed 
method can be further seen by the average FDR of 18 faults given in Table 1. False alarm 
rate (FAR) is also an important indicator for evaluating the monitoring performance, and 
average FARs of three methods for 18 faults are shown in Table2. Obviously, the 
proposed method has a lower average FAR for T2 statistics. Similar to GLPP-based 
method, the proposed method has a slightly higher average FAR for Q statistics compared 
with PCA-based method. In general, the proposed method has better performance than 
PCA-based and GLPP-based methods. 

5. Conclusion  
In this paper, a novel global-local feature preserving projection method is proposed. 
Considering the difference of local distribution, the density-based adaptive 
neighbourhood construction method is applied to determine local and global scopes of 
data. On this basis, a modified neighbourhood tangent estimation method is integrated 
into LLTSA to preserve the local feature of the data accurately. Furthermore, global 
feature of data based on geodesic distance is obtained. The above features of data are 
extracted simultaneously by constructing a dual objective optimization function. 
Therefore, the proposed method is more comprehensive in feature extraction of data, and 
gives better performance in process monitoring on TE process, compared to PCA-based 
and GLPP-based monitoring methods. 
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Abstract 

Inferential sensing techniques have been proven very successful in the field of fault 

detection and isolation, as they yield robust outcomes in a cost-effective and reliable 

manner. Herein, we propose a framework that deploys inferential sensors in the presence 

of noise and uncertainty, while focusing on the detection time and early sensitivity to 

faults. The most informative inferential sensor is derived through symbolic regression 

with an objective function that uses optimality criteria from information theory, wherein 

the sensitivity of the inferential sensors with respect to faults and uncertainty is estimated 

using the system digital twin. For deployment of the inferential sensors, the Cumulative 

Sum Control Chart method is employed and tuned to monitor deviations from the 

anticipated system performance. The proposed method is applied for the detection of 

faults in a crossflow plate-fin heat exchanger, at various levels of measurement noise and 

uncertainty, under transient operation. When compared to existing (hard) sensors, the 

inferential sensor provides intelligible deviations from the “fault-free” system response, 

thus enabling accurate and robust estimates for the initiation and progression of faults. 

Keywords: symbolic regression; inferential sensing; prognostics; diagnostics. 

1. Introduction 

Diagnostics and prognostics are key components of cyber-physical system digital twins 

to enable effective system monitoring and ensure safety (Vogl et al., 2019). The former 

encapsulates the process of fault detection and isolation based on prior knowledge of the 

entire system operation, thus generating an anticipated response that can be attributed to 

the failure mode. The latter, provides a forecast of future system conditions and potential 

failure timelines, given only present or historic information (Biggio et al., 2020). While 

diagnostics is an extensively studied field with a plethora of documented analyses and 

methods (Palmer & Bollas, 2019), research on prognostics coupled with inferential 

sensing techniques is limited and more challenging (Adams, 2019). Typically, inferential 

sensors combine available system inputs and outputs in either analytical expressions, or 

empirical relationships based on data (Hale & Bollas, 2020). Herein, we employ 

inferential sensing for the diagnosis and prognosis of faults in the presence of noise and 

uncertainty, focusing on the time for detection and early sensitivity to faults. The 

Cumulative Sum Control Chart (CUSUM; Montgomery, 2009) method is used and tuned 

to monitor present and future deviations from the anticipated system performance to 

determine potential failure initiation instances.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50223-2 
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2. Methods 

2.1. System model representation 

We assume the existence of an accurate dynamic system model for the system, expressed 

as a set of differential algebraic equations that are based on physical system knowledge 

or semi-empirical correlations:   

f(ẋ(t), x(t), u(t), θ, t) = 0,  (1) 

where f is the system governing equations, x(t) the vector of state variables, ẋ(t) the time 

derivatives, u(t) are the admissible inputs, θ the model parameters, and 𝑡 denotes the time. 

All model parameters remain invariant for a timespan, τ, within which Eq.(1) is accurate 

for steady-state and dynamic operation. Let ŷ be the measured outputs of the system as a 

function of states, inputs, and parameters, whose Ny components correspond to the 

available hard sensors: y ̂= h(x(t), u(t), θ, t). We define the inferential sensors, ẑ, as 

standardized functions of ŷ and u(t) based on the nominal value, ẑnom = g(y̅), with 𝑦̅ =
𝑦̂/𝑦̂nom. The vector of nominal values for the system outputs, ŷ

nom
, contains output values 

corresponding to predetermined values for the admissible system inputs, u. A (Ny + Nz)-

dimensional binary vector, a, can be introduced to define active and inactive sensors, 

depending on their use for a particular diagnostics or prognostics test. Note that Nz 

denotes the number of inferential sensors. For inactive sensors the respective index in a 

is equal to 0, while the positions of active sensors correspond to elements equal to 1. The 

vector of the system inputs u = [up(t), uq] contains the uncertain inputs, uq, as well as the 

controllable system inputs, up(t) = [up
1, up

2,…,up
Nk], with Nk denoting the number of 

changes in up during the examined period (i.e., the number of tests). Considering up
[k]

 that 

obtains acceptable values from a continuous test design space, Up, we can design tests  

k ∈ {1, …, Nk}. The vector of system parameters, θ, can be divided in three components, 

[θf, θq, θp], where θf are the parameters that represent faults, θq the parameters related to 

system uncertainty, and θp the known and invariant parameters that symbolize the system 

design. It follows that the faults, the parameters related to uncertainty, as well as the 

system inputs, are concatenated into a Nξ-dimensional vector, ξ = [θf, θq]∪[uq] = [ξ
f
, ξ

q
], 

whose elements are separated into faults, ξ
f
, and uncertainty, ξ

q
. Note that ξ is later 

employed during the optimization of the test design. We assume that the anticipated fault 

parameter values, ξ̃
f
, can be acquired from historical data of system components or are 

simply known a priori from past system operation. Moreover, faults are considered the 

only indicators of undesirable system performance, with the uncertainty parameters being 

part of the normal operation that should not lead to false alarms. Let l ∈ {1, …, Nl} denote 

the faults scenarios, with Nl being the total number, and ξ̃
f

[l]
 the anticipated fault scenarios. 

Then, each fault scenario, l, corresponds to a different fault level in ξ
f
, with the uncertainty 

vector ξ
q
 remaining constant and containing the mean values of the uncertain system 

parameters and inputs.  

2.2. Active FDI test design optimization 

Consider a vector  ϕ
[k]

 that contains a set of continuous variables up
[k]

, and a binary vector 

𝐚 related to sensor selection. Then, for all Nk, this design vector can be formulated as ϕ 

= [up
1, …, up

Nk, a]. The optimal FDI test design, ϕ*, is the product of a mixed-integer non-
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linear optimization program, which is founded on the maximization of the estimability of 

the faults as functions of the sensitivity of active sensors with respect to faults (Palmer et 

al., 2016) and, specifically, the minimization of the joint confidence between faults and 

faults with uncertain parameters. For dynamic tests (in which the system transient is 

monitored and used for FDI), the optimization problem is then as shown in Eq.(2):  

ϕ* = [up
*(τ1), …, up

*(τNk
), a] ∈ arg max

ϕ∈Φ
ln ΨDS

  

s.t. 

f(ẋ(t), x(t), up(t), θp, ξ̃, t) = 0, (2) 

ŷ = h(x(t), up(t), θp, ξ̃, t),  

xL ≤ x ≤ xU, ∀ t ∈ τ,  

up ⊂ Up,∀ t ∈ τ,  

where up
*(τk) denotes the optimal inputs for each test of timespan τk. The objective 

function selected for the optimization problem is the Ds-optimality criterion, ΨDs
, that is 

based on the Fisher Information Matrix (FIM), which encapsulates the existing 

knowledge about the faults and system uncertainty; see Eq.(3). The FIM, Hξ, can be 

evaluated as the resultant of three secondary matrices that correspond to ξ
f
 and ξ

q
; see 

Eq.(4). The foregoing submatrices Hff, Hfq, and Hqq, represent the covariance between (i) 

faults, (ii) faults and system uncertainty, and (iii) system uncertainty, respectively. 

Hξ

[l](ϕ, ξ̃) = [
Hff

[l]
Hfq

[l]

Hqf

[l]
Hqq

[l]
] =

∑ ∑ aiσi
-2Qi

[k,l]T
Qi

[k,l]Ny+Nz

i=1

Nk
k=1

∑ ai
Ny+Nz

i=1

   (3) 

H
ff

[l]
∈ R

Nf × Nf ,  Hfq

[l]
∈ R

Nf ×(Nξ
 −  Nf

)
,  Hqf

[l]
=(H

[l])
fq

T

,  Hqq

[l]
∈ R

(Nξ
 −  Nf

)×(Nξ
 −  Nf

)
  (4) 

where Nf denotes the number of fault parameters, and σi
2 is the measurement variance of 

the 𝑖𝑡ℎ output. The sensitivity matrix, Q, consists of the partial derivatives of the active 

hardware or/and inferential sensors, with respect to ξ (Palmer & Bollas, 2019). In more 

detail, the Ds-optimality criterion of Eq.(5), minimizes the covariance between the entire 

set of fault parameters, uncertain parameters, and inputs, towards increased fault 

isolation. Enhanced detection is achieved through the neglection of the covariance 

between the elements of ξ
q
. Note that summation over all possible fault scenarios 𝑁𝑙 

enables designs for different faults or fault severity levels, including the healthy state. 

ΨDs
(Hξ) = Nl

−1 ∑  
Nl

l = 1
log |Hff

[l]
− Hfq

[l](Hqq
[l])

−1
Hqf

[l]|
1/Nξ

 .  (5) 

2.3.  Cumulative Sum control chart 

The CUSUM is a type of control chart, which constitutes a particularly effective tool 

when small process shifts are of interest. It calculates the cumulative sums of the sample 

values deviations, by taking into consideration all the information in the respective 

sequence (Montgomery, 2009). The cumulative sums of deviations from a target are 

plotted in the CUSUM chart, which can be represented in a tabular form that provides an 

ease of interpretation and a robust control limit setting. Two statistics, namely the upper, 

Ci
+, and the lower, Ci

−, CUSUM charts, are constructed in the tabular CUSUM; see Eq.(6). 

Deviations above the target are accumulated in the Ci
+ statistic, while sub-target 

inconsistencies are collected in the Ci
− statistic. Along these lines, we have:  

Sum Chart of Inferential Sensors
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Ci
− = min{0, Ci−1

− +xi − μ + K}, and Ci
+ = max{0, Ci−1

+ +xi − μ − K}, (6) 

where 𝜇 denotes the target value, while the starting values C0
− and C0

+ are equal to 0. In 

case one of the Ci
+ and Ci

− violates the control limits set by the decision interval, H, the 

process is assumed out-of-control. Additionally, the reference value, K, must be selected 

properly to achieve an adequately quick detection, based on the respective out-of-control 

value (i.e., fault). It is worth mentioning that the critical tuning parameters H and K 

regulate the sensitivity of the CUSUM chart. Herein, the target value μ corresponds to the 

fault-free condition of the system, and K is set equal to σ, where σ is the standard deviation 

of the incorporated sensors. For H we assume a typical value equal to 5σ. 

2.4. Genetic Programming 

Genetic Programming (GP) is employed to discover functional relationships between the 

incorporated variables (i.e., symbolic regression). In each generation, the most 

informative inferential sensor is pursued and then maintained until a better one is derived. 

The Ds-optimality criterion incorporating solely inferential sensors was selected as the 

objective function in this study, although fusion of hard and inferential sensors is also 

feasible. In that sense, the program of Eq. (3) is updated to include the inferential sensors 

as the optimization variables, 𝛟𝐆𝐏 = 𝐳, which is solved for the FDI test design calculated 

from Eq. (3). After the most informative inferential sensor is obtained, it is employed in 

Eq. (3) as a new sensor and the FDI test design up is re-optimized. This operation iterated 

between FDI test design optimization and inferential sensor evolution (with Ds-optimality 

being the consistent objective) until the test design and functional form of the inferential 

sensor remain the same in consecutive iterations, when the process is terminated. 

Otherwise, the GP algorithm is trained with the new optimal system input, until 

convergence is achieved. For the calculation of the sensitivities of the inferential sensors, 

the chain rule of partial derivatives of automatic differentiation is applied, making the 

calculation of Ds-optimality in the symbolic regression step computationally inexpensive.   

3. Case Study  

The proposed framework was applied on a crossflow plate-fin heat exchanger (PFHE) 

system (Palmer et al., 2016), where the measured outputs correspond to temperatures and 

pressures of the outlet streams, y = [Tc, Th, Pc, Ph], and the system admissible input is the 

mass flow rate of the hot stream, up = ṁh,i (kg/s). The PFHE fault studied is thermal 

fouling resistance in the cold stream side of the PFHE, θf = 1 = Rf, subject to uncertainty 

that includes the cold air inlet stream moisture content, ωH2O ~ N (7, 4), and the cold air 

inlet temperature, Tin
cold ~ N (35, 25). The FDI test design and inferential sensors were 

optimized for three fault scenarios; namely: (i) a fault free case (Rf = 0.4), (ii) 20% 

blocked fouling (Rf = 1.6), (iii) 50% blocked fouling without error (Rf = 4). The FDI 

design is aware of the model parameters that represent uncertainty and the standard 

deviation of the hard sensors, but not the exact instantiations of uncertainty and noise that 

the system may exhibit. In non-exact terms, the goals of FDI test design and inferential 

sensor optimization are to minimize the covariance between fault parameters, and fault 

parameters and uncertainty. Then, to investigate system performance in various operating 

scenarios, we examine two cases of PFHE performance, in which we injected uncertain 

parameters [ωH2O,Tin
cold]= [5.6, 46], and [ωH2O,Tin

cold]= [12, 35], respectively. In both, we 

also inject a linear increase in the PFHE fouling that starts at 𝑡 = 100 s (Rf = 0.4) and lasts 

for ∆t = 360 s (Rf = 4). 

E. Safikou  and G. M. Bollas



4. Results – Discussion 

For brevity, in Fig. 1 we present the outcomes of the CUSUM chart for a single hard 

sensor (i.e., T c). As illustrated in Figs. 1a and 1c, for the first case described in Section 3, 

a fault is erroneously detected by CUSUM at time 𝑡 = 3 s, due to the instantiation of 

uncertainty and noise. Figs. 1b and 1d (i.e., for the second case) show that in a different 

uncertainty scenario, the system is out-of-control at 𝑡 = 288 s, when the fouling level is 

close to 20% - blocked. The required time for fault detection is 188 s. The foregoing 

observations manifest that CUSUM is unpredictable when employed solely with hard 

sensors to detect system faults in the presence of noise and uncertainty. 

 

Figure 1. Hard sensor timeseries for linearly increasing fault, in the cases of (a) [ωH2O,Tin
cold]= 

[5.6, 46], and (b[ωH2O,Tin
cold]=) [12, 35], with (c, d) the respective results of the CUSUM chart. 

The first examined case seems more challenging for CUSUM, thus is adopted for the 

implementation of the optimal inferential sensor, obtained by using the same system 

outputs as the independent variables of symbolic regression. The functional form of the 

Ds-optimal inferential sensor is shown in Eq.(7) and it is notably simple and explainable. 

The inferential sensor uses the ratio of outlet temperatures as the key driver to decrease 

the evidence of uncertainty and improve the estimability of the fault: 

ZDs= [(Tc − 4.7440)/Tc + (Tc/2)/Th] 1.6556⁄   (7) 

In Fig. 2, we can observe that the inferential sensor detects the existence of a fault at time 

𝑡 = 362 s (i.e., after 262 s). The value of the fault at that time is 𝑅𝑓 = 3 (see Fig.2b), 

which is slightly larger than 20% blocking of the PFHE (i.e., 𝑅𝑓 = 1.6) , but smaller than 

the value of 50% blocked that constitutes the maximum assessed fault level (i.e., 𝑅𝑓 =

4). While there is noise in its sequence (see Fig. 2a), the inferential sensor reduces the 
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deviations induced by epistemic uncertainty, thus enabling the robust and effective 

detection of faults in the dynamic test. It is important to note that the CUSUM chart 

method is more effective when small shifts in the sensor sequence take place. However, 

the fluctuations when using solely hard sensors are erratic; see also Fig. 1a. In contrast, 

the incorporation of an inferential sensor provides much smoother deviations (see Fig. 

2a), thus making them particularly suited for use along with CUSUM charts. This was 

also consistent for the fault and uncertainty scenario studied in Figs. 1b and 1d, where the 

inferential sensor produced no false alarms and detected the PFHE fouling at 𝑡 = 200 s, 

(fouling level under 20%), earlier than the most informative hard sensor, T c.   

 

Figure 2. (a) The timeseries of the inferential sensor, with a linearly increasing fault. (b) The 

respective tabular form of the CUSUM chart. 

5 . Conclusions 

We showed that the CUSUM chart method is effective for FDI when small deviations 

from the target sequence (i.e., fault-free scenario) occur. The use of CUSUM, however, 

solely with hard sensors induces erratic sequence fluctuations, thus hindering accurate 

fault detection. On the other hand, the employment of inferential sensors via the proposed 

framework, was shown to mitigate such issues. Therefore, we argue that the combination 

of CUSUM charts and inferential sensing techniques can constitute a robust tool for fault 

diagnosis and prognosis.  
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Abstract 

Subsea images captured on-site can be used to quantify gas leakage in the subsea 

environment. In this work, gas leakage in reduced conditions was simulated by 

Computational Fluid Dynamics (CFD). The aim is to develop a computational vision 

tool to quantify the leakage. The images generated from CFD simulations were 

processed by a convolutional neural network (CNN) structure, the U-Net. A class is 

attributed to each image pixel, and a post-processing algorithm computes the 

corresponding bubble area. Two cases were carried out: image segmentation into two 

(water and bubble) and three classes (bubble interface included). The multi-class U-Net 

shows a good agreement with CFD results compared to the binary one because 

separating the pixels into just two categories leads to bubble diameter overestimation.  

Hence, this method is of potential use in fault detection and diagnosis and could support 

the decision-making process on deepwater leakage remediation. 

Keywords: gas leakage; machine learning; convolutional neural network; process 

safety. 

1. Introduction 

Subsea oil and gas activities demand safety procedures and constant monitoring to 

prevent impact on marine ecosystems and financial losses for the operating companies 

(Figueredo et al., 2022). Several resources might take hold for this purpose. For 

instance, real-time leakage filming is possible with the Remotely Operated Vehicles 

(ROV) equipped with a camera onboard. These images, however, provide information 

only on whether the leak is occurring. For a better assessment, it is of great interest to 

develop a quantitative tool to support the decision-making process of intervention.   

A possible parameter for the leak estimation is the bubble diameter (Jamialahmadi et al., 

2001), which could be computed using image processing techniques. More recently, 

convolutional neural networks (CNN) - a type of Machine Learning (ML) algorithm – 

became part of these techniques (Goodfellow et al., 2016). CNNs are sparsely 

connected neural networks, i.e., not all neurons are connected to the ones of the 

subsequent layers. As a result, it saves plenty of computational resources when dealing 

with tensor data such as images and sounds (Krizhevsky et al., 2012). In a CNN 

structure, the first argument is the input, and the second one, the kernel (filter). 

Typically, the input is a tensor containing the image height, width, and input channels 

(colors). The output is called the feature map, which stores the characteristics of the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50224-4 
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input data and simultaneously reduces its size by using a kernel smaller than the matrix 

– this is the reason for the sparse connectivity. The kernels’ number, shape, and 

activation function are hyper-parameters defined by the user (Goodfellow et al., 2016). 

Convolutional neural networks have already been applied to fault detection and 

diagnosis problems. Wu and Zhao (2018) verified its usefulness on the Tennessee 

Eastman process. The relation between different process variables and sampling time is 

concatenated into two-dimensional matrices, adequate for CNN computing. The fault 

diagnosis rate scored 88.2 %. Li et al. (2018) proposed a CNN to detect chemical 

leakage in hydrocarbon tanks based on image recognition. They obtained 85.82 % 

accuracy. Bai et al. (2021) developed a real-time classifier of gas dispersion state in a 

bubble column using a novel CNN architecture named BubbleNet. It differentiated flow 

conditions according to bubbles’ size and shape after being trained to a labeled dataset. 

It scored 97.8 % and 97.5 % of the performance for the training and test, respectively.  

In some chemical engineering applications with multi-phase flows, e.g., liquid-liquid 

extraction, it is fundamental to know the particle size distribution, a variable of interest 

for the transport phenomena control. Schäfer et al. (2019) investigated it using a 

particular convolutional neural network, the U-Net.  This network was designed for 

image segmentation (Ronneberger et al., 2015), an application interested in localizing 

objects and boundaries by partitioning the image pixels into various segments. Thus, the 

U-Net permits phase fractions distinction. Another advantage is that post-processing 

enables the calculation of the droplet size distributions from the U-Net output. 

Therefore, the present study aims to develop a system capable of quantifying leakages 

in subsea processes employing the U-Net convolutional neural network. 

2. Methodology 

We carried out reduced model simulations of gas leakages employing Computational 

Fluid Dynamics (CFD). Reduced model is a technique that is used to save 

computational costs by downscaling the original phenomenon. For instance, it 

reproduces an event from the subsea scale to the laboratory. Gas leakages are released 

with different velocities (v) and from different orifice diameters (d).  The initial value 

problem is solved via a finite volume method. The Volume of Fluid (VoF) method is 

employed to model the two-phase gas-liquid flow. Continuity and the unsteady RANS 

(Reynolds-Averaged Navier-Stokes) equations are satisfied in the fluid domain, with the 

classical κ-ε turbulence model being used. The CFD results are being validated with 

experiments and semi-empirical models. They agree on the trend found in the literature 

(Jamialahmadi et al., 2001). The simulation was carried out in ANSYS Fluent software, 

producing videos that represent the leakage. Each video frame generated an image set, 

totalizing 3159 images from the different conditions. 

In a second step, the images are forwarded to a CNN model, called the U-Net structure. 

The main goal of this architecture is to classify each pixel individually as belonging to 

some class. The images are the input for training this network, and the targets are the 

masks created by a segmentation method. The CNN was developed in Keras 

environment employing Python with Tensorflow as backend. The segmentation was 

carried out using the unsupervised Otsu's methodology (Otsu, 1979) in the Scikit Image 

library written in Python. It is an algorithm whose aim is to find a threshold that can 

divide the pixels of a grayscale image into two clusters (classes): foreground f and 

background b. A threshold t is searched, such that the intra-class variance, represented 
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in Eq. 1, is minimized (and the inter-class is maximized as well). The weights ω 

calculated contain the probabilities of a pixel to belong to one of the classes. In this 

case, classes are water (label zero) and bubble (label one). Given the importance of 

phase fraction when accounting bubble diameter, the problem was extended to multi-

segmentation, in which the interface is labeled as number two. Multi-level thresholding 

can be performed as described by Otsu (1979).  

σw(t)
2 = ω𝑏(t)σb

2(t) + ω𝑓(t)σf
2(t) (1) 

The U-Net structure is shown in Figure 1. It is composed of a down-sampling part: 

successive blocks of convolutional 2D layers with filters of window dimension 3x3 and 

initialization “He” followed by 20 % dropout; a second convolutional layer; and a max 

pooling layer, which takes the maximum value over the window 2x2. In the next block, 

the number of filters is doubled (starting with 32). The second part comprises the up-

sampling operations: transposed convolution (deconvolution) layers with filters 2x2 and 

stride 2x2. Information is concatenated from the corresponding feature maps of 

convolutional and deconvolutional layers. Another two convolutional layers are present 

on each block with half of the filters from the previous up-sampling block. The batch 

size is 128. 

 

Figure 1: The U-Net architecture. 

 

The total number of parameters for the binary class and the multi-label segmentation 

problems are 7,759,521 and 7,759,587, respectively. The metric used in this case was 

the Dice-Sørensen coefficient (Eq. 2a), which computes the similarity between the 

actual and predicted samples in relation to the group. It is important to use one-hot 

encoding format for the multi-class problem. Thus, the dice coefficient is extended for 

each class C (Eq. 2b). For the one-hot encoding format, the categorical cross-entropy 

(Eq. 3) was employed as a loss function to be minimized.  

𝐷𝑆𝐶 = ∑
2 ∑ ∑  𝑦̂ij,n ∗  yij,n

48
i=0

128
j=0

∑ ∑  𝑦̂ij,n + ∑ ∑ yij,n
48
i=0

128
j=0  48

i=0
128
j=0

N

n=1

 (2a) 
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𝐷𝑆𝐶 = ∑
DSCc

C

𝐶

c=1

 (2b) 

𝐶𝐶𝐸 = −
1

𝑁
∑ ∑ ∑ ∑ 𝑦𝑐,𝑖𝑗,𝑛

𝐶

𝑐=1

48

𝑖=0

128

𝑗=0

𝑁

𝑛=1

𝑙𝑜𝑔 𝑦̂𝑐,𝑖𝑗,𝑛 (3) 

3. Results and Discussion 

Figure 2 shows an image sample (U-Net input), the corresponding binary segmentation 

mask, and the mask predicted. Bubble statistics are presented in Table 1.  

 

(a)                 (b)                     (c) 

Figure 2: Snapshot of a sample: (a) U-Net input. (b) Mask generated by the binary 

Otsu's thresholding (U-Net target). (c) Mask predicted by the binary U-Net. 

Table 1: Binary U-Net: predicted 𝑑̂𝑏 against expected numerical diameter 𝑑𝑏. 

d (mm) v (m/s) 𝑑𝑏  (mm) count 𝑑̂𝑏 (mm) 

mean 

𝑑̂𝑏 (mm) 

std. dev. 

0.5 0.25 6.45 350 7.82 0.36 

0.5 0.625 7.22 369 9.79 1.16 

0.5 1.0 7.69 374 10.19 1.95 

1.0 0.24 6.37 317 9.44 0.94 

1.0 0.37 6.46 311 9.95 1.72 

1.0 0.5 7.28 377 11.74 2.01 

5.0 0.02 6.70 373 8.67 0.37 

5.0 0.055 8.05 308 10.51 0.96 

5.0 0.09 8.11 380 12.14 2.30 
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The U-Net output is very similar to the target as the Dice-Sørensen coefficients for 

training and validation imply: 0.9915 and 0.9888, respectively. An overestimation is 

reported when comparing the expected numerical diameter 𝑑𝑏 with the predicted one 

(𝑑̂𝑏). The reason is that the binary Otsu's thresholding does not set apart the interface 

and the bubble. This factor influences the area for calculation.  

Due to the overestimation, it was decided to investigate further and add a phase fraction, 

turning the problem into a multi-class one. Figure 3 shows the analog result to Figure 2. 

The resulting mask resembles much more to the original image when compared to the 

previous case. The training was also successful. The multi-dice coefficient for training 

and validation reported 0.9507 and 0.9573, respectively. Similarly, the categorical 

cross-entropy loss found was 7.14 x 10-3 (training) and 5.34 x 10-3 (test). The predicted 

diameter by the multi-class U-Net shows a good agreement with the expected numerical 

diameter, as statistics shown in Table 2. Low standard deviations suggest that the 

biggest bubbles are relatively uniform for each dataset. Deviations from the actual 

values do not exceed 10 %, except for the 1.0 mm diameter crack cases.  

 
(a)              (b)                   (c) 

Figure 3: Snapshot of a sample: (a) U-Net input. (b) Mask generated by the multi-label 

Otsu's thresholding (U-Net target). (c) Mask predicted by the multi-class U-Net. 

Table 2: Multi-class U-Net: predicted 𝑑̂𝑏 against expected numerical diameter 𝑑𝑏. 

d (mm) v (m/s) 𝑑𝑏  (mm) count 𝑑̂𝑏 (mm) 

mean 

𝑑̂𝑏 (mm) 

std. dev. 

0.5 0.25 6.45 350 6.13 0.34 

0.5 0.625 7.22 369 7.23 0.90 

0.5 1.0 7.69 374 7.41 1.23 

1.0 0.24 6.37 317 7.13 0.73 

1.0 0.37 6.46 311 7.34 1.22 

1.0 0.5 7.28 377 8.39 1.37 

5.0 0.02 6.70 373 6.67 0.32 

5.0 0.055 8.05 308 7.68 0.69 

5.0 0.09 8.11 380 8.66 1.74 

Quantifying Subsea Gas Leakages using Machine Learning: a 

CFD-based study 
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Regarding the model convergence, each model's total training time lasted around 1h30 

min (2.5 - 3 min/epoch) in an Intel Core i5-10210. It has achieved less than 0.10 of loss 

in the fifth epoch, and after 15 epochs, more than 0.90 of Dice similarity coefficient.  

4. Conclusions 

A novel methodology was presented to quantify gas leakages that can be applied in a 

subsea environment, combining convolutional neural networks and a segmentation tool. 

The U-Net enabled the multi-segmentation post-processing to reach good predictability 

of the bubble diameter (less than 10 % deviation in general, the worst case was 15.24 % 

deviation). It is noteworthy that this performance was achieved with a relatively low 

amount of data (3159). For future works, the validation of the methodology is in 

progress by exposing the CNN to experimental data. 
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Abstract 

Successful implementation of chemical production systems requires an effective 

mechanism to assess dynamic risk quantitatively. Existing works of dynamic risk analysis 

are based on mechanism examination and probability estimation. Complexity arises due 

to the difficulty while collecting historical accident data. Also utilizing the indicators 

obtained from the combination of multivariate variables cannot clearly represent the 

relationship between physical components and safety. To address the shortcomings of the 

existing methods, this paper proposed a dynamic risk analysis method for process safety. 

This is achieved by firstly using canonical variable analysis (CVA) to monitor the system, 

and then computing the remaining useful life (RUL) from simulation as the indicator 

representing the dynamic risk. A coal slurry gasification process is applied to illustrate 

the effectiveness of the proposed method. The method has the potential for the industry 

to understand how a failure occurred and at what time to prevent. 

Keywords: Fault detection; Failure prognosis; Safety prediction; Dynamic risk analysis 

1. Introduction 

Modern chemical processes are becoming complex, which further arises the challenges 

to the safety of chemical production. The traditional chemical safety assessment is mostly 

subjective associated with risk analysis, while many risk methods are based on the 

knowledge and experience of the experts who conduct the analysis. No doubt, this would 

cause deviations among different experts. Although the ISO31000 has addressed a 

standard way to analyse risk by including experts from different perspectives to 

compromise the deviations, there are still weakness, for example, time-consuming.  

Risk is used to represent the safety of a process. Recent studies were focused to develop 

quantitative or dynamic methods to analyse the risk for the chemical process. An efficient 

process monitoring scheme is able to capture the complex relationships among the 

interacting process variables and also to estimate the risk of the process continually (Amin 

et al.,2020). The current dynamic risk methods are often developed based on historical 

data or operation data (Zio, 2018). Historical statistics data is also known as Accident 

Sequence Precursor (ASP) data, which refers to the data recorded via historical accidents. 

Amin et al. (2020) used a combination of the naïve Bayes classifier, Bayesian network, 

and event tree analysis to detect and diagnose the fault, and obtain the probability that 

indicates the dynamic failure prognosis.  Alternatively, to ensure a reliable result, a large 

amount of ASP data is often required. Some other methods are using operational data to 

examine the safety risks. Zadakbar et al. (2013a) used a combination of the multivariate 

statistic method and probability model to assess the system dynamic risk. Other risk 

analysis works are using prognostic methods; however, these works are often bespoke. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50225-6 
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Some other research has utilized the model-based method to demonstrate the 

development of the system to get the dynamic risk (Zadakbar et al., 2013b). However, it’s 

difficult to attain the precise model for the complicated process, or the modelling cost is 

not acceptable. In addition, recent process monitoring methods are usually based on the 

indicators obtained by multivariable combinations, which cannot clearly reveal the 

relationship between specific physical meaning and safety indicators. 

The purpose of the work is to propose a method independent of the mechanism model 

and probability model that analyses the evolution from fault to failure using dynamic risk 

analysis. The dynamic risk in this paper is the relative risk which is compared with the 

risk within the time series of the system itself. Canonical variables analysis (CVA) is 

utilized to detect the fault and identify the subspace model, then simulate the safety 

critical variables to get the system remaining useful life (RUL), which represents the time 

from fault to failure. The RUL is utilized as the metric of system dynamic risk. 

The rest of the paper is organized as follows. Section 2 introduces a specific method 

framework, and then, the proposed approach is demonstrated to be effective through a 

gasification case study in Section 3. Finally, the paper is concluded in Section 4. 

2. Methodology 

The overall methodology has been concluded in Figure 1. We need to analyse the safety 

critical variables (SCVs) and their threshold values in advance. The definition of SCVs 

can be seen in previous work (Ji et al., 2021). And the SCVs are considered as the directed 

standard that assesses whether system failure occurs. Once any SCVs is out of the 

threshold, the system will be regarded as having a failure. Next is to monitor and identify 

the system using CVA method. If a fault is detected at a point in time, the identified model 

is used to simulate the SCVs at each point of time until any SCVs exceeds threshold. We 

can obtain the RUL for each point of time, which is regarded as an indicator that reveal 

the system relatively dynamic risk, and can provide in-time information with reference 

value to the operators that shows current dynamic risk and the degree of urgency to solve 

the fault. 

Figure 1 Research Approach 

2.1. Safety critical variable analysis 

There are adequate traditional methods to analyse system safety, such as event tree 

analysis, fault tree analysis, bow-tie analysis, and HAZOP. The above methods can be 

used for SCV selection.  
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2.2. System monitoring 

The proposed process monitoring method is based on the CVA (Ruiz-Cárcel et al, 2016). 

It can be divided into two parts: Off-line modelling and On-line monitoring. 

1) Off-line modelling 

Assume 𝑦 and 𝑢  are the outputs and the inputs of the system after pre-processing of 

normal operation dataset. The past and future vectors 𝑝𝑡  and 𝑓𝑡 of current time point can 

be defined as Eq. (1), where 𝑝 and 𝑓 are the hysteresis. 

Then we get the past and future Hankel matrix 𝑃𝑡 and 𝐹𝑡. And the number of columns of 

Hankel matrix can be calculated as N =  𝑛 − 𝑝 − 𝑓 +  1 , where 𝑛 means the sample 

number. 

𝑃𝑡 = [𝑝𝑡 , 𝑝𝑡+1, … , 𝑝𝑡+𝑁−1]         𝐹𝑡 = [𝑓𝑡 , 𝑓𝑡+1, … , 𝑓𝑡+𝑁−1] (2) 

The solution for the optimization problem to find the linear combination that best 

correlates both data sets can be obtained by using the Singular Value Decomposition 

(SVD) of the Hankel matrix 𝐻, where  ∑𝐴,𝐵 represents the sample covariance matrix of 

two matrices 𝐴 and 𝐵. 

𝐻 =  ∑𝐹𝑡,𝐹𝑡

−1/2
  ∑𝐹𝑡,𝑃𝑡  ∑𝑃𝑡,𝑃𝑡

−1/2
= 𝑈𝐷𝑉𝑇 (3) 

The reduced matrix 𝑉𝑟  can be taken by selecting the columns of 𝑉  related with the 𝑟 

highest eigenvalues from 𝐷 . And the rest 𝑞  columns of matrix 𝑉  is recorded as 𝑉𝑞 . 

Calculate state vector 𝑥𝑡, change vector 𝑒𝑡 outside state space, residual vector 𝑟𝑡 based on 

mapping matrix 𝐽, 𝐿, 𝑅 according to Eq. (4). And  𝑥𝑡 = 𝐽𝑝𝑡  , 𝑒𝑡 = 𝐿𝑝𝑡  , 𝑟𝑡 = 𝑅𝑝𝑡 . Then the 

Hotelling and SPE statistics can be calculated as 𝑇𝑠
2  = 𝑥𝑡

𝑇𝑥𝑡  , 𝑇𝑟
2  = 𝑒𝑡

𝑇𝑒𝑡 , 𝑄 = 𝑟𝑡
𝑇𝑟𝑡 . 

𝐽 = 𝑉𝑟
𝑇∑𝑃𝑡,𝑃𝑡

−1/2
             𝐿 = 𝑉𝑞

𝑇∑𝑃𝑡,𝑃𝑡

−1/2
             𝑅 = 𝐼 − 𝐽𝑇𝐽 (4) 

And for identification of the state space model, given a set of inputs 𝑢 and outputs 𝑦, the 

model that represents the linear state-space can be described as Eq. (5). The system 

outputs 𝑦𝑘  and inputs 𝑢𝑘 are known and 𝑥𝑘 can be obtained from CVA analysis, the only 

unknowns of the system are the matrices 𝐴, 𝐵, 𝐶, 𝐷. The multivariate regression can be 

used for the calculation of these matrices. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤    𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣 

[
𝐴 𝐵
𝐶 𝐷

] =  ∑ [(
𝑥𝑘+1

𝑦𝑘
) , (

𝑥𝑘

𝑢𝑘
)] · ∑ [(

𝑥𝑘

𝑦𝑘
) , (

𝑥𝑘

𝑢𝑘
)]

−1

 
(5) 

2) On-line monitoring 

The new process data can also be organized as the form of past vector 𝑝𝑡,𝑓𝑎𝑢𝑙𝑡 , and 

according to Eq. (4), we can obtain the state vector 𝑥𝑡,𝑓𝑎𝑢𝑙𝑡. Then we can get the SPE and 

Hotelling statistics of the new process data. Then the process can be monitored by 

comparing the statistics with the corresponding threshold. If the threshold is continuously 

exceeded, the system is considered being in faulty. 

𝑝𝑡 = [𝑦𝑡−1
𝑇 , … , 𝑦𝑡−𝑝

𝑇 , 𝑢𝑡−1
𝑇 , … , 𝑢𝑡−𝑝

𝑇 ]𝑇       𝑓𝑡 = [𝑦𝑡
𝑇 , 𝑦𝑡+1

𝑇 , … , 𝑦𝑡+𝑓
𝑇 ]𝑇 (1) 
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2.3. Dynamic risk analysis 

For the new process, if a fault is detected, the state space model is updated in real time 

after 30 sampling intervals. In order to improve the accuracy of multi-step simulation, the 

model coefficient is retrained. The specific method is shown as Eq. (6-7). According to 

the identified model, SCV is simulated over time until one of them exceeds the threshold, 

and the number of steps is recorded as RUL. Take the RUL as the indicator for the relative 

dynamic risk and its evolution trend. 

𝑦̂𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣 

𝑥̂𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤        𝑦̂𝑘+1 = 𝐶𝑥̂𝑘+1 + 𝐷𝑢𝑘+1 + 𝑣    ... 

𝑥̂𝑘+𝑛 = 𝐴𝑥̂𝑘+𝑛−1 + 𝐵𝑢𝑘+𝑛−1 + 𝑤         𝑦̂𝑘+𝑛 = 𝐶𝑥̂𝑘+𝑛 + 𝐷𝑢𝑘+𝑛 + 𝑣 

(6) 

𝐿1(𝐴, 𝐵, 𝐶, 𝐷) = 𝑎𝑟𝑔𝑚𝑖𝑛(‖ [𝑦̂𝑘 𝑦̂𝑘+1 ⋯ 𝑦̂𝑘+𝑛] − [𝑦𝑘 𝑦𝑘+1 ⋯ 𝑦𝑘+𝑛] ‖2
2) (7) 

3. Application of the proposed methodology 

3.1. Introduction of the coal slurry gasification 

Coal water slurry gasification is an entrained flow gasification process for generating 

syngas under high temperature and high pressure with coal water slurry as raw material 

and oxygen or air as gasification agent. The main component of syngas is carbon 

monoxide, carbon dioxide and hydrogen. The gasification process applied as a case study 

is based on a dynamic simulation model which contains coal slurry storage tank, gasifier 

combustion chamber and quench chamber. Figure 2 illustrated the gasification process. 

 

Figure 2 Coal slurry gasification process 

3.2. Determine safety critical variables  

There are 14 measured variables and 10 manipulated variables in the gasification process. 

And the SCVs are selected as gasifier combustion chamber temperature R1.T and R2.T 

using the method proposed previously (Ji et al., 2021). The threshold of the upper and 

lower temperature of combustion chamber are [920 ,1019]℃ and [1405 ,1505]℃ . 

3.3. Fault detection 

Considering the large fluctuation of coal composition in the actual process, the component 

of coal is selected as the variable of fault. The fault is introduced after 3.5 hours of 

simulation, and the total simulation time is 13.5 hours. The response curves of oxygen 

flow, gasifier temperature, 𝐶𝑂 and 𝐶𝑂2 molar fractions are illustrated in Figure 3. 
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Figure 3 Response curve (Circle line: fault condition; Solid line: normal condition) 

Then the CVA algorithm is used to realize the safety monitoring of gasification process. 

The results are shown as Figure 4. The dotted line refers to the threshold of statistics under 

the condition of confidence of 0.999. 

Figure 4 Fault monitoring of gasifier 

From Figure 4, it can be seen that the process fault detection rate based on three statistics 

is 99.90%, the false alarm rate is 1.71%, and the fault detection delay time is 1.20min. 

According to the sampling interval of 0.01h, it is the delay of two sampling intervals. 

3.4. Dynamic risk analysis for the gasification 

Based on Sections 2.2 and 2.3, we obtained the identified model of the normal system, 

and then verify the accuracy of the model on the testing dataset sampled in normal 

operation. The validation results are illustrated in Figure 5, where the circle line represents 

simulation value, and solid line represents real value. And based on the coefficient of 

determination 𝑅2, it can be seen that the accuracy is acceptable and satisfactory. 

Figure 5 Verification of the model (𝑅𝑅1𝑇
2 = 0.9886, 𝑅𝑅2𝑇

2 = 0.9864) 

When the fault is detected, the identified model trained from the normal mode is not 

applicable. According to the section 2.3, the state space model is retrained using fault data 

and the results will be used as the initial value of multi-step regression training. Finally, 

the simulation of SCVs is executed for each time point. Figure 6 is an example of the 

400th point of time, where the circle line represents simulation value, solid line represents 

real value, and black line means the threshold. Their accuracy is acceptable. 

For the dynamic risk analysis, the simulation of each point has been executed until the 

values of SCVs are out of the threshold, and the needed time length is recoded. The 

variation of RUL with sampling points is shown in Figure 7. The asterisk represents RUL 

obtained from simulation, while circle represents real value from the dynamic model. The 

RUL obtained from simulation is compared with the real value of remining useful life, 

and their correlation coefficient is 0.999, which means that the simulation traces the real 
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circumstance well. From Figure 7, RUL decreases continuously, hence the risk is 

increasing correspondingly. And with the continuous development of the fault, the RUL 

has been reduced to an unacceptable level, i.e., corresponding measures must be applied 

to the system immediately.  

Figure 6 Simulation of 400th point of time (𝑅𝑅1𝑇
2 = 0.4867, 𝑅𝑅2𝑇

2 = 0.9360) 

 

 

Figure 7 Development of RUL over time 

4. Conclusions 

This work proposed a novel dynamic risk analysis approach that could better demonstrate 

the dynamicity of risk based on RUL. This would be useful for managing process risk. In 

this approach, the process is monitored by the CVA, and once the fault is detected, then 

CVA would identify a model for the simulation of SCVs analyzed from the system 

mechanism, and then the simulation would obtain the time RUL which indicated the 

dynamic risk of the system. The proposed approach was applied to a coal slurry 

gasification for its application and validation. The result proved the method to be effective 

to reveal the system dynamic risk and its evolution trend.  
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Abstract 

This paper introduces the development of an intelligent monitoring and control 

framework for chemical processes, integrating the advantages of technologies such as 

Industry 4.0, cooperative control or fault detection via wireless sensor networks. The 

system described is able to detect faults using information on the process’ structure and 

behaviour, information on the equipment and expert knowledge. Its integration with the 

monitoring system facilitates the detection and optimisation of controller actions. The 

results indicate that the proposed approach achieves high fault detection accuracy based 

on plant measurements, while the cooperative controller improves the operation of the 

process. 

Keywords: fault detection, wireless sensor networks, cooperative control, Industry 4.0. 

1. Introduction 

Industry 4.0 is transforming chemical processes into complex, smart cyber-physical 

systems, by the addition of elements such as smart sensors, Internet of Things (IoT), big 

data analytics, or cloud computing. Modern engineering systems and manufacturing 

processes are operating in highly dynamic environments, and exhibiting scale, structure 

and behavior complexity. Under these conditions, plant operators find it extremely 

difficult to manage all the information available, infer the desired conditions of the plant 

and take timely decisions to handle abnormal operation (Natarajan & Srinivasan, 2014). 

Human beings acquire information from the surroundings through sensory receptors for 

vision, sound, smell, touch, and taste, the Five Senses. The sensory stimulus is converted 

to electrical signals as nerve impulse data is communicated with the brain. When one or 

more senses fail, the humans are able to re-establish communication and improve the 

other senses to protect from incoming danger. Furthermore, the mechanism of reasoning 

has been developed during evolution, which enables analysis of present data and 

generation of a vision of the future, which might be called the Sixth Sense. 

As industrial processes are already equipped with the five senses: hearing from acoustic 

sensors, smelling from gas and liquid sensors, seeing from cameras, touching from 

vibration sensors and tasting from compositions monitors, the Sixth Sense could be 

achieved by forming a sensing network which is self-adaptive and self-repairing, carrying 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50226-8 
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out deep-thinking analysis with even limited data, and predicting the sequence of events 

via integrated system modelling. 

In this paper, an intelligent monitoring and control framework for chemical processes is 

proposed, which takes advantage of recent technological developments such as wireless 

sensor networks (WSNs), 5G communication, or cooperative control to ensure stable 

process operation. 

2. System architecture 

The framework consists of five main components, designed in a modular manner (Fig.1). 

The first one is a wireless sensor network (WSN), transmitting over a 5G communication 

network, that facilitates data management for improved fault detection. The second 

component is an efficient fault detection algorithm that can analyse the data and classify 

it in faulty or normal. The third component is a knowledge-based and model-based fault 

detection monitoring system. For the fault-detection, a two-stage method based on a 

hybrid learning approach is applied, which utilizes supervised and unsupervised learning. 

The fourth component is a cooperative model predictive control (MPC) system that takes 

the required measures to ensure stable process operation. Finally, the fifth component is 

an intelligent adaptive decision-making framework.  

 

Figure 1: System structure - High level overview 

The proposed architecture divides the system into a physical layer, which includes the 

industrial process, the wireless sensors and actuators, the controllers, and inspector 

robots, and a cyber layer, formed of the wireless communication network, the fault 

detection algorithms and the decision-making framework. 

2.1. Industrial process 

The application of the proposed architecture is investigated on a mini plant (Fig.2) 

available at the Department of Chemical and Process Engineering of the University of 

Surrey (Guildford, United Kingdom). The plant produces sodium ion solution for sale to 

fine chemical, pharmaceutical and food industry. The raw material (sodium chloride 

contaminated with calcium chloride) is pre-mixed with sodium bicarbonate. This 

feedstock is then fed into a reactor vessel charged with pre-heated water, and reacted at 

65 0C. The suspension resulted from the reaction is then pumped by a positive 

displacement pump through a plate filter, which removes a high proportion of the calcium 
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carbonate. The output stream splits into a product and a recycle line. The recycle line is 

fed back into the reactor, while the product is passed through a polishing filter, to remove 

any remaining solids, and then to the lot tank. The carbon dioxide resulted in the reaction 

is absorbed in an alkaline solution. The plant is provided with wireless sensors connected 

to the cellular network, that monitor process variables (e.g., temperature, pressure, 

processing unit level, etc.) and a distributed control system. The sensors are transmitting 

data every second. 

 

Figure 2: Mini plant and simplified process diagram 

Robots are also deployed in the plant for periodic maintenance and surveillance. In the 

proposed framework, the mobile robots will autonomously patrol around the plant. They 

are equipped with sensors for recording the necessary measurements, performing the 

periodic inspection and surveillance, as well as acting as relays in deep fading areas. For 

the mobile robots exploited in this system, the navigation is achieved using standard robot 

operating system navigation stack. 

2.2. Communication network 

Legacy cellular systems have been designed primarily for human initiated mobile 

broadband communications, making them highly suboptimal for narrow band, short-bust, 

sporadic traffic (e.g., sensor measurement data) generated by sensors in chemical plants. 

It is envisioned that a new design paradigm is needed to support large numbers of 

heterogeneous sensing devices with diverse requirements and unique traffic 

characteristics. Comparing to sensors in traditional IoT network, those deployed in 

extreme environments need to operate in harsh, sometimes hazardous conditions, and are, 

thus, prone to wear and tear, and cannot be easily replaced, posing major challenges in 

designing resilient networks for reliable communication. 

 

Figure 3: Communication network 
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For the system presented in this paper, a centralized control mechanism of the 

communication network is considered, where the sensors are connected to a fusion node 

via wireless links, as shown in Fig.3. The wireless links can also be used to send 

commands to the actuators within the mini plant. The resulting network consists of a 

heterogeneous set of periodic and event triggered sensors with mixed requirements, 

characteristics and traffic models.  

Considering the plant and associated sensors’ heterogeneity, a statistical model rather 

than a deterministic model is chosen for the sensor transmission events. The number of 

incoming packets (or events when each event generates a single packet) per unit time 

follows the Poisson distribution, while the packet interval is modelled as an exponential 

distribution. This results in probability-based transmissions that can be controlled by the 

arrival rate and the inter-arrival time. 

2.3. Machine learning 

In the machine learning model, both fault detection and prediction applications are 

embedded for sophisticated fault handling, as illustrated in Fig.4, and takes in online data 

streams and inputs to feed them to both (or either one of) the fault detection and fault 

prediction sub-models.  

 

Figure 4: Fault detection and fault prediction model 

In the fault detection, a batch of online data streams are checked for expert knowledge 

recognized types, recorded in the databases. If the streams pass this initial check, a 

combination of unsupervised and supervised learning algorithms are applied on the data 

for fault classification. The unsupervised learning algorithms, namely K-aware K-mean, 

are an extension of the conventional K-mean clustering algorithms with additional 

capacity to self-optimize the K-value (K≤1). This phase aims to acquire a temporary 

expert knowledge on what the minority of the current data (the smallest cluster) is like 

and labels them as outliers. Subsequently, a choice of the classical supervised learning 
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algorithms is conducted based on the temporary expert knowledge to classify the new 

types of faults and comparing them with the expert knowledge database. Once a new type 

of fault is validated by the system, the database is updated. 

In the fault detection sub-model, a long short-term memory (LSTM) deep neural network 

(DNN) is proposed to perform online fault prediction. The relationship between the 

elements of a single LSTM unit is described by the following relationships. 

𝑖𝑡 = 𝜎𝑔 ∙ (𝑊𝑖 ∙ 𝑥𝑡 + 𝑈𝑖 ∙ ℎ𝑡 + 𝑏𝑖)      (1) 

𝑜𝑡 = 𝜎𝑔 ∙ (𝑊𝑜 ∙ 𝑥𝑡 + 𝑈𝑜 ∙ ℎ𝑡 + 𝑏𝑜)      (2) 

𝑓𝑡 = 𝜎𝑔 ∙ (𝑊𝑓 ∙ 𝑥𝑡 + 𝑈𝑖 ∙ ℎ𝑓 + 𝑏𝑓)      (3) 

𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖°𝜎𝑐 ∙ 𝑊𝑐 ∙ 𝑥𝑡 + 𝑈𝑐 ∙ ℎ𝑡 + 𝑏𝑐     (4) 

ℎ𝑡 = 𝑜𝑡°𝜎ℎ(𝑐𝑡)        (5) 

 

With 𝑥 ∈ ℛ𝑛 and ℎ ∈ ℛℎ the input and the first hidden layer output of the LSTM-DNN, 

respectively; 𝑡 the time step; 𝑖, 𝑜, and 𝑓 the input gate, the output gate and the forget gate 

vectors, respectively; 𝑐 ∈ ℛℎ the cell state vector; 𝑊𝑖 , 𝑈𝑖 , 𝑊𝑜 , 𝑈𝑜 , 𝑊𝑓 , 𝑈𝑓 , 𝑊𝑐 and 𝑈𝑐 the 

weight matrices; 𝑏𝑖 , 𝑏𝑜, 𝑏𝑓 and 𝑏𝑐 the biases; 𝜎𝑔, 𝜎ℎ and 𝜎𝑐 the activation functions. In the 

equations above ° denotes the Hadamard product. 

2.4. Cooperative control 

A cooperative distributed MPC approach is considered to achieve highly flexible dynamic 

optimal control. A cooperative protocol is defined using a simple algorithm to reach an 

agreement regarding the state of a number of N process units (agents). The MPC 

controller receives information from the process unit in the form of the output process 

variable, y, as well as from the neighbouring units in the form of a cooperation variable, 

v. Based on this exchange of information, the controller will correct the input variables 

to the system, u). 

2.5. Decision-making system 

To add intelligent and adaptive decision-making capabilities, a multi-agent system 

(MAS) is defined to be integrated with the cooperative MPC. The MAS has two main 

tasks: to decide the optimal connectivity between the distributed MPCs for safer and 

better operation, and to monitor the system and detect any deviation in the behaviour, 

which is then transmitted to the controllers. The proposed MAS consists of follower 

agents, which keep track of equipment behaviour and its relationship with other control 

units, a coordinator agent, which decides the optimal connectivity between controllers, 

and a monitor agent, which analyses the information gathered from the coordinator agent 

and reports the expected failures and recommendations to the operator. 

3. Results 

The framework presented in the previous sections has been implemented for fault 

detection and prediction applications in the mini plant. A dataset was obtained from the 

plant during the year 2017-2018 and consists of over 10 million samples, each containing 

measurements for 43 variables, collected at a frequency of 1 Hz. Data types include both 

floating point and Boolean value data. The batch size for both fault detection, and 

prediction algorithms is set to 10,000. All simulations are conducted in Python and Keras 

application programming interface (API) with Tensorflow backend on an Intel i7-8700 

CPU (6 Core/12-Thread, 12 MB cache, up to 4.6 GHz with Intel Turbo Boost 
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Technology) and dual Nvidia GeForce GTX 1080 Ti GPUs (with 11GB GDDR5X each). 

For all supervised learning algorithms, the train-test ratio is chosen at 0.75:0.25. During 

fault detection, the result of classifying the original high dimensional data is projected 

into a lower dimension (2D plane) using principal component analysis (PCA) as shown 

in Figure 5. Table 1 compares different supervised learning algorithms regarding fault 

detection accuracy. 

Table 1: Complexity comparison 

For fault prediction, a three hidden layer 

LSTM-DNN is configured to perform one 

time step ahead prediction for 40 dynamic 

variables, with 30, 50, and 30 units used, 

respectively. The mini-batch method is 

used to accelerate the stochastic gradient optimiser. Each LSTM hidden layer uses a linear 

activation function and the same applies for the output layer. The proposed LSTM-DNN 

is able to achieve a prediction accuracy of 99.7%. The train-test learning curve 

comparison is illustrated in Figure 6. 

 
                Figure 5. Fault detection          Figure 6. Train-test learning curve comparison 

4. Conclusions 

In this paper, a high-level interdisciplinary framework is developed for leveraging 

capabilities of 5G WSNs, machine learning algorithms and cooperative control to step 

towards the industrial Sixth Sense. Since different applications have different 

requirements, the proposed system is built in a modular manner. A higher decision layer 

is proposed for fault detection and prediction to optimise the plant operation. Focusing 

on a chemical process as a case study, the proposed framework has been used to control 

the plant. The results indicate that the proposed approach achieves high fault 

detection/prediction accuracies based on real plant measurements. Future work will 

consider the impact of mobile wireless sensors deployed in robots, as well as integrating 

the machine learning fault detection/prediction schemes network-specific models to 

achieve both network and process fault prediction. 
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Abstract 

The International Water Association (IWA) Benchmark Simulation Models (BSM1 and 

BSM2) have been successfully used in both industry and academia to test and verify 

control strategies in wastewater treatment plants (WWTPs). In this study, a new (plant-

wide) benchmark simulation model, the BSM2-LT, is developed to evaluate monitoring 

algorithms. This platform provides opportunities to generate various sensor/actuator and 

process faults. To make this realistically, different Markov-chain models are used to re-

create the alternation of sensor/actuator states based on predefined occurrence 

probability. The same principle is used to describe the occurrence of toxic/inhibitory 

compounds. Using this platform, one can test the performance of a monitoring algorithm 

such as a fault detection method. To demonstrate this in an example, a multivariate 

method based on adaptive dynamic principal component analysis (dPCA) was used to 

detect faulty events. The performance of the monitoring algorithm is evaluated with a 

penalization index, scoring from 0 to 100. While the tested method had a good false alarm 

score, it resulted in a low false acceptance. While the results could be certainly improved, 

the main focus of this study is the benchmark simulation model and not presenting a well 

optimized monitoring algorithm. The software which will be produced and freely 

distributed in the near future, will allow an objective evaluation of monitoring algorithms 

for WWTPs for any user.  

 

Keywords: Benchmark simulation, Fault detection, Markov chains, Monitoring 

algorithms, Wastewater treatment 

1. Introduction 

Instrumentation, control and automation for industrial chemical and biochemical 

processes to attain cost-effective and safe process operation are highly dependent on 

reliability of the real-time measurements. Despite considerable development of online 

sensors during the past decades, their dependability is still impaired due to various fouling 

and failing issues. Occasionally unsatisfactory measurement performance can prevent full 

instrumentation of plant-wide control systems. This is especially important for 

wastewater treatment plants (WWTPs) where often fault-tolerant control systems needs 

to be implemented. Small WWTPs generate up to 500 signals (including on-line and off-

line signals), whereas larger ones typically register over 30,000 (Olsson 2012). Despite a 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50227-X 



1364  P. Ramin et al. 

large number of available signals, data reconciliation and validation for online 

instrumentation has remained a largely unexplored field with a lack of standardized 

approaches. Most data are stored unstructured, with lots of gaps, repetition, ambiguity 

and uncertainty. This has led to “data-rich, information-poor” situations in which data 

sets are often too large and complex for processing and analysis to be used for decision-

making. To turn raw data into useful and actionable information, data need to be 

validated. This can be achieved through a fault detection procedure. While several 

advanced data validation tools have already been developed for various chemical 

industries, their application to wastewater treatment facilities is not straight forward. 

Compared to chemical industrial processes, municipal WWTPs have unique features 

which complicates their monitoring and control strategies: (i) Wastewater influent is 

characterized by short- and long-term high temporal variability in both quantity and 

quality. WWTPs are impacted by growing urban areas, and variable rain events; (ii) Input 

materials (wastewater, storm water) cannot be stored in large quantities if the supply 

exceeds the process capacity; (iii) Low effluent water quality cannot be discarded or 

ignored; (iv) Wastewater treatment processes exhibit nonlinear, nonstationary, 

autocorrelated, cross-correlated behavior and are characterized by changes at many 

different time-scales; (v) Challenging environmental conditions impose sensor 

impairment due to solids deposition, precipitate formation and biofilm growth. 

1.1. Benchmark simulation models 

Benchmark simulation models are great tools to test and evaluate different monitoring 

methods under various fault conditions (sensors or process faults). The Benchmark 

simulation for Tennessee Eastman process (TEP) (Downs and Vogel 1993) is perhaps the 

best known platform in chemical engineering, resembling a real-world example, to test 

different fault detection strategies in an industrial reaction process (Gravanis et al. 2022). 

Another example is the IWA Benchmark Simulation Model No. 1 (BSM1) and No. 2 

(BSM2) (Gernaey et al. 2005; Jeppsson et al. 2006) describing typical biological and 

physico-chemical processes in WWTPs (Gernaey et al. 2014). BSM1 includes a five-

reactor activated sludge plant configuration with a (non-reactive) secondary clarifier, 

whereas BSM2 is a plant-wide description of a typical WWTP, extending BSM1 with 

pretreatment and sludge treatment processes. These benchmark platforms allow 

simulation-based performance evaluation of process control and monitoring strategies 

(Gernaey et al. 2014). An extension to BSM1, named BSM1-LT, was also developed 

(Rosen et al. 2004) to enable long term evaluation of control strategies (e.g. sludge 

retention time control based on wastewater flowrate) and process monitoring performance 

(e.g. detecting equipment failure such as nitrate and ammonium sensors). The BSM1-LT 

has also been used to test different univariate fault detection methods (Corominas et al. 

2011). A preliminary attempt was made to simulate different faults in BSM2 followed by 

detection and diagnosis using incremental principal component analysis (IPCA) (Kazemi 

et al. 2020).   

The aim of this study is to extend BSM2 by including “realistically” different 

sensor/actuator and process faults which are compatible and unified with the previous 

developments (influent generator, process models, sensor and actuator models, simulation 

procedure, evaluation criteria). The final output, the BSM2-LT, will include different 

scenarios which will be suitable to test univariate/multivariate statistical monitoring 

methods as well as fault-tolerant control strategies. The final software will be freely 

available for any user.  
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Figure 1. Layout of BSM2/ BSM2-LT. Process data for objective evaluations in this study 

are indicated with numbers (definition are given in the box). Controlled variable (DO) 

and manipulated variable (KLa), indicated with asterisks, are subject to faults in this study.  

2. Methods 

Two different types of faults, sensor/actuator fault and process fault were investigated. 

2.1. Sensor/actuator fault generation 

Faults were created only for the oxygen (DO) sensor in reactor 4 (used to control oxygen 

in aerated reactors 3 to 5) and for the actuator, KLa (oxygen mass transfer coefficient, 

equivalent to airflow in aerated reactors). Faults were modelled using a Markov-chain 

approach, where 7 different states were considered with a predefined occurrence 

probability, reported here as % for DO and KLa, respectively: (i) fully functional (93.8% 

and 88.3%); (ii) excessive drift (0.5% and 9.2%); (ii) shift (0.9% and 0.1%); (iv) fixed 

value, (1.6% and 1.6%); (v) complete failure (0.2% and 0.7%); (vi) wrong gain (2.7% 

and 0%); (vii) calibration (0.4% and 0%). The model was regenerated from earlier studies 

(Rosen et al. 2008; Corominas et al. 2011) following the same recommendations and 

parameters. 

2.2. Process fault generation 

Process disturbances were created by introducing two inhibitory or toxic substances, 

represented by new state variables Stox and Xtox, in soluble and particulate form (absorbed 

to other particulate matters), respectively. The inhibition here is defined as the reduction 

in growth rate and toxicity is defined as both reduced growth rate and increased decay 

rate. The biological impact is defined by different inhibition/toxicity parameters using 

combined concentration of Stox and Xtox. These parameters impact growth and decay of 

heterotrophs and autotrophs in activated sludge reactors (Gernaey et al. 2014). To 
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generate Stox and Xtox at the influent of BSM2-LT, two separate Markov-chain models 

were used to create a basic ’seed’ file. Three states were used, no discharge, discharge 

with low amount (inhibitory discharge), discharge with high amount (toxic discharge). 

For Stox, toxicity is assumed to occur every six months and inhibition every two weeks, 

with a duration of 3 hours for both. For Xtox, toxicity is assumed to occur every six months 

and inhibition once every month, with a duration of 1 hour for both. The ‘seed’ file was 

then used in the sewer model of the influent generator in a similar approach as described 

elsewhere (Gernaey et al. 2014).  

2.3. Fault detection 

An adaptive-dynamic fault detection was tested (Odom et al. 2018) using dynamic 

principal component analysis (dPCA) with a moving window (8 days). To take into 

account the correlation between sequential observations, all the data were lagged two-

time steps (two samples). The first 60 days were used for training and were assumed to 

be a ‘normal’ period (all faults and toxicity were removed in this period). Two 

multivariate monitoring statistics, i.e. Hotelling’s T2 and the square prediction error (SPE) 

were used with a threshold of 0.5%. A flag was issued if this threshold was violated. Five 

consecutive flags would then trigger an alarm, indicating fault in the data. In total 28 

variables were selected for the fault detection as presented in Fig. 1. 

2.4. Performance evaluation 

To evaluate the performance of the previously described fault detection method, an 

evaluation index was used as a measure of reliability (Corominas et al. 2011). This index 

is ranging from 0 (not reliable) to 100 (reliable). It is calculated by penalization points 

when the fault detection does not succeed. Penalizations are importantly based on: (i) late 

detection in which penalty points exponentially increases and reach a maximum level, (ii) 

extra penalizing intermittent detection for unfavorable switching from correct detection 

to non-detection during a fault event. Indices are defined for false alarm (JFAL), and false 

acceptance (JFAC) as well as a total index (J). Moreover, precision and accuracy were also 

calculated according to a calculated confusion matrix (error matrix).  

3. Results 

The results of fault generation, model simulation and fault detection are presented in Fig. 

2. The results are only shown for reactor 4 for the tested scenarios, i.e. sensor/actuator 

fault (S1A to S1G) and process fault (S2A to S2G). Table 1 summarises the performance 

of the fault detection using different evaluation indices. This assessment is done 

considering T2 alarm, SPE alarm, and the combination of both. 

3.1 Sensor/actuator fault 

The DO sensor in reactor 4, is connected to a feedback PI controller with a set point 

tracking objective. The DO signal oscillated around the set point of 2 g/m3 (Fig. 2 S1D). 

A combination of drift in the KLa signal and a wrong gain for the DO sensor, caused the 

oxygen in reactor 4 to ramp down to almost zero. This fault was captured by T2 and SPE 

with delays (Fig 2. S1C). In three occasions of fixed value faults for the DO sensor, the 

signal from this sensor is reduced to nearly zero, causing the oxygen in reactor 4, 

momentarily to reach 6 g/m3. This was due to an overreaction of the control system, 

compensating for an apparent lack of oxygen. Fixed fault in the KLa signal, significantly 

brought down the KLa value to around 30, causing the oxygen to drop close to zero. 

Continuation of this scenario for 10 days, reduced the population of autotrophs by 75% 
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(Fig. 2 S1F). Consequently, it took nearly 100 days until the situation was brought back 

to normal in the absence of any other major failure. In this period, ammonium 

concentrations reached above 40 g/m3 (S1G). This fault period was well detected by both 

T2 and SPE. Overall, the tested fault detection showed relatively good false alarm 

performance but low false acceptance score (Table 1). 

3.2 Process fault 

While Stox (Fig. 2 S2A) follows the transport dynamics of the soluble species, Xtox (Fig. 2 

S2B) resembles those of particulates. This implies that Stox is impacted by dilution with 

relatively short retention time whereas the retention time for Xtox depends on the sludge 

retention time. This creates different effects on the plant performance. In BSM2-LT the 

activated sludge system has a hydraulic retention time (HRT) of 14 hours, and the sludge 

retention time (SRT) in the anaerobic digester is 19 days. In case of appearance of 

toxic/inhibitory chemicals in reactor 4, autotrophs were in general more impacted than 

heterotrophs (Fig. 2, S2D and S2F). This in turn caused ammonium concentrations to rise. 

However, loss of heterotrophs due to high Stox concentration, triggered readily degradable 

substrate concentration to rise sharply on three occasions. T2 statistics could capture these 

faulty moments. In other periods, due to frequent occurrence of toxicity, especially Stox, 

both T2 and SPE showed a high level of alarm. In general, SPE was found to be more 

sensitive compared to T2 for the tested faults and generated nearly 60% more flags (Fig. 

2 S1C and S2C). Better optimization of the hyper parameter, e.g. threshold for SPE and 

T2 statistics and the number of flags considered before initiating an alarm, is expected to 

improve the results. Variable selection for fault detection is also another challenge. It was 

for example found that only considering the activated sludge reactors (variables 6 to 15) 

can improve J from 60 to 72 for the sensor/actuator faults scenario. 

4. Conclusion 

The BSM2-LT presented in this study provides opportunities to create realistic scenarios 

for both sensor/actuator and process faults. Using this platform, one can test the 

performance of a fault detection method. The method should ideally distinguish various 

faults and isolate highly consequential deviating instruments, and initiate an alarm before 

the system has undergone a severe disturbance. The tested fault detection method here 

showed good precision and false alarm scores but resulted in low accuracy and false 

acceptance. Further studies will focus on expanding this platform to simulate more 

realistic fault scenarios (e.g. for the anaerobic digester), which can occur simultaneously. 

A combination of both univariate and multivariate monitoring methods will be also used 

which is expected to improve the results. 

 

Table 1. Evaluation indices for fault detection method tested in this study. TP: true 

positive, TN: true negative, FP: false positive, FN: false negative.  
 

 Indicator Precision (%) Accuracy (%) JFAC (0-100) JFAL  (0-100) J (0-100) 

 Formula 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

   

Sensor fault 

scenario 

T2 alarm 95.4 78.2 2.3 95.4 61.9 

SPE alarm 68.2 59.4 20.8 68.2 51.0 

T2 + SPE alarm 70.4 65.1 41.8 70.4 60.0 

Process fault 

scenario  

T2 alarm 65.6 10.6 2.1 65.6 5.8 

SPE alarm 99.4 45.7 37.3 99.4 41.0 

T2 + SPE alarm 88.8 43.2 36.1 88.8 39.2 
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Figure 2. The fault scenarios in this study for sensor faults (S1A to S1G) and process 

faults (S2A to S2G). The results are shown only for reactor 4.  
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Abstract 

A process control system (PCS) exhibits monitoring functions that help board operators 

achieve safe and stable manufacturing in real time. Because of the rapid changes in the 

business environment, management objectives, such as carbon neutrality, energy 

conservation, and profitability, are required in addition to conventional objectives of 

safety, availability, and productivity. As additional management objectives conflict with 

conventional objectives, board operators need to monitor the manufacturing process from 

an optimization standpoint while understanding the new management strategy. New 

monitoring functions for the next generation of PCS were formulated in this study to help 

operators achieve energy-saving and profitable manufacturing. 

Keywords: KPI, Dashboard, Optimization, Profit, Energy savings 

1. Introduction 

The monitoring functions in a general process control system (PCS) consist of process 

flow graphs, process trend graphs, and process alarms. Critical process variables were 

selected as subjects for monitoring based on a hazard and operability (HAZOP) study 

(from a safety standpoint) and control narratives (from a stability standpoint). Monitoring 

functions display these variables as key performance indicators (KPIs) for operators 

(operational KPIs). Process flow graphs display real-time process variables on a 

simplified piping and instrument diagram (P&ID) to highlight the material balance and 

heat balance of relevant manufacturing processes reflecting the impact of disturbance. 

Process trend graphs display the real-time trends of the process variables to highlight 

mutual correlation, propagation, and forecasting. Process alarms activate alarms when the 

process variable exceeds defined limits, such as high, low, deviation, and velocity, 

requiring manual interventions. These functions are specialized to achieve the 

independent management objectives of safety, availability, and productivity. 

Because of management objectives, operational KPIs need to be reselected based on 

carbon neutrality, energy conservation, and profitability. New monitoring functions are 

required to comprehensively display an increased number of operational KPIs from a 

higher perspective. As additional management objectives conflict with conventional 

objectives (for example, energy savings impact productivity, and safety margin impacts 

profitability), new monitoring functions are required to indicate the balance in KPI 

achievement across multiple management objectives. In addition, because energy-saving, 

profitable manufacturing is still new to operators owing to a lack of practical training, 

new monitoring functions are required to establish the relationship between operational 

KPIs and management KPIs (cause and effect). Based on these considerations, we 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50228-1 
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formulated new monitoring functions, including an integrated KPI, KPI tree graph, KPI 

balance graph, KPI trend graph, and KPI alarm. 

2. Integrated KPI 

The integrated KPI consists of five management objectives in three organizational roles. 

Operational KPIs are mainly used by operators. Only controllable process variables 

using PCS were selected. Technical KPIs are mainly used by the process and mechanical 

engineers to bridge the gap between plant management and operations. The KPIs 

calculated using the operational KPIs were selected from the viewpoints of chemical and 

mechanical engineering. Management KPIs are primarily used in plant management. 

Aggregated KPIs connected to technical KPIs were selected. 

Safety-related KPIs are categorized as safety KPIs. Although safety KPIs have already 

been selected based on a HAZOP study, safety allowance can be defined as a new KPI 

that shows how the safety margin is sufficiently small. Asset-related KPIs are categorized 

as availability KPIs, including those related to the availability and reliability of plant 

assets. Productivity-related KPIs are categorized as production KPIs, including KPIs 

related to capacity utilization and throughput. KPIs related to carbon neutrality, energy 

savings, and product quality are categorized as energy KPIs because carbon emissions 

are linked to energy consumption, and quality giveaway increases energy consumption. 

Profitability-related KPIs are categorized as profit KPIs, including the yield of high-

value products, material loss, and quality giveaways. An example of an integrated KPI 

for the depropanizer process is presented in Table 1. The P&ID of the target depropanizer 

process are shown in Figure 1. 

The fractionator was controlled by two operating variables: material balance and heat 

balance. The change in material balance indicated a change in the cut point, and a change 

in the heat balance indicated a change in fractionation with variation in the reflux ratio. 

The material balance was controlled using the C3 flow rate. The C4 flow rate was 

automatically adjusted using a bottom-level controller. The heat balance was controlled 

using a reboiler low-pressure steam (LPS) flow rate. A condenser duty was automatically 

adjusted because the condenser outlet temperature was controlled by the cooling tower 

water flow rate. The reboiler return temperature was correlated with the C4 content in C3. 

The C3 flow rate was changed as needed to satisfy the specifications for C3 (that is, 

stabilize the reboiler return temperature). Board operators manually change the setpoints 

of the reboiler return temperature and reboiler LPS flow rate to prevent quality giveaway 

or off specifications. 

 

Figure 1. Depropanizer process 
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Table 1. Example of integrated KPI for depropanizer process 

 

 

 

 

 

Figure 2. Design example of KPI tree graph 
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3. KPI tree graph 

An example of the design of the KPI tree graph for the depropanizer process is shown 

in Figure 2. The KPI tree graph displays all the KPI information with mutual connections 

in a hierarchical manner. This information can help board operators understand which 

operational KPI impacts which management KPI and encourage board operators to take 

prompt action against operational KPI alarms before impacting management KPI. If the 

KPI alarm function is embedded in this graph (for example, the color of the box is 

changed during alarming), the KPI tree graph can assist board operators in solving all the 

KPI alarms equivalently toward total optimization. 

4. KPI balance graph 

An example of the design of the KPI balance graph is shown in Figure 3. This graph 

displays the KPI achievement scores in a pentagon for each management objective. The 

shape of the pentagon starts from the largest regular pentagon at the beginning of the day 

(the KPI score of each management objective starts at 100). The shape is deformed and 

small in real time when the relevant KPIs are alarming. If all the KPIs are alarming during 

the day, the shape disappears (the KPI score of each management objective reaches zero). 

The KPI balance graph helps board operators optimize KPIs across conflicting 

management objectives, and the scoring function motivates board operators as though it 

is a game. An example of the score calculation for each management objective in each 

organizational role (for example, profit operation) is expressed in Eq. (1): 

KPI Score (%) =
1

𝑥1

∑
8640 − ∑ 𝑥2

8640
𝑛2=1

86.4

𝑥1

𝑛1=1

 (1) 

where 𝑥1 is the number of KPIs (for example, 15 in profit operation). The alarm state of 

each KPI was determined every 10 s periodically from the beginning to the end of the 

day (8640 times per day). The value of 𝑥2 is 1(alarming) or 0 (normal). 

 

Figure 3. Design example of KPI balance graph 



5. KPI trend graph 

An example of the design of the KPI trend graph for the depropanizer process is shown 

in Figure 4. The KPI trend graph shows multiple KPI trend graphs. This graph can help 

board operators understand the exact propagative order and time lag among the relevant 

KPIs to identify the root cause. The acknowledgement function can be allocated in each 

graph because it is crucial to clarify human responsibility for KPI alarm recovery. The 

event log of the KPI alarm notification, acknowledgement, and recovery should be stored 

for future operation analysis. The guidance function will be valuable for junior operators 

to identify the root cause of the KPI alarm and adopt adequate countermeasures until they 

master plant operations. 

 

 
F igure 4. D esign ex ample of KPI trend graph 

6. Case S tudy 

New monitoring functions for the next generation of PCS worked satisfactorily in the 

following case study in the depropanizer process, while the fractionator feed (mixed LPG) 

became C3 rich. 

⚫ The operator identified C4 in C3 product in the L O  alarm (this indicates that quality 

giveaway was losing profit), and C3 in C4 product is in the H I alarm (this indicates 

that the C4 product was going to be off the specification) on the KPI tree graph. 

⚫ Subsequently, the column temperature controller increased the C3 product flow rate 

to compensate for the lower column temperature. At this moment, the operator 

identified that the C3 product flow rate increased, the reflux flow rate decreased 

owing to the constant reboiler duty, and the C4 product flow rate decreased on the 

KPI trend graph. 

⚫ During the adjustment of the column temperature, the operator identified that the 

reflux ratio distillation (R/C3) was in the L O  alarm, and the reflux ratio bottom 

(R/C4) was in the H I alarm (this indicated that the vapor and liquid balance in the 

fractionator shifted) on the KPI tree graph. In the relevant KPI balance graph, the 

shapes of the profit and energy became slightly small. 

Formulation of integrated key performance indicator dashboard 1373  
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Based on the above information, the senior operator identified that the fractionator feed 

(mixed LPG) became C3 rich. The junior operator reached the same conclusion by 

checking the guidance message on the relevant KPI trend graph. The following are 

performed to adjust the fractionator to the optimum operation point (minimum quality 

giveaway within its specification for both products). 

⚫ The operator first turns off the column temperature controller TC3106 (by changing 

the control mode from AUT to MAN) to accelerate the adjustment. 

⚫ Next, the operator adjusts the set point of the C3 flow controller FC3105 (that is, 

adjusting the material balance) and the reboiler duty–steam flow controller FC3102 

(this means adjusting the heat balance). 

⚫ After adjusting the column operation based on the economical guidance message, 

the operator turned on the column temperature controller TC3106 (changing the 

control mode from MAN to AUT) for stable operation. 

In this case, new monitoring functions based on the integrated KPI help board operators 

realize energy-saving and profitable operations before impacting the relevant 

management KPIs. 

7. Conclusion 

This paper presents novel monitoring functions for an integrated KPI framework. An 

example formulation of the functions was demonstrated using a case study plant. We 

believe that these functions help process manufacturers achieve energy-saving and 

profitable manufacturing. Further investigations on other case study scenarios, such as 

the optimization of conflicting KPIs, are planned to analyze the effectiveness of the 

proposed functions. 
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Abstract 

Production of biodiesel can be performed by using supercritical alcohols as reactants, 

avoiding the use of catalysts. Such processes show high reaction rates and have the 

advantage of treating raw materials with high contents of free fatty acids or water. Thus, 

supercritical treatments are appropriate strategies to transform low-cost raw materials. 

Nevertheless, one of the main concerns on these processes is related to safety issues due 

to the high-pressure levels required to obtain the desired yields. In this work, a process to 

produce biodiesel from a waste cooking oil treated with supercritical ethanol is designed 

using simulation tools. A strategy to assess the risk of this production scheme is developed 

in terms of a set of indicators. Through this strategy, the most hazardous streams in the 

process are detected, and the potential consequences of an accident are assessed. This 

information will be helpful for future work to establish strategies to reduce the risk in 

these high-pressure production processes and to design processes under inherent safety 

principles. 

Keywords: biodiesel, supercritical ethanol, risk assessment, Hazard Process Stream 

Index. 

1. Introduction 

Production of biofuels has taken importance on the last years due to the continuous search 

for cleaner alternatives to provide energy in the transport and industrial sectors. Biodiesel 

is one of the most known biofuels, consisting on a mixture of alkyl esters. It can be used 

blended with fossil diesel to run engines, reducing emissions of CO, particulate matter, 

and unburned hydrocarbons (Teixeira et al., 2012).  Such biofuel is traditionally produced 

by treating vegetable oils with a short-chain alcohol in the presence of a catalyst, 

commonly sodium hydroxide. Nevertheless, the main contribution to the product's final 

cost is the price of the raw material, representing 60-80% of the production cost (Lee et 

al., 2011). Thus, low-cost oils must be used as raw materials, e.g. waste cooking oil. This 

represents a disadvantage for the homogeneous basic catalyst route since waste oils have 

high concentrations of free fatty acids, which promotes saponification when using basic 

catalysts. To overpass such issue, acid pretreatments have been developed, followed by 

basic transesterification. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50229-3 
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Nevertheless, this implies the need for additional neutralizing and recovery steps. An 

alternative approach implies the use of supercritical fluids to treat the oils, as supercritical 

methanol (Saka and Kusdiana, 2001) and supercritical methyl acetate (Saka and Isayama, 

2009). In terms of costs and emissions of carbon dioxide, the one-step supercritical 

methanol approach is the most promissory (Gómez-Castro et al., 2015). Ethanol can also 

be used as a supercritical reactant, opening the possibility of using renewable ethanol. 

Among the advantages of using supercritical alcohols, it can be mentioned that the 

formation of two liquid phases in the reaction system is avoided, increasing the reaction 

rate. 

Moreover, transesterification and esterification occur simultaneously. Therefore, the 

presence of free fatty acids does not affect the performance of the reaction. Additionally, 

water in the feedstock has no adverse effects on the yield (Kusdiana and Saka, 2004). 

This turns the supercritical treatments into an appropriate strategy to transform low-cost 

raw materials. Nevertheless, one of the main concerns on these processes is given by 

safety issues due to the high-pressure levels required to obtain the desired yields.  

Sometimes, process safety has been considered as a verification criterion or as a 

governmental requirement. However, it is important to include process safety as a design 

and decision criterion from the early design stages in future projects, especially for 

processes and technologies under development, such as high-pressure biodiesel 

production. There are several features in the high-pressure biodiesel technologies that 

make it hazardous. These processes work at high pressure (up to 20 MPa); such condition 

propitiates many flammable substances in case of the loss of containment scenario. 

Furthermore, the temperature used in these processes (270 – 380°C) increases the 

formation rate of the vapor cloud in case of a flammable substance’s release scenario. At 

the same time, the hot surfaces can act as an ignition source (Gómez-Castro and López-

Molina, 2020). Therefore, the identification of dangerous process streams from an early 

stage allows generating inherently safe designs. Currently, published indices are focused 

on identifying explosion scenarios. However, these indices cannot accurately identify 

hazards on biofuel and bioproduct production processes, where combustible or aqueous 

mixtures are involved. The Hazardous Process Streams Index (HPSI) is one of the 

alternatives to identify hazards in the early stages of process design, improving inherent 

safety (López-Molina et al., 2020). The information needed to estimate process hazards 

is obtained from process simulation software. 

 

2. Case study 

Waste cooking oil is used as raw material, which is modeled with a composition of 94% 

triglycerides and 6% free fatty acids, with a distribution of 12.3 wt% of palmitic acid, 24 

wt% of oleic acid, 56.6 wt% of linoleic acid and 7.1 wt% of linolenic acid for each fraction 

(Bulla Pereira, 2014). On the other hand, ethanol is used as a supercritical reagent. This 

alcohol can be obtained from biomass, which contributes to reducing the environmental 

impact of the process (Gómez-Castro et al., 2017). 

A small-scale biodiesel production plant falls into a production range of less than 10,000 

t/y, while a large-scale plant is in a range of more than 50,000 t/y (Skarlis et. al., 2012). 

The above has been taken as a basis for defining the case studies in this work to compare 

the production of biodiesel at small, medium, and large scales. Thus, the process design 

will be carried out with three production levels: 10,000, 30,000, and 50,000 tons per year. 
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3. Process simulation 

The process is designed and analyzed with the support of the Aspen Plus® V.8 software. 

First, the oil and ethanol must be conditioned to the reaction conditions, 20MPa and 

300°C. Subsequently, both streams enter the reactor, where triglycerides and free fatty 

acids are converted to ethyl esters. After the reaction, the pressure is reduced to ambient 

conditions. Next, the excess ethanol is recovered. The bottoms stream has two phases: 

phase 1 (biodiesel mainly) and phase 2 (glycerol with a small amount of water), which 

are separated in a decanter. Figure 1 shows the process diagram. 

The reactor is modeled using the RPlug module, using the RK-Aspen model to represent 

the thermodynamics in the system. The reactor dimensions are set to achieve the highest 

possible biodiesel yield, verifying that the BIOD stream complies with the corresponding 

ASTM specifications.  

 

Figure 1. Biodiesel production process with supercritical ethanol in one step. 

 

4. Risk assessment 

Once the simulation has been carried out, information on the heat of combustion, molar 

fluxes, density, and operating pressure is extracted. Together with the flash point of the 

pure components, these parameters are used to determine the hazardous equipment 

employing the Hazardous Process Stream Index (HPSI). Once the dangerous streams are 

identified, it is necessary to define the consequences and process risk. The relative risk 

approach is used to compare and rank the risks of each alternative (López-Molina et al., 

2020). The entire process relative risk (RT) is the average of the individual risks. As such, 

an increase in capacity implies an increase in flow and inherently a more significant mass 

release in the case of loss of containment and its consequences. Therefore, the damage 

diameter for explosion and fire is estimated through ALOHA software. 

5. Results 

The results from the HPSI index calculation show the first process stages as the most 

dangerous due to the use of flammable substances; the same occurs in the three production 

scales. The analysis indicates that the hazardous streams are ETA1, ETA2, ALIM, PROD, 

and ETA3. This is explained in terms of the substances present in the stream; for the 

streams, ETA1, ETA2, and ETA3, the substance present is ethanol, while the ALIM and 

PROD streams carry glycerol. Table 1 shows the results of HPSI. 
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Table 1. HPSI results for the 10,000 ton/y scale. 

Stream/index Ipressure Idensity Iflow Iflash Icombustion HPSI 

ETA 0.012 1.32 1.91 2.33 0.92 0.04 

ACE 9.7E-06 0.57 0.04 0.47 1.12 3.8E-07 

ETA1 2.31 1.31 1.91 2.33 0.92 7.26 

ACE1 2.31 0.59 0.04 0.47 1.12 0.09 

ETA2 2.31 0.64 1.91 2.33 0.92 14.88 

ACE2 2.31 0.57 0.04 4.67 1.12 0.09 

ALIM 2.31 0.59 1.95 4.67 0.97 3.46 

PROD 2.31 0.67 1.95 4.67 0.99 3.10 

PROD1 0.02 0.29 1.95 4.67 0.99 0.05 

ETA3 0.02 0.003 1.79 2.37 0.92 13.78 

PROD2 0.02 1.45 0.16 4.67 1.13 0.0011 

PROD3 0.02 1.72 0.16 4.67 1.13 9.5E-04 

BIOD 0.02 1.75 0.12 4.67 1.19 7.4E-04 

GLIC-WATER 0.02 2.53 0.04 4.67 0.57 8.3E-05 

 

The HPSI values for each scale are the same since the substances and process conditions 

are identical for each stream. It is worth mentioning that the HPSI does not consider the 

effect of production scaling. Therefore, no change in the values of this index is reflected.  

The pressurized reactor (REAC) and the distillation tower (COLUM) are considered as 

the hazardous equipment, defining an explosion as a probable accident due to the 

flammability of ethanol (class 3, according to NFPA). On the other hand, glycerol has 

low flammability (class 1, according to NFPA), so this stream has a low probability of 

fire. 

The effect of increased production on the risk was evaluated by the relative risk of each 

process. Table 2 shows that the largest production scale has a high-risk level, confirming 

that the consequences will be more significant.  

 

Table 2. Relative risk calculated using the HPSI index. 

Production scale (t/y) Relative total risk (RT) Risk level 

10,000 0.2 Low risk 

30,000 0.6 Medium risk 

50,000 1.0 High risk 

 

 

The scenario of explosion and fire for the two dangerous equipment (REAC and 

COLUM) shows the effect of process capacity on the consequences of an accident. Table 

3 presents the affectation distance in case of explosion and fire. These distances represent 

values between 3.1 and 1.1 psi for explosion and the flammable area for a fire with 10 

minutes of duration. 

 

 

D. B. Vega-Guerrero et al. 



Table 3, Consequences of explosion and fire for each scale production 

  10,000 30,000 50,000 

REAC COLUM REAC COLUM REAC COLUM 

Explosion (m) 20 23 25 27 30 32 

Fire length (m) 46 49 70 75 90 95 

Fire width (m) 14 15 17 18 20 22 

 

6. Conclusions 

This paper presents a comparative study on the magnitude of hazard between supercritical 

processes and their scale of biodiesel production, applying an improved inherent safety 

index. This index presents a measurement-oriented approach that quantifies the safety of 

the process at the design stage and considers safety scores based on individual streams, 

providing a more intuitive and easier way to identify the hazard of each stream. Based on 

the results obtained, it has been observed that the most significant risk that can occur is a 

fire or explosion due to the inherent flammability of ethanol. The relative risk is high in 

the case of a production scale of 50,000 t/y. Therefore, it should be considered of vital 

importance to improve the safety of the process. Finally, the risk associated with the 

production scale is validated by the analysis of the consequences. 
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Abstract 

In this paper, we proposed a novel fault detection method using a three-dimensional 

convolutional neural network (3DCNN), and continuous wavelet transform (CWT). 

Multivariate time series data of a chemical plant was transformed into time-frequency 

scalogram using CWT, and the 3DCNN was trained with the CWT scalogram. The output 

obtained was a binary unit representing whether there was a fault or not. The proposed 

method was applied to the Tennessee Eastman process datasets for fault detection, since 

they are widely used for verifying the performance of fault detection methods. Our 

method yielded accurate results for fault detection. 

 

Keywords: Fault Detection; Deep Neural Network; Continuous Wavelet Transform; 

Time Series Data 

1. Introduction 

Fault detection and diagnosis play an important role in monitoring chemical processes, 

where it is expected to prevent severe accidents that cause emergency shutdowns, 

financial losses, environmental disruptions, and risk to human life. Process monitoring 

starts with fault detection. Fault detection methods are divided into two types: model-

based methods, and data-driven methods. Model-based methods depend on first-

principles modelling, which is generally difficult to perform because of process 

complexity. However, data-driven methods are established without a large amount of 

process knowledge, and mathematical operations, due to which they have versatility in 

industrial applications. Additionally, they are quicker to implement than the model-based 

methods. Numerous studies on fault detection and diagnosis have been conducted so far. 

In the early stages of fault detection, a univariate analysis with a limit check was applied. 

However, fault data could not be found because of the highly correlated variables in the 

chemical processes. To find the buried fault data, a multivariate statistical process was 

adopted after the univariate analysis. For instance, Principal Component Analysis (PCA), 

Partial Least Squares, and Support Vector Machine, which are widely applied in industrial 

processes, were used. However, these methods do not consider the dynamics. Wenfu K 

(1995) introduced Dynamic PCA as the method which can handle process dynamics. 

Neural network-based methods have attracted attention in many fields because of their 

flexibility in modelling complex structures, and dynamics. Various neural network 

models have been proposed in chemical engineering fields, such as Deep Belief Networks 

(Zhang et al., 2017), Recurrent Neural Networks (Shaodong et al., 2020), Long Short-

Term Memory (Han et al., 2020), and Convolutional Neural Network (Hao Wu et al., 

2018).  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50230-X 
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An important step in the establishment of data-driven methods is pre-processing. A high 

detection rate cannot be achieved without an appropriate pre-processing method, even if 

the model possesses great ability. So far, signal processing methods, such as Fourier 

transform, fast Fourier transform, short-time Fourier transform, and wavelet transform 

have been applied to various fields, and have exhibited good performance. Short-time 

Fourier transform and wavelet transform generate time-frequency spectrograms from the 

original signal data. Wavelet transform is expected to be applicable to chemical process 

data as it is more suitable at handling non-steady signal analysis, when compared to the 

Fourier transform. Despite the aforementioned facts, the pre-processing step has not been 

considered in many previous methods of fault detection for chemical processes. 

Furthermore, they do not consider the changes in the time-frequency domain of the 

chemical process data. 

 

In this paper, we proposed a novel fault detection method using a three-dimensional 

convolutional neural network (3DCNN), and continuous wavelet transform (CWT). We 

transformed multivariate time series samples into time-frequency scalogram using CWT. 

After this processing, we trained the 3DCNN with the scalogram as inputs. The output 

was a binary unit representing whether there was a fault or not.  

2. Method 

2.1. Continuous wavelet transforms 

The CWT produces time-frequency domain information from an original time series data. 

It is also commonly applied to various research fields, such as transient analysis, 

electrocardiogram analysis, and fault detection and diagnosis of bearings (Guo. et al., 

2018) (Zhang et al., 2020). Unlike the Fourier transform (FT), CWT uses a wavelet to 

map an objective function onto the time-frequency space. FT does not reflect the 

information of time and space because it assumes that the signal can be divided into 

infinite sine waves (Serizawa et al., 2017). This method is not suitable for the analysis of 

non-stationary data. Short-time Fourier transform (STFT) is an improved method that 

analyzes signals, using a particular window size fixed for all frequencies. Due to this 

property, STFT cannot analyze signals accurately if non-linearity remains in the viewing 

window. However, CWT is more flexible than STFT, and it does not require the definition 

of a window size. CWT expresses the original signal with the mother wavelet by shifting 

and scaling. The selection of an appropriate type of wavelet can be easily changed 

according to engineering conditions (Zhang et al., 2020). Accordingly, CWT is 

appropriate for handling non-steady time-series data such as chemical process data. 

Equation (1) represents the CWT of x(t). For a given mother wavelet 𝜓, ‘a’ is the scale 

parameter related to the frequency concept, and ‘b’ is the shift parameter related to 

position. 

 
(1) 
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2.2. 3D convolutional neural network 

We adopted a 3DCNN for feature extraction and classification, to handle multi-variable 

datasets. It is a logical extension of 2DCNN, which works with three-dimensional data 

such as video, and has an additional temporal dimension in addition to the X and Y

coordinates. The first CNN was developed by Fukushima (1980). It could automatically 

complete feature learning without prior knowledge, and has an efficient recognition 

ability (Lu Deng, et al. 2021). 2DCNNs have been successful in image-based feature 

extraction and classification. A 3DCNN was proposed for activity recognition, which 

required a temporal domain. The basic 3DCNN architecture is illustrated in this slide 

(Figure 1). The 3D filter is convolved with 3D data to produce the feature volumes. After

subsampling and flattening, the features are fed to a fully connected layer for 

classification. 

2.3. Proposed model 

First, the chemical process data was divided by a moving time window. In our case, the 

moving window width was 20 and the stride was 1. Divided data were transformed into 

a spectrogram using a continuous wavelet transform. We set the size of the spectrograms 

to (20 x 20) during transformation. We performed pre-processing for each variable. 

Finally, the shape of the input data was (20 × 20 × the number of variables). The 

dimensions of the input data were (20 × 20 × 33) because we used 22 process 

measurement variables, and 11 manipulated variables. Next, the input data was fed into 

the 3DCNN, and the model was trained. The output was a binary unit representing the 

existence of the fault.   

3. Case study 

We evaluated the ability of our proposed method using the Tennessee Eastman process 

datasets. The Tennessee Eastman (TE) process was first introduced by Downs et al. 

(2013), and is based on a real process. It is widely used as a benchmark for evaluating 

fault detection and diagnosis methods (Onel et al. 2018) (Rato et al. 2017). It consists of 

five main units: a reactor, condenser, compressor, separator, and stripper. Four reactants 

and two products are included. It has 52 variables, including 41 process variables, and 11 

manipulated variables. In this study, the data of the TE process were obtained from the 

extended database published by Rieth et al. (2017). This dataset includes 500 simulation 

runs for the training, and testing data of the normal, and 20 fault types. Each simulation 

Figure 1 The simple description of 3D convolutional neural network 
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run involved 500 data samples for training, and 960 data samples for testing. The 

sampling period was set to 3 min (20 samples per hour). Each fault was introduced to the 

process after sample numbers 20, and 160 for fault training, and fault testing, respectively. 

The process flowsheet is shown in Figure 2. We selected this dataset because the 

conventional dataset was insufficient to train the CNN model. The datasets used in this 

study were downloaded from the Harvard database. In this study, 22 process variables 

and 11 manipulated variables were selected, and used to develop the fault detection model.  

4. Result 

4.1. Metrics for evaluation 

We evaluated the proposed method and compared its performance using the fault 

detection rate (FDR). TP represents true positive, and FN represents false negative.  

 
(1) 

4.2. Application to TEP 

We compared the proposed model with PCA. PCA is the most widely used model for 

fault detection. The number of principal components was set to nine, and the confidence 

interval was set to 0.99. Hotelling T2 and Squared Prediction Error (SPE) were calculated 

for each fault. A comparison of each model is presented in Table 1. The proposed method 

tended to improve the fault detection rate of faults in which PCA could not represent high 

performance.  

5. Discussion 

We selected fault 5 and considered the effectiveness of the CWT for feature extraction. 

Fault 5 was a step-like change caused by the condenser cooling water inlet temperature. 

It affected the variables surrounding the reactor and condenser. We selected variables 

32 and 33 from the process flow. Variable 32 was the reactor cooling water flow, and 

variable 33 was the condenser cooling water flow. They were located around the reactor 

and condenser. The resultant spectrograms are shown in Figure 3. They were selected 

Figure 2 Process flow sheet of Tennessee Eastman process (Andreas, B., et al, 2015) 



for each of the 10 steps. The spectrogram of each variable showed different 

characteristics between normal operating condition, and fault 5. This indicated that the 

change in variables appeared in the time-frequency domain. We believe that this 

difference implies the effectiveness of the proposed method for detecting faults.  

6. Conclusions 

In this paper, we proposed a fault detection model for chemical processes based on 

3DCNN and CWT. 3DCNN was applied for multivariable analysis. CWT was applied 

for pre-processing the chemical process data because of its good performance for non-

steady signal processing. First, the chemical process data were transformed to a time-

frequency spectrogram using CWT. The 3DCNN model was built with convolutional 

layers, pooling layers, dropout layers, and fully connected layers and trained with a 

spectrogram. The output was a binary unit representing the normal operation, or faulty 

condition. The results of the case study with TEP showed that the proposed method 

performed well on fault detection of TEP faults. Particularly, for faults in which PCA 

could not show good performance, the proposed method had a better score. It represented 

the time-frequency domain with the feature of process data. 

Table 1 Accuracy comparison of models  

Figure 3 The spectrograms of variable 32 on 

normal operating condition (the first row) and 

fault 5 (the second row) 

Figure 4 The spectrograms of variable 33 on 

normal operating condition (the first row) and 

fault 5 (the second row) 

y p
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Abstract 

The problem of developing an adaptive soft sensor (SS) using clustering methods is 

considered to be an example of an industrial reactive distillation process for the 

production of methyl tert-butyl ether (MTBE). We propose the use of clustering 

methods to assess the feasibility of updating the model parameters. An algorithm for the 

functioning of an adaptive SS using a moving window and clustering is proposed and 

tested on industrial data. The reduction of the computational cost in comparison with 

the adaptive SS using the moving-window method with continuous updating of the 

model parameters is shown. The accuracy of adaptive SSs based on various 

nonparametric methods is compared. 

Keywords: soft sensing modeling; clustering; adaptation; methyl sec-butyl ether. 

1. Introduction 

Currently, data from the laboratory and in-line analyzers are used to control the quality 

of the output products of distillation columns. However, the results of analysis obtained 

in laboratories do not allow quality management in real time, as they have an 

insufficient level of efficiency. Therefore, soft sensors are used in production to solve 

this problem.  Soft sensing is a data analysis tool that allows one to get an estimate of a 

difficult-to-measure output variable using the values of variables available for 

measurement at any given time. In comparison with rigorous modeling methods based 

on physical-chemical laws, data-driven soft sensors are more flexible and can be easily 

implemented in the process industry. 

Basically, the soft sensors used in production are usually based on linear regression 

models, which imply the assumption of a linear structure in the model of a plant. 

However, this is not always true in real conditions. The use of nonparametric regression 

methods is free from the requirement of knowledge of the model structure. There exist 

many nonparametric regression methods. The most popular methods include kernel, 

spline, and local polynomial kernel. Neural network-based models are also very popular 

(Wang et al., 2019), allowing extremely complex dependencies to be reproduced based 

on representative data as a result of training. In this paper, we consider soft sensors 

based on Alternating Conditional Expectations (ACE) (Snegirev and Torgashov, 2021), 

Kernel-based orthogonal projections to latent structures (K-OPLS) (Li et al., 2020), and 

neural networks (Zhu et al., 2018). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50231-1 
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I n  r e a l  c o n d i t i o n s , t h e  p a r a m e t e r s  o f  a  p l a n t  o f t e n  c h a n g e  o v e r  t i m e , a n d  t h e r e f o r e  t h e r e  

i s  a  p r o b l e m  o f  t h e  d e g r a d a t i o n  o f  t h e  m o d e l , w h i c h  l e a d s  t o  a  d e t e r i o r a t i o n  i n  t h e  

a c c u r a c y  o f  t h e  e v a l u a t i o n  o f  t h e  o u t p u t  v a r i a b l e . T o  s o l v e  t h i s  p r o b l e m , a d a p t i v e  s o f t  

s e n s o r s  a r e  u s e d  t o  a d j u s t  m o d e l s  u s i n g  n e w  m e a s u r e m e n t  d a t a . T y p i c a l  a d a p t i v e  s o f t  

s e n s o r s  a r e  b a s e d  o n  m e t h o d s  s u c h  a s  j u s t - i n - t i m e  (J I T ) (G u o  e t  a l ., 2020), t i m e  

d i f f e r e n c e  (T D ), a n d  m o v i n g  w i n d o w  (M W ) a p p r o a c h e s  (U r h a n  a n d  A l a k e n t , 2020). I n  

t h i s  p a p e r , w e  c o n s i d e r  m e t h o d s  f o r  a d a p t i n g  s o f t  s e n s o r s  b a s e d  o n  M W , t h e  e s s e n c e  o f  

w h i c h  i s  t o  u p d a t e  t h e  S S  m o d e l  u s i n g  t r a i n i n g  s a m p l e s . F r o m  t h e s e  t r a i n i n g  s a m p l e s , 

w h e n  a  n e w  o b s e r v a t i o n  a p p e a r s , t h e  e a r l i e s t  o b s e r v a t i o n  i s  r e m o v e d , a n d  a  n e w  o n e  i s  

a d d e d . I n  w e l l - k n o w n  m e t h o d s , w h e n  d e v e l o p i n g  a n  a d a p t i v e  S S  b a s e d  o n  M W , 

c l u s t e r i n g  m e t h o d s  a r e  u s e d  t o  d i v i d e  d a t a  i n t o  c l u s t e r s  a n d  b u i l d  a  s e p a r a t e  m o d e l  f o r  

e a c h  c l u s t e r . 

T h i s  p a p e r  p r e s e n t s  a n  a l g o r i t h m  f o r  t h e  o p e r a t i o n  o f  a n  a d a p t i v e  s o f t  s e n s o r  b a s e d  o n  

M W  u s i n g  c l u s t e r i n g  m e t h o d s  t o  d e t e r m i n e  t h e  n e e d  t o  u p d a t e  t h e  S S . T h e  s u p e r i o r i t y  

o f  t h e  a l g o r i t h m  i n  t e r m s  o f  r e d u c i n g  c o m p u t a t i o n a l  c o s t s  u n d e r  t h e  u p d a t i n g  o f  m o d e l  

p a r a m e t e r s  i s  s h o w n .  

2. Industrial plant description and problem formulation 
T h e  c h e m i c a l  p l a n t  o f  r e s e a r c h  i s  a  m a s s - t r a n s f e r  (r e a c t i v e  d i s t i l l a t i o n ) p r o c e s s  (M T P ). 

A  s p e c i f i c  f e a t u r e  o f  t h i s  M T P  i s  t h a t  a  r e v e r s i b l e  c h e m i c a l  r e a c t i o n  o c c u r s  

s i m u l t a n e o u s l y  w i t h  t h e  p a r t i a l  o r  a l m o s t  c o m p l e t e  s e p a r a t i o n  o f  t h e  r e s u l t i n g  m i x t u r e  

b y  d i s t i l l a t i o n . T h e  p r o d u c t  o f  M T P  i s  m e t h y l  t e r t - b u t y l  e t h e r  (M T B E ), w h i c h  i s  w i d e l y  

u s e d  i n  t h e  p r o d u c t i o n  o f  h i g h - o c t a n e  g a s o l i n e s .  

F _ R x

R x

B B F

M e O H

F I R 50_ 1

T I R 50_ 1

T I R 51_ 2
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F I R 51_ 2
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F i g u r e  1:  F l o w s h e e t  d i a g r a m  o f  t h e  r e a c t i v e  d i s t i l l a t i o n  p r o c e s s  

 

T h e  k e y  i n d i c a t o r  o f  t h e  q u a l i t y  o f  t h e  M T B E  p r o d u c t  (F i g . 1) i s  t h e  c o n c e n t r a t i o n  

(w t ,% ) o f  i m p u r i t y  a s  m e t h y l  sec - b u t y l  e t h e r  (M S B E ). W e  c o n s i d e r  t h e  p r o b l e m  o f  

d e v e l o p i n g  S S  f o r  M S B E  c o n t e n t  e s t i m a t i o n . T h e  f o l l o w i n g  m e a s u r e d  p r o c e s s  v a r i a b l e s  

w e r e  u s e d  a s  r e g r e s s o r s :  1u – M T B E  f l o w r a t e  (F I R 51_ 2);  2u – t e m p e r a t u r e  o f  f r e s h  B B F  
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in a for-contact (pre) reactor (F-Rx) (TIR50_1); 3u – the flowrate of fresh BBF in a for-

contact (pre) reactor (F-Rx) (FIR50_1); 4u – the reflux flowrate in C-2 (FIR51_2); 5u – 

the temperature of the reacting mass from the top of C-1 in Rx (TIR51_3); 6u – the 

flowrate of reacting mass in C-1 (FIR51_1); 7u – bottom pressure of F-Rx (PIR50_1); 

8u – the temperature in the top of the middle zone of the catalyst bed of Rx (TIR51_1); 

9u – the temperature in the bottom of the middle zone of the catalyst bed of Rx 

(TIR51_2). 

3. Methods used for model evaluation 

In this paper, we present a method based on the ACE in comparison with Kernel-OPLS 

and neural networks. 

3.1. Alternating Conditional Expectation (ACE) 

A nonlinear soft sensor model can be obtained using the ACE algorithm (Snegirev and 

Torgashov, 2021): 

   



m

i
ii ubY

1
0  , 

Where the  - function of output variable Y ; 0b - bias; i - optimal transformation of 

the i-th input variable iu ; m – number of input variables. 

3.2. Kernel-based Orthogonal Projections to Latent Structures (Kernel-OPLS) 

The Kernel-OPLS method is a reformulation of the original OPLS method to its kernel 

equivalent (Li et al., 2020). A distinctive feature of kernel-based methods is the 

consideration of the kernel matrix as point products in a multidimensional object space. 

3.3. Neural networks 

Neural networks can also be used to build soft sensors. In this work, a single-hidden-

layer neural network is used. The hidden layer contained S=10 nodes, equal to the 

number of input variables. A set of 300 observations of variables was used to train the 

neural network. 

4. Description of the proposed adaptation algorithm 

The proposed algorithm is based on the “Moving Window” (MW) method. The 

proposed algorithm differs from MW in that when a new observation appears, the need 

to add a new observation to the training set and to update the SS model is evaluated. In 

this paper, we propose clustering methods to determine the need to update the current 

SS model. At the initial stage, the initial set of observations is divided into K clusters. 

Clustering is carried out in the space of the input variables of the model. Algorithm 1 

shows a pseudocode describing how the need to update the SS model is assessed when a 

new observation is obtained. 

The Euclidean distance was used as a distance measure in the algorithm (Cardarilli et 

al., 2020): 
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1
( , ) ( )

m

i ii
d p q p q


 

.
 

1389



1390  

As one of the criteria for the need to update the SS, we propose a calculation of the 

difference in time between the appearance of a new observation and the last one in the 

cluster (time factor), which will allow for timely consideration of the manifestation of 

non-stationary properties of the object in the model. 

To take into account the time factor at time t  for cluster k , we propose using the 

following indicator: ,k

k

t Qk

t kT

 



  where i  is the value of the moment of the 

appearance of a new observation, 
k

k

Q is the value of the moment of the appearance of 

the last element in cluster k, 1 0 2 1 1( , ,..., )k k k k k k k

Q QT            is the vector of time 

intervals between the appearance of observations of the k-th cluster, 
0

k is the initial 

moment of time, 
kT is the average value of the vector

kT  

 

Algorithm 1. Assessment of the need to update the SS  

1. Calculate the Euclidean distance ( , )n jd u   from the new observation to the 

j-cluster center, 1...j K  

2. Select the cluster k for which ( , )n kd u   is minimal 

3. If there is a small number of observations in cluster k, then 

4. Add a new observation to the training set. Recalculate cluster centers taking 

into account the new observation. Recalculate the parameters of the SS  

5. Else If ( , )n kd u   is greater than the maximum distance from the elements of 

cluster k to its center 

6. Add a new observation to the training sample. Increase the number of 

clusters by 1. Recalculate the cluster centers taking into account the new 

observation. Recalculate SS parameters 

7. Else If MAE of the estimate of the output variable taking into account the new 

observation are greater than the MAE at the previous time 

8. Add a new observation to the training sample. Recalculate cluster centers 

taking into account the new observation. Recalculate the parameters of the 

SS 
9. Else If 1k  ( How long has an observation similar to the new one been 

encountered) 

10. Add a new observation to the training set. Recalculate cluster centers taking 

into account the new observation. Recalculate the parameters of the SS 

11. Else 

12. The new observation should not be included in the training set. Leave the 

SS model unchanged 

5. Results and discussion 

5.1. Comparison of models accuracy 

The accuracy of the soft sensor models was compared on the data of the MTBE 

production process plant. The mean absolute error (MAE) was used as the evaluation 

criterion (Wang and Lu, 2018). Table 1 shows the values of MAE at the end time. The 

value of MAE at the final time for the K-OPLS-based soft sensor was 52% less than 

A. Torgashov et al. 



that of the ACE-based soft sensor and 45% less than that of the neural network-based 

soft sensor for the proposed adaptation algorithm. For the moving window algorithm, 

the MAE value for the K-OPLS-based soft sensor was 52.3% less than that of the ACE-

based soft sensor and 35.5% less than that of the neural network-based soft sensor. 

Table 1. MAE at the end time 

 Proposed Method Moving Window 

ACE 0.1596 0.15694 

K-OPLS 0.0766 0.07485 

Neural Networks 0.13945 0.11604 

5.2. Comparison of computational costs for adaptive soft sensors 

Figures 2 and 3 are graphs of MAE and computational time of adaptive SS based on the 

ACE and SS based on the K-OPLS. Table 2 presents the value of computational time 

spent at work adaptive soft sensors based on the ACE, the K-OPLS and of the neural 

network working on the proposed method and the method of MW. 

 
Figure 2: The change of MAE during the process (left) and the time spent on work 

(right) for the ACE-based soft sensor 

 
Figure 3: The change of MAE during the process (left) and computational cost (time) 

spent on updating (right) for the K-OPLS-based soft sensor 

 

Table 2. Computational cost (time) of adaptive soft sensors 

 Proposed method Moving Window 

ACE 31.43 61.45 

K-OPLS 468.3 735.71 

Neural Networks 51.77 86,1 

 

The advantage of the proposed algorithm is to reduce the computational cost. Thus, the 

ACE-based SS, K-OPLS-based SS and the neural network-based SS during the process 

Methyl sec-butyl ether content estimation in MTBE products via clustering-
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showed approximately the same values of MAE for both the proposed algorithm and the 

MW, but the reduction in computational time spent updating the model was 48.8% for 

the ACE-based SS, 36.3% for the K-OPLS-based SS and 39.8% for the neural network-

based SS. 

6. Conclusions 

We have proposed an algorithm for the operation of an adaptive SS based on an MW 

using clustering methods and taking into account the time factor. During the testing of 

the algorithm on the data of the reactive distillation process, we have shown that the 

time for recalculation (updating) of the model parameters was reduced compared to the 

MW algorithm for the ACE-based SS by 48.8%, for the K-OPLS-based SS by 36.3% 

and for the neural network-based SS by 39.8%. 

We have compared the use of ACE and K-OPLS algorithms and neural networks in the 

construction of soft sensors. The MAE value at the last moment for a soft sensor based 

on K-OPLS was 52% less than that of a soft sensor based on ACE, and 45% less than 

that of a soft sensor based on a neural network for the proposed adaptation algorithm. 

For the MW algorithm, the MAE value for the K-OPLS-based soft sensor was 52.3% 

less than that of the ACE-based soft sensor and 35.5% less than that of the neural 

network-based soft sensor. 
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Abstract 

In chemical processes, most measurements show stationary characteristic around their set 
points. However, the means of specific measurements are still time-varying with a wide 
range of variation, which makes the interval of data under normal operating conditions 
determined from multivariate statistics process monitoring method relatively large. In 
such case, the fault signal could be buried by these nonstationary features at its early 
stage, resulting in a long fault detection time and low fault detection rate. In this work, a 
process monitoring strategy dealing with nonstationary process is proposed by removing 
non-stationarity. Stationarity test is first applied to determine measurements with 
nonstationary characteristic. Support vector regression (SVR) model is then established 
for each nonstationary measurement using independent variables selected by mutual 
information. The original nonstationary measurement can be replaced by model residual, 
which is the difference between the regression value and the measured value, and 
therefore the nonstationary characteristic can be removed. When the multivariate 
statistical monitoring model is further established, the interval of normal operating 
conditions is effectively narrowed, by which the faulty deviation can be identified earlier. 
In order to verify the proposed method, case studies on Tennessee Eastman process (TEP) 
are investigated. The results demonstrate a better performance in detecting the abnormal 
deviations in nonstationary systems compared to other related methods. 

Keywords: Chemical nonstationary process; Mutual information; Support vector 
regression; Process monitoring 

1. Introduction 

With the rapid development of data measurement and storage technology, multivariate 
statistical process monitoring (MSPM) methods have received considerable attention 
because of their unique advantages in processing highly coupled and multivariate data. 
However, some measurements in chemical industrial processes inevitably show a certain 
dynamic and nonstationary characteristic due to equipment aging or random disturbances, 
which violates the assumption of traditional MSPM that the process is time-independent 
(Li and Yan, 2019). Dynamic principal component analysis (DPCA) applies augmented 
matrix to describe such time-varying dynamic characteristic of data. However, the 
selection of lag order is limited for high-dimensional process data and all process 
variables have to be expended to the same level, while process dynamic has different 
effects on each variable (Huang et al., 2019). Slow feature analysis, as an unsupervised 
learning algorithm of extracting constant or slowly changing features of time series, has 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50232-3 
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been applied for dynamic process monitoring (Shang et al., 2015). The process can be 
better described by considering both static and dynamic indices, but variances of original 
nonstationary data are still not processed. When applying MSPM to project high-
dimensional data onto a lower dimensional feature space, the interval of normal region 
will be wide because the main variance of original data is preserved. The fault signal 
could be buried in nonstationary trends of process variables at its early stage, leading to 
a long fault detection time. Aiming at the process non-stationarity, cointegration theory 
has been developed to extract time-invariant characteristics by establishing cointegration 
relationship among nonstationary variables (Li et al., 2014). Process monitoring can be 
implemented by distinguishing between normal changes in cointegration relationships 
and abnormal deviations, but the application of cointegration is still relatively limited as 
a new method introduced to process monitoring.  

In this work, a monitoring strategy for nonstationary process is proposed by removing 
characteristic of original nonstationary measurements. Process variables are first divided 
into stationary variables and nonstationary variables by stationarity test. Regression 
model is then established by mutual information (MI) and support vector regression 
(SVR) for each nonstationary variable. Model residuals of these variables, which no 
longer show nonstationary characteristics, are put together with stationary variables to 
replace the original nonstationary signals. Therefore, the variances of data under normal 
operating conditions are significantly reduced, the interval of normal operating conditions 
determined from monitoring statistics of principal component analysis model is 
effectively narrowed, by which the abnormal deviations can be identified at its early stage. 
The proposed method is employed to Tennessee Eastman process (TEP) and the 
performance of process monitoring is compared with related methods. The results show 
that the fault detection rate can be significantly improved by removing non-stationarity. 

2. Methodology 

In this section, the preliminaries of methods applied in the proposed process monitoring 
strategy are introduced. 

2.1. Stationarity test 

Process stationarity is an important assumption for building statistical models. Unit root 
test is usually used to test stationarity by judging whether the first-order difference of a 
time series is stable. In this work, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 
is applied to divide process measurements into stationary part and nonstationary part. 

2.2. Mutual information (MI) 

MI is a commonly used correlation analysis tool from the aspect of information theory. 
Considering two random variables X and Y, the MI value can be calculated as follows, 

,

( , )
( , ) ( , ) log

( ) ( )x y

p x y
MI X Y p x y

p x p y
                                                                                 (1) 

where p(x, y) is the joint probability distribution function, p(x), p(y) are the marginal 
probability distribution function of x and y respectively. The probability distribution 
function can be calculated in Equation (2) by kernel density estimation, 

1
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n

i
i
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
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where K is the kernel function. In this work, MI is applied to select independent variables 
for its advantage in identifying nonlinear relationship. 

2.3. Support vector regression (SVR) 

SVR is a statistical machine learning method that has been applied in industrial processes. 
For a training set {( , ), 1... }i iT y i l x , where ,N

i iy x R R , SVR aims at finding a 

regression function that can fit all training samples, 

( ) ( )Tf x b  w x                                                                                                            (3) 

where w is a coefficient vector in feature space, ( ) x is a kernel function to map input 

x  to a vector in feature space and b is an intercept. The solution of w and b can be 
obtained by solving the optimization problems in literature (Smola and Schölkopf, 2004). 
SVR has a great advantage in dealing with nonlinear processes by introducing a kernel 
function to project the original data into a high-dimensional linearly separable space. 
Therefore, SVR is selected to build regression models for nonstationary variables. 

2.4. Principal component analysis (PCA) 

For a high dimensional data set X , PCA can be employed to find a projection direction 
that maps the data into a lower dimensional space by orthogonal transformation,  

TX TP E                                                                                                                      (4) 

where T is a score matrix, P is a loading matrix, and E is a residue matrix. T2 statistic and 
SPE statistic can be further established in the corresponding principal component space 
and residual space to realize process monitoring. 

3. The proposed monitoring strategy by removing process non-stationarity 

In this section, the idea of removing process non-stationarity and the implementation 
procedures of the proposed process monitoring framework are introduced.  

3.1. Strategy for removing process non-stationarity 

The main contribution of the proposed monitoring strategy is to early identify the 
abnormal process deviations from normal random disturbances in nonstationary process. 
If the process non-stationarity can be effectively removed, the fault can be early detected 
with traditional PCA. On this basis, SVM is applied to extract nonstationary and nonlinear 
relationships among variables and establish regression models for nonstationary 
variables. The obtained residues are used as virtual variables to replace nonstationary 
variables. Therefore, all process variables are processed to be stationary, and then better 
process monitoring results can be easily obtained with PCA. 

3.2. The implementation procedures of the proposed process monitoring framework 

The implementation procedures of the proposed process monitoring method are shown in 
Figure 1. It consists of offline training and online monitoring. For offline training, the 
first step is to divide training data under normal conditions into stationary part and 
nonstationary part by KPSS test. For nonstationary variables, MI is first calculated to 
select independent variables. Then SVR model is established for each nonstationary 
variable using corresponding independent variables. The optimal parameters are 
determined by grid search and cross-validation. Once the SVR models are determined, 
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the difference between the regression value and the measured value of each nonstationary 
variable is applied as a virtual variable to replace original nonstationary signal. The virtual 
variables are put back together with original stationary variables, by which the process is 
converted to stationary. Therefore, a PCA model can be established and control limits of 
T2 statistic and SPE statistic can be determined. 

For online process monitoring, real-time data are input into the SVR models to get the 
regression values of nonstationary variables. Real-time virtual variables are calculated 
from the difference between regression values and measured values. Then virtual 
variables and stationary variables are put together and brought into the PCA model to 
calculate T2 statistic and SPE statistic of the current sample. The monitoring results can 
be determined by comparing statistics with the control limits. 

 

Figure 1 Procedures of the proposed process monitoring framework 

4. Case studies on Tennessee Eastman process (TEP) 

In this section, the proposed monitoring strategy by removing process non-stationarity is 
applied to TEP. The results are discussed and compared with other related methods. 

4.1. Tennessee Eastman process and data description 

TEP is a famous chemical benchmark simulated from an industrial plant (Downs and 
Vogel, 1993), and has been commonly used to test the performance of newly proposed 
process control and monitoring methods. The process includes five units, a total of 52 
variables, and 21 pre-set faults that can be introduced. The information of the variables 
and the types of the faults is available in Downs and Vogel’s paper (Downs and Vogel, 
1993). In this work, a normal data set and 18 faulty data sets are applied. Each data set 
contains 960 samples and 33 variables because the component variables are excluded for 
their long sampling time. All the faults are introduced at the 160th sample point. 
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4.2. Results and discussion 

KPSS test is applied to the normal data set, 7 variables are determined as nonstationary 
variables, which are compressor work, compressor recycle valve, condenser cooling 
water flow and other four variables in stripper. It is worth noting that stream 4 in TEP is 
directly delivered to the stripper, and most faults introduced to stream 4 cannot be early 
detected, which can be considered that the fault signal is buried in process non-
stationarity. Independent variables are selected to train SVR models for these 7 variables 
respectively. Radial basis function is selected as kernel function and model parameter C 
is 20, gamma is 0.004 according to cross validation. The residues are used to replace 
original signals and the fault signal can be early identified because the process non-
stationarity is removed. Taking fault 8 as an example, original normal data set and fault 
data set of 4 nonstationary variables are shown in Figure 2. The normal curves for certain 
variables show a similar nonstationary trend because they are all collected from stripper 
and highly correlated. The fault signal cannot be distinguished from the normal signal at 
its early stage because the fault is introduced to nonstationary variables. By removing 
non-stationarity using virtual variables in Figure 3, the interval of random disturbances 
under normal conditions is narrowed and the fault signal can be early identified. PCA 
model is then established for process monitoring, and the monitoring results of all 16 
faults are shown in Table 1. It can be obtained that the proposed method shows the best 
performance in fault detection rate. It is worth noting that the proposed method shows 
obvious advantages in fault 5, 10, 12, 20, and 21 because these faults are introduced into 
nonstationary variables. For fault 5, fault detection rate obtained by the comparison 
methods is low because the response of the control system reduces the fault signal, but 
the fault signal can still be obviously distinguished by proposed method. For other faults, 
the proposed method also shows better performance in fault detection time. It is proved 
that this method provides a feasible idea for monitoring nonstationary processes. 

          

Figure 2 Original data of nonstationary variables      Figure 3 Data of virtual variables in this work 

5. Conclusions 

In this work, a monitoring strategy for chemical process with nonstationary measurements 
is proposed. The original signals of nonstationary variables are replaced by virtual 
variables, which are residues obtained by MI-based SVR models. The process non-
stationarity has been removed because the nonstationary and nonlinear feature can be 
extracted by SVR. Therefore, the interval of normal operating conditions determined 
from PCA model can be effectively narrowed, by which the faulty deviation can be 
identified earlier. Case studies on TEP illustrate the effectiveness of this method in 
nonstationary processes. The proposed method provides a brand-new way to deal with 
nonstationary measurements in nonstationary process monitoring. 

Early identification of abnormal deviations in nonstationary processes by 
removing non-stationarity  
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Table 1 Fault detection rates of different methods 

Fault  PCA DPCA   DICA KSFA         Proposed method 

No. T2        SPE T2 SPE T2        SPE S2 SPE T2 SPE 

1 0.99 1 0.99 1 1 1 0.99 0.99 0.99 1 

2 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 1 

4 0.54 0.96 0.12 1 1 1 0.96 0.99 0.57 1 

5 0.23 0.25 0.27 0.53 1 1 0.93 0.95 1 1 

6 0.99 1 0.99 1 1 1 0.99 0.99 0.99 1 

7 1 1 1 1 1 1 1 1 1 1 

8 0.98 0.98 0.97 0.97 0.98 0.98 0.99 0.99 0.98 0.98 

10 0.33 0.34 0.36 0.57 0.88 0.88 0.78 0.71 0.77 0.84 

11 0.21 0.64 0.20 0.83 0.80 0.76 0.87 0.80 0.58 0.82 

12 0.97 0.98 0.99 0.97 1 1 0.99 0.99 1 1 

13 0.94 0.96 0.95 0.96 0.95 0.95 0.95 0.97 0.95 0.96 

14 1 0.99 1 1 1 1 1 1 1 1 

16 0.16 0.25 0.18 0.59 0.89 0.75 0.50 0.70 0.87 0.87 

17 0.74 0.89 0.78 0.97 0.97 0.96 0.94 0.96 0.84 0.97 

18 0.89 0.9 0.90 0.90 0.91 0.91 0.91 0.92 0.91 0.91 

19 0.14 0.28 0.20 0.56 0.91 0.9 0.14 0.36 0.78 0.82 

20 0.32 0.60 0.36 0.70 0.89 0.81 0.67 0.78 0.61 0.81 

21 0.26 0.43 0.44 0.60 0.44 0.37 0.536 0.47 0.51 0.65 

Average 0.648 0.747 0.649 0.841 0.923 0.903 0.841 0.864 0.852 0.924 
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Abstract 

Current chemical safety management technology is focused on detecting and responding 

to leaks based on sensors installed in the field, so it is difficult to respond appropriately 

in case of sensor failure or unexpected accidents. In a laboratory or a site where various 

chemical substances are irregularly handled, the accuracy of judging exposed 

substances based on bias is low, especially if prior risk analysis or sensor installation is 

insufficient. Therefore, loss can be minimized by providing quick and accurate initial 

response information at the accident site as well as support for accident material 

identification using the symptoms expressed by the exposed person, which can be 

viewed as one of the biosensors. Accordingly, this study supported the establishment of 

a substance-symptom knowledge base and developed a real-time exposure substance 

identification AI system based on the manifestation symptoms. 

This study developed a system that identifies chemicals exposed from symptoms 

expressed to the exposed person in unexpected chemical leakage accidents and supports 

response information of determined substances for preemptive response in dangerous 

situations. In the development, in addition to knowledgeing exposure symptoms and 

chemical information, a knowledge base (KB) was established in the form of a 

knowledge graph using AllegroGraph. In order to determine whether knowledge within 

the established KB is true, knowledge demonstration was conducted through a 

knowledge graph embedding technique. Based on the established KB, material 

discrimination was conducted using SPARQL knowledge query inference. In addition, 

in the case of new substances with insufficient symptom knowledge, it is difficult to 

support with the KB-based inference system proposed in this study, so a structure-based 

symptom prediction DNN model using the fingerprint technique (MACCS Keys, 

Mordred) was proposed, showing high accuracy of 81.82. 

Keywords: chemical incident, exposure symptom knowledge, chemical identification, 

deep learning, artificial intelligence 

1. Introduction 

In the production, handling, distribution, storage and use of chemical substances, 

unexpected chemical leakage accidents at the site can cause enormous damage such as 

personal injury and property damage if the initial response is not appropriate. In the 

event of a chemical leakage accident, early identification of the leaked material and 

prompt initial response are essential in minimizing the loss caused by the accident. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50233-5 
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Existing chemical detection technology lacks smart technology for detecting and 

discriminating contact chemicals essential for initial response in the event of an 

unexpected chemical leakage accident. When an exposure accident occurs, it is difficult 

to accurately identify the leaked chemical if it is not filtered in the prior risk analysis 

based only on sensor information. Compared to research on leak response technology 

and sensor-based abnormal detection and monitoring technology, research on chemical 

substance diagnosis considering symptoms is very insufficient. If a sensor is not 

installed at the accident site, an initial estimate must be made based on qualitative 

exposure symptoms, but the knowledge service on hazardous chemicals considering 

human bio-sensing information (symptoms) is also relatively insufficiently developed. 

This study proposed a knowledge service-based AI system that identifies chemicals 

exposed from symptoms expressed to the exposed person in unexpected chemical 

leakage accidents and supports response information of determined substances for 

preemptive response in dangerous situations. 

2. P roposed System: SE ARCH  

A Symptom-based Expert for Advanced Response (SEARCH) system was proposed 

and established to provide real-time exposure substance identification support and initial 

response information based on symptoms of expression when an unexpected chemical 

accident occurs at the chemical handling site (see Fig. 1). In this paper, we intend to 

deal only with the knowledge base construction, knowledge verification, exposure 

substance identification, and knowledge expansion based on predictive models, which 

are the key issues in the operation of SEARCH. 

 

Figure 1. SEARCH system flow chart 

3. Chemical-symptom knowledge base generation 

A knowledge base was established to support symptom-based exposure substance 

identification and to verify knowledge using knowledge graph embedding (see Fig. 2). 

In the case of symptom-based exposure substance identification support, it is not 

possible to support substances not equipped with a knowledge base, so it is essential to 

expand knowledge based on predictive models for continuous support. To secure the 

ease of knowledge expansion, a graph database-based knowledge base that is easy to 

add/delete/change was built. 
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Figure 2. Framework of constructing knowledge graph 

3.1. Chemical and symptom data collection  

The collected chemicals were collected from 1,001 chemicals, including 499 core 

substances commonly used in industrial sites mounted on National Institutes of Health 

(NIH)' s Wireless Information System for Emergency Responders (WISER) and 502 

substances provided by PubChem, Camo Chemicals, ICSCs, and NIOSH, which are 

open chemical databases. Exposure symptom knowledge of chemicals was based on 

NIH' s WISER-mounted information, and symptom knowledge contains 79 symptom 

information (high body temp, blood noise, etc.) divided into 10 categories such as

temperature, nervous system, oral cavity, and skin (Hochstein, C., 2008). In addition, 

RDKit, a Python package (provided by name, substructure and similarity of chemical 

substances, SMILES, InChI, etc.), was used to collect additional chemical information. 

3.2 . Chemical information and molecular structure preprocessing 

In order to predict the symptoms of new substances not mounted on the knowledge base, 

the collected chemical information and molecular structure information were pre-

processed using the fingerprint technique. To further confirm which method of bits 

based fingerprint (BBF) or count based fingerprint (CBF) shows better prediction 

performance in predicting symptoms, BBF-based MACCS keys and CBF-based 

Mordred fingerprint methods were used (see Fig. 3).   

 

Figure 3. MACCS keys vs. Mordred 

MACCS keys convert SMILES into MACCS keys with the most commonly used 

structural key (Anju Sharma, 2021). Using RDKit, a Python package, it was converted 

to 166 bits of structural keys of 960 bits and 166 bits. Mordre is a molecular descriptor 

calculator (Hirotomo Moriwaki, 2018). From various experiments, the chemical 

information of the molecule is converted into standardized experimental results (real 

numbers), which are 1825 expressors. RDKit, a Python package, was used for 

conversion. 

g p ( g )

Knowledge Graph
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3.3. Chemical substance-symptom knowledge base construction 

AllegroGraph, a knowledge graph tool, was used to build a knowledge base. 

AllegroGraph is a triple store system designed to store knowledge in the form of 

Resource Description Framework (RDF) triple, available through Common Lisp, 

Python, and other APIs, and supports knowledge graph queries and reasoning such as 

SPARQL, RDFS+ (Gundla & Chen, 2016). Therefore, AllegroGraph, which can be 

linked to Python and supports knowledge graph construction, query, and reasoning, was 

selected as a knowledge graph tool. The previously collected and extracted 1,001 

chemical substances, 79 symptom knowledge information, and preprocessed data were 

saved in Excel and XML format, and converted into RDF triple, one of the knowledge 

expression methods, to build a knowledge base in AllegrpGraph. For the construction, 

agraph-python, a Python package provided by AllegroGraph, was used in a Linux 

environment. 

4. Knowledge verification using knowledge graph embedding 

Although several DBs have been cross-verified for the expression of chemicals, it is 

difficult to secure data, and errors may exist because people directly intervene in 

building knowledge graphs to add knowledge and data, so knowledge graphs were 

embedded. 

4.1. Adaptation of KB embedding algorithm 

In this study, the ComplEx model, a knowledge graph embedding model, was used to 

demonstrate knowledge within the knowledge graph. The formula for the Score 

Function of the ComplEx model is as follows (T. Trouillon et al., 2016):  
 

𝑆𝑐𝑜𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑅𝐸(< 𝑣𝑠, 𝑣𝑝, 𝑣𝑜̅̅ ̅ >)                                                                                      (1) 
 

The data were set to triple 73,692 cases including exposed material-expression 

symptoms, exposed material-MACCS key, train/test set ratio was 8:2, and parameters 

were set to k=150, epochs=20, optimizer=adam, batch_count=100, eta=5. For 

knowledge verification, information on one substance to be verified was omitted from 

1,001 substances mounted on the knowledge graph, and then embedding prediction was 

conducted with the remaining 1,000 substances. In prediction, if the prob value of the 

missing substance was greater than 0.98, it was accepted as True. 

4.2. Knowledge verification results 

As a result of knowledge verification through knowledge graph embedding, the results 

of knowledge verification of substances with less than 10 (Cuminaldehyde), 10 or more 

and less than 30 (isoamyl acetate), and 30 or more and less than 79 (benzene) among 

1,001 substances can be found in Table 1 below. The average FP rate of 1,001 materials, 

including the three specified materials, was very low at 0.19, confirming the 

demonstration of triple mounted in the knowledge graph. 

Table  1. Result of knowledge verification of Cuminaldehyde, Isoamyl Acetate, Benzene 

 FN Rate FP Rate 

Cuminaldehyde 0.0 0.0 

Isoamyl Acetate 0.1 0.06 

Benzene 0.12 0.07 
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5. Identification of symptom-based exposure substances  

Using SPARQL provided by AllegroGraph, symptom-based exposure substance 

discrimination was performed by knowledge query reasoning. As a case study, case 1 

entered five symptom information (Nose_sneezing, chills, chest pain, eye swelling, 

tinnitus). In addition, if there are unconfirmed symptoms in the knowledge query 

inference process, the speed and accuracy of inference may be increased by excluding 

the symptoms, and case 2 is an example: Case 2 entered five symptom information 

(Nose_sneaking, chills, chest pain, eye swelling, tinnitus), and added skin swelling to 

the symptom information to enter five expression symptoms and one non-expression 

symptom, where skin swelling is a non-expression symptom. 

 

Figure 4. (a) Case 1; (b) Case 2. 

As a result of inference, it can be seen that 11 chemicals were inferred in case 1, and 4 

chemicals were inferred in case 2. Case 1 showed the same performance as the result of 

substance estimation only with symptoms among WISER's identity compound function. 

However, WISER must enter an average of 40 or more symptoms when only symptoms 

are entered to identify one substance (Bhavnani et al., 2007). Therefore, there is a limit 

to rapid chemical identification. Case 2 is a symptom exclusion function through 

unconfirmed symptoms that are not present in WISER. Using SPARQL conditional 

statements, unconfirmed symptoms were excluded from material estimation, showing 

that certain substances could be identified with less information input (see Fig. 4). 

6. Symptom knowledge expansion using DNN  

Since symptom-based substance identification support is not possible in the established 

knowledge base, a Deep Neural Network (DNN) model was developed to predict 

symptom knowledge from the molecular structure of the chemical as one of the ways to 

expand knowledge in the future. In order to compare and analyze the effective 

fingerprint method in predicting symptoms, it was divided into MACCS keys and 

mordred. In case 1, MACCS keys are added as input values, and in case 2, mordred is 

added as input values, and one chemical comes out as output values, resulting in the 

accuracy of predicting 79 detailed symptoms. 

6.1. Adaptation of DL algorithm 

In this study, the DNN model was used as a DL method for knowledge expansion. 

The data is 482 substances except WISER's solid, 502 substances in PubChem, 79 sub-

symptoms, 166 MACCS keys, 1,825 mordred, the train/test set ratio is 8:2, parameters 

were set as hidden layer=3, activation function=Relu, softmax, optimizer=adam. 

AI System for Substance Identification Based on Chemical Substance-Symptom
Knowledge Graph
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6.2. Result of model performance assessment 

As a result of the DNN model performance according to Fingerprint, the accuracy of the 

prediction model using mordred as input was about 10%. The reason Mordred has high 

performance is that mordred has about 11 times more data than MACCS keys, while 

MACCS keys only have binary bits of 0 and 1, while mordred contains real information 

obtained through various experiments. 

Table  2. Model accuracy according to two fingerprints 

  MACCS keys Mordred 

Accuracy  70.24 81.82 

7. Conclusions 

The starting point of a response to a chemical exposure incident is the identification of a 

potential exposure substance. To this end, a total of 1,001 chemical-symptom-based 

knowledge bases were built by adding the symptoms provided by WISER and 

chemicals provided in the open chemical DB targeting high-risk substances at industrial 

sites or chemical accident sites. ComplEx, a knowledge graph embedding model, was 

constructed to demonstrate knowledge in the established knowledge base. 

Demonstration of knowledge was verified through case studies. The average FP rate of 

1,001 materials was 0.19, which was very low. Based on the proven knowledge base, a 

system for identifying exposure substances that receives symptom information in real 

time and presents candidates for exposure substances was designed, and its 

effectiveness was verified through case studies. The case study showed the same results 

as WISER, the existing standard system, and showed that the speed and accuracy of 

discrimination can be increased through material discrimination that reflects the 

conditions that WISER does not have. In addition, since it is difficult to support new 

substances with little symptom knowledge with the KB-based reasoning system 

proposed in this study, a structure-based symptom prediction DNN model using the 

fingerprint method (MACCS Keys, Mordred) was proposed. The DNN model using 

Mordred as input showed the best performance with an accuracy of 81.82. 
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Abstract 

Active pharmaceutical ingredient (API) separation from synthesis and crystallization 

mother liquors is typically carried out in pharmaceutical manufacturing through filtration 

and drying. These steps are of utmost importance, as impurities herein retained will 

inevitably end up in the drug product. Recently, a novel carousel has been developed for 

carrying out filtration and drying in a continuous intensified fashion. The unit represents 

a step forward with respect to traditional batch filtration and drying, as continuous 

operation can reduce the variability of the product quality. However, the occurrence of 

faults compromising product compliance can be assessed only upon discharge of the final 

cake of API crystals, when its purity can be measured. In this work, we develop a model-

based monitoring system for the unit, based on state and parameter estimation. The 

implemented monitoring system succeeds in tracking the product critical quality 

attributes (CQAs), and in detecting common faults for the carousel, such as sudden 

variations of the feed attributes. 

Keywords: Process monitoring, State estimation, Quality-by-Design, Continuous 

pharmaceutical manufacturing, Fluid-solid separation 

1. Introduction 

In response to the recently registered alarming numbers of drug shortages and recalls, 

pharmaceutical regulators are encouraging the transition to the so-called “six sigma 

quality” (Yu and Kopcha, 2017). Under a six sigma quality system, there are six standard 

deviations between the process mean of each quality variable and the relevant nearest 

specification limit. Albeit six sigma quality is established in many manufacturing 

industries (e.g., the semiconductors one), the pharmaceutical industry is still lagging 

behind, at a two-three sigma quality standard. Among the pharmaceutical emerging 

technology needed to achieve six sigma quality, a pivotal role is assumed by the transition 

to continuous processing, and by the implementation of an advanced monitoring system. 

Such monitoring system should include process analytical technology or soft sensors for 

directly monitoring the product critical quality attributes (CQAs), and suitable routines 

for automatic detection of faults that might compromise the product quality. 

In this study, we present a monitoring system for a novel continuous carousel for 

intensified filtration-drying of crystallization slurries (Destro et al., 2021). The carousel 

is an enabler for end-to-end continuous pharmaceutical processing, as it is one of the few 

technologies on the market that can connect the upstream and downstream sections of 

pharmaceutical processes in a continuous fashion. The unit features multiple processing 

stations embedded in a main cylindrical body, which rotates at every given time interval 

(cycle duration), transferring the material from one station to the subsequent one. In the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50234-7 
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first station, the crystallization slurry is loaded, and the first processing cycle starts. At 

the end of every cycle, the material is transferred to the following station, until it reaches 

the final one, and it is discharged in the form of a dry crystals cake. The rotation 

mechanism enables continuous operation, as different batches of slurry are processed 

simultaneously in the stations. The CQA of the process is the purity of the discharged 

crystals cake, which must respect tight solvent and impurity content constraints. 

However, the composition of the cake being dried cannot be directly measured through 

sensors during carousel operation. At the same time, other parameters strictly related to 

the occurrence of disturbances that might compromise the product quality (e.g., abnormal 

filter mesh fouling or critical change of physical properties of the cake) cannot be 

measured in real time. Hence, in this study we propose a monitoring system comprising 

a state estimator (Ray, 1981) for soft-sensing the CQAs of the cakes being processed in 

the carousel. The monitoring system also features real time parameter estimation routines 

for tracking critical parameters that can indicate the occurrence of faults. Univariate charts 

are used on process measurements and estimated states and parameters for fault detection 

purposes. The monitoring system is tested on a simulated process (Destro et al., 2021) for 

the isolation of paracetamol crystals from a paracetamol/ethanol slurry with the carousel 

technology object of this study. Section 2 introduces the process and the case study. 

Section 3 outlines the conceived monitoring system and presents the monitoring results, 

before the concluding section. 

2. Continuous filtration-drying of paracetamol/ethanol slurries 

The carousel setup (Figure 1, equipment legend in Tables 1-2) features five cylindrical 

ports. In the first one (V101), a volume of paracetamol/ethanol slurry 𝑉𝑠𝑙𝑢𝑟𝑟𝑦 (controlled 

by FQC-101) is loaded from a slurry tank (V106), and filtration starts under the action of 

the pressure 𝑃𝑐𝑜𝑚𝑝𝑟 , delivered by compressor P101 (controlled by PC-101). 

Simultaneously, cake deliquoring occurs in V103-V104, and cake thermal drying occurs 

in V105. Thermal drying is promoted by a flow of hot air, whose temperature when 

entering V105, 𝑇𝑖𝑛,𝑔, is controlled by TC-101. After a fixed cycle duration Δ𝑡𝑐𝑦𝑐𝑙𝑒 , 

controller KC-101 triggers a cycle rotation. All the material being processed in V101-

V104 moves to the following station. The cake entering V105 is ejected through a piston 

movement, and new slurry is loaded into V101. Different disturbances affect the process 

in general operating conditions, such as stochastic variabilities of slurry concentration, 

cake porosity, cake specific resistance and drying kinetic constant, introduced to generate 

inter-batch variability. Filter mesh fouling also occurs during carousel operation, and 

must be considered when designing the control strategy of the unit. After every cycle, the 

meshes installed below ports V101-V104 become more and more fouled, thus increasing 

the filtration and drying durations. When filter mesh fouling becomes excessive (i.e., 

every six processing cycles in the simulator), a meshes cleaning-in-place (CIP) procedure 

is automatically triggered. The material already present in the carousel is processed 

regularly, but no more slurry is loaded into the carousel. When all the material present at 

the CIP triggering is discharged from the carousel, ethanol is flowed into all filter meshes, 

restoring clean filter mesh conditions. A new carousel processing cycle is then initiated 

by loading new slurry in V101. Note that in the first cycle after the process onset, and 

after every CIP, only V101 contains material: the remaining ports start operating 

gradually, cycle after cycle. The simulator is initiated by setting the following values for 

the controller set-points: 𝑇𝑖𝑛,𝑔
𝑠𝑝

=50°C (TC-101), 𝑉𝑠𝑙𝑢𝑟𝑟𝑦
𝑠𝑝

= 6 mL (FQC-101), 
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Figure 1. Schematic diagram of the carousel process. V101-V104 present a filter mesh 

at the bottom, while V105 is open for cake discharge. The equipment legend is given in 

Table 1 (unit operations and controllers) and in Table 2 (sensors). 

 

Table 1. Legend of the diagram of Figure 1: unit operations and controllers.  

Name Description Name Description 

P101 Compressor VI106 Slurry tank 

E101 Drying air heater VI107 Filtrate collector 

VI101 Carousel Station 1   

VI102 Carousel Station 2 FQC101 Fed slurry volume controller 

VI103 Carousel Station 3 KIC101 Carousel rotation controller 

VI104 Carousel Station 4 PC101 Pressure controller 

VI105 Carousel Station 5 TC101 Drying air inlet temperature controller 

 

and 𝑃𝑐𝑜𝑚𝑝𝑟
𝑠𝑝

=1 barg (PC-101). The cycle duration set-point Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 (KIC-101) is instead 

controlled at closed-loop, as outlined in Section 3. The remaining specification needed 

for running the simulated process is the nominal slurry concentration, which is fixed at 

250 kg/m3. 

Two datasets are generated, both of 1 h duration: Dataset 0, corresponding to normal 

operating conditions, and Dataset 1, where a sudden 100% increase of the nominal 

specific cake resistance occurs in the cakes formed by the slurry loaded into the carousel, 

starting 5 min after the process onset. Table 2 lists the set of measurements generated for 

each dataset. In the remained of the paper, we use the symbol 𝑦 to denote a measurement. 
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Table 2. Legend of the diagram of Figure 1: sensors and corresponding measurements.  

Name Measured variable Symbol Unit Notes 

AI-101 Slurry concentration 𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦
  kg/m3 Ultrasonic probe 

FI-101 Air flowrate 𝑦𝑉̇𝑖𝑛,𝑔
  NL/min  

LI-101 Cake height 𝑦𝐻𝑐𝑎𝑘𝑒
  m Camera system 

 Fed slurry volume 𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦
  m3 Camera system 

PI-102 Pressure 𝑦𝑃   Pa  

TI-101 Drying air inlet temperature 𝑦𝑇𝑖𝑛
  K  

TI-102 Drying air inlet temperature 𝑦𝑇𝑜𝑢𝑡
  K  

WI-101 Filtrate mass 𝑦𝑀𝑓𝑖𝑙𝑡
  kg  

3. Monitoring system: implementation and proof of concept 

We propose a monitoring system for the carousel of Figure 1 that features: i) real-time 

parameter estimation, ii) state estimation, and iii) univariate charts for fault detection and 

diagnosis, with control limits. The framework for real-time parameter and state estimation 

(Figure 2) features three routines.  

At the end of every cycle that involves slurry processing in V101, a set of filtration-

relevant parameters is estimated: the resistance of the filter mesh installed in V101 (𝑅̂𝑚), 

the specific cake resistance (α̂), the cake porosity (ϵ̂), and the filtration duration (Δ𝑡̂𝑓𝑖𝑙𝑡). 

The cake porosity is directly estimated through a mass balance: 

ϵ̂ = 1 −
𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦

𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦

ρ𝑠 𝑦𝐻𝑐𝑎𝑘𝑒
 𝐴𝑑𝑟𝑦𝑒𝑟

 ,              (1) 

where ρ𝑠 is the crystals density, 𝐴𝑑𝑟𝑦𝑒𝑟  is the filter cross-section, and the measurements 

legend is in Table 2. Then, 𝑅̂𝑚 and α̂ are obtained through maximum likelihood 

estimation using a filtration model (Destro et al., 2021), 𝑃𝑐𝑜𝑚𝑝𝑟
𝑠𝑝

, ϵ̂, and measurements 

𝑦𝑐𝑠𝑙𝑢𝑟𝑟𝑦
, 𝑦𝐻𝑐𝑎𝑘𝑒

, 𝑦𝑉𝑠𝑙𝑢𝑟𝑟𝑦
, and 𝑦𝑀𝑓𝑖𝑙𝑡

 (Table 2). Based on the estimated 𝑅̂𝑚 and α̂, the 
 

 

Figure 2. Framework for real-time parameter and state estimation. 



filtration model is exploited again, this time for estimating the filtration duration Δ𝑡̂𝑓𝑖𝑙𝑡  of 

the cake that has just been processed in V101.  

Before the beginning of every carousel cycle that involves cake drying, the duration 

Δ𝑡̂𝑑𝑒𝑙𝑖𝑞  of the deliquoring step undergone by the cake that is about to be dried is estimated, 

from the previously obtained Δ𝑡̂𝑓𝑖𝑙𝑡, as: 

Δ𝑡̂𝑑𝑒𝑙𝑖𝑞 = Δ𝑡𝑐𝑦𝑐𝑙𝑒,1
𝑠𝑝

+ Δ𝑡𝑐𝑦𝑐𝑙𝑒,2
𝑠𝑝

+ Δ𝑡𝑐𝑦𝑐𝑙𝑒,3
𝑠𝑝

−  Δ𝑡̂𝑓𝑖𝑙𝑡 ,           (2) 

where Δ𝑡𝑐𝑦𝑐𝑙𝑒,𝑖
𝑠𝑝

 (for 𝑖 = 1, 2, 3) is the duration of the cycles during which the considered 

cake was, respectively, in V101, V102, and V103. From 𝑦𝐻𝑐𝑎𝑘𝑒
,  𝑅̂𝑚, α̂, Δ𝑡̂𝑑𝑒𝑙𝑖𝑞 , and ϵ̂, 

the ethanol content of the cake entering dryer V104 (ŵ𝑑𝑟𝑦𝑖𝑛𝑔(0)) is calculated through a 

deliquoring model (Destro et al., 2021).  

Based on ŵ𝑑𝑟𝑦𝑖𝑛𝑔(0), a state estimator (an extended Kalman filter; Ray, 1981), rooted on 

a drying model developed for the carousel (Destro et al., 2021), is then initiated. The state 

estimator is used, during the following cycle, for real-time tracking of the time evolution 

of ŵ𝑑𝑟𝑦𝑖𝑛𝑔 of the cake being dried in V104 (Figure 3). The state estimator also provides 

σŵ𝑑𝑟𝑦𝑖𝑛𝑔
, the standard deviation of the estimation error of ŵ𝑑𝑟𝑦𝑖𝑛𝑔. In addition to soft-

sensing ŵ𝑑𝑟𝑦𝑖𝑛𝑔, the CQA of the process, the state estimator is used for determining 

Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

. When the upper confidence limit of the estimated ethanol content in the cake 

being dried in V104 reaches the quality threshold, a carousel rotation is triggered (Figure 

3). This automated setting for cycle duration determination allows consistently obtaining 

cakes meeting the target quality specification, because during carousel operation Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 

is automatically adjusted based on the needed drying duration (Figure 4a). Note that, for 

processing cycles in which V104 is empty, Δ𝑡𝑐𝑦𝑐𝑙𝑒
𝑠𝑝

 is kept fixed to 30 s. In Dataset 1 

(Figure 4a), a sudden increase of the average cycle duration is registered after the 13-th 

cycle. This cycle actually corresponds to the situation when, for Dataset 1, the first cake 

with an abnormally large specific resistance (cake #7) enters V104. Since the parameter 

estimation routine effectively tracks the specific cake resistance increase in the cakes 

entering V101 (Figure 4b), the state estimator allows to promptly detect the 

 

 
Figure 3. Dataset 1: ethanol content during drying for the first and the seventh cakes 

processed in the carousel: estimated value, estimation error 95% confidence limits (CL) 

and actual value. 
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Figure 4 Dataset 1: (a) duration of the different processing cycles, (b) univariate 

monitoring chart for specific cake resistance of the cake in V102, reporting estimated 

value, actual value, and 95% control limits for fault detection, obtained from the normal 

operating conditions dataset (Dataset 0). 

larger drying duration needed by cake #7, compared to cake #1 (Figure 3). Figure 4b also 

reports the 95% control limits, obtained from Dataset 0, for the estimated specific 

resistance of the cakes in V101. Abnormal specific cake resistance is immediately 

detected after cycle #10 (corresponding to when cake #7 enters V102). 

Conclusions 

We presented a monitoring framework for intensified filtration-drying of a 

paracetamol/ethanol slurry through a novel continuous carousel. The monitoring system 

features parameter and state estimation routines for monitoring the product CQAs and 

key operating parameters. The estimated CQAs are exploited for automatically 

determining the drying end-point. The monitoring system has successfully been tested 

under a set of disturbances on a simulated process. Multivariate process monitoring 

implementation for fault detection and diagnosis is envisioned for the future work. 
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Abstract
Early fault detection and correct diagnosis are required for chemical plants. Therefore, 
the existing fault detection systems using upper/lower thresholds have difficulties 
to detect faults when the correlation among process variables breaks without excess 
of any thresholds. In our previous study, an artificial immune system—especially, 
negative selection algorithm— had been adopted to fault detection system. Negative 
selection algorithm is one of methods of artificial immune systems which imitate the 
vital immune system. We have built up a multiagent based fault detection system using 
negative selection algorithm. In our system, a set of detectors is generated in each two-
dimensional variable space consists of two process variables. 

In this study, we extend the system to plant fault diagnosis based on the fault detection 
result using negative selection algorithm. In this paper, we will illustrate our fault 
detection and diagnosis system using negative selection algorithm. And we will show 
the detection and diagnosis results when a malfunction occurs in a dynamic plant 
simulator of a boiler plant.

Keywords: Fault detection; Fault diagnosis; Artificial immune system; Negative 
selection algorithm.

1. Introduction
Chemical plants are very complicated because they composed of lots of equipment 
and instruments. It is an essential to keep safe and stable state in operation of chemical 
plant, and various countermeasures are taken. A fault detection mechanism of an 
existing plant protection system generally sets a threshold value for each measuring 
instrument, and when it exceeds the threshold value, it issues a signal and becomes an 
alarm. As a method of setting the threshold value, there are methods such as upper limit 
/ lower limit, upper limit difference / lower limit difference, upper limit of change rate 
/ lower limit of change rate. However, we thought that an abnormal condition that could 
not be detected by only the technique that defines these thresholds exists, and wanted 
to propose a new fault detection method that can detect the features of anomalies with 
different properties. Therefore, in our previous study (Kimura 2018), we have proposed 
an artificial immune system as a new fault detection method capable of detecting 
features of abnormalities with different properties. An artificial immune system is 
a system focused on the mechanism of immunity of living organisms and has been 
proposed in the early 1990's (Dasgupta 2006 & 2011). In the artificial immune systems, 
negative selection algorithms designed to imitate the mechanism of differentiation and 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50235-9 
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m a t u r a t i o n  o f  i m m a t u r e  T  c e l l s  a n d  t h e  m e c h a n i s m  o f  d i s c r i m i n a t i o n  o f  n o r m a l i t y  
/  a b n o r m a l i t y  o f  i m m u n e  a r e  s y s t e m s  s p e c i a l i z e d  f o r  f a u l t  d e t e c t i o n  o f  r e s e a r c h e r s  
a t t r a c t i n g  a t t e n t i o n .

I n  t h i s  r e s e a r c h ,  w e  a i m  t o  d e v e l o p  a  f a u l t  d i a g n o s i s  s y s t e m  a s  a  e x t e n s i o n  o f  o u r  
p r e v i o u s l y  i n v e s t i g a t e d  f a u l t  d e t e c t i o n  s y s t e m  u s i n g  n e g a t i v e  s e l e c t i o n  a l g o r i t h m .

2. Methodology

2 . 1 .  F a u l t D e te c ti o n  u s i n g  N e g a ti v e  S e l e c ti o n  A l g o r i th m

Negative selection algorithm is one of the fault detection methods in artificial immune 
s y s t e m s .  A r t i f i c i a l  i m m u n e  s y s t e m  i s  a  m e c h a n i s m  t o  m a i n t a i n  t h e  s y s t e m  n o r m a l ,  
b o r r o w e d  t h e  i d e a  f r o m  t h e  v i t a l  i m m u n e  s y s t e m s .  I n  t h i s  s t u d y ,  t h e  n o r m a l  o p e r a t i o n a l  
d a t a  o f  t h e  p l a n t  i s  r e g a r d e d  a s  ‘ s e l f ’ ,  a n d  t h e  a b n o r m a l  o p e r a t i o n a l  d a t a ,  t h a t  i s  ‘ f a u l t ’ ,  
i s  r e g a r d e d  a s  ‘ n o n -s e l f ’ .  Fi g . 1( a ) – ( e )  i l l u s t r a t e s  t h e  o u t l i n e  o f  t h i s  a l g o r i t h m .  I n  o u r  
m e t h o d ,  t h e r e  a r e  t w o  p h a s e s — d e t e c t o r  g e n e r a t i o n  p h a s e  a n d  d e t e c t i o n  p h a s e . I n  t h e  
d e t e c t o r  g e n e r a t i o n  p h a s e ,  t h e r e  i s  a  v a r i a b l e  s p a c e  c o n s i s t e d  o f  p l u r a l  p r o c e s s  v a r i a b l e s  
w h i c h  a r e  n o r m a l i z e d  t o  [0, 1] r a n g e .  Fi g . 1( a )  s h o w s  t w o - d i m e n s i o n a l  v a r i a b l e  s p a c e  
with two process variables P1 and T1. And the figure also shows there is a path which 
r e p r e s e n t s  a  n o r m a l  o p e r a t i o n a l  d a t a — r e g a r d e d  a s  ‘ s e l f ’  r e g i o n  i n  t h i s  m e t h o d .  T h e  
r e m a i n i n g  a r e a  i s  r e g a r d e d  a s  ‘ n o n - s e l f ’  r e g i o n . Fi g . 1( b )  s h o w s  t h e  w a y  t o  g e n e r a t e  
detectors. The figure shows four points which are the centers of the detector candidates 
are generated in the variable space. If the detector candidate has a high affinity with 

Fi g u r e  1:  A  s c h e m a t i c  d i a g r a m  o f  t h e  d e t e c t o r  g e n e r a t i o n  a n d  d e t e c t i o n  u s i n g  n e g a t i v e  s e l e c t i o n  
a l g o r i t h m

( d )  S a m p l e  w h i c h  j u d g e d  
a s  “ a b n o r m a l . ”

( e )  S a m p l e  w h i c h  j u d g e d  
a s  “ n o r m a l . ”

( a )  S e l f / N o n -S e l f  S p a c e ( b )  G e n e r a t i o n  o f  
d e t e c t o r  c a n d i d a t e .

( c )  V a l i d  d e t e c t o r s  a f t e r  
e l i m i n a t i o n  o f  t h e  
s e l f -a f f i n i t i v e  c a n d i d a t e s .

D e t e c t o r  t o  
b e  e l i m i n a t e d  

D e t e c t o r  
c a n d i d a t e

N o n -s e l f

P l o t t e d  s a m p l e

D e t e c t o r

S e l f

T 1

P1

T 1

P1

T 1

P1

T 1

P1

T 1

P1

P l o t t e d  s a m p l e

( P1( t) ,  T1( t) )
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the sel f  regio n,  it w il l  b e el iminated . O ne o f  the f o u r d etecto r cand id ates in F ig.1( b )  is 
eliminateG� 2n tKe otKer KanG� if tKe Getector canGiGate Kas no af¿nity witK tKe self 
regio n,  it w il l  b e set the rad iu s w hich is the sho rtest d istance b etw een sel f  regio n and  
the center p o int and  ad o p ted  as a d etecto r. T his mechanism is cal l ed  negativ e sel ectio n. 
7o cover tKe non�self region witK Getectors ef¿ciently� Getector canGiGates are ¿rstly 
generated  o n l attice p o ints in the p ro cess v ariab l e sp ace,  and  then d etecto r cand id ates 
are generated  rand o ml y  thereaf ter. F ig.1( c)  sho w s the d etecto rs f u l l y  co v er the no n- sel f  
regio n o f  the v ariab l e sp ace.

I n the d etectio n p hase,  the d ata to  b e su b j ected  to  ab no rmal ity  d etectio n is no rmal iz ed  
and  p l o tted  in the p ro cess v ariab l e sp ace. I f  the p l o t is p l aced  insid e the d etecto r( s)  o r 
o u tsid e the range o f  [0,  1],  the d ata is j u d ged  as ab no rmal . I n F ig.1( d ) ,  a star rep resents 
the p l o tted  d ata,  and  the d ata w as p l o tted  insid e d etecto rs. O n the o ther hand ,  if  the p l o t 
is p l aced  w itho u t cap tu re b y  any  d etecto rs the d ata is j u d ge as no rmal ,  sho w n in F ig.1 ( e) .

2 . 2 .  F a u l t D i a g n o s i s  M e th o d

I n p rep aratio n f o r f au l t d iagno sis,  co nsid eratio n o f  the imp act o n the p ro cess w hen 
an assu med  mal f u nctio n o ccu rs. B ased  o n the P F D ,  P & I D  and  H A Z O P  st u d y ,  it is 
co nsid ered  if  an assu med  mal f u nctio n o ccu rs w hether the measu red  v al u e o f  the senso r 
increases ( d eno tes as " + " ) ,  d ecreases ( d eno tes as " - " )  o r no  ef f ect ( d eno tes as " 0" )  
co mp ared  to  the no rmal  state. A f ter co nsid eratio n ab o u t al l  the assu med  mal f u nctio ns,  
a sign and  mal f u nctio n tab l e is o b tained .

I f  n v ariab l es are u sed ,  3n k ind s o f  sign ( + / - / 0)  co mb inatio ns can b e theo retical l y  mad e,  
and  if  d if f erent sign co mb inatio ns are sho w n f o r each cau se o f  mal f u nctio n,  it sho u l d  b e 
u sed  to  id entif y  the cau se o f  mal f u nctio n. H o w ev er,  a v ariab l e set in w hich al l  n  signs 

F igu re 2:  C u rrent o p eratio nal  d ata p l o t and  ref erence v al u e in v ariab l e sp ace co v ered  b y  the 
d etecto rs.
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are 0 for a certain malfunction cause or a variable set in which different malfunction 
causes show the same sign combination cannot be used for fault diagnosis.

The current operation data is plotted in the variable space covered by the detectors 
every sampling time (Fig.2).  If it was plotted in the detection area of the detector, 
the fault was detected. Then, the sign is judged in three stages: higher (+), no change 
(0), and lower (-) than the reference value of the operational condition. The sign is 
determined and summarized for all variable spaces in which a fault is detected, and the 
diagnostic sign pattern of the monitoring variable set is determined to compare with 
pattern table.

And then, matching rate for each assumed malfunction is calculated.

Matching rate  m = nmatch / n	 (1)

where, nmatch is the number of signs that match the sign of the assumed malfunction 
in the assumed sign pattern and the diagnostic sign pattern, and n is the number 
of monitoring variables. The malfunction cause(s) are presented to the operator as 
plausible malfunction cause candidate(s) if the rate(s) is larger than 50%.

3. Simulations Results
Table 1 shows the assumed malfunctions of boiler plant. And the table 1 also shows the 
diagnostic sign pattern for each malfunction.

Since there are five assumed causes, it can be identified by variables with n = 2 or more, 
but for the reason mentioned in section 2.2, there is no variable set that can be identified 
with n = 2, even though there are more than one hundred sensors in the boiler plant. 
However, only the combination of { PI1311, PI1315, FC1303 } became an identifiable 
combination with n = 3. Then, these sensor variables are used as a monitoring variable 
set.

The normal operation data and abnormal operational data was acquired by a dynamic 
plant simulator "VisualModeler". As for the normal operation data, a total of 12 
conditions were acquired when the steam demand was stepwise changed. The abnormal 
operation data was acquired for a total of 30 conditions: (5 malfunctions; total steam 
demands: 120, 130 or 140 t/h; 2 types of fluctuation of steam demand).

Table 1: Assumed plant malfunctions

Assumed malfunction PI1311 PI1315 FC1303
Mal-1 Heavy oil flowmeter failure + + 0
Mal-2 Boiler feed water flowmeter failure 0 0 +
Mal-3 Air flowmeter failure - - 0
Mal-4 Boiler water pipe leakage + + +
Mal-5 Burner flame-out + 0 0
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Figure 3 shows the matching rates graph when the malfunction Mal-4 was caused. 
In Fig.3, the matching rate of correct malfunction cause (Mal-4) shows 100% from 
detection time to end and the rate for other cause (Mal-1) shows 66.7%. It means that 
both of the causes are possible cause, because the rates are over 50%. However Mal-1's 
rate is always maintained at the highest level, it is judged as Mal-1 is plausible cause.

Table 2 shows the diagnosis results for 30 conditions where "Correct" denotes correct 
diagnosis, "Multiple" denotes that matching rates of both correct and incorrect cause(s) 
are the same and highest, "False" denotes that matching rate of incorrect cause is the 
highest, "Missed" denotes that no fault was detected. In this study, two "Multiple", one 
"Missed" and 27 "Correct" case was obtained.

4. Conclusions
Failure diagnosis has become possible by introducing a sign determination method into 
the fault detection system that uses a negative selection algorithm. It is necessary to 

Table 2: Diagnosis results

W/O change of steam demand With change of steam demand
Total steam demand Total steam demad before change

140 t/h 130 t/h 120 t/h 140 t/h 130 t/h 120 t/h
Mal-1 Correct Multiple Correct Correct Multiple Correct
Mal-2 Correct Correct Missed Correct Correct Correct
Mal-3 Correct Correct Correct Correct Correct Correct
Mal-4 Correct Correct Correct Correct Correct Correct
Mal-5 Correct Correct Correct Correct Correct Correct

Figure 3: Matching rates after malfunction (Boiler feed water pipe leakage) was occurred.
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improve the performance of the fault diagnosis.
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Abstract 

The term digital twin is now everywhere in the domain of bio-manufacturing. Despite 

this, the actual implementation of "Digital Twins" in operations is somewhat limited, and 

the core elements contained within such an implementation are ambiguous. A vital aspect 

of a fully developed digital twin is the two‐way communication capability between the 

physical plant and the digital model. This contribution will describe the data management 

and modelling elements needed to achieve a full-fledged digital twin, emphasising the 

digital model that acts as the prediction engine of a digital twin. To this end, the overall 

operational workflow of developing a digital replica of a bio-based pilot process will be 

described. It is expected that the knowledge gained from this endeavour will enable the 

development of a general framework towards digital model building. Thus, it is expected 

to generate practical know‐how for future digitalisation applications in bio-production. 
 

Keywords: digital twin, digitalisation, modelling, implementation, bio-manufacturing 

1. Introduction 

Digital Twin (DT) is one of the new buzzwords within the engineering field. A simple 

literature search shows that the number of scientific publications containing this term has 

increased significantly over the last couple of years (Udugama, Lopez, et al., 2021). The 

term DT was first introduced by (Grieves, 2015) where it was defined as a "digital 

representation of a physical object". Since then, the term DT has been liberally used to 

describe digitalisation efforts in manufacturing and beyond (Lukowski et al., 2018). In 

the domain of bio-manufacturing operations, DTs are also gaining popularity. Despite 

this, a survey conducted with individuals involved with biotech manufacturing in 

Denmark found that the actual number of implementations that can be considered a DT 

in plant operations is limited (Udugama, Öner, et al., 2021).  

The core of the DT is the digital model(s) being used to simulate the process. Still, the 

optimal modelling approach and required auxiliary elements to distinguish a digital model 

from a DT are yet to be defined with the necessary level of detail. At the beginning of 

2021, (Udugama, Lopez, et al., 2021) published a five-step pathway to develop a DT for 

the bio-manufacturing industry. Furthermore, (von Stosch et al., 2021) published an 

opinion paper about the potential for integrating the DT with artificial intelligence.  

In this work, we detail the development of an overall implementation framework for a 

pilot-scale E. coli based production process operated for engineering education at the Bio-

manufacturing, Training and Education Center at NC State University (BTEC).  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50236-0 
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This process has been selected because it is a well-known fermentation process with great 

relevance in education (e.g., at the BTEC facility) and in industrial settings.. The 

development of a DT for this process is expected to be used as a demonstration case. The 

lessons learnt can be used to further the application of DTs in the bio-manufacturing 

industry. The remainder of this article is organised as follows: Section 2 will describe the 

benefits and drawbacks of choosing between mechanistic, data-driven, and hybrid options 

for digital model development. Section 3 gives a detailed description of the 

implementation framework. Section 4 summarizes the initial lessons learnt and identifies 

potential opportunities. Finally, conclusions are derived in Section 5.  

2. Digital Models 

Digital models form the core of any DT application. However, models can quickly 

become computationally heavy and would thus struggle with the requirement of real-time 

data handling of a fully realised DT. Therefore, in order to be implemented for real-time 

simulation, the selection of the modelling approach and the corresponding level of 

complexity is vital when setting up a digital model.  

2.1. Data-driven vs. mechanistic models 

Prior to focusing on model complexity, it is essential to select the correct strategy and 

modelling approach. Mathematical models can generally be divided into three main 

categories; mechanistic, data-driven and hybrid models. Mechanistic modelling, or 

parametric modelling, is theory-based modelling. This type of model often contains 

various parameters and constants, the value of which may be appropriately adjusted to 

almost any system.  

Mechanistic models are widely used in modelling fermentation processes such as E. coli 

based production processes. One such example is (Anane et al., 2017), where a 

mechanistic approach was used to model overflow metabolism in E. coli at a macro-scale. 

This model was then validated using measurable concentrations within a fed-batch. 

(Millard et al., 2017) also modelled the growth of E. coli but at a smaller scale, which 

added details regarding metabolite regulation within the cells. However, the number of 

parameters increases drastically with the complexity of the model, adding a significant 

computational burden. It can be challenging for complex models to determine the value 

of these parameters and validate the model. Therefore, adopting a mechanistic model is 

not trivial and requires expert knowledge. 

Data-driven models, on the other hand, tackle the system from a completely different 

point of view. They are, as the name implies, based on system data. This means that data-

driven models can be susceptible to variance within data sets unless large amounts of data 

are available. However, the collection of large datasets is resource-intensive. 

Notwithstanding, it can be an advantage if, for model improvements, we can apply a 

machine learning algorithm (e.g., artificial neural networks) since these types of models 

usually improve with larger data sets. The advantage of the data-driven models is that 

they usually require less experience and expert knowledge to set up and can be easier to 

validate than some mechanistic models.  

A disadvantage of data-driven models is related to the fact that they are limited by the 

type and sensitivity of the sensors available. A sensor setup composed of different sensors 

can be cumbersome and expensive to set up. Adding additional sensors to an existing 

system is not without trouble, especially when considering biopharma, where stringent 

documentation is, and it will always be, a requirement. Flow following sensors form a 

newer alternative to make use of a more comprehensive sensor setup in a bioreactor. Since 
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they do not require physical installation to the bioreactor and can acquire data at different 

points in the tank, flow following sensors seem to be a promising and flexible tool.  

Recent examples of flow follower studes include (Lauterbach et al., 2019), who has been 

working on the development of a truly miniaturised flow follower, which can measure 

temperature in lab-scale equipment. (Reinecke & Hampel, 2018) have developed a sensor 

for aerobic digesters.  (Bisgaard et al., 2020) presented results on mixing studies using 

one of the only commercially available multi-parametric flow followers. So far, it has 

been demonstrated that it provides less extensive and expensive setup modifications, 

while still providing impactful data collection (Bisgaard et al., 2020). 

 

2.2. Hybrid models 

Hybrid models is a term used for any model, which combines the mechanistic and data-

driven approaches. Many of the newer hybrid modelling approaches integrate 

mechanistic modelling and machine learning. There are many different ways this can be 

done. (von Stosch et al., 2016) have developed a strategy that couples mechanistic 

modelling with neural networks. Hybrid approaches are also an option when working 

with models integrating the effect of scale, from macromixing to cellular products. An 

example of such a multiscale model is the fermentation model developed by (Benalcázar 

et al., 2020). The issue with neural networks and other traditional machine learning 

algorithms is that they are discrete by nature. A potential solution to this was proposed 

by (Chen et al., 2018), who developed a continuous machine learning algorithm based on 

ordinary differential equations. 

3. Proposed Framework 

Bio-manufacturing processes are often not fully automated, which is a requirement for 

implementation of a DT where  it can communicate bi-directionally with the plant. To 

this end, there is a need to develop concepts that can close this gap and provide the 

operator with actionable predictive information from the DT. The overall framework 

illustrated in Figure 1 suggests a potential roadmap towards realising a fully-fledged DT 

for bio-manufacturing processes while respecting the inherent limitations that it implies. 

Due to the versatile implementation and automation of bio-manufacturing processes, the 

framework for a DT also needs to be adaptable as well as agile. The strategy to meet this 

requirement is to develop a ‘plug-and-play’ approach. Individual unit operation models 

are embedded within the larger framework, allowing the framework to be configured to 

the DT’s desired purpose and for relatively easy adaptation to other processes. 

At the core of the framework is a digital model capable of bi-directional communication. 

Based on section 2, hybrid models are recommended as the default choice for building 

this crucial step of the framework. Regarding inputs into the DT, the framework identifies 

that information from the physical plant can be gathered in real-time as long as the 

relevant sensors are installed. Since bio-manufacturing processes are mainly operated as 

batch production processes, the information collected must contain both process data (e.g 

temperature, pH, flow) and scheduling information (batch sequence, runtime). The data 

gathered must also be stored in an accessible format so that it can be used for further 

model validation and improvements.  

Connecting the output of the DT to the model is much more complicated. This is because 

many critical process operations are either carried out manually by the plant operator or 

require the operator to take action on a subsystem that is not configured to take external 

commands. Regulatory requirements and the costs of automation mean that these types 
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of operational configurations will likely remain in bio-manufacturing processes for the 

foreseeable future. To this end, the action suggested by the DT must be taken by the plant 

operators. An effective way to communicate these actions is through the use of targeted 

data visualisatiuon that can provide the operator with actionable information. However, 

unlike an automated system, operators are susceptible to making mistakes and have 

individual behavioural traits. While fully describing the nature of a particular human 

operator is beyond the scope of this work, the framework has identified the need to 

develop simplified human behaviour models that can be incorporated into the DT.  

 

Figure 1: Conceptual framework for the development of Digital Twin for a process, which has not 

been automated. 

4. L essons learnt  

This framework is currently applied to a pilot-scale E. coli fermentation, operated at the 

Bio-manufacturing, Training and Education Center (BTEC) at NC State University. This 

initial work identifies some minimum communication and modelling requirements, along 

with the potential for developing a fault detection algorithm for batch prediction. 

4 .1. Minimum Communication Req uirements 

For the DT to be realisable, the process in question needs to have some level of 

automation. If any data-driven or hybrid modelling approach is applied, the models 

require inputs from the sensors to operate and accurately estimate the state of the process. 
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To this end, there is a need to establish communication between the digital model and the 

physical system. Typically, the minimum requirement for bi-directional communication 

is a system consisting of digital actuators that a central DCS/SCADA can control. A 

critical constraint that has been identified in the current development process is the need 

for live extraction of the process data and production schedule. This requires a digital 

model with a fast simulation time and a high-level programming language to gather 

DCS/SCADA system data. This is due to the fact that acquiring process data in real-time 

is crucial for a fully integrated digital twin capable of two-way communication.  

4.2. Minimum Modeling  Requirements 

An important focus area is the applicability and adaptability of the models and the overall 

implementation framework. The DT can be reasonably adaptable and customisable to 

different processes within bio-manufacturing. In addition, the overall digital model 

developed needs to execute in real-time under the constraints imposed by communication 

limitations and computational requirements. The need to move away from complete 

mechanistic modelling was identified as a method for fulfilling this requirement. To this 

end, the proposed strategy is based on hybrid modelling of key unit operations, which can 

run under a larger modelling framework.   

4.3. Potential Fault Detection 

Due to documentation requirements within the biopharmaceutical field, all the process 

data has to be stored. However, in many cases, the full potential of the process data is not 

explored. (Xu et al., 2019) presented an interesting view on the application of a DT for 

fault diagnosis. This is an exciting concept that could potentially be applied within bio-

manufacturing where  process data can be used to predict the variation for each batch and 

predict when a batch is at a high risk of failure due to off-specification product formation 

or high byproduct formation. This will allow the operators to decide whether or not to 

discard a batch or adjust the process conditions due to expected delays or a potential 

change in product quality. 

5. Conclusions 

This work detailed the development of a ‘ plug and play’ framework for creating a fully-

fledged DTs in the domain of bio-manufacturing. This framework is customizable to the 

different processes based on the unit operations involved. Sufficient communication 

infrastructure and appropriate model choices were identified as key requirements for 

successfully implementing DT in bioprocessing industries. The pros and cons of 

mechanistic, data-driven, and hybrid modelling approaches were identified and reviewed. 

Overall, it was shown that a key to successfully applying a DT is the need for robust 

models, which are simple enough to be run in real- time while still accurate enough to 

provide adequate decision support capabilities. 
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Abstract 

We propose a plant operations and maintenance (O&M) support system that can correlate 

plant operational data to both key performance indicators (KPIs) and qualitative data such 

as plant statuses or anomaly types. The system consists of a supervised data-clustering 

function and a visualization function for clustered results. The supervised data-clustering 

function is based on the ART2 network  and can correlate plant operational data to KPIs 

and qualitative data by classifying the operational data. Therefore, the operational data 

are classified into different categories when the KPIs of the operational data are the same 

and their qualitative data are different. The visualization function can illustrate the 

relation between the operational data and the KPIs and the qualitative data as a three-

dimensional graph or a two-dimensional graph. An x-y plane showing the gravity centres 

of the categories is mapped by multidimensional scaling, and the qualitative data are 

displayed beside dots in both graph types. KPIs are indicated by the z-axis in the three-

dimensional graph and by dot colours in the two-dimensional graph. We examined 

whether the system can be used to analyze plant operational data using process simulation 

data. The results demonstrate that our system can monitor and maintain industrial plant 

performance. 

Keywords: Operation; Maintenance; Data clustering; Applications. 

1. Introduction 

To maintain high productivity at industrial plants, it is important to monitor key 

performance indicators (KPIs) such as plant operational efficiency.  

One of the technologies for monitoring plant KPIs is soft sensors. For example, Okada et 

al. (2012) developed an adaptive soft sensor technique to respond to the degradation of 

soft sensors. Kim et al. (2013) developed an inferential control system that integrates soft 

sensors and model predictive control. In addition, Matsui et al. (2014) estimated product 

quality by using PLS in the deposition process of a thin-film solar cell and visualised the 

relationship between the main two variables and quality in a three-dimensional graph.  

Hori et al. (2019)  have developed a performance evaluation system for industrial plants 

that uses data clustering technology. The system can be employed to analyze plant 

operational data by using the KPIs and consists of a data clustering function for 

operational data of the KPIs and a visualisation function of clustering results. The data 

clustering function is based on the ART2 network (Carpenter and Grossberg, 1987), 

which is one of the adaptive resonance theory (ART) networks. It can correlate plant 

operational data to KPIs by classifying operational data. The visualisation function of 

clustering results illustrates the relation between operational data and KPIs by using a 3D 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50237-2 
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graph with a z-axis indicating the KPIs and an x-y plane showing where the gravity 

centres of the categories are mapped by multidimensional scaling (MDS). 

In this study, we enhance that system and propose a plant operations and maintenance 

(O&M) support system that can correlate plant operational data to both KPIs and 

qualitative data such as plant statuses or anomaly types. We also examine whether the 

system can be used to analyse plant operational data by using process simulation data. 

2. Proposed system 

2.1 Overview of the proposed system 

Figure 1 shows an overview of the proposed plant O&M support system using data 

clustering technology.  

The system consists of a supervised data clustering function and a visualisation function 

of clustering results. The basics of each function are described below. Hereafter, the term 

"qualitative data such as plant status or anomaly type", is simply referred to as "plant 

status" or "status". 

In the supervised data clustering function, the operational data of the plant are classified 

into multiple categories, and the relationship between a category and a selected KPI and 

its status is set. The centre of Figure 1 shows the supervised data clustering results. To 

simplify the explanation, the operational data are two-dimensional data. The points 

plotted in the graph are the operational data of each time, and the colour of the point 

represents the KPI. Those with a high KPI value are black and those with a low KPI value 

are white. The circle surrounding the operational data represents a category that classifies 

the data. In the example in Figure 1, the operational data are classified into eight 

categories. The type of line drawing each circle corresponds to the plant status. Solid, 

dashed, and dotted lines indicate normal (Norm.), abnormal (Abnl.) A and abnormal 

(Abnl.) B, respectively. 

 

 

Figure 1 Schematic of the proposed system 
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In the visualisation function of the clustering results, the relationship between categories 

and KPI and plant status are visualized in three-dimensional graphs. The Z-axis, that is, 

the vertical axis indicates the KPI, the XY plane represents the positional relationship of 

the centre of gravity of the data classified into each category (hereinafter referred to as 

the gravity centre of the category). Since the gravity centre of the category is N-

dimensional data, it is not possible to accurately represent the positional relationship on 

a two-dimensional plane. However, it is possible to express the approximate positional 

relationship by using the MDS method. Therefore, as shown in Figure 1, the function can 

display the positional relationship of the categories with their KPIs and plant status in a 

three-dimensional graph. That information is useful to support O&M of industrial plant. 

In the above, a three-dimensional graph with a KPI axis has been described. However, a 

two-dimensional graph expressing the value of KPI in colour can be used, instead. 

2.2 Data clustering algorithm 

The algorithm of the supervised data clustering function is described below. 

Step 1: Read multi-dimensional operational data, KPI and plant status and set the 

vigilance parameter ρj for category j to a given initial value. 

Step 2: Classify the operational data by using the vigilance parameter ρj set in the previous 

step. The vigilance parameter ρj determines the size of category j; namely, the 

larger ρj is, the smaller the size of the category j is. 

Step 3: Calculate Vj and Mj by Eqs. (1) and (2).  

 
(1) 

 
(2) 

Herein, KPI_maxj is the maximum value of KPI of the data classified into category 

j and KPI_maxj is the minimum value of KPI of the data classified into category j. 

Nj is the number of data in category j, Nm is the number of data with the highest 

proportion of plant status. 

Step 4: If the Vj calculated in step 3 is above Vset, the set value of Vj, or Mj is below Mset, 

the set value of Mj, or the number of calculations is less than the given value, 

proceed to step 5. Otherwise, proceed to step 6. 

Step 5: Update the value of ρj by selecting the larger of  𝜌𝑉𝑗and  𝜌𝑀𝑗
 calculated by Eq. (3) 

and Eq. (4), respectively and return to step 2. 

 

(3) 

= 

= 
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(4) 

Herein, in Eqs. (3) and (4) , ρmax is the maximum value of ρ in this system and 𝑎𝑉 

and 𝑎𝑀 are adjustment coefficients.  

Step 6: Calculate the average value of the KPI and select the plant status and map the 

relationship between the categories and both the KPIs and plant status.  

Figure 2 is an explanatory diagram of the above algorithm. Figure 2(a) represents  an 

example of the initial condition of categories, or the clustering result in step 2. In step 2, 

ρj is set to an initial value, then all the categories are the same size. Therefore, a category 

could have data with a wide range of KPI values and it could have data with different 

plant status. In Figure 2(a), category C1 has data with high and middle KPI values and 

category C3 has data in abnormal A and in abnormal B. However, in going from step 3 

to step 5, if necessary, the size of the categories gets smaller. In Figure 2(b), category C5 

is created for data with high KPI value and category C8 is for data in abnormal B. In this 

way, each category is supposed to have data with a given range of KPI values and the 

same plant status.  

In the situation where two operational data are very similar and the KPI values are very 

different or their plant statuses are different because of noise, it is difficult to classify the 

data into different categories and the category sizes can become very small for such 

categories. In this case, the value of Vset must be made larger or the value of Mset must be 

made smaller. For example, if the value is set to 0.9, 10 % of the data classified in each 

category can be for another plant status, which can avoid creating categories that are too 

small. 

As described above, the relationship between the multi-dimensional operational data and 

KPIs and plant status is learned by the proposed algorithm 

 

 

Figure 2 Explanatory diagram of proposed algorithm 
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3. Data analysis and results 

We examined whether the system can be utilised to analyse plant operational data by 

using Tennessee Eastman process data, which are commonly used as benchmark data for 

evaluating anomaly detection technology (Downs and Vogel,1993). Several variations of 

data sets of Tennessee Eastman process data are open to the public. The data used in this 

study contained 15 data sets with different disturbances: IDV(1) to IDV(15)( N. L. Ricker, 

1996). Each data set had time series data which consisted of 41 measured variables, 12 

manipulated variables and 10 calculated variables including operational cost, 63 variables 

in total. The sampling interval was 10 min and each data set contained 301 samples (data 

covering 50 h). We chose operational cost as the KPI and disturbance as plant status and 

made test data for the data analysis.  

In particular, we chose three data sets IDV(1), IDV(2) and IDV(6) shown in Table 1 for 

the test data because of their large change in operational cost. Time series data of 

operational cost for these IDVs are shown in Figure 3. We also chose 9 manipulated 

variables and for operational data from the 63 variables. The variables whose value were 

constant in the data sets were not used for the test data. Data analysis was conducted using 

the test data where Vset was 0.4 and Mset was 0.9. The results are shown in Figure 4.  

Figure 4 is a two-dimensional MDS graph. Each dot indicates the gravity centre of each 

category and the colour of each dot indicates the KPI value. The legend of each dot 

indicates plant status. Areas A, B, and C were seen in Figure 4. Operational data of IDV(1) 

with low KPI values  were classified into the categories in area A, operational data of 

IDV(1) data with high KPI values were classified into the categories in area B, and 

operational data of IDV(6) with high KPI values were classified into the categories in 

area C. Then, the KPI value and plant status can be assumed from the area where the 

category is located.   

 

Table 1 Analysis data 

Disturbance Description Type 
IDV (1) A/C feed ratio, B composition constant (stream 4) Step 
IDV (2) B composition, A/C ratio constant (stream 4) Step 
IDV (6) A feed loss (stream 1) Step 

 

 
Figure 3 Operational cost of test data 
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Figure 4 Results of data analysis 

4. Conclusions 

We proposed the plant O&M support system that can correlate plant operational data to 

both KPIs and plant statuses. The system consists of a supervised data-clustering function 

and a visualisation function for clustered results, and it learns the relationship between 

the multi-dimensional operational data and both KPI and plant statuses.  

We examined whether the system was applicable to analysis of plant operational data by

using Tennessee Eastman process data sets and setting the operational cost as the KPI and 

the disturbance as plant status. 

The results showed the proposed algorithm classified the operational data into categories 

according to their KPI values and plant status and our system was demonstrated as useful 

to support O&M of industrial plants. 
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Abstract

In literature, system reliability for sensor placement design for linear mass flow processes
has been defined in terms of cycles (Prakash et al., 2020a). The computation of sys-
tem reliability involves computation of probability of a union of a set of events, which
is NP-hard, thereby limiting its applicability to large processes. To reduce this computa-
tional complexity, in the current work, we propose to partition the set of cycles, instead of
partitioning the original process. Thus, our approach involves approximating the system
reliability function of the original process, rather than approximating the original process.
Towards this end, we use a bipartite spectral graph partitioning algorithm to obtain the
partitions of cycles. The resulting sensor placement design approach is applied to a case
study to show its efficacy.

Keywords: Bipartite graph, Estimation of variables, Graph partitioning

1. Introduction

Sensor placement design (SPD) is the problem of selecting key variables to be measured
in the process, so as to maximize some performance criteria while satisfying various de-
sign constraints (Ali and Narasimhan, 1995; Bhushan and Rengaswamy, 2002). The focus
of the current work is on sensor placement design for the application in estimation of
variables in a steady state linear flow process. A pure mass flow process, e.g., water dis-
tribution network, is known as a linear flow process, where linear mass balances can be
written to describe the process model (Ali and Narasimhan, 1995). Linear flow process is
conveniently modeled as a directed graph (process graph) with edges in the graph repre-
senting the flow variables (process variables), and vertices representing the process units.
SPD is to then appropriately select a set of flow variables to be measured. In the current
work, we focus on system reliability based criteria for SPD given that sensors are prone to
failure with known probabilities.

The area of SPD for ensuring reliable estimation for linear flow processes has received
considerable attention in literature. Most of the works in literature have defined sys-
tem reliability as the minimum reliability of estimation of individual variables (Ali and
Narasimhan, 1995; Bagajewicz and Sánchez, 2000; Kotecha et al., 2008). Recently, for
use in SPD, Prakash et al. (2020a) defined the system reliability as the probability of esti-
mating all variables. This definition captures the interacting nature of reliabilities, which

http://dx.doi.org/10.1016/B978-0-323-85159-6.50238-4 
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was missing in the previous definitions. Prakash et al. (2020a) used the result that all vari-
ables in a steady state linear flow process can be estimated if the unmeasured variables do
not form a cycle (Mah et al., 1976). Prakash et al. (2020a) expressed system reliability
as one minus probability of having at least one cycle with all unavailable variables. They
defined an unavailable variable as a variable which is either not measured by any sensor,
i.e., the variable is unmeasured, or all sensors measuring that variable have failed. In their
work (Prakash et al., 2020a), the computation of system reliability involves computation
of probability of a union of a set of events, which is NP-hard (Veeraraghavan and Trivedi,
1991). (Prakash et al., 2020b) proposed a sum of disjoint product based approach to sys-
tematically compute this probability. However, the number of terms in the expression of
system reliability exponentially grows with the number of cycles. To illustrate, Prakash
et al. (2020b) have considered steam metering process for sensor placement design, which
has 12 units, 28 variables, and 3209 cycles. The system reliability expression consisted
of 334630 terms. For larger case studies, the number of terms will be even more, and
thus will pose challenges related to: (a) computation, (b) storage, and (c) quick evaluation,
of the system reliability expression. These challenges limit the applicability of system
reliability based SPD for large processes.

Addressing these issues is the motivation for our current work. A traditional heuristic
to deal with large processes is to partition the original graph into several disconnected
subgraphs by removing a set of edges (Rajeswaran et al., 2018), and then performing SPD
in each of these subgraphs. However, this will lead to loss of edges (process variables), and
loss of cycles in general as the collection of cycles in the two resulting subgraphs will not
lead to the cycles in the original graph. In the current work, we propose a novel approach
that partitions the set of cycles and not the original process. Our approach ensures that
the collection of cycles in the partitions is equal to the set of cycles in the original graph.
Towards this end, we propose to compute the approximated system reliability which is
maximized to obtain SPD. Further, we present a case study to demonstrate its efficacy.

The rest of the paper is organized as follows. Relevant existing information is presented
in Section 2.. Section 3. presents the novel approach of partitioning cycles, and SPD
formulation. Section 4. presents a case study. Finally, Section 5. concludes the work.

2. Preliminaries related to reliability based sensor placement design

For a steady state linear flow process, reliability based SPD for the application in estima-
tion of variables is posed as (Prakash et al., 2020b),

max
{qi}nv

i=1

Rsys = 1− P

(
nc⋃
k=1

Sk

)
; s.t.,

nv∑
i=1

ciqi ≤ C∗, and, qi ∈ Z≥0, i = 1, ..., nv (1)

where ci and qi are cost of a sensor and number of sensors placed to measure the ith vari-
able, respectively, C∗ is the total cost available for SPD, and nv is the number of process
variables that can be measured in the process. The system reliability objective Rsys in Eq.
(1) is the probability of estimating all variables in the process and is defined in terms of
cycles. S is the set of cycles in the process graph, and nc is its cardinality. Sk denotes
the event that kth cycle (Sk) in the process graph has all unavailable variables. Probability
that the ith variable is unavailable is sqii , where si is the failure probability of the sensor
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measuring the ith variable, provided full active redundant configuration is followed. The
SPD formulation given in Eq. (1) is a non-linear integer programming problem owing
to the nature of Rsys. Computation of Rsys in Eq. (1) involves computation of proba-
bility of a union of a set of events, which is NP-hard (Veeraraghavan and Trivedi, 1991).
Prakash et al. (2020b) proposed a sum of disjoint product based approach to systematically
compute Rsys.

3. Proposed cycle partitioning based sensor placement design

The length of expression of Rsys which is the optimization objective in SPD (Eq. (1)),
grows exponentially with the number of cycles. This poses significant difficulties in solv-
ing the SPD for a large scale problem, since computation, storage and quick evaluation
of Rsys become a challenge. One intuitive heuristic to overcome this issue would be to
partition the process graph into several disjoint subgraphs by removing edges in the graph.
Subsequently, SPD can be solved for each of these subgraphs. But, this approach suffers
from two drawbacks: (a) removing edges in the graph eliminates the corresponding pro-
cess variables from process graph, and (b) it leads to a loss of cycles in general as the
collection of cycles in the subgraphs does not recreate the cycles in the original graph.
Thus, this approach involves approximating the process, i.e., solving SPD for different
(simpler) processes instead of the original process.
In the current work, we propose to approximate the objective function Rsys in the SPD
(Eq. (1)) without modifying the process. Towards this end, we propose a novel idea to
partition the set of cycles S into two disjoint partitions Sa and Sb, where Sa ∩ Sb = ∅,
and Sa∪Sb = S. Thus, we do not eliminate any process variables from process graph, and
the cycles are also preserved. The system reliability is then approximated as the product
of reliabilities corresponding to these two partitions. To ensure that this approach leads
to computational benefits for SPD, the partitions Sa, Sb have to be appropriately chosen.
To discuss this issue, let us consider that we have the partitions. Then, we can write the
system reliability Rsys as (Eq. (1)),

Rsys = 1− P

(( nca⋃
ka=1

Saka

)
︸ ︷︷ ︸

α

⋃( ncb⋃
kb=1

Sbkb

)
︸ ︷︷ ︸

β

)
= 1− (P (α) + P (β)− P (α|β)P (β)) (2)

where Saka
and Sbkb

denote the event that kath and kbth cycle in Sa and Sb have all un-
available variables, respectively, and nca and ncb are cardinalities of Sa and Sb, respec-
tively. In Eq. (2), P (α) and P (β) denote the probability of having at least one cycle in
Sa and Sb with all unavailable variables, respectively. Now, consider, Ra = 1 − P (α)
and Rb = 1 − P (β) as the reliabilities corresponding to the partitions. The product
RaRb = 1 − (P (α) + P (β) − P (α)P (β)) can be thought of as the approximation of
Rsys. However, it will be exactly equal to Rsys only when the partitions are such that
P (α|β) = P (α) in Eq. (2). This equality will not hold in general, because many process
variables are common to the cycles in partitions Sa and Sb, leading to dependent nature of
α and β. Also, note that P (α|β) ≥ P (α), as the occurrence of β increases the probability
of occurrence of α. This gives rise to the following criteria of partitioning the cycles,

min
Sa,Sb⊆S

P (α|β)− P (α), and min
Sa,Sb⊆S

abs(|Sa| − |Sb|) (3)

Placement for Linear Flow Processes
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where abs(·) denotes the absolute value. First criteria of Eq. (3) maximizes the indepen-
dence of α and β, while the second criteria of Eq. (3) ensures that the obtained partitions
are balanced. It is required because we do not want length of the reliability expression (Ra

or Rb) corresponding to one of the partitions to increase significantly. Note that character-
izing independence of the partitions involves computation of P (α|β), which is equivalent
to computingRsys. One heuristic to maximize independence is to minimize the number of
process variables that are common to the partitions. This has to be achieved while ensuring
that the partitions are balanced (second criteria in Eq. (3)). This is a well studied problem
in graph partitioning literature, and is known to be NP-complete (Dhillon, 2001). Spectral
graph partitioning algorithm is a widely used heuristic to effectively solve this problem. In
this work, we adapt the bipartite spectral graph partitioning algorithm (Dhillon, 2001) to
solve our cycle partitioning problem. It is to be noted that we are not partitioning the origi-
nal process graph, instead we are partitioning the set of cycles using the graph partitioning
algorithm. Next, we formally propose this algorithm in the context of our application.

3.1. Cycle-variable bipartite graph partitioning algorithm and SPD formulation

We propose to model the cycle-variable relationship with an undirected bipartite graph
G = (S, V,E). S = {S1, . . . , Snc} and V = {v1, . . . , vnv} denote the set of vertices,
and E = {{Si, vj},∀Si ∈ S and vj ∈ V } denotes the set of undirected edges. In our
work, S is the set of cycles, V is the set of all process variables, and edge {Si, vj} exists
if the process variable vj is contained in cycle Si. The partitioning problem is to find
balanced partitions P ∗1 and P ∗2 of S ∪ V such that the number of common edges {Si, vj}
between these partitions is minimized. Consider the following terminologies related the
graph. The adjacency matrix A ∈ R(nc+nv)×(nc+nv) of the bipartite graph G is given as,

A =

[
[0] C
C> [0]

]
, where C ∈ Rnc×nv represents the cycle by variable matrix with Ci,j =

1 if {Si, vj} exists, and is 0 otherwise. First nc rows and columns in A corresponds to the
cycles, and last nv rows and columns corresponds to the process variables. The diagonal
degree matrix D ∈ R(nc+nv)×(nc+nv) is the matrix with its elementDl,l =

∑
k Al,k. D is

written as, D =

[
D1 0
0 D2

]
, where D1 and D2 matrices correspond to the block matrices

in A. The spectral partitioning heuristic given in Dhillon (2001) which is used to solve
our cycle partitioning problem is now presented as a theorem.

Theorem 1 (Dhillon (2001)) Given a bipartite graph G, x2 = D
−1/2
1 u2 is the partition

vector, where u2 is the left singular vector corresponding to the second largest singular
value of (D−1/21 CD

−1/2
2 ). Partitioning of cycles is obtained by assigning x2 to bi-modal

values.

Theorem 1 presents an efficient heuristic to obtain the partitions Sa and Sb ⊆ S. Having
these partitions, we propose the SPD as follows,

max
{qi}nv

i=1

R̂sys = (1− P (α))(1− P (β)); s.t.,
nv∑
i=1

ciqi ≤ C∗, and, qi ∈ Z≥0 (4)

where R̂sys is the approximated system reliability. Next, we present a case study, where
we have applied the proposed SPD (Eq. (4)) to obtain the sensor placement.
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4. Case Study

We present the Ammonia process case study which has been widely used for data recon-
ciliation and gross error detection (Ali and Narasimhan, 1995). It has 6 nodes including
the environmental node and 8 flow variables where sensors can be placed to measure the
flow rates. There are 7 cycles in the process graph (Prakash et al., 2020a). The process
graph and its cycle-variable bipartite graph are presented in Figures 1 and 2, respectively.
The sensor failure probabilities are taken from Prakash et al. (2020a), and unit cost is con-
sidered for all sensors. The set of cycles are partitioned using the algorithm presented in
Section 3.1., and then sum of disjoint product based approach is applied to compute P (α)
and P (β). The resulting expressions are,

P (α) = sq66 s
q7
7 s

q8
8 + (1− sq66 s

q8
8 )sq44 s

q5
5 s

q7
7 + (1− sq77 )sq44 s

q5
5 s

q6
6 s

q8
8 (5)

and, P (β) = sq11 s
q2
2 s

q3
3 s

q5
5 s

q6
6 + (1− sq55 s

q6
6 )sq11 s

q2
2 s

q3
3 s

q4
4 s

q8
8 + (1− sq66 )(1− sq44 )

sq11 s
q2
2 s

q3
3 s

q5
5 s

q7
7 s

q8
8 + (1− sq55 )(1− sq88 )sq11 s

q2
2 s

q3
3 s

q4
4 s

q6
6 s

q7
7 (6)

Now, we compute the approximated system reliability R̂sys (Eq. (4)). To compare, we
also compute the exact expression of system reliability Rsys to be:

Rsys = 1−
[
sq66 s

q7
7 s

q8
8 + (1− sq66 s

q8
8 )sq44 s

q5
5 s

q7
7 + (1− sq77 )sq44 s

q5
5 s

q6
6 s

q8
8 +

((1− sq44 s
q8
8 )(1− sq77 ) + sq77 (1− sq44 )(1− sq88 ))sq11 s

q2
2 s

q3
3 s

q5
5 s

q6
6 +

((1− sq55 s
q6
6 )(1− sq77 ) + sq77 (1− sq55 )(1− sq66 ))sq11 s

q2
2 s

q3
3 s

q4
4 s

q8
8 +

(1− sq66 )(1− sq44 )sq11 s
q2
2 s

q3
3 s

q5
5 s

q7
7 s

q8
8 + (1− sq88 )(1− sq55 )sq11 s

q2
2 s

q3
3 s

q4
4 s

q6
6 s

q7
7

]
(7)

It can be noted that the total number of terms inRsys is 9, while P (α) and P (β) have 3 and
4 terms only. Thus, there is an overall reduction in the length of combined expressions of
P (α) and P (β) . Further, we apply the proposed SPD (Eq. (4)) on the Ammonia process
to obtain the sensor placement. We also maximize the exact system reliability Rsys (Eq.
(1)) to enable comparison with the proposed SPD formulation. Enumeration is used to
solve these problems. It is observed that for each C∗ (Table 1), the solution is same for
both the problems thereby validating the utility of the proposed approach.

5. Conclusions

In the current work, we propose a novel cycle partitioning approach to solve SPD for
large processes. To achieve this, we model the cycle-variable relationship as a bipartite

A Novel Cycle Partitioning Approach to Reliability Based Optimal Sensor 1433
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Table 1: SPD results for ammonia process

C∗
Exact Rsys (Eq. (1)) Proposed SPD formulation (Eq. (4))

Selected vars. Rsys Selected vars. R̂sys

3 {v1, v4, v7} 0.4909 {v1, v4, v7} 0.4909
4 {v1, v4, v6, v7} 0.6894 {v1, v4, v6, v7} 0.6777
5 {v1, v4, v5, v7, v8} 0.8124 {v1, v4, v5, v7, v8} 0.8083

graph. We then apply a bipartite spectral graph partitioning algorithm to obtain the cycle
partitions. The resulting partitions are used to approximate system reliability objective for
SPD. The approach is demonstrated on a case study.
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Abstract 

Data-driven process monitoring technology, which is generally realized by extracting 
data feature under normal operating conditions, has been developed rapidly to ensure 
operation safety. Correlation analysis, including auto-correlation and cross-correlation, 
plays an important role in these feature extraction algorithms. In chemical industrial 
processes, auto-correlation and cross-correlation in process measurements are always 
dynamic and could be greatly affected by sampling frequency. The extraction of these 
features directly determines the generalization ability of the process monitoring model. 
Therefore, it is important to study the influence of different sampling frequencies on the 
auto-correlation and cross-correlation of process variables. With the rapid development 
of data acquisition technology, data of multiple sampling frequencies can be flexibly 
acquired from distributed control system (DCS), which provides a basis for this research. 
The aim of this work is to build a process monitoring method by using the optimal 
sampling strategy and dynamic principal component analysis (DPCA). Time series 
analysis is first applied to check the degree of auto-correlation of sequence data at 
different scales according to industrial data with different sampling frequencies. It can be 
concluded that process dynamic has different effects on different variables. Dynamic 
principal component analysis is then used for feature extraction and process monitoring. 
Monitoring results under different sampling frequencies are compared and analysed to 
obtain an optimal process monitoring method. The research is implemented on Tennessee 
Eastman Process (TEP). The method shows better results than other methods without the 
consideration of sampling strategies and dynamic characteristics.  

Keywords: Correlation analysis; Feature extraction; Dynamic principal component 
analysis; Optimal sampling strategy. 

1. Introduction 

With the development of process industry, chemical production has been gradually 
getting larger scale and more complicated operation, which is accompanied by a great 
potential safety hazard. Once a safety accident occurs, it will not only cause economic 
losses, but also threaten human safety. To avoid safety accidents, process monitoring 
technology has been developed in chemical processes to assist operators to detect 
abnormal changes in a process plant timely. With the wide application of distributed 
control system (DCS), data-driven process monitoring technology has been extensively 
studied in order to ensure production safety. Whether it is the commonly used multivariate 
statistical method or recently proposed deep learning-based methods, the main aim is to 
extract data feature under normal operating conditions by projecting or mapping high-
dimensional process data into low-dimensional space. A conventional multivariate 
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statistical procedure: Principal Component Analysis (PCA), assuming that the 
observations are static and independent of each other, can simplify and improve process 
monitoring procedures (MacGregor, et al., 1995). Dynamic principal component analysis 
(DPCA) was proposed with the adoption of augment matrix to describe the dynamic 
characteristics of data (Ku, et al., 1995). The data matrix of DPCA contains hysteresis 
information, which makes it more suitable for monitoring of sequence-related data. Deep 
learning-based methods, such as neural networks and autoencoder, also achieved good 
results on simulation data of Tennessee Eastman Process (Cheng, et al., 2019). However, 
auto-correlation and cross-correlation of industrial process data measurements are always 
dynamic and could be greatly affected by sampling frequency. The extraction of these 
features directly determines the generalization ability of the process monitoring model, 
but the impact of sampling frequency on process monitoring results is hardly investigated. 
Although dynamic PCA has certain advantages in extracting the dynamic features from 
process data, the selection of key lag order is generally limited to a low value, which will 
lead to the loss of auto-correlation features of time series data. With the rapid 
development of data acquisition technology, data of multiple sampling frequencies can 
be flexibly acquired from distributed control system (DCS). Data features under different 
sampling frequencies can be studied at different scales, which provides a basis for 
studying the impact of sampling frequency on process monitoring results. 

The aim of this paper is to extract data features for process monitoring under the premise 
of considering the data dynamic relevance. When analyzing data with different sampling 
frequencies, it can be found that process dynamic has different effects on different 
variables. On this basis, an optimal sampling strategy is proposed to characterize auto-
correlation. For the extraction of dynamic cross-correlation features, the statistics of 
Hotelling-T2 (T2) and squared prediction error (SPE) are obtained by PCA and DPCA 
methods. The alarm point and false alarm rate, obtained from the built statistics, are 
employed for comparison. The research is implemented on Tennessee Eastman Process 
(TEP). The results show that DPCA combined with the best sampling strategy could give 
an earlier alarming with a lower false alarm rate compared with other methods without 
the consideration of dynamic correlation. It can provide a new idea for the selection of 
sampling frequency on industrial time series data.  

2. Methodology 

In this section, the methods applied in this work are introduced. 

2.1. The auto-correlation functions 

Auto-correlation coefficient is an important index for time series analysis, which can 
reflect the dynamic characteristics of the process to a certain extent. It is assumed that 
data have been regularly sampled from a time series  X , where , 1,2,...,tx t n is a set 

of observation samples from  X . The mean of samples is given as 
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For the given samples  tx , the auto-covariance function k  at the delay number k is 

given as 
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Based on Eq. (2) and (3), the auto-correlation function of the samples  tx at the delay 

number k can be defined as follows, 
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2.2. Principal component analysis (PCA) 

PCA, a classical technique for feature extraction and dimension reduction (MacGregor, 
et al., 1995), has been widely used in process monitoring with T2 and SPE statistics. Given 
n observations of m measurement variables

n mX  after normalization, the covariance 

matrix of X can be calculated as follows, 
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Then singular value decomposition is employed to ( )Cov X . The obtained eigenvalues 

and eigenvectors are sorted according to the size of the eigenvalues. On this basis, a score 
matrix T and a loading matrix P can be determined by retaining the first k features that 
contain the most information. The original matrix X can be decomposed as follows, 

1 1
T T T

k kX TP E t p t p E                                                                                             (6) 

where p, t are the loading vector and score vector, and E is the residual matrix. T2 and 
SPE statistics can be calculated in the principal component space and residual space 
respectively and the corresponding control limits can be used for process monitoring. 
PCA has a good performance in the monitoring of stationary process, but the dynamic 
characteristics of the data cannot be extracted. 

2.3. Dynamic principal component analysis (DPCA) 

To extract the dynamic characteristics of the data, the DPCA was proposed with a stack 
of data matrixes as follows, 
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where T
tx is the observation vector in the training set at time t. If enough lags are included 

in Eq. (7), the serial correlations can be considered in further PCA calculation. However, 
for high-dimensional data, a large lag order will lead to high computational loads for 
further matrix decomposition and the process dynamic has a different effect on different 
variables. Therefore, considering the limited lag order, it is necessary to select an optimal 
sampling frequency to consider the process dynamic better. 
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3. Selection of optimal sampling frequency and its application on Tennessee 
Eastman Process (TEP) 

In this chapter, the implementation procedures of the proposed research on the selection 
of optimal sampling frequency are introduced with the case study of TEP. 

3.1. Tennessee Eastman Process (TEP) and data description 

TEP is a chemical process benchmark simulated by the Eastman Chemical Company 
(Downs and Vogel, 1993), which has been widely used by researchers in the field of 
process control, monitoring and fault diagnosis to validate their newly proposed methods. 
The revision version of TEP by university of Washington is applied in this work because 
data of different sampling frequencies and operating conditions can be easily simulated 
by Simulink (Bathelt, et al, 2015). 50 hours of data are simulated in normal data set and 
each fault data set. The fault in each fault data set is introduced in the 25th hour. The 
sampling frequency is set from 1 second to 3 minutes by down sampling. A total of 31 
variables are selected in this work. The component variables are not considered here 
because such variables cannot be measured in real time in chemical operation. 

3.2. Determination of the optimal sampling frequency in this work 

In this work, two factors are considered to determine the best sampling frequency for 
chemical process monitoring. On the one hand, the dynamic characteristics of the process 
should be fully extracted. If the sampling frequency is too high, the dynamic 
characteristics of time series cannot be extracted by dynamic monitoring methods for the 
balance of the lag order and computational loads. On the other hand, sufficient process 
intermediate information has to be retained. If the sampling frequency is too low, the 
useful information in the process data will be lost and the fault information cannot be 
obtained in time. Therefore, there is an optimal sampling frequency that can be 
determined by striking a balance between these two aspects. Early fault detection time 
(FDT) and low false alarm rate (FAR) are of great significance for measuring the 
performance of process monitoring models.  Therefore, these two factors are used as the 
standard to find the optimal sampling frequency in this study. 

3.3. Selection of optimal sampling frequency in TEP 

In this section, the procedures of this work are introduced. As mentioned before, the auto-
correlation coefficient can be used to test the stationarity of time series and reflect the 
dynamic characteristics of data. Therefore, the auto-correlation diagrams are first applied 
to show the auto-correlation relationship of each variable in TEP, and then a sampling 
range can be initially obtained. However, it is difficult to directly determine the optimal 
sampling frequency, because the process dynamic characteristics have different effects 
on different variables. Different sampling frequencies within the range are selected and 
the data are brought into the PCA and DPCA models respectively to compare the 
monitoring results. The FDT and FAR are calculated to select the optimal sampling 
frequency. 

4. Results and discussion 

Auto-correlation diagrams of different types of variables in TEP are shown in Figure 1 
and 2. It can be seen that most variables show a dynamic characteristic and the process 
dynamic has different effects on different variables. Therefore, the optimal sampling 
frequency cannot be directly determined, but it can be obtained from Figure 2 that the 
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auto-correlation order can be effectively reduced by reducing the sampling frequency. 
Next, data of sampling frequencies from 1 second to 3 minutes are respectively brought 
into the PCA and DPCA models to compare the monitoring results. 

Process monitoring results for fault 1 by PCA and DPCA are shown respectively in Figure 
3 and 4. The results of FDT under different sampling frequencies are unified as second-
level data. The sampling frequency is 1 second. It’s obvious that DPCA has a better 
performance than PCA because the dynamic characteristics of the data are considered to 
a certain extent. In addition, the statistics fluctuate around the control limit at the early 
stage of the fault, making it difficult to determine whether it is a true alarm or not because 
the sampling frequency is too high. Monitoring results of fault 8 at different sampling 
frequencies are shown in Table 1. It can be concluded that fast sampling frequency is 
beneficial to improve FDT to a certain extent, but corresponds to high FAR. When the 
sampling frequency is at an appropriate value, the FAR is significantly reduced, and the 
fault can be also detected earlier than other sampling frequencies. Therefore, 60 seconds 
can be determined to be the optimal sampling frequency for TEP, which can be also 
validated by other faults in TEP. When the sampling frequency is further reduced, the 
useful feature information in the process data is lost, resulting in a late FDT. It is worth 
noting from Table 1 that the process dynamic characteristics will be removed if the 
sampling frequency is too late, which leads to similar monitoring results of PCA and 
DPCA. 

Figure 2 Auto-correlation diagrams of variables with a sampling frequency of 60s 

Figure 1 Autocorrelation diagrams of variables with a sampling frequency of 10s 
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Figure 3 Monitoring result for fault 1 by PCA       Figure 4 Monitoring result for fault 1 by DPCA 

Table 1 Process monitoring results for fault 8 at different sampling frequencies 

Sampling 

frequency 

1s 10s 15s 20s 30s 40s 60s 90s 180s 

FDT by PCA 94650 94720 94725 94680 94740 94680 94680 94500 94500 

FAR by PCA 0.0128 0.011 0.0105 0.0102 0.0093 0.0138 0.0067 0.009 0.006 

FDT by DPCA 94441 94460 94455 94460 94530 94520 94380 94500 94680 

FAR by DPCA 0.0130 0.01 0.0097 0.0084 0.0067 0.0089 0.0033 0.006 0 

5. Conclusions 

In this work, auto-correlation of variables in chemical process at different sampling 
frequencies is analysed by the auto-correlation diagrams. Considering the dynamic 
correlations of process, different sampling frequencies are used to establish process 
monitoring models by DPCA. A strategy for the selection of optimal sampling frequency 
is then proposed by comparing FDR and FAR, which are two important indicators of 
process monitoring. Through the case study on TEP, it can be concluded that there is an 
optimal sampling frequency corresponding to the best process monitoring results. 
Compared with other studies focusing on feature extraction, the impact of data sampling 
rate on process monitoring performance is discussed in detail in this work, which can 
provide a reference for initial data acquisition in industrial practice. 
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Abstract
Batch processes have been widely applied in pharmaceutical and chemical industry.
Variables in batch process exhibit obvious nonstationary and nonlinear characteristics,
which brings challenges to process monitoring. Recently, cointegration theory gets
more attention for its applications on the analysis of multivariate nonstationary time
series. According to the cointegration theory, if the nonstationary random sequences in
a system containing a cointegration relationship, there is at least one stable long-term
dynamic equilibrium relationship among these nonstationary variables. Such dynamic
equilibrium relationship can also be found in variables in industrial processes, since the
nonstationary variables are controlled by physics, chemistry, and other internal
mechanisms within a system. For multivariate variables system, Johansen test is a
commonly used method to test cointegration relationship and estimate the cointegration
vectors, which is based on the multivariate unconstrained vector autoregressive (VAR)
model, in which all variables are assumed as indifferent endogenous variables. However,
certain variables in real process, such as control variables, is not affected by such long-
term equilibrium and is governed by external conditions, which is called a weakly
exogenous variable. When there are weak exogenous variables in a system, the
cointegration test based on the VAR model needs to be improved, as the impact of
exogenous variable is neglected. In this work, considering the impact of weak
exogenous variables, autoregressive distributed lag (ADL) model is adopted for
cointegration test and parameters estimation. The penicillin fermentation process is
presented to illustrate the effectiveness of the proposed method, in which many control
parameters exert a significant impact on the state of fermentation. The monitoring
results show that the interaction among variables can be better characterized, and
abnormal behavior of the process can be correctly detected by proposed cointegration
testing method based on autoregressive distributed lag model.

Keywords: Cointegration analysis; Exogenous variable; Batch process; Dynamic
equilibrium relationship.

1. Introduction
Batch and semi-batch processes are widely applied in modern industries due to its
flexibility. However, product quality can be easily affected by environment conditions,
equipment conditions, and raw material quality, which may lead to the waste of raw
materials or cause an accident. Thus, it is essential to monitor the batch process to avoid
quality loss and potential accidents. However, batch process data present complex

http://dx.doi.org/10.1016/B978-0-323-85159-6.50240-2 
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characteristics, which brings challenge to process monitoring. Many approaches have
been proposed to monitor batch process in the view of complex data characteristics.

To consider the time series nature of multivariable data, VAR models have been applied
to batch process monitoring. Choi et al. (2008) first used VAR models to remove the
auto and cross correlation within batch data, and then principal component analysis
(PCA) was applied to the residuals obtained from VAR model. Based on their work,
Filho and Valk (2020) proposed a new monitoring scheme by estimating coefficients of
VAR model, which was proved to hold more information on the variable dynamics than
the residual-based method.

However, the VAR model is more appropriate for stationary data, while the variables in
batch process exhibits obvious nonstationary characteristics. In recent years, the
cointegration theory in time series analysis proposed by Engle and Granger (1987),
which is applied to analyze multivariate nonstationary time series, has been introduced
to the monitoring of nonstationary processes. Chen et al. (2009) applied the
cointegration theory to monitor industrial distillation units and established a monitoring
model by extracting the most significant cointegration relationship among variables. To
improve the effect of nonstationary process monitoring, Lin et al. (2017) adopted the
common trend model for nonstationary process monitoring by eliminating the influence
of nonstationary common factors, so that the classic multivariate statistics method is
applicable to non-stationary process monitoring. However, cointegration test and
cointegration vector estimation are always complemented by Johansen test, which is
based on the multivariate unconstrained VAR model where each variable is assumed as
undifferentiated endogenous variables. Since weak exogenous variables in a system do
not respond to long-term equilibrium, it is not appropriate to estimate the cointegration
vector based on VAR model. Pesaran (1995) examined the long-term run relationship
among variables based on ADL model, which indicated that ADL cointegration test is
proper for a system that contains exogenous variables.

To address the limitation of previous methods, a new batch process monitoring strategy
that based on ADL cointegration test is proposed. Considering the impact of weak
exogenous variables, ADL cointegration test is first adopted on historical batches to
determine if long term equilibrium relationship exists among variables and estimate the
cointegration parameters by ordinary least squares. After that, the deviation of the stable
relationship among variables of each historical batch can be obtained, which obeys the
specific trajectory. Thus, online monitoring can be implemented by judging if the value
of deviation is out of the specified range of the trajectory. The monitoring result of the
penicillin fermentation process is presented to illustrate the effectiveness of proposed
batch process monitoring strategy, which shows that abnormal behavior of the process
can be detected accurately with better characterization of the interaction among
variables.

2. ADL model based cointegration analysis
According to the cointegration theory, if nonstationary variables in a system contain a
common stochastic trend, a stable long-term dynamic equilibrium relationship exists
among these variables. The basic idea is that the common random stochastic trend can
be eliminated by linear combination of these variables if multiple nonstationary
sequences have a common stochastic trend. But an exogenous variable is not affected
by the long-term equilibrium deviation in a cointegration system, while an endogenous
variable, which is also known as dependent variable, is determined by the system.
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For a system with an endogenous variable yt and two exogenous variables z1t and z2t ,
the ADL model can be established as follow:

∆yt = α1 yt−1 − β1z1t−1 − β2z2t−1 + β3∆z1t + β4∆z2t + ut (1)

And the long-term equilibrium relation can be represented as

�� = yt − β1z1t − β2z2t (2)

In equation (2), �� is the equilibrium error sequence which represents the series where
the common linear trend is eliminated, and it is assumed that B = (1, − β1, −β2) is the
cointegration vector.
To estimate the cointegration parameters, equation (1) is transformed into the following
form:

∆yt = α1yt−1 + b1z1t−1 + b2z2t−1 + β3∆z1t + β4∆z2t + ut (3)

in which α1 , b1 , b2 , β3 , β4 are model coefficients which can be estimated by ordinary
least squares, and ut denotes model residual. A common way to test whether there is a
cointegration relationship among variables is to test the null hypothesis α1 = 0 with t
statistics. If α1 = 0, there is no long-term equilibrium relationship among variables, else
if α1 ≠ 0, cointegration parameters �1 and �2 can be obtained by �1 =− �1

�1
, �2 =− �2

�1
.

3. ADL cointegration test based batch process monitoring approach
CA is an effective way to analyse nonstationary variables with common trend. For
nonstationary process monitoring, monitoring index is required to indicate whether
current status is abnormal. Considering the existence of endogenous variables, a
monitoring strategy for batch process is proposed based on ADL cointegration test. The
diagram of proposed method is shown in Figure 1.

Figure 1 The diagram of proposed monitoring method

Batch Process Monitoring
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Several normal batches containing different initial conditions are labelled as training
data. All exogenous variables and a key endogenous variable are selected as model
variables. ADL cointegration test is applied to the training batch to determine if
cointegration relationship exist among variables. Then the parameters of ADL model
are estimated by ordinary least squares (OLS), and the long-term equilibrium error ��
which is assumed as monitoring index can be obtained as shown in equation (2). For
normal batches, �� present similar trajectory over time, which means that the value of ��
is in a certain range at every point of time. When the fault occurs, the original dynamic
equilibrium relationship among variables is violated, thus �� will deviate from its
original range of value. Kernel density estimation is applied to training batches to
estimate the probability density distribution of monitoring index at each point in time,
and the upper control limits (UCL) and lower control limits (LCL) are obtained.

For a new batch which is regarded as testing data, monitoring index is calculated with
parameters obtained from the training data. For each point of time � , it is assumed as
normal status if the value of �� is within the range of lower control limits and under
upper control limits, while it is considered as abnormal condition if the value of
monitoring index is over upper control limits or under lower control limits with a
confidence coefficient of 99%.

4. Case study on penicillin process
4.1. Process description and data preparation

Penicillin fermentation process is a typical batch process. The initial stage of
fermentation is intermittent operation, in which many cells are produced. After the
glucose substrate is consumed by the cells, it comes into semi-intermittent feeding stage
where glucose is continuously added into the fermentation cylinder. During
fermentation, the concentration of penicillin will be affected by environment change,
initial condition adjustment, and variable fluctuation. It is difficult to measure penicillin
concentration online, thus real-time monitoring is required to ensure that the
fermentation process runs under normal trajectory. In this work, Pensim software
developed by Birol, Ündey, and Cinar (2002) is adopted to simulate the process.

4.2. Batch process monitoring based on proposed method

Ten batches of data under normal condition with different initial conditions are
simulated as training data. The information of process variables is listed in Table 1. The
reaction time ranges from 395 h to 405 h, and the sampling frequency is 0.1 h. Four
exogenous variables and a key endogenous variable are selected as modelling variables
that is shown in Table 1, of which ventilation rate is an endogenous variable and the
others are exogenous variables.

Table 1 Variables in penicillin fermentation process

Variables Units
Ventilation rate L/h
Agitator power W
Substrate feeding rate L/h
Substrate feeding temperature K
Penicillin concentration g/L
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Table 2 Faults information introduced in this work

Fault number Fault type
1 Step decrease in aeration rate
2 Ramp decrease in agitator power
3 Ramp decrease substrate feed rate

To illustrate the effectiveness of the proposed monitoring strategy, three common faults
are set on Pensim simulation platform. The faults are introduced to three different
batches separately from 100 h to the end and the information of the faults is available in
Table 2. At the same time, a normal batch data is supplied to test the monitoring effect
on normal condition of the proposed method as comparison.

4.3. Monitoring result analysis and discussion

Three fault batches and a normal batch are set as testing data to verify the effectiveness
of the proposed mothed.

(a) (b)

(c) (d)

Figure 2 Monitoring results

The monitoring results are shown in Figure 2. For the normal batch as shown in (a), the
value of monitoring index remains within the control limits, indicating that the data are
under normal conditions and the model has a low false alarm rate that barely exceeds
the control limits. For step fault monitoring result as shown in (b), the value of
monitoring index exceeds the upper control limit at the first time when fault occurs,
which shows that the abnormal condition can be detected in time by applying the
proposed monitoring method. For slope faults as shown in (c) and (d), there is a delay to

Batch Process Monitoring
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detect the fault 2 while the fault 3 is detected timely, which indicates that the
sensitivities to different fault are distinct. The results show that the proposed method
can effectively extract the complex dynamic and nonstationary characteristics in the
batch process and monitor the faults in real time.

5. Conclusion
In this work, a new monitoring strategy based on ADL cointegration analysis for batch
process is proposed. Taking the complex characteristics of batch process data into
consideration, cointegration analysis is applied to the data to eliminate the common
stochastic trend and obtain long-term equilibrium relationship of nonstationary variables.
In the view of the exogenous variables in process which is not affected by other
endogenous variables as well as the equilibrium relationships, ADL cointegration test is
used to test if long term equilibrium relationship exists among nonstationary variables,
and the model parameters is estimated by ordinary least squares. By considering the
impact of exogenous variables, the interaction among variables is better described. On
this basis, real-time monitoring of the fermentation process is implemented by
monitoring the trajectory of the equilibrium error. In the end, process monitoring results
on a benchmark penicillin fermentation data indicate the effectiveness of proposed
monitoring strategy.
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Abstract 

This study aims to illustrate a novel unsupervised learning method for fault detection and 

diagnosis of chemical processes. The data-driven fault detection and diagnosis contains 

two main steps. a) data preparation and feature selections as preprocessing step and b) 

fault detection and diagnosis for fault indication. In this study, a non-dominated sorting 

genetic algorithm (NSGAII) was utilized for selecting the most relevant variables from 

the measured variables for each fault. The t-distributed stochastic neighbor embedding (t-

SNE) algorithm was used for information extraction from the selected variables which 

will lead to visualization of extracted features. Meanwhile, fault detection was performed 

by k-means and density-based spatial clustering of applications with noise (DBSCAN) 

clustering algorithms. The Tennessee Eastman benchmark process and faults of process 

variation were applied to validate the proposed method. Results show that the 

combination of NSGAII, t-SNE, and clustering methods is an efficient method for 

Tennessee Eastman process fault detection and diagnosis. And the proposed method 

could be used in chemical processes for early fault detection. 

Keywords: Process Monitoring; Fault Detection; Tennessee Eastman Process; NSGAII; 

t-SNE. 

1. Introduction 

Early fault detection and diagnosis play a critical role in managing abnormal 

circumstances in dynamic processes (Md Nor et al., 2020). Fault detection and diagnosis 

methods are mainly divided into three categories as quantitative, qualitative, and data-

driven. Quantitative models need an accurate process model based on system governing 

equations such as momentum, energy, and mass conservation equations, chemical 

kinetics, and thermodynamic equations. In such models, fault detection and diagnosis are 

based on the residuals of real process data and the predicted data at normal conditions 

(Elhsoumi et al, 2017). Qualitative models are based on the causal models and the 

knowledge of experts about the process such as fault trees (Venkatasubramanian et al., 

2003). Due to the complexities and difficulties in obtaining variables needed for 

quantitative and qualitative modeling, these models could not be practically applied 

(Ziaei-Halimejani et al., 2021). Meanwhile, by the availability of large volumes of data, 

data-driven methods for fault detection and diagnosis (supervised and unsupervised) have 

been considered by many researchers. In industrial plants, historical data are mostly 

available without labels. In start-up conditions, faults could not be detected clearly, so 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50241-4 
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unsupervised data-driven methods are more suitable to be applied. Therefore, the purpose 

of this study is to develop an unsupervised learning method for fault detection and 

diagnosis of chemical processes. In this paper, a non-dominated sorting genetic algorithm 

(NSGAII) was used for feature selection and the t-SNE algorithm was used for feature 

extraction and visualization. Then fault detection and the diagnosis were done by 

clustering algorithms.  

2. Theory 

2.1 Data Pre-processing 

Basically, a good feature in data-driven models should be informative, discriminative, 

and independent. Meanwhile, by selecting appropriate features the computation time and 

overfitting error will be reduced. The NSGAII algorithm was introduced in 2002 by Deb 

et al. and it is a multi-objective genetic algorithm for non-dominated sorting that includes 

crossover, mutation, merge, non-dominated sorting, crowding distance calculation, and 

population sorting functions as shown in Figure 1. Therefore, in this paper NSGAII 

algorithm was utilized for multi-objective feature selection. And classification error and 

the number of features were determined as objectives that should be minimized. But it is 

worth noting that both of these parameters could not be minimized simultaneously, and 

by decreasing the number of features the classification error will increase. Thus a trade-

off between these parameters should be done.  

After feature selection, t-distributed stochastic neighbor embedding (t-SNE) was utilized 

for feature extraction. t-SNE is a nonlinear statistics method for data dimension reduction 

to two or three dimensions and it is an efficient method for data visualization that was 

proposed by van der Maaten (2008). The t-SNE algorithm consists of two main steps. 

First, data transformation from high dimension space to a low dimensional space by 

probability distribution calculation. Somehow similar points have a high probability and 

dissimilar points have a low probability of being selected. Then, in low dimension space, 

a possible distribution is created and the Kullback–Leibler divergence is minimized 

between the two distributions according to the position of the points. 

𝑃𝑗|𝑖 =
exp⁡(−‖𝑋𝑖 −𝑋𝑗‖

2
/2𝜎𝑖

2)

∑ exp⁡(−‖𝑋𝑖 −𝑋𝑘‖
2/2𝜎𝑖

2)𝑘≠𝑖
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𝑃𝑖𝑗 =
𝑃𝑗|𝑖⁡ +⁡𝑃𝑖|𝑗

2⁡𝑁
 (2) 

𝑞𝑖𝑗 =
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Figure 1: Flowchart of NSGAII Algorithm 

2.2 Clustering 

Data clustering methods are categorized in unsupervised learning methods whereas these 

methods don’t need datasets labels and training phase. In this paper, data clustering was 

performed by using k-Means and DBSCAN algorithms. In the k-Means method, cluster 

centres are chosen based on the predetermined cluster numbers. And cluster members will 

be assigned to the nearest cluster, then in each iteration, the cluster centres and cluster 

members will be updated. DBSCAN method is a density-based method that cloud de 

utilized under noisy conditions. Epsilon and min points number are two main parameters 

that should be adjusted for each problem. In the DBSCAN Method data points will be 

categorized as cluster members, cluster borders, and noise depending on their spatial 

density. The main difference between the k-Means and the DBSCAN algorithm is that 

DBSCAN could be utilized in nonconvex geometries (Ziaei-Halimejani et al., 2021). 
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3. Results and discussion 

The case study of this paper is the Tennessee Eastman benchmark process. In this process, 

four main reactants A, C, D, and E react in the gas phase in the presence of B as inert, to 

produce G and H main products and F as a by-product. The unit operations of the 

Tennessee Eastman process are a reactor, a condenser, a gas-liquid separator, a stripper, 

and a compressor. The Tennessee Eastman process contains 12 manipulated variables and 

41 measurement variables (Downs and Vogel, 1993). In this paper, 19 flow component 

analyses were not considered. Tennessee Eastman Process Simulink model 

(https://depts.washington.edu/control/ LARRY/TE/download.html) is used for data 

generation, there are 20 faulty conditions and one normal condition. This paper included 

conditions 0, 1, 2, 4, 6, 7, 13, and 14, as normal, 5 step faults,1 slow drift, and 1 sticking 

valve fault. The datasets contain 480 samples for each condition.  

3.1. Data normalization 

Measured data in the chemical processes have different operating ranges, hence by using 

Eq.5 and dividing by their standard deviation the measured data have been normalized. 

The normalized data are between -1 and 1. 

𝑋̂𝑠
𝑓𝑛

=⁡
𝑋𝑠
𝑓𝑛

− 𝜇

𝜎
 (5) 

3.2. Feature selection 

As mentioned in section 2, the NSGAII algorithm was utilized for feature selection. The 

parameters of the algorithm were adjusted as presented in Table 1. And for the 8 

conditions dataset, the optimum number of selected features and classification errors is 

shown in Figure 2. As illustrated, 8 optimum solutions were provided with different 

numbers of features and classification errors. Therefore, 9 cases for all features and 8 

NSGAII, NF were tested (Table 2). 

Table 1: NSGAII Algorithm Parameters 

Maximum Iterations Number of Populations Crossover Mutation Mu 

50 20 0.7 0.4 0.1 

 

Figure 2: Error of feature selection using NSGAII algorithm versus number of selected 

features 
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3.3. Feature extraction 

After the feature selection step, t-SNE as a nonlinear dimension reduction method was 

utilized to extract three features from selected features and feature visualization as shown 

in Figure 3.a. In Figure 3.b Feature extraction results of the PCA method are shown. 

  

Figure 3: Feature Extraction, a) t-SNE method and b) PCA method 

3.4. Fault detection and diagnosis 

Fault detection and diagnosis have profited from clustering algorithms. In this research 

k-Means and DBSCAN methods were utilized. In Figures 4.a and 4.b the results of test 5 

are illustrated. 

  
Figure 4: Fault Detection and Diagnosis, a) k-Means method and b) DBSCAN method 

3.5. Evaluation 

To validate the results of clustering methods, four indexes including adjusted rand index 

(ARI), adjusted mutual information (AMI), V-Measure, and accuracy have been used. 

The evaluation results are reported in Table 2. As shown, in all tests, the t-SNE method 

obtained better results than the PCA method. In test numbers 8 and 9, the t-SNE-k-Means 

provided better results and in the rest of the tests, DBSCAN results are more accurate. It 

is worth noting that test number 5 was the best test. In this case, 6 Features included 

XMEAS (21), XMV (3), XMV (4), XMV (5), XMV (6), and XMV (10) were selected. 

The classification error and RF=NF/N were computed as 0.0133 and 0.18, respectively. 
Also as shown in Table 2, the t-SNE-clustering performed better in cases with a lower 

number of features compared with PCA-clustering.  
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Table 2: Clustering Results Evaluation 

 NF Extraction 
k-Means DBSCAN 

ARI AMI V-Meas. Acc. ARI AMI V-Meas. Acc. 

1 33 
t-SNE 0.35 0.51 0.64 0.45 0.39 0.54 0.66 0.52 

PCA 0.28 0.44 0.50 0.44 0.27 0.45 0.57 0.44 

2 13 
t-SNE 0.54 0.73 0.78 0.57 0.64 0.8 0.84 0.73 

PCA 0.35 0.54 0.66 0.50 0.35 0.56 0.65 0.49 

3 10 
t-SNE 0.39 0.52 0.67 0.50 0.59 0.74 0.78 0.69 

PCA 0.42 0.58 0.63 0.55 0.38 0.56 0.65 0.51 

4 9 
t-SNE 0.52 0.70 0.79 0.54 0.61 0.75 0.83 0.96 

PCA 0.38 0.55 0.69 0.52 0.34 0.48 0.59 0.48 

5 6 
t-SNE 0.64 0.76 0.81 0.69 0.79 0.87 0.89 0.83 

PCA 0.37 0.57 0.68 0.55 0.28 0.52 0.67 0.47 

6 5 
t-SNE 0.45 0.66 0.75 0.52 0.74 0.82 0.85 0.82 

PCA 0.30 0.56 0.67 0.48 0.29 0.53 0.64 0.47 

7 4 
t-SNE 0.58 0.70 0.77 0.69 0.67 0.78 0.82 0.75 

PCA 0.34 0.56 0.69 0.52 0.29 0.50 0.65 0.48 

8 3 
t-SNE 0.62 0.72 0.76 0.74 0.56 0.71 0.75 0.68 

PCA 0.35 0.55 0.64 0.51 0.35 0.56 0.63 0.48 

9 2 
t-SNE 0.67 0.76 0.77 0.82 0.65 0.75 0.77 0.76 
PCA 0.38 0.49 0.56 0.52 0.32 0.51 0.60 0.51 

4. Conclusion 

In this research, a method based on NSGAII, t-SNE, and unsupervised learning 

algorithms was developed for fault detection and diagnosis in chemical processes. 

Informative features were selected by the NSGAII algorithm and by utilizing 18 % of 

features, 8 conditions containing normal and 7 faults were detected and diagnosed. 

Results showed that the proposed method has high applicability to detect and diagnose 

Tennessee Eastman process faults, and could be applied for other chemical processes. 
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Abstract 

In this work, multiplicative cyberattacks targeting the sensor-controller communication 

link of a process control system are considered. The interdependence of detectability of 

an attack with respect to a general class of residual-based detection schemes and the 

control parameters is characterized. Exploiting this dependence, a controller screening 

methodology that may be used to incorporate cyberattack detectability into the standard 

controller design criteria is presented. Using a chemical process example, the application 

of the controller design screening to a nonlinear process is demonstrated. 

Keywords: Multiplicative cyberattack, zero-alarm attack, controller design, cyberattack 

detectability 

1. Introduction 

Increased reliance on networked communication has rendered process control systems 

(PCSs) vulnerable to increasingly complex and frequent cyberattacks (Miller et al., 2018) 

in the past couple of decades. This has motivated an increasing body of research dedicated 

to the development of controller-based approaches to attack resilient controller design, 

cyberattack detection, identification, and mitigation schemes (Giraldo et al., 2018, and 

Tan et al., 2020 and references therein, Oyama et al., 2020, and Chen et al., 2021). 

Broadly, cyberattacks may target the PCS by compromising the data integrity of process 

data in the communication links or by altering the PCS logic. In this work, multiplicative 

zero-alarm cyberattacks compromising the data integrity of the sensor-controller 

communication link are considered. These attacks are modeled by a factor multiplied to 

the measured variable and are particularly threatening as they may be designed to evade 

detection by keeping the alarms in the detection scheme monitoring the process at zero, 

with minimal process knowledge.  

 

The detectability of the measured states of a process may be viewed as a systems-theoretic 

property. In practice, the detectability of a cyberattack on the measured states of a process 

is dependent on the control parameters (e.g., controller gain and observer gain), and the 

detection scheme monitoring the process. This interdependence of the detectability of an 

attack and the controller design has not received much attention in the literature. In a 

previous work (Narasimhan et al., 2021), an approach to characterizing the 

interdependence of the attack detectability in terms of terminal set of residuals (a small 

set containing the origin within which the residual is ultimately bounded) for the attacked 

and the attack-free process was presented. Based on the characterization, a controller 

screening methodology that may be used identify and discard control parameters that 

mask an attack was presented for processes modeled by discrete-time linear time invariant 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50242-6 
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(LTI) dynamics. This screening may be used to incorporate cyberattack detectability into 

existing controller design criteria (e.g., closed loop-stability and robustness to 

uncertainty). The present work explores the application of the controller screening 

methodology to a nonlinear chemical process. To make the paper self-contained, an 

abridged version of the screening methodology is presented herein. Interested readers are 

directed to Narasimhan et al. (2021) for more information. 

2. Controller Screening Methodology 

Processes modeled by discrete-time linear time invariant (LTI) dynamics, and subject to 

bounded measurement noise and process disturbances are considered: 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐺𝑤(𝑡) 

 

𝑦(𝑡) = Λ(𝐶𝑥(𝑡) + 𝑣(𝑡)) 

 

 

 

(1) 

 

where 𝑥(𝑡) ∈ ℝ𝑛 is the state of the process, 𝑢(𝑡) ∈ ℝ𝑛𝑢 is the control input, 𝑦(𝑡) ∈ ℝ𝑚 is 

the output from the process, 𝑤(𝑡) ∈ 𝑊 ⊂ ℝ𝑛𝑤 and 𝑣(𝑡) ∈ 𝑉 ⊂ ℝ𝑚 are the bounded process 

disturbances and measurement noise. The sets 𝑊 and 𝑉 are compact and contain the origin 

in their interior. Multiplicative sensor-controller link attacks are modeled by the diagonal 

matrix Λ = diag(α1, α2, … , αm) where 𝛼𝑖 ≠ 1 represents attack on the 𝑖𝑡ℎ sensor-controller 

communication link. To generate an estimate of the state (denoted by 𝑥(𝑡) ∈ ℝ𝑛), a 

Luenberger observer with gain 𝐿 is used. A linear controller with gain 𝐾 is used to steer 

the state to the origin. The eigenvalues of 𝐴 − 𝐿𝐶 and 𝐴 − 𝐵𝐾 are assumed to lie within 

the unit circle. For analysis, the augmented state vector is defined as 𝜉(𝑡) =
[𝑥𝑇(𝑡) 𝑒𝑇(𝑡)]𝑇, where 𝑒(𝑡) = 𝑥(𝑡) −  𝑥(𝑡) is the estimation error (the dynamic model is 

defined in Eq. (5) of Narasimhan et al., 2021).  The dynamics of the augmented state is 

𝜉(𝑡 + 1) =  𝐴𝜉(Λ, 𝐾, 𝐿)𝜉(𝑡) + 𝐵𝜉(Λ, 𝐿)𝑑(𝑡), where 𝑑(𝑡) = [𝑤𝑇(𝑡) 𝑣𝑇(𝑡)]𝑇 ∈ 𝐹 ∶= {(𝑤
𝑣 ) ∣

𝑤 ∈ 𝑊, 𝑣 ∈ 𝑉}) (𝐴𝜉(Λ, 𝐾, 𝐿) and 𝐵𝜉(Λ, 𝐾, 𝐿) are given in Eq. (6) of Narasimhan et al., 2021).  

 

Due to the presence of bounded noise in the measurement, and process disturbances, when 

the process is at steady state, its augmented state converges to a small set containing the 

origin, which is the minimum invariant set. When the closed-loop process is stable with 

max
𝑖

|𝜆𝑖(𝐴𝜉(Λ, K, L)| < 1 (𝜆𝑖 (𝐴𝜉(Λ, 𝐾, 𝐿)) is the 𝑖𝑡ℎ  eigenvalue of  𝐴𝜉(Λ, 𝐾, 𝐿) ),  the 

minimum invariant set of the process depends upon the attack magnitude and the control 

parameters. It is given by the infinite Minkowski sum 𝐷𝜉(Λ, 𝐾, 𝐿) =  𝐵𝜉𝐹 ⊕ 𝐴𝜉𝐵𝜉𝐹 ⊕

𝐴𝜉
2𝐵𝜉𝐹 ⊕ …  (Kuntsevich et al., 1996). The residual vector is defined as 𝑟(𝑡) = 𝑦(𝑡) −  𝑦̂(𝑡). 

Writing the residual in terms of the augmented state and the disturbance gives 𝑟(𝑡) =
[(Λ − 𝐼)𝐶 𝐶]𝜉(𝑡) + [0 Λ]𝑑(𝑡) = 𝐴𝑟(Λ)𝜉(𝑡) + 𝐵𝑟(Λ)𝑑(𝑡). Thus, the terminal set of 

residuals for the process may be computed as 𝐷𝑟(𝛬, 𝐾, 𝐿) = 𝐴𝑟(Λ)𝐷𝜉(Λ, 𝐾, 𝐿)  ⊕ 𝐵𝑟(Λ)𝐹 . 

 

A general class of residual-based detection schemes using the 2-norm of the residual 

vector as the detection metric is considered. Elaborate discussion on these detection 

schemes may be found in Section 2.3-2.4 of Narasimhan et al., 2021.  With respect to the 

class of detection schemes considered, a closed-loop stability preserving attack of 

magnitude Λ ≠ 𝐼 is defined as undetectable if the radius of the 2-norm ball enclosing the 

terminal residual set of the process under an attack is less than or equal to the radius of 

the 2-norm ball enclosing the terminal residual set of the attack-free process, i.e, 

𝑅(Λ, 𝐾, 𝐿) ≤ 𝑅(𝐼, 𝐾, 𝐿), where 𝑅(Λ, 𝐾, 𝐿) ≔ max
𝑟′∈𝐷𝑟(Λ,𝐾,𝐿)

||𝑟′||. Similarly, any closed-loop 
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stability preserving attack of magnitude Λ ≠ 𝐼 on the process is defined as a potentially 

detectable attack if the radius of the 2-norm ball enclosing the terminal set of the attack-

free process is less than the radius of the 2-norm ball enclosing the terminal set of the 

process under an attack, i.e., 𝑅(𝐼, 𝐾, 𝐿) < 𝑅(Λ, 𝐾, 𝐿).  Finally, an attack of magnitude Λ ≠ 𝐼 

is said to be detectable if it renders the closed-loop system in Eq.(1) unstable. Interested 

readers are directed to Section 3.1 of Narasimhan et al., 2021, for more discussions. 

To derive numerically verifiable conditions for characterizing attack detectability, 

invariant outer polytopic approximation of the minimum invariant set of the augmented 

states of the stable process is computed as 𝐷𝜉
𝑒𝑠𝑡(Λ, 𝐾, 𝐿) (see Raković et al., 2005 for 

method), such that 𝐷𝜉(𝛬, 𝐾, 𝐿) ⊆ 𝐷𝜉
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) ⊆ 𝐷𝜉(𝛬, 𝐾, 𝐿) ⊕ 𝐵∞

2𝑛(𝜖) (𝐵∞
2𝑛(𝜖) ≔

{ 𝜉′ ∈  ℝ2𝑛 ∣∣  ∥ 𝜉′ ∥∞ ≤ 𝜖 }), where 𝜖 is the error bound. Then, the inner polytopic 

approximations of the terminal residual sets for the attack-free and the attacked process 

are computed as 𝐷𝑟𝑒
𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) and 𝐷𝑟𝑎,𝑒

𝑒𝑠𝑡(Λ, 𝐾, 𝐿), respectively. These inner approximations 

satisfy 𝐷𝑟𝑗

𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) = 𝐷𝑟
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) ⊖ 𝐴𝑟(𝛬)𝐵∞

2𝑛(𝜖) ⊆ 𝐷𝑟(𝛬, 𝐾, 𝐿) (𝑗 = 𝑒 or 𝑗 = 𝑎, 𝑒), where, 

𝐷𝑟
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) is the outer polytopic approximation of 𝐷𝑟(𝛬, 𝐾, 𝐿).   

With the disturbance set 𝐹, the attack magnitude of interest Λ,  the controller gain 𝐾, and 

the observer gain 𝐿 as the input, the controller screening algorithm is as follows. First, it 

is checked if 𝑚𝑎𝑥
𝑖

|𝜆𝑖(𝐴𝜉(𝛬, 𝐾, 𝐿)| ≥ 1. If this is true, the choice of K and L under a 

multiplicative attack with attack matrix 𝛬 will render the closed-loop process unstable 

and the attack is detectable. The screening algorithm is terminated in this case. However, 

if 𝑚𝑎𝑥
𝑖

|𝜆𝑖(𝐴𝜉(𝛬, 𝐾, 𝐿)| < 1, then the outer polytopic approximations of the residual sets 

are computed using the method described in Section 3.2 of Narasimhan et al., 2021. From 

the outer approximations, the inner approximations of the residual sets are computed.  

Then, the radii of the 2-norm balls enclosing the sets (𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿), 𝑅𝑒𝑠𝑡(𝛬, 𝐾, 𝐿), 

𝑅𝑒
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿), and 𝑅𝑎,𝑒

𝑒𝑠𝑡(𝛬, 𝐾, 𝐿)) are computed. If 𝑅𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) < 𝑅𝑒
𝑒𝑠𝑡(𝐼, 𝐾, 𝐿), the attack is 

classified as an undetectable attack, else, if 𝑅𝑎,𝑒
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) > 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿), then the attack is 

classified as a potentially detectable. However, if it is found that 𝑅𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) >

𝑅𝑒
𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) or 𝑅𝑎,𝑒

𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) > 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿), the test is inconclusive. This may occur when 

the numerical approximations of the terminal sets satisfy |𝑅𝑎,𝑒
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) − 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿)| ≤ 𝛽 

or |𝑅𝑒
𝑒𝑠𝑡(𝛬, 𝐾, 𝐿) − 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿)| ≤ 𝛽 where 𝛽 > 0 is a small number, implying that the 

radius estimates are close to each other. 

3. Application to a Nonlinear Chemical Process 

A chemical process example consisting of a continuously stirred tank reactor (CSTR) 

with a second-order reaction occurring is considered. The process is subject to bounded 

process disturbances and measurement noise. In the real-time control of chemical 

processes, the control actions are usually applied to the nonlinear continuous-time process 

at discrete time instances. To simulate this, the nonlinear ordinary differential equation 

model describing the CSTR process is integrated with the linear controller generating a 

new control action at every 10−2 ℎ. To apply the screening methodology, a discrete-time 

LTI process model is needed. To generate the model, a continuous-time LTI model is first 

obtained by linearizing the nonlinear model about its open-loop stable steady state. The 

discrete-time LTI process model is then obtained by applying a zero-order hold 

discretization. The process models, and process parameter values are given in 

Narasimhan et al., 2021. 
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In this study, the control parameters are to be 

chosen such that they do not mask multiplicative 

attacks of magnitude in this range [1.1, 2] on the 

concentration sensor-controller link. Since there 

are infinitely many attack magnitudes in the range, 

the screening algorithm is carried out with ten 

values from the range, i.e., with values Λ𝑖 =

diag(𝛼𝑖, 1) where 𝛼𝑖 = 1.1 + 0.1(𝑖 − 1), 𝑖 =

1,2, … ,10. Using pole placement, the controller and 

observer gains are selected with the controller poles 

at [0.5 − 0.1] and observer poles at [−0.3 0.4]. The 

screening algorithm is applied to the chosen 

controller design over all Λ𝑖. The attacked closed-

loop process is stable with max
𝑗

|λj (𝐴𝜉𝑎
(Λ𝑖, 𝐾, 𝐿))| <

1 for all 𝑖 = 1,2, … 10. The polytopic 

approximations of the minimum invariant sets of 

the attacked process over all attack magnitudes, and for the attack-free process are 

computed with an error bound of 𝜖 = 5 × 10−5 . Then, the polytopic approximations of 

terminal residual sets are computed (Figure 1). The size of the terminal residual set for 

the attacked process increases with 𝛼𝑖. For all cases,  𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) < 𝑅𝑎,𝑒
𝑒𝑠𝑡(𝛬𝑖, 𝐾, 𝐿), 𝑖 =

1,2, … 10, with 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) = 0.0207, min
𝑖

𝑅𝑎,𝑒
𝑒𝑠𝑡(Λ𝑖, 𝐾, 𝐿) = 0.0222 for Λ1 = diag(𝛼1, 1) =

diag(1.1,1) and max
𝑖

𝑅𝑎,𝑒
𝑒𝑠𝑡(Λ𝑖, 𝐾, 𝐿) = 0.0375 for Λ10 = diag(2,1) . Thus, all the attacks in the 

range of interest are potentially detectable. To verify the potential detectability of each 

attack magnitude, two sets of simulations of the process are performed, using the (1) 

discrete-time LTI process model and (2) nonlinear continuous-time process model. One 

thousand closed-loop simulation pairs of the attacked process are performed with various 

realizations of the measurement noise and the process disturbance. For each simulation 

pair, the same realization was applied. For both sets of simulations, the state is estimated 

using a Luenberger observer designed based on the discrete-time LTI process model. To 

monitor the process, a CUSUM detection scheme described by Eq. (12) in Narasimhan et 

al., 2021 is used. The detection scheme is tuned with the choice of 𝑏 = 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) =

 0.0207 and an alarm threshold of 𝜏 = 0.01 to guarantee a zero-false alarm rate in the 

absence of an attack.  

 

For attacks with 𝛼𝑖 ∈ [1.6, 2], the attack is 

detected over most simulations with the LTI and 

the nonlinear models. Results from simulating 

an attack of magnitude Λ10 = diag(2,1) on the 

nonlinear process model are presented in Figure 

2. The attack is detected in 969 out of 1000 

simulations with the nonlinear continuous-time 

process model. Of these 969 simulations, the 

attack is not detected in the corresponding linear 

model simulation in 4 simulations. Similarly, 

during the simulations with the discrete-time 

LTI process model, the attack is detected in 970 

out of 1000 simulations. For 5 of the 970 
simulations, the attack is not detected for the 

Figure 1.  Outer approximation of the 

terminal residual set for the attack-free 

process (𝐷𝑟
𝑒𝑠𝑡(𝐼, 𝐾, 𝐿)), and the inner 

approximations of the terminal sets for the 

attacked process (𝐷𝑟𝑎,𝑒

𝑒𝑠𝑡 (Λ𝑖 , 𝐾, 𝐿)). 

Figure 2. The CUSUM statistic 𝑆(𝑡) over 

1000 simulations of the closed-loop process 

under an attack of magnitude Λ10 =
diag(2,1). 



corresponding nonlinear model simulation. In 

most of the simulation pairs where a discrepancy 

between attack detection is observed, the 

difference in the maximum CUSUM statistic 

value between the two cases was small, meaning 

that in one case, the value exceeded the threshold 

by a small amount and in the other, the statistic 

value was close to the other, but did not exceed the 

threshold. For example, an attack is detected in the 

linear case with a CUSUM statistic value of 

0.0101, and for the corresponding nonlinear case, 

the statistic value at the same time is 0.0095, and 

the attack is not detected. Finally, for the same 

realization of random variables applied to the 

nonlinear case and linear case, except for 174 

simulations, the time at which the attack is first detected is the same for both process 

models. Over most of these 174 simulations, the attack detection time for the two process 

models differed by a single time step.  

 

For attacks with magnitude in range 𝛼𝑖 ∈ [1.2, 1.5], while the CUSUM statistic never 

breaches the threshold, it is found to be a non-zero value over most simulations for both 

the nonlinear case and the linear case. The CUSUM statistic resulting from simulating an 

attack of magnitude Λ4 = diag(1.4, 1) (with 𝑅𝑎,𝑒
𝑒𝑠𝑡(Λ4, 𝐾, 𝐿) = 0.027) on the nonlinear model 

are given in Figure 3. It is also found that the maximum realization of the CUSUM 

statistic over each simulation of the nonlinear model is of the same order of magnitude as 
the maximum realization of the statistic over the corresponding simulation of the linear 

model. In one case, the maximum CUSUM statistic in simulations with the nonlinear case 

is 0, however, the maximum statistic for corresponding simulations with the linear case 

is  3.1 × 10−5. The mean of the 2-norm of the residual vector over 1000 simulations is 

0.0081 with a variance of  2.4563 × 10−5 for the nonlinear case. The mean of the 2-norm 

of the residual vector over 1000 simulations with the linear case is 0.0081 (same as that 

for the nonlinear case) and the variance is 2.4553 × 10−5. While not shown here, statistical 

distribution of the 2-norm of the residual indicates that tuning the CUSUM detection 

scheme with a lower alarm threshold may enable the detection of this attack. Note that 

with the tuning approach adopted in this work, the CUSUM statistic remains at zero for 

the attack-free process, and any non-zero CUSUM statistic value would indicate an 

attack. Furthermore, with a decrease in 𝛼𝑖, the total number of simulations with non-zero 

realizations of the CUSUM statistic decrease, indicating that the attack becomes more 

difficult to detect. 

 

During closed-loop simulations with an attack of magnitude Λ1 = diag(1.1,1), the 

CUSUM statistic remains at zero over all the 1000 simulations for both the linear case 

and the nonlinear case. Thus, the attack goes undetected, despite the control parameters 

satisfying 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) < 𝑅𝑎,𝑒
𝑒𝑠𝑡(𝛬1, 𝐾, 𝐿). This does not contradict the screening algorithm, 

as the attack is only potentially detectable. The fact that the attack went undetected may 

be because 𝑅𝑒𝑠𝑡(𝛬1, 𝐾, 𝐿) − 𝑅𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) = 0.0015 is small. While further analysis is 

required, for this attack magnitude, a different set of control parameters with a larger 

separation between the sets 𝐷𝑟
𝑒𝑠𝑡(𝐼, 𝐾, 𝐿) and 𝐷𝑟

𝑒𝑠𝑡(𝛬1, 𝐾, 𝐿) may enable attack detection. 

Moreover, for this case, the performance degradation resulting from this attack is small. 

Figure 3. The CUSUM statistic 𝑆(𝑡) over 
1000 simulations of the closed-loop process 

under an attack of magnitude Λ4 =
diag(1.4,1). 
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The applicability of the controller screening algorithm to the nonlinear case is verified for 

other control designs and attacks. For example, when the controller screening algorithm 

predicts that (1) an attack Λ = diag(0.5,1) with control and observer gains selected by 

placing the poles at [0.3 0.1] and [−0.4 0.3], respectively, and (2) an attack Λ = diag(1,0.9) 

for control and observer gains selected by placing poles at [0.5 − 0.1] and [0.4 0.4], 

respectively, are undetectable. During the closed-loop simulations with the nonlinear case 

and the linear case, the CUSUM statistic remains at zero, and the attacks are not detected. 

When the controller screening predicts that an attack Λ = diag(1,1.2) is potentially 

detectable for control and observer gains with poles placed at [0.5 − 0.1] and [0.2 0.2], 

respectively, the CUSUM statistic has non-zero realizations over most simulations. 

However, it never breaches the threshold (similar to Figure 3).  Thus, the controller 

screening algorithm based on the discrete-time LTI model of the process is applicable to 

the continuous-time nonlinear model of the process. This may be because the linear 

process model adequately represents the dynamics of the nonlinear process near the 

operating steady-state.  

4. Conclusions 

In this work, the application of a detectability-based controller design screening 

methodology for a multiplicative sensor-controller link cyberattacks to a nonlinear 

chemical process example was demonstrated. Future work will focus on controller-based 

approaches that enable the detection of a multiplicative sensor-controller link attack. 
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Abstract 

Cyber attacks on critical infrastructure pose serious threats. When industrial control 
systems (ICS) are targeted by cyber attacks, the resulting incidents cause not only security 
problems but also safety and pestilence issues. Encrypting the communication data 
passing through the data diode with OPC UA will further improve the security of the 
communication in ICS. In this paper, we propose a method to establish both a data diode 
that prevents intrusion and an OPC UA encrypted communication that prevents 
interception and tampering. 

Keywords: OPC UA; Client/Server; PubSub; Key exchange; Data diode. 

 

1. Improved security by combining data diode and OPC UA 

Cyber attacks on critical infrastructure pose serious threats. If an industrial control system 
(ICS) is the target of a cyber-attack, the incidents it causes are not only security issues but 
also safety and serious pestilence issues. For example, the negative impact of a cyber-
attack can be extraordinary, such as an explosion at a manufacturing site, damage to 
customers or the environment due to improper shipment of products, or the negative 
impact on customers and society due to temporary suspension of manufacturing services. 

If a controller such as a DCS (Distributed Control System) or PLC (Programmable Logic 
Controller) behaves improperly, it can cause a serious accident. Unfortunately, the 
controller is unable to determine whether it is under a cyber attack, so even if it receives 
a malicious command, it will do as it is told. There are many machines that can obtain 
controller commands and information about the target of the attack and send commands 
to the controller, such as operational support systems, advanced control systems, MES 
(Manufacturing Execution System) servers, and SCADA (Supervisory Control And Data 
Acquisition) system engineering workstations. If the attacker can obtain information 
about the controller commands and the target of the attack and hijack these devices to 
send dangerous commands, a serious accident may occur even if the communication 
protocol is secure OPC UA. 

Therefore, we want to monitor what kind of commands are being communicated, even if 
they are encrypted. We have already proposed and developed a monitoring system that 
can manage encrypted communications [1]. This monitoring system will be installed 
close to the controllers. Since there are many controllers, the monitored command 
information is aggregated and stored in a separate location. If the location is hijacked by 
an attacker, the controller can be attacked through the monitoring system installed near 
the controllers. To solve this problem, we thought of installing the unidirectional data 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50243-8 
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diode in the aggregation path so that even if the aggregation system is hijacked, the attack 
cannot reach the controller [2]. 

OPC UA was developed in 2006 as a communication protocol that considers security at 
the time of design and has been selected as a standard protocol for Industry 4.0, etc. 
However, since it is a one-to-one communication standard, the engineering cost when 
setting up communication between many devices has been an issue. The introduction of 
Publishers and Subscribers (PubSub) communication in addition to Client/Server was 
announced in 2018 and implemented starting with OPC UA v1.04, released in 2021 
PubSub supports UDP, MQTT, and AMQP and can send data to many subscribers at once. 
Since the flow of data is one-way in PubSub UDP, data diodes can be used in conjunction 
with it. It can also be used as a network infrastructure able to route datagram-based 
messages in a broker-less form [3]. Nuclear power plants require the use of unidirectional 
data diodes when disclosing data. By using unidirectional data diodes to prevent an 
attacker's invasion and by encrypting the communication data that passes through them 
with OPC UA, interception and tampering can be prevented, further improving the 
security of the communication [4] [5]. 

In this paper, we propose a method for using both data diodes and OPC-UA encrypted 
communication because security for industrial control systems is an important issue in 
process system engineering. 

2. OPC UA secure communication via the unidirectional data diode 

2.1. Basic OPC UA Client/Server models encryption key exchange 

The OPC UA's client/server is implemented at the top of the TCP/IP (Transmission 
Control Protocol/Internet Protocol) stack. The security architecture of OPC UA is a 
hybrid of the PKI (Public Key Infrastructure) and symmetric key cryptography. The 
symmetric key cryptosystem is used for encrypting the data, and PKI is used for 
encrypting the exchange information necessary for authenticating the application and 
generating the symmetric key. The symmetric key is not reused because it is updated 
every time the communication connection of OPC UA is started. Moreover, in OPC UA, 
the confidentiality of the data is improved by using two or more common keys for 
encryption. 

2.2. Basic OPC UA PubSub models encryption key exchange 

The OPC Foundation has added the SKS (Security Key Services) specification for use 
with OPC UA PubSub to the OPC UA PubSub Part 14 specification. SKS is a key 
exchange architecture. Specifically, SKS is an architecture that provides a common key 
that publishers can use to sign and encrypt data and subscribers can use to verify and 
decrypt data signatures. Figure 1 shows the basic key management pattern for OPC UA 
PubSub. The OPC UA server should support SKS for key exchange. Then, the Publisher 
should install the encryption key on the SKS. Since SKS is a key management function 
supported by the OPC UA server, the OPC UA Client/Server model is used for key 
exchange. Therefore, if the Subscriber obtains the key from SKS, it needs to support the 
OPC UA client. Furthermore, the key exchange takes place with an authenticated OPC 
UA client [6]. 
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2.3. Encryption key exchange via the unidirectional data diode 

The use of unidirectional data diodes improves security because they can completely 
block incoming packets. However, since bidirectional communication is not possible, key 
exchange using SKS through unidirectional data diodes is not possible. Here, we propose 
a key exchange that can be used when using unidirectional data diodes. 

  

Figure 1 SKS architecture 

 Publisher physically hands the key to the Subscriber 

A Publisher has multiple topics, and each topic has multiple subscribers. Each topic 
has a different common key for reading it but the same common key for subscribers of 
the same topic. Since the subscription period of a topic may be different for each 
Subscriber, the subscription for each Subscriber needs to be confirmed at the time of 
registration, and as shown in the arrow at the bottom of Figure 1, different 
communication is inevitably required than when reading the topic. 

The subscription is cross-confirmed through a channel that allows mutual 
communication, which is opened only during registration, and the Subscriber passes 
the public key corresponding to his private key to the Subscriber. When the Subscriber 
is allowed to register, the information needed to synthesize the symmetric key 
information for the subscription is encrypted by the public key and sent to the 
Subscriber. 

This information can only be decrypted by the Subscriber, so confidentiality is ensured. 
This procedure corresponds to steps (1) through (6) in Figure 2. 

To ensure security by switching the common key, the common key information received 
as described above is not the value of a single common key but contains multiple common 
keys, and during communication, the subscriber switches which of these keys to use. 

 Encrypted communication to switch the common key to be used 

The Publisher randomly selects a symmetric key to be used for encryption from the 
set of symmetric keys exchanged in the first step and sends the ID of the key used 
in addition to the encrypted communication data. The received Subscriber uses the 
key ID information to identify the common key for decryption and decrypts the 
communication data. This procedure corresponds to which of the keys from (7) in 
Figure 2 is used for decryption. 
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We propose the above two hybrids. The concept of key exchange is based on PKI. 
However, as mentioned earlier, only UDP can be used for communication when 
communicating with unidirectional data diodes. Also, it is a broker-less form of 
communication. 

 

Figure 2 Encryption key exchange sequence 

Figure 2 shows the Publisher and Subscriber sequence. It communicates via UDP 
between Publisher and Subscriber. Figure 2 also shows the key exchange between 
Publisher and Subscriber. In Figure 2, two pieces of data are sent from Publisher to 
Subscriber. 

The first sequence sends the information needed to generate the common key from the 
Publisher to the subscribers. The Publisher is required to obtain the public key generated 
by the Subscriber in advance. The public key cannot be exchanged via the unidirectional 
data diode, so the public key will need to be physically passed to the Publisher. This can 
be very laborious and is open to human error, but the public key is safe to send because 
the Publisher can determine that only the Subscriber with the private key paired with the 
public key can decrypt it. Subscribers can also specify that the transmission is from an 
authorized publisher because the encrypted data can be decrypted with their own private 
key. When exchanging public keys, they need to be carefully exchanged. 

The second sequence uses the generated common key to encrypt the data and sends the 
encrypted data and the key token ID together from Publisher to Subscriber. In OPC UA 
PubSub, a key token ID can assign to the common key, and the expiration date can be set 
for the common key. Therefore, OPC UA PubSub can manage multiple common keys 
and randomly use the common key to encrypt data when sending. The Subscribers can 
decrypt the encrypted data on the basis of the received key token ID. 

2.4. OPC UA PubSub Data encryption and signature 

This section describes what encryption OPC UA PubSub does when sending data after 
key exchange. OPC UA PubSub supports data encryption and signing. The security 
modes are: 
 No security 
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 Signing but no encryption 

 Signing and encryption 

Message security is end-to-end security (from Publisher to Subscriber). "No security" 
means that the message is plain text. "Signing but no encryption" means that the message 
is only signed. "Signing and encryption" means signing and encrypting a message. 
 

 

Figure 3 Scope of data signing and encryption 

Figure 3 shows the extent of data signing and encryption. The Transport Protocol layer 
means packets of the protocol. The dashed line in the Transport Protocol layer is the 
protocol payload. The next layer is the layer defined by OPC UA: 

 NetworkMessage 

 DataSetMessage 

 DataSetMessage Field 

NetworkMessage is a container for DataSetMessages that contain information for 
exchanging data. It also contains security information. The Security information includes 
signature and encryption processing information. DataSetMessage and DataSetMessage 
Field are encrypted. DataSetMessage is a collection of DataSetMessage Fields. 
DataSetMessage Field is the actual value. The scope of encryption is DataSetMessage 
and DataSetMessage Field. 

OPC UA PubSub uses Advanced Encryption Standard Counter Mode (AES-CTR) for 
data encryption and requires a common key and Message Nonce to decrypt the data. 
Figure 4 shows the security information contained in NetworkMessage. AES-CTR 
provides encryption and decryption with pre-exchanged keys and Message Nonce 
contained in the message. Therefore, data encryption can be more complex, and we can 
further strengthen our defense against attacks and threats [7]. 

 
Figure 4 Security information structure 
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3. Conclusions 

This paper proposed a key exchange used when transmitting encrypted data via the 
unidirectional data diode by OPC UA PubSub. Key exchange does not exchange the 
common key. The publisher and subscriber exchange randomly generated nonces to 
generate a common key. Furthermore, OPC UA PubSub uses AES-CTR for data 
encryption and requires a common key and the Message Nonce to decrypt the data. This 
can further strengthen our defense against attacks and threats. 

Since we have already achieved plaintext communication of OPC UA PubSub, we plan 
to implement encrypted data via the unidirectional data diode on the basis of this design. 
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Abstract 

In industrial control systems (ICSs) used in critical infrastructure (CI) such as substations 

and chemical plants, measures are needed to prevent serious physical damage caused by 

cyber attacks. This is because high volume simultaneous cyber attacks on CI may lead to 

complete system malfunction and a chain of serious accidents. For example, if a large-

scale power outage occurs due to an accident at a substation, it may affect other CI such 

as transportation facilities and hospitals. In this paper, we propose a new dynamic zoning 

method for making system functions redundant and connecting communication paths 

between functions only when communication is required. 

Keywords: Dynamic Zoning; Safety and Security; Device Authentication. 

1. Introduction 

The number of reports of cyber incidents related to ICSs used in electric power plants and 

chemical plants has been increasing in recent years (NCCIC, 2016) (Symantec, 2019). 

The purpose and target of cyber attacks are also changing to geopolitical ones (such as 

political use, a religious issue or terrorism) (Kaspersky, 2019). A different approach is 

needed because control systems differ in the assets and features to be protected from 

traditional information systems. In order to ensure safety, ICSs require measures to 

increase the probability that the system will move to a state without a possibility of 

physical damage, assuming that a threat that cannot be completely removed may intrude 

(Safety-II (Hollnagel, 2014)). Cyber security standards for ICSs (e.g. IEC-62443) 

recommend isolation of threats and blocking of unnecessary communication paths by 

defense in depth (DiD) using zones and conduits to improve the security of control 

systems (Knapp, 2011) (IEC62443-3-2, 2020). 

To achieve DiD for control systems, types of fixed and dynamic zoning techniques have 

been proposed (Hashimoto et al., 2013) (Morita et al., 2013) (Moritani et al., 2014). Since 

the assets to be protected in the control system change over time, it is necessary to switch 

the focus of zone on a time axis. Therefore, a dynamic zoning method has been proposed 

in which zones are dynamically switched according to the operating status of the control 

system (Machii et al., 2014) (Machii et al., 2015). In a system in which activated functions 

and assets to be protected change over time, communication between devices should be 

normally-off and connected only when necessary. 

In previous studies (Machii et al., 2014) (Machii et al., 2015), the dynamic zoning method 

was a software based method to control the logical disconnection of communication 

channels. As such, the communication channel between devices remains physically 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50244-X 
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connected, and the risk of cyber-attacks on the control system using this communication 

channel is not completely eliminated. In addition, in the communication control function, 

the code data used for authentication in device authentication when allowing 

communication between devices is usually stored and protected in a single location, and 

a single successful attack could result in the theft of the code data, which could completely 

hijack the communication control function.  

Therefore, for the ideal realization of DiD, the requirements of the communication control 

function for dynamic zoning include physical connection blocking control of 

communication paths and distributed management of authentication codes used by the 

communication control function for device authentication. 

The purpose of our study is to implement a more robust dynamic zoning system that 

detects unauthorized devices on the network and blocks communication on the network 

to protect society such as a stakeholder’s safety and company viability. We proposed a 

device authentication system that consists of multiple devices with logically independent 

communication lines (such as separate lines or an aggregation of multiple communication 

lines). By using our authentication system, when an abnormality in the system due to a 

cyber-attack is confirmed, it is possible to isolate the threat without stopping the entire 

system by physically disconnecting the power supply and communication path leading to 

the connected devices that are in an abnormal state. 

2. Device Authentication System for Dynamic Zoning 

In this section, we describe the concepts for two types of device authentication systems 

for dynamic zoning that we are currently developing. 

2.1. Device Authentication System with Authentication Switch for ICSs 

The concept of this system is shown in Figure 1. This system is a device authentication 

system using an authentication switch, which has both an authentication function to 

determine whether or not communication is possible between connected devices, and a 

communication control function to physically block or switch the connection of 

communication paths. This system consists of networks (communication lines, power 

supply lines, and authentication lines), a state control agent in MRP (Manufacturing 

 

Figure 1: Concept of Device Authentication for ICSs 
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Resource Planning), an authentication switch, and devices (a robot controller and two 

robot arms). 

The authentication code, which contains authentication information (Key) to verify 

legitimacy and routing information between connected devices to determine if they can 

connect to the network, is entered into the authentication switch. After determining the 

communication availability of the connected devices using the Key in this authentication 

code, the communication path between the devices is selected using the routing 

information.  

This authentication code can include not only spatial routing information, but also state 

information of the equipment or control system itself (System state information). By 

using the system state information, it is possible to dynamically switch the 

communication route according to the state of the equipment or the operating status of 

the factory system. 

The device authentication procedure for ICSs is as follows: 

1. The state control agent in MRP sends the authentication code to the authentication 

switch via the authentication line. 

2. The authentication switch uses the Key to authenticate the device. 

3. If the authentication is successful, the authentication switch uses the system state 

information and the routing information to determine the route between the 

connected devices by the matrix switcher. 

It is also possible to divide and manage this authentication code, and the authentication 

and routing information of the authentication switch is determined when all of the divided 

codes are collected. This segmented authentication code is stored in multiple locations 

that are spatially independent and separated from each other, and each of these locations 

is protected using different protection methods. Even if a cyber attack is successful and 

the attacker is able to steal part of the authentication code, the required attack cost is 

higher than usual because the attacker has to also successfully attack other protection 

measures that protect the split code to obtain all the segmented codes in order to 

successfully authenticate. 

2.2. Device Authentication System with Security Unit for Mobility Network Systems 

Figure 2 shows the concept of device authentication system for mobility network systems 

that manages automated guided vehicles (AGVs) and other mobility devices in a factory. 

This system authenticates devices before they are connected to the network and provides 

power and a physical connection to the network only to those devices that have 

successfully authenticated. This system is intended to be used mainly in bus-type 

networks, and since it only performs connection blocking control of communication, the 

system can be built with a simpler functional configuration than the device authentication 

system for ICSs. 

Specifically, a physical switch, called a security unit, is used to physically connect the 

network and devices only after successful authentication. This will prevent unauthorized 

devices from physically connecting to the network. This system consists of networks 

(communication lines, power supply lines, and authentication lines), security units, and 

connected devices. The security unit is a device that has physical network switches for 

communication and power supply lines and authentication function. 

Industrial Control Systems
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This system uses a Master-Slave type authentication method comprising a security unit, 

and devices are connected to the network through this security unit (Slave). The security 

unit consists of a control unit, a physical switch, and a communication modem. The 

control unit authenticates the connected devices and controls the physical switches. The 

physical switch connects the device to the communication and power supply lines of the 

network only if authentication is successful. This makes it possible to prevent 

unauthorized devices from physically connecting to the network. The communication 

modem communicates authentication information between security units via the 

authentication line. Authentication is performed via independent signal lines, which are 

different from the communication and power supply lines of the network, just like the 

device authentication system for ICSs. The device has a unique device ID that is used for 

authentication.  

Device authentication procedures using a security unit are shown in Figure 3. The 

authentication procedure is as follows: 

1. The Master sends the ID to the Slave. 

2. The Slave compares received ID with the ID held by the connected device. 

3. If the IDs match, the Slave will connect the device to the network. 

In addition to ID authentication, this system can perform cryptographic authentication 

between Slave-connected devices using a cryptographic engine, thus enhancing security 

functions through two-step authentication (Option). 

3. System Implementation and Results 

To show that our proposed dynamic zoning scheme is feasible using realistic 

implementation costs and devices available in the market, we have developed a prototype 

authentication system using a security unit that controls the connection between the CAN 

bus and the device. 

The control unit of the security unit uses an 8-bit microcontroller EFM8BB3 with an 

operating frequency of 22 MHz. The communication modem uses FSK modulation, and 

the communication speed can be switched from 4.8 kbps to 22.8 kbps. The ID of the 

device can be read out between the security unit and the device via 1-wire communication 

at 16 kbps serial communication. 

In our prototype system, we assumed that the devices will be authenticated in a harness 

network for mobility devices, and that up to 8 devices will be connected to the harness. 

 

Figure 2: Concept of Device Authentication 

for Mobility Network Systems 

 

Figure 3: Device Authentication Procedure for 

Mobility Network Systems 



Assuming that the allowable processing time of an application is 300 ms from the 

powering-on of a device to the completion of the start-up of all devices, we aimed to keep 

the authentication time of all devices in this system to within 150 ms, half of that time. 

In order to evaluate performance, we confirmed on the actual security unit that the 

authentication of multiple devices (1-3 devices) connected to the network can be 

performed successfully. In addition, we calculated the estimated authentication 

processing time for 8 devices based on the results of this actual measurement, and 

confirmed that the estimated value could meet the target. 

The evaluation included an evaluation of authentication and communication functions 

and a measurement of authentication time. We checked operation when authentication 

succeeded and when it failed in order to evaluate the authentication function. In the 

authentication time measurement evaluation, we measured the time from powering-on 

until all devices were fully booted after authentication was completed. 

Table 1 shows the evaluation results for the authentication time of the prototype system. 

Using these actual measurements, we estimated the total processing time required for 1-

to-8 authentication between Master and Slave. From this estimate, we confirmed that our 

target time can be met when the communication speed is 22.8 kbps. 

4. Discussion 

From the performance evaluation results, we have shown that it is possible to construct 

our proposed device authentication system using small and inexpensive devices. To 

further reduce the authentication time, it is effective to increase the communication speed 

in the authentication lines and to reduce the amount of communication data used for 

authentication. 

However, the device authentication system implemented this time does not use two-step 

authentication with cryptographic authentication using an optional cryptographic engine. 

Therefore, if the cryptographic strength of the cryptographic engine is high, the 

processing time of the entire device authentication will increase due to the increase in the 

processing time of the cryptographic engine. In addition, circuit size may be larger if 

tamper resistance of the cryptographic engine is included. In environments where 

communication lines are susceptible to noise, the communication method and speed may 

be limited to guarantee noise immunity of the authentication lines. 

5. Conclusions 

In this paper, we proposed a new device authentication system that decentralizes and 

manages the authentication codes used for device authentication, and controls the 

physical connection and disconnection of communication and power supply lines. We 

Table 1: Evaluation Results and Estimated Time of Device Authentication 

 
One-to-one 

(Measured value) 

One-to-eight 

(Estimated value) 

Communication speed [kbps] 19.2 4.8 9.6 19.2 22.8 

Authentication time [ms] 34.5 580.8 296.9 163.0 116.5 
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also developed a prototype and evaluated the performance of the device authentication 

system for mobility devices, and showed that our proposed method can be realized with 

realistic implementation costs and devices available in the market. We also plan to 

conduct the experiments for the device authentication system for ICSs to show that this 

system can also be realized using devices that are available in the market and have 

realistic implementation costs. 

In an always-on system, isolation of threats by dynamic zoning is an effective means 

against threats from cyber attacks. Threat isolation using dynamic zoning allows us to 

remove threats while the system is running, and at worst, safely shut down the system. 

This enables early restoration of the system, so our study on dynamic zoning 

implementation can contribute to the enhancement of resilience for business continuity. 
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Abstract 
In recent years, there has been an increase in the number of cyber-attacks targeting ICS 
(Industrial Control System), also used in the critical infrastructure that supports our 
daily lives. As a result, companies using ICS need to improve their ability to respond to 
cyber incidents to ensure business continuity. Cyber incidents at ICS require an 
enterprise-wide response, as they have a significant impact on IT system security issues, 
plant safety, and the company's business. For this company-wide response to proceed 
smoothly, it is essential to create a response plan in advance and create an environment 
that allows for an instant response when an incident occurs. Many companies do not 
have enough experience with ICS-targeted incident response to develop this plan. In this 
study, we developed an exercise to simulate an incident and improve response to a 
cyber-attack. 

Keywords: Cyber Security, Exercise, Cyber-Resilience 

1. Introduction 
Since controllers installed in a uranium enrichment plant were cyber-attacked in 
2010[1], we must recognize that cyber-attacks have become a real threat to our 
production plants. It is fresh in our memory that in May 2021, the US pipeline [2] 
interrupted its service due to a cyber-attack by ransomware. In addition, HatMan[3] has 
been reported as malware that targets "safety instrumentation systems" that protect plant 
safety. 
Until now, companies have created and operated Safety-Response Plans for safety 
incidents such as equipment failure and natural disasters on the ICS side, and Security-
Response Plans for security incidents such as information leakage on the IT side. We 
have created and implemented. The authors believe it is essential to consider and 
prepare a business continuity plan (BCP) to ensure the plant’s safety and business even 
in a cyber-attack on the ICS network. In addition, we believe that it is necessary to 
understand how cyber-attacks affect plants to consider countermeasures against cyber-
attack-targeting plants (ICS-BCP). However, many companies have experience with 
cyberattacks on IT systems, but not on OT systems. (They may be under cyber-attack 
but may not be able to detect them).  
Therefore, we need a mechanism to gain experience with ICS cyber incidents to plan 
ICS-BCP. Hence, we are developing an exercise that allows to experience a simulated 
cyber incident to solve this problem.  New exercises were developed to compensate for 
the improvements identified in other exercises designed and implemented. 
In this paper, we describe the previous and newly developed exercises. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50245-1 
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2. Exercises for improving resilience developed 
We have been developing discussion-based ICS security exercises to recognize that 
hard skills such as control equipment operation and IT forensics and soft skills such as 
organizational cooperation and information sharing are essential in dealing with cyber 
incidents. 

2.1. Type1: Roleplay based Cyber Defense Exercise [4] 

Through this exercise, it is intended that the exercise participants will be able to discuss 
and learn about communication during incidents, their roles as incident response 
commanders, and the capabilities (communication and information gathering) required 
to fulfill their roles properly. 
The field exercises simulate cyber incident management and require participants to 
respond to incidents by assessing the situation according to scenarios that play out in 
real-time. Figure 1 shows an exercise scenario as a communication path.  

 
Figure1 Type1 exercise based on emergency communication management 

This exercise is a simulation-type exercise based on a scenario that has been prepared in 
advance. Each exercise participant uses a computer in the exercise, and each is given a 
unique role in the scenario. There are two roles in the exercise: the role played by the 
exercise participants (Assigned Role) and the automatic response role (Virtual Role), 
which is the department or person in charge required to proceed with the exercise 
scenario. Each role is limited in the actions it can choose and the information it can 
know. Sharing the correct information at the right moment increases the number of 
actions available for selection.  
As a result, by simulating a real-time accident response, the exercise participants will 
understand the importance of speed in decision-making when an accident occurs and 
that decisions can only be made if the proper information is conveyed to the right 
people at the right time. 
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• In the Type 1 exercise, some participants said they understood the importance of an 
environment where communication is necessary for incident response and where rules 
can be established in advance so that actions can be taken before thinking. 

• However, in Type1 exercise, the scenario proceeds simply by the exercise participants 
deciding on their actions. As a result, the exercise participants may only enjoy the 
exercise as a game and may not achieve the meta-learning envisioned in the exercise. 

• In the Type 2 exercise, the students must imagine and respond to an incident situation 
in a plant or network based on the given conditions. Therefore, some say they could 
enhance their ability to set up temporary structures, which is necessary for formulating 
ICS-BCP. However, since this imagining is based on what the exercise participants 
have experienced so far, if they have little experience in planning the organization's 
incident response, they may not know what to do and may not be able to grasp the 
whole picture of the reaction, making the exercise less effective. 

• Furthermore, since the two types of exercise focuses on organizational coordination 
and communication in a cyber incident, there were many cases where exercise 
participants who had no experience with cyber incidents could not envision the actions 
to be taken. In this situation, the exercise participants focused on the hard skills that 
they could understand or imagine, such as checking the IT system's log or the PLC's 
logic, and sometimes failed to achieve the essence of the exercise. 

3. Card-Type Incident Response Exercise 
The authors developed an exercise based on the results of our exercises described in 
Chapter 2 that does not depend on the experience of the exercise participants, focuses 
more on communication, and allows discussion of the concept of what is needed for 
communication, inter-organizational collaboration, and planning during an incident. 
In this new exercise, participants will be given a worksheet as shown in Figure 3 and 
several cards with the actions taken on the front and the action's results on the back. 
1) Cards 
The cards are categorized into four types: action cards, situation awareness cards, 
information sharing cards, and attack cards, as shown below. 
• Action cards: 

This card is to ensure plant safety and to continue the corporate business. 
• Situation defining cards:  

This card is for recognizing the situation to select an action. 
• Information sharing cards:  

This card is for thinking about information sharing that should be done when an 
incident occurs.  

• Attack cards:  
This card is not presented during the exercise, but it is essential for the exercise's 
progress. This card needs to be aligned with the cyber kill chain. 

In addition, to measure the exercise participants' lack of knowledge and 
misunderstanding, we also prepared cards with unnecessary actions in the scenario in 
question. 
 
2) Worksheet 
As in the Type-2 circumference, the swim lane lists the departments directly or 
indirectly related to the ICS-BCP, from the person in charge of the on-site operation in 
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・ The swim lanes in the worksheet included customers, control equipment vendors, 
and government agencies, which made me realize that incident response is not only 
for internal use but also for external stakeholders. 

・ I recognized the need to review the current safety response to recover from cyber 
incidents. 

・ The response workflow could be configured with almost the same cards regardless 
of the method of cyber-attack. This fact helped me to understand the effectiveness of 
the Consequence-driven Cyber-informed Engineering proposed by INL [7]. 

・ This new exercise method can be customized by your company with little effort, 
such as changing card contents, modifying swim lanes, and adding cards. 

5. Conclusions 
In this paper, the authors have described the exercises we have developed to increase 
the pseudo experience of cyber incidents. We believe that this exercise is essential for 
companies to plan their ICS-BCP to mitigate damage and recover the current situation 
as soon as possible in the event of a cyber incident. 
In the future, we will introduce a method to make people aware of possible risks due to 
failure to act [8] to improve resiliency to cyber incidents. 
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Abstract 

Operators’ knowledge during abnormal situations that are faced in chemical process 

industries is critical to ensure safety. Operators expand their knowledge base through 

training programmes that assess their comprehension and skills using simple success 

and failure criteria, process-based measures, and operator actions. However, these 

assessment techniques often overlook factors relevant to the evaluation of their 

cognitive capabilities such as information acquisition pattern, cognitive workload and 

decision-making strategy. In this work, we present a methodology for evaluating 

operators' performance during training that blends process-based measurements with 

eye-tracking-derived cognitive behaviour. Our methodology is based on Self-

Organizing Map (SOM), an unsupervised neural network that allows optimum 

visualization of complex data. Accordingly, we trained two different SOM networks, 

one using the process data and the other using eye-tracking data to obtain information 

about operators’ performance during training. Results indicate that when operators learn 

the process dynamics, the number of neuronal clusters hit by the process as well as 

operators’ eye gaze trajectory decrease. The decrease in the number of clusters on SOM 

trained using process data indicates improved operator performance in terms of 

successful completion of the task and correct control action with appropriate magnitude. 

On the other hand, the decrease in the number of clusters hit on SOM trained using eye 

gaze data signifies that the operator attends to only a few regions on HMI that are 

critical to the current disturbance/abnormality in the process. Thus, the proposed 

methodology can be used to gauge the operators’ learning progress during training to 

understand the transition from novice to expert. 

Keywords: Operator Training, Self-Organizing Map, Eye-Tracking, Cognitive 

Behavior 

1. Introduction 

Control room operators are responsible for monitoring the state of the process and 

intervene when abnormal situations occur. This requires in-depth knowledge of the 

process dynamics, and therefore, operators' understanding of the process is crucial to 

ensure safe plant operation, higher throughput and optimal product quality. However, 

the complex automation and control techniques have made it challenging for the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50246-3 
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operators to understand causal relationships related to process behavior (Liu et al., 

2012).  

Process industries have resorted to operator training programs that aim to impart 

operators with the knowledge of process dynamics. Process industries widely use 

operator training simulators (OTS) to train operators. An OTS provides a credible 

simulation of the process along with the automation systems. Various studies have 

sought to evaluate operator performance using OTS. In these studies, the assessment of 

operators' performance is primarily based on subjective evaluation and/or process and 

operator actions. Subjective measures are based on expert's opinions and are vulnerable 

to confirmation biases (Nazir and Manca, 2015). Approaches based on process and 

action-based metrics usually rely on metrics derived from process behavior (alarm 

information, deviation of process from steady-state) and operator responses (completion 

time, sequence of actions). However, there are hardly any approaches that focus on 

understanding the cognitive workload of operators, crucial to enhancing operators' 

abilities. Further, existing studies do not focus on the evolution of the operator 

performance during training. Therefore, it is necessary to develop an approach that can: 

provide information about the evolution of operators’ performance and the cognitive 

workload of operators during training (Das et al., 2017). 

Recent advancements in sensor technology have made it possible to objectively assess 

human cognitive behavior in high-risk industries (Srinivasan et al., 2019). In our 

previous works, we have used physiological sensors like eye tracking (Das et al., 2017) 

and electroencephalography (Iqbal et al., 2020) to study the cognitive components of 

operators' performance. For instance, we found that gaze entropy can distinguish 

between expert and novice operators (Bhavsar et al., 2017). Gaze entropy quantifies the 

spatial distribution of eye gaze on the HMI. Gaze transition entropy was found to be 

lower for expert operators indicating that they attend only a few regions on Human-

Machine Interface, which are critical for dealing with process abnormality. Recently, 

Shahab et al. (2021) found that the fixation transition entropy decreases and remains at 

lower values when operators have learned to control the disturbance. This is because 

operators initially explore the state space of the process. Then, with learning, they 

understand causal relationships, which manifests in ordered eye gaze transitions 

between important regions on HMI. With the experience from our previous works, in 

this study, we propose to evaluate the evolution of operators' performance during 

training using process data, operator actions and eye-tracking data. Unlike our prior 

research in which specific regions on the HMI were pre-defined, this study employs an 

unsupervised neural network called the Self-Organizing Map (SOM) to visualize 

changes in operator performance with learning. Thus, the application of SOM can help 

eliminate human interference in operator performance analysis, and provide insights 

into human operator performance solely based on the process and eye-tracking 

information. 

2. Experimental Studies and Methodology 

The experimental study consisted of operators interacting with the Human Machine 

Interface (HMI) of an in-house chemical process simulator. The operators were asked to 

monitor the process and intervene during process abnormalities (using sliders provided 

on the HMI). Failure on the part of operators results in an automatic shutdown of the 

plant. The study lasted for 24 days, during which ten participants performed several 
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repetitions of process control tasks, henceforth called as trials. Each trial involves six 

different scenarios (disturbance rejection tasks). In total, these ten participants 

performed 81 trials for each scenario leading to a total of 486 tasks.  The reader is 

referred to Iqbal et al. (2021) for more details on the experimental protocol. We 

recorded process data, alarm information, and operator action data during all these 

trials. In addition to these measurements, we also recorded eye-gaze data obtained from 

Tobii TX 300 eye tracker, at a sampling rate of 120 Hz. 

We used Self-Organizing Map as a tool to dynamically assess the improvement in 

operators’ performance with the repetition of trials. SOM can project high-dimensional 

data to a low dimensional space and therefore can serve as a visualization tool to 

observe the changes in process and operator cognitive behavior. SOMs use an 

unsupervised learning neural network trained with a competitive learning algorithm to 

create smaller subspaces. The number of neurons selected for training SOM network is 

given by 8√𝐼, where 𝐼 is the number of samples available for training. For every sample 

input, “winning” neurons (i.e., neurons that most closely resemble the sample input) are 

identified. The winning neuron for a sample point is the one which minimizes the 

Euclidian distance between the neuron and the sample input. Neuronal weights are then 

adjusted according to the location of “winning” neuron. After several iterations of input 

data sets, similar neurons come closer to each other based on their weights. A suitable 

clustering algorithm is then applied to group the neurons into clusters. The SOM can be 

used for visualization using Unified Distance Matrix (U-matrix). U-matrix depicts the 

boundary between each pair of neurons by calculating the distance between a neuron 

and its neighbour. Similar group of neurons are indicated by “Valleys” which are 

separated by “Mountains” from dissimilar group of neurons. Interested readers are 

referred to Ng and Srinivasan (2008) for more details on the SOM implementation. We 

trained two different SOM networks, one using the process data consisting of eleven 

process variables (data set of size 30781 × 11) described as 𝑀𝑆𝑂𝑀 and the other using 

eye-tracking data consisting of eye gaze coordinates on the HMI and gaze duration 

(dataset of size 97531 × 3) described as 𝑁𝑆𝑂𝑀. The data to train SOM networks consists 

of all the available data from all the tasks (486 tasks). Next, we applied a K-means 

clustering algorithm to group similar neurons together. The neuronal clusters on 𝑀𝑆𝑂𝑀 

represent different process operating conditions while these represent different regions 

of HMI on the 𝑁𝑆𝑂𝑀.  

To assess a particular operator’s performance during a task, their process and eye gaze 

data is projected to the SOM space. The operators' performance during the task can be 

visualized by the number of neuronal clusters hit by the process and the eye gaze 

trajectory on 𝑀𝑆𝑂𝑀 and 𝑁𝑆𝑂𝑀, respectively. We hypothesize that the number of 

neuronal clusters hit by the process trajectory on 𝑀𝑆𝑂𝑀 (𝑁𝐶𝑃
) should decrease with 

repetition of trials. This is because when the operator develops an understanding of the 

process dynamics, they use the correct control strategy to deal with the process 

abnormalities. Thus, the process trajectory should end in a steady-state cluster without 

any hit on other process operating states. Hits on additional neuronal clusters indicate 

incorrect control action from the operator. Similarly, it is expected that number of 

neuronal clusters hit by the eye gaze trajectory on 𝑁𝑆𝑂𝑀 (𝑁𝐶𝐹
) should decrease owing to 

the attention to only a few regions on HMI related to the process abnormality. In 

addition to these measures, we also evaluated operators’ proactive monitoring strategy, 

crucial for enhancing operators’ ability to deal with process abnormalities. Accordingly, 

Operator Training
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we identified neuronal clusters belonging to the trend panel (area on the HMI where 

process variables trend is displayed). It is expected that the percentage hits on the 

neuronal clusters belonging to the trend panel should increase with repetition of trials. 

This indicates operators’ ability to take time-dependent information and foresee the 

direction of the process. Next, we demonstrate the applicability of the proposed 

methodology using experimental studies. 

 

Figure 1: Operators actions with alarm information during trials 2 and 8. 

3. Results and Discussion 

In this section, we demonstrate the potential of the proposed methodology in capturing 

operators’ learning progress during training using an illustrative example. Consider an 

operator who performed eight trials of a scenario involving a disturbance in the reflux 

ratio of the distillation column. The disturbance can be rectified by opening the reflux 

valve V401 (at least 53% open) provided on the HMI. Operator actions in the second 

and the last trial are shown in Fig. 1. Consider trial 2 (Fig. 1), at around 22 s, low T104, 

and low T105 alarms occur, followed by low T106 alarm in distillation column. 

Operator clicks on the tag of T105 to observe the trend of the process variable T105 and 

takes the first control action at around 28 s by manipulating V401; however, in the 

wrong direction. At around 41 s, the operator changes the direction of V401 which 

clears low T104 and low T105 alarms, but not T106, which results in automatic 

shutdown of the process. In the same trial, the operator also manipulates feed flow to 

the distillation column valve (V201) later, depicting that the operator keeps on 

exploring the possible actions which can clear the disturbance in the process. The use of 

multiple control actions indicates that the operator is unaware of the root cause of the 

disturbance. During the last trial (trial 8), as shown in Fig. 1, the operator manipulates 

the valve V401 by watching T105 (as shown in Fig. 1 by clicking on T105 which opens 

its trend) and able to clear all the alarms in the process. The manipulation of the valve 

V401 was very precise, and the participant increased slider opening to a maximum of 3 

% during each manipulation, unlike trial 2 where the operator manipulates the slider 

abruptly (25% increase within short interval of time). The smooth movement of the 

valve in the eighth trial is an indication that the operator now understands the time 

constant of the process variables. Thus, with the repetition of trials, the operator learns 

the root cause of the disturbance along with appropriate amount of manipulation 

required.  

M. A. Shahab et al. 



 
Figure 2: Process trajectory represented on SOM space during (a) Second trial (b) 

Eighth trial. Cluster hits are depicted by circles. 

The process behavior and operator’s eye gaze behaviour for the second and eighth trials 

are depicted in the SOM space in Fig. 2 and Fig. 3. During these trials, the process 

behavior and effect of control actions on the process can be observed by hits of process 

trajectory on neuronal clusters. The hits of the process trajectory on the neuronal 

clusters on 𝑀𝑆𝑂𝑀  during the second and the eighth trial is shown in Fig. 2 (a) and Fig. 2 

(b) respectively, using circles on the clusters. Rectangles on the neuronal cluster 

represent the end of the process trajectory. During trial 1, it can be observed that the 

operator’s poor control action strategy leads the process to cluster 23 and 18 and further 

ends the process in cluster 1 (as depicted by a rectangle in Fig. 2 (a)). The total number 

of cluster hits by the process trajectory (𝑁𝐶𝑃
) during the second trial is 11. However, 

from Fig. 2 (b), it can be observed that in the eighth trial, the 𝑁𝐶𝑃
 decreases to 8, and the 

process trajectory ends in cluster 6 (steady state cluster). This indicates improved 

operator performance in terms of successful completion of the task and correct control 

action with appropriate magnitude. Fig. 3 shows operator’s eye gaze behavior projected 

to SOM space during the second and eighth trials. It can be observed that the number of 

clusters hits by the operator’s eye gaze trajectory (𝑁𝐶𝐹
) decreases to 7 in the last trial as 

compared to the first trial. This signifies that the operator has oriented their eye gaze 

pattern as per the demands of the task and directed their attention to critical information 

sources related to the process abnormality. The percentage of hits on neuronal clusters 

belonging to the trend panel cluster (clusters 4, 5 and 7) also increases from 40% in the 

second trial to 54 % in the last trial. This indicates operator develops a proactive 

monitoring strategy with learning. Thus, the proposed SOM based operator performance 

assessment methodology can act as a powerful technique to evaluate the effectiveness of 

operator training programs.  

 
Figure 3: Operator’s eye gaze trajectory represented on SOM space during (a) Second 

trial (b) Last trial. Clusters hits are represented by red circles. 
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4. Conclusions 

The present work proposes an integrated process-based and operator cognitive behavior 

based methodology to assess operators’ performance during training. The approach uses 

eye-tracking to obtain a trace of attention allocation of operators on the HMI. Self-

Organizing Map is used to analyze the process and eye-tracking data. The evolution of 

cluster hits by the process, and the eye gaze trajectory on SOM can be used to track the 

learning progress of operators. When the operators develop correct understanding of the 

process dynamics, the number of clusters hit by process trajectory (𝑁𝐶𝑃
) and eye gaze 

trajectory decreases. This reflects the development of correct process comprehension 

and eye gaze orientation in accordance with task demands. Further, our methodology 

also evaluates operators’ proactive monitoring strategy indicated by the percentage of 

hits by the eye gaze trajectory on the neuronal cluster belonging to trend panel. Our 

future work is intended to develop an expert operators’ model using cognitive markers 

so as to use that as a benchmark to evaluate the performance of novice operators. The 

expert model can also be used to transfer knowledge to novices, thus reducing the time 

of training programs. Finally, a SOM can be trained using multivariate data from 

several physiological sensors to get deeper insights into the cognitive behavior 

underlying operators’ expertise level. 
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Abstract 

The digital twin which supports data-based decision making, optimization, control and 

anomaly detection and diagnosis, can contribute to the improvement of sustainability, 

agility and productivity in water electrolysis system, which is expected to provide to 

reduce green hydrogen production cost. In this study, we propose a digital twin for a 

500kW alkaline water electrolysis (AWE) to be built at the Saemangeum Renewable 

Energy National Demonstration Complex in Korea to reduce green hydrogen production 

cost through optimal operation of AWE system. A simulation model, which is the basis 

of the digital twin, was developed with Python and gPROMS, and the system efficiency 

of the AWE process according to pressure was analyzed comparing between excluding 

the compression process and including the process of hydrogen compression to 200 bar. 

The optimum operating pressure with the compression showed at 10-30 bar. At high 

pressure, process equipment cost becomes higher, therefore, it is essential to consider 

hydrogen compression to the storage pressure in order to decide the optimal operating 

conditions. 

Keywords: Alkaline water electrolysis, digital twin, optimal operating conditions. 

1. Introduction 

As the spread of renewables, it is required to increase the storage capacity of surplus 

energy due to intermittent characteristics, and a technology with low energy loss and high 

efficiency in the storage is required. Green hydrogen (by P2G) is an important eco-

friendly energy source for storing surplus energy. However, its production cost is about 

five times higher than hydrogen produced by other methods (natural gas reforming), and 

alkaline water electrolysis (AWE) systems which have the highest technological maturity 

still have high hydrogen production costs. 

Many researchers have interest of methods for reducing green hydrogen production cost 

included scale-up of water electrolysis system, development of high-efficiency electrode 

or separator material, and operation optimization. Ulleberg (2003) developed a 

mathematical model of an AWE system and demonstrated it for the photovoltaic-

hydrogen energy plant in Julich, and Jang (2021a) proposed high-pressure operation to 

reduce the energy consumption of the process because hydrogen produced from the AWE 

system is compressed to high pressure for storage. Energy consumption and efficiency 

were analyzed through a model developed by Aspen Plus. Then, Jang (2021b) tried to 

optimize the operating conditions by analyzing the effect of temperature on the system 

using the developed Aspen Plus model. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50247-5 



1484  Y. Shin et al. 

In this study, we propose a digital twin that integrates functions, water electrolysis process 

simulation, control, monitoring, optimization, to reduce green hydrogen production cost. 

A digital twin will be built for a 500kW AWE to be built at the Renewable Energy 

National Demonstration Complex in Saemangeum, Korea.  

In this study, a simulation model, which is the basis of the digital twin, was developed in 

Python and gPROMS, and the system efficiency of the AWE process according to 

pressure was analyzed. For the simulation, gPROMS' gML Process and Electrochemical 

Cell Reactor (ECR) module are used, but the ECR module does not reflect the 

characteristics of the liquid electrolyte of the AWE, so the cell model in Python is 

developed. The process simulation model is proposed using custom modeling template 

of gPROMS to apply the AWE cell model. The process of compression to 200 bar, the 

load pressure of the trailer truck, is considered as a part of the water electrolysis system. 

To analyze the impact of the compression to the system efficiency, the optimal operating 

conditions of the AWE system are compared with the results of excluding compression. 

2. Alkaline Water Electrolysis System 
Figure 1 is a process diagram of an alkaline water electrolysis system for green hydrogen 

production. The alkaline water electrolysis system consists of a water electrolysis stack, 

gas/liquid separator, condenser, heater, pump, and compressor. Oxygen is generated at 

the anode, hydrogen is generated at the cathode, and the amount of water consumed to 

maintain the electrolyte concentration is supplied to the separator on cathode side. The 

generated gas is separated through a gas/liquid separator, and water is removed in the 

condenser. The hydrogen produced is then compressed to a pressure of 200 bar for loading 

into a trailer truck. 

3. Model Description 
3.1. AWE cell model in Python 

The electrochemical reaction module of gPROMS, ECR, does not reflect the effects of 

liquid electrolytes, such as the bubble effect of AWE systems. An AWE cell model to 

apply in gPROMS is required, cell modeling is performed using Python. 

 

Figure 1. Diagram of the AWE system including the compressor 



Digital Twin of Alkaline Water Electrolysis Systems for Green Hydrogen 

Production  
1485

 

3.1.1. Reversible voltage 

Water electrolysis is a non-spontaneous reaction and requires the supply of electrical 

energy. The reversible voltage, which is the theoretical electrical energy required for the 

electrolysis of water, can be calculated by the Nernst equation, and is as follows: 

𝑉𝑟𝑒𝑣 = 𝑉𝑟𝑒𝑣
° +

𝑅𝑇

2𝐹
ln⁡(

(𝑃−𝑃𝐻2𝑂)
1.5𝑃𝐻2𝑂

∗

𝑃𝐻2𝑂
)            (2) 

where 𝑉𝑟𝑒𝑣
°  is the reversible voltage at the standard conditions, 𝑃𝐻2𝑂 is the vapor pressure 

of the KOH solution, 𝑃𝐻2𝑂
∗  is the vapor pressure of pure water, 𝑃, 𝑇, 𝑅, 𝑎𝑛𝑑⁡𝐹  are the 

operating pressure, temperature, gas constant, and Faraday constant. 

The first term represents reversible voltage at the standard conditions can be expressed as 

temperature (Hammoudi, 2012): 

𝑉𝑟𝑒𝑣,𝑇
° = 1.50342 − 9.956 × 10−4𝑇 + 2.5 × 10−7𝑇2            (3) 

where 𝑇 is the operating temperature, m is the molar concentration, w is the w weight 

percent concentration of KOH solution. 

3.1.2. Activation overvoltage 

For the water electrolysis reaction of an actual alkaline water electrolysis cell, electrical 

energy above the reversible voltage is required due to resistance, and it can be expressed 

as follows: 

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑟𝑒𝑣 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚                                (4) 

where 𝑉𝑎𝑐𝑡  is the activation overvoltage, 𝑉𝑜ℎ𝑚 is the ohmic overvoltage. 

Activation overvoltage the energy loss due to the decrease of the electrochemical reaction 

rate at the anode and cathode, which can be expressed by the Butler-Volmer equation: 

𝑉𝑎𝑐𝑡 =
𝑅𝑇

𝑧𝐹𝛼𝑎𝑛
ln (

𝑖

𝑖𝑜,𝑎𝑛
) +

𝑅𝑇

𝑧𝐹𝛼𝑐𝑎
ln (

𝑖

𝑖𝑜,𝑐𝑎
)                     (5) 

where 𝛼  is the charge transfer coefficients, 𝑖  is the current density (A/cm2), 𝑖0  is the 

exchange current density. 

When hydrogen and oxygen gases are generated, the effect of gas bubble coverage in the 

liquid electrolyte can be expressed in terms of temperature and pressure as follows (Jang, 

2021a): 

𝜃 = 0.23(𝑖)0.3(
𝑇

𝑇𝑟𝑒𝑓

𝑃𝑟𝑒𝑓

𝑃
)
2

3               (6) 

Activation overvoltage can be calculated by applying the bubble coverage coefficient of 

Eq.(6) to Eq.(5). 

3.1.3.  Ohmic overvoltage 

Ohmic overvoltage is energy loss due to resistance and can be expressed through Ohm's 

law as follows (Jang, 2021a): 

𝑉𝑜ℎ𝑚 = 𝐼 × (𝑅𝑐𝑎 + 𝑅𝑎𝑛 + 𝑅𝐾𝑂𝐻 + 𝑅𝑆𝑒𝑝)                   (7) 
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where 𝐼 is the current of the electrolysis, 𝑅𝑐𝑎 , 𝑅𝑎𝑛, 𝑅𝐾𝑂𝐻 , 𝑅𝑆𝑒𝑝 are the resistance of the 

cathode, anode, KOH solution, and separator. 

The electrode resistance and electrolyte resistance are calculated based on the 

conductivity. 

3.1.4. Hydrogen production rate 

Hydrogen production can be expressed as follows: 

𝑛𝐻2̇ = 𝜂
𝐼

𝑧𝐹
𝑁𝑐𝑒𝑙𝑙                (8) 

where 𝜂 is the Faraday efficiency, 𝑧 is the number of electrons transferred per reaction 

(z=2), 𝑁𝑐𝑒𝑙𝑙  is the number of cells in the stack. 

3.2. AWE system modelling in gPROMS 

The AWE cell model is integrated into the ECR module of gPROMS using a custom 

model template, and a simulation of the AWE system is constructed using the gML 

Process module. The energy consumption, stack power and balance of plant (BOP), of 

the AWE system is: 

𝑊𝑆𝑦𝑠𝑡𝑒𝑚 = 𝑊𝑆𝑡𝑎𝑐𝑘 +𝑊𝐻𝑒𝑎𝑡𝑒𝑟_𝑎𝑛 +𝑊𝐻𝑒𝑎𝑡𝑒𝑟_𝑐𝑎 +𝑊𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟_𝑂2 +𝑊𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟_𝐻2 +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑊𝑝𝑢𝑚𝑝_𝑎𝑛 +𝑊𝑝𝑢𝑚𝑝_𝑐𝑎 +𝑊𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟           (9) 

 

Figure 3. Power and hydrogen production efficiency without compression 

 

 

Figure 2. Model validation results by cell voltage 

 



4. Simulation Results 

4.1. Model validation 

The developed model was verified through cell voltage according to current density for 

AWE cells developed by Korea Institute of Energy Research (KIER), Figure 2 is the 

results of model validation. The Python-based cell model showed high accuracy 

(R2=0.813). gPROMS utilized the cell model also indicated high accuracy (R2=0.8), and 

revealed an R-squared of 0.985 at a current density of 0.2-0.6 A/cm2. 

4.2. AWE system simulation 

Assuming that the hydrogen produced from the AWE system is compressed to 200 bar, 3 

current densities (0.2, 0.4, 0.6 A/cm2), 3 temperatures (40, 60, 80 ℃), 6 pressures (1, 5, 

10, 30, 60, 100 bar), a total of 54 cases were simulated. 

4.2.1. Without compressor power 

Figure 3 shows the total power consumption and hydrogen production efficiency when 

the compression process of produced hydrogen is not considered. At 0.2, 0.4 A/cm2, as 

the pressure increases, the power consumption increases and the hydrogen production 

efficiency decreases. At 0.6 A/cm2, when the pressure increases from 1 bar to 5 bar, the 

power consumption decreases, which is a phenomenon that temporarily decreases 

because the decrease effect of the bubble effect is greater than the increase of the 

reversible voltage caused by the increase in pressure. 

Table 1. Stack, total BOP, compressor, and total power consumption at 0.6 A/cm2, 80℃ 

Pressure 

[bar] 

Stack 

Power 
[kW] 

Total BOP 

[kW] 

Comp. 

Power 
[kW] 

Total 

Power 
[kW] 

Hydrogen 

Production 
[mol/h] 

Hydrogen 

Production 
per kW 

1 7.893 0.470 1.892 10.255 80.493 7.849 

5 7.879 0.422 0.900 9.201 80.043 8.700 

10 7.934 0.418 0.619 8.971 79.482 8.860 
30 8.016 0.414 0.289 8.719 77.262 8.861 

60 8.067 0.412 0.157 8.636 74.001 8.569 

100 8.105 0.408 0.077 8.591 69.775 8.122 

 

 

Figure 4. Power and hydrogen production efficiency with compression 
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4.2.2. With compressor power 

Figure 4 indicates the total power consumption and hydrogen production efficiency with 

the compression power consumption. In all cases, at the higher pressure, the lower power 

consumption is indicated because the power consumption for compression up to 200 bar 

occupies a high proportion in the total power. The hydrogen production per kW of energy 

consumption presented optimal values at 10 to 30 bar, as shown in Table 1. Compared 

with the case with no compression at design condition (0.6 A/cm2, 80 °C), the optimum 

operating pressure is increased by 6 times from 5 bar to 30 bar. 

5. Conclusions 

The digital twin supports data-based decision making, optimization, control, and anomaly 

detection and diagnosis, so it will contribute to the improvement of sustainability, agility 

and productivity in chemical plant. In this study, a AWE simulation model was developed 

using Python and gPROMS, which is basis of the development of digital twin, it is 

expected to improve the productivity of the AWE system resulting in reducing green 

hydrogen production cost. 

The effect of pressure on the performance was evaluated by the developed model. The 

optimal operating conditions of the AWE system were compared between excluding the 

compression and including the compression to 200 bar to analyze the impact of the 

compression process. When excluding the process of compression, it showed the optimal 

operating pressure range of 1 to 5 bar, and including compression demonstrated the 

optimal range of 10 to 30 bar. However, process equipment cost becomes higher at high 

pressure, therefore, it is essential to consider hydrogen compression to the storage 

pressure, including the equipment cost, in order to decide the optimal operating conditions. 
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Abstract 
OPC Unified Architecture (OPC UA) is a new OPC standard that is the successor of OPC 
Classic, and it has various security features. Generally, OPC UA is considered to be 
secure, but if it is not appropriately implemented or configured, there might be cyber 
risks. In this research, evaluate the cyber risks of OPC UA using several OPC UA 
products. We focus on security features of OPC UA: application authentication, user 
Authentication, encryption, and signing. We will show the evaluation result under each 
typical security configuration in several OPC UA products, then introduce points of 
attention for OPC UA security configurations and operations based on the evaluation 
result. Cyber risks and corresponding measures described in this research should be 
conscious by OPC UA product venders, system integrators and operators of Industrial 
Control System. 

Keywords: OPC UA, Cyber security, Penetration test, Operational Technology 

1. Introduction 
OLE 1  for Process Control (OPC) 2  is the interoperability standard for reliable data 
exchange in industrial automation. It ensures the seamless flow of information among 
devices from multiple vendors. OPC Classic (OPA Data Access) is a legacy OPC 
standard, and its security has been under discussion.  Although a new OPC standard OPC 
Unified Architecture (OPC UA) was released in 2016, OPC Classic is still widely used. 

OPC UA is a recommended communication standard in Reference Architecture Model 
Industrie 4.0 (RAMI4.0)3, and all devices will be connected through OPC UA. Since OPC 
UA has many security features, it is recommended to migrate to OPC UA as early as 
possible. However, since OPC UA has also potential security risks if it is not 
appropriately configured and operated, recognizing security risks and corresponding 
measure of OPC UA are very important. In this research, we introduce the flexibility of 
OPC UA security settings and cyber risks in aspects of operation under each security 
setting. We prove cyber risks through penetration tests against several OPC UA 

 
1 Object Linking and Embedding: A technology that allows embedding and linking to documents and other 
objects, developed by Microsoft 
2 OLE for Process Control: A set of standards developed by a joint collaboration of leading automation 
industry suppliers 
3 A three-dimensional consolidation of the most important aspects of Industrie 4.0, ensuring that all 
participants in Industrie 4.0 share a common perspective and build a common understanding 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50248-7 
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commercial products, then propose recommended OPC UA security configurations and 
operations. We focus on the following security features of OPC UA. 

-Application authentication: Authentication of OPC UA client application using 
application certificates 

-User Authentication: Authentication of users of OPC UA clients using passwords or user 
certificates 

-Encryption and signing of OPC UA communication 

 

2. Related Research 
R. Huang et al. (2010) discussed OPC UA system security issues from the views of the 
OPC UA application environment and OPC UA communication security. L. Roepert et 
al. (2020) discuss methods to discover OPC UA servers, test their authentication, obtain 
their configuration, and check for vulnerabilities. Both R. Huang et al. (2010) and L. 
Roepert et al. (2020) did not focus on cyber risks and potential attack scenarios. J. Polge, 
et al. (2019) identified the threats and countermeasures that may occur/be applied when 
using OPC-UA and proved the impact of the eavesdropping and message flooding attacks 
on an OPC-UA application using a real testbed. However, they evaluated an encryption 
suite that has average security strength. W. Matsuda et al. (2021) proved cyber risks of 
OPC UA using the strong encryption suite, but they evaluated only one product, detailed 
consideration on the result is not conducted. For the above reasons, we evaluate the cyber 
risks of OPC UA including strong security features through penetration tests using several 
OPC UA products and discuss the result. 

 

3. Proposed approach 
We evaluate the security features (authentication and encryption) of OPC UA through 
penetration tests using several OPC UA products and introduce security practices based 
on the test result.  

 

3.1. Attack scenarios 

The purpose of the attack scenario is to prove the cyber risks of attacks inappropriate 
implementation of OPC UA. We assume that the pentesters have been intruded into the 
legitimate OPC UA client PC and started attacks from the legitimate OPC UA client PC 
assuming that the PC had been infected with the malware. We make the hypothesis that 
if security configurations of OPC UA are not appropriately implemented, there could be 
the following security risks. 

1. Unauthorized connection: If attackers can get information to connect OPC 
Server, they could connect to the OPC Server from an unauthorized client. 

2. The decryption of OPC UA message: Forward security is a feature of specific 
key agreement protocols that gives assurances that session keys will not be 
compromised even if long-term secrets used in the session key exchange are 
compromised. According to W. Matsuda et al. (2021) OPC UA specification 
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does not refer to forward security. Therefore, if attackers could steal secret keys 
for OPC UA, they could decrypt the encrypted communication of OPC UA. 

 
3.2. Evaluation environment 

Table 1 shows the evaluation target OPC UA products, and Table 2 shows used tools for 
evaluation. For security and privacy reasons, we do not describe each product name and 
vendor used in the evaluation. Table 3 and Table 4 show evaluation target OPC UA 
security features. 

Table 1 OPC UA server products for evaluation 

Product Product usage 

A PLC with OPC UA server unit 

B OPC server software including OPC UA server 

C An industrial middleware including OPC UA server 

 
Table 2 Tools used for evaluation 

Product name Description Purpose 

UaExpert Free OPC UA client 
application 

For legitimate OPC UA client 

Python OPC-
UA 

Open source OPC UA server 
and client application 

For malicious OPC UA client (attacker) 

Wireshark Network protocol analyser For snooping communications 

 

Table 3 Security Mode of OPC UA 

Mode name Description 

None Setting which does not need any message signature and encryption 

Sign *1 Setting which generates message signature using the private key of 
senders 

Sign & Encrypt *1 Setting which generates message signature using the private key of 
senders, and encrypts messages using the private key of receivers 

*1: We evaluate a strongest policy, "Basic256Sha256”. 

 

Table 4 User authentication type of OPC UA 

Setting Description 

Anonymous Setting which does not need any user authentication 

ID and password (ID / pass) Setting which authenticates the client using the password 

User certificate Setting which authenticates client using user certificate 

Cyber Security Risks of aspects of operations of OPC Unified Architecture
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 4. Evaluation Result 
4.1. Unauthorised connection to OPC UA server 

Table 5 shows the result of the unauthorized connection to the OPC UA Server for each 
security setting condition. Without depending on products, it was possible to connect 
OPC servers from computers and applications that are not used in legitimate operations 
if attackers were able to get the necessary information. After the successful unauthorized 
connection, pentesters succeeded to read and changing each parameter value of the OPC 
servers. 

Table 5 Result of unauthorized connection to OPC UA servers 

OPC UA server setting Conditions for success of attack Encryption 

Security 
mode 

User 
authentication 

Client private key 
& certificate 

Client credential  

None Anonymous Unnecessary Unnecessary No 

ID / pass Unnecessary Mandatory (ID / pass) No 

User certificate*2 Unnecessary Mandatory 

(User certificate) 

No 

Sign Anonymous Mandatory Unnecessary No 

Sign& 

Encrypt 

Anonymous Mandatory Unnecessary Yes 

ID / pass Mandatory Mandatory (ID / pass) Yes 

User certificate Mandatory Mandatory 

(User certificate) 

Yes 

*2: Evaluated only for 1 product that supports user certificate. 

The followings are discussions on the result. 

- When security mode is None and Anonymous is allowed, pentesters can connect to the 
OPC server without any condition. 

-If user authentication is enabled, pentesters need a legitimate user ID and password or 
certificate. Note that user ID is sent in plain text when the security mode is None, and 
some products do not support user certificates. 

When security mode is "Sign" or "Sign&Encrypt", pentesters need the application 
certificate and corresponding private key of the legitimate OPC UA client. Note that 
communication is not encrypted when the security mode is "Sign". 

- Application certificates and corresponding private keys are located in the installation 
directory of the OPC UA client application. Thus, pentesters who intruded into the OPC 
UA client computers could easily obtain them. 
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4.2. Decryption of OPC UA message 

Table 6 shows the result of the decryption of the OPC UA message. Without depending 
on products, it was possible to decrypt OPC UA messages if attackers were able to get 
the client's and server's private keys. After the success of decryption and decoding, 
pentesters succeeded to extract the parameter values and node IDs of the OPC servers. 

Table 6 Result of decryption of OPC UA message 

OPC UA server setting Conditions for success of attack Decryption 

Security 
mode 

User 
authentication 

Client 
private key 

Server 
private key 

Client 
credential 

Sign& 

Encrypt 

Anonymous Mandatory Mandatory Unnecessary Success 

ID / pass Mandatory Mandatory Unnecessary Success 

 

The followings are the decryption procedures. 

1. Snoop communications between OPC UA clients and servers. 

2. Stole OPC server private keys stored in the products installation directory. 

3. Stole OPC client private keys stored in the legitimate OPC UA client PCs. 

4. Extract and decrypt clients' and servers' nonce from snooped messages. nonces 
are included in the Open Secure Channel request and response, and they were 
encrypted by the server's / client's secret keys. 

5. Make symmetric keys from clients' and servers' nonce. 

6. Decrypt OPC UA Secure Conversation messages using the symmetric keys. 

7. Decode parameter values from decrypted messages. 

The followings are discussions on the result. 

If attackers can obtain secret keys of the OPC UA server and client, they could decrypt 
OPC UA messages. However, since the message is encoded, attackers should get 
information about the OPC UA message structures and decode data. 

 

5. Recommendation for secure practice using OPC UA 
This section describes OPC UA security practices based on the evaluation result. 

- Set Security Mode to Sign & Encrypt to enable digital signature and encryption for OPC 
UA messages. "Sign" reduces the risk of unauthorized connection but note that 
communication is not encrypted.  

-Even if the OPC server does not configure with "Sign and encrypt", it might be possible 
to encrypt messages if the client connects with "Sign and encrypt" in some products. 

- Disable anonymous access and enable user authentication for OPC UA. Then use 
supported user authentication methods (ID and password, certificate, etc.) The ID and 
password, user certificate should be managed in a secure way. 
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-  Many OPC UA applications provide functions to export private keys and certificates 
and change the security level of the OPC UA. Thus, access control or authentication of 
OPC UA applications and configuration tools of OPC UA should be enabled to prevent 
attackers to steal sensitive information or changing security configuration maliciously.  

- Manage private keys and certificates of both OPC UA servers and clients in a secure 
way. For instance, private keys should be protected with passwords. OPC server and 
client application vendors should support private keys protected by passwords. 

 If disclosure of private keys is suspected, security risks can be reduced by invalidating 
the corresponding certificate in OPC UA client and server applications. 

 - When the OPC UA server and client firstly communicate, operators should carefully 
confirm each certificate is issued by a trusted host. That is because once certificates are 
trusted, they are used until certificates are regenerated or revoked. Some OPC UA 
products provide options to skip the verification or automatic acceptance of certificates, 
but they should not be enabled. 

- The cipher suites for signature and encryption depend on security policy. Use the 
recommended security policy in the OPC UA specification. 

-  Many OPC UA applications store certificates and private keys as files without 
protection. Thus, computers that run OPC UA servers and clients should be protected in 
OS level and network-level security in addition to the application security. 

 

6. Conclusions 
In this paper, we evaluated the cyber risks of OPC UA through penetration tests against 
several OPC UA products. OPC UA is useful for improving security, but there could be 
cyber risks if security features are not configured appropriately. We introduced the 
security practice in aspects of operations of OPC UA based on the penetration test result. 
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Abstract 

Robotic platforms can gather informative data sets to accomplish different modeling or 

optimization goals for bioprocess development by resorting to on-line redesign of 

multiple parallel experiments. For reproducible data analysis is key to formally represent 

and manage experimental-computational workflows in high-throughput experimentation 

by enforcing FAIR principles. To represent workflows of a robotic platform, directed 

acyclic graphs (or DAGs) are proposed. Computational implementation of DAGs using 

open-source software (Apache Airflow) not only helps FAIRizing data and experimental 

protocols but also obliges making explicit all methods, models, assumptions and 

hyperparameters used to carry out modeling and optimization tasks. Model-based 

productivity optimization of a bioprocess based on data from nine fed-batch parallel 

cultivations is used as an example. Data generated in the parallel experiments are first 

used to re-estimate online the model parameters and the updated model is used to optimize 

the feeding profile. Managing experimental-computational workflows as DAGs in the 

Airflow ecosystem using containers is key to foster the use of FAIR principles in 

modeling and optimization, and to facilitate access/reuse of costly experimental data. 

Keywords: bioprocess development, FAIR principles, high-throughput experimentation, 

online experimental redesign, workflow automation. 

1. Introduction 

Reproducible results are key to compare computational methods and validate 

experimentally solutions found and their related models. However, in the recent survey 

work of Baker (2016) it was revealed that more than 70% of researchers have been 

unsuccessful in reproducing the outcomes of research experiments made by others and 

more than 50% cannot reproduce solutions and data obtained by their own research 

studies. For reproducible bioprocess development, experimental data used for predicting 

the dynamic behaviour of genetically modified microorganism and the effect of different 

combinations of process parameters on the productivity levels must be obtained using 

FAIR principles (Celebi et al., 2021). To this aim, these principles must be accounted for 

in the specification of all protocols and workflows used to generate data sets for different 

modeling or optimization goals by resorting to on-line (re)design of parallel experiments 

(Haby et al., 2019). This work deals with FAIRizing experimental workflows involving 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50249-9 
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tasks such as feeding, sampling, at-line analytical processing, etc., which generates data. 

These workflows are intertwined with data processing pipelines for (re)estimating model 

parameters, experimental execution monitoring and on-line redesign which must also be 

FAIR. For widespread usage of FAIR principles in bioprocess development, 

experimental-computational workflows are represented here as directed acyclic graphs 

(DAGs) that make experimental protocols reproducible within the Apache Airflow 

environment (Harenslak and de Ruiter, 2021) using software containers (Dockers) that 

foster portability and reusability of data, methods and experimental protocols. 

2. Experimental-computational Workflows 

The FAIR principles (Wilkinson et al., 2016), describe a set of requirements for data 

management and stewardship to make research data Findable, Accessible, Interoperable, 

and Reusable. The FAIR principles are a set of guidelines that aim to maximize the value 

and usefulness of experimental data and highlight the importance of making experimental 

protocols and workflows digital objects findable and reusable by others. To this aim, the 

combination of DAGs with a Common Workflow Language in the Apache Airflow 

ecosystem is an appealing alternative for introducing FAIR principles in high-throughput 

experimentation facilities for bioprocess development.  

Experimental-computational workflows describe the complex multi-step methods that are 

used for experimental design, data sampling, data preparation, model building, and active 

learning that led to new data products with maximum information content. Thus, this type 

of workflows describes a process (a set of activities) for computational or physical tasks, 

where different parts of the process (the tasks) are interdependent, e.g., a task can start 

processing after its predecessors have been (partially) completed and where data flows 

between tasks define the synchronization constraints. In robotic platforms for high-

throughput experimentation, experimental protocols (feeding, sampling, at-line sample 

processing, etc.) which generates data are intertwined with computational tasks involving 

update of model parameters using new data and online redesign of the parallel 

asynchronous experiments to make the resulting data more informative for a given 

purpose, such as productivity optimization, strain screening or model selection. 

In Fig. 1, an abstract DAG for parallel experimentation in a robotic platform involving 

several mini bioreactors (MBRs) arranged as subsets (columns) is shown. Cultivations 

can run asynchronously, but sampling must comply with some precedence constraints 

due to robot operation limitations. Also, for model update and online redesign data from 

samples for all MBRs or a group thereof must be known (a synchronization constraint). 

Depending on the robotic facility, the overall experiment structure can be represented at 

different abstraction levels using DAGs that account, to the desired level of detail, for all 

precedence and synchronization constraints between macro-tasks such as sample 

collection or liquid handling blocks at a more abstract level. Each macro-task is also 

internally described by a DAG where simple tasks are related to liquid handling for 

substrate/medium feeding or pH/Dissolved Oxygen Tension (DOT) control (see Haby et 

al., 2019, for details). 

To guarantee FAIR data and experimental-computational workflows, a shared database 

is proposed for interfacing a computational pipeline that manages the parallel experiments 

in the robotic platform (bottom) with a pipeline of physical macro-tasks for sample 

collection and liquid handling (top) as it is show in the DAG of Fig. 2. Once the dummy 

node “Start” triggers both “parallel cultivations” and “experiment execution” nodes, the 
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sampling times are calculated in the “Get Sample” node, which in turn triggers the 

execution of both the “sample collection” node and the sensing node “Get Sample 

Results”. Once samples taken have been analysed, resulting experimental data as well as 

experimental design parameters related to sampling times and liquid handling tasks are 

saved in a local database. As soon as sampled data can be retrieved from the shared 

database, the “Parameter Update” node is executed followed by the node “Online 

Redesign,” which in turn triggers the “Liquid Handling” macro-task that executes liquid 

handling tasks as a macro-action or block until the next change to the experimental 

planned tasks in the remaining part of the experiment based on new data. 

    

 

Fig. 1. Simple DAG to represent macro-tasks precedence/synchronization constraints 

 

Fig. 2. An abstract DAG that integrates experimental and computational pipelines 

3. Case study 

To illustrate the advantages of the proposed approach, a simple robotic platform made up 

of nine MBRs involving the fed-batch cultivations of a microorganism are simulated 

using the pyFOOMB package (Hemmerich et al., 2021). More specifically, the Example 

7 in the repository at https://github.com/MicroPhen/pyFOOMB will be used. As there 

exist uncertainty in the value of two model parameters 𝜇𝑚𝑎𝑥  and 𝑌𝑃/𝑋, the objective is to 

generate data which is maximally informative to define an optimal exponential feeding 

profile of the substrate S which is parameterized by tF and Set as follows:  

𝐹 = {

0                                                                𝑡 < 𝑡𝐹 ∧ 𝑉𝐿 > 𝑉𝐿,𝑚𝑎𝑥

𝑐𝑠,0 . 𝑉𝐿,0. 𝜇𝑠𝑒𝑡

𝑐𝑆,𝐹 − 𝑐𝑠

 . 𝑒𝜇𝑠𝑒𝑡(𝑡−𝑡𝐹)                                                   𝑡 ≥ 𝑡𝐹
 (1) 

Thus, there is an initial batch phase until tF which is followed by a fed-batch mode of 

operation where the substrate exponential feeding rate is defined by Set. The 

using Directed Acyclic Graphs
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concentration parameters in Eq. (1) are related to the initial, in the feed stream and current 

substrate concentrations, respectively, whose values are assumed constant as well as the 

initial volume of each bioreactor. The model parameters for the in-silico simulator used 

for generating sampled data are given in Table 1. Also, in Table 1 are the assumed a priori 

values for model parameters before collecting any new data in the simulated parallel 

experiments. The goal of the experimental design is to generate data to estimate the 

optimal feeding profile for maximizing the final concentration of the product once the 

maximum volume is reached. Initial conditions are chosen the same for all MBRs as 

follows: X(biomass)=0.1 g/L, S(substrate)=40 g/L, P (product)= 0 g/L, V(volume)=1.0 L. 

The a priori parameters in Table 1 are used to define the initial design of the nine parallel 

experiments. Firstly, the estimated optimal values of the feeding parameters are obtained: 

tF=8 min   and Set= 0.2 min-1 . To start with, for all MBRs the same value for tF is used. 

Secondly, the feed rate parameter for each MBR will be defined based on the 

(re)estimated optimal Set (in percentages of it) as detailed in Table 2. The chosen parallel 

experiment design aims to introduce arbitrarily a certain degree of exploration by biasing 

data gathering towards a region of operating conditions that are most informative for 

maximizing the final concentration of the product P.  

No samples will be taken from any of the bioreactors during the batch phase. During the 

fed-batch phase, sampling is organized by columns of bioreactors. Simultaneous 

sampling is only feasible for MBRs in the same column. Accordingly, after four minutes 

in fed-batch operation, the three bioreactors in column 1 are sampled. After another 

minute, the MBRs in column 2 and, one minute later the MBRs in column 3 are sampled.  

For the sake of simplicity, let´s assume that the time for analytical processing of the 

samples taken is negligible. Thus, 7 min after tF, the two uncertain model parameters   

𝜇𝑚𝑎𝑥  and 𝑌𝑃/𝑋 are re-estimated using new sampled data. On this basis, online experimental 

redesign is carried out and an updated value for Set is obtained, Then, the substrate 

feeding profile in each MBR is changed accordingly based on the percentages of the re-

estimated optimal feeding rates as detailed in Table 2. This procedure is repeated until 

volumetric capacities of all MBRs are full. Please refer to the repository at: 

 https://git.tu-berlin.de/bvt-htbd/kiwi/tf2/experimental-computational-workflows 

for details about all methods used and their hyper-parameters. Note that the a posteriori 

model parameters over-estimate the product formation rate from biomass (see values for 

𝑌𝑃/𝑋 in Table 1). As new data are sampled, 𝜇𝑚𝑎𝑥  and 𝑌𝑃/𝑋 have much closer values to those 

of the in-silico model. Results obtained for the optimal feeding profiles are summarized 

in Table 3 and Fig. 3. As shown in Fig. 3, the predicted dynamics of product formation 

resembles the evolution of the in-silico model reasonably well. 

   Table 1. Model parameters                                       Table 2. Updated feeding rates 

 

Parameter In-silico A priori A posteriori 

𝐾𝑆 0.02 0.02 0.02 

𝜇𝑚𝑎𝑥 0.4 0.3 0.398 

𝑌𝑋/𝑆 0.5 0.5 0.5 

𝑌𝑃/𝑋 0.2 0.35 0.203 

𝐶𝑆,𝐹 [g/L] 500.0 500.0 500.0 

𝑉0 [L] 1.0 1.0 1.0 

𝑉𝑚𝑎𝑥 [L] 2.5 2.5 2.5 

    

    

MBR Col 1 Col 2 Col 3 

Top 102 % 101 % 103 % 

Centre 96 % 100 % 104 % 

Bottom 97 % 99 % 98 % 
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4. Airflow-based implementation environment 

4.1. Architecture of the workflow manager 

The overall architecture for the workflow manager in the Apache Airflow environment is 

shown in Fig. 4. In the schema, the interaction between the experiment execution manager 

(administration console) and the Airflow environment for DAGs management using 

projects (experiments in the robotic platform) is depicted. From this console, the 

execution manager completely specifies the structure and parameters of an experiment 

and triggers its execution. To oversee a project execution, the project manager also has at 

its disposal the Airflow ecosystem made up of three main components. Firstly, a 

PostgreSQL database to archive execution details of DAGs scheduled in the project 

alongside with results obtained, and the defined user preferences. Secondly, the 

“scheduler” which is the core of the Airflow environment that manages the resources 

available for parallel processing of tasks and enforces precedence and synchronization 

constraints. Finally, the web services which provide a user-friendly interface to monitor 

the execution of DAGs and micro-services to archive results obtained in a local memory.  

Fig. 3. Final product concentrations compared 

 

 

Table 3. Optimized policies compared 

            In Silico A Posteriori 

Set 0.150 0.230 

tF [min] 8.0 8.0 

𝑃𝑓𝑖𝑛𝑎𝑙  31.59 32.07 

4.2. Project workflow manager 

Each project in the Airflow DAGs execution environment is organized using nodes as 

shown in Fig. 5. The structure of files (left) is composed using Docker (centre) which are 

eventually managed as specific nodes in the DAGs used to execute an experiment. Each 

node is individually executed using a Docker container. At the end of each node script 

execution, its corresponding container is automatically destroyed.  

 

 

 

Fig. 4. Architecture    Fig. 5. Project workflow manager 
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4.3. Airflow ecosystem 

Each project in the Airflow DAGs execution environment is organized using nodes as 

shown in Fig. 5. The structure of files (left) is composed using Docker containers (centre) 

which are eventually managed as specific nodes in the pipelines used to execute an 

experiment and build models from data (see Fig. 6). Each node is individually executed 

using a Docker container. This is necessary to transform a detailed experimental protocol 

into a workflow which can be understood by other modelers and experimenters. At the 

end of each node script execution, its corresponding container is automatically destroyed.  

 

  

  

Fig. 6. Layered structure of the Airflow ecosystem 

5. Concluding remarks 

Simulation results demonstrate that DAGs and the Apache Airflow ecosystem are key 

enablers for enforcing FAIR principles in bioprocess development. The open-source 

nature of the software used for modeling and optimization makes experimental-

computational workflows reproducible, methods transparent, and data accessible. 
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Abstract 

Industrial control systems (ICSs) are used for various kinds of social infrastructure, and 
these ICSs play important roles in achieving their control functions and in ensuring safety. 
Therefore, the cyber security of the ICSs needs to be improved. To mitigate the success 
of cyber-attacks on ICSs, we need to take into account suitable cooperation not from just 
one organization but from multiple organizations, including the companies in their supply 
chains. Therefore, incident response exercises require cooperation among multiple 
organizations. However, some hurdles related to participation in exercises are a major 
obstacle to improving the resilience of incident response exercises. The hurdles for 
participating in such exercises must be lowered. This paper focuses on this point and on 
the online IMANE Card we developed. 

Keywords: Cyber security; Exercise; Control systems; Card game; Incident response 

1. Introduction 

Industrial control systems (ICSs) are used for various kinds of social infrastructure, and 
these ICSs play important roles in achieving their control functions and in ensuring safety. 
Therefore, the cyber security of the ICSs needs to be improved. Ordinarily, ICS networks 
have been isolated in factories. However, the ICS networks tend to connect to external 
networks, because a connection between the information technology (IT) system and 
operational technology (OT) system is required for business. Therefore, the number of 
cyber threats to the ICSs is increasing, and successful cyber-attacks against the ICSs can 
directly affect physical objects. Blout (2021) testified, a top oil company in the United 
States was hit by a ransomware attack in May 2021. The attack caused an incident in 
which the pipeline was shut down for six days, and it had a great impact on various types 
of fuel transport and storage. Discontinuation of services by such incidents can cause a 
great deal of damage to citizens’ lives, companies’ business, government services, and so 
on [1]. Cyber security for supply chains is important for our lives. However, eliminating 
system vulnerabilities is difficult. In addition, cyber-attacks are caused by maliciousness. 
Therefore, the effects of cyber-attacks are difficult to prevent even when using 
countermeasures. When an incident occurs due to cyber-attacks, the entire organization 
is required to take prompt action under limited time, cost, and resources. Moreover, safety 
management, business continuity management, and issue solutions must be undertaken 
to respond with organizational cooperation, too. Cyber-attacks are cleverly hidden and 
quickly spread through IT-OT networks. Therefore, identifying the intruded and attacked 
zone is very difficult. Even if the malware can be removed once, reinfection can occur 
when the countermeasures are insufficient. Suitable cooperation from not only one 
organization but multiple organizations, including the companies in their supply chains, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50250-5 
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is necessary to counter such cyber-attacks. Therefore, incident response exercises require 
cooperation among multiple organizations, and Hashimoto et al. (2019) have developed 
systems for incident response exercises. They are called the IMANE (short for Incident 
MANagement Exercise) series, and they were designed to improve resiliency against 
cyber-attacks. The IMANE series has been used for exercises in workshops with various 
people. To improve the resiliency of multiple organizations, we need to assume that 
various people, such as those from group companies including superiors and subordinates, 
will participate. As a result, another problem may arise regarding participation in the 
exercises. For example, people in organizations that may have their supply chain contracts 
terminated may be considered risky and may hesitate to participate in the exercises. Such 
hurdles related to participation are major obstacles to improving resilience. The hurdles 
for participating in such exercises must be lowered. This paper focuses on this point and 
improvement one of the exercises we developed, the IMANE Card. 

2. IMANE CARD 

2.1 Components of the IMANE Card 

The IMANE Card exercise is card-based and discussion-based. We positioned the 
exercise as an introduction to an incident response exercise for cyber-attacks. The 
participants are divided into several groups with facilitators. The participants surround 
one worksheet and conduct an incident response to cyber-attacks while discussing the 
matter with all the participants in each group.  

 
In the IMANE Card exercise, exercise planners prepare a situation such as a virtual 
company and business content, plants, an organization chart and contact network, an 
incident scenario, etc., for the incident response exercise. In this paper, we use an example 
situation where one electric power company uses a hot water supply system. All the 
participants fully grasp the situation as a constraint and work together as a member of the 
company. The worksheet, milestones, and action cards of the IMANE Card are as shown 
in the Figure 1. This worksheet is divided into swim lanes for the actors’ roles in the 
incident scenario. The swim lanes are presented vertically in chronological order. This 
example includes the computer security incident response team (CSIRT) staff and 
managers, who are people working in the head office, and the staff and managers of the 
operation section and information section, who work in the factory. 
 
In the swim lanes, two types of boxes, called milestones, are printed such as events and 
target situations related to the incident scenario. This example includes the following 
three events as incident scenario as constraints. CSIRT checks for an increase in junk 
email at the head office. The information section detects suspicious signal communication 
on the factory. The operation section notices a change in the water level of the tank on a 
supervisory control and data acquisition (SCADA) display in the factory. This example 
features the following two target situations in the incident scenario as constraints: the 
recovery of abnormal water level in the tank and the resumption of the hot water supply. 
The participants put action cards on the worksheet. As shown in Figure 2, the action cards 
have card a number and name on both sides. The front side of the action card describes 
the concreate action as to what the card is for and the card user as to which roles the card 
can be used for, and some action cards have requirement states listed such as a plant 
stoppage. The back side of the card describes the results of the card usage in the incident 
scenario. The participants can imagine what kinds of roles will do what in these cards. 
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Figure 1: Worksheet, milestones, and action cards of the IMANE Card 
 
 

 
Figure 2: Action card content 

 
For example, when the participants want to use the 17th card, the 17th card describes 
the situation when the 28th card is used as a prerequisite. The card arrangement order is 
as shown in Figure 3. As mentioned, the participants choose the suitable incident 
response from the prepared action cards while discussing the situation within the group. 
Therefore, the participants can work on exercises even if they do not have specialized 
knowledge about the activities of roles and cyber-attacks. 
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Figure 3:  Card arrangement order 

 
2.2 Procedure for the IMANE Card exercise 

The IMANE Card exercise is carried out in the following phases. 
Phase 1: The participants from each organization gather at the exercise place. 
Phase 2: They receive some explanations about the exercise during a briefing. 
Phase 3: They make a workflow and start a discussion during the exercise. 
Phase 4: They review the exercise during the debriefing. 
Phase 5: The exercise is declared over. The participants go back to work. 

 
In phase 1, the participants gather at the exercise place. In phase 2, they must learn 

various information and knowledge about the exercise system and procedures, the virtual 
company, and so on prior to the exercise in phase 3. In phase 3, they make a workflow 
and start a discussion. The participants fully grasp the worksheet and the incident scenario 
as constraints. The participants browse the action cards, check the role of each card and 
the person in charge of execution in the virtual company, flip the cards over, read the new 
situation from the back side as needed, and put the suitable action cards in the correct 
position of the suitable swim lanes. In this way, they think about what to do next as part 
of the incident response. Moreover, they also consider the information linkage with other 
roles as suitable information for the appropriate timing as necessary, and they must show 
the communications with arrows and description across the swim lanes. In this way, they 
can discuss and consider what communications between different roles are needed to 
enable suitable organizational cooperation. Each facilitator supports the progress by 
asking the participants what they have decided and why and by answering questions from 
the participants. In phase 4, they review and discuss their own worksheet as a deliverable. 
After that, for the debriefing, the participants compare the worksheet and other groups’ 
worksheets and discuss the incident response to deepen their awareness. The feedback is 
very important to improve the resiliency. In phase 5, they return to each workplace. 

3. Online IMANE Card 

3.1 The hurdles to improve for the incident response exercise 

The following three hurdles are the focus to make it easier for various people to participate. 
The first hurdle is caused from a loss to the own organization due to failure in the incident 
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response exercise.  For example, the contract may be terminated by the contractor as 
mentioned. Therefore, the planner must improve the exercise to enable participants to 
disclose as little information as necessary about themselves online in order not to have a 
negative impact on the working relationships when participating in the exercise. The 
second hurdle is the time and cost needed for the incident response exercise. For example, 
the physical distance to the venue can also be a major factor of this hurdle. Therefore, the 
planner must reduce the total time for the incident response exercise. The final hurdle is 
the anxiety about the lack of expertise in cyber-attacks and so on. For example, the 
participants may be unfamiliar with the terminology. Therefore, the planner must improve 
to supply the needed information to the participants on demand. In this paper, we present 
the online IMANE Card we developed to mitigate the impact of these three hurdles. 
 

3.2 Components of the online IMANE Card 

The online IMANE Card is based on a cloud-based online whiteboard. The online 
whiteboard can update the changes in real time among the participants. The necessary 
information required for the exercises, worksheet, card storage area, mouse pointers of 
other participants, overall view, and so on is in the online whiteboard of Figure 4. 
 

 
 

Figure 4: Online IMANE Card 
 
The information required for the exercises such as a virtual company, business contents, 
the plant, organization chart and contact network, and so on are included. Action cards 
with a front and back are located separately in the card storage area. These are the master 
cards. The participants must copy the front action card and put it in the swim lane, 
respectively. The icons of the mouse pointers of other participants show the movement 
of the other participants. Each participant and facilitator can see what the other 
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participants are focusing on, which cards they are controlling, etc. The overall view shows 
the participants screen’s area in the overall whiteboard. This view should make it easy to 
move and zoom in and out for the participants and facilitator. In addition, an online 
meeting tool is used for discussions that are necessary during the exercises. 
 

3.3 Procedure for the online IMANE Card exercise 

In phase 1 and 5, the participants do not have to gather in one place. The participants need 
to prepare a PC and have an environment where they can connect to the online whiteboard. 
If the participants prepare such an environment, they are able to participate in the exercise 
from anywhere. In phase 2, the exercise planner can use a variety of information to 
explain the exercises as a feature of the online whiteboard, e.g., URLs, images, and videos. 
The planner can attach to the online whiteboard not only the actual content needed to 
perform the exercises, such as the swim lane and action cards, but also the additional 
information that the participants feel they need such as the imagination of the equipment 
that appears in the exercise. Also, how to use the online tools is explained in this phase, 
and icebreaking among the participants is done after that. In phase 3, the participants 
basically only need to copy and paste and write additional characters when the 
participants make a worksheet. Each participant can request information that they feel 
necessary at any time without being aware of the other participants. After putting the card 
there, the facilitator and the participants read the results of the back card from the card 
storage area.  Exercise planners may have to add new rules when conducting exercises 
online. The same action card may be put on more than once because the participants place 
cards using copy and paste. If multiple same action cards are in the swim lanes, the 
participants have room for further discussion, and only one of them is used at the end of 
the exercise. In phase 4, not only has the hurdle of participating in the exercise been 
lowered, but effective aspects to the output have also been revealed. The output is stored 
as data, making it easier to share, so the participants can expect to get more notices from 
some other groups and past outputs.  
 

4. Conclusions 

In this paper, we focused on the hurdles and presented the online IMANE Card we 
developed. It can enable more efficient conduct of discussion-based exercises where 
distance, cost, time, and knowledge associated with exercises for multi-organization 
participation may be a barrier. To improve resiliency, we need to make a system that 
enables more people to participate in incident response exercises as many times as 
possible. As in the proposed method, introducing an exercise that lowers the hurdles to 
participants also helps to increase the frequency of exercises. 
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Abstract 

Modular plants are an essential step towards agile production via smart manufacturing in 

the process industry. An important challenge, however, is that they represent an 

ecosystem with distributed knowledge between process equipment assembly (PEA) 

manufacturers and owner/operators (O/Os). This complicates the application of familiar 

simulation methods. To address this issue, this paper reviews typical simulation tasks in 

the plant life cycle and investigates the distribution of knowledge in modular plants. 

While the O/O typically has extensive knowledge about the physical property system of 

a process, a PEA manufacturer can be expected to develop high equipment related 

expertise. It is suggested to use a digital twin (DT) to integrate these knowledge parts 

considering intellectual property concerns. The DT will be provided by the PEA-

manufacturer, must be customizable through standardized interfaces, and should be 

applicable to different simulation tasks in the plant life cycle. To realize this concept, 

quality requirements specifications for DTs related to these simulation tasks must be 

developed. In addition, standardized interface specifications for the integration of 

physical property packages, the communication between different DTs and the simulation 

of DTs must be matured. Furthermore, hierarchical and horizontal DT structures are 

required to foster re-use of sub-models for different simulation tasks. 
 
Keywords: digital twin, smart manufacturing, cyber-physical systems, modularization 

1. Introduction 

The process industry is facing increasing requirements to product individualization and 

time-to-market. Smart manufacturing is recognized as a concept to promote agile 

production across manufacturing and process industries and can therefore provide a 

solution to these challenges. Lu et al. (2020) distinguish four key features of smart 

manufacturing systems: (1) context- and self-awareness, (2) modularity, (3) self-

organization, and (4) data-driven decision-making. Modular plants (MPs) built from 

process equipment assemblies (PEAs) (VDI, 2020) provide a promising solution for the 

feature (2) ‘modularity’ of smart manufacturing systems for the process industry. 

However, the features (1), (3) and (4) have virtually not yet been addressed for the MP 

concept. 

The process systems engineering (PSE) community developed powerful methods and 

tools for modelling, simulation and control which are suitable to promote these features 

but due to the expectable knowledge distribution between PEA manufacturers and 

owner/operators (O/O) in smart MPs, adaptations to these methods and tools will be 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50251-7 
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required. Current publications of the process engineering community like 

Radatz et al. (2019) and Schindel et al. (2021) did not acknowledge this challenge. 

Thus, the remainder of this paper is structured as follows: firstly, simulation tasks in the 

life cycle of conventional and MPs are reviewed; afterwards the digital twin (DT) and the 

distribution of knowledge in MPs are investigated. Based on the gained insights, 

requirements to a DT-based concept for smart manufacturing in MPs are derived, and 

finally a conclusion is provided discussing further research needs. 

2. Simulation in the life cycle of conventional and modular plants 

Modelling, simulation, and control are key tools to provide the features (3) ‘self-

organization’ and (4) ‘data-driven decision-making’ for smart manufacturing systems. 

Oppelt et al. (2015) define four typical simulation tasks: ‘design simulation and 

optimization’, ‘virtual commissioning’, ‘operator training’ and ‘plant and online 

optimization’, which can be assigned to different phases in the life cycle of conventional 

plants. The goal and utilized methods differ between these tasks. The goal of (1) design 

simulation and offline optimization is to design and layout a process plant. In 

conceptual design, abstract unit operations are used to derive requirements to the 

equipment. In basic engineering, concrete equipment is designed based on these 

requirements. Finally, their models are combined for process simulation and optimization 

to find the best operating point. Applying (2) virtual commissioning, the automation 

system including the control code is tested. For this purpose, the automation system is 

coupled to a dynamic simulation model that mimics the behavior of the real plant. 

(3) Operator training is used to train the plant’s operating staff. Simulation models are 

applied to mimic the real plants behavior in regular operation and failure scenarios. 

Finally, (4) plant and online optimization summarizes a broad variety of model-based 

support methods and tools applied during the operation phase. E.g., model predictive 

controllers (MPCs) are used to calculate the best operation trajectory. 

In MPs, the life cycle is divided into a PEA and a MP lifecycle (see figure 1). PEA design 

and engineering should rely on a PEA-type specification predefined by one or more O/Os. 

In this phase, design simulation & offline optimization as well as virtual 

commissioning can be applied similar to conventional plants. Afterwards, the PEA will 

be fed into the plant life cycle. On the plant level, the basic engineering and detailed 

engineering are combined under the term orchestration by the modularization community. 

Design simulation and offline optimization change due to the transition of plant design 

from a sequence of equipment design tasks to a sequence of PEA selection tasks. 

Figure 1: Simulation tasks in the life cycle of modular plants 



Requirements to a 1509  digital twin-centered concept for smart manufacturing

S c hin del  et al . ( 2021)  des c rib e a gen eral  approac h f or tec hn ol ogy  an d P E A  m atc hin g in  

M P s . I n  their w ork f l ow ,  s im u l ation  is  s u gges ted to b e u s ed to s u pport tec hn ol ogy  an d 

P E A  m atc h as  w el l  as  m ore detail ed proc es s  des ign  af ter c hoos in g rel ev an t P E A s . 

R adatz  et al . ( 2019)  f orm u l ate the des ign  prob l em  as  a m u l ti-ob j ec tiv e s u pers tru c tu re 

optim iz ation  prob l em . Both papers  c on c u r in  the as s u m ption  that a P E A  datab as e w ith 

s im u l ation  m odel s  of  s u f f ic ien t f idel ity  is  av ail ab l e to the O /O . T he virtual 

commissioning of  M P s  has  b een  dis c u s s ed e.g. b y  S c hen k  et al . ( 2019) . T he au thors  

s u gges t the v irtu al  P E A  as  a c on tain er pac k ed w ith al l  v irtu al  c om m is s ion in g rel ev an t 

artif ac ts  w hic h are n eeded to s u pport the pl an t en gin eerin g of  M P s . T hes e m odel s  s hal l  

b e u s ed to tes t rec ipes  an d in terl oc k s  on  M P  l ay er. Operator training an d plant & online 

optimization hav e n ot b een  addres s ed in  the l iteratu re b ef ore.  

3. The digital twin and the distribution of knowledge in modular plants 

Bos c hert et al . ( 2018)  def in e the D T  as  a ‘s em an tic al l y  l in k ed c ol l ec tion  of  the rel ev an t 

digital  artef ac ts  in c l u din g des ign  an d en gin eerin g data,  operation al  data an d b ehav ioral  

des c ription s ’. S u c h a c ol l ec tion  is  m an datory  to prov ide f eatu re ( 1)  ‘c on text- an d s el f -

awareness’ of  s m art m an u f ac tu rin g s y s tem s . I n  M P s ,  a dis trib u tion  of  k n ow l edge b etw een  

P E A  m an u f ac tu rers  of  high expertis e an d O /O s  m u s t b e expec ted. T his  dis trib u tion  c an  

b e il l u s trated appl y in g the product-process-resource-model of  the digital  tw in  b y  

Bam b erg et al . ( 2021)  ( s ee f igu re 2) . I n  this  m odel ,  the product model repres en ts  proc es s  

en gin eerin g k n ow l edge ab ou t phy s ic al  properties  of  pu re c om pon en ts  an d m ixtu res ,  

produ c t s pec if ic ation ,  etc . ( Bam b erg et al .,  2021) . F rom  a proc es s  s im u l ation  poin t of  

v iew ,  the produ c t m odel  c an  b e rel ated to the phy s ic al  property  data. I n  M P s ,  O /O s  w il l  

ow n  this  k n ow l edge an d w il l  s triv e to protec t it f rom  dis c l os u re du e to in tel l ec tu al  

property  ( I P )  c on c ern s . T he process model does  repres en t phy s ic al  l aw s ,  therm ody n am ic  

m odel s ,  etc . an d theref ore eq u ation s  u s ed f or the m odel in g ( Bam b erg et al .,  2021) . M aj or 

parts  of  the proc es s  m odel  b as e on  pu b l ic l y  av ail ab l e k n ow l edge an d are u s ed b y  O /O s  

an d P E A  m an u f ac tu rers  al ik e. T he resource model c on tain s  the ‘m ec han ic al ,  f u n c tion al ,  

an d operation al  attrib u tes  of  […] al l  eq u ipm en t el em en ts ’ ( Bam b erg et al .,  2021) . H en c e,  

it c harac teriz es  the eq u ipm en t w ith param eters  l ik e the v ol u m e of  a v es s el  diam eter. I n  

M P s ,  this  k n ow l edge w il l  b e hel d b y  P E A  m an u f ac tu rers . P rodu c t an d proc es s  m odel  c an  

b e c om b in ed to f orm  the transformation model w hic h is  a pl an t-in depen den t des c ription  

of  the proc es s  an d c an  b e appl ied to deriv e theoretic al  l im its  e.g. of  s eparation  s teps  

( Bam b erg et al .,  2021) . F u rtherm ore,  it c an  b e u s ed to deriv e req u irem en ts  to a c on c rete 

pl an t an d P E A s  l ik e res iden c e tim es ,  throu gh pu ts  etc . ( Bam b erg et al .,  2021) . T his  ty pe 

of  m odel  is  s tron gl y  rel ated to the c on c eptu al  des ign  phas e of  the pl an t l if e c y c l e of  

c on v en tion al  an d m odu l ar pl an ts . T he capability model is  c reated c om b in in g the proc es s  

an d the res ou rc e m odel . I t f orm s  a produ c t in depen den t des c ription  of  the dy n am ic  

F igu re 2: K n ow l edge dis trib u tion  in  M P s  b as ed on  the D T  s tru c tu re b y  Bam b erg et al . ( 2021)  
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behavior of a plant, equipment (Bamberg et al., 2021) or hence also a PEA. Capabilities 

can be estimated for ranges of material property parameters or default material system. 

One example are water run models, which can be applied for the purpose of virtual 

commissioning. Finally, the combination of transformation and capability model forms 

the operation model (Bamberg et al., 2021). This type of model is required for the 

optimization of process parameters and recipes for a specific product and MP. In general, 

this combination of information is required for the more sophisticated sub-steps in every 

simulation task during the plant life cycle. Therefore, a concept is required which permits 

to utilize the prior knowledge of both stakeholders without necessarily disclosing it.  

4. A digital twin-centered concept for smart manufacturing in MPs 

4.1. The smart PEA as cyber-physical system for smart manufacturing in modular plants 

To address features (1), (3) and (4) of smart manufacturing systems, the modular plant 

concept must be extended to permit knowledge exchange and support the standard 

simulation tasks. At the same time, IP concerns must be considered. Thus, we suggest 

combining a real PEA, a digital twin of the PEA (PEA-DT), and related algorithms into 

a so-called smart PEA (sPEA). PEA-DTs will be composed of several information and 

simulation models and integrated with use case specific algorithms. In the following, 

requirements to PEA-DTs are discussed und R&D challenges are derived.  

4.2. Simulation in the life cycle of smart modular plants 

4.2.1. Design simulation and offline optimization in smart modular plants 

Considering the knowledge distribution between sPEA-manufacturer and O/O, design 

simulation and offline optimization in smart MPs can be envisioned to split into four 

steps. Firstly, in a conceptual design phase the O/O will apply transformation models 

independently of specific equipment to derive requirements to the former. Based on these 

requirements, the O/O can find different sPEA candidates from several manufacturers or 

define a new PEA-type specification. The sPEA manufacturers then provide customizable 

capability models in form of downloadable or remotely accessible PEA-DTs. Hence, the 

PEA-DT will be used as specification of the real PEA. The O/O than must be able to 

customize the PEA-DTs with physical property packages to derive operation models 

from the capability model. Carrying out further process simulations using the PEA-DTs 

the O/O will be able to derive informed decisions which sPEAs to purchase or rent. After 

the physical PEA arrived, an experimentation, identification, and validation step will be 

necessary to reduce uncertainty of the models and validate the choice of sPEA. Finally, 

the identified PEA-DTs might be used to derive optimal operating points of the system. 

To realize this vision, PEA-DTs need to provide a sub-model describing process behavior 

of the PEA based on MESH equations. The external control inputs to the model should 

be chosen in line with the adjustable service parameters of the real PEA. The automation 

and control system of the sPEA itself can usually be assumed to behave ideally. The PEA-

DT must provide standardized interfaces to integrate custom physical property packages, 

exchange mass, energy and information flows, and control the solution process. 

Considering model quality, the PEA-DT should provide a good accuracy, good validity 

around typical operation points and a high robustness. As described above, internals of 

simulation models might be confidential. Therefore, simulation and optimization 

algorithms which do not require the disclosure of the model are necessary. 

4.2.2. Virtual commissioning in smart modular plants 

The goal of virtual commissioning is to test the recipe with service timings and 

parameters, and interlocks on MP level. For this purpose, a system of PEA-DTs must be 
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combined in a simulation environment and coupled to the real process orchestration layer 

(POL), which operates the real MP afterwards. Two PEA-DTs with different levels of 

sophistication can be envisioned to do so. Firstly, a capability model considering a 

default material system (e.g.: water+air) and the automation system with device and I/O-
models, a representation of the controller in a software-in-the-loop or model-in-the-loop 

configuration (cf. VDI/VDE 3693) and the OPC UA server could be used to test service 

sequences and interlocks. To gain a more precise picture off timings and service 

parameters for control loops an operation model will be required. Therefore, the 

capability model must be extendable with a physical property package. Interfaces for 

property packages, simulation control, and mass and energy flows can be handled like the 

design simulation case. The interface for information flows must be reconfigured to 

operate with the same service commands and data assemblies as the real PEA. The PEA-
DT must provide a wide validity range, medium accuracy, and a robust numerical 

behavior. The simulation environment must support real time and accelerated, hybrid 

continuous- and discrete-time simulation since the O/O will want to test recipes and 

interlocks as fast as possible in a virtual environment. Accelerated simulation will require 

the POL to operate in a synchronized, accelerated mode as well. 

4.2.3. Operator training in smart modular plants 

Since, a higher fluctuation of plant configuration must be expected in MPs, operator 

training simulation could become a valuable tool to allow the operating staff to keep up 

with the changing production scenarios. Operator training does require very sophisticated 

process system and automation system models. In extension to 4.2.1 and 4.2.2, models 

must consider behavior in failure cases, which can be triggered actively and passively. 

Such behavior must be built in by the PEA manufacturer. The models must be combined 
with the POL including an operator training environment (e.g.: an app), which can be 

used to provide process scenarios. The interfaces of the PEA-DT are the same as in the 
virtual commissioning case for the most part, but an interface to actively trigger failures 

and provide additional feedback on failure behavior will be required. The PEA-DTs must 
provide a great validity range, high accuracy, high robustness, and high performance for 

this scenario. Simulation algorithms remain like in the virtual commissioning case. 

4.2.4. Online optimization in smart modular plants 

Similar to conventional plants, several different online optimization methods can be 

applied in smart MPs. They can be implemented on the PEA or MP level. On PEA level, 

the PEA-DT can be used to adjust control loops, provide MPCs, etc. In the opposite 

direction, the PEA-DT shall be adjusted to the state of the real PEA applying 

identification methods. On the plant level, PEA-DTs can be combined to e.g. provide 

plant wide MPCs. In most cases, the interface configuration of design simulation will be 

suitable for online optimization on the plant level as well. The required model quality will 

vary between applications. Therefore, model reduction and surrogate modeling shall be 

used to trade-off validity range, accuracy, robustness, and performance. The required 

simulation and optimization algorithms are diverse as well. 

4.3. R&D challenges 

Four major R&D challenges can be derived based on these requirements. Firstly, the 

standard simulation tasks must be related to specifiable and testable quality requirements 

to DTs. This is a precondition to allow certification of DTs by independent instances for 

specific simulation task. A promising approach is the application of quality models 

relying on factors, criteria and metrics (FCM) adapted from software development 

(Mädler et al., 2021). Secondly, standardized and open interfaces for physical property 

packages, flows and simulation control must be matured to allow vendor independent 

Requirements to a 1511  digital twin-centered concept for smart manufacturing
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exchange and application of DTs. The CAPE OPEN initiative developed promising 

interface specifications which are a first step but currently lack support. Another 

promising standard is the functional mock-up interface (FMI). Thirdly, simulation and 

optimization algorithms which do not require disclosure of the DT internals should be 

further developed. Current equation-based system simulation approaches relying on 

equation system manipulation will sometimes be prohibited since model internals are 

protected due to IP concerns. Modular sequential approaches and co-simulation will be 

needed to simulate process systems with distributed knowledge. Surrogate modeling and 

simulation offer another solution approach since freely accessible surrogates could be 

generated of protected PEA-DTs. Finally, hierarchical and horizontal DT structures and 

their semantic description should be matured to foster re-use of sub-models for different 

simulation tasks. Currently, multiple simulation models for different purposes are 

developed independently during the plant life cycle. The toolchains do not support a 

smooth transition of valuable sub-models from phase to phase. Matured structuring and 

semantic enrichment could help to overcome these issues. 

5. Conclusion 

In this paper, we suggest a sPEA-based approach to smart manufacturing in MPs and 

derive requirements to this concept. Standard PSE simulation tasks can provide self-

organization and data-driven decision-making capabilities to smart MPs. Context- and 

self-awareness can be provided by PEA-DTs. Due to the distribution of knowledge 

between sPEA-manufacturers and O/Os new requirements to methods and workflows 

arise. We identify (1) quality assurance and specification of simulation models, (2) open 

and standardized interfaces, (3) simulation and optimization algorithms considering IP 

issues and (4) model structuring and semantic description as important R&D challenges. 
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Abstract

Digital twins are expected to play a key role in digital transformation of the process in-
dustry. Although process informatics, i.e., process data analytics, has attracted a lot of
attention, physical models are essential to realizing the digital twins. Building a physical
model of a complex industrial process is toil. We aim to free the engineers from physical
model building by developing an automated physical model builder, AutoPMoB. AutoP-
MoB performs five tasks: 1) retrieving documents regarding a target process from litera-
ture databases, 2) converting the format of each document to HTML format, 3) extracting
information necessary for building a physical model from the documents, 4) judging the
equivalence of the information extracted from different documents, and 5) reorganizing
the information to output a desired physical model. In this study, we propose a method
of judging the equivalence of two equation groups to accomplish task 4. The proposed
method first converts two equation groups in mathematical markup language (MathML)
format into a format that can be manipulated in a computer algebra system (CAS). Then,
the variables not shared between the groups are eliminated using the CAS. The method
judges whether the two equation groups are equivalent. The results of several case stud-
ies demonstrated that the proposed method accurately judged the equivalence, including
physical models of a continuous stirred-tank reactor. We also developed a web application
that can easily judge the equivalence of MathML-formatted equation groups. This appli-
cation is expected to reduce the effort required to find out the different models contained
in multiple documents, and become an important part of AutoPMoB.

Keywords: Artificial intelligence, Equation groups equivalence, First principle model,
Process modeling, Natural language processing

1. Introduction

The use of digital twins has become popular during the digitization of machinery and
production systems in the manufacturing industry (El Saddik, 2018). Digital twins are
virtual representations of physical entities and can be used to simulate the states inside
plants under various conditions. Physical models are indispensable to enable digital twins
to represent real-life phenomena accurately.

To build a physical model, experts need to survey the literature and build a physical model
by trial and error until the model meets all requirements. The process of building the
physical model is time-consuming.

http://dx.doi.org/10.1016/B978-0-323-85159-6.50252-9 
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This research aims to develop an automated physical model builder (AutoPMoB) that can
automatically build a physical model. AutoPMoB first extracts information of variables,
formulas, and experimental data from the literature and then combines the information to
build a new physical model. Different documents may use different symbols to express the
same variable and different ways to express the same formula. To combine information
from multiple documents, AutoPMoB needs to recognize variables and formulas and judge
their equivalence accurately.

Formulas are inherently hierarchical and can be represented as symbol layout trees (SLTs)
or operator trees (OPTs) (Mansouri et al., 2019). SLTs capture the placement and nesting
of symbols on writing lines, while OPTs capture the mathematical semantics of the appli-
cation of operators to operands. The SLT and OPT of a formula x− y2 = 0 are shown in
Figure 1.

There has been no work on equivalence judgment of two equation groups. It seems pos-
sible to judge the equivalence by setting a threshold on the similarity of the two equation
groups. Several similarity measures are available. Zhong and Zanibbi (2019) defined
similarity between formulas using paths from OPTs. Mansouri et al. (2019) built an em-
bedding model of formulas using SLTs and OPTs and defined the similarity as their cosine
similarity. These similarities are based on appearance, and similar-looking formulas do
not necessarily perform the same calculations; thus, the similarities do not properly work
for the equivalence judgment.

In this work, we propose a rule-based method of judging the equivalence of two equa-
tion groups. In our proposed method, equation groups in mathematical markup language
(MathML) format are converted into a format that can be manipulated using a computer
algebra system (CAS). Then, the variables not shared between the groups are eliminated
using the CAS. The equivalence of the two equation groups is judged by checking whether
any equation in one equation group appears in the other equation group. We assume that
variables having the same meaning are represented by the same symbol.

2. Proposed Method

This research aims to develop a system that can judge the equivalence of two equation
groups not by their appearance but by the calculations they perform. Formulas in MathML
format are just strings and cannot be manipulated following calculation rules. Thus, the

x - y = 0

2

=

- 0

x ^

y 2

(a) (b)

Figure 1: (a) SLT and (b) OPT of the formula x− y2 = 0.
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proposed method converts formulas in MathML format into another format that can be
manipulated mathematically using SymPy (Meurer et al., 2017), which is a CAS written
in Python. Finally, the proposed method judges whether the equation groups are equivalent
using the algorithms explained in sections 2.2. and 2.3.

2.1. Conversion of Equations

There are two types of MathML: presentation markup and content markup. Presentation
markup captures notation structure while content markup captures mathematical structure.
This research uses presentation markup since it is mainly used on websites. We convert a
formula in MathML format into tangents-SLT by using tangent-s, a formula search system
developed by Davila and Zanibbi (2017). Tangents-SLT is an SLT in which each symbol is
assigned a certain type. A list holding the hierarchical information of the formula is created
by parsing the tangents-SLT. The list is converted into a SymPy object. For example, the
tangents-SLT of a formula a+b

c+d is first converted into [tangents-SLT 1, tangents-SLT 2,
‘frac’], where tangents-SLT 1 and tangents-SLT 2 refer to the tangents-SLT of the formula
a + b and the formula c + d, respectively. Tangents-SLT 1 and tangents-SLT 2 are then
converted into a list of [‘a’, ‘+’, ‘b’] and [‘c’, ‘+’, ‘d’]. Finally, the list [[‘a’, ‘+’, ‘b’], [‘c’,
‘+’, ‘d’], ‘frac’] is converted to a SymPy object.

2.2. Equivalence Judgment of Equations

In the proposed algorithm, two equations must have the same variables to be judged equiv-
alent. The two equations are judged equivalent if the solutions for any variable of the
equations are the same; otherwise, they are judged non-equivalent. As for equations that
contain a derivative term such as dV

dt , the whole term is regarded as one variable. For ex-
ample, the solutions of the equations dV

dt = wi −w and dV
dt +w−wi = 0 for wi are both

dV
dt + w, which means they are judged equivalent. The solution for V is not calculated

since the term dV
dt is regarded as one variable. We use CAS to solve equations.

2.3. Equivalence Judgment of Equation Groups

In this research, we judge not only the equivalence between equations but also the equiva-
lence between two equation groups consisting of multiple equations.

Two equation groups have the same degree of freedom (DOF) when they are equivalent;
therefore, the DOF of the two equation groups are compared at first. If two equation
groups have the same equations, they are obviously equivalent, and both groups have the
same set of variables. Hence, we eliminate the variables not shared between the groups. If
there remain variables not shared between the groups, the two equation groups are judged
non-equivalent. Finally, for each equation in one equation group, our proposed method
seeks the equation performing the same calculation in another equation group using the
algorithm introduced in section 2.2. If such an equation does not exist, the two equation
groups are judged non-equivalent; otherwise, they are judged equivalent.
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3. Case Studies

We evaluated our proposed method through several case studies and confirmed that the
proposed method could accurately judge the equivalence of equation groups. In this sec-
tion, we introduce one case study.

In Figure 2, three equation groups are physical models of a continuous stirred-tank reac-
tor (CSTR), where an exothermic and irreversible reaction (A→B) takes place. The two
equation groups (a) and (b), which are used by Manzi and Carrazzoni (2008) and Nekoui
et al. (2010), are equivalent but written in different ways. The equation group (c) is non-
equivalent to the equation groups (a) and (b). The proposed method accurately judged that
the equation groups (a) and (b) are equivalent while the equation groups (a) and (c) are
non-equivalent.

We developed a web application for equivalence judgment. Figure 3 shows a screenshot
to judge the equivalence of the two equation groups (a) and (b). To use this web appli-
cation, we first choose two files, in which equation groups are written in MathML format
(Part 1). Our web application then shows the selected equation groups (Part 2) and the
equivalence judgment result (Part 3). Equation groups in MathML format can be easily

� �
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Figure 2: Physical models of a CSTR; (a) and (b) are equivalent while (c) is non-equivalent
to (a) and (b).
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Figure 3: The screenshot of our web application; file selections for equivalence judgment
(Part 1); selected equation groups (Part 2); the equivalence judgment result (Part 3).

obtained from PDF or TeX files using existing tools such as InftyReader (Suzuki et al.,
2003) or LATEXML (Miller, 2018). By using this web application, the equivalence of two
equation groups can be easily judged.

4. Conclusion

In this work, we proposed a rule-based method for equation group equivalence judgment.
In the proposed method, we convert formulas in MathML format into SymPy objects,
which we can manipulate mathematically. We judge the equivalence of equation groups
by checking whether any equation in one equation group performs the same calculation
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as the equation in the other equation group. The results have shown that the proposed
method accurately judges whether two equation groups are equivalent or not. Currently,
the proposed method cannot be applied to equation groups, including several calculations
such as summation and infinite product. For future work, we plan to make our system
support more types of calculations.
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Abstract 

This work presents a data-driven methodology for decision-support aiming at reliability 

experts in drug product manufacturing. The developed tool incorporates three consecu-

tive stages. Firstly, equipment condition monitoring is performed through principal 

component analysis for dimensionality reduction on the process monitoring dataset. 

Equipment deteriorations are visualized by shifts in the monitored principal curve giv-

ing indication about deviating equipment condition. Secondly, a localization of the 

underlying physical source for the detected equipment deterioration is performed. 

Thereby, the impact from individual sensors to the observed shifts is investigated giving 

additional information to decision-makers on the underlying physical phenomena and 

location in the unit. In the last stage, prevention, the information from the two previous 

stages is combined in order to perform tailored maintenance actions during the produc-

tion phase in order to minimize the occurrence of unplanned downtime. The developed 

methodology is demonstrated in the form of a case study. Industrial process data from a 

sterilization unit which is part of an aseptic filling line of F. Hoffmann – La Roche Ltd. 

located in Kaiseraugst, Switzerland is used. 

Keywords: Predictive maintenance, decision-support, industrial application.  

1. Introduction 

Digitalization is the central pillar for the introduction of Industry 4.0. (Diez-Olivan et al. 

2019) However, unlike other industry sectors, sophisticated data-driven applications are 

yet to be explored to fully take advantage of the abundance of recorded process data that 

is available in pharmaceutical manufacturing. The pharmaceutical manufacturing sector 

is highly regulated by government agencies, such as the FDA, in order to guarantee 

product safety. Thereby, regulators are requiring manufacturers to store process moni-

toring information over multiple years for backtracking purposes. (Casola et al., 2019) 

A large historical data base is thus produced, which could potentially be used in order to 

gain data-driven insights into the current equipment condition. 

Data-driven approaches including the application of principal component analysis 

(PCA) are well established in the field of process monitoring. However, few approaches 

have been proposed that focus on the long-time equipment related trends in the process 

data. (Reis et al., 2017) In other industry sectors, such approaches have been presented 

under the term of predictive maintenance. (Bousdekis et al. 2019) However, in the 

pharmaceutical industry such approaches are scarce. One obstacle there is the costly 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50253-0 
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Figure 1: Overview of the individual steps of the developed methodology for equipment condition 

monitoring. 

revalidation process associated with any changes in the production line including the 

installation of new sensors for predictive maintenance purposes. (Zürcher et al., 2020) 

Equipment reliability is of great importance in the manufacturing of highly valuable 

pharmaceutical products as any equipment malfunction or fault can potentially result in 

a loss of highly valuable drug product. Therefore, maintenance is performed on a 

regular basis within production facilities. It is based on a pure time-based maintenance 

scheme, which does not consider real-time equipment condition. Although having 

regular maintenance intervals, unexpected equipment faults induced by manual 

interventions or resulting from equipment deterioration are still frequent. Developing a 

method to determine the current condition of equipment is necessary, in order to 

minimize the occurrence of such unexpected events. 

This work presents a decision-support tool for reliability experts to evaluate the current 

equipment condition. Thereby, aiming to provide support in early detection and locali-

zation of equipment deterioration to provide guidance for required maintenance inter-

ventions during production. Results are presented in the form of a case study for the 

aseptic filling process. 

2. Methodology 

In this work, real-time production data was used. Non-production time in the continu-

ously collected process data was excluded. The production datasets form the basis for 

the developed methodology in this work. In comparison to traditional monitoring, the 

investigated time frame is on production campaigns and entire production phases, in-

stead of individual batch runs. 

The decision-support methodology is composed of three consecutive stages as summa-

rized in Fig. 1. First, in the detection stage, equipment monitoring is performed, and 

data records are maintained. Multi-way PCA is performed for dimensionality reduction 

of process data. (Nomikos & MacGregor, 1994). The data is unfolded variable-wise and 

auto-scaled prior to the application of PCA. This is followed by the application of a 

noise-filter algorithm on the principal curves. (Savitzky & Golay, 1964) Long-term 

based deterioration becomes visible, expressed through fluctuations or shifts of the 

monitoring curve. 

The ongoing production cycle dataset is investigated with regards to the observed shifts 

in any principal component which indicates a change in the equipment condition. The 

deterioration zone is defined based on historical analysis of the data where all shifts 

P. Zürcher et al.
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reaching the area ultimately led to an equipment fault within the near future (several 

days to weeks) after the detected shift and a restoration of the base line. 

Secondly, the results from the principal component analysis are used for an in-depth 

loading analysis for the principal curve where a shift has been detected. Thereby, the 

individual contributions to the explained variance by the original variables representing 

measurements from installed sensors within the manufacturing unit are considered. 

Through the identification of the dominantly contributing sensor(s), the detected shift 

can be localized within the unit and the underlying physical phenomenon (e.g., leakage) 

is identified. Together with operator expert knowledge, this stage supports decision-

makers to locate deteriorations and target maintenance actions.  

Thirdly, by using the combined information from the detection and localization stage, 

maintenance actions can be proposed and windows where actions become necessary can 

be determined. Ultimately, a step towards more intelligent maintenance procedures in 

drug product manufacturing is achieved that supports experts in monitoring the actual 

equipment condition. 

3. Case study 

This work considers one year of industrial production data obtained from a sterilization 

unit that is part of the aseptic filling process. It represents a key process within drug 

product manufacturing.  

Currently, maintenance is performed in a time-based manner in the facility twice a year. 

Consequently, two production phases over the course of a year are considered which are 

separated by maintenance actions and are combined in a data set within the scope of this 

work. The schematic overview is shown in Fig. 2. 

4. Results & Discussion 

4.1. Detection 

In order to demonstrate the application of the methodology, the resulting principal 

curves for the sterilization unit were analysed for shifts. PC2 was selected as it showed 

long-term baseline shifts upwards into the deterioration zone, which persisted for sever-

al days to weeks as shown in Fig. 3.  

Observed shifts having an intensity within the defined deterioration zone eventually led 

to an unexpected equipment fault. PC2 was identified to be suitable for long-term con-

dition monitoring as shifts leading to an intensity within the deterioration zone always 

ended with an equipment fault requiring maintenance actions. The two production cy-

cles – each representing about 3-4 months of commercial production - are combined, 

thereby visualizing the monitoring curve for an entire year of production. Steps in the 

principal curve can be observed which can be clearly separated from individual, short-

Figure 2: Overview over the production and maintenance schedule for the aseptic filling line of 

one year that is considered in this case study. 

 
  

.Data-driven operation support for equipment deterioration detection 
in drug product manufacturing  



  1522 

term based peaks frequently occurring and resulting from intra and inter batch variance. 

Furthermore, observed shifts of PC2 last for up to several weeks until eventually a re-

storing of lower intensity is obtained. This restoration is connected to a performed 

maintenance action after an (unexpected) equipment fault has occurred. Therefore, an 

observed shift indicates that equipment deterioration is occurring which will eventually 

lead to a fault. Through the detection of such shifts, decision-makers can become aware 

of an underlying problem within the unit.  

4.2. Localization 

The loading plot for PC2 where shifts have been detected is shown in Fig.4. Highlighted 

bars represent sensors with the highest impact on the explained variance of the principal 

curve. Related sensors in the unit are the ventilator performance as well as the position 

Figure 4: Overview of the loadings for principal component 2. Different numbers for a sensor 

type indicate different locations within the production unit. Highlighted loadings represent sensor 

values contributing most the monitoring curve in the detection stage. 

Figure 3: Representation of the principal curve (PC2) indicating a zone where increased equip-

ment deterioration in observed which could eventually lead to an equipment fault. 

 P. Zürcher et al.



setting of the compartments. Both are connected to the pre-heating zone (1) and cooling 

zone (2) respectively. Therefore, shifts observed can be located to belong to this area 

within the sterilization unit. Furthermore, the differential pressures between the pre-

heating zone and sterilization zone (4) as well as cooling zone and sterilization zone (5), 

respectively, are dominantly expressed in PC2. Therefore, shifts observed for the prin-

cipal curve are likely to be connected to pressure related equipment, such as valves 

which can suffer from deterioration eventually resulting in leakage and breakage of the 

sterile environment. 

Results from the loading analysis show that the problem can be reduced to a small num-

ber of related sensors in specific areas of the unit. The localization stage therefore can 

aid decision-makers to identify the origin of detected equipment problems and increase 

maintenance actions through the offered possibility of better tailored actions. 

4.3. Prevention 

In the prevention step, the information gained from the detection and localization stage 

is combined. Thereby, tailored maintenance actions can be determined during phases 

with increased equipment deterioration represented by arrows in Fig. 6. Proposing such 

actions during a production cycle is an advantage for decision-makers in reliability 

engineering departments in comparison to the conventional practice where the condition 

is not monitored in real-time at all. 

Phases with increased equipment deterioration eventually led to an equipment fault that 

is related to the identified location and underlying physical conditions that were deter-

mined in the localization stage. Therefore, the occurrence of unexpected equipment 

faults can be reduced by combining the information from detection and localization 

stages in the final prevention stage and tailored maintenance actions can be planned 

through the data-driven insights obtained by the proposed methodology.  

5. Conclusion 

In this work, a methodology for equipment condition monitoring as decision-support for 

reliability experts in drug product manufacturing is presented. A three-stage methodolo-

gy is presented including a detection, localization and prevention stage. Thereby, 

equipment condition shifts due to deterioration are first identified in the detection stage 

Figure 5: Schematic representation of the proposed type of maintenance after the implementation 

of the developed methodology, moving from scheduled to (partly) tailored maintenance. 
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by monitoring principal curves. Then, the deterioration is localized by loading analysis 

enabling both the identification of the underlying physical condition problem as well as 

the location within the unit.  

Finally, in the prevention stage, through tailored maintenance actions, the occurrence of 

unexpected equipment faults from deterioration should be minimized. In phases where 

increased deterioration of the manufacturing equipment is detected, adequate mainte-

nance actions have to be planned and production schedules altered accordingly. By 

using the information from the localization stage, tailored actions can be planned and 

executed thus reducing maintenance efforts. 

The effective application of the methodology for monitoring the equipment condition of 

the sterilization unit as part of the aseptic filling process has been demonstrated. Its 

usefulness has been shown in both, the identification of phases with increased deteriora-

tion characterized by shifts in the monitoring curve, as well as the localization of the 

physical origin of the deterioration by a loading analysis. Consequently, decision-

support can be provided for reliability experts on needed maintenance for special 

equipment. Thus, tailored maintenance actions can be performed leading to a decrease 

in maintenance effort, time, and resulting in a higher cost effectiveness. In order to 

further improve the applicability of data-driven monitoring, it is not enough to only 

predict changes in the underlying equipment condition. The timeframe until a failure 

would likely occur also needs to be addressed. Therefore, further research on how to 

predict the exact occurrence of such failures has to be conducted in order to further 

enhance more effective production and maintenance processes in drug product manufac-

turing. 
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Abstract

The  pilot  plant  at  the  Chemical  and  Biochemical  Engineering  Department  at  DTU
(DTU Kemiteknik, abbrv. DTU KT) serves as a facility for research & education with
access  to  various  process  equipment,  commonly  employed  in  up-and  down-stream
processes.  Among  the  available  equipment  are  fermenters,  membranes,  distillation
columns, absorbers,  desorbers,  extractors,  crystallizers,  chromatography columns and
all  kind  of  high-temperature  reactors  and  process  equipment  for  particulates.  The
equipment is supplemented by mobile demonstration units for use at industrial sites and
a large-scale maritime test station. These units are perfectly suited in combination with
laboratory  facilities  to  perform  scale  up  studies  together  with  the  capabilities  of  a
modern digital infrastructure. Some of the units are only operated manually while other
units can be operated through human machine interfaces (HMI). In line with DTU’s
strategic  objectives,  DTU  KT  focuses  on  the  development  and  application  of  an
Industry 4.0 framework for its research and educational activities. Therefore, the pilot
plant  and  laboratory  facilities  are  going through a digital  transformation,  creating  a
suitable infrastructure that provides remote accessibility to all research and operational
data. These efforts are presented in this work.

Keywords: Digitalization, Database, Process Control, Digital Twin, Machine Learning

1. Introduction

The pilot plant facilities of DTU KT were established more than 50 years ago, and have
been under constant  development  since then. A first  big step after  its  establishment
dates  back  to  the  1990’s  with  the  construction  of  a  large  high-temperature  facility
followed by a general continuing update from 2005 to 2020, adding all kind of up- and
down-stream equipment for the chemical,  biochemical  and energy related industries.
Further, large pyrolysers and gazifiers for biomass and waste are located at the DTU
Risø  Campus  and  have  recently  been  supplemented  by  advanced  equipment  for
fermentations  based  biomanufacturing  along  with  mobile  units  for  industrial

http://dx.doi.org/10.1016/B978-0-323-85159-6.50254-2 
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demonstrations of CO2 capture processes and a large-scale maritime test facility located
at Hundested harbour. 

The selection of units available in the pilot plant serves to recreate complete production
lines  in  e.g.  extensive  scale-up  studies.  The  available  unit  operations  are  however
equipped with different degrees of automation and localized data storage. Some unit
operations  are  only  operated  manually  while  other  units  are  operated  through  a
LabView interface and/or simple PID control loops. Thus, the current digital framework
for the department’s interaction with the raw process data generated in the pilot plant
can be described as fragmented without connection to the internal network. This limits
the  ability  of  the  department  to  test  developed  high-level  control  and  optimization
schemes  such  as  digital  twin  implementations  that  embed  various  modelling  and
simulation environments with real-time data. A second limitation is the optimal use of
the  collected  data.  Until  now,  a  minor  subset  of  valuable  simulation  models,  also
referred to as digital twins, have been connected with the physical units available in the
pilot  plant.  The framework  presented  in  this  contribution  has  the aim to develop  a
consistent guidance for researchers  to easily integrate their simulation models at  the
department.

2. Overall Framework and Infrastructure

In the  present  strategy  period of  DTU (2020-2025),  the department  will  extend  the
capabilities of the pilot plant. The current efforts involve equipping the pilot plant with
Industry 4.0 capabilities. In-house and industrial surveys were conducted and identified
improved  data  handling as  key  needs  for  academia  and  industrial  collaborators.  To
assurethe possibility of coupling developments with external partnership from industry,
DTU KT has  selected  to  modernize  the  data  infrastructure  (Udugama  et  al.,  2021;
Bähner et al., 2021; Lopez et al., 2021).

Currently,  DTU  KT  is  implementing  the  modernization  efforts  to  overcome  the
previously  described  boundaries  (Gargalo  et  al.,  2021).  The  integration  of  the  unit
operations into automation platforms via SCADA, OPC-UA and API communication to
digital twins are shown in Figure 1. The automation software is deployed on dedicated
servers  (Windows  Server  and  Kubernetes  cluster).  Jupyter  Hub,  Kubeflow  and  git
repositories will allow researchers to easily implement real-time optimization methods
such as advanced process control and scheduling of operations (Ziaei-Halimejani et al.,
2021).  The  developed  framework  establishes  a  digitalized  research  and  education
environment.  By  describing  the  framework  from  the  bottom  up,  starting  with  the
database and the connection to digital twin models, sensors and actuators, a prototype
implementation has been established to evaluate and further improve the framework and
will described  in the fourth section.

Process  scale-up and  optimizationare  complex,  multi-faceted  disciplines  that  engage
several  domains within chemical  engineering.  Knowledge and research within all  of
these areas must be combined to achieve a feasible large-scale design of an industrial
process. Disciplines or aspects which are covered in scaling-up a process include: (I)
design of experiments  (DoE),  (II)  computational  fluid dynamics (CFD),  (III)  kinetic
studies, (IV) steady-state and dynamic simulations for mass and energy balances (V)
quantification of disturbances (VI) thermodynamic modelling of multi-phase and multi-
component systems (VII) control system design and implementation.
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this  framework  in the digital  infrastructure  to better  utilize pilot  plant  equipment  in
future plant scale-up, design and optimization research.

5. Conclusions

This paper gives an overview of the current developments with respect to the digital
transformation  journey  of  an  academic  chemical  and  biochemical  engineering
department with a strong binding to industrial research. We present how a pilot plant
can  be  retrofitted  to  accommodate  the  changes  brought  by  the  transition  towards
Industry 4.0. The efforts described in this article will provide a broad and foundational
basis to perform advanced research tasks in a highly digitalized environment leveraging
researchers’ capabilities. From the educational point of view, the digital transformation
of the department will allow to provide courses for students to equip them with skills for
the digital era of chemical and biochemical engineering.
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Abstract 
Advances in distributed control systems in the chemical industry has made it possible to 

inexpensively and easily install numerous alarms in them. A poorly designed alarm 
system might cause nuisance alarms. One type of nuisance alarm is a sequential alarm, 
which reduces the capability of operators to cope with plant abnormalities because critical 
alarms are hidden in them. We propose an identification method of sequential alarms that 
occurred at the same time. With this method, similarities of all combinations of an alarm 
subsequence are compared using the Smith-Waterman algorithm (Smith et al., 1981). We 
introduced a new objective function considering the time differences between alarms into 
this algorithm. We applied the proposed method to the simulation data of an extractive 
distillation column, and the simulation results indicate that the method can extract 
sequential alarms that occurred simultaneously in plant-operation data. 

Keywords: Big data, Operation, Alarm system, Chemical plants 

1. Introduction 
1.1. Plant alarm systems 

A plant-alarm system notifies an operator of plant-state deviations. An alarm is issued 
when the process variable deviates from the range set in consideration of safety. Advances 
in distributed control systems (DCS) in the chemical industry has made it possible to 
inexpensively and easily install numerous alarms in them. While most alarms help 
operators detect an abnormality and identify its cause, some are unnecessary. We called 
such unnecessary alarms nuisance alarms. 

There are three typical types of nuisance alarms: sequential, repeating, and those without 
operations. Sequential alarms consist of numerous alarms in succession triggered by a 
single root cause. Repeating alarms occur routinely. Alarms without operations do not 
require corresponding operation. Nuisance alarms reduce the ability of operators to cope 
with plant abnormalities because critical alarms are hidden in many of them. 

1.2. Previous research 

Cheng et al. (2013) proposed a method of calculating the similarities of alarm-flood 
sequences in plant-operation data using the Smith-Waterman algorithm. The Smith-
Waterman algorithm is a local-sequence-alignment tool for identifying common 
molecular subsequences (Smith et al., 1981). Experts can conduct a thorough analysis, 
such as root cause, on the basis of the clustered patterns of alarm floods. However, it 
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cannot be used to directly determine sequential alarms hidden in the plant-operation data. 
Wang and Noda (2017) proposed a mining method of sequential alarms in plant-operation 
data using a dot matrix method (Mount, 2004). The dot matrix method is a sequence-
alignment method for identifying similar regions in deoxyribonucleic acid (DNA) or 
ribonucleic acid (RNA), which may be a consequence of functional, structural, or 
evolutionary relationships between the sequences. Proposed method can identify 
sequential alarms from the operation data of chemical plants but occasionally fails to 
detect sequential alarms between two related sequential alarms because the time 
information when alarms occurred is not used for evaluating the similarities between them. 
The above methods also occasionally fail to identify sequential alarms when two types of 
sequential alarms occurred at the same time. 

1.3. Objective 
A poorly designed alarm system triggers nuisance alarms, which might lead to oversight 

of critical alarms. Such oversight might cause plant accidents. We propose an 
identification method of sequential alarms. It takes into account multiple sequential 
alarms that occurred simultaneously and the time distances among alarms. 

2. Proposed method 
2.1. Plant-operation data 
Plant-operation data consist of the alarm tag of alarm or operation and occurrence times. 

There are two types of alarm tags, process variable and operation variable. Table 1 shows 
an example of plant-operation data, where “A” indicates an alarm or operation, subscript 
values indicate their numbers of alarm or operation. When an alarm occurs, it is recorded 
in the plant database. Table 1 shows that A1, A2, A3, and A4 occurred in the order A1→

A2→A4→A2→A3 in about 20 minutes. A huge amount of data is accumulated every day, 
where nuisance alarms are hidden.  

Table 1 Example of plant-operation data 

Date Time Tag Type 
2021/1/1 0:08:53 A1 Alarm 
2021/1/1 0:09:36 A2 Operation 
2021/1/1 0:11:42 A4 Alarm 
2021/1/1 0:25:52 A2 Operation 
2021/1/1 0:30:34 A3 Alarm 

2.2. Problem formulation 
Plant-operation data are characterized by these tags and the order of alarm occurrence. 

When an alarm sequence occurs repeatedly in plant-operation data, those alarms are 
considered to be sequential. The problem of identifying sequential alarms in such data is 
formulated as the problem of searching for a repeated subsequence of alarms in plant 
operation data. 
2.3. Preparation 
Our proposed method converts plant-operation data into an alarm subsequence by using 

a sliding window (Mount, 2004), which prevents the window from extracting a 
subsequence in which the time distances among alarms are critically different. The alarm 
sequence is converted into a set of windows consisting of occurrence alarms in a pre-
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determined time window. By enabling overlapping and extracting of alarm subsequences, 
it is possible to deal with cases in which multiple types of sequential alarms are issued at 
the same time. 

2.4. Similarity evaluation method 

The proposed method uses a modified Smith-Waterman algorithm (Smith & Waterman, 
1981) for searching sequential alarms. It finds a pair of segments, one from each of two 
long sequences, such that there is no other pair of segments with greater similarity. It is a 
dynamic algorithm for finding the highest scored local sequence alignment and is partially 
used with the method by Cheng et al. (2013). 

Their method sums three types of scores, i.e., the match score when the corresponding 
alarms match the similarity between the two alarm columns, mismatch score when they 
do not match, and insert score of the gap when there is a gap.  

The final similarity score is calculated by adding these scores. In this research, a 
mismatch score and gap score are considered constant, and the match score is calculated 
on the basis of the time distances among alarms. 

For example, consider the following two sequences. 

S1 = a1, a2, …am, …, aM, m = 1, 2, …, M (1) 

S2 = b1, b2, …, bn, …, bN, n = 1, 2, …, N, (2) 

where am is the mth tag in aligned segment S1 of length M, and bn is the nth tag in aligned 
segment S2 of length N. The similarity evaluation method is given a pair of contiguous 
subsequences, one from each of the two sequences by inserting gaps in one or both of 
them. The similarity score is positive for a match and negative for a mismatch. For a 
symbolic pair including a gap symbol, the similarity score is negative as a penalty of 
inserting a gap. 

When the alarms do not match, the score is weighted by the time differences among the 
alarms, and the similarity between the sequences is evaluated. With this method, to 
consider the time differences among alarms, which is a problem in previous researches, 
the match score when alarms between two sequences are matched individually is 
calculated on the basis of the time differences among alarms.  

It first calculates the weight of the time distances among matching alarms using the 
scaled Gaussian function Eq.(3).  

w(D) = exp	(- D2 	2σ2)⁄ , (3) 

Where w is the weight based on the time distances among alarms, D, and σ is the standard 
deviation. The scaled Gaussian function is a normal distribution expressed from 0 to 1. 
The method then calculates the similarity score using Eq.(4), where s is the similarity 
score, μ is the mismatch score, and smax is the maximum match score. 

s(am, bn) = &μ
(1 - w) + smax × w if am = bn
𝜇        if am	≠ bn

, (4) 
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Eq.(4) indicates that a high match score means high similarity between those 
subsequences. The match score is close to the mismatch score when there is a long time 
distance and the maximum match score is a close range. 

To obtain the alignment between S1 and S2, the score matrix H is calculated using the 
dynamic programming method. Eq.(5) expresses Hm,n between am and bn, where δ is the 
penalty of inserting a gap. 

Hm,n	=	max(Hm-1,n-1	+	s(am,bn),	Hm-1,n	+	δ,	Hm,	n-1	+	δ,	0), (5) 

The Smith-Waterman algorithm finds the pair of segments with maximum similarity by 
first locating the maximum element because it indicates an optimal alignment. The Smith-
Waterman algorithm searches for pairs of maximally similar subsequences on a 
mathematically rigorous basis. It can extract an optimum subsequence when multiple 
sequential alarms occurred simultaneously. 

2.5.  Grouping 

The smith-Waterman algorithm cannot aggregate similar sequential alarm patterns when 
the same sequential alarm occurred several times in the plant-operation data. This 
algorithm is a local-sequence-alignment tool that searches for a pair of segments, one 
from each of two long sequences. The proposed method creates a color map on the basis 
of the similarity score of extracted sequential alarm patterns, and aggregates the patterns 
using the single-linkage method. The color map is used to identify sequential alarms if 
the similarity score is any given threshold or above. The proposed method can effectively 
aggregate similar sequential alarm groups when sequential alarms occurred several times. 

2.6. Calculation procedure 

The proposed method’s calculation procedure is as follows.  

(1) Converts plant-operation data into an alarm subsequence by using a pre-determined 
time window. 

(2) Calculates the similarity score by using a modified Smith-Waterman algorithm. 
(3) Identifies sequential alarms in accordance with a cluster of sequential alarm patterns 

by using the similarity-score color map. 

3. Case study 
3.1. Simulation Data 
We applied the proposed method to the simulation data of the extractive distillation 

column shown in Fig.1. There was a total of 18 alarms in the DCS, and three types of 
malfunctions, low flow rate of coolant, low steam pressure, and valve stiction, were 
artificially induced in the process simulation. A defined operation for each malfunction 
was carried out after each malfunction occurred. Alarm occurrences were recorded in the 
plant-operation data. During a process simulation of 15 days, 265 alarms and operations 
were recorded in the plant-operation data. The grey area in Fig.2 is region of where two 
types of malfunctions occurred at the same time.  

3.2. Results of identified sequential alarms 
We set the window size to 120 minutes, maximum match score to 1, mismatch score to 

-0.6, gap score to -0.4, and delta to 42.8390. The method extracted a subsequence as a 
sequential alarm pattern when the similarity score was equal to or higher than 10. As a 
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Fig.1 Process flow of extractive distillation column 

Fig.2 Simulated plant-operation data 
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Abstract 
CNN-based models for fault diagnosis have achieved high prediction accuracy, but the 
lack of explainability makes them hardly be understood by humans. In this paper, a 
technique used to produce visual explanations for CNN has been introduced to a CNN-
based fault diagnosis model, DCNN, to make it more transparent and understandable. 
Experiments on Tennessee Eastman process showed variables that DCNN pays more 
attention to when diagnosing faults, which makes the decision making process of 
DCNN more explainable and understandable. 

Keywords: fault diagnosis, explainable deep learning, convolutional neural network, 
chemical process safety 

1. Introduction 
Fault detection and diagnosis (FDD) is quite critical to safe operations of chemical 
processes to identity abnormal events that can hardly be controlled by distributed 
control systems (DCS). In decades, many researchers have been proposed different 
models of real-time FDD for processes. These models can be categories into 
quantitative model-based, qualitative model-based and process history-based models 
(Venkatasubramanian et al. 2003). Process history-based models are further classified 
into qualitative and quantitative models. The latter is also commonly termed as data-
driven models. Data-driven models based on deep learning have drawn much attention 
of researchers these years, such as DBN-based models (Z. Zhang and Zhao 2017), 
CNN-based models (H. Wu and Zhao 2018), RNN-based models (S. Zhang, Bi, and Qiu 
2020), autoencoder-based models (Cheng, He, and Zhao 2019) (Zheng and Zhao 2020) 
and GCN-based models (D. Wu and Zhao 2021). These models achieved high 
prediction accuracy, but the lack of explainablity makes them hard to understand by 
humans. The research of explainable deep learning models is critical to the application 
promotion for fault diagnosis. 

In this paper, a technique used to produce visual explanation for CNN has been 
introduced to a CNN-based fault diagnosis model, DCNN, to make it more transparent 
and understandable. Grad-CAM was firstly introduced in Section 2, then Grad-CAM 
was applied to DCNN model with Tennessee Eastman process as the benchmark in 
Section 3, and the conclusio was drawn in Section 4 finally. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50256-6 
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2. Explainable CNN and Grad-CAM 
In recent years, deep learning had made great achievements in many research areas. 
Deep learning has many advantages such as low-cost modelling, self-directed learning 
from data and high prediction accuracy. However, the inference process of deep 
learning models cannot be fully understood by human beings. To understand how 
models make decisions, many researchers have been studying explainable deep learning 
recently. 

CNN, as an important class of deep learning models, has made great success in the 
fields of computer vision and other engineering. Many models and methods have been 
proposed to make CNN more understandable. Grad-CAM (Selvaraju et al. 2020) is a 
technique for producing visual explanations for decisions from CNN based models, 
making them more transparent and explainable. As a gradient-based method, Grad-
CAM uses the class-specific gradient information flowing into the final convolutional 
layer of a CNN in order to produce a coarse localization map of the important regions in 
the image when it comes to classification (Linardatos, Papastefanopoulos, and 
Kotsiantis 2021). Figure 1 is an example of Grad-CAM applied to an image 
classification task in (Selvaraju et al. 2020). It shows that Grad-CAM can highlight the 
key region on the image corresponding to different classification results. This 
localization map can be regarded as the basis for decision making of CNN, which is also 
reasonable and understandable to humans. 

 
Figure 1: Example of Grad-CAM applied to an image classification task in (Selvaraju et al. 2020). 
(a) Original image with a cat and a dog. (b-c) Support for the cat or the dog category according to 
various visualizations for VGG-16. 

 
Figure 2: Grad-CAM overview 

The workflow of computing the class-discriminative localization map is shown as 
Figure 2. Given a CNN that has been well trained for a classification task and a specific 
class 𝑐𝑐, the neuron importance weights 𝛼𝛼𝑘𝑘𝑐𝑐 of feature maps in a convolutional layer can 
be calculated as Eq.(1). 
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𝛼𝛼𝑘𝑘𝑐𝑐 =
1
𝑍𝑍
��

𝜕𝜕𝑦𝑦𝑐𝑐

𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗𝑖𝑖

 (1) 

𝑦𝑦𝑐𝑐 is the score for class 𝑐𝑐 in the last fully connected layer before the softmax layer. 𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘  
is the activations of the 𝑘𝑘𝑡𝑡ℎ feature map (indexed by 𝑖𝑖 and 𝑗𝑗 respectively over the width 
and height dimensions) in the last convolutional layer. Eq.(1) means the gradients 
propagated from outputs back to feature maps, and 𝛼𝛼𝑘𝑘𝑐𝑐 captures the importance of the 
𝑘𝑘𝑡𝑡ℎ feature map for a target class 𝑐𝑐. The localization map Grad-CAM can be calculated 
as Eq.(2). 

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ��𝛼𝛼𝑘𝑘𝑐𝑐𝐴𝐴𝑘𝑘
𝑘𝑘

� (2) 

The localization map is finally obtained by weighted summing all the 𝑘𝑘 feature map 
activations and applying the ReLU function. 

3. Understand how CNN diagnoses faults 
3.1. CNN-based fault diagnosis 

Since CNN-based models have been applied to fault diagnosis successfully, Grad-CAM 
is also suitable for the interpretability of these models to study how CNNs diagnose 
faults for processes. In these models, fault diagnosis of a chemical process is generally 
regarded as a classification problem. Given an observation 𝑿𝑿𝑡𝑡 ∈ ℝ𝑣𝑣×𝑤𝑤  at time 𝑡𝑡, the 
current operating state 𝑦𝑦 ∈ ℕ  of the process should be identified out of a set of 
operating states consisting of normal state and different types of faults. The observation 
𝑿𝑿𝑡𝑡  is a matrix with the time window and process variable dimensions. If 𝑤𝑤 > 1, it 
means the observation includes data before 𝑡𝑡 in a time window 𝑤𝑤 as shown in Eq.(3). 

𝑿𝑿𝑡𝑡 = �

𝑥𝑥1,𝑡𝑡 𝑥𝑥1,(𝑡𝑡−1) ⋯ 𝑥𝑥1,(𝑡𝑡−𝑤𝑤+1)
𝑥𝑥2,𝑡𝑡 𝑥𝑥2,(𝑡𝑡−1) ⋯ 𝑥𝑥2,(𝑡𝑡−𝑤𝑤+1)
⋮ ⋮ ⋱ ⋮
𝑥𝑥𝑣𝑣,𝑡𝑡 𝑥𝑥𝑣𝑣,(𝑡𝑡−1) ⋯ 𝑥𝑥𝑣𝑣,(𝑡𝑡−𝑤𝑤+1)

� (3) 

The operating state or class 𝑦𝑦 is integer between 0 and 𝑁𝑁𝑐𝑐 (the number of different fault 
states). 𝑦𝑦 = 0 means the process is under normal operating state, and 𝑦𝑦 = 𝑐𝑐 (1 ≤ 𝑐𝑐 ≤
𝑁𝑁𝑐𝑐) means the fault 𝑐𝑐 has occurred. With enough pairs of observations and fault labels, 

a dataset �𝑿𝑿𝑡𝑡
(𝑖𝑖), 𝑦𝑦(𝑖𝑖)�

𝑖𝑖=1

𝑁𝑁
 is obtained for training and testing a CNN-based fault diagnosis 

model. 

In this paper, the DCNN model proposed by (H. Wu and Zhao 2018) is used to show 
how Grad-CAM can be applied to CNN-based fault diagnosis. The chosen architecture 
is ‘Conv(64)-Conv(64)-Pool-Conv(128)-Pool(2×1)-FC(300)*-FC(21)’ (model 7). 

3.2. Tennessee Eastman process 

Tennessee Eastman (TE) process (Downs and Vogel 1993) is a simulation process 
model modified based on an actual industrial process of Eastman Chemical Company in 
Tennessee, USA. In decades, TE process has been utilized for research in different 
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fields such as process control, process monitoring and so on. TE process mainly consists 
of five unit operations and defines 20 different process disturbances. In the simulation 
program of TE process, 52 variables can be observed, and 20 different disturbances can 
be inserted at any time to make the process operate in a fault state. 

3.3. Data preparation and model training 

The process of data preparation and model training keeps the same with (D. Wu and 
Zhao 2021). To obtain enough data for training the DCNN model, the simulation 
program of TE process ran for 3000 h in normal state. Under every different fault, the 
simulation program ran for 20 h after the fault inserted, and 10 sets of parallel 
simulations were carried out. All the data have been normalized with the mean and 
standard deviation calculated from data in the normal state. The normalized data were 
then cut to slices with the time widow of 1 h, and the data are sampled every 3 min. 
Data from 8 sets of parallel simulations were used for training and the rest 2 sets were 
used for testing. 

The DCNN model was trained for 50 epochs with Adam optimizer, the mini-batch size 
was set to 128 and the learning rate was set to 0.001. The trained DCNN model finally 
got an average classification rate of 0.93. 

 
Figure 3: Average Grad-CAM localization map of 15 different faults of TE process 

3.4. Explain fault diagnosis results with Grad-CAM 

After the DCNN model was well trained, Grad-CAM was applied to the model 
following Eq.(1) and Eq.(2). The localization map of Grad-CAM is calculated based on 
a certain instance or observation 𝑖𝑖. In this paper, we care more about the variables but 
not time windows that DCNN focuses on when diagnosing faults. Thus, the average 
localization map for a certain type of fault 𝑐𝑐 was calculated with all the maps obtained 
from all observations of the fault 𝑐𝑐 as Eq.(4). 

𝐿𝐿�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 =
1
𝑁𝑁
�𝐿𝐿(𝑖𝑖)

𝑐𝑐
𝑁𝑁

𝑖𝑖=1

 (4) 
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𝐿𝐿�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐  was then normalized using its maximum and minimum values to make every 
value falls into [0,1]. 𝐿𝐿�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐  of the first 15 faults with known causes in Table 1 is 
shown as Figure 3. When values changes from 0 to 1, the colour in Figure 3 changes 
from white to black. Figure 3 shows that what variables DCNN mainly focused on when 
diagnosing different faults. The deeper the colour is, the more important the variable is. 
Grad-CAM explains the basis of decision making of DCNN for fault diagnosis in a 
visual and understandable way. 
Table 1: Comparison between variables affected by disturbances firstly and variables CNN 
focused on when diagnosing faults. 𝑇𝑇,𝑃𝑃, 𝐿𝐿,𝑄𝑄,𝑥𝑥,𝑢𝑢 mean temperature, pressure, level, flow rate, 
composition, control signal respectively. Subscript means unit operations or streams. Superscript 
means characteristics or components. 

Number Variables affected firstly Variables CNN focused on 

IDV (1) 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴 , 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶 ,𝑄𝑄𝑠𝑠1,𝑄𝑄𝑠𝑠4,𝑢𝑢𝑠𝑠1
𝑄𝑄 ,𝑢𝑢𝑠𝑠4

𝑄𝑄  𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

IDV (2) 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴 ,𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑩𝑩 ,𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑪𝑪 ,𝑄𝑄𝑠𝑠1,𝑄𝑄𝑠𝑠4,𝑢𝑢𝑠𝑠1
𝑄𝑄 ,𝑢𝑢𝑠𝑠4

𝑄𝑄  𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷 ,𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑪𝑪 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸 , 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷 ,𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑩𝑩  

IDV (3) 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐  𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

IDV (4) 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐 ,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑄𝑄𝑠𝑠1,𝑄𝑄𝑠𝑠2 

IDV (5) 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑢𝑢𝑠𝑠2
𝑄𝑄 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻  

IDV (6) 𝑸𝑸𝒔𝒔𝒔𝒔,𝑢𝑢𝑠𝑠1
𝑄𝑄 ,𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴  𝑸𝑸𝒔𝒔𝒔𝒔,𝑄𝑄𝑠𝑠2,𝑄𝑄𝑠𝑠3,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

IDV (7) 𝑄𝑄𝑠𝑠4,𝑢𝑢𝑠𝑠4
𝑄𝑄 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

IDV (8) 𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑨𝑨 ,𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑩𝑩 , 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐶𝐶 ,𝑄𝑄𝑠𝑠1,𝑄𝑄𝑠𝑠4,𝑢𝑢𝑠𝑠1
𝑄𝑄 ,𝑢𝑢𝑠𝑠4

𝑄𝑄  𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑨𝑨 ,𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝑩𝑩 ,𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸  

IDV (9) 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑢𝑢𝑠𝑠1
𝑄𝑄 ,𝑢𝑢𝑠𝑠3

𝑄𝑄 ,𝑢𝑢𝑠𝑠4
𝑄𝑄 ,𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

IDV (10) 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  

IDV (11) 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑄𝑄𝑠𝑠4,𝑄𝑄𝑠𝑠3 ,𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

IDV (12) 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔 

IDV (13) 𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑻𝑻𝒓𝒓𝒓𝒓𝒂𝒂𝒂𝒂𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐  𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓,𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

IDV (14) 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄 ,𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑄𝑄𝑠𝑠1,𝑄𝑄𝑠𝑠2,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒄𝒄𝒄𝒄𝒄𝒄  

IDV (15) 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹 ,𝑢𝑢𝑠𝑠2
𝑄𝑄 ,𝑢𝑢𝑠𝑠3

𝑄𝑄  

It should be noted that the important variables in Figure 3 are not necessarily the 
disturbance variables. Table 2 concludes the differences between the variables affected 
by disturbances firstly (observable root causes) and the first 5 variables that have 
highest values in Grad-CAM localization maps for every type of fault. For some faults, 
Grad-CAM localized some of the root causes or observable variables affected directly 
by root causes. For other faults, DCNN focused none of the root causes. This indicates 
that DCNN pays more attention to those sensitive variables that changes intensely with 
disturbances but not disturbance variables themselves. For those faults that are hard to 
identity (such as fault 3, 9 and 15), all variables only change slightly after the fault has 
occurred. Thus, DCNN can hardly localize some certain variables to determine the type 
of fault. This also reflects on the Grad-CAM localization maps that the variance of all 
the values in is small and they have little differences in colour. 
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4. Conclusions 
In this paper, Grad-CAM, a technique for producing visual explanations for CNN, is 
introduced. Grad-CAM uses the gradient information flowing back into the last 
convolutional layer of the CNN to assign importance values to each neuron for a 
particular decision of interest (Selvaraju et al. 2020). Grad-CAM was applied to the 
DCNN model for fault diagnosis to make the inference process transparent. With a well 
trained DCNN model, Grad-CAM generates a localization map for an input matrix to 
show the importance of different neurons. This can help humans understand what 
variables DCNN pays more attention to when diagnosing the type of faults of the 
process. The results of experiments on TE process shows that the DCNN model pays 
more attention to those sensitive variables that changes intensely with disturbances but 
not disturbance variables themselves. When all variables only change slightly after 
faults happen, it’ll be difficult for DCNN to identity the type of fault. In this case, the 
localization maps have only little differences in colour in different region. Future work 
will focus on construct more explainable deep learning model for fault diagnosis. 
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Abstract 

The development of condition monitoring systems often follows a modular scheme 

where some systems are already embedded in certain equipment by their manufacturers, 

and some are distributed across various equipment and instruments. This work 

introduces a framework for guiding the modular development of monitoring systems 

and integrating them into a comprehensive model that can handle uncertainty of 

predictions from the constituent modules. Furthermore, this framework improves the 

robustness of the modular condition monitoring systems as it provides a methodology 

for maintaining quality assurance and preventing unnecessary shutdowns in the event of 

some modules going off-line due to condition-based maintenance interventions. 

Keywords: Condition Monitoring, Probabilistic Programming, Modular, Machine 

Learning, Bayesian 

1. Introduction 

The challenges in modeling pharmaceutical powder processes, as outlined in Rogers and 

Ierapetritou (2014), has put an emphasis on the use of data-driven models as the basis 

for developing condition monitoring (CM) systems. While this approach offers a 

practical solution, as Webb and Romagnoli (2021) recently demonstrated for the 

Tennessee Eastman Process (TEP) case study, it ignores the modular nature of process 

control system development.  

Since the data-driven models often require data spanning multiple unit operations in 

order to maximize the usage of process data, CM applications are likely to be on levels 

1 and 2, which are distributed control systems in the process control implementation 

hierarchy introduced by Su et al. (2019). These modules are also likely to be focused on 

process faults, which differ from the CM modules at level 0, which are directly 

embedded into more advanced equipment. Because embedded modules are developed 

by the vendors, whose priority is on the safe and reliable operation of the equipment, 

they tend to focus on safety-related faults like electrical and mechanical faults.  

All the aforementioned fault types need to be considered holistically, especially since 

they are likely correlated with each other. However, the varying levels at which these 

modules are installed in the process control implementation hierarchy, and the 

difference in their goals, create an integration challenge that needs to be addressed in 

order to have a safe and reliable operation of a continuous processing plant. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50257-8 
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2. Condition Monitoring Framework Development 

A natural framework for addressing this integration issue would be the probabilistic 

graphical modeling methodology, which is commonly used to implement hierarchical 

Bayesian models. As recently demonstrated by Radcliffe and Reklaitis (2021), this 

methodology is effective in systems where data is limited and there is significant 

uncertainty in the model parameters. Since this method is fundamentally based on 

modularity, where complex physical systems are constructed from simpler parts, it is 

sensible to utilize it for the CM module integration problem.  

Under this methodology, the basic parts of the system are random variables with 

uncertain values, which are depicted as nodes in the graphical model. Conditional 

dependencies may be assigned based on expert knowledge on the system, and arcs can 

be drawn between one or more nodes to capture these relationships. Altogether, the 

nodes and the arcs comprising the probabilistic graphical model (PGM) form a compact 

representation of joint probability distributions where probability theory can be used to 

model the uncertainty in these variables and to make inferences on variables of interest.  

2.1. A Probabilistic Condition Monitoring Model for Continuous Dry Granulation 

The continuous dry granulation line of the Purdue University Pilot Plant comprises 

several unit operations that can blend pharmaceutical excipients and active 

pharmaceutical ingredients (API), granulate them, and then compress them into tablets 

using a rotary tablet press (see Figure 1). At the heart of this process is the granulation 

step, which takes place in an Alexanderwerk WP-120 roller compactor (RC). In the RC

unit, the pharmaceutical blend is compacted into a ribbon, cut into flakes, and 

subsequently broken down into the desired granule size distribution in a classifier mill. 

For clarity in presenting basic concepts, the remaining discussion will focus on the RC. 

 

Figure 1. Dry granulation line at the Purdue University pilot 

plant. 

 

Figure 2. Roller compactor 

condition monitoring model. 

A condition monitoring model can be constructed by considering two types of condition 

variables, the material condition and the equipment condition, and then forming 

appropriate relationships between them. For the RC, this model is shown in Figure 2. 

The roll and mill variables (green nodes) represent the condition of the respective roller 

compactor components. The WP-120 RC has a built-in condition monitoring system for 

each of these components, so these variables also represent “embedded” or “level 0” 

CM modules. The blend, ribbon, and granules variables do not have condition 

monitoring systems by default; so, these need to be developed as “distributed” or “level 

1” CM modules that require the integration of additional PAT tools. Discussing the 

development of these modules is beyond the scope of the current paper, so they will be 
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assumed to provide uncertain values for their corresponding variables, as is the case for 

the embedded modules. 

At this stage, the model in Figure 2 serves as a useful guideline for the modular 

development of CM modules that supports the complete observability of variables 

pertinent to Quality-by-Design (QBD) principles. Under QBD, the Critical-Quality-

Attributes (CQA) targets of a unit operation should be achieved by controlling the 

Control Process Parameters (CPP) and the CQA of the preceding unit operation. For the 

RC model, the ability to control the CPP is represented by the condition of the 

equipment (i.e., the rolls and the mill), and the CQAs are represented by the condition 

of the material (i.e., blend, ribbon, and granules).  

Each random variable in this graph, whether it is a material condition (blue node) or 

equipment condition (green node), can have discrete states: normal or a faulty state. 

With multiple variations possible for each faulty state, each node represents a 

categorical distribution, which assigns a probability for each possible state. For clarity, 

these distributions are depicted as probability tables that are linked to its corresponding 

node via broken lines in Figure 3. Moreover, the variables are assumed to take only two 

possible states, whereas in reality, they can have up to “N” number of states, depending 

on the number of faulty conditions that are recognized for each node.  

 

Figure 3. A probabilistic condition monitoring model for the roller compactor. 

2.2. Probabilistic Programming and Inference 

By the basic laws of probability, the entire graph represents the joint probability of all 

the condition monitoring variables per the following equation: 

𝑃(𝐵𝑙𝑒𝑛𝑑, 𝑅𝑜𝑙𝑙𝑠, 𝑅𝑖𝑏𝑏𝑜𝑛, 𝑀𝑖𝑙𝑙, 𝐺𝑟𝑎𝑛𝑢𝑙𝑒) = 

𝑃(𝑅𝑜𝑙𝑙𝑠)𝑃(𝑀𝑖𝑙𝑙)𝑃(𝐵𝑙𝑒𝑛𝑑)𝑃( 𝑅𝑖𝑏𝑏𝑜𝑛 ∣ 𝐵𝑙𝑒𝑛𝑑, 𝑅𝑜𝑙𝑙𝑠 )𝑃( 𝐺𝑟𝑎𝑛𝑢𝑙𝑒 ∣ 𝑀𝑖𝑙𝑙, 𝑅𝑖𝑏𝑏𝑜𝑛 ) 
(1) 

With this model, interesting analysis tasks such as probabilistic inference can be 

performed. For example, given observations on the condition of the roll and the ribbon, 

e.g., both are at normal state so their values equal 0, it is possible to directly compute 

the posterior distribution of the condition of the blend using Bayes’ Rule. 

𝑃( 𝐵𝑙𝑒𝑛𝑑 ∣ 𝑅𝑜𝑙𝑙𝑠 = 0, 𝑅𝑖𝑏𝑏𝑜𝑛 = 0 ) =
𝑃(𝐵𝑙𝑒𝑛𝑑,𝑅𝑜𝑙𝑙𝑠=0,𝑅𝑖𝑏𝑏𝑜𝑛=0,𝑀𝑖𝑙𝑙,𝐺𝑟𝑎𝑛𝑢𝑙𝑒)

𝑃(𝑅𝑜𝑙𝑙𝑠=0,𝑅𝑖𝑏𝑏𝑜𝑛=0)
  (2) 

where: P(Rolls = 0, Ribbon = 0) =  

∑ 𝑃(𝐵𝑙𝑒𝑛𝑑, 𝑅𝑜𝑙𝑙𝑠 = 0, 𝑅𝑖𝑏𝑏𝑜𝑛 = 0, 𝑀𝑖𝑙𝑙, 𝐺𝑟𝑎𝑛𝑢𝑙𝑒)𝐵𝑙𝑒𝑛𝑑,𝑀𝑖𝑙𝑙,𝐺𝑟𝑎𝑛𝑢𝑙𝑒   

(3) 
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However, with modularity in mind, this model is expected to get bigger as adjacent unit 

operations along the manufacturing line are integrated. The increasing number of 

variables will slow down the exact inference computations to a point that makes it 

impractical for monitoring applications. To circumvent this, the graphical model can 

instead be encoded in a probabilistic programming framework like Infer.NET (Minka et 

al., 2018), where approximate inference tasks can be quickly performed via efficient 

message passing algorithms. 

3. Results and Discussion 

3.1. Parameter Learning 

As demonstrated, a fully-defined model such as shown in Figure 3 can make useful 

predictions on variables based on observations from other variables. However, in 

practice, these parameters are not always initially available. Fortunately, the graphical 

modeling methodology can perform parameter learning by simply adding the 

parameters as variables in the graph, and then using the same approximate inference 

techniques to infer parameter values. Figure 4 shows the modified graph that addresses

parameter learning; the yellow nodes represent the prior probabilities of the CM 

modules, and the block arrows depict message passing during the inference of the prior 

probabilities. In order for the message passing algorithms to remain computationally 

tractable as more modules are integrated, the probabilities of the parameter variables are 

assigned a Dirichlet distribution, which is a conjugate prior for a categorical 

distribution. This conjugacy ensures that the number of distribution parameters do not

increase intractably during the implementation of the message passing algorithms. 

(Winn, Bishop, and Diethe 2015)  

 

Figure 4. Parameter learning in 

a probabilistic graphical model. 

 

Figure 5. Dataset required for parameter learning (where 

all condition variables are observed). 

Initially, the prior variables can be assigned either non-informative or weakly 

informative priors. Then, parameter learning can be performed on data acquired when 

all the CM modules are functional (see Figure 5), and message passing algorithms can 

be used to infer the posterior distributions of the parameter variables. As more data is 

collected, the inferred distribution of the parameter variables would be more “informed” 

and have less variance.  

This can be observed from the results in Figure 6, which shows the inferred 

probabilities of the blend and mill condition. After just 100 observations, the 

comprehensive model was able to correctly infer the “true” probabilities of the model 

shown in Figure 3, which is from where the dataset was randomly sampled. Beyond this 
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number of observations, the mean of the inferred probability distributions barely 

changed, while the variance continued to decrease significantly. 

 

Figure 6. Learned probabilities for the blend, mill, and roll condition at varying sizes of 

training data. 

3.2. Predictive Modeling 

One of the main challenges in monitoring the CQA of the RC is the lack of current 

capability to measure the condition (e.g., flowability and tabletability) of the granules in 

real-time. Fortunately, the graphical modeling framework allows for the inference of the 

granule condition given observations from other CM modules. This scenario is shown in 

Figure 7, with the block arrows indicating message passing from observed variables that 

are not d-separated(Bishop 2006) from the granule variable. Results of this inference are 

shown in Figure 8, where based on observations from the surrounding CM modules, the 

probability of the granule condition changes correspondingly.  

 

Figure 7. Granule Condition Inference 

Scheme 

 

Figure 8. Inference Results on the Granule 

Condition 

Throughout the operation of a continuous processing line, some CM modules might 

break down, rendering the condition of the actual material and equipment to be 

unobservable. For the RC example, the NIR sensor observing the ribbon could be 

undergoing maintenance because of fouling. While this temporary lack of observability 

could compromise quality assurance of the process, it should not be a reason for 
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shutting down. Using the message passing scheme shown in Figure 9, the condition of 

the granule could still be inferred from available CM modules such as the blend, rolls, 

and the mill condition monitoring modules. The results of these predictions are shown 

in Figure 10, for varying conditions of the blend, rolls, and the mill. 

 

Figure 9. Inference Scheme with Multiple 

Unobserved Variables. 

 

Figure 10. Inference Results on the Granule 

Condition with Unobserved Ribbon Condition. 

4. Conclusions 

A comprehensive condition monitoring model for a roller compactor was developed by 

first considering material and equipment condition variables that are involved, and then 

establishing logical relationships between them. The condition variables were assumed 

to be categorical variables with discrete states, and their relationships were encoded into 

a probabilistic programming framework. This framework was able to efficiently 

perform approximate inference to learn the parameters of the model, and most 

importantly, to infer the condition of other less-visible variables like the granule 

condition based on observations from other condition variables. 
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Abstract

While running process monitoring and fault detection software online, it is quite common
to face alarms triggered by faults resulting from non-steady state transients. Usually soft
sensor models (e.g., principal component analysis (PCA) models) are updated periodi-
cally to accommodate such process changes so that similar alarms will not be prompted
in the future operation. During online operation, however, alarms might overwhelm oper-
ators before model updates and suppressing the alarms online temporarily after checking
upon the process or equipment accordingly is deemed a better alternative. In this paper, a
framework is presented on how to adjust standard deviations of parameters online to tem-
porarily turn off T 2 and Q alarms in the PCA implementation for transient faults while
keep the product’s capability to detect other types of faults. Such a framework is tested
and validated in a case study using Emerson’s Continuous Data Analytics (CDA) product.

Keywords: fault detection, alarm suppression, online, transient state

1 Introduction

In modern chemical plant, numerous process variables must be kept within specific limits,
and excursions of key variables beyond those limits are often bound to have ramifications
in plant safety, the environment, product quality and plant profitability. Process monitoring
and fault detection plays an increasingly important role in ensuring that the plant perfor-
mance meets the operating objectives. Process monitoring takes its root from uni-variate
approaches including limit checking, quality control charts and the Six Sigma Approach.
However, such methods fail to provide satisfactory results as quality variables increase
in number and become highly correlated. To overcome such challenges faced in process
monitoring, multivariate methods such as principal component analysis (PCA), project to
latent structure (PLS) have been widely used. Recently, uniform manifold approximation
and projection (UMAP) from the machine learning community has also gained popularity
among industrial practitioners thanks to its superior performance in dimensional reduction
(Joswiak et al., 2019; Webb and Romgnoli, 2021). Indeed, several decent review papers
on applying state-of-art statistical and machine learning techniques to process monitoring
and fault detection have been published (Qin, 2014; Chiang et al., 2017; Ge, 2017; Qin
et al., 2021). Yet in this paper we focus on solving problems related to online implemen-
tation of PCA in Emerson’s Continuous Data Analytics (CDA) product used for process
monitoring. During online implementation, the life span of PCA models is limited be-
cause most processes rarely stay at the same steady state and slow changes in equipment,
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feedstock and operating strategy may all compromise model performance. Although PCA
models are updated periodically to accommodate process changes, operators are often
overwhelmed by alarms generated by state-transient faults during online operation. In
addition, simply acknowledging alarms associated with control limit violation is not desir-
able as the product might lose the capability to detect other faults that violate the control
limits as well. After checking upon the process or equipment indicated by alarms, the
operators request for tools to suppress them online temporarily before next model update.
Industrial practitioners from Dow Chemical shared their experiences on online soft sensor
maintenance where robust mean and variance estimators of the inputs and outputs are used
(Chiang et al., 2017; Lu and Chiang, 2018) to overcome the long-term model degradation
problem. Inspired by such work, a new framework is developed which automatically ad-
justs standard deviations of parameters online to temporarily turn off T 2 and Q alarms
associated with transient faults and keeps the product’s capability to detect other types of
faults.

The remainder of this paper is organized as follows. Section 2 describes the proposed
framework for suppressing transient fault alarms online, and it is validated by case study
shown in Section 3. Section 4 draws conclusions based on results obtained in the study.

2 Algorithm for suppressing transient fault alarms online

Assuming each alarm suppressing step leads to the values of T 2 and Q falling around 0.8
of their control limits respectively, standard deviation of the ith parameter (σi) has to be
adjusted to achieve such a goal.

2.1 T 2 alarms

If a T 2 alarm occurs at time t in a new steady state, since the standard deviation array
of all parameters (σa,0) is available, by incorporating the contribution of T 2, the updated
standard deviation (σb,0) is provided by:

σb,j,0 =

[ ∣∣contT 2
t,j

∣∣
maxj

{∣∣contT 2
t,j

∣∣}
(

T 2
t

0.8T 2
UCL

− 1

)
+ 1

]
σa,j,0 (1)

where T 2
UCL is the control limit of Hotelling T 2, and

∣∣contT 2
t,j

∣∣ is the contribution of jth
parameter. As shown in Eq. (1), if the jth parameter makes no contribution to the T 2,
i.e.,

∣∣contT 2
t,j

∣∣ = 0, the corresponding jth standard deviation will not be changed. After
obtaining σa,0 and σb,0, an interactive strategy based on the bisection method is used
to obtain the standard deviation array, σc, which leads to updated T 2 values close to the
target of 0.8T 2

UCL.

2.2 Q alarms

After suppressing the T 2 alarms, there still might be Q alarms that require operators’
attention. Although the Q values might have already decreased with increased standard
deviations σc obtained in the T 2 alarm suppressing step, they need to be further reduced
to quell the remaining Q alarms. An approach similar to the strategy used in T 2 alarm
management is applied, shown as follows.
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Assuming the standard deviation array of all parameters from the previous T 2 alarm sup-
pressing step (σc,0) is available, by incorporating the contribution of Q, the updated stan-
dard deviation (σd,0) is provided by:

σd,j,0 =

[
|contQt,j |

maxj {|contQt,j |}

(
Qt

0.8QUCL
− 1

)
+ 1

]
σc,j,0 (2)

where QUCL is the control limit of Q, and |contQt,j | is the contribution of jth parameter.

Similar to Section 2.1, after obtaining σc,0 and σd,0, an iterative strategy based on the
bisection method is used to obtain the standard deviation array, σe, which leads to updated
Q values close to the target of 0.8QUCL.

3 Case study

In this section, the continuous process of mixing two ingredients (A and B) is studied, as
shown in Figure 1. A process fault caused by changes in Main Flow A occurred during
online operation, as indicated by soaring T 2 and Q values in Figure 2 which violate the
control limits and trigger alarms. It is worth noting that in Emerson’s product, T 2 and Q
are normalized by their control limits T 2

UCL and QUCL respectively so that they share an
identical normalized control limit of 1.

Figure 1: Mixing process of two ingredients

Variables with top contributions to the T 2 fault, together with associated changes in stan-
dard deviations are summarized in Table 1. Comparing the T 2-adjusted standard devia-
tions σc with the original σa, it is observed that variables with large contributions show
significant increases in their standard deviations, such as “Main Flow A ”and “Main Flw
Valve ”.

After suppressing the T 2 alarm, results are obtained (see Figure 3) with T 2 values fall
below the control limit. Q values have also been drastically reduced from 68.8 to 12.9, yet
they are still above the control limit.
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Figure 2: Process analytics online GUI with both T 2 and Q alarms

Table 1: Variables with top T 2 fault contribution and associated standard deviation changes
Variable Tag T 2 contribution σa σc

Main Flow A -18.74 45.08 81.74
Main Flw Valve 37.78 7.494 19.78
Targ Blend Flw -14.89 21.95 36.13
Mixer Flow -28.25 59.63 132.7
Blend Flow -24.27 21.65 44.45

Figure 3: Process analytics online GUI with Q alarm only
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In this case, further steps are taken to suppress the Q alarm. Variables with top contribu-
tions to the updated Q fault, together with updated standard deviations are summarized in
Table 2. Similar to the results shown before, variables with the lion share of contribution
enjoy drastic rises in standard deviations (σc → σe), such as “Main Flow A ”and “Main
Flw Valve ”. The resulting Q value drop (below the control limit) is demonstrate in Figure
4.

Table 2: Variables with top Q fault contribution and associated standard deviation changes
Variable Tag Q contribution σc σe

Main Flow A -1.602 81.74 382.6
Main Flw Valve 6.555 19.78 317.7
Actual Ration -1.424 0.0622 0.2655
Targ Blend Flw -0.596 36.13 85.60
Blend Flw Valve -0.643 9.859 24.42

Figure 4: Process analytics online GUI with both T 2 and Q alarms suppressed

After suppressing the alarms caused by Main Flow A fault, the system is still able to sound
alarms if a new fault occurs. As shown in Figure 5, later on the process is suffering a load
disturbance where “Blend% Solid”decreases from 65 to 50 (the black line in the bottom
figure), which leads to a quality deviation indicated by a jump of T 2.

4 Conclusions

In this paper, a new framework to suppress transient fault alarms online is proposed, and
it is developed for Emerson’s DeltaV Continuous Data Analytics product where PCA-
based process monitoring approach is implemented. By adjusting standard deviations of
parameters online based on variable contribution to faults, both T 2 and Q alarms can be
turned off. Such an approach keeps the product’s capability to detect other types of faults,
as shown by the promising results in an industrial case study. It is worth pointing out that
the new method only acts as a temporary solution and it works better when new steady
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Figure 5: Process analytics online GUI with a new T 2 alarm

states are reached before the next model update. To further improve PCA monitoring
performance, future work will be focused on incorporating filtering techniques to remove
outliers.
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Abstract 

The present work uses reinforcement learning (RL) for automated flowsheet synthesis. 

The task of synthesizing a flowsheet is reformulated into a two-player game, in which an 

agent learns by self-play without prior knowledge. The hierarchical RL scheme developed 

in our previous work (Göttl et al., 2021b) is coupled with an improved training process. 

The training process is analyzed in detail using the synthesis of ethyl tert-butyl ether 

(ETBE) as an example. This analysis uncovers how the agent’s evolution is driven by the 

two-player setup. 

Keywords: Automated Process Synthesis; Flowsheet Synthesis; Artificial Intelligence; 

Machine Learning; Reinforcement Learning. 

1. Introduction 

RL is a frequently used machine learning approach in the process engineering community. 

Besides many applications in process control, it is also employed for problems that 

require forward planning. For example, Wang et al. (2020) designed synthetic pathways 

for organic chemistry with an RL approach combined with Monte-Carlo tree search. Khan 

and Lapkin (2020) showed that RL can identify processing routes for hydrogen 

production.  

We presented an approach called SynGameZero, which enables training an agent without 

prior knowledge to synthesize entire process flowsheets using RL (Göttl et al., 2021a). 

Thereby, flowsheet synthesis is transformed into a turn-based two-player game. Both 

players start with an empty flowsheet. In their turns, they add unit operations or recycles 

to their flowsheet while also seeing what their opponent does. After each turn, a flowsheet 

simulator generates stream tables and provides them to the players as a base for their next 

moves. The winner is determined by the net present value, calculated after flowsheet 

completion. In a tied game, the player who finishes the flowsheet first is the winner. The 

reward 𝑟 ∈ {1, −1} is a binary value indicating win or loss. The agent consists of an 

artificial neural network (ANN) combined with a tree search and is trained by playing 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50259-1 
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this game against itself. The ANN’s output contains a suggestion for the next move of the 

current player. It also includes an estimate of the chances of the current player to win the 

game. This output guides the tree search, which considers several moves in advance, 

imitating a typical human planning process. The search is adaptive regarding depth and 

explores only promising options selected based on the ANN’s output. The tree consists 

of nodes (representing flowsheet states) connected by branches (possible moves of adding 

units or recycles). No prior knowledge is required to initialize the agent. During the 

training process, the parameters of the ANN are optimized to improve its ability to suggest 

good moves and estimating the chances to win the game. Recently, we have improved the 

two-player framework by structuring the agent’s decision in three hierarchy levels and 

introducing hierarchical RL (Göttl et al., 2021b). Recasting the problem into this game 

framework enables powerful agent structures and training methods from the literature 

outside chemical engineering. Many authors proved that RL serves as a powerful tool to 

master complex problems like winning the board games of Go and Chess (Silver et al., 

2018). 

The present work builds upon the hierarchical RL scheme as presented in Göttl et al. 

(2021b) and modifies the agent’s structure and the training process resulting in a slightly 

improved performance. For the first time, the agent’s evolution during training is 

analyzed in detail. The analysis uncovers the importance of the two-player game setup 

for the success of the SynGameZero method.  

2. Methodology 

2.1. Example Process and Flowsheet simulation 

For comparability, we adopt the process design problem of ETBE synthesis and the 

flowsheet simulator from Göttl et al. (2021b). Here, we give a brief summary; the reader 

is referred to the original paper for details. A quaternary system consisting of ethanol 

(EtOH), isobutene (IB), n-butane (nBut), and ETBE is considered. Two feed streams are 

sampled randomly at the start of the game (the first one containing EtOH and the second 

one a mixture of IB and nBut). The goal of the two-player game is to create the flowsheet 

that maximizes the net present value of the process. Thereby, the following idealized unit 

operations may be used:  

Reactor (R): The following reversible reaction occurs in the reactor, which always 

reaches equilibrium.  

EtOH + IB ↔ ETBE.              (1) 

Distillation columns (DL and DH): Distillation columns are assumed with infinite height 

and total reflux for faster simulation. Due to binary azeotropes, a distillation boundary 

separates the quaternary system into two distillation regions. It is possible to choose 

between two different product splits. The split DL obtains the light-boiler of the feed’s 

distillation region with the highest possible yield, and the split DH obtains the respective 

heavy-boiler with the highest possible yield. 

Mixer / Recycle (M): any open stream can be admixed to another open stream or an 

already used stream. The latter results to a recycle in the process.  

2.2. Agent structure and training procedure 

The present work utilizes a similar framework as described by Göttl et al. (2021b), and 

we refer again for a detailed description. The agent’s actions are structured hierarchically 
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into three levels. At Level 1, the agent chooses an open stream in the flowsheet or the 

termination of the synthesis process. If an open stream was chosen at Level 1, the agent 

selects a unit operation from the above list as the destination of the open stream at Level 

2. If the agent decides for Mixer / Recycle (M), then Level 3 is used. There, the agents 

select another already existing stream as the destination to admix/recycle the open stream 

chosen at Level 1. In contrast to Göttl et al. (2021b), the agent does no longer differentiate 

between a mixer and a recycle. They are conceptually the same. The flowsheet simulator 

determines automatically if the chosen action leads to a mixer or a recycle and simulates 

the respective option.  

The ANN is structured according to the three hierarchy levels and explained using Figure 

1 (for the specifications and the setup of the ANN, we refer to GitHub: 

https://github.com/grimmlab/SynGameZero/tree/ETBE_synthesis2.0). Its first part is a 

convolutional block, which processes the stream tables of both players. Each hierarchy 

level is represented by an actor-critic network, which receives data processed by the 

previous networks. At Level 2, information on the open stream chosen at Level 1 is also 

provided to the actor-critic network. Each actor-critic network i generates two kinds of 

outputs 𝝅𝑖 and vi. 𝝅𝑖 represents a probability distribution, which is a suggestion for the 

decision at this level, while vi is an estimate of the expected reward for the current player. 

Those outputs are used to guide the tree search by exploring promising flowsheet 

alternatives (promising is quantified by 𝝅𝑖 and vi). The agent’s actions in the game are 

determined based on the results of the tree search.  

 

Figure 1. The agent’s hierarchical structure. The arrows indicate flow of information. 

Artificial neural networks with trainable parameters are shown in rounded boxes. 

During the training process, the agent plays 𝑁steps = 10,000 games against itself with 

randomly sampled feed streams. In previous work (Göttl et al., 2021b), we did not 

consider feed streams with equimolar rates of EtOH and IB, although those configurations 

are particularly interesting. In the present work, equimolar feed streams are included in 

20 % of all training games to enable the agent to deal with these configurations. After 

each game, the states (stream tables of both players), the results of the tree search (the 

basis for the decisions on actions), and the reward 𝑟 ∈ {1, −1} for each player are stored 

in a memory with size 𝑁memory = 160. A batch of size 𝑁batch = 64 is sampled out of 

the memory to perform a stochastic gradient descent step on the ANN with a learning rate 

of 𝛽 = 0.0001. 
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2.3. Evaluation 

After the training procedure, the agent is evaluated by playing 1,000 games against itself 

with randomly sampled feed streams. Due to combinatorics, it is not possible to store the 

optimal flowsheet for every conceivable feed stream combination. Therefore, the agent is 

evaluated by comparing its flowsheets with three benchmark flowsheets created by 

humans (Göttl et al., 2021b). They include the industrial Oxeno-process for ETBE 

synthesis (Ryll et al., 2014). The following metrics are used to quantify the performance. 

R1 is the fraction of games where the agent proposed a flowsheet at least as good as the 

best benchmark. R2 is the average relative gain in the net present value of the agent over 

the best benchmark. For a precise mathematical definition of the metrics, the reader is 

referred to (Göttl et al., 2021b). 

To uncover the importance of the two-player game setup for the success of the 

SynGameZero method, the agent state (i.e., the ANN’s parameters) is saved at various 

stages during the training process. The behavior of these agent versions is studied by 

letting it play the two-player game against itself for a fixed set of feed stream 

combinations: the molar flow rate of EtOH is varied between 15 and 95 kmol/hr. The 

molar flowrates of IB and nBut are set equal. They are also varied between 15 and 95 

kmol/hr. 

3. Results 

The training procedure is repeated five times. Table 1 shows the average values for the 

performance metrics. 𝑅1 shows that the agent can outperform the benchmark flowsheets 

in almost every case. According to 𝑅2, the benchmarks are surpassed on average by 

24.4 %. Compared to the results shown in previous work, the agent shows improved 

performance. 

Table 1. Resulting performance metrics. 

 𝑅1 𝑅2 

Present work 0.9996 0.2438 

Göttl et al. (2021b) 0.9864 0.2279 

 

Figure 2 illustrates the evolution of the agent during training by showing its behavior after 

different numbers of training steps. The various feed stream combinations are depicted as 

cells in the matrix. The winning player of every combination is indicated with a color 

code. For one feed stream combination, the winning flowsheet (marked red) is displayed.  

Without any training (𝑁steps = 0), the agent consists of a randomly initialized ANN and 

the tree search. The behavior of the agent is the same for all shown combinations of feed 

streams. In the role of Player 1 it terminates the synthesis right away. In the role of Player 

2, it sets up the shown flowsheet and wins the game. After 100 training steps, Player 1 

has copied this tactic (for all shown feeds) and wins all games (if both players do the 

same, the game is tied, and Player 1 wins because he/she finishes first). 

 



 

Figure 2. Illustration of the agent’s evolution after different numbers Nsteps of training 

steps. The matrix field represent different feed stream combinations. The color code 

marks the winning player. The red box shows the winning flowsheet for the respective 

feed streams.  
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After 1,000 training steps, the game is more balanced. Both players can win some 

situations. From the shown flowsheet generated by Player 2, it is visible that the agent 

has learned to use a reactor to synthesize ETBE, clear progress. After 3,000 training steps, 

Player 1 is more dominant, and the flowsheets become more sophisticated. This balance 

change between Players 1 and 2 winning in the game is observed many times during 

training. Typically, Player 1 is copying (if needed) and using the so-far best-known tactic. 

Player 2 has to avoid a tie and therefore forced to explore alternative tactics. It is 

consequently mainly Player 2 who uncovers novel improved tactics. Player 2 will 

afterward win more games than Player 1 for a short period during training. Eventually, 

Player 1 acquires the novel tactic and wins again. The bottom row in Figure 2 shows 

situations at the late stages of the training. After 5,000 steps, the complexity of the 

flowsheets further increases, while the game is still quite balanced. For equimolar feed 

rates of IB and EtOH (i.e., on the diagonal of the matrix), the agent has learned to generate 

flowsheets with complete conversion of IB and EtOH. The chemical equilibrium is 

overcome by using a recycle (cf. the shown flowsheet). However, the design is still not 

optimal. After 10,000 steps, the flowsheets are slightly more improved, and the training 

is completed. Player 1 wins all games. Even with further training, Player 2 is unable to 

find a better tactic. Such a constellation signifies that a local or maybe even global 

optimum for the performance has been reached. 

4. Conclusions 

The SynGameZero approach, which enables an agent via RL to synthesize flowsheets, is 

slightly improved and demonstrated for an example process with incomplete conversion 

in the reactor and recycles. Efficient and effective training is achieved by a hierarchical 

agent structure and a two-player game setup. The latter forces one player to explore novel 

tactics. The other player adopts them as soon as they are advantageous. 
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Abstract 

Commercial process simulators are widely used in process design, due to their extensive 

library of models and ease of use. The results obtained from these simulators can be 

used for global flowsheet optimization but often gradient information is not provided so 

that derivative-free optimization methods must be used. The process simulator is called 

as a black box and this is computationally expensive, thus filtering out simulations that 

have a low probability of providing good results by machine learning is attractive to 

increase the efficiency of derivative-free optimization. The surrogate models used for 

filtering are initially based upon small data sets. We explore the generation of these 

initial data sets and we investigate two alternatives and suggest a heuristic for the choice 

of the decision function for inequality constraints. 

Keywords: Aspen Plus, Process Optimization, Surrogate Models, Machine Learning, 

Evolutionary Algorithms 

1. Introduction 

Chemical process design usually is performed as an iterative process of comparing the 

performance and the costs of alternative process configurations and parameterizations 

by an interdisciplinary team of experts. In many cases, such design studies for chemical 

processes are performed interactively using commercial block-oriented flowsheet 

simulators e.g. Aspen Plus. Asprion et al. (2018) give an overview on process 

simulators. While this can lead to satisfactory solutions, optimal designs cannot be 

expected. On the other hand, the rigorous optimization of a chemical process is a very 

challenging task as the models that represent the process units are generally nonlinear 

and the problems are large and often nonconvex. Further, discrete decisions as e.g. the 

number of stages and the feed stage of a distillation column enlarge the complexity of 

the optimization problem. In research, usually mixed-integer non-linear program 

(MINLP) solvers and equation-based models are used. This approach has the 

disadvantage that specific model formulations and expert knowledge to set up the 

models are needed. In contrast, commercial process simulators offer a large model 

library, and different design alternatives can be simulated easily. It is therefore 

promising to combine the ease of modelling provided by commercial flowsheet 

simulators with the power of optimization. But the lack of interfaces to internal 

information like sensitivities is a big obstacle. An approach to combine the use of 

commercial simulators with the power of optimization is to use derivative-free methods 

that are not as efficient as the derivative-based optimization of equation-based models 

with mathematical programming. In our previous work, we have proposed to use 

evolutionary algorithms together with flowsheet simulators for optimization-based 

process design, for details see Urselmann et al. (2016). This however requires a large 

number of calls to the simulator of which a significant fraction do not converge or result 
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in large violations of the design constraints. Due to the relatively long computation 

times for the single simulations, there is a strong interest to filter the design proposals 

and to steer the optimization to promising regions such that computation time with non-

converging solutions and solutions that are far from the design specifications is not 

wasted. Surrogate-assisted optimization is a possible approach to enhance the efficiency 

of derivative-free blackbox optimization. It applies methods from Machine Learning 

(ML) to steer the optimization and to avoid the exploration of non-promising parts of 

the solution space, see Haftka et al. (2016) for a review. In Janus et al. (2021) it was 

shown that the required time for global flowsheet optimization could be halved by such 

methods. In this contribution, we analyze the use of surrogate models to decide on the 

execution of simulations in more detail, specifically the initial generation of the data for 

the training of the surrogate models and the choice of the decision rules. 

2. Case Study 

For the numerical studies, we use the case study of the homogenously catalyzed 

hydroformylation of 1-dodecene to n-tridecanal in a thermomorphic solvent system 

(TMS). The TMS process considered here has been investigated extensively 

experimentally in the Collaborative Research Center DFG Transregio SFB 63 

”Integrated chemical processes in liquid multi-phase systems InPROMPT”. The process 

is performed in a mixture of the solvents dimethylformamide (DMF) and decane in 

order to recover the expensive homogeneous rhodium catalyst from the product stream. 

The phase behavior of the mixture of DMF and decane is temperature-dependent and a 

change of the temperature is used to switch between a homogenous mixture in the 

reactor and a mixture with two liquid phases in the decanter, see Kiedorf et al. (2014). 

Figure 1 illustrates the flowsheet. The feed stream is heated and pressurized to create a 

homogenous mixture in the reactor and H2 and CO are added as syngas. Beside the main 

reaction of 1-dodecene to n-tridecanal, four side reactions occur in the reactor, see 

Merchan et al. (2016). A cascade of two heat exchangers cools down the mixture. Then 

a liquid-liquid separator splits the two phases of the mixture. The polar DMF-rich phase 

contains the catalyst and is recycled back into the reactor. The decane-rich phase that 

contains the unconverted feed, the product and the byproducts is fed into the distillation 

column for purification. The top stream of the column is recycled back to the reactor 

and a product-rich liquid stream is obtained at the bottom of the column. The bottom 

stream must have a product purity of more than 99 mol %. The ten degrees of freedom 

(DOFs) of the process design considered here are the number of theoretical stages, the 

feed stage, the distillate to feed ratio and the reflux ratio of the column, the temperature, 

pressure and residence time of the reactor, the temperature of the decanter and the flow 

Figure 1 - Flowsheet of the case study of the hydroformylation of 1-dodecene in a thermomorphic 

solvent system with three major unit operations and two recycle streams. The degrees of freedom 

are highlighted in bold font. 
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rates of DMF and decane. The operating window is between 80 and 120 °C for the 

reactor and -5 to 25 °C for the decanter. The operating window of the reactor pressure is 

between 15 and 30 bar, the other vessels are operated at atmospheric pressure.

3. Framework for Flowsheet Optimization

Figure 2 shows the flowsheet optimization framework. The global derivative-free 

optimization is implemented by an evolution-strategy (ES) as described by Beyer and 

Schwefel (2002). An initial flowsheet, the degrees of freedom, and their bounds must be 

provided to the framework to start the design optimization. The framework calls the 

process simulator by setting the values of the degrees of freedom, and then uses the 

results, in particular the critical purities and the flow rates as well as equipment and

operational parameters. If the simulation does converge, the framework calculates the 

cost function and stores the result and the internal process information. If a simulation 

does not converge, no internal process information, e.g. concentrations, is collected. The 

surrogate-assistance module in Figure 2 contains the candidate-rejection and the 

candidate-generation heuristics that guide the search of the optimizer. It generates and 

evaluates surrogate-models that estimate results of the flowsheet simulation, e.g. the 

product purity. The evaluation of a surrogate-model is several orders of magnitudes 

Figure 3 - Distribution plots. The first row contains plots with samples obtained from a ‘Halton 

set’ and the second row contains plots with samples from simulations that were triggered by the 

evolution strategy. The first column shows the distribution of the degrees of freedom 'distillate to 

feed ratio’ and ‘reflux ratio’, the second column shows the purity distribution of the samples, and 

the third column shows a sliding average of the purity based on the last 100 samples.  

Figure 2 - Diagram of the flowsheet optimization framework that consists of three parts. The 

input for the framework, the optimization framework with the three modules: optimization, 

evaluation and surrogate-assistance, and the third party software. Here, Aspen Plus is used as a 

commercial flowsheet simulator and MATLAB is used as a machine learning toolbox. 
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faster than a flowsheet simulation. The generation of the surrogate-models is performed 

by an optimization that minimizes the difference between the estimates of the surrogate-

models and the result of the simulator. If an initial data set is provided, the execution of 

the framework starts with the generation of data for the training of surrogate-models. 

After each evaluation of the process model, the data is stored and after a certain number 

of simulations, the machine learning toolbox (MLT) retrains the surrogate-models. The 

MLT supports multi-shot training and hyperparameter optimization.  

4. Evaluation and generation of surrogate-models  

ML methods generate surrogate-models based upon training data. We employ neural 

networks as surrogate-models. Beside the guidance of the optimization, the surrogate-

assistance controls the iterative generation and evaluation of new surrogate-models.  

In our approach, two surrogate-models are used. A classifier predicts if a simulation 

shall not be started because the process simulator will most likely not converge, and a 

regression model estimates the satisfaction of crucial constraints, in this example the 

product purity. The candidate rejection rule discards a simulation if either the classifier 

predicts non-convergence or the estimated product purity is equal to or below a 

threshold. For this, we use a dynamic boundary 𝑏 that depends on the purity constraint 

𝑐𝑝 as a heuristic, see Eq. (1). The symbol 𝑚𝑎𝑒 here denotes the mean absolute error of 

the neural network and the index 𝑓𝑒𝑎𝑠 refers to the feasible part of the training set that 

consists of the data that has been generated by the optimization before the training. 𝑌𝑖 
and 𝑃𝑖  represent the simulated and the estimated purity for data point 𝑖. If Eq (1) is not 

applicable, i.e. the number of feasible points in the test set 𝑁𝑓𝑒𝑎𝑠 is less than two, the 

boundary 𝑏 is defined as 𝑏 = 𝑐𝑝 − 3 ⋅ 𝑚𝑎𝑒𝑎𝑙𝑙  whereby 𝑚𝑎𝑒𝑎𝑙𝑙  refers to the mean 

absolute error of the training set on the neural network.  

𝑏 = 𝑐𝑝 − (𝑚𝑎𝑒𝑓𝑒𝑎𝑠 + 1.96 ⋅ (√
1

𝑁𝑓𝑒𝑎𝑠
∑(|𝑌𝑖 − 𝑃𝑖| − 𝑚𝑎𝑒𝑓𝑒𝑎𝑠)

2
)) (1) 

Beside the configuration of the neural network, the distribution of the training data has a 

strong influence on the performance of the generated surrogate-models, e.g. it should be 

beneficial to have a high density of samples in the region of the purity constraint. A 

Halton set with RR2 scrambling and data from previous simulations that were triggered 

by the ES were compared for the generation of the initial samples. Figure 3 shows the 

Figure 4 - Development of the mean absolute error of the neural networks that predict the product 

purity. On the left side, the first 100 samples origin from previous optimizations and on the right 

side the first 100 samples were generated as a Halton set. The test set consists of 12,000 process 

alternatives, 49 of them have a purity >= 99 %. The x-axis indicates the number of samples in the 

training set. 



distribution of these two data sets for 500 samples. With samples from the Halton set, 

the space of the degrees of freedom is uniformly covered within the bounds. In the 

initial explorative phase, the evolution strategy tends to explore specifically the 

boundaries of the search space. After 100 samples, the average purity of the simulated 

process alternatives is around 20 %, but from there on the evolution strategy starts to 

find process alternatives with a higher purity. This is beneficial for the optimization as 

the goal of the surrogate-model is to predict high purities with a high accuracy, and 

therefore data points with higher purities should be part of the training data set. 

When the surrogate models are updated, the training set contains the initial data (i.e. 

either the Halton set or the initial simulations generated by the ES) and all process 

alternatives that have been simulated during the optimization up to the start of the 

training procedure. The surrogate-assistance optimizes the neural networks on the entire 

training set, i.e. the training set equals the test set. As the heuristic boundary could be 

unreliable during the early stages of the optimization, we validate it with a large test set. 

5. Results 

We compare the use of an initial Halton set and the use of data from the initial 

simulations as training data for the surrogate models in the initial stage in Figure 4. 

Only candidate rejection was applied but not heuristic generation of promising 

candidates as in Janus et al. (2021). Ten runs were performed to reduce random effects. 

The training of the neural networks was repeated five times. The neural network 

architecture was chosen from previous studies as networks with two hidden layers with 

45 nodes each. The neural networks were retrained every 100 simulations. When the 

training data consists of up to 1000 samples, the training requires approx. 20 s, while a 

single process simulation requires approx. 6 s, so the additional effort for the training of 

the surrogate models pays off quickly when later unpromising simulations are saved. 

For surrogate models trained with 100 samples, the Halton set leads to more accurate 

models with a smaller variance than the data sequence from the calls of the optimization 

strategy, but this difference becomes smaller when more samples are available. Figure 4 

shows the development of the mean absolute error (𝑚𝑎𝑒) of the networks. The x-axis 

shows the samples of the training set, where after the first training, the evolution 

strategy generated the training data. The box plots show the 𝑚𝑎𝑒 on the large test set for 

50 trainings, i.e. ten optimizations with five repeats of the training. The solid line shows 

the values of the boundaries that were used in the purity-based candidate-rejection 

during the optimization which are based on the data seen so far. The dotted line shows 

the boundaries that were calculated based on the posteriori test set. Both lines are close 

to each other and have a similar behavior, which validates the proposed heuristic. The 

first dashed line shows the 𝑚𝑎𝑒 on the feasible part of the training set or three times the 

entire 𝑚𝑎𝑒 on the training set if the training data did not contain at least two feasible 

process alternatives. For the first 500 simulations, the median of the mean absolute error 

in the HS-100 variant is approximately 0.05 below the median 𝑚𝑎𝑒 of the ES-100 

variant. From 500 simulations on, the difference shrinks but the variance remains lower 

for the HS-100 variant, i.e. the training of the neural network is more robust when it 

starts from a small uniformly distributed set of training data as a basis. 

6. Conclusions 

We discussed the data generation for and the evaluation of surrogate models that are 

used to guide global derivative-free flowsheet optimization, with the goal to avoid non-

 1565 Generation and Benefit of Surrogate Models for Blackbox Chemical
Flowsheet Optimization



 Tim Janus et al. 1566 

promising computationally expensive calls to the process simulator based on the 

evaluation of process constraints. We propose a heuristic for a dynamic boundary that is 

calculated based on the metrics of the surrogate-model, e.g. the mean absolute error, and 

can be applied whenever a process variable is restricted by an inequality constraint. The 

surrogate models and their metrics depend on training data that may not reflect the 

interesting regions of the search space, especially in the early stages of optimization. 

We confirmed the efficiency of the heuristic by an a posteriori evaluation of the 

surrogate models. We compared two methods to collect training data for the initial 

surrogate models, data from a Halton set and data generated by the initial simulations. 

The robustness of the training of the surrogate-models is improved if a small number of 

uniformly distributed samples are used, i.e. the application of the Halton set is 

beneficial. 

In this work, we evaluated the performance of the surrogate-models after the 

optimization. However, an evaluation of past surrogate models during the optimization 

is advisable, e.g. a revision of decisions that were based on too aggressive surrogate-

models. The training data consists of the data seen by the optimization and converges in 

the direction of regions of a high interest, e.g. around a constraint limit. In adaptive 

sampling methods, surrogate model predictions are used to generate promising new 

sample points. Ludl et al. (2021) propose an adaptive sampling approach that balances 

multiple goals, finding the border between convergent and divergent simulations and 

exploring sample points to reduce the uncertainty of the surrogate model. Winz et al. 

(2021) propose an upper confidence bound acquisition function to train surrogate 

models that provide more information regarding the target function of the optimization.  

To include such approaches is a promising direction for future research. 
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Abstract

Flowsheets are the most important building blocks to define and communicate the struc-
ture of chemical processes. Gaining access to large data sets of machine-readable chemi-
cal flowsheets could significantly enhance process synthesis through artificial intelligence.
A large number of these flowsheets are publicly available in the scientific literature and
patents but hidden among innumerable other figures. Therefore, an automatic program is
needed to recognize flowsheets. In this paper, we present a deep convolutional neural net-
work (CNN) that can identify flowsheets within images from literature. We use a transfer
learning approach to initialize the CNN’s parameter. The CNN reaches an accuracy of
97.9% on an independent test set. The presented algorithm can be combined with publi-
cation mining algorithms to enable an autonomous flowsheet mining. This will eventually
result in big chemical process databases.

Keywords: Flowsheet, Data Mining, Image Classification, Deep Learning, Transfer
Learning

1. Introduction

In recent years, machine learning (ML) has emerged as a popular method to solve complex
problems in various domains. This popularity has predominantly been driven by (i) the
increase of computational power, (ii) the improvement of ML algorithms, and (iii) the
availability of big data (LeCun et al., 2015). Chemical engineering has already seen many
successful applications of ML (Schweidtmann et al., 2021; Venkatasubramanian, 2018).
However, literature on the structural synthesis of chemical processes through ML is scarce
(c.f. (d’Anterroches & Gani, 2005; Zhang et al., 2018; Oeing et al., 2021)). While a variety
of promising ML methods exist, big chemical process data is missing (Schweidtmann
et al., 2021; Weber et al., 2021). We argue that this lack of structured chemical process
data is hindering further progress of ML developments for chemical process synthesis.

The topological information about chemical processes is usually communicated through
flowsheets. Flowsheets are technical drawings describing the unit operations connectivity
of a process. There exists at least one flowsheet for every chemical process. Eventhough
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most flowsheets are only available in internal company reports, a large number of flow-
sheets are also publicly available in scientific publications and patents. These flowsheets
are mostly depicted on figures in PDF documents. However, searching for the flowsheet
figures in scientific publications and patents can be as difficult as looking for a needle in
a haystack. In particular, a manual search through the enormous amount of available lit-
erature would not only be a slow and labor-intense process, but it would also be prone to
errors. Therefore, an algorithm is needed that autonomously recognizes flowsheet images.

In the previous literature, information extraction from scientific literature has mostly fo-
cused on text mining using natural language processing (Hong et al., 2021; Nasar et al.,
2018). In the context of chemistry for example, Swain & Cole (2016) developed the Chem-
DataExtractor which extracts chemical identifiers, spectroscopic attributes, and chemical
property attributes from scientific literature. Furthermore, information extraction from
scholarly images has been performed in the past. The majority of research on the classifica-
tion of scientific images has been conducted on biomedical literature pushed by the yearly
ImageCLEF challenge (c.f. (Pelka et al., 2020)). Furthermore, a few works exist in chem-
istry on information extraction from images. This works mostly focus on the recognition
and digitization of structural formulas (Tharatipyakul et al., 2012; Beard & Cole, 2020).
Another example for chemical image analysis is the ImageDataExtractor which mines mi-
croscopy images to extract information about the particle sizes and shapes (Mukaddem
et al., 2019). However, to the best of our knowledge, image classification has not been
applied to chemical process design literature and there exists no previous algorithm that
identifies chemical flowsheet images.

In this work, we propose an algorithm that recognizes flowsheet images from chemical en-
gineering journal articles. The proposed algorithm will contribute to our long-term vision
to build a database of chemical processes. In Section 2., we provide a brief background on
Convolutional Neural Networks (CNNs). In Section 3., we present our methods, data set,
and pre-processing. In Section 4., we evaluate the performance of the proposed flowsheet
image classification model and discuss the results. Finally, we conclude our findings in
Section 5.

2. Deep Convolutional Neural Networks

Inspired by the biological visual system (O’Shea & Nash, 2015), deep CNNs have been
proposed as a computational method to bridge the gap between the capabilities of humans
and machines for high-level tasks such as image classification, text recognition, and speech
recognition (LeCun et al., 2015). The powerful performance of deep CNNs in advanced
tasks is achieved through the layout of the framework, which generally consists of three
parts: Convolutional layers, pooling layers, and fully-connected layers. Convolutional
layers contain a set of learnable filters that will convolve over the inputs to extract the
underlying features. Intuitively, simple features such as edges, corners, and blotches will
be detected in the early convolutional layers. Ultimately, more complex patterns such as
’unit operations’ will appear with further layers. Pooling layers are usually periodically
inserted between two convolutional layers to reduce the spatial dimension and the number
of parameters. Average pooling and max pooling are the most common choices. Fully-
connected neural network layers play the role of mapping the learned “distributed feature
representation” to the sample label space, namely, making a classification. Additionally,
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to introduce nonlinearity into the output, activation functions such as sigmoid, ReLu, and
hyperbolic tangent are usually included after convolutional or fully-connected layers. Fur-
thermore, the size of the training data is an important factor for the performance of the
deep CNNs and data-labeling is often expansive. Therefore, the concept of transfer learn-
ing emerged in recent years. In transfer learning, the CNN is first trained with a sufficiently
big data set from one domain of interest. Afterward, the data set of the classification task
from another domain of interest is used to fine-tune the CNN.

3. Method

The flowsheet recognition algorithm aims to identify flowsheets among a large number of
images. We train a deep CNN for the recognition algorithm based on manually labeled
images mainly from scientific journal articles.

3.1. Data Set

At present, no public data set of flowsheet images exists. To create a training data set,
we automatically mine figures of scientific journal articles. First, we retrieve a list of all
DOIs for a given journal ISSN from the crossref API. Then, the PDFs of the correspond-
ing journal articles are downloaded through publisher APIs. Subsequently, all figures are
extracted from the PDFs using the Python package PyMuPDF. The describe procedure is
applied to the journals “Theoretical Foundations of Chemical Engineering” and “Frontiers
of Chemical Science and Engineering” to generate an initial dataset. Subsequently, the ex-
tracted images are manually reviewed and labeled as being a flowsheet or not. In addition
to the figures from scientific journal articles, we also add flowsheet images retrieved from
a google search to our data set. In total, our data set contains about 1,000 flowsheet images
and about 13,000 other images from scientific publications.

3.2. Data Augmentation and Oversampling

As a result of the data mining from journal articles, the data set is imbalanced. In particu-
lar, there exist far fewer flowsheet images than other images. This imbalance can cause the
classifier to develop a bias towards the majority class. To overcome this issue, oversam-
pling has been used in previous studies (Johnson & Khoshgoftaar, 2019). We oversample
the flowsheet images by a factor of 13 to balance the data set. As this large oversampling
factor can cause overfitting, we also employ a data augmentation technique (Shorten &
Khoshgoftaar, 2019). Each copy of a flowsheet image is augmented by stretching it along
the horizontal and vertical axis independently by a random factor between 0.7 and 1.2.
Other common data augmentation techniques such as shifting, rotation, and shearing were
dismissed because they are expected to destroy some key features of flowsheet images. For
example, flowsheets usually include horizontal and vertical lines making image rotation
pointless. The images of the negative “other” class are not augmented because of abundant
data availability.

3.3. Model Training

The CNN architecture for the flowsheet recognition is based on the VGG16 network by
Simonyan & Zisserman (2014). The network includes 13 convolutional layers, 5 max
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pooling layers, and 3 fully-connected layers. Since our data set is limited, we use a transfer
learning approach. In particular, we use the publicly available VGG16 network that has
been pre-trained on the ImageNet data set including tens of millions of images and 1,000
categories. To adapt the network to the use case of this work, we reduced the number of
nodes in the output layer to two. The training is conducted using the PyTorch framework
which is built on the Torch library. The model takes in images with a resolution of 224
× 224 pixels. We randomly divide our data set into training (70%), validation (15%), and
test (15%) data set. The model is trained on the training data in batches of 150 images.
The validation set was used to validate the training progress and tune the hyperparameters
of the model. The independent test data set is used for the final performance evaluation.
Notably, the test set is truly independent as it does not contain any augmented images from
the training or validation sets.

4. Results and Discussions

The most important performance metrics for classifiers is the accuracy as defined in Eq. 1.
In the light of class imbalance, we also evaluate the precision (Eq. 2) and recall (Eq. 3):

Accuracy =
TN + TP

TP + FP + TN + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

where TP denotes true positive, TN denotes true negative, FP denotes false positive
and FN denotes false negative. The training history is shown in Fig. 1. The classifier
reaches a satisfying accuracy already after the first epoch. This good initial performance
can be explained by the use of a pre-trained model. After the second epoch of training, the
classifier shows a validation accuracy of over 98%. The training process was ended after 10
epochs. In training runs with more epochs no further improvement was experienced. The
final training accuracy after 10 epochs is 98.1% while the validation accuracy is 98.2%.
Notably, we do not observe any overfitting behavior in the training process.

Overall, the flowsheet recognition algorithm shows a promising performance on the inde-
pendent test set. The confusion matrix on the test set is shown in Table 1. Of all predictions
on the test set, 97.9% were correct. Furthermore, the precision is 80.7% and lower than
the recall with 94.4%. The high recall shows that almost all flowsheet images are retrieved
while the number of false negative flowsheets is very low. Furthermore, the fairly low
precision could be explained by the class imbalance. The data set contains about thirteen
times more images of the class “other”. If only a small fraction of the class “other” is
misclassified, these images already make up a great share of the flowsheet predictions.

Finally, the runtime of the image classification is investigated. The evaluation of an image
by the trained CNN takes about 7 milliseconds on average on a personal computer. This
short evaluation time allows for an online application that autonomously mines flowsheets
from literature.

1570



Flowsheet Recognition using Deep Convolutional Neural Networks

1 2 3 4 5 6 7 8 9 10
Epoch

0.965

0.970

0.975

0.980

0.985

A
cc

ur
ac

y

Training
Validation

Figure 1: Training history of the CNN.

Table 1: Confusion matrix for the flowsheet recognition algorithm on the test set.
Actual flowsheet Actual other

Predicted flowsheet 151 36
Predicted other 9 1,976

5. Conclusions

We propose an image classification algorithm that can recognize flowsheet images. The
algorithm consists of a deep CNN which classifies images with a high accuracy of 97.9%.
In order to train the CNN, we mined about 1,000 flowsheet images from scientific liter-
ature and online search engines. Moreover, the transfer learning improved the prediction
accuracy. The proposed tool can be used to automatically identify flowsheet images from
scientific literature or other sources within a few milliseconds. In a preliminary study
we applied our mining algorithm to the journal “Computers & Chemical Engineering”
and identified more than 1500 flowsheets. Future work will digitize the flowsheet images
to identify process topologies. This will eventually result in an open-source knowledge
graph database providing chemical processes in a structured format. We believe that this
database has a tremendous value for future process design because it allows the search and
optimization over existing processes. In addition, our database will eventually serve as a
training database for advanced ML algorithms able to design novel processes.
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Abstract 

In superstructure optimization of processes and energy systems, the design space is 

defined as the combination of unit considerations, process conditions and model 

parameters that might be subjected to uncertainty. Most of the time, decision makers are 

not looking for a single best solution, but rather are interested in analyzing a set of 

Pareto-optimal superstructure designs. The generation of Pareto-optimal solutions is 

computationally expensive, especially if nonlinear process evaluations or simulation is 

required. In our approach, we address the question of how to efficiently generate Pareto-

optimal sets of solutions by applying machine learning concepts. Using the criteria of 

Pareto-optimality to evaluate the performance of a set of design space variables and the 

corresponding solution, we train our algorithm on predicting if a solution is belonging 

to the Pareto frontier. Following the approach presented by Zuluaga et al., (2016) and 

applied to the design of materials by Jablonka et al., (2021), an adaptive learning 

concept is used to systematically identify the next best function evaluation to improve 

the confidence of the Pareto-frontier definition. Gaussian process surrogate models 

provide a prediction of the mean and the standard deviation of the relevant objectives. 

Design points with high probability to of being in the Pareto-optimal domain are 

evaluated by the original model, increasing the confidence with which the Pareto front 

is predicted.  Simultaneously, the design space is continuously reduced by discarding 

the design points for which the probability of being in the set of Pareto-optimal 

solutions is low. The procedure is stopped when all points are labeled as Pareto-optimal 

or discarded.  The algorithm is applied to the design of a utility superstructure for an 

industrial energy system. Our algorithm is compared and benchmarked with quasi 

random sampling of the design space.  
 

Keywords:  Multi-objective Optimization; Active Learning; Energy System Design; 

Utility Superstructure; Mathematical Programming; Machine Learning; Artificial 

Intelligence 

1. Introduction 

One of the most pressing challenges our society is facing is climate change, revealing 

the need for efficient and reliable design methods of energy systems that are sustainable 

in economic, environmental and social terms. Over the last decades, the methodologies 

on energy system and process design have evolved drastically. Process systems 

engineering (PSE) has developed as a conceptual element of chemical engineering, 

including the definition, design, planning and control of complex chemical processes 

(Mencarelli et al., 2020).  PSE was initially dominated by the progress made in process 

simulation, where algebraic equations and flowsheeting methods are applied to describe 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50262-1 
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a system's behavior.  The emerging focus on quantitative descriptions of processes by 

means of simulation led to a more thorough analysis of the system performance (Rudd 

et al., 1973). Process synthesis addresses the development, simulation, and optimization 

of processes, where the unit operations are selected and interconnections are defined 

(Biegler et al., 1997; Douglas, 1988). In superstructure optimization, a network of all 

potential unit operations and connections is defined and translated into a mathematical 

programming model, which is then used for generating results by solving an 

optimization problem. Instead of generating one optimal design that may only be valid 

under certain external conditions, the generation of a set of feasible alternatives may be 

preferred.  

Multi-objective optimization is widely applied for analyzing trade-offs between two or 

more objective functions. The set of optimal solutions obtained from a multi-objective 

optimization problem can be displayed in a Pareto-optimal curve, on which, for each 

point on the curve, none of the objectives can be improved without penalizing the 

others. However, most optimization techniques rely on the introduction of a total order 

in the search space, which biases the search and may introduce technical difficulties 

(Jablonka et al., 2021). Machine learning has gained interest recently for designing 

processes with complex design spaces, as they allow for the fast prediction of process 

performance. However, training large datasets makes the problem unnecessarily 

computationally expensive, especially when simulation-based approaches are included 

in the superstructure.  

In this paper, we are addressing the question how Pareto fronts of large energy 

superstructure optimization problems with non-linear relations between the design space 

and the objectives can be generated efficiently with the assistance of machine learning 

algorithms, ensuring reliable predictions of the system performance along the Pareto 

front. Thereby, an active learning approach is applied, which iteratively improves the 

machine learning model where it is needed the most.   

2. Methodology 

A modified implementation of the of the ϵ-PAL  algorithm introduced by Zuluaga et al., 

(2016) and implemented by Jablonka et al., (2021) is applied to the optimization of 

energy and process system superstructures. The ϵ-PAL algorithm iteratively reduces the 

effective design space by discarding those design points from which we know that they 

are Pareto-dominated by another design point. The design point with the highest 

dimensionless uncertainty from a set of possible design points predicted to be near the 

Pareto front is evaluated. When all points are either classified or discarded, the search 

ends. The approach offers the additional benefit of enabling the tuning between 

accuracy and efficiency, by tuning the granularity of the approximation to the Pareto 

front in every objective.  In the following sections, the general superstructure problem 

as well as the ϵ-PAL algorithm is described.  

2.1. Superstructure optimization 

A process superstructure has the aim of describing the system's units and the way they 

can interact with others. By activating certain units and their connections, different 

system configurations are achieved. In this work, the methodology for superstructure 

modelling and optimization is adapted from Gassner and Maréchal, (2009). For each 

unit in the system, energy and mass flow balances are formulated, describing 
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corresponding transformations. They are derived using either flowsheeeting or 

simplified black-box models. Binary decision variables describe whether a unit is 

installed and used in a certain period. Continuous decision variables describe the 

installed size of the unit and the level of usage at which it is operated in each period. 

Parameterized bounds constrain continuous and binary variables. In our approach, all 

process units are connected to a heat exchange system, which allows for the exchange 

between the process and the hot/cold utilities to close the energy balance. Operating and 

investment costs are derived based on equipment size. Environmental impacts of the 

system are estimated using the Life Cycle Inventory Ecoinvent database (Wernet et al., 

2016). Pinch analysis is applied to model heat recovery opportunities and to investigate 

the integration of the utility system by introducing the heat cascade constraints 

explained in Maréchal and Kalitventzeff, (1998). 

For generating a solution, the decision variables are fixed solving a mixed-integer linear 

programming (MILP) problem formulated in the AMPL optimization language (Fourer 

et al., 2002), using the CPLEX branch-and-bound algorithm (IBM, 2017). The 

superstructure model in the lower-level is integrated in an upper-level framework, in 

which optimization problems are formulated for exploring the impact of non-linear 

decision variables on the results, such as operating conditions of the utility system. For 

a problem communicated by the upper-level framework, the lower-level generates a 

solution and reports it to the upper-level. For generating and communicating 

optimization problems to the lower-level, different approaches could be envisioned. 

Besides the usage of random sampling, the application of evolutionary algorithms or the 

hereafter presented Pareto-active learning approach can be considered. 

2.2. Pareto-active learning 

For efficiently and reliably identifying the Pareto front, we apply the modified version 

of the ϵ-PAL algorithm presented in Jablonka et al., 2021.  In the ϵ-PAL algorithm, the 

uncertainty estimation 𝜎 of a Gaussian process is used to construct hyperrectangles for a 

prediction (Figure 1A). The algorithm enables the classification of Pareto-optimal 

samples, as well as the proposition of the next best sample for evaluation.  

The 𝜖-PAL algorithm starts with a set of experiments, and the desired objectives are 

calculated by calling the original model for a subset of the generated samples. An initial 

machine learning model is trained on the obtained dataset of decision variables and 

objectives, and predictions for unlabeled datapoints are made. For each prediction, 

hyperrectangles around the prediction mean are constructed, the width being equivalent 

to the standard deviation of the posterior of the Gaussian process. The lower and upper 

limits are equivalent to the best/worst performance estimates (Figure 1A). The points to 

be discarded with confidence can be identified from the ϵ-Pareto dominance relation, as 

well as the ones with a high probability of being Pareto-optimal (Figure 1B). If the 

pessimistic estimate of a prediction is greater than a defined tolerance above the 

optimistic estimate of all other predictions, it will be part of the Pareto front. For 

estimating the accuracy of the Pareto front, one can connect the bottom left corners of 

hyperrectangles associated with the current estimate of the front, which gives the most 

pessimistic front (dashed blue line in Figure 1B). The optimistic front is then obtained 

by connecting the upper right corners.  

1575



 J. Granacher and F. Maréchal 1576 

 

Figure 1: A: hyperrectangles based on predicted mean and variance. B: Pareto-optimal points 

identified. C:  Relevant design space shrinks, red point identified as new point to label. D: 

Uncertainty in red point reduced after retraining the model with new sample, adapted from 

Jablonka et al., (2021). 

Thus, a geometric construction is created that allows for classification whether a 

predicted solution is Pareto-optimal or whether it can be discarded. The next design 

point to be evaluated by the optimization is identified as the one that reduces the 

uncertainty in classifying points as Pareto-optimal. For this, it is assumed that the 

uncertainties are normalized by the predicted mean, so that the area of the 

hyperrectangles represent the relative error. The prediction model is then improved by 

reducing the uncertainty of the largest rectangle among the points presumed near the 

Pareto front (Jablonka et al., 2021). In Figure 1C, the red point is identified as assisting 

the model improvement most, and the more accurate estimate of the updated model is 

represented in Figure 1D. This procedure is repeated until the desired accuracy of the 

Pareto front is reached. For further information about the algorithm and its 

implementation, the reader may consult Jablonka et al., (2021); Zuluaga et al., (2016). 

3. Application 

The proposed methodology is applied to the design of a Pareto front for the optimal 

operation of a steam network integrated in a large-scale Kraft pulping process, 

producing 1000 air-dried tons of pulp per day. The pulp and paper industry is known as 

an energy-intensive industrial sector, consuming large quantities of water and energy. 

Integration techniques, including heat integration, water network optimization and 

steam cycle operation optimization  as applied in Kermani et al., (2019) can 

significantly reduce water and energy consumption of the mill. In this contribution, we 

focus explicitly on the optimization of the operating conditions of a steam network 

integrated with the pulp mill by applying the ϵ-PAL algorithm. In the steam network, 

steam can be produced between 50 and 160 bar, while it can be consumed at 3 pressure 

levels. To meet the specification of combined steam and electricity production in 

industrial plants, steam production can only happen at the highest pressure level, and 

turbines are placed between the highest pressure level and the subsequent levels. The 

superstructure model is adapted from Kermani et al., (2019), which might be consulted 

for more information. Objectives selected for optimization and representation in a 

Pareto front are the annual operating cost (OPEX) and the annualized capital cost 

(CAPEX). The ϵ-PAL algorithm is applied on the upper-level, evaluating samples from 

the decision space for retrieving Pareto fronts. For the application of the ϵ-PAL 

algorithm, the decision variables in Table 1 are used. Two ϵ-PAL instances are created, 

one with 200 and one with 500 samples.  In the first iteration, 50 samples are labeled, 

while in each following iteration, 10 new samples are labeled. 
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Table 1: Decision variables for designing the Pareto front, adapted from Kermani et al., (2019).  

Decision variable Range, Unit Description 

𝑝1
𝑠𝑡 [50;160], bar Boiler pressure 

𝑝2
𝑠𝑡 [9;14], bar High-pressure steam header 

𝑝3
𝑠𝑡 [3;8], bar Medium-pressure steam header 

𝑝4
𝑠𝑡 [0.5;2], bar Low-pressure steam header 

𝑇1
𝑠𝑢𝑝

 [150;300], °C Degree of superheating in the highest pressure level 

Results 

When running the ϵ-PAL algorithm on the small set of samples, five Pareto optimal 

points are identified.  The learning curve in Figure 2A shows that after ten iterations, all 

design points are either discarded or identified as Pareto-optimal. Figure 2B shows the 

classification of all design points. The error bars indicate the obtained uncertainty which 

is used for calculating the hyperrectangles when qualifying whether a point might be 

Pareto-optimal or not. Overall, 140 design points are labeled, and the hypervolume 

obtained is 9614. Computation took 83 minutes, while labelling all 200 samples for 

obtaining the same Pareto front takes 118 minutes, indicating time savings of 30%. 

  

 

Figure 2C shows the learning curve for 500 sampled design points. After 16 iterations, 

all design points are either discarded or classified as Pareto-optimal. A total of 11 

Pareto-optimal points is identified, the rest is discarded. The hypervolume obtained 

from this Pareto front is 9651, so slightly higher than for the smaller design space. Over 

all iterations, a total of 200 samples were labeled by calling the original optimization 

A 

C D 

B 

Figure 2: Results for applying ϵ-PAL algorithm. A: Learning curve for 200 samples, B: Pareto 

front for 200 samples, C: Learning curve for 500 samples, D: Pareto front for 500 samples. 
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model. The computational time was 122 minutes. Compared to random sampling and 

evaluation of 500 samples, this accounts for time savings of approximately 60%. It is 

worth noting that all points identified as Pareto-optimal are also labeled, meaning that 

the error in this region of the design space is minimized. This ensures reliable results in 

the Pareto-optimal domain.  

4. Conclusion and outlook 

In this contribution, we demonstrated that the ϵ-PAL algorithm can be used to identify 

Pareto-optimal design points for process and energy system superstructures.  Compared 

to random sampling, significant time savings were obtained, the relative savings 

increasing with the size of the design space. The quality of the Pareto front, measured 

with the hypervolume error, increases with the design space size. The algorithm 

manages to identify relevant regions in the design space as Pareto-optimal or near 

Pareto-optimal, allowing for continuous improvement of the prediction quality where it 

is necessary. Future work will include benchmarking the applied methodology to a 

genetic algorithm, as well as obtaining results for larger design spaces.  
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Abstract 
In this work, we address the data-driven stochastic optimization of the numerically 
infeasible differential algebraic equations (DAEs) using Support Vector Machines 
(SVMs) and scenario analysis. Data-driven optimization is an attractive method for 
optimizing systems with highly complex first-principles models using iterative sampling, 
surrogate modeling, and optimization steps. Yet, the numerical stability and the unknown 
interconnections between the initial conditions of the DAEs determine the overall 
performance of the data-driven optimizer. Specifically, in the sampling step where the 
DAE system is initialized, varying samples of initial conditions can cause premature 
termination of the simulation due to numerical infeasibilities, without retrieving any 
viable output data that is essential for the surrogate modeling and grey-box optimization 
steps. These challenges are further amplified when there are stochastic elements present 
in the system which the numerically infeasible system of DAEs needs to handle to achieve 
robust solutions. Using the steam cracking process as our motivating example, the SVMs 
are used to accurately map the feasible region of the numerically infeasible system of 
DAEs representing the first-principles models of the cracking reactor, while the scenario 
analysis allows us to handle the uncertainty in the feed composition of the natural gas 
liquid (NGL). The resulting modeling framework is incorporated in a data-driven 
optimization solver and utilized to generate the guaranteed feasible solution for the design 
and operation of an NGL steam cracking reactor under uncertain feed compositions. 

Keywords: Data-driven optimization, support vector machines, stochasticity, scenario 
analysis, steam cracking process. 

1. Introduction 
The first-principles representations of many unsteady-state or dynamic chemical 
engineering systems are composed of ordinary or partial differential equations (i.e., mass, 
energy, and momentum balances) and algebraic expressions (i.e., rate law), creating a 
system of differential algebraic equations (DAEs). The optimal decision-making with 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50263-3 
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both differential and algebraic components is not straightforward since the deterministic 
optimization solvers cannot be directly implemented with such formulations. Typically, 
dynamic optimization of DAE systems is handled through: (1) Process simulation 
software, like gPROMS or Aspen Custom Modeler (Lang and Biegler, 2007); (2) 
Orthogonal collocation on finite elements to reduce a dynamic optimization problem to a 
constrained nonlinear problem (Biegler, 1984), or (3) Data-driven modeling and 
optimization (Beykal et al., 2020). 

Optimization with dynamic programs can also be complicated by numerical 
infeasibilities, like stiffness, ill-conditioned algebraic equations, and undefined solutions. 
Orthogonal collocation on finite elements can handle such challenges easily with its 
discretization strategy, however, the resulting large-scale nonlinear program (NLP) is 
typically solved to local optimality (Caballero et al., 2015). Data-driven optimization 
enables the exploration of global solutions through sampling, surrogate modeling, and 
deterministic optimization steps (Beykal et al., 2018). Yet, such algorithms are not 
designed to handle numerical infeasibilities and implicit constraints. Especially at the 
sampling stage, when candidate sampling points for the decision variables (i.e., the initial 
conditions of the DAE system) are identified, sampling procedures like the Design of 
Experiments will assume that all decision variables are independent of each other. 
However, there might be interdependencies among variables that define the numerical 
stability of the solution and can only be represented in explicit mathematical forms if the 
analytical solution exists. As a result, without the explicit a priori knowledge on these 
interdependencies, data-driven optimization algorithms will return unrealistic solutions 
that cannot be validated by the first principles-based simulations. Recently, Beykal et al. 
(2020) developed a Support Vector Machine (SVM) based data-driven optimization 
framework to overcome numerical infeasibilities and implicit constraints by mapping the 
numerical feasibility boundary with a two-class classification model. This study showed 
that implicit constraints are accurately captured with SVMs, significant computational 
savings are achieved with the SVM classifier, and guaranteed feasible solutions are 
attained with data-driven optimization techniques for such difficult cases of DAE 
systems. 

Despite recent efforts, the challenges in numerically infeasible DAE systems are further 
complicated with uncertain initial conditions. Even when the deterministic solution is 
retrieved by the aforementioned SVM approach, a slight deviation in the optimal input 
conditions due to system disturbances could still lead to failures and undesirable 
outcomes. For example, in a reaction system like steam cracking, the input natural gas 
liquid (NGL) feed composition can be uncertain, or the feed composition can be adjusted 
to maximize profit with changing market conditions. Hence, the steam cracker design and 
operation problem should consider these stochastic elements to be able to offer a solution 
that is flexible and robust against changing initial conditions.  

Motivated by this, in this work, we further extend our previous analysis on handling 
numerically infeasible DAE systems using SVMs and introduce stochastic initial 
conditions in the problem formulation to study the effects of uncertainty on the data-
driven optimization performance. We demonstrate the effectiveness of our approach on 
the optimal steam cracker design and operation problem which is subject to 
stochastic NGL feed compositions. Details on the problem formulation and the data-
driven optimization results of the computational case study are provided in the following 
sections. 
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2. Methodology 
2.1. Steam Cracking Optimization: Problem Formulation 

The steam cracking process is modeled using a plug flow reactor (diameter = 0.108 m) 
with mass, energy, and momentum balances under coking effects. Steam and NGL 
streams are co-fed at the reactor entrance (Figure 1). The plug flow reactor is subject to 
constant external heat flux, 𝑄, across the reactor length, 𝐿. The model is one-dimensional 
and dynamic along the spatial coordinate, 𝑧 with spatial changes in the molar of species, 
reactor pressure, and temperature are provided as 𝐹!(𝑧), 𝑃(𝑧), and 𝑇(𝑧), respectively.  

 
Figure 1 The plug flow reactor for modeling steam cracking of NGLs. 

Our goal is to determine the optimal values of the reactor length, external heat flux, inlet 
pressure, inlet temperature, the inlet flowrates for the NGL and steam feeds to maximize 
the total stochastic profit from propylene and ethylene production subject to the stiff 
steam cracking model, the known constraint on the total initial flowrate, and output 
constraints on the reactor exit temperature and pressure (Eq.(1)). The objective function 
is calculated by multiplying the profit obtained from each scenario, 𝑛, and their 
corresponding probability of occurrence, 𝜙". The profit at every scenario is obtained by 
numerically integrating the steam cracking model. Output reactor constraints are handled 
as grey-box constraints whereas the numerical feasibility of the mathematical models is 
handled through the SVM model. The detailed list of species, reaction mechanisms, and 
model equations considered in the formulation are available in Beykal et al., (2020). 
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						𝑠. 𝑡.				𝑀𝑎𝑠𝑠, 𝐸𝑛𝑒𝑟𝑔𝑦,𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚	𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑠				∀𝑛 

																	𝑅𝑎𝑡𝑒	𝐿𝑎𝑤	&	𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛	𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚, 𝐶𝑜𝑘𝑖𝑛𝑔	𝐸𝑓𝑓𝑒𝑐𝑡𝑠					∀𝑛			 

																	𝐹%!&
' + 𝐹"()* ≤ 0.05	𝑘𝑚𝑜𝑙/𝑠			∀𝑛	 

																	𝑇+ 	≤ 1300	𝐾					∀𝑛, 																	𝑃+ ≥ 80	𝑘𝑃𝑎					∀𝑛 

																	𝑇,! = [700	𝐾, 1100	𝐾], 𝑃,! = [290	𝑘𝑃𝑎, 500	𝑘𝑃𝑎], 𝐿 = [5	𝑚	,100	𝑚] 

															𝑄 = [10	𝑘𝑊/𝑚-, 1000	𝑘𝑊/𝑚-]	, 𝐹%!&
* , 𝐹"()' = [0.003	𝑘𝑚𝑜𝑙/𝑠, 0.05	𝑘𝑚𝑜𝑙/𝑠] 

(1) 

 
2.2. Scenario Analysis for the Stochastic Feed Compositions 

Scenarios are created to represent the stochastic feed compositions in the steam cracking 
problem. We assume that the NGL feed is only composed of ethane and propane and 
create 11 scenarios with varying compositions of these compounds. The created scenarios 
aim to capture a variety of events that the steam cracker may encounter. For example, 
when ethylene demand increases, the reactor may be operated with a pure ethane feed. 
Likewise, when propylene demand increases, the reactor may be operated with pure 

!

"!!"#

"$%&#
#

$

"'(&) ((&) )(&)

&
"'(

Data-Driven Stochastic Optimization of Numerically Infeasible Differential
Algebraic Equations: An Application to the Steam Cracking Process

1581



) 2M)2":N$0)"&)$0M#

3*)3."-#6--/E#!"#8-''#-F$*-4-#2.'-',#$%-#JKL#6--/#2)43)'&$&)"#4.9#1.*9#/-3-"/&";#)"#
$%-#'7338&-*#)*#/7-#$)#'9'$-4#/&'$7*:."2-'E#]-"2-,#:9#$.+&";#$%-#37*-#-$%."-#."/#3*)3."-#
2)43)'&$&)"'#.'#$%-#-"/3)&"$'#&"#)7*#'2-".*&)#.".89'&',#(-#2*-.$-#X#)$%-*#'2-".*&)'#(&$%#
UEO#&"2*-4-"$'#&"#$%-#3*)3."-#2)43)'&$&)"#=^&;7*-#NAE##?88#'2-".*&)'#.*-#.''74-/#$)#%.1-#
."# -<7.8# 3*):.:&8&$9# )6# )227**-"2-# (&$%#*" + ,-,,,# ."/# $%-# '$-.4# 2*.2+-*#4)/-8# &'#
')81-/#6)*#-1-*9#'2-".*&)#$)#2.8278.$-#$%-#$)$.8#'$)2%.'$&2#2)'$E#

?MJM!D$##.(5)&-")K"$9.L0")X"5.*()*+)E'#0./.&)
,*(9&%$.(&9)Y.&-);3##*%&)Z"/&*%)D$/-.("9)

H%-#"-F$#'$-3#&'#$)#$*.&"#$%-#BCD#4)/-8#$)#
4.3# $%-# 6-.'&:&8&$9# :)7"/.*9# )6# $%-#
&"6-.'&:8-# >?@# '9'$-4E# BCD'# .*-#
'73-*1&'-/# 8-.*"&";# 4)/-8'# $%.$# .*-#
2)44)"89# 7'-/# 6)*# *-;*-''&)",# )7$8&-*#
/-$-2$&)",# ."/# 28.''&6&2.$&)"# .".89'&'# =R"-8#
-$# .8E,# NUOXAE# >7-# $)# $%-&*# %&;%89# 68-F&:8-#
".$7*-# ."/# .:&8&$9# $)# 7'-# ")"8&"-.*#
$*."'6)*4.$&)"',# BCD'# 2."# 8-.*"# %&;%89#
")"8&"-.*#*-8.$&)"'%&3'#(&$%&"#.#/.$.'-$#(&$%#
%&;%# .227*.29E# H)# 6.2&8&$.$-# /.$.0/*&1-"#
)3$&4&5.$&)"#."/#$)#-"'7*-#$%-#1.8&/&$9#)6#$%-#
6&".8#')87$&)",#$%-#6-.'&:&8&$9#)6#$%-#"74-*&2.8#
&"$-;*.$&)"#)6#.#>?@#'9'$-4#&'#4)/-8-/#7'&";#.#$()028.''#,03.*.4-$*&5-/#")"8&"-.*#BCD#
28.''&6&2.$&)"#.8;)*&$%4E#?'#%&;%8&;%$-/#:9#T-9+.8#-$# .8E# =NUNUA,# $%-#4.&"# &/-.#)6# $%&'#
.33*).2%#&'#$()06)8/M#=OA#$)#2)88-2$#'.438-'#6*)4#$%-#"74-*&2.8#&"$-;*.$&)"#."/#7'-#$%-&*#
)7$37$#&"6)*4.$&)"#$)#$*.&"#."#BCD#4)/-8#)6#$%-#6-.'&:8-#*-;&)"#6)*#$%-#>?@#'9'$-4#=$%-#
)668&"-#3%.'-AW#."/#=NA#$)#&"2)*3)*.$-#$%&'#28.''&6&-*#(&$%&"#.#;*-90:)F#)3$&4&5.$&)"#')81-*#
$)#-8&4&".$-#&"6-.'&:8-#')87$&)"'#3*&)*#$)#'.438-#2)88-2$&)"#=$%-#)"8&"-#3%.'-AE##

!"#$%-#)668&"-#3%.'-,#(-#6)88)(#$%-#*-2&3-#)7$8&"-/#&"#T-9+.8#-$#.8E#=NUNUA#."/#R"-8#-$#.8E#
=NUOXA#."/#2)"'$*72$#.#L.$&"#]93-*27:-#>-'&;"#(&$%#NUUU#3)&"$'# $%.$#'.$&'69# $%-# $)$.8#
4.F&474# 68)(*.$-# 2)"'$*.&"$# &"# @<E=OAE# @.2%# '.438&";# 3)&"$# &'# $%-"# "74-*&2.889#
&"$-;*.$-/#.2*)''#.88#6--/#2)43)'&$&)"#'2-".*&)'#."/#$%-&*#/&'2*-$-#)7$37$#&"6)*4.$&)"#&'#
2)88-2$-/# .'# -&$%-*# b6-.'&:8-# 0# Uc# )*# b&"6-.'&:8-# 0# OcE#H%-# )7$37$# 1.87-# )6# .# '.438-# &'#
/--4-/#6-.'&:8-#&6#$%-#'.438&";#3)&"$#&'#'722-''67889#&"$-;*.$-/#(&$%)7$#."9#6.&87*-'#&"#
'&478.$&)"#.2*)''#.88#'2-".*&)'E#R$%-*(&'-,#$%-#'.438-#&'#/--4-/#&"6-.'&:8-#."/#."#)7$37$#
$.;#)6#bOc#&'#.''&;"-/E#H%-#&"37$#/.$.#&'#$%-"#4&"04.F#'2.8-/#(&$%&"#$%-#:)7"/'#)6#$%-#
/-2&'&)"#1.*&.:8-'#."/#*."/)489#'38&$#&"$)#$*.&",#1.8&/.$&)",#."/#$-'$#'-$'E#XU#d#)6#$%-#/.$.#
'-$#&'#*-'-*1-/#6)*#$*.&"&";#$%-#BCD#4)/-8#(&$%#\06)8/#2*)''01.8&/.$&)"#."/#$%-#*-4.&"&";#
OU#d#&'#*-'-*1-/#6)*#:8&"/#$-'$&";#$%-#4)/-8#3-*6)*4."2-E#K.7''&."#*./&.8#:.'&'#67"2$&)"#
&'#7'-/#.'#$%-#")"8&"-.*#+-*"-8#6)*#$%-#BCD#4)/-8#."/#$%-#*-'3-2$&1-#%93-*3.*.4-$-*'#
.*-# $7"-/# $%*)7;%# ."# -F%.7'$&1-# ;*&/# '-.*2%E# ^&".889,# $%-# 3*-/&2$&1-# 2.3.:&8&$9# )6# $%-#
$*.&"-/#28.''&6&-*#&'#.''-''-/#7'&";#'-1-*.8#3-*6)*4."2-#4-$*&2',#&"287/&";#$%-#.227*.29,#
3*-2&'&)",#*-2.88,#^!#'2)*-,#."/#.*-.#7"/-*#$%-#27*1-#=?ISAE#

R"2-#$%&'#)668&"-#3%.'-#&'#2)438-$-/,#$%-#BCD#4)/-8#&'#*-./9#$)#6&8$-*#."9#"74-*&2.889#
&"6-.'&:8-#2)4:&".$&)"'#)6#/-2&'&)"#1.*&.:8-'# 6)*#/.$.0/*&1-"#)3$&4&5.$&)"#3*&)*# $)# $%-#
'&478.$&)"#2.88E#!"#$%&'#'$7/9,#(-#-4:-/#$%-#BCD#4)/-8#&"#$%-#?QKRJ?IH#.8;)*&$%4#
=T)7+)71.8.#."/#^8)7/.',#NUOVAE#H%-#+-9#6&"/&";'#6)*#$%-#BCD#4)/-8#3-*6)*4."2-#."/#
$%-#'$)2%.'$&2#'$-.4#2*.2+&";#)3$&4&5.$&)"#3*):8-4#.*-#3*)1&/-/#:-8)(E#

J')8"%+ ;+ Q%7"%*%(-2-'E%+ *$%(2"'#*+ ,#"+ -.%+
*-#$.2*-'$+NOP+,%%&+$#67#*'-'#(*G+#

O\YN#



Data-Driven Stochastic Optimization of Numerically Infeasible Differential

   
3. Results 
3.1. Performance Metrics for the SVM Classifier in the Offline Phase 

The results summarizing the predictive performance of the SVM classifier are presented 
in Table 1. As ARGONAUT operates in sessions (i.e., the first session in the original 
variable bounds; the second session in the tightened variable bounds), two sets of 
performance metrics are reported. The results show that highly accurate SVM classifiers 
are trained using the numerical feasibility information obtained across all scenarios. 
When the SVM model is retrained within the tightened variable bounds, we observe that 
the model accuracy, precision, and F1 score are improved.  
Table 1 SVM model performance with the blind testing set. 

SVM Model Accuracy Precision Recall F1 score AUC 
Session 1 98.5 % 96.9 % 100 % 98.4 % 100 % 
Session 2 99.5 % 100 % 99.1 % 99.5 % 100 % 

Here, although we achieved highly accurate classifiers, one of the biggest drawbacks of 
the offline phase is the computational overhead required to collect samples for modeling. 
Especially with computationally expensive simulations, this step is very demanding. Our 
future work will focus on making the offline and online phases seamless to improve the 
computational efficiency of the overall framework. 

3.2. Optimal Solution: Reactor Design Parameters and Key Results in the Online Phase 

The highly accurate SVM model classifiers are then incorporated in the ARGONAUT 
algorithm and the stochastic steam cracking model is optimized over 10 random runs, 
each starting with a different set of Latin Hypercube Design. The optimal values for the 
decision variables in the best-found solution are: 𝑇#" = 788.4 K; 𝑃#" = 341.4 kPa; 𝑄 = 
350.9 kW/m2; 𝐿 = 39.7 m; 𝐹$%&'  = 0.0289 kmol/s; and 𝐹(!)

'  = 0.018 kmol/s. This set of 
optimal decision variables provides a guaranteed feasible solution for the 11 studied 
scenarios and achieves a total stochastic profit of $0.1677/s using the hybrid SVM and 
grey-box optimization approach. This total stochastic profit is almost 50 % less than the 
profit reported for pure ethane feed, but it is also almost 50 % greater than the profit 
reported for the pure propane feed in Beykal et al. (2020). This is an expected result as 
the previous study only considered pure feeds in the problem setup where the reactor 
parameters are fine tuned to maximize profit for the deterministic NGL feeds. However, 
in the current study, the optimal reactor parameters can handle a wide range of feed 
compositions which allows the reactor to be more flexible while achieving high profit 
values, even when the feed compositions change due to changing market conditions or 
other external factors.  

In addition, Figure 3 shows the production of ethylene, propylene, and other key products 
under the provided optimal conditions for the two representative scenarios: (1) High 
ethane content (70 % ethane-30 % propane); and (2) high propane content (20 % ethane 
and 80 % propane). In both cases, we observe that the molar flowrate of the reactants is 
decreasing across the reactor length, whereas the molar flowrate of the desired products 
is increasing through carrying out the favorable reactions. The mean ethane conversion 
across all scenarios (except for the pure propane scenario) is 0.79 with a standard error of 
0.015 across these scenarios. Likewise, the mean propane conversion is also high, 0.88, 
with a standard error of 0.006. These results indicate that guaranteed feasible solutions 
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can be achieved for numerically infeasible stochastic problems using data-driven 
modeling and grey-box optimization. 

 
Figure 3 Molar flowrate of species for the favorable reactions in two scenarios with: (A) 70 % 
ethane – 30 % propane in the NGL feed; (B) 20 % ethane – 80 % propane in the NGL feed. 

4. Conclusions 
We present a framework to address the data-driven stochastic optimization of numerically 
infeasible DAE systems without the full discretization of the first-principles model. The 
stochastic elements in the formulation are handled via scenario analysis whereas the 
numerical infeasibilities are modeled using Support Vector Machines. By incorporating 
these two analysis methods in a grey-box optimization solver, we provide guaranteed 
feasible solutions to numerically infeasible stochastic problems using data-driven 
modeling. Results of the computational case study of the steam cracking of natural gas 
liquids with uncertain feed compositions show that high total stochastic profit is achieved 
using the proposed approach.  
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Abstract

Effectively monitoring and controlling product quality is critical in produce supply chain
management. Hyperspectral imaging has emerged as a promising technique for monitoring
food products, but the size of hyperspectral datasets complicates storage and processing.
This work develops a novel architecture for autoencoder models that is well-suited for
nonlinear subspace learning on tensorial, hyperspectral data. In particular, separate sub-
models are used to (de)compress each mode of the data tensor, preserving spatial locality
information and greatly reducing the number of autoencoder parameters. The approach en-
ables memory-efficient training, nonlinear dimensionality reduction, and multi-task learn-
ing, as demonstrated by a real-world case study.

Keywords: Tensorial Data, Supply Chain Management, Hyperspectral Images,
Dimensionality Reduction, Subspace Learning.

1. Introduction

Degradation of perishable products is highly dependent on storage/transport conditions
and represents a considerable challenge to manage; approximately one-third of food pro-
duced each year is lost or wasted, at a cost of nearly $1 trillion (USD) (World Food Pro-
gram, 2020). Modeling and monitoring of product quality and degradation play a vital
role in addressing these issues. For instance, degradation models can account for waste
in supply chain optimization (Rong et al., 2011; Tsay and Baldea, 2019), while moni-
toring product quality can provide closed-loop “feedback” (Lejarza and Baldea, 2020).
To this end, hyperspectral imaging is a promising technique for food products, bridging
spectroscopy and computer vision (i.e., spectral and spatial information). Hyperspectral
images can both reveal internal characteristics, such as firmness, dry matter, and sugar
content, and detect external contaminants/defects. However, the size of hyperspectral data
(often >100 MB/image) complicates storage and processing (Feng and Sun, 2012).

Owing to their size, many techniques can be applied to extract features from hyperspectral
data (Huang et al., 2014). For example, linear subspace learning techniques such as princi-
pal component analysis (PCA) are widely applied for dimensionality reduction and pattern
recognition. Analogous nonlinear techniques have since been proposed; autoencoders are
often used as a form of nonlinear PCA, as they can be trained using methods tailored for
large datasets (Kramer, 1991). However, hyperspectral data involve three modes: length,
width, and spectral band. Such multi-modal data motivate the use of multilinear subspace

http://dx.doi.org/10.1016/B978-0-323-85159-6.50264-5 
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learning (MSL) methods, e.g., Tucker decomposition, which are often more data-efficient,
as they preserve/exploit spatial locality information among tensor entries (Lu et al., 2013).

In this work, we propose a novel nonlinear subspace learning technique for tensorial data
based on autoencoders (AEs). Specifically, we avoid flattening (vectorizing) the tensors
and instead use a separate sub-model to (de)compress each mode of the tensor. Exploit-
ing the intrinsic structure in this manner greatly reduces the number of AE parameters
that must be learned. Using a case study of real-world produce data, we show that our
novel AE architecture with linear activations can closely match the compression ability of
standard MSL approaches, while enabling memory-efficient training using semi-batch gra-
dient descent. Nonlinear activations can further improve compression ability. Finally, as
the model architectures are generic, we expand the AEs to include classification within the
compressed, latent space (i.e., multi-task learning). In the context of providing feedback
in supply chain management, this approach enables attributes to be predicted in online
applications without requiring data to be reconstructed and re-processed.

2. Methodology

The goal of our proposed autoencoder (AE) architecture is to learn a low-dimensional,
nonlinear manifold underlying tensorial data, while simultaneously sustaining the spatial
locality of the data. For this, a residual tensor architecture consisting of N linear AEs
and N non-linear AEs for an N th-order tensor is trained, as shown in Figure 1. It can
be shown that the linear AE architecture performs as well as common algebraic linear
subspace learning techniques, such as Tucker decomposition and High-Order Singular
Value Decomposition (HOSVD), if trained properly. Therefore, we do not simply train a
nonlinear AE end-to-end, but rather a nonlinear AE that learns the residuals of a linear AE.
This simplifies learning, enables stable training, and improves generalization performance.

Figure 1: Residual tensor AE architecture for a third-order tensor with (fixed) pre-trained
weights of the linear AE and trainable weights of the non-linear AE model.
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2.1. Residual Tensor Autoencoder (AE) Architecture

Figure 1 depicts the architecture for a third-order tensor, but the proposed architecture can
easily be generalized to N th-order tensors. Both the linear and nonlinear encoders reduce
the input tensor X to the desired subspace dimension. The reduced tensors are added
together, resulting in a combined tensor S , and subsequently fed into both the linear and
non-linear decoders. The reconstructed tensor X̂ results from the addition of the outputs of
the linear and non-linear decoders. We employ a mean squared error (MSE) loss function
that minimizes the l2-norm of the error between X̂ and X , i.e., MSE(X , X̂ ) := ||X −X̂ ||22.

The weights of the linear AEs are pre-trained and fixed while training the nonlinear compo-
nents. Our proposed architecture comprises N autoencoders: each reduces one dimension
of an N th-order tensor. The AE pairs encode “fibers” of the tensor independently. Each
AE slices the tensor into its different fibers and feeds the fibers (i.e., vector data) into fully
connected encoder and decoder models. Figure 2 depicts how an encoder model slices
input tensor X into its component fibers to reduce dimensions sequentially. The decoder
model works identically. Note that the number of data samples fed into the fully con-
nected encoders and decoders decreases sequentially, as previous dimensions are already
reduced, and fibers are processed independently by the AEs. This results in fewer data
samples to be trained on by some AEs. However, we note that slicing the tensors creates
more “samples” in the first place and hypothesize that, since these processed samples have
fewer correlated dimensions, the effective dataset size remains similar.

Figure 2: Encoder models for a third-order tensor which slice each tensor into its different
fibers along each mode to reduce all three dimensions in sequence.

2.2. Non-Linear Architectures of the Fully Connected Autoencoder

For each of the N fully connected encoders and decoders, a simple nonlinear architecture
is applied. In particular, each encoder and decoder comprises two fully connected layers.
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After the first layer, a nonlinear activation function is applied, namely the Rectified Linear
Unit (ReLU). While multiple extensions to this simple nonlinear architecture are possible,
e.g., deeper architectures, batch normalization, or residual skip connections, none of these
led to significantly better results in our experiments. This can be explained through the
resulting depth—and hence number of trainable parameters—between input and output
signals, which makes the non-convex loss function more difficult to train. For a third-order
tensor with only two layers for each encoder and decoder, there are already 3×2×2 = 12
nonlinear layers between input tensor X and reconstructed tensor X̂ .

2.3. Multi-Task Learning: Classification of Reduced Tensors

One advantage of the proposed AE architecture, in addition to its trainability via gradient-
descent-based optimization, is the potential to learn multiple tasks simultaneously and in
an end-to-end fashion, i.e., multi-task learning. In this case, a classifier is learned in addi-
tion to minimizing the reconstruction loss when training the model. The loss function is
a linear combination of the MSE loss (as described above) and the cross entropy loss for
classification. The goal is to classify each tensor based on its compressed representation
and, in particular, to learn a representation of tensors that yields good classification per-
formance. For this, in addition to the existing architecture, a classification model on the
compressed tensor is trained, which can be simultaneously learned using backpropagation.

3. Experimental Results

A real-world hyperspectral image dataset with 186 tensor data samples of avocados is used
for the experiments. All data samples are cropped to an equal size of 236 × 187 × 224.
The avocados are imaged in three-by-four trays, but each is stored independently. Ambient
lighting differs among the four tray columns (far left, middle left, middle right, far right).
Therefore, given the confidentiality of industrial data, we consider predicting the column
an avocado was in during imaging as a simple, yet representative, classification task.

We compare performance of the proposed model against Tucker decomposition as a bench-
mark. Tucker decomposition can be seen as a multilinear extension of PCA to higher order
tensor data (Lu et al., 2013). As we do not operate on a single tensor, i.e., how Tucker de-
composition is conventionally denoted, but rather desire to learn a linear manifold for a set
of K tensors, we optimize:

min
U(n)

1

K

K∑
k=1

∥Xk − Sk ×1 U1 ×2 U2 · · · ×N UN∥2F , (1)

where X is the original tensor, S the reduced tensor, and UN the Nth projection matrix.
A low-rank approximation can be found via High Order Orthogonal Iteration (HOOI)
(Sheehan and Saad, 2007).

Residual Tensor Architecture. We compare the performance of the proposed AE archi-
tecture to Tucker decomposition for several different subspace dimensions. For simplicity
of comparison, the tensors are always reduced from their original size of 236× 187× 224
to cubes with subspace dimensions between 1× 1× 1 up to 40× 40× 40. As we observe
in Table 1, the proposed model outperforms Tucker decomposition, especially for small
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Table 1: MSE reconstruction loss for residual tensor learning for various cube subspace
dimensions using two-layer nonlinear encoder and decoder models and training for 100
epochs. Training times reported for a single GPU NVIDIA GeForce GTX TITAN X.

Dim. Train Loss
/ 10−3

Test Loss /
10−3

%-Change v
Tucker Test Loss

Training
Time

Reduction
in Size

1 7.088 8.386 -44.03% 23 min 99.99%
5 1.034 1.427 -34.00% 24 min 99.99%
10 0.918 1.138 +18.54% 20 min 99.98%
15 0.588 0.602 -2.90% 19 min 99.96%
20 0.400 0.424 -2.08% 19 min 99.91%
25 0.300 0.320 +4.92% 19 min 99.84%
30 0.240 0.236 +10.28% 20 min 99.72%
35 0.175 0.192 +22.29% 22 min 99.56%
40 0.139 0.149 +24.17% 22 min 99.35%

Table 2: MSE Reconstruction Loss & Cross Entropy Classification loss for simultaneous
residual tensor learning and classification tasks for various cube subspace dimensions us-
ing two-layer nonlinear encoder and decoder models and training for 100 Epochs. Training
times reported for a single GPU NVIDIA GeForce GTX TITAN X.

Dim. Test Loss
/10−3

%-Change v
Tucker

Test Loss

Classifier
Test Loss

/10−3

# Correctly
classified

(Test)

Training
Time

1 7.871 -47.47% 1333.622 29/36 16 min
5 1.441 -33.33% 50.055 35/36 17 min
10 1.824 +90.00% 5.757 36/36 17 min
20 0.449 +3.68% 0.355 36/36 17 min
30 0.241 +12.76% 0.324 36/36 18 min
40 0.144 +19.73% 0.916 36/36 21 min

subspace dimensions up to 20 × 20 × 20. For subspace sizes below 5 × 5 × 5 the model
reduces the reconstruction error on the test dataset by over 30%. The fact that the proposed
architecture performs better for smaller subspace dimensions may be due to having fewer
trainable parameters to optimize, given the highly non-convex loss function.

Simultaneous Classification. When training a classifier on the compressed tensor simul-
taneously with learning the lower dimensional manifold, the model is able to classify over
97% data samples of the test dataset correctly for subspace sizes of 5 × 5 × 5 and larger.
Even when reducing each tensor to a 1× 1× 1 scalar, the model classifies > 80% of test
data correctly. The reconstruction loss remains comparable to the results for models when
only learning the lower dimensional manifold. The results are presented in Table 2.

4. Conclusions

In this work, we introduced a novel AE architecture for hyperspectral produce data. We
demonstrated that the proposed residual tensor architecture outperforms existing subspace
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learning techniques, especially for smaller subspace dimensions, where our model can
reduce the reconstruction loss compared to Tucker decomposition by over 30%. Fur-
thermore, we showed that multi-task learning, i.e., including a classification task on the
reduced tensors, is possible and promising. Compared to existing subspace learning tech-
niques our model is more scalable, as it can be efficiently trained using stochastic gradient
descent and involves fewer parameters compared to other AE-based methods.

Future work can involve more effective uses of spatial locality in tensorial data. Our pro-
posed method assumes the vector input of each AE (the fibers) to be drawn as independent
samples of a distribution. However, in the case of hyperspectral images, nearby pixels are
highly correlated, and the data exhibits strong spatial structure as a result. The sheer size
of hyperspectral images, however, may prohibit directly employing standard approaches,
such as convolutional layers. Given the current optimization difficulties for higher dimen-
sional subspaces, future work can also explore alternative gradient-based algorithms for
training, as well as gradient-free methods. A final interesting direction of future research
could investigate the impact of the order in which the dimensions are reduced, as this
impacts the numbers of samples each AE is trained on.
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Abstract 

A molecular property prediction model is dependent on the interplay between the quality 

of data, and expressive representation (or descriptor), and a suitable algorithm to relate 

the descriptors to the target property. In this work, a deep neural network (DNN) is used 

to regress two types of descriptors: fixed descriptors (Group fragments and Morgan 

fingerprints) and learned descriptors (from a Graph Neural Network, GNN). Bayesian 

optimization was used for hyperparameter tuning and a set of 5 models were benchmarked 

and used to predict the enthalpy of formation of organic compounds. GNN based models 

provided the best overall results compared to descriptor-based models which the attentive 

fingerprint model that combines RNN and graph attention mechanism (AFP) achieved 

the best results of 5.9 kJ/mol mean absolute deviation and a coefficient of determination 

of 0.99 in the training, validation, and test set. Despite not achieving chemical accuracy 

of 4 kJ/mol, the model has shown great promise in distinguishing between isomers and 

provides a baseline for future improvements to achieve chemical accuracy. 

Keywords: Deep-Learning, Molecular Property Prediction, Enthalpy of Formation 

1. Introduction 

The molecular properties of chemical compounds must be known a priori to execute 

many chemical engineering applications such as risk assessment, P-V-T calculation using 

equations of states as well as material selection. These properties are either the direct 

product or derived quantities from experimental measurements. Conducting such 

measurements on demand whenever the need arises is not a viable option due to time and 

expenses. Predictive models capable of describing these properties provide an attractive 

alternative to quickly evaluate the properties of a compound. Quantitative structure-

property relation (QSPR) models are predictive models relating the chemical structure of 

a compound to a target property. The molecular structure is converted into a numerical 

representation that is then used as input to a mathematical model to produce the target 

property. The mathematical model is usually selected by observing the trend of the 

property with increasing carbon numbers for homologous series. Recently, deep neural 

networks (DNN) have gained popularity in many engineering applications and have also 

been used as part of the QSPR model(Aouichaoui et al., 2021). This increasing attention 

is due to their ability to approximate any non-linear functions (universal approximation 

theory). Despite being an integral part of any QSPR, the selection of the mathematical 

model is less challenging than developing the molecular representation or descriptors 

used as input, which remains an issue and a detriment factor to the success of the model 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50265-7 
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(good accuracy and ability to distinguish compounds) to a higher degree than the 

mathematical model. The molecular representation used can either be the product or a 

combination of domain knowledge, heuristics, or a data-driven approach. Group-

contribution models (GC) employ both domain knowledge and heuristics to represent the 

molecule as an occurrence vector of a set of predefined groups(Hukkerikar et al., 2012). 

The Morgan fingerprints and it’s variation such as the extended connectivity fingerprints 

(ECFP) are another widely popular descriptor in the fields of cheminformatics and drug 

discovery (Rogers and Hahn, 2010).  The ECFPs are circular fingerprints that represent 

the presence of a particular substructure that is encoded through a hashing function. The 

circular fingerprints can be generated for different diameters by combining features from 

the previous diameter length that are stored in a variable-length bit vector. Various QSPR 

models have used the ECFP to model a variety of molecular properties such as predicting 

water solubility (Xiong et al., 2020). The group fragments and the ECFP are fixed 

descriptors that are proper to the molecule chosen and known before the modeling 

process. However, the molecular descriptors can also be learned so they become not only 

property to the molecule but also exclusive for the dataset through graph neural networks 

(GNNs) (Gilmer et al., 2017). These models take a graph representation of the molecule 

where the nodes represent the atoms and the edges represent the bonds. Each node and 

edge is assigned a feature vector with information related to the atoms (type, valency, etc) 

and the bonds (type of bonds, etc.). These feature vectors are then updated based on the 

information contained in the feature vector of their neighboring nodes by applying graph 

convolutions or message passing layers. A readout function is then applied to the graph 

representation to produce a vector representation that is then supplied to a DNN to 

produce the target prediction. The feature update and the repression procedures both 

employ a series of algorithms that integrates learnable parameters that are adjusted using 

error backpropagation, which produces a representation that fits the compound and the 

target property at the same time. In this work, we benchmark the above-presented 

descriptors using the same property data, to compare their performance and highlight 

some of their advantages and drawbacks. 

2. Methods 

2.1. Models 

We distinguish between two types of models, those that use a fixed representation in the 

form of the group fragments and ECFP and those that generate their representation from 

a molecular graph representation. 

2.1.1. Fixed representation models 

Models with a fixed molecular representation are used in conjunction with a DNN to 

correlate the descriptor to the target property. The GC-DNN uses the group fragmentation 

developed by (Hukkerikar et al., 2012), where the molecule is described through 3 levels 

(orders) with increasing levels of complexity containing: 224 first-order groups, 134-

second order groups, and 74 third-order groups. Although third-level groups are based on 

convenience and a more heuristic approach, they are included in this study to take 

advantage of the full predictive power of GC-based methods. The ECFP-DNN uses the 

extended circular fingerprints generated through the Morgan algorithm as described in 

(Rogers and Hahn, 2010). These descriptors are generated using a Python-based 

cheminformatics package RDKit (Landrum, 2020). The representation is hashed into a 

bit vector of length 1024 as used in previous studies (Xiong et al., 2020). The hyper-

parameters were optimized: dimensions of hidden neurons in the first layer [256, 1024], 
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number of layers [2, 4], activation functions [‘LeakyReLU’, ‘Sigmoid’, ‘Tanh’, ‘SELU’], 

L2 regularization [0, 0.05], initial learning rate [1e-5, 1e-1], learning rate reduce factor 

[0.2, 0.8]. Note that the size of hidden neurons in the following layers is designed to be 

half of the previous layer. 

2.1.2. Adaptive/learned representation models 

Three graph neural networks are used to evaluate the performance of models with an 

adaptive representation of the molecule. In the following, the main features of the models 

are highlighted. For a more in-depth explanation of the models and their hyperparameters, 

the reader is encouraged to inspect the references provided. 

The Message Passing Neural Network (MPNN) by (Gilmer et al., 2017) is a versatile 

model used for various property prediction purposes such as predicting water solubility. 

The model takes an undirected molecular graph with attributed nodes and edges. The 

operation of the models is described in two phases: a message-passing phase where the 

node and edge features are transmitted to the neighboring nodes and used to update its 

representation and a readout phase transforming the graph representation to a vector 

representation that is supplied to a DNN to regress the target property. More details on 

mathematics can be found in (Gilmer et al., 2017). The main hyper-parameters were 

optimized: hidden dimensions [1, 128], number of layers [1, 4], L2 regularization [0, 

0.05], learning rate [1e-5, 1e-1], learning rate reduce factor [0.2, 0.8].    

Graph Isomorphism Network (GIN) by (Xu et al., 2019) is a simple GNN that is intended 

to achieve a similar ability to the Weisfeiler-Lehman graph isomorphism test. The model 

only relies on node features to aggregate and update the node feature through a deep 

neural network and uses the sum function and concatenating the resulting representation 

from each iteration as the readout function. The main hyper-parameters for tuning 

together with their search domains are the same as MPNN.  

Attentive Fingerprint (AFP) by (Xiong et al., 2020) is considered the state-of-the-art GNN 

model that combines a series of deep-learning techniques to enhance its representative 

capabilities. A recursive neural network is used to agglomerate the messages from nearby 

and distant nodes in addition to the graph attention mechanism that allows the model to 

weigh the information and assign importance to it thus only focusing on the relevant 

structural information. Besides those hyper-parameters mentioned above, Attentive FP 

has one extra hyper-parameter to be optimized: the number of time steps [1, 4].   

All previously described GNN models operate on a graph representation of the molecule. 

The node is attributed with the atom type (C, N, F, Br, Cl, S, I), the atomic mass, the atom 

degrees (nr. of covalent bonds), the type of hybridization (sp,sp2,sp3,sp3d,sp3d2), whether 

the atom is part of an aromatic configuration, whether it is part of a ring structure as well 

as the number of hydrogen attached and whether it is a chiral center. The edges contain 

information on whether the bond is single, double, triple, or part of an aromatic structure. 

The feature vector also includes whether the bond is conjugated or part of a ring structure 

as well as a stereo-configuration it might be part of (E/Z, cis/trans). 

2.2. Training & Optimization 

The data are split into three folds: 90% for training, 5% for validation, and 5% for testing. 

Training has been prioritized since the dataset size is small compared to other deep-

learning applications such as image or speech recognition. During training, the adaptive 

learning rate is used to adapt to the optimization surface as well as early stopping and L2 

weight regularization to avoid overfitting the objective function used for model training 
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is the mean-squared error. The hyperparameters of the various models have been tuned 

using a multi-objective Bayesian optimization (MOBO) toolbox (Galuzio et al., 2020)  

The root-mean-squared error (RMSE) of the training and validation set are chosen to 

describe the performance of the model. The hyper-parameters of each model and their 

range have been previously described when presenting the models. The MOBO is done 

by constructing a posterior distribution function using a Gaussian process using the Matén 

covariance function as shown in Eq.(1), where “l” is the length scale, Γ() is the gamma 

function, “Kv()” is the modified Bassel function and “r” is the distance between two 

arguments of Kernel and “v” is a positive parameter set to 1.5 in this study. 

𝐶𝑣(𝑥⃗, 𝑥⃗
′) =

21−𝑣

𝛤(𝑣)
(
𝑟√2𝑣

𝑙
)

𝑣

𝐾𝑣(
𝑟√2𝑣

𝑙
) (1) 

3. Case Study: Predicting the enthalpy of formation of organic compounds 

3.1. Property Data 

The methodology model described previously is applied to predict the standard enthalpy 

of formation (HFOR) of organic compounds. The HFOR is defined as the change in 

enthalpy associated with the reaction forming the given chemical in its standard state from 

the elements in its standard state. The data were collected from the DIPPR database 

(Wilding et al., 2017) containing a total of 741 compounds. Figure 1 shows the 

distribution and range of the data. Only experimental values are selected and only organic 

compounds with either of the following atoms: Oxygen (O), Bromide (Br), fluorine (F), 

chlorine (Cl), Iodine (I), Nitrogen (N), and Sulfur (S).  An important challenge associated 

with the enthalpy of formation is to achieve ” chemical accuracy” which is stated as 4 

kJ/mol (Meier, 2021). 

 

Figure 1: distribution of the heat of formation 

3.2. Results 

Table 1 provides the number of learned parameters (N), the coefficient of determination 

(R2), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) of 

the best-performing type of model. The best metrics are in bold. 
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Table 1: Perfoamnce metrics of the tuned models 

Model N R2 MAE(kJ/mol) MAPE (%) 

ECFP-DNN 1,494,510 0.977-0.916-0.944 26.0-74.9-60.5 27.4-80.9-56.7 

GC-DNN 946,297 0.996-0.991-0.987 11.8-16.2-16.3 16.1-19.7-16.0 

MPNN 557,665 0.997-0.973-0.981 6.7-28.7-31.1 10.5-33.6-26.8 

GIN 123,481 0.994-0.992-0.991 12.9-34.8-16.2 23.3-29.8-43.5 

AFP 97,995 0.999-0.999-0.997 5.1-7.9-12.6 6.4-13.4-12.8 

GC+ 428 0.999 1.75 - 

3.3. Discussion 

The AFP model outperforms all other GNN models as well as the models based on GC 

and ECFP across all metrics with an overall R2 of 0.999, an MAE of 5.9 kJ/mol, and a 

MAPE of  8%. Compared to the model developed by (Hukkerikar et al., 2013) (GC+) the 

AFP falls short of achieving the desired chemical accuracy of 2 kJ/mol. However, it is 

important to note that this model uses all data to perform the regression and even defined 

new additional higher order that is not funded in any chemical or property knowledge to 

reduce the error and accomplish the chemical accuracy. This raises a concern about the 

models' ability to extrapolate. The GC-DNN also falls short of the model by (Hukkerikar 

et al., 2013) across all metrics. The reason is not all data are used for regression and the 

fact that it did not rely on all groups defined by (Hukkerikar et al., 2013). Compared to 

classical QSPR models, GNN and in general deep-learning-based models are high 

parametric models with the number of parameters much higher than the number of data 

points available. Despite this, AFP is the GNN with the least model parameters and still 

outperforms the remaining models. This could be related to the attention mechanism and 

use of RNN to process node features. 

Table 2: Prediction and experimental value for Methylpentenes. The absolute relative error 

compared to the experimental value in % are given in parenthesis 

 2-METHYL-1-

PENTENE 

3-METHYL-1-

PENTENE 

2-METHYL-2-

PENTENE 

Experimental -59.2 kJ/mol  -49.4 kJmol  -66.8 kJ/mol  

GC-DNN -57.0 kJ/mol (03.7) -40.9 kJ/mol (17.2) -59.4 kJ/mol (11.1) 

ECFP-DNN -48.6 kJ/mol (17.9) -20.8 kJ/mol (57.9) -87.5 kJ/mol (30.9) 

MPNN -57.8 kJ/mol (02.3) -50.7 kJ/mol (02.6) -62.6 kJ/mol (06.3) 

GIN -50.7 kJ/mol (14.4) -46.2 kJ/mol (06.5) -63.4 kJ/mol (05.1) 

AFP -57.9 kJ/mol (02.2) -49.0 kJ/mol (00.8) -65.2 kJ/mol (02.4) 

GC+ -54.6 kJ/mol (07.8) -45.7 kJ/mol (07.5) -64.7 kJ/mol (03.1) 

Table 2 contains the experimental value and corresponding predictions using various 

models of the methylpeneten isomers. The table clearly shows that the AFP model is 

superior in distinguishing between isomers compared to the rest of the models with the 

lowest absolute relative errors across all models. Although a rare occasion, the GC+ model 

can distinguish the isomers presented herein due to the presence of second-order groups. 
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Another interesting aspect is the fact that no prior knowledge is incorporated into the 

GNN models other than basic chemistry-related information, and despite this, the model 

achieves very promising results. 

4. Conclusions 

A successful QSPR model heavily relies on the interplay between data, representation, 

and model. The focus of this work was on some of the methodologies to represent the 

molecular structure in a machine-readable way. The data and the general prediction model 

were identical. GNN based models showed superior performance to descriptor-based 

models with the AFP model achieving the best results with 5.9 kJ/mol mean absolute 

error, and although it falls short of the target chemical accuracy (also referred to as the 

holy grail), the model has shown it is much better at distinguishing between isomers. 

Furthermore, the results suggest that deep-learning-based models such as GNN do 

provide a powerful tool to correlate molecular structure to the desired target property 

without time-consuming descriptor design or extensive domain knowledge. 
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Abstract 

In this work, we evaluate the application of a Deep Reinforcement Learning (DRL) 

method for the scheduling of continuous process/energy systems under day-ahead 

electricity rate and demand forecast uncertainty. We employ the Soft Actor Critic (SAC) 

method, a stochastic, off-policy, actor-critic method with built-in entropy maximization 

that balances exploration and exploitation. We choose as a case study the dispatching of 

energy systems with storage, which can be posed as a continuous scheduling problem. 

Results from the computational case study demonstrate that the DRL agent is able to 

surpass a heuristic policy using very little data, and ultimately reaches a performance 

comparable to a model predictive control (MPC) solution. The effect of demand forecast 

uncertainty is further analysed and it is shown that, while the MPC performance degrades 

steadily as the forecast error and recalculation period increase, the DRL method exhibits 

a more robust performance. 

Keywords: Deep Reinforcement Learning; Operation; Optimization; Energy Systems; 

Demand Response. 

1. Introduction 

Data-based methods for optimization and control have been gaining traction over recent 

years due to advances in the field of Deep Reinforcement Learning (DRL), which merges 

the power of nonlinear approximators with strategies for online exploration, parameter 

estimation and optimization. Along with this trend, there has also been an increased effort 

to reduce carbon emissions and increase energy efficiency and renewable penetration. In 

this context, establishing an efficient operation of energy-intensive processes becomes a 

critical component for achieving these goals. The operation of these systems, particularly 

under time-varying electricity rates, has been typically approached using model-based 

optimization. For instance, in the case of district cooling plants that produce cooling 

utilities by running electricity-driven industrial chillers, previous works include 

Economic Model Predictive Control (Ma et al., 2011) and closed-loop scheduling 

(Risbeck et al., 2017; Campos et al., 2021). While powerful, these methods require 

considerable modelling effort, which is exacerbated when attempting to model the effects 

of uncertainty (e.g., in stochastic programming or robust optimization). In this case, DRL 

emerges as a promising alternative for performing the operation of complex (e.g., 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50266-9 
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nonlinear, stochastic, multiscale) systems while avoiding the high associated modelling 

and computational costs (Badgwell et al., 2018).  

In the Process Systems Engineering (PSE) literature, studies using classical data-based 

techniques such as Reinforcement Learning (e.g., Cassol et al., 2018) or Approximate 

Dynamic Programming (e.g., Lee and Wong, 2010) have been regularly proposed over 

the past few decades. However, the recent developments in DRL and Deep Learning, 

more specifically over the last 5 years, have enabled more powerful applications with 

high dimensional state and action spaces, and policy complexity. DRL techniques have 

been recently employed in a few process systems applications, including chemical 

production scheduling using Advantage Actor-Critic (A2C) (Hubbs et al., 2020), control 

of liquid-liquid extraction columns in biopharmaceutical processes using Deep Q-

Networks (DQN) (Hwangbo and Sin, 2020), and control of batch polymerization 

processes using Deep Deterministic Policy Gradient (DDPG) (Yoo et al., 2021). 

While the performance of DRL methods for more traditional problems has been 

addressed, less attention has been paid to the demand responsive operation of processes. 

In addition, as opposed to the majority of works that employ deterministic agents (e.g., 

DDPG, TD3 and DQN), in this paper we employ a stochastic agent using the Soft Actor-

Critic (SAC) method, which generates actions following a probability distribution and 

has been shown to be more robust and have lower brittleness to hyperparameters. 

Compared to other stochastic methods such as A2C (or A3C), SAC has the advantage of 

being an off-policy method, an important property for practical applications that allows 

the use of a replay memory buffer for reducing sample complexity. We provide insights 

into the applicability of SAC for demand response through a case-study that demonstrates 

how the agent’s performance compares to heuristic and optimal policies with and without 

forecast uncertainty. 

2. Soft Actor-Critic (SAC) Method 

The SAC formulation (Haarnoja et al., 2018a, b) aims to learn a policy that maximizes 

the expected sum of rewards (traditional RL objective), while simultaneously maximizing 

the policy’s entropy or stochasticity. The entropy maximization encourages exploration 

of the state space and avoids local optima, in addition to other practical advantages (e.g., 

reducing hyperparameter sensitivity). The entropy augmented objective is posed as 

𝔼(𝑠𝑡,𝑎𝑡)[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼 𝐻(𝜋( ⋅ |𝑠𝑡))], where 𝛼 is a temperature parameter that controls the 

relative importance of the policy’s entropy function 𝐻(𝜋). By applying a soft policy 

iteration procedure using function approximators (for the Q-function and the policy) and 

stochastic gradient descent, one can derive equations for the loss functions (minimization 

objectives) of the actor 𝐿𝜋, critic 𝐿𝑄 and alpha 𝐿𝛼 (its logarithm), which are given as 

follows. 

𝐿𝜋 = −(𝑄𝜃(𝑠𝑡 , 𝑎𝑡) − 𝛼 log  𝜋𝜙(𝑎𝑡|𝑠𝑡) )  (1) 

𝐿𝑄 = 𝑀𝑆𝐸 (𝑄𝜃(𝑠𝑡 , 𝑎𝑡), 𝑟𝑡 + 𝛾 (𝑄𝜃(𝑠𝑡+1 , 𝑎𝑡+1) − 𝛼 log 𝜋𝜙(𝑎𝑡+1|𝑠𝑡+1)))  (2) 

𝐿log 𝛼 = log 𝛼 (log 𝜋𝜙(𝑎𝑡|𝑠𝑡) + 𝐻̂) (3) 

The policy update maximizes the Q-function, corrected by a term that steers the policy 

away from actions with high probability. The critic loss is a mean square error function 
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between the current critic prediction and a target value, the latter calculated using target 

networks 𝑄𝜃 and 𝜋𝜙, which are updated using a Polyak rule. Double estimation of the Q-

function (i.e., two critic networks) is employed to mitigate positive bias. A condensed 

version of the algorithm is presented in Table 1, for a complete version the reader is 

referred to Haarnoja et al. (2018b).  

Table 1 – Soft Actor Critic Algorithm (condensed). 

1 Initialize network parameters, hyperparameters, replay buffer and environment. 

2 for each environment time step, do: 

3  Collect experience (choose 𝑎, observe 𝑟 and 𝑠’) and store in memory buffer. 

4  for each training step, do: 

5   Sample minibatch of experiences. 

6  Calculate losses: 𝐿𝑄 (Eq. (1)), 𝐿𝜋 (Eq. (2)), 𝐿𝛼 (Eq. (3)). 

7  Calculate gradients (automated with PyTorch). 

8   Update networks using the Adam stochastic optimizer. 

9 Perform a Polyak update of the target actor and critics. 

10  Update state 𝑠𝑡 ← 𝑠𝑡+1 

The information flow through the actor and critic networks is shown in Figure 1. The 

yellow area represents the action calculation phase, while the blue area represents the 

training phase, in which the gradient of the parameterized Q-function with respect to the 

networks parameters is calculated. Reparameterization of the action sampling step 

explicitly with respect to the distribution parameters using a Gaussian white noise 𝜖 is 

employed to allow direct backpropagation of the gradient. 

 

Figure 1. Information flow through networks for action generation and training phases. 

3. System Formulation and Description 

Markov Decision Process Formulation. We formulate the problem of equipment and 

storage dispatching under day-ahead electricity prices as a Markov Decision Process 

(MDP). Our goal is to achieve a minimalistic description that is suitable for the 

application of DRL methods. We consider the classical MDP framework defined by the 

tuple (𝑆, 𝐴, 𝑝, 𝑅), i.e., the state and action (continuous) spaces, the unknown state 

transition probability, and the bounded reward function. The state space includes the 

current storage value, future demands and future prices. The action space is defined as 

the current production level (i.e., equipment loads). The reward function is the negative 

of cost, including both operational cost (i.e., electricity consumption) and constraint 

violation penalties. 

Scheduling of Energy Storage Systems. A typical on-line scheduling formulation is used 

to obtain the model-based solution. This problem type includes many practical 

applications such as the dispatching of distributed energy resources (e.g., solar PV and 

battery systems) and utility production facilities (e.g., district cooling and heating plants). 

A diagram of the system is presented in Figure 2. For the specific case-study, we consider 
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the scheduling of district cooling plants, in which the production level represents the 

cooling load of the chillers, the storage represents a Thermal Energy Storage (TES) tank, 

the power consumption is a linear function of the production level, the demand 

corresponds to cooling demand from buildings, and the electricity price varies hourly 

according to a wholesale day-ahead program. 

 

Figure 2. Energy/process system with production plant, storage and demand. 

min ∑ 𝑃𝑜𝑤𝑒𝑟𝑡

𝑡∈T

𝑃𝑟𝑖𝑐𝑒𝑡 (4)
 

s.t. 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡+1 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 − 𝐷𝑒𝑚𝑎𝑛𝑑𝑡 (5)  

 𝑃𝑜𝑤𝑒𝑟𝑡 = 𝑓(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡) (6)  

 hard bounds for 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡, soft bounds for 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡 (7)  

4. Case Study Results 

The algorithm was implemented in Python 3.7 using the PyTorch v1.6.0 package. The 

following settings were used: Adam optimizer with learning rates 1e-4 (actor) and 5e-4 

(critic/alpha); networks with two layers, 256 neurons each, and ReLU activation 

functions; target network Polyak coefficient τ = 0.005; discount factor 𝛾 = 0.99; buffer 

size = 1e6; samples per minibatch = 256; training steps/environment step = 3; 

weights/biases initialized uniformly ∈ (−𝜇, 𝜇), 𝜇 = (#weights)-0.5; log_std output of the 

policy network ∈ (-10, 2); single continuous action; 24 forecast steps (state vector with 

49 elements); episodic environment using one week of real hourly data (non-episodic 

formulations were tested and work the same way); optimal solution obtained from a 

closed-loop MPC with long horizon and perfect information; heuristic policy operates 

equipment when electricity is cheaper on a weekly average; minimum-level (10%) 

constraint violation penalty = 30 $/MWh (of storage load), proportional to the violation 

magnitude (penalty = 90 $/MWh in the case of tank depletion).  

4.1. Case Study 1: Perfect Information Scenario 

We first evaluate how the SAC method performs under a perfect information scenario 

and compare it to an optimal (upper bound), a heuristic (baseline), and a random policy 

(soft lower bound). Results are shown in Figure 3 (log-scale is used to amplify the data 

near the optimum), in which the plotted curve is an average of three runs (shaded area 

represents a single standard deviation). Within the first week of training, the SAC agent 

overcomes the performance of the random policy, meaning that the agent learns to avoid 

constraint violations (largest sources of penalties that dominate the random policy’s 

performance). In the next 2-3 weeks, the agent overcomes the performance of the heuristic 

policy, which indicates a great potential for practical application. In the remaining weeks, 

the agent closes the gap towards the optimal solution. Figure 4 presents the scheduling 

variables for a representative week (action can be seen avoiding peak prices) and the 

network losses and alpha throughout the training period. 



 

Figure 3. SAC training performance vs. optimal, heuristic, and random policy performances. 

 

Figure 4. Weekly scheduling results, alpha and losses for the training phase. 

4.2. Case Study 2: Demand Forecast Uncertainty 

We assume a forecast with additive Gaussian noise, which simulates the error increasing 

further into the future. Five error magnitudes are considered between 0 to 4% of an 

average demand (24.70 MWh) as the standard deviation of the additive Gaussian noise at 

each forecast step. Figure 5 presents the MPC solutions with varying recalculation periods 

(1, 6, 12, 24 h) averaged over 100 weeks to reduce sampling effects from the forecast 

distribution, and the SAC agent’s performance at various training stages (50, 150, 250 

weeks). The SAC solution shows good robustness against uncertainty, especially after 

250 weeks of training, comparable to employing a fast recalculation frequency for the 

MPC. The SAC agent shows particular advantage when there is a combination of long 

recalculation period (or high computational cost) and considerable uncertainty. 

5. Conclusions 

In this work, we evaluated the application of a DRL method for performing demand 

response of energy/process systems. The SAC method was employed, a stochastic, off-

policy, actor-critic method with built-in entropy maximization that balances exploration 

and exploitation. Results demonstrate that the SAC agent quickly learns to avoid 
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constraint violations and continuously closes the gap towards the optimal solution, 

indicating a good potential for practical application. An analysis of the effects of forecast 

uncertainty indicated scenarios in which the DRL approach would present advantages 

over a model-based approach, i.e., when there is a combination of high recalculation 

period and high uncertainty magnitude. This result is of particular significance when 

dealing with complex (e.g., nonlinear, multi-scale, mixed-integer, stochastic) systems. 
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Abstract 
Modern microfluidic systems realize the envisioned idea to perform continuous process 
operations on a small scale using miniaturized devices and present superiorities in terms 
of plant modularization, reaction intensification and waste reduction. In microfluidic 
engineering, droplet size is central to desired function. Therefore, an effective droplet 
detection and size measurement method is highly-demand to quantitatively reveal the 
relationship between operation parameters and outcome droplet size. Herein, with recent 
impressive developments of computer vision, we propose a novel two-step convolutional 
neural network method to detect and measure droplets in microscopic images. The 
proposed model first locates droplets with bounding boxes and then calculate the droplet 
size with detailed coordinates. This convolutional neural network model not only exhibits 
outstanding performance for droplet size measurement, but also reveals the convenience 
of deep learning for digital, comprehensive and intelligent microfluidic researches. 

Keywords: Microfluidics; Droplet detection; Size measurement; Deep learning; 
Convolutional neural network. 

1. Introduction 
Modern continuous-flow process engineering has been explored toward the small-scale 
device for the prominence in yield, selectivity, scale-up and controllability (Rossetti and 
Compagnoni, 2016). Among all small-scale reaction technologies, microfluidic 
engineering is appealing wide attentions and substantially growing in terms of 
pharmaceuticals, fine chemicals, green chemistry, catalytic reactions and material 
synthesis that is tough for traditional batch operations (Yan et al., 2021). Microfluidic 
engineering technology reveals the envisioned idea to perform continuous process 
operation on a small scale with miniaturized (lab-on-a-chip) devices. For reactions in 
microfluidic equipment, the process intensification is strengthened with increased 
mass/heat transfer rates, due to the relatively much larger mass/heat transfer area in the 
confined volume. Therefore, the size and size distribution of dispersed phase is central to 
the properties and functions of microfluids (Duraiswamy and Khan, 2009). 

Currently, the microfluidic droplet size measurement methods are approximately divided 
into experimental and imaging methods. Experimental methods are based on probes, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50267-0 
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which can be intrusive or non-intrusive, focusing on relating some measurable parameters 
with the microdroplet size. In intrusive experiments, direct contact between probes and 
microfluids are inevitable, thus the flow state of microfluids would be disturbed and the 
measurement result uncertainty would be increased (Chen et al., 2004). Non-intrusive 
techniques avoid this drawback by adopting non-contacted experimental techniques. For 
instance, Lucas et al. used 3D printing technique to fabricate microfluidic devices with 
integrated electrodes based on contactless conductivity detection (Duarte et al., 2017). 
However, non-contacted techniques are still confronted with problems on expensive 
sensors, complicated installation and poor portability. 

With the application of high-speed camera, optical imaging method is attracting wide 
attentions from microfluidic research communities. However, the post-processing of 
photographed microscopic images to measure microdroplet size is still rudimentary, 
mainly by manual measurement on the images at the present stage (Basu, 2013). 
Commonly, the mechanical image measurement would cost several weeks or months to 
obtain sufficient data to measure the droplet size. As a consequence, the low efficiency 
of imaging post-processing will severely harm the scale-up of microfluidic processes, as 
well as microfluidic device design. 

Motivated by recent advancements of computer vision, especially deep learning, it is 
promising to realize an intelligent method to detect droplets and measure their sizes 
precisely (Cerqueira and Paladino, 2021; Zhang et al., 2022). Herein, we propose a two-
step method based on convolutional neural network (CNN) for microdroplet size 
measurement. The proposed method first detects droplets in the image by locating them 
with bounding boxes (Bboxes), then calculates droplets’ equivalent diameters with 
detailed coordinates of their Bboxes. In this way, the droplet size can be rapidly calculated 
and the size distribution curves can be easily acquired, with high droplet detection 
precision and low size measurement error. This method not only exhibits outstanding 
performance of CNN for droplet size measurement, but also reveals the convenience of 
deep learning for digital, comprehensive and intelligent microfluidic researches. 

2. Experiment 
We utilized a popular capillary-assembled microchannel as the research microfluidic 
system in this work, which was fabricated with polymethylmethacrylate (PMMA). The 
experimental setup is shown in Figure 1. The outer and inner diameters of the inserted 
capillary were 710 μm and 410 μm, respectively. A stepped T-junction was used as the 
micromixer to disperse one phase into another phase for producing microdroplets, due to 
its enhanced shearing effect (Wang et al., 2015). The narrow slit of the stepped T-junction 
is 200 μm high. After that, an observing chamber was attached with 2 mm wide window 
on both sides for microphotography. The channel size is ~3 times larger in the observing 
chamber, where the generated droplets are slowed down to acquire clear microscopic 
images. An optical microscope (XSP-63B, Shanghai Optical Instrument, China) is 
equipped with a CMOS camera (B742-F, PixeLink, Canada) to snap images of produced 
microfluidic droplets. The optical information was sent to computers and converted to 
digital images with a scale bar of 1.65 pix/μm for post-processing. A collector was set at 
the end to collect produced microdroplets. 
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Figure 1. Microfluidic experimental setup. 

In the experiment, styrene was selected as the dispersed phase, an aqueous solution of 3.0 
wt% sodium dodecyl sulfonate (SDS) and 2.0 wt% polyvinylpyrrolidone K30 (PVP-K30) 
was selected as the continuous phase. SDS is a surfactant to decrease the interfacial 
tension, and PVP-K30 is the thickener of the solution for producing droplet swarm. The 
continuous and dispersed phases were continuously pumped into the T-junction with 50 
mL and 10 mL gastight syringes (SEG, Australia), respectively, using commercial syringe 
pumps (Fusion 6000 for the continuous phase and Fusion 4000 for the dispersed phase). 
The width and height of photographed images are 1024 and 768 pixels, respectively. To 
realize a stable jetting flow regime, the flow rate of continuous phase is set between 3~8 
mL/min and the flow rate of dispersed phase is set between 1~20 μL/min. This extreme 
phase ratio is as set to obtain tiny microdroplets. Besides, in some high flow rate ratio 
cases, the retracted neck of the dispersed phase may by stretched by the continuous phase, 
and break up into a smaller droplet, of which the size was smaller than dominant droplets. 

After experiment, microfluidic images are collected to construct training and testing 
datasets, which are summarized in Table 1. For training neural networks, it is required to 
annotate droplets in these images (LeCun et al., 2015). Those droplets truncated by the 
image borders are also annotated with Bboxes but excluded out in size measurement, 
because the detailed ordinates of some corner points of the Bbox are missing. There are 
2276 and 862 droplets in training and testing datasets, respectively. The mean, maximum 
and minimum diameters of the training dataset are close to those of the testing dataset, 
demonstrating the constructed datasets are qualified to evaluate the proposed CNN-based 
size measurement method.  

Table 1. Annotated training and testing datasets of microdroplet image. 

 The number of 
droplets 

Mean 
diameter/μm 

Min 
diameter/μm 

Max 
diameter/μm 

Train 2276 35.3 7.3 70.0 

Test 862 38.2 8.8 69.4 

3. Method 
The proposed two-step CNN-based droplet size measurement method is exhibited in 
Figure 2. The first step is to detect droplets and regress their coordinates with Bboxes. 
The second step is to filter droplets not truncated by image borders and calculated the 
equivalent diameters. 
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In the first step, microfluidic images are input into a CNN backbone to extract abstract 
features. Then, potential regions that contain droplets are proposed. After that, features in 
each proposed regions are transformed into a same size with the regions of interest (RoI) 
pooling operation. Finally, a sharing fully-connected (FC) layer and two separate FC 
layers are used to distinguish whether the proposed region contains a real droplet and 
regress the droplet locations. In the second step, droplets whose bounding boxes reach 
any image border would be excluded out in size measurement and the size is determined 
as the mean value of height and width of the Bbox. 

 
Figure 2. Schematic of the proposed CNN-based microdroplet size measurement method. 

For model evaluation, the average precision (AP) under certain intersection-of-union 
(IoU) condition is utilized (Ren et al., 2016). For a pair of predicted and actual Bboxes, 
if their IoU is larger than a predetermined threshold, the prediction can be regarded as a 
matched one. AP is the averaged ratio of matched predictions to all predictions over all 
images, which can reflect the microdroplet detection accuracy. The IoU threshold is set 
as 0.75 in this work and the corresponding AP is denoted as AP75. Meanwhile, mean 
absolute error (MAE) of predicted diameter is also considered as the most straightforward 
criterion. 

4. Results and discussions 
4.1. Model tuning 

During training, many reported CNN architectures can be implemented as the CNN 
backbone for effective feature extraction. In this work, an advanced CNN model series, 
ResNet, is selected as the backbone for feature extraction. ResNet is characterized by the 
skip identity mapping from shallower layers to deeper layers (Figure 3(a)), which realizes 
an incremental learning pattern in deep learning (He et al., 2016). Normally, ResNet that 
contains more CNN layers is inclined to perform better. Three ResNets with different 
number of layers are investigated, which are ResNet18, ResNet34 and ResNet50, 
respectively. 
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Figure 3. (a) Residual block of ResNet. (b) AP75 and (c) MAE results using ResNet 
backbones. 

The AP75 and MAE results of ResNet50, ResNet75 and ResNet50 are exhibited in Figure 
3(b) and (c), respectively. It can be observed that, as the ResNet backbone becomes 
deeper, AP75 is increasing and MAE is decreasing. AP75 reflects the droplet detection 
accuracy and MAE reflects the droplet measurement preciseness. Therefore, a deeper 
ResNet backbone can contribute a precise droplet detection and measurement, although 
the calculation cost is also increased because more CNN layers are included in the model. 
In application, ResNet with certain number of layers can be selected as the CNN backbone 
to meet the requirement of measurement preciseness or calculation speed (or both). 
Specifically, a high AP75 of 0.889 and a low MAE of 0.739 μm are achieved by ResNet50. 

4.2. Measurement results 

 
Figure 4. (a) All detected Bboxes, (b) non-truncated Bboxes, and (c) diameter frequency 
and probability density function (PDF) curve of a typical droplet image. 

Figure 4 exhibits a typical photographed droplet image and corresponding inference result 
of the proposed CNN model. With the powerful feature extraction capability of CNN, 
almost all droplets can be detected and precisely located with a Bbox to depict their 2-
dimensional existence limits (Figure 4(a)). After that, Bboxes that cover the image border 
are excluded out, as shown in Figure 4(b). The measured droplet diameter is determined 
as the average of the height and width of the Bbox. Finally, frequency can be easily 
calculated and PDF curve can be fitted with Gaussian mixture model. In Figure 4(c), the 
major peak can be ascribed to dominant droplets and the other two peaks can be ascribed 
to aforementioned satellite droplets. 

5. Conclusions 
In conclusion, this novel work proposes an intelligent and precise CNN-based model for 
detecting and measuring droplets in microfluids. This CNN model can comprehensively 
and precisely locate microdroplets with Bboxes. Based on that, microdroplet diameters 
can be easily measured and diameter distribution can be obtained for analysis. It is 

Convolutional Neural Network based Detection and Measurement for 
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noteworthy that this CNN model can be implemented to analyse microdroplets with 
different diameters, even those satellite droplets with diameter as small as ~20 μm. With 
advanced deep learning technique, this CNN model not only reaches a human-level 
preciseness in droplet size measurement, but also sheds light on fast and precise 
microfluid analysis for microfluidic device design and in-depth microfluidic flow 
research in the future. 
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Abstract 

The modified Claus process is used to recover sulfur from acid gases containing high 
concentrations of H2S. The downstream process, a tail gas treatment system, is required 
to reduce atmospheric emission of sulfur compounds to the level required by air 
pollution control regulations. In this study, a deep reinforcement learning (DRL) based 
controller was developed to minimize the concentration variations of H2S and SO2 in 
the tail gas from the modified Claus process. In addition, the sequence to sequence 
(Seq2Seq) networks were trained by the plant data to capture the dynamic information 
between the manipulated and controlled variables. Thereafter, the optimal operating 
policy can be found through that the advantage actor-critic (A2C) algorithm was 
implemented to the DRL agent by interacting with the environment constructed by 
Seq2Seq. The results show that the variations of H2S and SO2 can be reduced 40 % and 
36 %, respectively, compared with that of applying the traditional control strategy.  

Keywords: Deep Reinforcement Learning; Sequence to Sequence Networks; Modified 
Claus Process. 

1. Introduction 

The reinforcement learning (RL) framework consists of a learning agent interacting 
with a stochastic environment. The agent selects an action (at) at time t according to the 
probabilities that are generated by a learning policy (a|s) with the current state (st) 
observed from the environment. The selected action interacts with the environment to 
obtain the reward (rt) and the next state (st+1). The deep reinforcement learning (DRL) is 
referred to approximate the learning policy and the cumulative reward, which is also 
known as the state-value function, by two deep neural networks (DNNs). Williams 
(1992) proposed a policy-gradient learning algorithm that generates an episode of 
actions, rewards and states following the policy. Thereafter, the DNN weightings of the 
learning policy is updated to maximize the cumulative rewards. Mnih et al. (2015) 
proposed a deep Q-network (DQN) to maximize the action-value function (also known 
as Q) and reported that the DQN can achieve a high level of performance on any of a 
collection of different problems by the same architecture of DNN. The actor-critic 
algorithm combines the features of the policy-gradient and value-based approaches 
(Sutton and Barto, 2018). The DNN weightings of the state-value function are updated 
by minimizing the errors of approximating the observed cumulative reward, whereas the 
probability function of the policy is updated to maximize the advantage between the 
reward and the estimated one by the state-value function.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50268-2 
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Recently, the DRL approaches have been introduced into the model predictive control 
(MPC) community; for example, Spielberg et al. (2019) based on the actor-critic (AC) 
algorithm to develop a DRL-based controller that learned the control policy in real time 
by interacting with the simulation examples, in which setpoint tracking problem on 
single-input single-output, multiple-input multiple-output, and nonlinear systems were 
demonstrated. Petsagkourakis et al. (2020) applied the policy gradient (PG) method 
from batch-to-batch data to update a control policy to maximize the product 
concentration of a bioprocess. In their approach, a preliminary optimal control policy 
was obtained by interacting with the environment that simulated the real bioprocess. 
Subsequently, the policy was refined by implementing into the true system. Therefore, 
the number of evaluations with the true system was reduced, which may be costly and 
time consuming. Ma et al. (2019) designed a DRL controller based on the deep 
deterministic policy gradient (DDPG) method interacting with a simulated semi-batch 
polymerization system. More recently, Kang et al. (2021) proposed a two-stage training 
deep deterministic policy gradient (2S-DDPG) algorithm to control the boiler drum 
level, which was simulated by a set of transfer functions. The above-mentioned DRL 
approaches were interacted with the over-simplified mathematical models. The potential 
of applying DRL-based controllers to the real processes was not demonstrated. 

Ma et al. (2020) applied a four-layer feedforward neural network to build a step-ahead 
prediction model using the experimental data from a bioreactor. In their approach, the 
DRL-based controller was developed by the asynchronous advantage actor-critic (A3C) 
algorithm. The experimental results showed that the A3C controller significantly 
improves the yield of the desired product compared to that of using a traditional control 
method. Adams et al. (2021) proposed a deep reinforcement learning optimization 
framework in which the environment was built by a 5-layer DNN from over 1.5 years of 
plant data with a 1 min sampling time, which interacted with an A2C agent. The 
objective of the framework was to maximize the power generation of a coal-fired plant 
while reducing the NOx emission. In their approach, a static DNN was applied as the 
surrogate model to predict the power generation and the NOx emission by the process 
variables. The actions of the manipulated variables were determined by the A2C agent 
with the predictions of the static DNN. Therefore, the process dynamic information was 
not incorporated into their proposed framework. In this study, the process model, which 
interacts with the DRL agent, is constructed by the sequence to sequence (Seq2Seq) 
networks (Sutskever et al., 2014). Chou et al. (2020) developed a physically consistent 
soft sensor by the Seq2Seq networks. They reported that the process dynamics can be 
fully extracted by the Seq2Seq model from the plant data, because the estimation of the 
process gains is consistent with the domain knowledge. 

2. Seq2Seq and A2C Networks  

In this study, the Seq2Seq networks are constructed by the gated recurrent units (GRUs, 
Cho et al., 2014), which was proposed to modify the drawback of RNNs. The original 
RNNs suffer from exploding or vanishing gradient problems through backpropagation 
on multiple time steps. The reset and update gates are added on the structure of RNNs to 
solve this issue. Figure 1 shows that the encoder extracts the dynamic information from 
the operating data with past window length w and capsules into a hidden state vector 
(z0). In the encoder, the input layer of each node contains the previous hidden state 
vector (hi-1) and the current data of input and output variables, which are the disturbance 
(di), manipulated (mi) and controlled (ci) variables, respectively. The decoder predicts 
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the future f samples of the controlled variables by the corresponding data of the 
manipulated variables and the hidden state vector from the previous GRU, as shown in 
Figure 1. 

 
Figure 1. Seq2Seq networks for process modelling 

The A2C algorithm uses two deep neural networks to approximate the learning policy 
and the state-value function, respectively. The probability function of learning policy, 
which is also called the actor network denoted by  ,t tA S θ  with weightings , maps 
the current state (St) into an action (At), interacting with the environment to observe the 
reward (Rt) and the next state (St+1). The cumulative reward at time t can be expressed 
by 2

1 2 1...t t t t t tG R R R R G           with a discount rate . The state-value function, 
which is the critic network denoted by  ˆ ,t tv S Gw  with weightings w, estimates the 
cumulative reward at the current state. The correlation of the cumulative reward can be 
applied into the state-value function, i.e.,    1ˆ ˆ, ,t t tv S R v S  w w . Therefore, the 
temporal difference (TD) error is defined as:    1ˆ ˆ, ,t t tR v S v S    w w . To improve 
the accuracy of the cumulative reward approximated by the critic network, the 
weightings of state-value function (w) are updated by minimizing the square of TD 
error, i.e., w    w w  where w is a learning rate. In addition, the TD error can be 
expressed as an advantage function, i.e.,    1ˆ ˆ, ,t t tR v S v S       w w  in which the 
square bracket term is the current reward estimated by the critic network. A proper 
policy function should be designed to maximize the advantage; therefore, the 
weightings of policy network () are updated by  ln ,t tA S    θ θ θ  where  is a 
learning rate. The details of A2C algorithm can be found in Sutton and Barto (2018). 

In this study, the A2C agent interacting with the Seq2Seq model is proposed. The 
pseudocode of the proposed approach is listed in Table 1. Two GRU networks, which 
were initialized with parameters  and w, are used as the actor and critic networks, 
respectively. Each network is deployed with two layers and 30 hidden nodes to map the 
current state into actions and state values. As listed in Table 1, the initial state at time t 
(St,0) is defined by the disturbance data (dt), the measurements of manipulated variables 
(mt) and the corresponding predictions ( ˆ

tc ) by the decoder of the Seq2Seq networks at 
Line 3. Starting from Line 4, the weighting w and  are updated 20 times (T = 20) for 
each sample. The future actions ( ,t im ) with f prediction horizon and the corresponding 
state value ( ,t iv ) are generated by the actor-critic networks using the current state at 
Line 5. Thereafter, the predictions are made by the decoder incorporating with the 
future actions to form the next state with the same disturbance data at Line 6. Line 7 
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describes that the next state value ( , 1t iv  ) is estimated by the critic network with the new 
state and the previous state is replaced by the new one. The variance of predictions is 
calculated and compared with the benchmark (varB) at Line 8. If the current variance is 
less than the benchmark, the reward is set to 10 and the benchmark is replaced. 
Otherwise, the reward is given by the negative variance. Consequently, the TD error can 
be calculated and used to update the network parameters at Line 9. 

Table 1. Pseudocode for integrating A2C agent with Seq2Seq networks 
1. Input: a policy  ,a s θ  and a state-value function  ˆ ,v s w  with parameters θ  and w  
2. For each sample in training dataset: 
3. Initialize the first state:  ,0 ˆ

t t t tS  d m c   

4.  For 0,1, , 1i T  :  

5.     , , , ,ˆ, , ,t i t i t i t ia S v v S m θ w  

6.   , , , 1 , ,ˆ ˆ,t i t i t i t t i t iDecoder S      c m d m c   

7.   , 1 , 1 , , 1ˆ , ,t i t i t i t iv v S S S   w  

8.   ,ˆvari t iVar c ; If var vari B : 10; var vart B iR    else: vart iR    

9.  , 1 ,t t i t iR v v     ; w    w w ;  ln ,t tA S    θ θ θ  

3. Industrial Example  

In this study, the DRL-based controller is applied to minimize the concentration 
variations of SO2 and H2S in the tail gas from the modified Claus process. The process 
flow diagram is shown in Figure 2. The sour gas is fed into the burner reactor, in which 
H2S is burned with air to form SO2 and H2O, i.e., 2H2S+3O22H2O+2SO2. Thereafter, 
the effluent gas from the burner reactor is cooled and fed into the converter reactors, 
which are labeled as R1 and R2 in Figure 2, for catalytic conversion of H2S and SO2 to 
elemental sulfur and water (2H2S+SO22H2O+3S). In addition to maintain the reactor 
temperatures, two control loops are used to stabilize the process operations by adjusting 
the air flowrates. According to the operational guidelines, the primary air flowrate is 
determined by the sour gas flowrate with a ratio controller whose setpoint of the air to 
sour gas ratio is recommended as 1.1 by volume. Furthermore, the secondary air 
flowrate is manipulated to maintain the molar ratio of H2S to SO2 whose setpoint ought 
to be 2. However, the historical data show that the variation of the air to sour gas ratio 
ranges between 1.2 and 1.6. On the other hand, the molar ratio of H2S to SO2 spreads 
from 2 to 16. That indicates the air flowrate controllers might not work properly; 
thereafter, the downstream process, the tail gas treating unit, suffers from the large 
variations of the H2S and SO2 concentrations in the tail gas. 

The Seq2Seq model was built by five-month operating data, which were collected once 
per minute around 180,000 samples. The encoder contained all variables listed in Figure 
2. On the other hand, the inputs for the decoder were the primary and secondary air 
flowrates, and the outputs were the H2S and S2O concentrations in the tail gas. One 
layer of GRU with 30 hidden nodes was applied to the encoder and decoder, 
respectively. The optimal window length (w) of the encoder was determined as 40 
samples by the mean absolute percentage errors (MAPEs) of the test dataset in which 
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5600 samples after modelling data were applied. The Seq2Seq networks predicted the 
future sixty samples of the controlled variables once per minute using the corresponding 
manipulated variables. The MAPEs of the test data, for which the predictions were 
made by the different time periods in 10, 30, and 60 minutes, are listed in Table 2. The 
MAPEs of predicted H2S and SO2 are around 4% and 8%, respectively. The accuracy of 
predictions show that the Seq2Seq networks capture the process dynamic behavior, 
properly. Therefore, the Seq2Seq model can be used as the environment interacting with 
the DRL agent. 

 
Figure 2. The process flow diagram of the modified Claus process 

 

Table 2. Result summary  

10 min 30 min 60 min 
MAPE  

H2S 3.7% 4.0% 4.1% 
SO2 8.1% 8.0% 8.1% 

Standard Deviation (H2S: 0.045, SO2: 0.013) 

S2S H2S 0.040 0.039  0.039  
SO2 0.011 0.011  0.011  

A2C H2S 0.024 0.026  0.028  
SO2 0.007 0.008 0.009  

 

Figure 3. Reward evolution for training the A2C agent

The A2C agent was trained during 1000 episodes where the weightings of actor-critic 
networks were updated 20 times in each episode. For each update, the future sixty 
actions were drawn from the actor network; thereafter, the corresponding H2S and SO2 
concentrations were predicted by the Seq2Seq model incorporating with the future 
actions. Consequently, the reward was evaluated by the variances of the predictions. As 
shown in Figure 3, the reward was initially around 20 that could be improved to 70 at 
the end of training. The standard deviations of the H2S and SO2 concentrations were 
0.045 and 0.013 for the raw data, as listed in Table 2. The standard deviations of the 
predictions by the Seq2Seq model are comparable with those of the raw data in the 
different time periods, implementing with the original measurements of the primary and 
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secondary air flowrates. On the other hand, the A2C agent was implemented to 
determine the future actions of primary and secondary air flowrates every minute in the 
periods of 10, 30, and 60 minutes, respectively. Compared with the results of the 
standard deviations by the Seq2Seq and A2C networks listed in Table 2, the variations 
were reduced around 28%40% for the H2S and 18%36% for the SO2, respectively. 

4. Conclusions  

The DRL-based controller was developed by the A2C agent interacting with the 
environment constructed by the Seq2Seq model. The process dynamic feature could be 
captured by the encoder; meanwhile, the correlation between manipulated and 
controlled variables was extracted by the decoder. Thereafter, the reward of future 
actions generated by the A2C networks was evaluated by the multistep-ahead 
predictions. The results showed that the proposed approach can reduce the variations of 
H2S and SO2 concentrations, effectively. 
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Abstract 
With the development of deep learning, it has been a trend to build data driven soft sensors 
in process industries with neural networks. There are a number of networks proposed to 
deal with time series prediction, such as Recurrent Neural Network (RNN) and Long 
Short-Term Memory Network (LSTM). However, it is a critical part to extract nonlinear 
and dynamic characteristics hiding in process data collected from industrial production. 
This paper proposes a novel approach for performance prediction based on the spatial and 
temporal feature extraction through bidirectional LSTM networks (BiLSTM) for a reactor 
network. Due to the superiority of processing sequences from both directions, BiLSTM 
are utilized to simulate the physical structure of the reactor network. With both spatial 
and temporal feature extraction, the deep learning model through BiLSTM achieves nice 
prediction performance. 

Keywords: Bidirectional Long Short-Term Memory Network, Soft sensing, Feature 
extraction, Deep learning. 

1. Introduction 
In comparison to the traditional offline analysis in laboratory, soft sensing provides a 
more fast and economical way to predict critical quality variables, which has been widely 
used in plenty of industrial plants. With the rapid development of machine learning and 
statistics, great progress has been made in the field of data-driven model based soft 
sensing. Different from first-principle models, data-driven models are developed with 
available data collected during industrial productions even without exact mechanism. 
However, data-driven models have to attach more emphasis on how to extract as many 
relevant nonlinear and dynamic features as possible to capture the valid characteristics of 
the complex chemical processes, because the validity of features will determine the 
performance of soft sensor directly (Ma et al. 2018). Kaneko et al. (2009) developed a 
new soft sensor combining independent component analysis (ICA) and partial least 
squares (PLS) together, where independent components can be seen as features sensitive 
to the outliers, then a PLS model can be updated with normal samples. Corrigan et al. 
(2021) proposed a soft sensor model based on dynamic kernel slow feature analysis, 
which was utilized to extract slowly varying features. Sun et al. employed multi-layer 
perceptron (MLP) to model the complex desulfurization process, based on which a soft 
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sensor was built for SO2 emission. Although many approaches have been proposed for 
feature extraction for the purpose of soft sensing, such as principal component analysis 
(PCA), ICA and deep learning methods, there is still a lot of room for improvement to 
extract the hidden nonlinear and dynamic features from vast process data especially in 
certain industrial scenarios. In this paper, a deep learning model with spatial and temporal 
feature extraction is proposed for a reactor network (Dorgo et al. 2019). The BiLSTM 
networks are utilized to simulate the physical structure of the reactor network to extract 
spatial features, then a unidirectional LSTM network is followed to process the feature 
maps output from bidirectional LSTM networks to extract the temporal features at 
multiple time points. Thus, the nonlinear and dynamic characteristics of the reactor 
network can be well captured through with both spatial and temporal feature extraction. 

 
Figure 1.  Structure diagram of the reactor network 

2. Reactor network process 
The reactor network considered in this paper is a system consisting of seven successively 
connected reactors, as is shown in Figure 1. There are mainly two raw materials entering 
the system, one from the first reactor directly and the other from the third to the seventh 
reactors. Overall, the reactor network keeps a counter-flow structure. In each reactor, two 
liquid phases exist and two outflow streams are kept via a separator inside. On account 
of the complex structure of the reactor network, it is natural that the dynamic and 
nonlinear characteristics of each reactor will propagate among the reactor network. 
During the industrial production, the outlet concentration of components from the fourth 
reactor are of the most significance, because they are seemed as a flag to reveal the real-
time state of reactions in the whole reactor network. Therefore, they are usually selected 
as the critical quality variables that determines the process performance and operators 
usually adjust the feed flow of raw materials to maintain the production stability based 
on this observation. In this task, we select the outlet concentration of three components 
from the fourth reactors as the predicting target. 

3. Feature extraction by bidirectional Long short-term memory networks 
Sequence problems is considered as one of the hardest problems in many industrial cases. 
RNN is widely used to deal with this kind of problem. But RNN works well only towards 
short sequences, it may suffer from carrying information from earlier time steps to later 
ones when sequences are long enough due to gradient vanishing. LSTM, as a variant of 
RNN, improves the architecture by introducing a mechanism named cell state, by which 
it can preserve the relevant information to the later units even when the sequence is very 
long. As shown in Figure 2, LSTM propagates the information with cell state and hidden 
state produced by three gates inside, named forget gate, input gate and output gate. These 
three gates determine the information needed to be remembered or forgot. 
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Figure 2.  Data flow in the cell in LSTM network 

With the help of mechanism of LSTM, information in the past can be preserved and 
passed to the future then an excellent prediction result can be obtained. However, the 
propagation of information in sequences may be in both directions in some cases, such as 
natural language processing. In terms of this issue, bidirectional long short-term memory 
network is proposed to construct two independent LSTMs at the same time, one of which 
processes the input sequences from past to future as traditional LSTM, and the other one 
processes from future to past inversely. By combining the outputs of both independent 
LSTMs together in some ways, the output of BiLSTM at each time point has the ability 
to preserve the information in both directions. 

Considering the structural similarity between the reactor network and the BiLSTM, we 
propose using BiLSTM to build the soft sensor for the reactor network. Instead of 
extracting the temporal features from past to future and future to past in natural language 
processing, BiLSTM here is used to extract the spatial features at one time point. The 
input of BiLSTM layer is a feature matrix in shape with the complete information 
acquired from the whole reactor network. In this way, each column of feature maps output 
from BiLSTM layer denotes the spatial features for an individual reactor; thus, the fourth 
of them is selected to predict the outlet concentrations of the fourth reactor. In order to 
extract as many spatial characteristics as possible, two BiLSTM layers are set in order at 
the top of networks. Afterwards, these feature vectors are concatenated together and 
transferred into a unidirectional LSTM layer to extract the temporal features. Then some 
fully connected layers are followed and an output layer is added at last. Figure 3 illustrates 
the basic framework of the proposed system for the spatial and temporal feature extraction. 
Corresponding neuron number and activation function for each layer are listed in the 
Table 1. Besides, L2 regularization terms are added to the layers to avoid overfitting. The 
Root Mean Squared Propagation (RMSProp) is selected as the optimization algorithm to 
conduct gradient descent during network training with the learning rate set at 0.001. 
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Figure 3. Spatial and temporal feature extraction based soft sensing network 

 

Table 1. Number of neurons and activation function for each layer 

Layers Activation Function Model with spatial and Temporal 
feature extraction 

Input layer - (24,7,7) 

BiLSTM1 sigmoid 64 

BiLSTM2 sigmoid 32 

LSTM sigmoid 48 

Fully connected layer1 tanh 48 

Fully connected layer2 tanh 32 

Output layer sigmoid 3 
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4. Results 
In the real industrial operation, the concentration of the target stream is collected and 
offline analysed for every 4 hours. Although what we aim to predict is the outlet 
concentration from the fourth reactor, the influence from other reactors is not negligible 
due to the non-decoupling property of the whole system. Therefore, it is necessary to take 
variables such as the feed flow of raw materials of other reactors into consideration. 
Eventually, 49 online measurable process variables are collected from the reactor network 
system with a sampling rate at 5 minutes. Considering the fact that the real process 
residence time of the whole system is about 2 hours, the input includes all the information 
from the past 2 hours. In the end, 1272 data pairs are prepared and are randomly divided 
as training set and testing set for the neural network model. To ensure consistent 
distribution between the training set and testing set, 70% of dataset are randomly split as 
the training set, and the remaining samples as the testing set.  

To quantitatively evaluate the discrepancy, the root-mean-square error (RMSE) is used 
as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (1) 

where 𝑖𝑖 is the sample index and 𝑁𝑁 is the number of samples in the testing set. 

The RMSE for all samples in the testing set are presented in Table 2. The comparison for 
the first component of the target stream is presented in Figure 4. The soft sensing model 
with both spatial and temporal feature extraction achieves a good prediction performance. 
Instead of just inputting all relevant information as a flattened feature vector at each time 
point, the proposed soft sensing model has the ability to eliminate the useless features or 
the existence of information redundancy included in the feature matrices. 

 
Figure 4. Prediction results of the testing samples 

Table 2.  RMSE of prediction results by soft sensing model 

RMSE Component 1 Component 2 Component 3 

Model with spatial and 
Temporal feature extraction 0.189 0.152 0.147 
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5. Conclusions 
Based on BiLSTM networks, a novel spatial and temporal features extraction method is 
proposed for reactor network system in this paper. The BiLSTM networks are utilized to 
simulate the physical structure of the equipment deployment, with the purpose of 
extracting spatial information of the whole reactor network at one time point as much as 
possible; then a unidirectional LSTM layer is followed to extract the temporal features 
from multiple timesteps. The prediction results indicate that feature extraction by deep 
learning is beneficial to capture nonlinear and dynamic characteristics of complex reactor 
systems, which contributes to more accurate predictions for soft sensing. This study 
provides a new point of view to take advantage of neural networks, that is simulating the 
real deployment of reactor network with similar structures designed by neural networks, 
especially for those non-decoupling complex systems. 
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Abstract 

This study investigated three distinct variations of convolutional neural network (CNN) 

topologies to model a fault detection and diagnosis system. The primary goal was to 

determine if fully convolutional networks, which do not present fully connected layers 

or apply the pooling operation, could outperform the well-known traditional 

convolutional topology. To explore this issue in a chemical process context, the 

Tennessee Eastman Process was the study case used. Data corresponding to four years 

of operation was simulated to mimic the big data scenario faced by many industries 

nowadays. The fully convolutional model provided better average precision and recall 

results. On top of it, there was a reduction of 80% of the time (elapsed real time) 

demanded in the training stage when compared with the traditional CNN model 

evaluated. 

Keywords: Fault detection and diagnosis; Deep Learning; Big Data; Fully 

convolutional neural networks. 

1. Introduction 

Chemical process safety is one of the biggest concerns of engineers and process 

operators. It is crucial to ensure the protection of employees and facilities during the 

large-scale manufacturing of chemical products. Besides that, it is desirable to extend 

the useful life of equipment as much as possible to reduce operating costs and avoid 

compromising equipment availability. Therefore, the development of fault detection and 

diagnosis systems (FDD) is essential for any industrial process. In the last few years, the 

application of deep learning techniques to modeling FDD frameworks has achieved 

outstanding results revealing how promising artificial intelligence is to solve complex 

problems.  

Convolutional neural networks (CNNs) are among the most known deep 

learning neural architectures. Its application for modeling FDD frameworks has recently 

been addressed in the literature (Wu and Zhao, 2018; Ge et al., 2021). Still, there is 

much more to explore regarding fully convolutional neural networks (FCNs). Fully 

convolutional neural networks consist of an end-to-end convolutional network. They do 

not have fully connected layers (FC) because the classification stage is also performed 

by convolutional layers (Conv). One of the advantages of FCNs is to demand simpler 

structures since only Conv layers are necessary. FCNs were successfully used to 

develop FDD models for navigation systems (Xu and Lian, 2018), insulators of power 

lines (Chen et al., 2019), and continental sandstone reservoirs (Wu et al., 2021). An 
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excellent benchmark for evaluating FDD techniques in the process systems engineering 

field is the Tennessee Eastman Process (TEP) case study (Downs and Vogel, 1993). 

Therefore, TEP will be used for investigating if FCNs are a good choice for modeling 

FDD systems in chemical processes. Since the TEP data generation is done by using its 

available simulation models, it is possible to create a very realistic data distribution 

domain, similar to the big data scenario that is a reality for many processes and 

chemical industries nowadays.  

This work aimed to model an FDD system for the TEP benchmark comparing the 

performance of a fully convolutional neural network and a traditional convolutional 

network with FC layers. In the following Section (2), the study case is described as well 

as the methodology to collect and preprocess the data. Section 3 is dedicated to 

presenting and discussing the FDD framework modeled. Finally, Section 5 summarizes 

the discussion, and some possible future developments are pointed out. 

2. Methods 

2.1. Tennessee Eastman Process Benchmark 

Figure 1 presents the Tennessee Eastman Process (TEP) diagram. This benchmark was 

proposed by Downs and Vogel (1993) as an attempt to provide a complex study case 

well-suited for addressing topics like plant-wide control strategies, optimization, 

multivariable and predictive control, process monitoring and diagnostics, among others. 

The TEP represents an industrial chemical process composed of a reactor, a product 

condenser, a vapor-liquid separator, a recycle compressor, and a product stripper. 

There are 11 manipulated variables, 22 continuous process measurements, and 19 

sampled measurements, totalizing 52 variables that can be used as the input data for the 

model’s training stage. There are also 20 process disturbances implemented, which will 

be used as process faults for the present work. Heat and material balance data, the list of 

process operating constraints, as well as the detailed description of the process operating 

modes can be found in Downs and Vogel (1993). 

 

Figure 1. Tennessee Eastman Process diagram. 
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2.2. Data collection and preprocessing  

Two different datasets were generated, one for training with data corresponding to three 

years of operation (525.600 samples) and the other for testing with one year of data 

(175.200 samples). Continuous simulations were performed with a sampling time equal 

to 3 minutes with the occurrence of only one fault at a time (which was randomly 

chosen among the 20 process faults implemented in the TEP simulator). The duration of 

each fault was also randomly selected between the established range of 24 and 48 hours. 

Regarding data pretreatment, no feature selection technique was applied since the 

convolutional layers themselves can identify and isolate the most relevant attributes 

present in the input data. The only preprocessing consisted of normalizing each of the 

52 input variables and transforming the data into 4-dimensional tensors. Therefore, m x 

n matrices were generated from the simulated data frames, where m represents the time 

span of each matrix and n is the number of input variables. To work with square 

matrices, which enhance the efficiency of the CNN training (Aggarwal, 2018), matrices 

with a shape of 52x52 were obtained. Thus, each matrix corresponds to a period of 

about two and a half hours of data points.  

2.3. CNN based FDD framework 

Figure 2 shows the proposed framework. After data acquisition, a validation dataset was 

separated from the training set for the application of early stopping to avoid overfitting. 

Then, the training, validation, and test data frames were normalized and transformed 

into 52x52 matrices. The best hyperparameters values for the traditional convolutional 

neural network (denoted by TCN) were determined by trial and error. The 

hyperparameters investigated were the number of convolutional layers, number of 

filters, optimizer method, the number of fully connected layers and their neurons, 

learning rate, and batch size. The size of the convolutional and pooling kernels was kept 

constant and equal to (3,3) and (2,2), respectively. Also, for every trial tested, max 

pooling was the pooling method, categorical cross-entropy was the loss function, ReLu 

was the activation for the intermediate layers, a SoftMax function was applied in the 

output layer, and the strides of convolution and pooling were 1 and 2, respectively. 

 

Figure 2. CNN-based fault detection and diagnosis system developing framework. 

Once the best hyperparameters for TCN were found, the topology of the network was 

altered to generate two new networks, denoted by FCN1 and FCN2. The first fully 

convolutional network, FCN1, does not have fully connected layers (FC) to perform the 

final classification of the process state. Instead, the target classification is performed by 

convolutional layers (Conv) with adequate kernel sizes. In the second fully 

convolutional network, FCN2, not only the FC layers are replaced but also the pooling 

operation is omitted. Therefore, the downsampling operation is achieved by increasing 
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the stride of the preceding convolutional layer. The idea of FCN2 corresponds to the 

“Strided-CNN” presented by Springenberg et al. (2015). No hyperparameter search was 

conducted for FCN1 and FCN2 to allow the straight comparison of the training and 

testing stages performances of the traditional CNN topology and the altered ones. 

Precision and recall were the performance criteria applied. The simulations for data 

acquisition, and the training, validation, and testing stages of the models were 

conducted on a computer with Intel i7-9700 CPU (9th gen) 3.00 GHZ 12MB, 32 GB 

RAM, and Ubuntu 20.04.1 LTS. The programming language used was Python 3.7.4 

with the open-source libraries Keras and Tensorflow. 

3. Results and Discussion 

For the traditional convolutional network, TCN, with pooling and FC layers, from all 

the topologies tested during the hyperparameter search, the best one was Conv(20)-

Conv(30)-Pool-Conv(40)-Pool-FC(21) with a learning rate of 0.001, batch size of 500 

and Adam as the optimizer. Once defined the TCN topology, FCN1 and FCN2 were 

created. For FCN1, the last FC layer was replaced by a Conv layer with stride 1 and 

kernel size equal to (13,13). On the other hand, for FCN2 the max pooling layers were 

removed, the stride of the two preceding Conv layers [Conv(30)-Conv(40)] was 

increased from 1 to 2, and the last FC layer was also replaced by a Conv layer with 

stride 1 but kernel size equal to (13,13). Finally, FCN1 and FCN2 were trained using 

the same hyperparameters of TCN. Table 1 summarizes the described topologies and 

presents the total number of trainable parameters as well as the time spent to update and 

optimize the weights and biases of each model (elapsed real time). 

Despite the topology differences in the three models, the number of total trainable 

parameters remains the same, allowing a straightforward comparison between them. 

The TCN model took one hour and 39 minutes to complete the training stage. The 

FCN1, which does not use a fully connected layer of neurons for the final classification, 

was 43 minutes faster to complete the training step. In this case, the number of total 

parameters does not change because the only thing happening is the conversion of one 

kind of layer to another. The use of filters with kernels of (13,13) for the last layer of 

FCN1 guarantees that the total number of learnable parameters will be maintained. On 

the other hand, FCN2 completes the weights and biases optimization in only 20 

minutes. The significant decrease in training time results from the reduction in the 

overlapping presented by the strided convolution. This is a consequence of increasing 

the stride by which the filters move across the output of the previous layer since in 

FCN2 the convolutions themselves are downsampling the intermediate feature maps.  

Table 1. Models’ topology description and training duration. 

Model Topology 

Total 

training 

time (min)* 

Total 

trainable 

parameters 

TCN Conv(20)-Conv(30)-Pool-Conv(40)-Pool-FC(21) 99 196,651 

FCN1 Conv(20)-Conv(30)-Pool-Conv(40)-Pool-Conv(21) 56 196,651 

FCN2 Conv(20)-Conv(30)-Conv(40)-Conv(21) 20 196,651 

* Elapsed real time. 
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Since the reduction in the training time is not the primary goal here (despite being a 

useful outcome), the models were tested on a separate dataset never seen before during 

the training and validation stages to evaluate their performances. Precision and recall for 

the three models were calculated and are presented for each process state (normal 

operation and 20 different faults) in Table 2. The KPIs of FCN1 and FCN2 with equal 

or better performances than the traditional topology (TCN) are highlighted. 

Among the three trained models, FCN2 is the one that better detects and diagnosis the 

fault occurrences of the test set with 80.8 % and 80.1 % of precision and recall, 

respectively. Compared with TCN, FCN2 shows an expressive improvement in 

detecting faults considered insipient and difficult to learn in the literature (Zhang and 

Zhao, 2017; Wu and Zhao), like Faults 3, 16, and 18. Also, FCN2 was able to provide a 

better separation between the faulty instances and the periods of normal operation; this 

is represented by the observed increase in the precision and recall of the normal status. 

Besides that, the maintenance of detection of faults with particular dynamic signatures, 

like Faults 1, 2, 5, 6, 7, and 14, proves that the conversion of FC layers into Conv layers 

and the removal of max pooling operations do not harm the performance of the FDD 

system in general.  

Table 2. Detailed results of the three models on the test set. 

Process 

status 

TCN  FCN1  FCN2 

Precision 

(%) 

Recall  

(%) 

 Precision 

(%) 

Recall  

(%) 

 Precision 

(%) 

Recall  

(%) 

Normal 84.5 82.0  84.5 70.4  86.8 88.2 

Fault 1 99.8 99.9  99.9 100.0  99.8 99.9 

Fault 2 100.0 100.0  100.0 100.0  99.2 100.0 

Fault 3 11.6 13.1  8.4 6.3  29.3 44.9 

Fault 4 99.7 98.7  99.2 98.8  99.1 99.9 

Fault 5 100.0 100.0  100.0 100.0  100.0 100.0 

Fault 6 100.0 92.0  100.0 100.0  100.0 98.0 

Fault 7 100.0 100.0  100.0 100.0  100.0 100.0 

Fault 8 91.7 94.9  92.5 91.5  93.8 91.6 

Fault 9 6.4 2.3  7.3 21.5  8.4 4.2 

Fault 10 96.6 85.1  79.0 93.4  97.0 88.6 

Fault 11 99.8 99.5  100.0 98.6  99.8 98.5 

Fault 12 100.0 100.0  89.7 100.0  100.0 96.2 

Fault 13 93.4 89.2  89.7 93.4  92.3 92.7 

Fault 14 100.0 100.0  100.0 100.0  100.0 100.0 

Fault 15 4.2 13.7  2.9 4.6  4.8 5.8 

Fault 16 36.7 48.2  34.8 37.7  58.0 53.9 

Fault 17 97.8 97.6  95.8 99.1  97.5 97.9 

Fault 18 44.4 30.8  48.8 51.3  62.1 46.2 

Fault 19 99.8 96.9  99.8 96.5  91.5 98.8 

Fault 20 97.4 98.0  98.2 97.7  98.5 98.6 

Average 79.2 78.2  77.6 79.1  80.8 80.1 

 

Therefore, the superior performance of the FCN2 model is clear. The fully 

convolutional network demanded a simpler topology with only convolution layers and 
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outperformed the TCN model in all the metrics evaluated. Besides that, it is essential to 

emphasize that the better results were observed for the FCN2 with a reduction of 80% 

of the time demanded by the TCN to complete the training stage. The performance of 

FCN1 was not uniform. Despite the increase in the recall, due to improvements in the 

detection of some faults (like 9, 10, and 18), the model was not accurate regarding the 

normal operation, which led to the observation of some false alarms. The ideal scenario 

is the one where the rates of false alarms and false negatives are both low. So, FCN2 

remains the best option between the models investigated in this work. 

4. Conclusions 

In this work, the potential of fully convolutional neural networks to model a fault 

detection and diagnosis system for a chemical process was explored. The outstanding 

performance of a convolutional topology – that does not possess fully connected layers 

nor max pooling operations – was proved using the Tennessee Eastman Process 

benchmark. The conversion of FC layers into Conv layers, and the increase of the 

convolutions stride to perform the downsampling of the internal feature maps, allowed 

the development of a model cheaper to train and with an improved ability of 

generalization when facing new data. The parsimonious nature of the fully 

convolutional neural networks appears to be a promising paradigm for designing 

adaptive FDD systems applied to processes subject to novel faults or new operational 

conditions. Given these promising outcomes, some other techniques can be tested to 

improve even more the achieved results. In future work, an automated hyperparameter 

tuning will be used to enlarge and optimize the search for the best FCN model settings. 

Also, the application of transfer learning to improve the detection of incipient faults by 

the FCN2 will be further investigated. 
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Abstract

This paper aims at reducing the conservativeness of the robust and computationally effi-
cient sensitivity assisted multistage nonlinear model predictive controller. The approach
uses a hyperbox over-approximation for the parametric uncertainty set that often results
into conservativeness. We propose the use of principal component analysis (PCA) on
available process data to extract more information to tighten the approximation of the
parametric uncertainty set. It is approximated by a polytope whose vertices lie on the
principal components. Then we define the multistage nonlinear problem with a linear
transformation of the uncertain parameters. This transformation ensures consistency with
the required conditions for sensitivity assisted multistage MPC algorithm used for sce-
nario tree pruning. Finally, the method was implemented on a case study of a system of
four tanks and the controller exhibited reduced conservativeness and fast computational
performance.

Keywords: Robust MPC, Dynamic optimization, Parametric uncertainty, Data-driven

1. Introduction

Model predictive control (MPC) is a model based control strategy that reoptimizes a non-
linear process system with respect to a control objective subject to constraints at each sam-
pling time. MPC includes constraints for online decision making, and has good control
performance even when the system is disturbed away from the desired reference trajectory
(Rawlings & Mayne, 2009). Although MPC has inherent robustness against uncertainty,
the property may break when there are significant disturbances, causing infeasibilities. As
a result, robust MPC approaches have been developed. One of them was proposed by
Lucia et al. (2013) and is known as the multistage MPC.

1.1. Multistage MPC

Multistage MPC explicitly considers a selection of possible future scenarios along a pre-
diction horizon to formulate its optimization problem. The scenarios are determined by
propagating from the current state to the end of the prediction horizon, a finite number
of uncertain parameter realizations using a scenario tree. When the prediction horizon is
long the number of scenarios in the scenario tree increases exponentially resulting into an
intractable problem. Lucia et al. (2013) proposed a robust horizon where the scenario tree
branching is stopped before the end of the horizon, and the uncertain parameters are kept
constant until the end of the prediction horizon. The robust horizon makes the problem

http://dx.doi.org/10.1016/B978-0-323-85159-6.50271-2 
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practically feasible to solve but can still be expensive, especially for nonlinear problems,
leading to a significant computational delay. In order to reduce the computational cost and
computational delay of the multistage MPC, Thombre et al. (2020) proposed the sensi-
tivity assisted multistage MPC. It has an algorithm to prune irrelevant scenarios from the
scenario tree using NLP sensitivities in order to speed up computations. The sensitivity
assisted multistage MPC is discussed further in Section 2.

1.2. Motivation

Even though multistage MPC is robust against constraint violations, it is rather conserva-
tive, resulting into performance loss. The conservativeness is highly dependent on how
uncertainty set is represented. So far, its implementation has mainly been done using a
hyperbox over-approximation of the uncertainty set. The over-approximation is often very
poor if the true uncertainty set is ellipsoidal. Although the computational delay of multi-
stage MPC can be reduced by the sensitivity assisted algorithms (Thombre et al., 2020), it
has been implemented with an over-approximation of the uncertainty set leading to conser-
vative control performance. However, in combination with statistical data analysis meth-
ods used for uncertainty identification, one can significantly reduce the conservativeness.
Krishnamoorthy et al. (2018) suggested that detailed information on process uncertainty
could be extracted via statistical data analysis to obtain more representative scenarios.
Moreover, Shang & You (2019) rigourously present on calibration of approximate un-
certainty sets for a scenario-based stochastic MPC in linear systems using support vector
clustering with stability guarantees based on some mild assumptions. The contribution of
this paper is to demonstrate how principal component analysis can be specifically applied
to the sensitivity assisted multistage MPC framework in order to reduce conservativeness
and retain its computational efficiency.

1.3. Notation

We assume a nonlinear system model zi+1 = f(zi, νi, di) that predicts the evolution of the
states zi from time tk+i with control actions νi and uncertain parameters di. Let us define
the notation used in this manuscript. The time index k ≥ 0 corresponds to sampling time
tk. A perfect state measurement is always assumed, and the state at time tk is denoted
by xk. The time index of a model prediction is denoted by i ∈ Z+ which corresponds to
sample time tk+i. The nominal parameters are denoted as d0i such that the nominal model
becomes z0i+1 = f(z0i , ν

0
i , d

0
i ). For a nonlinear system we obtain a nonlinear optimization

problem (NLP) resuling inot a class of MPC known as nonlinear MPC (NMPC).

2. Sensitivity assisted multistage NMPC

The algorithm for the sensitivity assisted multistage NMPC (samNMPC) that performs
online critical scenario selection based on NLP sensitivities was first developed by Holtorf
et al. (2019). This selection is done by solving the NMPC problem for the nominal sce-
nario together with a lower level optimization problem (LLP) that gives the parametric
realizations that maximize the inequality constraints. This gives the constraints that are
most likely violated. However, when the inequalities are interval bounds there exists a
trivial solution to the LLP that lies on the vertices of the uncertainty hyperbox. Assume
that the constraints are monotonically increasing or decreasing in the uncertain parame-
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ter space. The multistage MPC problem is parametric in the disturbances thus the online
critical scenarios selection is based on parametric NLP sensitivities from the nominal sce-
nario. This algorithm determines the realization most likely to violate a constraint using
the sign of the parametric sensitivity. It formulates a pruned scenario tree with only the
critical scenarios and the nominal, leading to a smaller NMPC problem that is cheaper to
solve. The stability and recursive feasibility properties of the samNMPC were established
by Thombre et al. (2020). A sensitivity assisted multistage NMPC problem at time tk is
written as follows:

V sam
N (xk) = min

zc
i ,ν

c
i

c∈Ĉ∪{0}

∑
c∈Ĉ∪{0}

ωc

(
ψ(zcN , d

c
N−1) +

N−1∑
i=0

ℓ(zci , ν
c
i , d

c
i )
)
+

∑
c∈C̄

ωc

(
ψ(z0N +∆zcN , d

c
N−1) +

N−1∑
i=0

ℓ(z0i +∆zci , ν
0
i +∆νci , d

c
i )
) (1a)

s.t. zci+1 = f(zci , ν
c
i , d

c
i ), i = 0, . . . , N − 1 (1b)

zc0 = xk, z
c
N ∈ Xf , (1c)

νci = νc
′

i , {(c, c′) | zci = zc
′

i } (1d)
dci−1 = dci , i = NR, . . . , N − 1 (1e)

zci ∈ X, νci ∈ U, dci ∈ D, ∀ c, c′ ∈ Ĉ ∪ {0} (1f)

where the sets Ĉ and C̄ are the critical and noncritical scenario index sets, respectively and
{0} repesents the nominal scenario. D ∈ Rnd is the uncertain parameter set containing a
finite number of realizations, X ∈ Rnx , U ∈ Rnu are the feasible sets for states and inputs,
respectively and Xf represents the terminal set. N is the prediction horizon length and
NR is the robust horizon. zci and νci are the predicted state and control variable vectors for
scenario c at time tk+i, respectively. The stage cost function is given by ℓ, terminal cost is
denoted by ψ, and ωc represents the weights on scenario c to the objective function. The
variables and constraints in problem (1) are only those associated with critical constraints,
thus making the problem smaller than that of the ideal multistage NMPC with a robust
horizon.

3. Data driven sensitivity assisted multistage NMPC

This section presents the main idea which is to integrate principal component analysis
(PCA) and samNMPC in order to reduce its conservativeness, hence enhancing its perfor-
mance. The goal is to achieve that while retaining the computational speed of samNMPC.

3.1. Principal component analysis

Principal component analysis (PCA) is a multivariate data analysis tool that reveals hidden
information from data. This method evaluates the variability in the data set and identifies
principal components (PC) which are the unit directions that explain the total variation
in the data. As a result, PCA fits a hyperellipsoid to the data with the principal compo-
nents corresponding to the ellipsoids axes. The principal components are listed in order of
decreasing component variance.
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Assume we have a data set with ns samples for each uncertain parameter and the data set
is a represented by a matrix D ∈ Rns×nd . Before decomposition, the data set must be
mean centered and scaled because PCA is sensitive to scale differences. Let the scaled
and mean centered data corresponding to D be denoted as D0 ∈ Rns×nd . PCA on D0

results in the linear model D0 = ΛC⊤ where Λ ∈ Rns×np is a matrix with the scores
corresponding to each data sample. The scores are a projection of the data points onto the
principal components directions. The matrix C ∈ Rnp×np is made up of the weights on
the original samples required to obtain the component score.

3.2. Algorithm for scenario selection using both data and NLP sensitivities

This algorithm combines PCA that determines the maximum and minimum scores in the
principal component directions with the samNMPC algorithm presented by Thombre et al.
(2020). In order to use the samNMPC algorithm with data, we make a linear transforma-
tion of the uncertain parameters in the optimization problem using the PCA matrix. The
algorithm has the following steps

(a) Scale or normalize and mean-center the data set D to obtain D0.
(b) Perform PCA on D0 to determine the principal component scores Λ and the corre-

sponding principal component matrix C.
(c) Transform the uncertain parameter vectors dci into the new orthogonal space using the

matrix C, such that, dci = Cd
c

i + d0i where d
c

i are the transformed parameters.
(d) Substitute the transformation from step (c) above in problem (1) to obtain an NLP in

terms of the transformed parameters.
(e) At the current time tk, determine critical scenarios Ĉ and non-critical scenarios C̄ with

respect to the transformed parameters using the samNMPC algorithm.
(f) Generate a pruned scenario tree with only the critical scenarios and the nominal sce-

nario and then solve the transformed problem (1).

4. Case study

Consider the quadtank problem with a four tank configuration from Raff et al. (2006). The
levels of water in the four tanks are described by the following set of differential equations:

ẋ1 = − a1
A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1
A1

u1 ẋ3 = − a3
A3

√
2gx3 +

1− γ2
A3

u2

ẋ2 = − a2
A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2
A2

u2 ẋ4 = − a4
A4

√
2gx4 +

1− γ1
A4

u1

where the states xi are the tank levels, the inputs ui are pump flow rates, and the uncertain
parameters are the valve coefficients γ1 and γ2. The controller tracks setpoint levels x1
and x2 with minimum input usage such that the objective is ℓ = (x1−x∗1)2+(x2−x∗2)2+
r1u

2
1 + r2u

2
2. There are constraints on x3 and x4 and the system experiences predefined

pulses in x1 as described by Thombre et al. (2020).

4.1. Data analysis

The uncertain parameters have a process data cloud shown in the left plot of Figure 1.
PCA on the data gives C = [0.6571, −0.7538; 0.7538, 0.6571]. The red circled points
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Figure 1: PCA on process data. Left shows original data, right shows the PCA scores.

Figure 2: Comparing the control performance of the data-driven samNMPC with stan-
dard (nominal) NMPC, multistage, sensitivity-assisted multistage NMPC in the quadtank
problem.

are the data points corresponding to the extreme scores on each principal component. The
scores in the principal components are shown in plot on the right of Figure 1.

4.2. Results

The uncertain parameters γ1 and γ2 are random values generated from the multivariate
distribution of the process. Then simulations were performed for both standard NMPC,
multistage NMPC, samNMPC and the data-driven samNMPC. It was done for 150 iter-
ations and the results for robust horizon NR = 2 are shown in Figure 2. The tracking
performance of the samNMPC is improved by the data transformation. Data-driven sam-
NMPC tracks closer to the set point hence it is less conservative than original samNMPC
and multistage NMPC. It is also robust against constraint violations for x3 and x4. To
show the improvement of the tracking performance, we computed the accumulated cost
in the simulation as shown in the bar chart on the right of Figure 3. For robust horizons
lengths 1 to 3, data-driven samNMPC shows a slightly better setpoint tracking perfor-
mance than the standard NMPC. It also shows a significant improvement from the original
samNMPC tracking performance. In terms of computational efficiency, Figure 3 shows
that the data-driven samNMPC is as fast as the original samNMPC.
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Figure 3: Comparing tracking costs (left - absolute scale) and the average computation
time (right - logarithmic scale) for different robust horizons (NR).

5. Conclusions

We have demonstrated how analysis on process data can extract more information on the
uncertainty set used to formulate the sensitivity assisted multistage MPC problem. The in-
tegration of data with samNMPC requires transforming the uncertain parameters into new
variables corresponding to the principal components. As a result, the samNMPC becomes
less conservative while still being computationally efficient. A caveat to the method is that
the uncertainty set representation is an under-approximation using a polytope whose ver-
tices are the maximum and minimum PCA scores. There is still a chance that the process
may be outside the polytope especially when a dominant principal component does not ex-
ist. However, we expect such cases to be rare and we include soft constraints on the state
bounds with penalties to avoid the infeasibilities. Future work would be investigating how
scaling up to a higher-order system with more uncertain parameters affects the method’s
performance.
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Abstract 

Model Predictive Control (MPC) has gained popularity in recent years and is widely 
adopted in building control. This study proposes a novel data-driven robust MPC to make 
the optimal heating plan, specifically for the multi-zone single-floor building. In this 
study, the room temperature and relative humidity (RH) will be highly valued in the 
optimization decision. To better incorporate RH into the state-space model (SSM), the 
linear relations between RH and other room temperature parameters in the thermal zones 
are formulated, ensuring the better linear fitting of SSM to the original nonlinear model. 
Afterward, k-means clustered, principal component analysis (PCA), and kernel density 
estimation (KDE) based data-driven uncertainty set is constructed and applied to MPC. 
The other three kinds of MPC’s are compared to our proposed data-driven robust MPC 
(RMPC), including conventional RMPC, k-means clustered, data-driven RMPC, PCA 
and KDE based data-driven RMPC. The results demonstrate that the optimality of our 
proposed k-means clustered, PCA and KDE based data-driven RMPC, which consumes 
9.8 % to 17.9 % less energy in controlling both temperature and RH, compared to other 
data-driven robust MPC’s, and essentially follow the constraints which certainty 
equivalent MPC and conventional RMPC cannot conform. 
Keywords: model predictive control, disjunctive uncertainty, multi-zone building control 

1. Introduction 

According to the EIA report in 2019, heating and humidity control dominate energy usage, 
contributing 30 % of total power consumption. Controlling temperature is essential to the 
building control since overheating is another problem that consumes significant energy 
and deteriorates the living condition. 
Among all possible control methods, model predictive control (MPC) provides the new 
scope for controlling the building temperature, saving a tremendous amount of energy 
usage compared to the rule-based control strategies (Prívara et al., 2011). However, the 
conventional MPC does not possess the capability of hedging against the uncertainty 
(Shang et al., 2019), i.e. being applied under stochastic conditions (Ning and You, 2019). 
In building control, weather information can never be perfectly predicted, and thus can 
be treated as the sources for uncertainties (Shang et al., 2020). Consequently, it remains 
a knowledge gap needs to be filled with the new designed MPC which is not only robust 
to the disturbances from uncertainty, but also can avoid the “over-conservative” problem 
proposed by Chen et al. (2021). Therefore, we focus on developing the better control 
strategy to multi-zone building’s room temperature and RH under realistic condition, k-
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mean clustered, principal component analysis (PCA) and kernel density estimation 
(KDE) based data-driven RMPC (KM-PKDDRMPC). We apply this model to the multi-
zone building’s SSM, which incorporates both room temperature and RH. In this work, 
the SSM of the building is generated from based on both building element construction 
and the study of the dynamic airflow within the building. Afterward, the uncertainty set 
is constructed based on the historical forecast error to the weather information, i.e., the 
differences between forecast and real-measured values. This uncertainty set can be further 
clustered by the k-means algorithm, and PCA combined with KDE can return the 
polyhedral-shaped applied to the RMPC. The optimization problem at each control 
horizon is solved using affine disturbance policy (ADF). The contributions of this paper 
are summarized below: 

 A novel data-driven robust model predictive control framework with disjunctive 
uncertainty to control the multi-zone building’s room temperature and RH; 

 A simulation of multi-zone building’s temperature and RH control based on 
actual weather data demonstrates better control performance of KM-
PKDDRMPC comparing to other MPC’s 

2. Model formulation 

2.1. Complete state-space model 
The BRCM MATLAB toolbox is adopted for finding the state space matrix (SSM). 
BRCM can generate the linear resistance-capacitance models from self-designed building 
geometry construction. The dynamic multi-input multi-output system is given by: 

1t t u t v t w tx Ax B u B v B w      (1) 

Where A is the state matrix that correlates state variables xt to SSM. The state variables 
returned from BRCM are room temperature, wall temperature, floor temperature and ceil 
temperature. Bu, Bv, Bw are control input matrix, disturbance matrix, and uncertainty 
matrix, respectively, corresponding to ut, vt, wt, which are control input, disturbances, and 
uncertainty. The control inputs include heater, radiator, humidifiers and dehumidifiers; 
the disturbances are from ambient temperature and ambient RH condition. Uncertainties 
are the forecasted temperature and RH errors. Meanwhile, RH within each room is 
calculated based on the air dynamic within the building (Cengel, 1997). The mass of 
airflow is initially found as: 

1
, 1 Δ

t
air t

p

Q
m

c T


   (2) 

∆T is calculated as follows: 

  , ,max ,0room t air tT T T T     (3) 

where δT is temperature difference of room and air heating unit (AHU). Unlike in 
previous research, mair,t-1 is not regarded as a constant because the simulation process is 
conducted in the winter season. The constant intake airflow rate indicates that the room 
is constantly exchanging the air with a colder ambient environment. The heater, most of 
the time, is active to maintain room temperature within the thermal comfort standard. 
Alternatively, we assume the difference between the room temperature and heated air 
from the AHU is constant. Subsequently, the heating airflow can be turned off when 
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heating is not necessary. When the mass of airflow is calculated, the mass of water vapor 
brought by airflow can be found by the following equation: 

, , 1 , , 1 ,
1

1
,

AC in t
a

AC in
r

t out
r t

a
t

i

i

m R
m

H



     (4) 

And so can be found the mass of water vapor taken away by airflow: 

, , 1 , , 1
, 1

1
air t

air
AC out t water sat t tm

m
RH


  

   (5) 

Where SVD values are found through equation f, which is a linear equation of SVD values 
over temperature (T) expressed as follows: 

( ) 1.0272 1.8959water f T T     (6) 

Afterward, the mass of water vapor stored in each room can be found as: 

, , , 1 1 , , 1 , , 1    water t wat hum der sat t t room AC in t AC out tehumm RH V m m m m            (7) 

Eventually, RH values within each room at t can be found, which is the ratio of absolute 
and SVD: 

 , ,
, , ,

,

, ,water t abs t
abs t sat t room t t

room sat t

m
f T RH

V


 


    (8) 

At this point, the RH values within each room can be found based on the room 
temperature, control input and room volume. The next step is to add system identification 
toolbox found in MATLAB to obtain the SSM required for the MPC. The testing data, 
instead of training data, is used to ensure the feasibility of SSM to be applied in simulation 
within the real condition. The average value of mean absolute percentage error (MAPE) 
for RH in all rooms is 4.65 % and the average MAPE for temperature in all rooms is 0.95 
%, indicating this model is acceptable for the MPC problem.  

2.2. PCA and KDE based data-driven uncertainty sets clustered by K-means algorithm 
Disjunctive uncertainty sets are constructed to better learn the trend of the uncertainty 
data (Ning and You, 2017). Therefore, the K-means clustering method is adopted in this 
work to cluster the uncertainty into multiple groups. The groups are identified by 
minimizing the sum of intracluster variances, i.e., squared Euclidean distance:  

2*

1

arg min
i

k

i
i w D

D w 
 

 
   

 
  (9) 

Despite multiple groups of uncertainty data, the traditional norm-based uncertainty set 
cannot be applied directly to deal with the uncertainty data with varied structure and 
complexity (Ning and You, 2021). Therefore, PCA and KDE are adopted for coping with 
the data with polyhedral shapes. PCA can then maximise the variance of the uncertainty 
under the same scale. The covariance matrix can be approximated as: 

1

1
T

i i iS w w
N




 (10) 

As the covariance matrix Si can be further decomposed as Si = QiΛiQi
T, where Qi’s column 

contains all the eigenvectors, corresponding to the eigenvalues stored in the diagonal 
matrix Λi. The individual eigenvalue will represent the variance of this axis if data is 
projected on this eigenvector. 

1635 
for Building Control 



Finally, it can be further studied the distributional information of the uncertainty dataset 
within each component j within the cluster k via the KDE approach: 

( )
, , ,

1

1
( , )

N
n

j k j k j k
n

f K p
N




   (11) 

With probability density function, the cumulative density function will be written as 
follows: 

1
, , , ,( ) min{ | ( )}j k j k j k j kF F       (12) 

where α is the pre-specified small quantile parameter, ranging from 0 to 0.5, and ξ is the 
inferred latent variable. The uncertainty set Wk within cluster k can be formulated by 
introducing forward and backward deviation variable z+ and z- (Ning and You, 2018): 
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3. Control strategy 
The next step is to develop the optimization problem to get the control strategy to the 
multi-zone building. To ensure the tractability of the RMPC optimization problem, ADF 
is adopted to get control input ut based on past disturbances. The equation is expressed as 
following (Goulart et al., 2006): 
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where M is regulated as follows: 
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Only the first u0 will be applied for the control to the model and the rest will be discarded. 
The optimization problem with ADF can be formulated as follows (Shang et al., 2017): 
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 (16) 

where Fx, Fu, fx, fu represent the state variable constraints matrix, control input constraints 
matrix, constraints for state variables, and constraints for the input. L is the weighted cost 
matrix that penalizes the violation to the constraints. Λ is the slack variable that allows 
some extent of violation to the hard constraints (Jia et al., 2020).  
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4. Case study 
In this study, the single-floor multi-zone building located in Ithaca, New York, USA is 
selected for the simulation of close-loop data-driven RMPC to control the temperature 
and RH in each individual room. The constraints for the control conditions are: For the 
room temperature should be within 15 ℃ to 25 ℃, and RH should sit in between 30 % 
to 60 %, according to ASHRAE Standard 62-2001. 
The model was simulated from 0:00 AM, November 1st, 2016 to 0:00 AM, on November 
8th, 2016, ranging from precisely one week. The initial conditions for temperature values 
in all rooms are 21 ℃ and RH values are 40 %. One of rooms’ results are selected for 
demonstration, as shown in Fig 1. Based on the result, both certainty equivalence MPC 
(CEMPC) and RMPC violate the constraints more severely. CEMPC which only 
considers the deterministic conditions, fails to compose the strategy against the prediction 
error from ambient temperature and RH. Meanwhile, the RMPC fails to obey the RH 
constraints, indicating an irregular shape of the uncertainty data of RH. On the other hand, 
the rest three control strategies can be more conservative in maintaining both temperature 
and RH within the constraints. KM-DDRMPC will be the most conservative one since 
there is nearly no violation at all, but, it will have the highest power consumption across 
all control methods. On the other hand, though there are slightly more violation cases and 
more computation time, KM-PKDDRMPC will draw significantly less power in 
controlling the temperature and RH compared to KM-PKDDRMPC and PCA coupled 
with KDE based data-driven RMPC (PKDDRMPC). 

 
Figure 1. Control profile in Ithaca, New York, in the first week of November 2016 

5. Conclusions 
In this work, we develop a KM-PKDDRMPC framework for the multi-zone building 
SSM, which includes indoor temperature and RH control. In order to maintain 
temperature and RH within the comfortable range, KM-PKDDRMPC is capable of 
handling the uncertainty sets from temperature and RH forecast. The steady-state system 
with RH is constructed with the help of system identification. Then the optimization 
problem can be further developed with the SSM and disjunctive uncertainty sets. The 
proposed KM-PKDDRMPC was compared with the CEMPC and other MPC strategies, 
including RMPC, KM-DDRMPC, PKDDRMPC. The result demonstrated that the 
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proposed KM-PKDDRMPC has outperformed the rest from the overall perspective, using 
17.9 % less power consumption than KMDDRMPC and 9.8 % fewer compared to 
PKDDRMPC. Though CEMPC and RMPC have used less power, the high violation rate 
will exclude them from the final consideration to the practical application.  

6. Nomenclature  
SVD – saturated vapor density 
VD –vapor density 
mair,t-1 – mass of airflow at t-1, kg 
Qt-1 – heat input at t-1, J 
cp – specific heat of air, kJ/(kg-K) 
∆T – temperature change, ℃ 
Troom,t – room temperature at t, ℃ 
Tair,t – ambient temperature at t, ℃ 
ρair – air density, kg/m3 
RHt-1 – relative humidity in room at t-1 
RHout,t-1 – ambient relative humidity at t-1  
ρwater,sat,t-1 – SVD of Troom at t-1, g/m3 

ρAC,sat,t-1 – SVD of Tair at t-1, g/m3 
Vroom – room volume, m3 
mwater,t – mass of VD at t, kg 
mhum –mass of VD from humidifier, kg 
mdehum – mass of VD taken by dehumidifier, 
kg 
mAC,in,t-1 – mass of VD from air circulation at 
t-1, kg 
mAC,out,t-1 – mass of VD taken by air 
circulation at t-1, kg 
ρabs,t – absolute VD density at t, kg/m3 
ρsat,t – SVD at t, kg/m3 
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Abstract 

In this paper, a unified low-dimensional input and high-dimensional output modelling 

method is proposed to deal with complex molecular simulation and design problems. First, 

a convex optimization framework is constructed to decompose vertically stacked 

molecular weight distribution (MWD) matrix into low-rank and sparse parts, while the 

intrinsic structure can be explored, and abnormal points can be eliminated. Then, 

considering the correlations between independent output channels, an effective 

coregionalization kernel is adopted in Gaussian Process (GP) to implement the low-

dimensional multi-output tasks. The whole procedure consists of data filtering, feature 

compressing and multi-output GP, which is named by DF-MGP. Case study of an 

ethylene homo-polymerization with the Ziegler-Natta catalyst system shows the 

effectiveness of the proposed DF-MGP strategy.  

Keywords: Multi-output regression; Gaussian Process; coregionalization kernel; 

molecular weight distribution 

1. Introduction 

Machine learning (ML) has been widely applied in almost all areas of science. They are 

great at problems when inputs lie in high-dimension space and outputs lie in low-

dimension space. However, this situation is inverse in molecular simulation, which macro 

manipulation space is much smaller than micro molecular space. Because of the complex 

and time-consuming features of molecular simulation, some scholars have utilized ML to 

improve such phenomenon. Elton et al. (2018) proved that ML techniques can be used to 

predict CNOHF energetic molecules from their molecular structures. Afzal et al. (2019) 

applied ML to develop a data-driven prediction model in the study of 1.5 million organic 

molecules. Moreover, main challenges of the practical applications are missing data, 

especially when some feature values cannot be observed, presence of noise, and coupling 

interactions between multiple target variables. To tackle these issues, multi-output 

regression methods are presented, which are capable to yielding better predictive 

performance than single-output methods. The multi-output regression methods aim to 

simultaneously predict multiple real-valued outputs. Kocev et al. (2009) applied ML 

methods to predict multiple targets describing conditions or quality of vegetation. Tuia et 

al. (2011) estimated different biophysical parameters from remote sensing images 

simultaneously. 

Furthermore, problems with low-dimensional input and high-dimensional output feature 

make multi-output regression extremely difficult. For example, to represent a molecular 

weight distribution of a polymer usually needs a chain length as large as 105. Even after 

discretization, normally 100 grids are required to represent such a curve as measured by 

Gel Permeation Chromatograp (GPC). This kind of problems requires an elaborate and 
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elegant technique to process data. In this paper, we propose to apply compressed sensing 

(CS) method, which is well known in machine vision, to decompose the MWD matrices 

into low-rank and sparse parts, while a novel strategy is developed to address data missing 

and noise. An ethylene homo-polymerization with the Ziegler-Natta catalyst system (Lin 

et al. 2021) is studied to show the effectiveness of the proposed method. 

2. Related works 

2.1. Decomposing Sparse and Low-Rank Matrices 

Compressed sensing is widely studied in computer science, which has been proved to be 

a complete technique for signal treatment and analysis. It can recover the signal from few 

of samples. In addition, the compressed sensing technique can also be applied to matrices 

when signals are stacked vertically in sequence. The general formula is shown as follows. 

Minimize ‖𝐿‖∗ + 𝜆‖𝑆‖1    s.t. Ρ𝑄[𝐿 + 𝑆] = Ρ𝑄[𝑌] (1) 

where 𝜆 > 0 is a positive weight parameter; the subscripts, * and 1, denote nuclear norm 

and L1 norm, respectively; 𝑌 is the unprocessed data, Ρ𝑄 is the projection operator. 𝐿 

and 𝑆  represent the optimized low-rank and sparse matrices. Because the linear 

constraint and objective function are convex, the convex problem shown in Eq. (1) can 

be solved by alternating directions method of multipliers (ADMM). 

2.2. Gaussian Process 

Gaussian process (GP) is a kind of non-parametric Bayesian approaches (Schulz, E et al. 

2009). Theoretically, it can capture a variety of relations between inputs and outputs by 

using an infinite number of parameters, while determining the level of complexity by 

means of Bayesian inference. Generally, GP can be formulated in traditional parametric 

weight space or non-parametric Bayesian function space. A univariate linear Bayesian 

regression formula is presented as follows: 

𝑝(𝑓∗|𝑥∗, 𝑋, 𝒚) = 𝑁(
1

σ𝜖
2

𝑥∗
𝑇𝐴−1𝑋𝒚, 𝑥∗

𝑇𝐴−1𝑥∗) (2) 

where f is an unknown function, which maps inputs 𝑥 to outputs 𝑦: f: 𝑋 → 𝑌. For the 

sake of simplicity, the dimension of 𝑌  is set to one. 𝑥∗  is a test case; 𝑓∗  is latent 

variable output; σ𝜖
2  is variance of Gaussian noise. 𝐴 = σ𝜖

2𝑋𝑋𝑇 + Σ𝑝
−1 ;  𝑋  and 𝒚 

represent the training data. 

GP is a probabilistic ML, which can predict uncertainties of 𝑓∗. We can specify different 

probability density and construct kinds of likelihood probability density. Moreover, many 

approximation inference methods can be used for modelling and Bayesian optimization. 

3. High-dimensional-output modelling method 

In this section, we use an ethylene homo-polymerization with Ziegler-Natta catalyst 

system to introduce the framework of proposed DF–MGP strategy. As shown in Fig. 1, it 

mainly contains four steps, i.e., data-collection, feature extraction, kernel design and 

inference chosen. 

Step 1: Data collection 



Low-Dimensional Input and High-Dimensional Output Modelling Using
   Gaussian Process 

1641

The manipulated variables (MV) involved in this case are hydrogen feed(H2), monomer 

feed(M), hexane feed (C6H14), catalyst feed (Cp), cocatalyst feed (A) and temperature 

(T). Latin hypercube sampling (LHS) is applied to sample points in six-dimensional space. 

Step 2: Decomposing low-rank and sparse parts 

Due to the numerical calculation error, some MVs can lead to a non-convergent MWD in 

the simulation process. A few outliers can degrade the performance of ML. To tackle this 

issue, the convex optimization model described in section 2.1 is constructed to minimize 

the L1 and nuclear norm of MWD matrix to explore the intrinsic structure and cut off the 

abnormal points. Considering the high dimensionality, the singular value decomposition 

(SVD) method is performed to recover the best low-rank approximation matrix of MWD 

and complete feature compressing. 

Data collection

Offline Training

Decompose low-
rank and sparse 

parts

DF-MGP

MWD Matrices

Kernel Design

Ziegler-Natta 

catalyst system

1.Determine the kernel type;

2.Set each kernel parameter prior 

distribution;

3.Set the final combination form; 

Data filtering

Feature 

compressing

Gaussian 

Process

Choose the 
inference 
method

 
Fig. 1. Framework of the proposed DF–MGP strategy  

Step 3: Kernel design 

As a nonlinear regression method, the GP models involve many kernel functions. The 

kernel function defines a covariance function, which can describe the similarity of random 

variables. There are many kinds of kernel functions, such as linear, Matern32, periodic, 

polynomial, exponent and radial basis functions. Considering the requirements of multi-

output analysis, the coregionalization kernel function is utilized to describe correlation of 

the outputs. Once the type of kernel is specified, the hyper-parameters involved can be 

found by Bayesian inference. Then, the corresponding prior of hyper-parameters can be 

determined. In addition, different kernel functions can be combined, such as sum, product, 

vertical scaling, warping.  

Step 4: Inference chosen 

Based on the Gaussian prior and Gaussian likelihood functions, the conditional posterior 

of 𝑓∗ can be evaluated by Eq. (2). However, if the kernel function and likelihood function 

are changed, the conditional posterior will be rather intractable. Thus, different inference 
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methods are proposed, such as Laplace approximation, expectation propagation, Markov 

Chain Monte Carlo (MCMC). Different methods can lead to different generalization 

performance; thus, the step of inference chosen is crucial. Note that the continuous and 

categorical hyper-parameters involved in above steps are chosen by trial and error, and 

there also exist some empirical ways to assist in hyper-parameters tuning.  

4. Case studies 
4.1. Homo-polymerization Ziegler-Natta Catalyst System 

Molecular weight distribution (MWD) is a critical index of the optimization and control 

for industrial polymerization processes, which indicates the processability and properties 

of polymers. MWD is a probability distribution function of chain length, which can be 

predicted by polymerization mechanisms. In this work, an ethylene homo-
polymerization with the Ziegler-Natta catalyst system is demonstrated. 1549 sample 

points are generated in the MV space, and the corresponding MWDs are generated 

through a kinetic modeling and simulation method (Lin et al. 2021). 

4.2. Projection of MWD Matrices on Intrinsic-Low-dimensional Matrices  

Since the MWD data is originally defined in a 132-dimensional space, we need to project 

it onto the low-dimensional subspace. As shown in Fig. 4(a), the raw data have abnormal 

points because of numerical calculation error. In Fig. 2(a), the low-rank part has extracted 

most features of the curve. Non-zero parts shown in Fig. 2(b) represent the noise and 

abnormal points of MWD. Therefore, in Fig. 3, we set an upper threshold 51 to eliminate 

those parts. Fig. 4(b) demonstrates effectiveness of our proposed data processing method 

through which the valid data can be identified. 

 
(a) 

 
 (b) 

Fig. 2. Low-rank part and sparse part visualization. 



 
Fig. 3. Box plot of non-zero positions in sparse part 

 
(a) 

 
(b) 

Fig. 4. Visualization results of MWD. (a) Raw data (b) Valid data 

4.3. LS-MGP Prediction 

MCMC inference is implemented to optimize the parameters of GP. 80% of the valid data 

are used to train the offline model, and the rest are used for validation. Fig. 5 shows one 

of the visualization results. The shaded part is the uncertainty evaluation of prediction 

bounded by 0.05 and 0.95 quantiles. The average root mean square error is 0.01. The first 

solid line in the legends represents the mean value of GP, and the second marker line with 

left triangle indicates the result of validation point. The rest two dash dot lines show the 

region of 0.05 and 0.95 quantiles 
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Fig. 5. Prediction of a validation sample 

5. Conclusions 

Through data processing and feature compressing, the proposed DF-MGP strategy can 

accurately predict the micro-structure of polymers with different manipulating conditions. 

Due to the flexibility of GP and powerful performance of MCMC inference, the proposed 

method is also applicable to other high-dimensional multi-output problems. The current 

work is a beginning of the future research for molecular design and optimization. 
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Abstract 

Complex systems which exhibit different dynamics based on their operating region pose 

challenges for data driven control because a single global model may not capture the 

varying dynamics of the system. One solution is to use hybrid system identification to 

learn the location of operating regions and dynamics within each region from data, 

yielding a more accurate multi-model of the system. This article proposes a novel method 

of hybrid system identification through spectral clustering with a custom similarity 

function. A case study of a chemical process illustrates benefits of this approach for 

Model Predictive Control. 

Keywords: Hybrid System Identification, Model Predictive Control, Data Driven Models 

1. Introduction 

Systems which exhibit different dynamics based on their operating region, termed hybrid 

systems, are prevalent within all areas of engineering, ranging from a four-stroke cycle 

of a combustion engine to chemical processes controlled by a thermostat (Lauer 2019). 

These systems pose challenges for data driven control, since a single model is often 

inadequate in capturing the varying dynamics of the system. However, the location or 

even a number of operating regions may be unknown a priori, and hence hybrid system 

identification is concerned with learning the location and local model of each operating 

region. This can lead to a more accurate piecewise system model and improve control of 

hybrid systems. 

Due to the presence of discrete operating regions and continuous dynamics, hybrid system 

identification is an NP-hard mixed integer optimization problem (Lauer 2019), and as 

such, local methods or relaxation approaches must be employed. Most of the currently 

available methods further constrain the problem by assuming that the underlying system 

is linear, leading to piecewise affine (PWA) system identification (Lauer 2019, Ohlsson 

2013). On the other hand, only a few algorithms tackle identification of general piecewise 

smooth (PWS) systems (Lauer 2019, Lauer 2014, Lee 2017) that can be used within the 

emergent field of nonlinear control. This article proposes a novel PWS system 

identification approach based on spectral clustering, with ramifications for control 

illustrated by a case study of a Continuously Stirred Tank Reactor (CSRT). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50274-8 
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2. Hybrid System Identification 

2.1. Problem Definition 

For a hybrid system with states 𝒙 ∈ ℝ𝑑𝑥 , controls 𝒖 ∈ ℝ𝑑𝑢  and 𝑝 operating regions, a 

latent function 𝑞(∙,∙) ∶ ℝ𝑑𝑥 × ℝ𝑑𝑢 → {1,… , 𝑝} defines the operating region for a given set 

of states and controls. Assuming a full state feedback, the discrete state space model of 

the system then exhibits piecewise behaviour as described in Eq. (1), where 𝜺 ~ 𝓝(𝟎, 𝚺) 
is some Gaussian noise. 

𝒙𝑘+1 = 𝑓𝑞(𝒙𝑘,𝒖𝑘)(𝒙𝑘, 𝒖𝑘) + 𝜺 ≡  𝑓𝑞(𝜻𝑘)(𝜻𝑘) + 𝜺 (1) 

 

Given a training dataset 𝒟 = {𝒙𝑘
(𝑖)
, 𝒖𝑘

(𝑖)
, 𝒙𝑘+1
(𝑖)

}
𝑖=1,…,𝑁−1

, the goal of hybrid system 

identification is to learn the latent function 𝑞(∙,∙) as well as each local model 

{𝑓𝑗(∙,∙)}𝑗=1,…,𝑝. Notably, the number of regions 𝑝 may be unknown and hence must also 

be learned. To simplify the notation, let’s further aggregate the state and control vectors 

into a single vector 𝜻𝑖 = [𝒙𝑘
(𝑖), 𝒖𝑘

(𝑖)]
𝑇
 and rename 𝒙𝑘+1

(𝑖)
 as 𝒚𝑖, which allows us to 

reformulate Eq. (1) and rewrite the training dataset in a more familiar input-output form 

𝒟 = {𝜻𝑖 , 𝒚𝑖}𝑖=1,…,𝑁  

2.2. Challenges of Hybrid System Identification 

The main difficulty of hybrid system identification comes from the dual nature of the 

problem: simultaneously assigning datapoints to regions and learning the model within 

each region (Lauer 2014). Moreover, the problem is naturally ill defined if the number of 

regions is unknown, which can be observed by a trivial solution of assigning each 

datapoint to a different region. The problem can be simplified by assuming that each local 

model 𝑓𝑗(∙,∙) is linear, hence deriving a PWA system model. This is attractive because 

nonlinear systems can be approximated with sufficiently many local affine models and 

classical linear control can then be employed (Lauer 2019). However, this limits the use 

of hybrid system identification for nonlinear system control strategies such as nonlinear 

MPC. 

In PWS system identification, on the other hand, the only assumption made about the 

nature of the underlying local models is that they are smooth. Hence, if the complexity of 

these models is not limited, a single flexible model can overfit the training dataset. Based 

on this intuition, (Ohlsson 2013) derives a regularization approach to PWA identification, 

which is then extended to PWS systems by considering functions in a Reproducing Kernel 

Hilbert Space (RKHS) in (Lauer 2014). These approaches work by estimating a 

regularized parametric local model for each datapoint, hence projecting it into some 

parameter space, where k-means clustering can be used to identify operating regions. 

Although, this works well for linear models where the dimensionality of the parameter 

space is small, extension to PWS systems faces the difficulty of the large dimensionality 

of the parameter space associated with functions in RKHS (i.e. dimensionality is equal to 

the number of training samples). 

2.3. Spectral Clustering for Hybrid System Identification 

An alternative to clustering points based on compactness in some parameter space, is to 

employ connectedness based clustering algorithms such as spectral clustering (von 

Luxburg 2007), which aims to identify clusters such that the similarity of points within a 
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cluster is maximized and the similarity of points between clusters is minimized. This is 

done by using a positive similarity function 𝑠(∙,∙) ∶ ℝ𝑑 × ℝ𝑑 → ℝ+ to measure the 

similarity between any two points in the dataset. Notably, custom similarity function can 

be used to suit the application needs. 

This approach is especially attractive for hybrid system identification because the 

similarity function can be viewed as a surrogate for the latent region function 𝑞(∙), such 

that 𝑠(𝜻𝑖 , 𝜻𝑗) is large if 𝑞(𝜻𝑖) = 𝑞(𝜻𝑗), and small otherwise. Hence, the problem is 

reformulated as finding such positive similarity function. A thorough background on 

spectral clustering can be found in (von Luxburg 2007). 

3. Local Predictive Clustering 

3.1. Similarity Function 

If a group of points is generated by the same local model, then they will contain 

information about each other. Hence, if a set of points is used to construct a local model, 

which can then accurately predict the value at another point, it is likely that the prediction 

and at least some training points belong to the same region. This intuition can be encoded 

into a similarity function by first assuming that the global training dataset 𝒟 = {𝜻𝑖 , 𝒚𝑖} is 

sampled uniformly (i.e. at regular intervals) along its input dimensions and defining a 

standardized distance metric 𝑑(∙,∙) ∶ ℝ𝑑 × ℝ𝑑 → ℝ+ shown in Eq. (2), where 𝜻𝑖[𝑛] refers 

to the 𝑛th component of the vector 𝜻𝑖.  

𝑑(𝜻𝑖 , 𝜻𝑗) = √∑
(𝜻𝑖[𝑛]−𝜻𝑗[𝑛])

2

𝑽𝜁[𝑛]

𝑑
𝑛=1     

where 𝑉𝜁[𝑛] = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒({𝜻𝑖[𝑛]}𝑖=1,…,𝑁) 

(2) 

Then for each point 𝜻𝑖, a local dataset 𝒟𝑖
(𝑙)

 containing its 𝑘𝑙 neighbours can be used to 

learn a local model ℎ𝑖(∙) ∶ ℝ
𝑑 → ℝ𝑑𝑥. The neighbourhood of the model is then defined 

as complimentary dataset 𝒟𝑖
(𝑝)

 such that it includes any point among 𝑘𝑝 neighbours of 

any point in 𝒟𝑖
(𝑙)

 (but excluding any point in 𝒟𝑖
(𝑙)

). The local model ℎ𝑖(∙) is then used to 

make predictions for all points in 𝒟𝑖
(𝑝)

 giving rise to some prediction RMSE for each 

point in 𝒟𝑖
(𝑝)

. Intuitively, if that error is small, then it is likely that point in 𝒟𝑖
(𝑝)

 is from 

the same region as some points in 𝒟𝑖
(𝑙)

. 
 

However, since local models are constructed around each dataset in 𝒟, each datapoint 

will be used for prediction multiple times. Given two close points 𝜻𝑖 and 𝜻𝑗, let’s assemble 

all predictive errors where 𝜻𝑖 was used for model construction and 𝜻𝑗 for prediction, and  

vice versa, into a single array of error 𝐸𝑖,𝑗. Then, the similarity value between 𝜻𝑖 and 𝜻𝑗 

is taken to be the inverse of the minimum error in 𝐸𝑖,𝑗, as defined by Eq. (3). 

𝑠(𝜻𝑖 , 𝜻𝑗) =
1

min𝐸𝑖,𝑗
 (3) 

3.2. Graph Construction and Clustering 
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The similarity function defined in Eq. (3) can then be used to derive a square similarity 

matrix 𝑆 ∈ ℝ𝑁×𝑁, such that 𝑆𝑖,𝑗 = 𝑠(𝜻𝑖 , 𝜻𝑗). Following the methodology of spectral 

clustering, an adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁 is constructed according to Eq. (4). 

𝐴𝑖,𝑗 = {
𝑆𝑖,𝑗  if 𝜻𝑖 ∈ 𝑘𝑛 neighbours of 𝜻𝑗  or 𝜻𝑗 ∈ 𝑘𝑛 neighbours of 𝜻𝑖   

0    otherwise                                                                                      
 (4) 

Let’s now assume that the number of regions is known to be 𝑘𝑐. Then spectral clustering 

can be performed in a straight forward manner on the graph described by 𝐴 to yield 𝑘𝑐 
clusters containing training points within each region. This approach for hybrid system 

identification, which we term Local Predictive Clustering (LPC), is described in 

Algorithm 1. 
 

Algorithm 1: Calculating the Similarity Between Points for Local Predictive 

Clustering 

Input: dataset 𝒟 = (𝜻𝑖 , 𝑦𝑖)𝑖=1,…,𝑁 where 𝜻𝑖 ∈ ℝ
𝑑 and 𝑦𝑖 ∈ ℝ , 𝑘𝑙 ∈ ℤ

+, 𝑘𝑝 ∈ ℤ
+, 

trainable model ℎ(𝜻𝑖|{𝜻𝑗 , 𝑦𝑗}) ↦ ℝ 

Do: 

1. Initiate an empty list 𝐸 of size 𝑁 × 𝑁, where each element contains an empty 

array 

2. For each 𝜻
𝑖
 in 𝒟: 

2.1. Find a set 𝒟𝑙 of 𝑘𝑙 nearest neighbours of 𝜻
𝑖
 using Eq. (3). 

2.2. Fit a local model ℎ𝑖 on the dataset 𝒟𝑙 
2.3. Find a set 𝒟𝑝 of 𝑘𝑝 nearest neighbours of all points in 𝒟𝑙 

2.4. Eliminate any point from 𝒟𝑝 which belongs to 𝒟𝑙 (i.e. 𝒟𝑝 ∩ 𝒟𝑙 = ∅) 

2.5. Use the local model ℎ𝑖 to make prediction 𝑦̅𝑗 for all points 𝜻
𝑗
 in 𝒟𝑝 

2.6. For each point 𝜻
𝑗
 in 𝒟𝑝, calculate Root Mean Square Error 𝑒𝑗 between 𝑦𝑗 

and 𝑦̅𝑗 

2.7. For each point 𝒙𝑘 in 𝒟𝑙, append 𝑒𝑗 to 𝐸[𝑘, 𝑗] and 𝐸[𝑗, 𝑘] where 𝑘 and 𝑗 are 

original indices of 𝒙𝑘 and 𝒙𝑗 respectively. 

3. Initiate an array 𝑆 ∈ ℝ𝑁×𝑁 with zeros 

4. For 𝑖 = 1,… , 𝑁: 
4.1. For 𝑗 = 1,… , 𝑁: 

4.1.1. 𝑆[𝑖, 𝑗] = min(𝐸[𝑖, 𝑗]) 
Return: 𝑆 

 

3.3. Local Models 
 

One of the advantages of LPC, is that any regression model can be used to approximate 

local models ℎ𝑖(∙). One preferred model is a Gaussian Process (GP) (Rasmussen 2006) 

due to its performance in low data settings and ability to encode additional prior 

assumptions about the underlying function through the kernel function. As such, LPC can 

be used for PWA system identification by simply using GPs with a linear kernel. On the 

other hand, Square Exponential (SE) kernel can be used for PWS system identification. 

3.4. Parameter Tuning 
 

The prediction neighborhood size 𝑘𝑝 can be fixed to 𝑁 − 𝑘𝑙 − 1, i.e. making predictions 

at all points not used for local model construction, although smaller values can slightly 

reduce the computational cost without affecting performance. On the other hand, optimal 



𝑘𝑙 and 𝑘𝑛 are extremely sensitive to the dataset and even similar values can produce 

widely different clusters. These can be optimized by Bayesian Optimization within the 

range of 5-50% of the dataset size 𝑁. 
 

Hierarchical clustering (Wang 2007) can be used to identify the number of clusters 𝑘𝑐, 
by iteratively splitting the dataset into two clusters while the resulting cross validation 

error decreases. An alternative method, enabled through the spectral clustering 

methodology, is to use the eigengap heuristic (von Luxburg 2007). One drawback of this 

method is that it is highly sensitive to the derived graph and hence 𝑘𝑙 and 𝑘𝑛 values, 

although this can be mitigated by summing the spectra of graphs produced by multiple 

candidate parameters. 

3.5. From Local Predictive Clustering to Model Predictive Control 
 

Once LPC divides the training dataset 𝒟 into 𝑘𝑐 clusters, the latent function 𝑞(∙) can be 

approximated by any supervised classification model, such as an SVM. One caveat of 

hybrid system identification, is that the target value (i.e. 𝒚𝑖 ≡ 𝒙𝑘+1
(𝑖) ∈ ℝ𝑑𝑥) is a 

multidimensional vector, while LPC is aimed at scalar valued functions. A simple 

solution is then to treat each dimension of the target value separately, effectively resulting 

in 𝑑𝑥 datasets and identified clusterings, where the optimal clustering is chosen through 

cross validation. 
 

Once the latent function 𝑞(∙) is learned, local functions 𝑓𝑖(∙) for 𝑖 = 1, … , 𝑘𝑐 can be 

readily approximated by a regression model of choice, for example a GP, hence learning 

a full piecewise multi-model of the hybrid system. This can then be leveraged in MPC by 

identifying the currently active local model at each iteration using the learned 𝑞(∙) and 

only optimizing the controls over the finite horizon using the identified local model. At 

the next iteration, the active local model is re-identified. 

4. Case Study 

To illustrate LPC and advantages of proper hybrid system identification for MPC, let’s 

consider an ideal continuous-stirred tank reactor (CSRT) described in (Kazantis 2000) 

where concentration and temperature of the reactant, 𝒙𝑘 = [𝐶𝐴, 𝑇] ∈ ℝ
2, is controlled by 

a dilution rate and inlet temperature, 𝒖𝑘 = [𝑢1, 𝑢2] ∈ ℝ
2. Hybrid behavior is introduced 

by modifying the dynamics described in [12], with the piecewise dynamics of the system 

described in Eq. (5). The system is then controlled from 𝒙0 = [0.116,368.5] to 𝒙𝑡𝑎𝑟𝑔𝑒𝑡 =

[0.666,308.5]. 

𝑑𝐶𝐴
𝑑𝑡

= {
(
𝐹

𝑉
+ 𝑢1) (𝐶𝐴,𝑖𝑛 − 𝐶𝐴) − 2𝑘(𝑇)𝐶𝐴

2   if 𝐶𝐴 < 0.6

(
𝐹

𝑉
+ 𝑢1) (𝐶𝐴,𝑖𝑛 − 𝐶𝐴) − 2𝑘(𝑇)𝐶𝐴   otherwise

 

𝑑𝑇

𝑑𝑡
=

{
 
 

 
 (
𝐹

𝑉
+ 𝑢1) (𝑇𝑖𝑛 + 𝑢2 − 𝑇) + 2

(−∆𝐻)𝑅
𝜌𝑐𝑝

𝑘(𝑇)𝐶𝐴
2 −

𝑈𝐴

𝑉𝜌𝑐𝑝
(𝑇 − 𝑇𝑗)   if 𝐶𝐴 < 0.6

(
𝐹

𝑉
+ 𝑢1) (𝑇𝑖𝑛 + 𝑢2 − 𝑇) + 2

(−∆𝐻)𝑅
𝜌𝑐𝑝

𝑘(𝑇)𝐶𝐴 −
𝑈𝐴

𝑉𝜌𝑐𝑝
(𝑇 − 𝑇𝑗)   otherwise

 

(5) 

The discretized system model is uniformly sampled to yield 1120 training points used to 

learn the location of operating regions through LPC. Another training dataset of 160 

points is sampled randomly and used to train a single, global GP. MPC is then run using 

the global GP as a system model, failing to control the plant to the target states. Then, the 
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training dataset is split into regions identified through LPC and local GPs are built for 

each region. A multi-model MPC is then run using local GPs by identifying an active 

local GP and using its mean prediction at each iteration, successfully controlling the plant.                 

 

 

Figure 1: System behavior and model mismatch for MPC with a global and local models. 

Figure 1 shows the system behavior as well as the model mismatch for both MPC with a 

single global GP and two local GPs. While local GPs exhibit large model mismatch close 

to the boundary (𝐶𝐴 ≈ 0.6), it quickly decays. On the other hand, a single global GP 

results in significant model mismatch throughout, illustrating benefits of LPC. 

5. Conclusions 

Accurate hybrid system identification can significantly improve data driven control, and 

provide insight into the system itself. For MPC with GP system model, local models can 

also improve the speed of optimization. Although LPC is shown to be effective for general 

PWS system identification, it is limited to uniformly sampled datasets and is sensitive to 

noise and hyperparameters. Importantly, though, it illustrates the potential of spectral 

clustering in hybrid system identification through the proposed similarity function.  
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Abstract 

This study presents a machine-learning-based prediction model for distillation process 

operation data using wavelet transform. The process operation data collected from a 

distillation column contain noise due to sensor errors. Developing a machine-learning 

model using noisy data reduces the accuracy of the model; therefore, the data should be 

denoised. Denoising was achieved using wavelet transform, and a long short-term 

memory (LSTM) machine-learning model was developed. Wavelet transforms generally 

decompose data into high- and low-frequency components using wavelet functions with 

various frequencies. The high-frequency components are the details comprising noisy 

data, and the low-frequency components correspond to the approximations of the original 

data. The approximations were used to develop the LSTM model. Depending on the type 

of wavelet function used for decomposition, the denoised values varied and affected the 

model accuracy. Case studies were conducted using various wavelet functions to develop 

models with optimum prediction performances. By applying the optimal wavelet 

transform to the LSTM model, the prediction performance improved by 10%. 

Keywords: distillation column temperature, machine learning, wavelet transform, long 

short-term memory. 

1. Introduction 

The distillation process is a representative process for improving the purity of a product 

in the chemical industry. The main types of data in the distillation process are related to 

temperature, pressure, flow rate, and liquid level, which are measured in real time. In 

general, additional devices are required to measure the purity of the distillation process 

as real-time measurements are difficult. In addition, time delays are inevitable, which 

pose challenges to controlling real-time purity data (das Neves et al., 2018). Product 

purity is often controlled indirectly by estimating other related measurable data. Product 

purity is mainly controlled by temperature in the distillation process; therefore, accurate 

data collection and temperature prediction methods are required.  

The distillation process data have time-series characteristics that accumulate over time. 

The artificial neural network (ANN)-based prediction model performs well in mapping 
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and utilizing the input and output values of a complex nonlinear relationship (Joo et al., 

2021). Additionally, predictions and control are easy in real time because there are slight 

time delays of the order of seconds to output values using the developed model 

(Himmelblau, 2008). However, time-series data have performance limitations with 

predictions that use traditional ANN-based models. In time-series data, the past 

information affects the future because the traditional ANNs cannot reflect this. Recurrent 

neural network (RNN)-based long short-term memory (LSTM) is therefore designed to 

remember and convey past information in the future, making it suitable for analyzing and 

predicting time-series data.  

The performances of ANNs or linear and nonlinear regression models are affected by the 

data quality and require appropriate data preprocessing methods. Time-series data often 

include abnormal characteristics, such as tendency and periodicity; these characteristics 

are analyzed in several ways such as the autocorrelation and spectrum are mainly used. 

Spectral analysis is generally used to determine the periodicity of time-series data and is 

based on Fourier transform of the time-domain data to the frequency domain. Although 

the frequencies present in the signal can be analyzed after the Fourier transform, there is 

a disadvantage that the existence of each frequency in time is unknown because the time 

information is removed. Candidate (2019) reported that the wavelet transform (WT) is an 

approach to solving this problem. Khandelwal et al. (2015) conducted a study using ANN 

models and discrete wavelet transform (DWT) to predict time-series data. Kwon et al. 

(2021) reported that data from the distillation process could be predicted using the LSTM 

algorithm. The statistical technique called autoregressive integrated moving average 

(ARIMA) can be combined with ANNs to predict time-series data. The problem with 

ANNs as well as the linear and nonlinear regression models is that the predictive 

performances decrease for abnormal data that have not been appropriately preprocessed. 

The DWT can help analyze abnormal time-series data and decompose them into normal 

and noisy data. 

In the present study, an LSTM-based prediction model with WT was developed to predict 

the temperature of the distillation process accurately. To improve the noise removal 

performance, a study was conducted on the basis function of the WT, and the most 

appropriate wavelet basis function was selected by measuring noise removal performance. 

The denoised data were then used as the input data to the LSTM model to develop the 

WT-LSTM model, and performance comparisons were made with the general LSTM 

model. 

2. Methods 

2.1. Description of the distillation process 

The object of this study is a commercial distillation process that produces normal butane 

from mixed butane. The distillation column consists of 78 stages, and the raw material, 

i.e., mixed butane, is designed to flow into 35 stages. Mixed butane is composed of 

normal butane, isobutane, and pentane and produces 99% pure normal butane in 64 stages. 

Figure 1 shows a schematic of the distillation process and the sensor positions for data 

collected during the process.  
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2.2. Figure 1. Mixed butane splitter process diagram. Wavelet transforms and 

wavelet basis functions 

WTs are divided into discrete and continuous types. The DWT consists of highpass and 

lowpass filters that separate the original signal into high- and low-frequency bands, 

respectively. In general, the approximation data from the lowpass filters determine the 

signal characteristics, and the detail data passed through the highpass filters are treated as 

noise. In decomposing the original signal into approximation and detail data, particular 

functions are used to determine the forms of the approximation data and are called as the 

wavelet basis functions. 

The WT is defined as an extension of the wavelet basis function, which must satisfy the 

following two conditions:  

∫ |𝜓(𝑡)|2𝑑𝑡
∞

−∞
<  ∞  (1) 

𝑐𝜓 =   2𝜋 ∫
|Ψ(𝜔)|2

|𝜔|

∞

−∞

𝑑𝜔 <  ∞ (2) 

In Eq. (1) and (2), 𝜓 is the wavelet basis function, and Ψ is the Fourier transform of 𝜓. 

Eq. (1) indicates that the function 𝜓 has a finite value, and Eq. (2) indicates that Ψ(0) =
 0 when Ψ is smoothed as an acceptance condition. Because the wavelet basis function is 

a simple function that needs to satisfy only the above two conditions, the types of wavelet 

basis functions used are so diverse that it is necessary to select suitable functions based 

on the data characteristics.  The data collected during this process have different 

tendencies depending on the variable. Therefore, it is necessary to select the most suitable 

wavelet basis function for each variable. In this study, five wavelet basis functions are 

used: biorthogonal (bior), coiflet (coif), Daubechies (db), reverse biorthogonal (rbior), 

and symlet (sym). These five functions are the most commonly used in discrete wavelet 

transformations and have been useful in other signal processing studies. The degree of 

noise removal was evaluated for each wavelet function to select the most appropriate 

function for each data variable. In the process of selecting the basis function, all 

decomposition levels were set to five. 
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2.3. Long short-term memory 

Traditional neural networks have an input layer, an output layer, and a hidden connected 

layer; however, the nodes within each layer are not connected, so they do not affect each 

other. This makes it unsuitable for predicting time-series data in which the past 

information affects the future. RNNs are ANNs for predicting timeseries data and are 

connected such that they convey past information, unlike other traditional neural 

networks. The LSTM is proposed herein to solve the vanishing gradient problem, which 

is one of the disadvantages of the RNN. 

 

3. WT-LSTM model development 

In this study, a combined LSTM and WT model is developed. Data used for model 

development were collected between 07.18.2019 and 07.23.2019 using sensors installed 

in the actual commercial process. Among the collected data, the feed, steam, reflux 

flowrate, bottom pressure, and temperature values are noisy owing to sensor errors; hence, 

preprocessing is performed with WT to remove noise. In the process of denoising with 

WT, various basis functions are applied to select the optimal noise removal function based 

on performance. The preprocessed data are applied at the input layer of the LSTM model 

for learning, and the temperature is predicted at the output layer. The number of hidden 

nodes in the LSTM was set to 20 with 128 batch sizes. The other parameters are 

summarized in Table 1. 

Table 1. Parameters of LSTM model.  

Parameter Values 

Optimizer Adam 

Learning rate 0.001 

Activation function ReLU 

Training/test dataset ratio 70/30 

Loss function MSE 

Wavelet basis functions bior, coif, db, rbior, sym 

Wavelet decomposition levels 5 

 

The root mean-squared error (RMSE) is used to evaluate model performance and is 

calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑥𝑖 −  𝑦𝑖)2𝑁

𝑖=1   (3) 

Here, 𝑥𝑖 and 𝑦𝑖  are the ith values of the actual and predicted datasets respectively, and N 

is the total number of datasets. The RMSE is a measure of the error between the raw and 

predicted data, indicating that the smaller the error value, the more accurate is the 

performance of the prediction model.  

4. Results and discussion 

In this study, an LSTM model combined with a WT was developed to predict the 

temperature of the distillation process. Various basis functions were applied and 

evaluated to improve the noise removal performance of the WT. Performance 

comparisons with basic LSTM models were performed to verify the performance of the 

proposed model.  



4.1. Wavelet basis functions 

The selection of the wavelet basis function is important for removing noisy data using the 

DWT. In general, when denoising a signal using WT, greater similarity of the shape of 

the wavelet function to the signal indicates better noise removal. However, it is difficult 

to create useful wavelet functions, hence, an appropriate wavelet function is selected and 

used from among the existing wavelets. Daubechies, Symlets, Coiflets, biorthogonal, and 

other wavelets are included for decomposing signals and denoising with DWT. In this 

study, five wavelet basis functions were applied to each distillation process dataset for 

denoising and performance evaluation for optimal function selection. Table 2 shows the 

denoising results and RMSEs for bior, coif, db, rbior, and sym basis functions.   

Table 2. Results of denoising evaluations for each variable with RMSE.  

 Feed 

flowrate 

Steam 

flowrate 

Reflux 

flowrate 

Bottom 

pressure 
Temperature 

bior 652.941 264.516 1828.90 0.089 0.390 

coif 652.412 264.009 1823.67 0.089 0.390 

db 652.457 264.859 1825.079 0.089 0.390 

rbior 685.477 274.663 1914.24 0.092 0.403 

sym 652.449 264.368 1824.54 0.089 0.390 

 
Figure 2. The comparisons between denoised and predicted temperature of WT-LSTM, LSTM, 

WT-DNN and WT-RNN model.  

In this study, we confirmed that the coif function was most suitable for denoising data. 

However, the bior and db functions showed no significant differences compared to coif. 

Thus, we found that other functions were also suitable for denoising. 

4.2. Performance evaluation 

After removing data noise using the selected coif function, learning was conducted with 

the LSTM model to develop the WT-LSTM model. The performance of the proposed 
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model was compared with the basic LSTM model, WT- DNN, and WT-RNN. The 

learning conditions of WT-LSTM, LSTM model, and WT-RNN were set the same, and 

the predictive performance was evaluated with RMSE. Figure 3 shows the prediction of 

test set data using WT-LSTM, LSTM, WT-DNN and WT-RNN model. The RMSE of 

each model was 0.0966, 0.144, 0.0976 and 0.117. we confirmed that a more accurate 

prediction could be performed by reducing RMSE by 33# than the basic-LSTM model by 

removing noise with WT.   

5. Conclusion 

A machine-learning model combined with WT was developed herein to predict 

distillation process temperatures. The process data were denoised effectively using WT, 

and we confirmed that the coif function was most appropriate for optimal denoising 

performance. It was shown that the WT-LSTM model using the coif function could 

achieve more accurate predictions than other basis functions, with a 33% reduction in 

RMSE than the basic LSTM model. When using WT, the LSTM model achieved more 

accurate predictions. The temperature is thus calculated to be lower by approximately 

0.4 ℃. Hence, the WT approach needs to be improved, and future studies will focus on 

models that can predict the process more accurately through supplemental corrections. 
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Abstract 
For the pulping process in a pulp & paper plant that uses woodchips as raw material, the 
moisture content (MC) of the woodchips is a major process disturbance that affects 
product quality and consumption of energy, water, and chemicals. Existing woodchip MC 
sensing technologies have not been widely adopted by the industry due to unreliable 
performance and/or high maintenance requirements that can hardly be met in a 
manufacturing environment. To address these limitations, we propose a non-destructive, 
economic, and robust woodchip MC sensing approach utilizing channel state information 
(CSI) from industrial Internet-of-Things (IIoT) based Wi-Fi. While these IIoT devices are 
small, low-cost, and rugged to stand for harsh environment, they do have their limitations 
such as the raw CSI data are often very noisy and sensitive to woodchip packing. Thus, 
direct application of machine learning (ML) algorithms leads to poor performance. To 
address this, statistics pattern analysis (SPA) is utilized to extract physically and 
statistically meaningful features from the raw CSI data, which are sensitive to woodchip 
MC but not to packing. The SPA features are then used for developing multiclass 
classification models as well as regression models using various linear and nonlinear ML 
techniques to provide potential solutions to woodchip MC estimation for the pulp and 
paper industry. 

Keywords: systems engineering, machine learning, feature engineering, channel state 
information, IIoT sensors. 

1. Introduction 
The US pulp and paper industry ranks the third in energy consumption among US 
industries. The pulping process, which converts woodchips into pulp by displacing lignin 
from cellulose fibers, is one of the most energy intensive processes and has been identified 
as a major opportunity to improve energy productivity and efficiency of the industry 
(Brueske et al., 2015). Currently, vast majority of the US pulp is produced by chemical 
pulping processes and most of them utilize continuous Kamyr digesters. For Kamyr 
digesters, the incoming woodchip moisture content (MC) is a major disturbance that 
affects the cooking performance.  

Currently, the woodchip MC is not measured in real-time due to the lack of affordable, 
reliable, and easy-to-maintain sensors. As a result, the performance of existing control 
solutions is often unsatisfactory and process engineers often overcook the woodchips to 
ensure pulp quality, which results in significant loss of pulp yield, overuse of heat/energy 
and chemicals. Chemical overuse also adds burdens to the downstream processes, such 
as washing and evaporation, and results in increased energy and chemical usages for 
downstream processes as well. To address this need, this work proposes a non-

http://dx.doi.org/10.1016/B978-0-323-85159-6.50276-1 
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destructive, economic, and robust approach based on 5 GHz IIoT short-range Wi-Fi and 
use channel state information (CSI) to estimate MC in woodchips. Both classification and 
regression techniques are studied for MC estimation. For classification, we investigate 
linear discriminant analysis (LDA), support vector machine (SVM), artificial neural 
network (ANN), bagging with LDA, and ensemble boosting XGBoost. For regression, 
we study ANN, k-nearest neighbor regression (KNNR), Gaussian process regression 
(GPR), and support vector regression (SVR) with radial basis function (RBF) kernel.  

The remainder of this work is organized as follows: Section 2 describes the experimental 
setup and software tools used   in this study, as well as the features proposed and the 
modeling techniques utilized in this work. Section 3 presents results and discussions of 
this work, and Section 4 draws conclusions. 

2. Data collection and feature engineering 
2.1. Channel state information for moisture estimation 

Using Wi-Fi cards such as IWL5300, it is convenient to collect CSI measurements that 
record the channel variation during propagation of wireless signals. After being 
transmitted from a source, the wireless signal is expected to experience impairments 
caused by obstacles before the signal reaches the receiver. CSI can reflect indoor channel 
characteristics such as multipath effect, shadowing, fading, and delay. In this work, we 
collect CSI using CSItool, which is built on IWL5300 NIC using a custom modified 
firmware and open-source Linux wireless drivers. The channel response of the ith 
subcarrier can be represented as: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖| exp{∠𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖} (1) 

where |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖| is the amplitude and ∠𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the phase response of the ith subcarrier. 

2.2. Data description 

In this work, data are collected for 20 different MC classes or levels ranging from 53.39% 
to 11.81% on the wet basis (see Eqn (2)). A single antenna is used on the transmitter side 
which is configured in injection mode to send CSI and 3 antennas are used on the 
receiving side to take advantage of diversity. Woodchips are places in an airtight container 
between the transmitter and receiver to collect data. 10,000 packets are sent from the 
transmitter to the receivers for each sample collection. Total mass (𝑚𝑚𝑇𝑇) is measured 
during each experiment and oven drying method was performed after all experiments 
were conducted to determine the oven dry weight (𝑚𝑚𝐷𝐷). 𝑚𝑚𝑇𝑇 and 𝑚𝑚𝐷𝐷 are then used to 
determine the mass of water (𝑚𝑚𝑊𝑊) and MC as the following.  

𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑊𝑊
𝑚𝑚𝑇𝑇

× 100% = 𝑚𝑚𝑊𝑊
𝑚𝑚𝑊𝑊+𝑚𝑚𝐷𝐷

× 100%                                                                                     (2) 

The 20 different MC levels are plotted in Figure 1(a), which shows that MC levels are 
narrowly separated at the high MC region and even more so at the low MC region. The 
minimum difference between MC levels is 0.05%, which is more than sufficient for 
pulping process optimization and control. 

2.3. Methodology and feature engineering 

To address the shortcoming of raw CSI features that lead to poor classification and 
prediction performance, in this work, statistics pattern analysis (SPA) is utilized to 
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generate more robust and predictive features. In SPA, the statistics of the process 
variables, instead of process variables themselves, are used for modeling. This is based 
on the hypothesis that these statistics are sufficient and even better in capturing process 
characteristics than original process variables. This hypothesis has been supported in 
various applications, including fault detection (He et al., 2019; He & Wang, 2011, 2018; 
Wang & He, 2010), fault diagnosis (He & Wang, 2018), and virtual metrology or soft 
sensor (Shah et al., 2019, 2020; Suthar et al., 2019). SPA is selected in this work to extract 
robust and predictive features from raw CSI data. It is worth noting that SPA does not 
require preprocessing of the CSI data (e.g., outlier detection and handling, noise 
removal/reduction) that has been required in previous studies (Hu et al., 2019; Yang et 
al., 2018). A schematic for SPA based feature engineering is shown in Figure 1 (b). After 
a deeper exploration of candidate features and statistics, mean difference of consecutive 
subcarrier in CSI amplitude are chosen which leads to 87 features considering all 3 
antennas on the receiving side. 

(a) (b) 

Figure 1 (a) 20 different moisture levels tested in this work; (b) SPA based feature 
engineering for MC estimation 

3. Results and discussion 
In this work, we conduct investigations from three perspectives: (1) comparing raw CSI 
data vs engineered features; (2) comparing the performance of different classification 
approaches; and (3) comparing the performance of different regression approaches. For 
each model, 9 samples are randomly selected as training samples from 10 shuffled 
samples at the same MC level for each of the 20 MC levels, which results in 180 training 
samples. The remaining shuffled sample for each of the MC levels is used for testing. In 
this work we use Monte Carlo validation and testing (MCVT) procedure 100 times for 
performance comparison. To assess various classification approaches, the mean and 
standard deviation of classification accuracy of the 100 MCVT simulations are reported. 
For regression approaches, the mean and standard deviation of root mean square error 
(RMSE) for the 100 MCVT simulations are reported. 

First, raw CSI data are used for MC level classification. The results are similar across 
different classification techniques. Due to limited space, only results from LDA are 
discussed here. Figure 2 (a) shows the overall classification accuracy of all classes when 
the raw CSI data were used. The comparison indicates that LDA classifier using both 
amplitude and phase difference performs the best with 86.15% classification accuracy, 
followed by LDA classifier using phase difference with 83.85% classification accuracy, 
while the LDA classifier using amplitude alone results in the lowest classification 
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accuracy of 76.10%. Figure 2 (b) plots the confusion matrix for the LDA classifier using 
both CSI amplitude and phase difference, which allows us to dig deeper into the 
classification results. As can be seen from Figure 2 (b), classification accuracy of 
individual classes ranges from 15% to 100%. It can also be seen that classification 
accuracy alone is not a good performance indicator. For example, the far-off 
misclassifications (i.e., the predicted class of a sample is off its true class by more than 
one level) will have worse consequences than the nearest-neighbor misclassifications 
(i.e., the predicted class is off true class by one level, either above or below) if they were 
used to control the white liquor usage or digester temperature. It can be seen from Figure 
2 (b) that the classification results using raw CSI data are poor as there are samples 
misclassified far off their true classes. There are totally 478 misclassified samples, of 
which 30 are far-off misclassifications (highlighted by red circles in Figure 2 (b)). Also, 
the overall classification accuracy is not satisfactory. 

Next the 87 rationally engineered features (i.e., the mean difference of consecutive 
subcarrier in CSI amplitude) are used for MC level classification and the results are 
summarized in Table 1. The classification accuracies shown in Table 1 indicate that 
all methods perform well with higher than 95% classification accuracy. The 
significantly improved performance compared to that of the raw CSI data demonstrates 
that the engineered features are more informative and characterize the MC in woodchips 
far better than the raw CSI data. Among all classification methods studied in this work, 
the bagging LDA performs the best with 98.75% average classification accuracy. The 
standard deviation of its classification accuracy is the lowest of 2.29%, indicating the 

(a) (b) 

Figure 2 (a) Overall classification accuracy using different raw CSI data with LDA classifier 
based on 100 Monte Carlo runs. (b) Classification confusion matrix of 100 MCVT when both 
amplitude and phase difference are used. The far-off misclassifications (i.e., the predicted class 
differs from the true class by more than one MC level) are highlighted by red circles. 

Table 1 Classification accuracy using engineered features 

Method Classification Accuracy 
Mean Std. dev. 

SVM 95.50 3.79 
ANN 95.85 4.15 
XGBoost 96.40 3.70 
LDA 97.55 2.89 
Bagging (LDA) 98.75 2.29 
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bagging LDA is also the most robust or consistent classifier among all methods studied 
in this work.  

Finally, we study different regression methods for MC estimation. When raw CSI data 
are used, all regression methods perform poorly, similar to the classification results when 
the raw CSI data are used. Due to limited space, they are not shown here. When the same 
87 engineered features are used for regression-based MC estimation, a well-tuned ANN 
with two hidden layers outperforms other regression-based approaches as shown in Table 
2. KNNR performs comparable to ANN while GPR and SVR with RBF kernel have 
relatively higher average RMSE’s for 100 MCVT simulations. 

 

Figure 3 shows the measured vs predicted MC values for ANN and SVR(RBF). It can be 
seen from Figure 3(a) that the ANN predicted MC values agree very well with the actual 
or measured MC values. In comparison, while SVR captures the MC trend, its predictions 
have much higher standard deviation compared to ANN. It is worth noting for all the 
above-mentioned results, the models and their hyperparameters were tuned using random 
search followed by Bayesian optimization (Bergstra & Bengio, 2012). 

4. Conclusions 
In this work, we investigate the potential of an IIoT short-range Wi-Fi based woodchip 
MC sensing technology to overcome some limitations of the existing technologies. The 
proposed technology takes the advantages of IIoT devices (e.g., toughness, connectivity, 

Table 2 Regression for MC estimation using engineered features 

Method RMSE 
Mean Std. dev. 

ANN 0.51 0.3921 
KNNR 0.6573 0.5055 
GPR 1.9223 0.5714 
SVR(RBF) 2.0179 0.523 

 
(a) 

 
(b) 

Figure 3 Measured vs predicted MC by (a) ANN and (b) SVR(RBF) 
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low-cost, small-size, etc.), while overcoming their shortcomings (e.g., the machine 
learning challenges of messy big data) through SPA-based feature engineering. We 
investigate the use various classification and regression approaches for the estimation of 
20 different moisture levels. We demonstrate that with SPA-based features, all 
classification approaches studied in this work can successfully classify 20 different MC 
levels, some of which are separated by small margins. We also investigate the use of 
different regression approaches for continuous MC estimation. While SVR and GPR 
capture the trend of measured MC values but with relatively high RMSE’s, methods 
including ANN and KNNR predict the moisture levels accurately. The relationship 
between the CSI and woodchip MC is very complex, which requires further work to get 
a better understanding of this relationship for further improvement of this work. 
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Abstract 

In chemical toner manufacturing plants, equipment and raw materials are frequently 
changed to improve the toner quality and productivity. These changes require 
reconstruction of the prediction model, which plays a key role in the automatic quality 
control system, and cause downtime. To reduce the downtime, we developed an 
efficient modelling method based on transfer learning, which can build an accurate 
model from small-size data obtained just after the changes. By extending Frustratingly 
Easy Domain Adaptation, a new heterogeneous domain adaptation technique was 
proposed. In addition, gaussian process regression (GPR) was adopted with bagging to 
improve the robustness and accuracy of the model. The proposed method showed 
superior performance to partial least squares regression, random forest, and GPR. 
Finally, the proposed prediction method was applied to a toner mass-production plant; 
the prediction accuracy target was satisfied for all toner qualities. As a result, a 75% 
reduction in plant control person-hours of the toner quality manager was achieved.  

Keywords: Quality prediction, Transfer learning, Frustratingly  Easy Domain 
Adaptation, Gaussian Process Regression, Chemical Toner Production. 

1. Introduction 

In recent years, automatic quality control has been used for stabilizing chemical toner 
quality and determining efficient operating conditions in toner plants (Khorami et al., 
2017; Takahashi et al., 2020). In these plants, equipment and raw materials are often 
changed. As shown in Fig. 1, such a change alters the dimensions and distributions of 
input variables, makes it difficult to use existing prediction models, and makes it 
necessary to reconstruct the models. During the re-accumulation of training data, 
automatic quality control is forced to stop functioning, and manual quality control is 
required. This manual control requires many person-hours, therefore, it has been desired 
to construct an accurate prediction model using as short-term data as possible.  

A promising approach to solve this problem is to use transfer learning. We expanded 
Frustratingly Easy Domain Adaptation (FEDA), which is a simple homogeneous 
domain adaptation method, to cope with a heterogeneous domain adaptation (HDA) 
problem without complex parameter tuning. The proposed method is referred to as 
Frustratingly Easy Heterogeneous Domain Adaptation (FEHDA). Moreover, we utilized 
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a combination of Gaussian Process Regression (GPR) and bagging, a type of ensemble 
learning, for predicting the toner quality. 

2. Chemical toner manufacturing process 

The chemical toner manufacturing process treats one lot per day, and it takes seven days 
from raw material to final product, as shown in Fig. 2. The IoT-based manufacturing 
process data collection system handles several thousand variables (items), including raw 
material properties, equipment operation conditions, and toner quality, and stores data 
of several hundred lots or more. 

Before the introduction of automatic quality control, toner quality was controlled 
manually by the toner quality manager, who determined the optimum operating 
condition for lot N based on the quality measurements of the lots whose manufacturing 
was finished (lot N-2 and older). The manual quality control consumes many person-
hours and increases the risk of out-of-specification due to variations in toner quality. 

The automatic quality control system currently in operation consists of a quality 
prediction module that predicts future toner quality and an operating condition 
optimization module that determines the operation amount (Takahashi et al., 2020).  

  
Fig. 1. The influence of changes in equipment and raw materials. 

 
Fig. 2. Chemical toner manufacturing process and automatic quality control system 
(Takahashi et al., 2020). 
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 Manufacturing Process 

This automatic quality control is feed-forward inferential control, which simulates the 
manual operation, as shown in Fig. 2. However, as mentioned in the previous section, 
the change of equipment and raw materials requires the data re-accumulation of at least 
40 lots (days) so that the model reconstructed satisfies the accuracy target. 

3. Prediction using transfer learning 

3.1. Frustratingly Easy Heterogeneous Domain Adaptation 

FEDA is a method of transfer learning that is easy to implement with simple feature 
space expansion (Daumé III, 2007). Assuming that the input variables 𝒙(௦) in the source 
domain (hereinafter referred to as “SD”) and 𝒙(௧)  in the target domain (hereinafter 
referred to as “TD”) are K-dimensional, the input variables in both domains are 
expanded into 3K-dimensional features as follows: 
 

𝐷௦ = ൫𝒙(௦)，𝒙(௦)，0   ൯ 
𝐷௧ = ൫𝒙(௧)，0   ，𝒙(௧)൯ 

(1) 
(2) 

 

The expanded feature space consists of a space with features common to both domains, 
a space with features unique to SD, and a space with features unique to TD. Also, 0 =
(0, 0, 0, … . , 0) ∈ ℛ௄  in Eqs. (1) and (2) is the zero vector. 

In the manufacturing process, due to changes in equipment and raw materials, the 
configuration of the manufacturing equipment differs in both domains, which makes the 
location and number of installed sensors also different. Hence, when heterogeneous 
domain adaptation is required, FEDA cannot be used as it is. To make FEDA applicable 
to heterogeneous domain adaptation (HDA), heterogeneous feature augmentation 
(HFA) (Duan et al., 2012) was proposed. This method needs much computational time 
because to solve an optimization problem for finding the optimal latent space. 

We propose frustratingly easy heterogeneous domain adaption (FEHDA), which is a 
direct and simple extension of FEDA and applicable to HDA. The proposed method 
does not require solving the optimization problem. We divide input variables 𝒙(௦) ∈ ℛ௉ 
in SD into 𝒙௖

(௦) ∈ ℛ௄ that is common to SD and TD and 𝒙௨
(௦) ∈ ℛ௉ି௄ that is unique to 

SD. Similarly, input variables 𝒙(௧) ∈ ℛொ  in TD is divided into the common input 
variables 𝒙௖

(௧) ∈ ℛ௄ and the unique input variables 𝒙௨
(௧) ∈ ℛொି௄. As shown in Fig. 3, 

𝒙௖
(௦) and 𝒙௖

(௧) are expanded as in Eqs. (1) and (2), respectively, while 𝒙௨
(௦) and 𝒙௨

(௧) 
are placed in the space with unique features in each domain as follows: 
 

𝐷௦ = ൫𝒙௖
(௦)，𝒙௖

(௦)，𝒙௨
(௦)，  0     ，  0   ൯ 

𝐷௧ = ൫𝒙௖
(௧)，   0   ，  0     ，𝒙௖

(௧)，𝒙௨
(௧)൯ 

(3) 
(4) 

  

3.2. Prediction Model 

To build a prediction model, we propose a method that combines Gaussian process 
regression (GPR) and bagging. The input variables are the expanded ones in Eqs. (3) 
and (4). GPR can predict not only the expected values but also the standard deviations 
of output variables and provide the reliability of the prediction. Bagging is a form of 
ensemble learning that uses bootstrap sampling to construct many independent weak 
learners and then integrates the results of the weak learners into a prediction. 
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Kamishima et al. (2009) proposed TrBagg, which uses bagging for transfer learning. 
TrBagg builds weak learners using data sampled from SD and TD. The weak learners 
are adopted based on the classification errors for TD. The method may cause over-
fitting or require the separation of TD for validation. 

The chemical toner manufacturing process produces only one lot per day. To reduce the 
downtime of the automatic quality control system, the number of samples after each 
change, which are used for reconstructing the prediction model, needs to be limited. 
That means the number of TD lots must be small, i.e., about 10 lots. Since TrBagg does 
not work well in such a situation, we did not adopt it. In the proposed method, bagging 
is modified by selecting only weak learners with small standard deviations of the output 
variables when integrating the results of the weak learners. The weak learners with 
small standard deviations are expected to give a more reliable prediction because it is 
considered to use data with high similarity to the target lot preferentially. We use 
sequential updating of the prediction model for each lot. 

4. Comparison of prediction methods 

The proposed modeling method, i.e., GPR and bagging, was compared with the typical 
regression methods, partial least squares regression (PLSR), random forest (RF), and 
GPR in two cases: 1) change of coloring materials, representing material improvement, 
and 2) change of production scale, representing equipment improvement. FEHDA was 
used in both cases, and the two most important qualities were investigated. The 
dimensions of the input variables are shown in Table 1. 

In case 1, black and magenta 
toners, which were made from 
almost the same materials 
except for the coloring one, 
were targeted, regarding black 
toner as SD and magenta toner 
as TD. In case 2, the same 
color toner manufactured by 
equipment with different 
scales was targeted, regarding 
the large scale plant as SD and 
the small scale one as TD. 

The prediction accuracy was 
evaluated using Root Mean 
Squared Error (RMSE). In 

Table 1 

The dimensions of the input variables and the 
number of lots in two cases: 1) change of coloring 
materials and 2) change of production scale. 

 

 

 
Fig. 3. Feature space expansion in Frustratingly Easy Heterogeneous Domain 
Adaptation (FEHDA). 
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defining the target for the prediction accuracy, the following conditions were set; first, 
the center of the predicted distribution of the qualities is within 50% of the process 
specification width Δ, and second, the probability of out-of-specification is less than 
0.3% when the quality prediction value is at the upper or lower limit of the process 
specification width Δ. The variability was assumed to be normally distributed 
(Takahashi et al., 2020). Based on these conditions, the target value for prediction 
accuracy became 0.5∆≥6 RMSE, i.e., RMSE/Δ≤8.3[%]. 

Fig. 4 shows the evaluation results for the 11th to 110th lots in TD. The proposed 
method outperformed the other methods in both cases and also satisfied the prediction 
accuracy target. In particular, a more significant improvement was obtained in case 1. 
Fig. 5 shows the predicted and measured values for each lot of quality #1. It was 
confirmed that the predicted values followed the trend of the actual measured values, 
and there were no large errors in all lots. On the other hand, the improvement achieved 
by the proposed method in case 2 was smaller than that in case 1. This can be attributed 
to the large proportion of intrinsic variables that account for 45% of the input variables 
in each domain, which implies that SD contains less valid information for the transfer. 

5. Application to a mass-production plant 

The proposed method was applied to a mass-production plant in RICOH. There are 12 
quality items to be predicted, including particle size distribution, particle shape, and 
charging characteristics. The numbers of variables and lots are shown in Table 1. The 
proposed prediction method was compared with two different methods using only TD 
(hereinafter, referred to as Target) and using only common input variables in SD and 
TD (referred to as Common). In these two methods, we used random forest, which has 
been used in the existing automatic quality control (Takahashi et al., 2020). 

We conducted the prediction of the 12 qualities from the 11th lot to the 40th lot in TD. 
While Target and Common failed to achieve the prediction accuracy target for two and 
three quality items, respectively, the proposed method achieved the prediction accuracy 
target for all quality items. Besides, the proposed method outperformed Target and 
Common in all qualities. The prediction accuracy in RMSE of the proposed method was 
11.4% higher than Target on average, and particularly 17.4% for quality #10. Compared 
to Common, the average improvement was 15.4%, and the best was 25.4% in quality #4. 

Fig. 6 shows the predicted and measured values for each lot of quality #2. The predicted 
values of the proposed method follow the measured values better than those of Target 

             
Fig. 4. Comparison of RMSE’s of                 Fig. 5. Quality #1 prediction results                                                               
prediction methods.    of the proposed method for case 1. 

Transfer Learning for Quality Prediction in a Chemical Toner
 Manufacturing Process 
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and Common. In particular, the 
prediction errors in the initial stage 
for lots 18, 24, 25, and 26 are small. 
The prediction accuracy indices, i.e., 
RMSE/Δ, are 8.1% for the proposed 
method, 9.5% for Target, and 8.6% 
for Common, indicating that the 
proposed method satisfies the 
prediction target values for these 
small lots. 

The toner qualities predicted by the 
transfer learning were used in the 
automatic quality control system 

based on feed-forward inference control (Takahashi et al., 2020) described in Section 2. 
Before applying prediction by the transfer learning, 40 lots (days) of data had to be 
accumulated to achieve the required accuracy target. With the proposed method, the 
data accumulation was reduced to 10 lots (days), and the person-hours required for 
monitoring and control by quality managers immediately after a change in equipment or 
raw materials were reduced by 75%. 

6. Conclusions and future tasks 

We first proposed a new transfer learning method that can cope with heterogeneous 
domain adaptation, i.e., FEHDA, which is simple extension of FEDA. Second, we 
proposed a new prediction method that combines Gaussian process regression (GPR) 
and bagging. Finally, the proposed method was adopted in the automatic control system 
of RICOH’s chemical toner plant. The downtime of the automatic quality control 
system decreased from 40 lots (days) to 10 lots (days), and the person-hours required 
for manual quality control by toner quality managers have been reduced by 75%. 
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Abstract

Physical models are indispensable for the realization of digital twins, which are expected
to enhance process design, operation, and optimization. The conventional physical model
building relies entirely on experts and takes much time and effort. This arduousness has
hampered the widespread use of digital twins. To overcome the difficulty and enable
non-experts to build a practical physical model, we aim to develop an automated phys-
ical model builder, AutoPMoB. AutoPMoB conducts five tasks: 1) searching literature
databases for documents relating to a target process, 2) converting the format of each doc-
ument to HTML format, 3) extracting information required to build a physical model, 4)
judging whether the extracted information is equivalent in different documents to unify the
expressions, and 5) reorganizing the information to output a desired physical model. In the
present study, we proposed an architecture of AutoPMoB and developed its prototype. By
building a physical model of a continuous stirred-tank reactor, we have demonstrated that
the prototype can automatically build a model that meets all requirements. AutoPMoB is
expected to facilitate physical model building and foster the realization of digital twins.

Keywords: Artificial intelligence, First principle model, Process modeling, Natural
language processing, Information extraction

1. Introduction

A digital twin is a core technology for realizing a cyber-physical system and has attracted
much attention in recent years. It uses a model to reproduce the behavior of an actual
plant and explore and predict unknown phenomena (Wang, 2020). Physical models based
on the principles of chemistry, physics, and biology are applicable over a wide range of
conditions, while statistical models should not be used outside the range of training data.
In order to realize a digital twin, it is necessary to build an accurate physical model.

Conventionally, researchers and engineers with in-depth plant knowledge have surveyed
the literature and built a process model that meets their demands. There are multiple
pieces of literature to be investigated, and it is not easy to immediately find the equations
that the desired model requires. Furthermore, when the accuracy of the model is inade-
quate, researchers and engineers need to improve its accuracy by trial and error. Thus, the
conventional physical model building takes much toil.

To facilitate physical model building, we aim to develop an automated physical model
builder, AutoPMoB. AutoPMoB extracts information of variables, formulas, experimen-
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tal data, and prerequisites from documents and then integrates the information to build a
desired physical model. AutoPMoB frees the engineers from laborious tasks of physical
model building and provides access to information overlooked when manually processed.

In the present paper, we first propose an architecture of AutoPMoB and describe the fun-
damental technologies required for realizing it in section 2. We then develop a prototype of
AutoPMoB and apply it for building a physical model of a continuous stirred-tank reactor
(CSTR) in section 3.

2. Automated Physical Model Builder

AutoPMoB first retrieves documents concerning a target process from literature databases.
Next, AutoPMoB extracts information necessary to build a physical model. AutoPMoB
then unifies the notations so that the information with the same meaning is not written
differently. AutoPMoB finally integrates the information to build a physical model that
meets all requirements.

We can obtain the documents regarding the target process by using the existing search
engine. Here, it is assumed that such documents are collected in advance. This section
describes the fundamental technologies required for realizing AutoPMoB.

2.1. Document Format Conversion

The most widespread format of scientific digital documents is PDF. Extracting information
directly from documents in PDF format using computers is difficult because PDF is de-
signed for human viewing. On the other hand, documents in HTML format are relatively
easy to extract information from because the information is tagged. In order to extract
mathematical formulas, it is effective to represent the formulas in mathematical markup
language (MathML) format (Ausbrooks et al., 2014). MathML is a standard format of
web pages and is mainly used for information extraction and retrieval of mathematical ex-
pressions. Thus, AutoPMoB first converts the format of each document to HTML format.
Documents in PDF format can be converted to those in HTML format with high accuracy
using existing tools, such as InftyReader (Suzuki et al., 2003) and LATEXML (Miller, 2018).

2.2. Information Extraction

Various types of information are required to build physical models, such as variables,
formulas, experimental data, and prerequisites. The essential pieces of information are
variables and equations.

AutoPMoB must identify the variable definitions. All variable symbols can be extracted
based on their tags in MathML format, but the challenge is to extract the definition of
each symbol accurately. Some scientific documents have a table describing symbols and
corresponding definitions. For such documents, AutoPMoB can accurately extract the
definitions using noun phrases next to the symbols in the table. On the other hand, some
scientific documents do not have such a table, and AutoPMoB needs to extract variable
definitions from sentences. Although some studies (Schubotz et al., 2016, 2017) proposed
variable definition extraction methods, the accuracy of the existing methods is insufficient
for practical use. We have been currently developing a method to extract the variable
definitions accurately (Kato and Kano, 2020).
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2.3. Equivalence Judgment and Unification

AutoPMoB judges whether the variable definitions and equations extracted from different
documents are equivalent and unifies their expressions.

We can determine whether two noun phrases represent the same variable by calculating
their similarity and checking whether it exceeds a threshold. A language model trained
with a large corpus, such as BERT (Devlin et al., 2019), is known to achieve high per-
formance on natural language processing (NLP) tasks. The model’s performance varies
depending on the corpus used for training. For example, Beltagy et al. (2019) released
SciBERT, a BERT-based language model trained on a large corpus of scientific texts, and
achieved higher performance on a range of NLP tasks in the scientific domain than BERT.
To judge the equivalence of the variable definitions, a language model trained on a corpus
consisting of documents relating to physical models of processes would be useful.

In order to judge the equivalence of equations, it is necessary to consider the calculation
they perform. Existing computer algebra systems can judge the equivalence of two polyno-
mials; for example, in Wolfram Language, (x+1)2 and x2+2x+1 are judged equivalent
by expanding the former and then comparing the two polynomials (Wolfram Research,
2007). Physical models are mainly described by differential equations, algebraic equa-
tions, and partial differential equations. To our best knowledge, there has been no research
focusing on the equivalence of equation groups consisting of multiple equations. We have
been developing a method to judge the equivalence of two equation groups.

After judging the equivalence of variable definitions and equations, AutoPMoB unifies
their expressions.

2.4. Integration & Scoring

AutoPMoB builds model candidates by integrating the unified equations. The desired
model among the candidates varies depending on the purpose of model building. A user
of AutoPMoB gives input variables of the model, and then AutoPMoB builds models
whose numbers of degrees of freedom match the number of the input variables. Then,
AutoPMoB scores and ranks the models because it takes time and effort to determine
which one to choose when multiple models are built. The score is calculated based on the
information, such as the number of documents containing the equations in the model and
their citation information.

3. Case Study

3.1. Implementation

We developed a prototype of AutoPMoB using Streamlit, which is a Python library. Fig-
ure 1 shows a screenshot of the prototype. The prototype first takes HTML files as the
input, extracts variables and equations from the files, and displays them. In this prototype,
the variable definitions are extracted from a table in each file. A user selects variables
required for the model and input variables. The prototype builds all models satisfying the
requirements and shows them.
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3.2. Dataset

Based on the documents (Uppal et al., 1974; Marlin, 2000), we created two files, 01.html
and 02.html, including physical models of an ideal jacketed CSTR, where a first-order,
exothermic, irreversible reaction (A→B) takes place. The equations consisting the models
are as follows:

dCA

dt
=

F

V
(CA0 − CA) + rA (1)

dT

dt
=

F

V
(T0 − T ) +

hr

ρCp
rA − Q

V ρCp
(2)

−rA = k0 exp

(
− E

RT

)
CA (3)

Q =
aF b+1

c

Fc +

(
aF b

c

2ρcCpc

) (T − Tcin) (4)

Q = UA (T − Tc) (5)

where the nomenclature is shown in Table 1. The model in 01.html consists of Eqs. (1)–
(4), and the model in 02.html consists of Eqs. (1), (2) and (5).

3.3. Results & Discussion

Figure 1 shows the result when we selected five variables as the required ones and one
variable as the input variable. This prototype built an accurate model that met our require-
ments. However, the prototype has several limitations. To realize AutoPMoB, we need
to develop methods for 1) improving the accuracy of extracting variable definitions from
sentences, 2) accurately judging the equivalence of variable definitions, and 3) scoring and
ranking the models.

Table 1: Nomenclature.

Symbol Definition

A heat transfer area
Cp specific heat of the reacting meterial
Cpc specific heat of the coolant
CA reactor concentration of A
CA0 inlet concentration of A
E activation energy
F feed flow rate
Fc coolant flow rate
k0 reation rate constant
R universal gas constant
t time

Symbol Definition

T reactor temperature
Tc coolant temperature
Tcin inlet temperature of the coolant
T0 feed temperature
U heat transfer coefficient
V reactor volume
hr heat of reaction
ρ density of the reacting material
ρc density of the coolant
a parameter
b parameter
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Figure 1: Screenshot of a prototype of an automated physical model builder, AutoPMoB.

4. Conclusions

To facilitate physical model building, we proposed an architecture for an automated phys-
ical model builder, AutoPMoB. AutoPMoB retrieves documents regarding a target pro-
cess, extracts information such as variables and equations, and builds a physical model by
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integrating the information. Furthermore, we developed a prototype of AutoPMoB and
demonstrated its usefulness using documents on a CSTR. Although there remain some
challenges, the realization of AutoPMoB will eliminate the barriers to physical model
building and lead to the utilization of digital twins.
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Abstract 
We developed physics-informed neural networks (PINNs) to solve an isothermal fixed-
bed (IFB) model for catalytic CO2 methanation. The PINN is composed of a feed-forward 
artificial neural network (FF-ANN) with two inputs and physics-informed constraints for 
governing equations, boundary conditions, initial conditions, and nonlinear reaction 
kinetics. The forward PINN showed excellent extrapolation performance for the IFB 
model. The calculation speed of the PINN surrogate model is faster significantly than a 
stiff ODE numerical solver. These results suggest that forward PINNs can be used as a 
surrogate model for chemical reaction kinetics. 

Keywords: Catalytic CO2 methanation; Fixed-bed reactor; Reaction kinetics; System 
identification; Machine learning; Physics-informed neural network. 

1. Introduction 
CO2 methanation (Ngo et al., 2021) combining captured CO2 with H2 produced via water 
electrolysis (Kim et al., 2021) is an alternative to existing energy systems that could be 
integrated with renewable electricity sources. CO2 methanation technologies could 
considerably reduce carbon emissions by encouraging industrial symbiosis from 
industries with large CO2 footprints  such as thermal power plants (Kim et al., 2021). 
Because CH4 is easier to store and transport than H2 (Ngo et al., 2021), the synergistic 
integration of renewable electricity with a natural gas grid is expected via CO2 
methanation (Miguel et al., 2018). 
Despite of advances in first principles and empirical elucidations, artificial neural network 
(ANN) models in the category of data-driven models, black-box models, or surrogate 
models (SMs), have become an alternative functional mapping between input and output 
data because of their prompt predictions, automated knowledge extraction, and high 
inference accuracy (Abiodun et al., 2018, Gusmão et al., 2020). 
Recently, ANNs and conservation equations coupled with automatic differentiation (AD) 
that solve ordinary differential equations (ODEs) and partial differential equations 
(PDEs), called physics-informed neural networks (PINNs), have been reported (Raissi et 
al., 2019). Because PINNs are constrained to respect any symmetries, invariances, or first-
principle laws (Raissi et al., 2019), they present a potential for solving chemical 
engineering problems, which usually deal with complex geometries and physical 
phenomena. In contrast to common ANNs, PINNs do not depend on empirical data 
because the initial and boundary conditions are directly used to adjust the network 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50279-7 
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parameters such as weights and biases (Raissi et al., 2019). In addition, the extrapolation 
capability of PINNs is enhanced owing to physical constraints (Kim et al., 2020, Ngo and 
Lim, 2021). Nevertheless, there are few applications of PINNs in process modeling and 
chemical reactor design. 
In this study, forward PINNs coupled with AD were developed for the solution and 
parameter identification of a highly nonlinear reaction rate model for catalytic CO2 
methanation in an IFB reactor. The results obtained from the PINNs were compared with 
those obtained using a common numerical solver of ODEs (ode15s in MATLAB). The 
extrapolation capability was analyzed by narrowing the collocation training domain and 
detaching the collocation training domain from the boundary. It was deomonstrated that 
the forward PINN solved fixed-bed models with highly nonlinear chemical reaction 
kinetics. 

2. Isothermal fixed-bed reactor for CO2 methanation 
The single-tube IFB was assumed to be equipped with a heat exchanger that was able to 
transfer immediately the heat generated in the exothermic reactions to the coolant. The 
catalytic CO2 methanation reaction, known as the Sabatier reaction, is (Ngo et al., 2020, 
Ngo and Lim, 2021) 

𝐶𝐶𝑂𝑂2 + 4𝐻𝐻2 ⇄ 𝐶𝐶𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂, Δ𝐻𝐻𝑟𝑟298𝐾𝐾 = −165 kJ∙mol-1 (1) 

The operating conditions were set as a temperature (T) of 450 °C, a pressure (P) of 5 bar, 
and a volumetric flow rate (Q) of 10 Nm3/s. The pure gas reactants were fed to the inlet 
at a CO2/H2 molar ratio of 1/4. 
The mass balances for the ith species (i = CO2, H2, CH4, and H2O) participating in the CO2 
methanation reaction in Eq. (1) are formulated as follows: 

1
𝐴𝐴𝑡𝑡
𝑑𝑑𝐹𝐹𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜂𝜂𝜂𝜂𝑖𝑖𝑟𝑟 (2) 

where z (m) is the reactor tube axial position, 𝐹𝐹𝑖𝑖  (mol/s) is the molar flow rate of a species 
i at position z, 𝐴𝐴𝑡𝑡 (m2) is the tube cross-sectional area, 𝜈𝜈𝑖𝑖  is the stoichiometric coefficient 
of species i, and 𝑟𝑟 (mol/m3/s) is the volumetric reaction rate. 𝜂𝜂 is the effectiveness factor 
of the chemical reaction, which is defined as the volume-averaged reaction rate with 
diffusion within catalyst particles divided by the area-averaged reaction rate at the catalyst 
particle surface (Ngo et al., 2020). 
The boundary conditions for the molar flow rate (Fi) of the species at the inlet (𝑧𝑧 = 0) are 
as follows: 

𝐹𝐹𝑖𝑖|𝑧𝑧=0 = 𝑥𝑥𝑖𝑖,0𝐹𝐹0 (3) 

where 𝑥𝑥𝑖𝑖,0 and 𝐹𝐹0 (mol/s) are the inlet mole fraction of gas species 𝑖𝑖 and the total molar 
flow rate of the inlet gas mixture, respectivel. A reaction kinetics model proposed by 
(Koschany et al., 2016) for catalytic CO2 methanation, which was tested within a wide 
range of Ni contents and industrial operating conditions, was adopted in this study. 

𝑟𝑟 = ρ𝑐𝑐𝑐𝑐𝑐𝑐(1− 𝜀𝜀)𝑘𝑘 ∙
𝑝𝑝𝐻𝐻2
0.31𝑝𝑝𝐶𝐶𝑂𝑂2

0.16

1 + 𝐾𝐾𝑎𝑎𝑎𝑎
𝑝𝑝𝐻𝐻2𝑂𝑂
𝑝𝑝𝐻𝐻2
0.5  
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𝐾𝐾𝑒𝑒𝑒𝑒 = 137 ∙ 𝑇𝑇−3.998 exp�
158.7
𝑅𝑅𝑅𝑅 � (7) 

where 𝑅𝑅 (=8.314×10-3 kJ/mol/K) is the gas constant, 𝑇𝑇 (K) is the temperature, 𝑝𝑝𝑖𝑖 (bar) is 
the partial pressure of species 𝑖𝑖 , 𝑘𝑘  (𝑚𝑚𝑚𝑚𝑚𝑚/𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐/𝑠𝑠 ) is the reaction rate constant, 𝐾𝐾𝑎𝑎𝑎𝑎 
(1/bar0.5) is the adsorption constant, and 𝐾𝐾𝑒𝑒𝑒𝑒 is the thermodynamic equilibrium constant. 
The catalyst density (𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐) was set to 2300 × 103 𝑔𝑔𝑐𝑐𝑎𝑎𝑎𝑎/𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐

3  (Koschany et al., 2016). 

3. Forward PINN structure 
The architecture of the forward PINN problem is shown in Fig. 1. The objective of the 
forward PINN problem is to solve the given governing equation with initial, boundary, 
and operating conditions. The 30,000 collocation points were used to train the governing 
equations over the reactor length (0 < z ≤ L) except z = 0. The Dirichlet’s boundary 
conditions fixed the value of 𝐹𝐹𝑖𝑖,0 = [97.74  378.9  0  0] mol/s  at the reactor inlet (z = 0). 
The lower and upper bounds of 𝜂𝜂 were 0 and 1, respectively. 
The FF-ANN structure contained two inputs (𝑧𝑧 and 𝜂𝜂), four outputs (𝐹𝐹𝑖𝑖 ), five hidden 
layers, and 128 neurons for each layer. The activation function (fa) of hyperbolic tangent 
(tanh), was applied for each neuron. The weights (𝑤𝑤𝑗𝑗,𝑘𝑘) and biases (𝑏𝑏𝑗𝑗,𝑘𝑘) for the jth hidden 
layer and the kth neuron are adjusted to minimize the loss function (Loss). The AD for 
spatial derivatives ( 𝑑𝑑𝐹𝐹𝑖𝑖

𝑑𝑑𝑑𝑑
) was calculated via the reverse accumulation mode which 

propagates derivatives backward from a given output (Güneş Baydin et al., 2018). The 
governing equations as the physics-informed part of the ANN included the reaction 
kinetic rate (r) in Eq. (4), the four ODEs in Eqs. (2), and the boundary conditions. 
The optimized weights and biases (𝑤𝑤∗  and 𝑏𝑏∗ ) were obtained from the following 
optimization problem: 

{𝑤𝑤∗,𝑏𝑏∗} = argmin
𝑤𝑤 ,𝑏𝑏

�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑀𝑀𝑀𝑀𝐸𝐸𝑔𝑔(𝑤𝑤,𝑏𝑏) + 𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏(𝑤𝑤,𝑏𝑏)� (8) 
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𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏(𝑤𝑤, 𝑏𝑏) =
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 (10) 

where MSEg and MSEb are the mean squared errors for the governing equation and 
boundary condition, respectively. Ntrain, Ncomp, and Nbnd are the number of training data 
sets, species (or components), and boundary condition sampling points, respectively. The 
loss function (Loss) sums MSEg and MSEb. 
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Figure 1. Structure of the physics-informed neural network (PINN) forward problem for 
CO2 methanation in an isothermal fixed-bed (IFB) reactor. 
 
An Adam optimizer (Kingma and Lei Ba, 2015) was used to solve Eq. (8), which 
combines a stochastic gradient descent with adaptive momentum, because of its good 
convergence speed (Rao et al., 2020). A mini-batch size of 128, which had a minor effect 
on the PINN training results, was used. The number of training epochs was set to 1,000. 
In the FF-ANN, the biases (b) were initialized to zeros and the weights (w) were 
initialized by the commonly used heuristic called Xavier’s method (Xavier and Yoshua, 
2010).  

4. Results and discussion 
Fig. 2 shows the performance of the forward PINN for 30,000 training data points in a 
limited range of z and 1,000 test data points in a full range of z (0 ≤ z ≤ 2) while 𝜂𝜂 was 
fixed at 1. The collocation range of the training data starts from z = 0 and ends at z = 0.5 
(Fig. 2a) and 1.0 (Fig. 2b). Even though the PINN was trained within one-sixth (0 ≤ z ≤ 
0.5) of the full range, the PINN output (Fi,PINN) for the test data of the full range (0 ≤ z ≤ 
2) agrees well the ODE solution (Fi,ODE) outside the training range (Fig. 2a). 
Fig. 3 plots the performance of forward PINN for 30,000 training data points within the 
full range of 0 ≤ 𝑑𝑑 ≤ 2 and 0 ≤ 𝜂𝜂 ≤ 1. Fig. 3a and 3b show the interpolation for 𝜂𝜂 = 0.5 
and 1.0, respectively, whereas Fig. 3c demonstrats the extrapolation for 𝜂𝜂 = 1.5. With 
the extrapolation of 150% higher than the trained bound, the PINN captures 𝐹𝐹𝑖𝑖  with a 
prediction accuracy of 97.3%. 
The extrapolation capability of the PINN is remarkable, unlike that of common ANNs 
(Abiodun et al., 2018). The accuracy of the PINN solution is closely related to the range 
and distribution of the training data (Jagtap et al., 2020). The forward PINN model is 
appropriate for solving governing equations with complex geometries or moving 
boundary conditions (Sun et al., 2020). In addition, numerical diffusion and round-off 
errors are minimized in PINNs with the aid of AD. 
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Figure 2. Performance of the forward PINN for 10,000 training data points in a limited 
range of the reactor length (z) and 1,000 test data points in the full range of z and 𝜂𝜂 = 1. 

  
Figure 3. Performance of forward PINN for two inputs as 𝜂𝜂 and 𝑑𝑑. 
 

5. Conclusions 
The physics-informed neural network (PINN) was developed for an isothermal fixed-bed 
(IFB) reactor model for catalytic CO2 methanation. The PINN was composed of a feed-
forward artificial neural network (FF-ANN), automatic differentiation (AD) for 
derivatives, and governing equations with a stiff reaction kinetic rate. The loss function 
of the PINN included two mean squared errors (MSEs) for the governing equations and 
boundary conditions. The one-dimensional reactor was initialized at a molar flow rate 
that was the same as the boundary condition at the reactor inlet. 
The forward PINN model exhibited an excellent extrapolation performance because the 
PINN provided a solution satisfying physics-informed constraints. The current approach 
is useful for building a surrogate model for CO2 methanation process design and 
optimization. 
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Abstract 

In recent years, the just-in-time (JIT) predictive models have attracted considerable 

attention due to their ability to prevent degradation of prediction accuracy. However, 

one of their practical limitations is expensive computation, which becomes a major 

factor that prevents them from being used for big data quality prediction. This is 

because the JIT modeling methods need to update the local regression model using the 

relevant samples that are searched through the lineal scan of the database during online 

operation. To solve this issue, the present work proposes a novel hashing-based JIT 

(HbJIT) modeling method that is suitable for big data quality prediction. In HbJIT, a 

family of locality-sensitive hash functions is firstly used to hash big data into a set of 

buckets, in which similar samples are grouped on themselves. During online prediction, 

HbJIT looks up multiple buckets that have a high probability of containing similar 

samples of a query object through the intelligent probing scheme, uses the data objects 

in the buckets as the candidate set of the results, and then filters the candidate objects 

using a linear scan. After filtering, the most relevant samples are used to construct the 

local regression model to yield the prediction of the query object. By integrating the 

multi-probe hashing strategy into the JIT learning framework, HbJIT can not only deal 

with process nonlinearity and time-varying characteristics but also is applicable to 

large-scale industrial processes. Experimental results on real-world dataset have 

demonstrated that the proposed HbJIT is time-efficient in processing large-scale 

datasets, and greatly reduces the online prediction time without compromising on the 

prediction accuracy. 

Keywords: Virtual sensor, soft-sensor, big data quality prediction, hashing-based just-

in-time modeling. 

1. Introduction 

In the modern process industry, with the widespread utilization of distributed control 

systems and the Internet of Things, large amounts of process data have been collected. 

Data-driven soft-sensors are important tools in process industries for online prediction 

of some quality variables that generally cannot be automatically measured at all, or can 

only be measured sporadically, with high delay, or at high cost (Kadlec et al., 2009; 

Kano and Ogawa, 2010). In recent years, a wide variety of data-driven soft-sensors 

ranging from linear models to nonlinear models have been developed (Zhang et al., 

2019; Zhang et al., 2020).   

http://dx.doi.org/10.1016/B978-0-323-85159-6.50280-3 
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In practical applications, there is a challenging problem with soft-sensors, that is, the 

predictive performance of soft-sensors might deteriorate due to the time-varying 

characteristics of industrial processes. As reported in (Kano and Ogawa, 2010), model 

maintenance is thought to be one of the most important issues related to soft-sensors. A 

simple and effective solution to solve the problem of predictive model degradation is to 

use the just-in-time (JIT) learning methods. Since the JIT modeling methods have the 

advantages of handling process nonlinearity and time-varying characteristics, they have 

been extensively used in various fields (Liu et al., 2012; Jin et al., 2019). Despite the 

JIT methods have some successful applications, they suffer from the problem of high 

computational cost when used for big data quality prediction. The reason is that the JIT 

methods need to update the local regression model using the relevant samples that are 

searched through the lineal scan of the database during online operation. The calculation 

of relevant samples through the linear scan of the database is very time-consuming. 

However, the size of the data collected in the process industry is increasing vastly, and 

the process industry has entered the era of big data (Qin, 2014). Thus, it is important to 

design a new JIT modeling algorithm that is suitable for big data quality prediction. 

To solve this issue, the present work proposes a novel hashing-based JIT (HbJIT) 

modeling method that is suitable for big data quality prediction. HbJIT is designed 

based on the multi-probe hashing scheme, which first hashes big data into multiple 

buckets, in which similar samples are grouped on themselves. To perform a quality 

prediction, HbJIT looks up multiple buckets that have a high probability of containing 

the similar samples of a query object through the intelligent probing scheme, uses the 

data objects in the buckets as the candidate set of the results, and then filters the 

candidate objects using a linear scan. After filtering, the most relevant samples are used 

to construct the local regression model to yield the prediction of the query object. As a 

fast adaptive soft-sensor, HbJIT can not only deal with process nonlinearity and time-

varying characteristics but also is suitable for large-scale industrial processes. The 

effectiveness of the proposed HbJIT is evaluated on real-world large-scale dataset. The 

results demonstrate that HbJIT can significantly reduce the online prediction time 

without sacrificing much in terms of accuracy. 

The remainder of this paper is organized as follows. Section 2 gives a brief description 

of the JIT modeling method and Gaussian process regression. The proposed HbJIT 

modeling method is presented in Section 3. Section 4 provides the experimental results 

on real-world large-scale dataset. Conclusion is given in Section 5. 

2. Preliminaries 

2.1. Just-in-time (JIT) modelling method 

Generally, the prediction accuracy of soft-sensors may be degraded due to changes in 

process characteristics (Kano and Ogawa, 2010). The JIT modeling method can deal 

with changes in process characteristics as well as nonlinearity, and thus it can prevent 

degradation of prediction accuracy.  

Different from traditional soft-sensor which builds a global model of the process in an 

offline manner, the JIT modeling method constructs a query-driven local model. More 

specifically, given a historical dataset, the JIT modeling method consists of three steps: 

(1) When an output estimate is required for a new query, it searches for relevant 

samples to the query in the reference dataset based on some similarity measures. The 

most popular similarity measure is the Euclidean distance. (2) A local model is built 
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using the relevant samples. (3) An output estimate is produced by the constructed local 

model, and then the constructed local model is discarded. When the next query sample 

arrives, one needs to follow the same steps as above to build a new local model. 

2.2. Gaussian process regression (GPR) 

In JIT modeling, the local model should be built using some regression methods. In this 

work, GPR is adopted to construct the local regression model. Given a dataset  𝑆 =
{𝑿, 𝒚} = {(𝒙1, 𝑦1), ⋯ , (𝒙𝑁 , 𝑦𝑁)}, where 𝒙 ∈ ℝ𝑀 and 𝑦 ∈ ℝ denote any input-output pair. 

Let 𝑓(𝒙)  denote a latent function which maps input 𝒙  to output 𝑦 . 𝒇 =

(𝑓(𝒙1), 𝑓(𝒙2), ⋯ , 𝑓(𝒙𝑁)) represents the function values of the input vectors. In GPR, 

the function 𝑓(𝒙) is regarded as a random variable following a Gaussian process (GP) 

prior distribution (Williams and Rasmussen, 2006). A GP is defined in terms of a 

positive definite kernel (or covariance) function 𝑘(𝒙, 𝒙′) as follows 

𝑓(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) (1) 

𝑚(𝒙) = Ε[𝑓(𝒙)] (2) 

𝑘(𝒙, 𝒙′) = Ε[(𝑓(𝒙) − 𝑚(𝒙))(𝑓(𝒙′) − 𝑚(𝒙′))] (3) 

Generally, 𝑚(𝒙) is zero-mean. According to the principles of GP, the distribution of 𝒇 

follows the zero-mean Gaussian distributions with covariance matrix 𝑲 = (𝑘(𝒙𝑖 , 𝒙𝑗))
𝑖𝑗

: 

𝑝(𝒇|𝑿) = N(𝟎, 𝑲) (4) 

where 𝑘(𝒙𝑖 , 𝒙𝑗) denotes the (𝑖, 𝑗)-element of 𝑲. Given a query object 𝒙𝑞, the prediction 

of the function value 𝑓(𝒙𝑞) (denoted as 𝑓𝑞) is given by 

𝑓𝒒̅ = 𝒌𝑞[𝑲 + 𝛿𝝐
𝟐𝑰]−1𝒚 (5) 

where 𝑰 is an identity matrix and 𝛿𝝐
𝟐 is the variance of the Gaussian noise term. 

3. Hashing-based just-in-time (HbJIT) modeling method 

Notice that a major drawback of the JIT modeling methods is that a high computational 

cost is required in order to search for the relevant samples from the database to 

construct the local regression model, when a query object is provided. Especially, when 

the database provided is large scale, the computational cost of the JIT modeling will be 

very high, leading to a large delay in online quality prediction. However, the amount of 

data collected in the process industry is exploding, and the process industry has entered 

the era of big data. In such a scenario, if the JIT modeling method is used for big data 

quality prediction, the online prediction time will be very long. To handle the 

computational cost challenge of the JIT modeling methods, the present work proposes a 

novel hashing-based JIT (HbJIT) modeling method that is applicable to big data quality 

prediction. HbJIT is designed based on the multi-probe LSH scheme, which first uses 

the hashing functions to hash the big data into a set of buckets, in which similar samples 

are grouped on themselves. To perform a quality prediction, HbJIT looks up multiple 

buckets that have a high probability of containing the nearest neighbours of a query 
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object through the intelligent probing scheme, uses the data objects in the buckets as the 

candidate set of the results, and then filters the candidate objects using a linear scan. 

After filtering, the most relevant samples are used to construct the local GPR model to 

yield the prediction of the query object. Different from the conventional JIT modeling 

method which calculates similar samples to the query in linear time with respect to the 

data size, the proposed HbJIT calculates similar samples in sub-linear time, and 

significantly speeds up the online quality prediction. 

The proposed method is implemented in two steps. The first step is to construct the 

index data structure using the locality sensitive hashing (LSH) functions, and the second 

step is to construct the local GPR model based on the multi-probe scheme. More 

specifically, let 𝑺 be the historical database, and 𝐷 be the distance measure between two 

objects. A family of hash functions 𝑯 = {ℎ: 𝑺 → 𝑼} is called (𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive if 

the following conditions are satisfied for any two data objects 𝒙𝑝, 𝒙𝑞 ∈ 𝑺 (Datar et al., 

2004): 

𝑖𝑓 𝐷(𝒙𝑝, 𝒙𝑞) ≤ 𝑟, 𝑡ℎ𝑒𝑛 𝑃𝑟𝐻[ℎ(𝒙𝑞) = ℎ(𝒙𝑝)] ≥ 𝑝1 (6) 

𝑖𝑓 𝐷(𝒙𝑝, 𝒙𝑞) > 𝑐𝑟, 𝑡ℎ𝑒𝑛 𝑃𝑟𝐻[ℎ(𝒙𝑞) = ℎ(𝒙𝑝)] ≤ 𝑝2 (7) 

where 𝑐 > 1 is an approximation factor, 𝑝1, 𝑝2 ∈ (0,1)  represent two probability 

thresholds and satisfy 𝑝1 > 𝑝2. The characteristic of the LSH function is that similar 

objects have a higher probability of being hashed to the same bucket than distant ones. 

The family of LSH functions based on p-stable distributions is considered as follows 

ℎ(𝒙) = ⌊
𝒂𝑇𝒙 + 𝑏

𝑟
⌋ (8) 

where 𝒂 is a d-dimensional random vector whose entries are drawn independently from 

a p-stable distribution, 𝑏 is a real number drawn uniformly from the range  [0, 𝑟]. In 

practical applications, in order to construct the index data structure with high search 

precision, multiple hash tables need to be built, and each hash table contains multiple 

LSH functions. Let 𝐿  and 𝑀  denote the number of hash tables and LSH functions, 

respectively. A concatenation of 𝑀 LSH functions in a hash table can be represented as  

𝑔(𝒙𝑝) = (ℎ1(𝒙𝑝), ⋯ , ℎ𝑀(𝒙𝑝)) (9) 

For 𝐿 hash tables, we can construct 𝐿 independent copies of 𝑔1(𝒙), ⋯ , 𝑔𝐿(𝒙). During 

the stage of constructing the index data structure, each data object in the database is 

hashed into one of the hash buckets of 𝑔1(𝒙), ⋯ , 𝑔𝐿(𝒙) and stored.  

During the online prediction phase, when a query 𝒙𝑞 is coming, we need to find the 

most 𝑘 relevant samples of 𝒙𝑞, which is used for local GPR modeling. Generally, the 

basic LSH algorithm will compute 𝑔1(𝒙𝑞), ⋯ , 𝑔𝐿(𝒙𝑞), and search all these 𝐿 buckets to 

get a set of candidates. Then, this candidate set is pruned through the linear scan 

algorithm to obtain the most 𝑘 relevant samples of 𝒙𝑞. It is worth noting that in practical 

applicaitons, a large number of hash tables need to be built in order to obtain higher 

search precision. A large number of hash tables results in a memory footprint. When the 

space requirement of the hash tables exceeds the size of the main memory, disk I/O may 

X. Zhang et al. 
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be required to look up the hash bucket, which causes a large amount of delay in the 

query process. One of the solutions to solve this issue is to use a multi-probe scheme 

(Lv et al., 2007), which can significantly reduce the memory footprint of the LSH data 

structure. The intuition of multiprobe LSH is that it probes multiple buckets in each 

hash table instead of building many different hash tables. This is realized by using an 

intelligently generated probing sequence which probes multiple buckets that are likely 

to contain the nearest neighbours of the query object in each hash table. According to 

the characteristics of LSH, if a data object is close to 𝒙𝑞, but is not hashed into the same 

bucket as 𝒙𝑞 , then it is likely to be in a nearby bucket. Based on this principle, 

multiprobe LSH defines a probeing sequence (∆1, ∆2, ⋯ ∆𝐽) where ∆1= (𝛿𝑚, ⋯ , 𝛿𝑀) is 

a hash perturbation vector with 𝛿𝑚 ∈ {−1,0,1}, 𝑚 = 1, ⋯ , 𝑀, and 𝑗 = 1, ⋯ , 𝐽. Given 𝒙𝑞, 

the basic LSH probes the hash bucket 𝑔𝑙(𝒙𝑞), while multiprobe LSH probes not only 

the bucket 𝑔𝑙(𝒙𝑞) but also the buckets 𝑔𝑙(𝒙𝑞) + ∆1,⋯ , 𝑔𝑙(𝒙𝑞) + ∆𝐽. These buckets are 

ordered according to the score of the perturbation vector, which is defined as 

𝑠𝑐𝑜𝑟𝑒(∆𝑗) = ∑ 𝑥𝑚(𝛿𝑚)2

𝑀

𝑚=1

 (10) 

where 𝑥𝑚(𝛿𝑚) denotes the distance from 𝒙𝑞 to the bundary of the bucket ℎ𝑚(𝒙𝑞) + 𝛿𝑚. 

For the perturbation vectors that have smaller scores, they will have higher probability 

of yielding data objects near to the query object 𝒙𝑞.  

4. Case studies 

This section describes the experimental results of the proposed HbJIT-GPR method on a 

large-scale real-world blast furnace ironmaking dataset, and compared it against the 

GPR and JIT-GPR(brute) methods. JIT-GPR(brute) denotes the brute-force linear scan that is 

used to select similar samples. The experimental results are evaluated from two aspects: 

prediction accuracy and speed. The prediction accuracy is measured in terms of the root 

mean squared error (RMSE) criterion. The prediction speed is measure by the online 

prediction time.  

The experiments were carried out in the blast furnace ironmaking process, which is a 

typical nonlinear time-varying process (Geerdes et al., 2020). It is difficult to accurately 

control the blast furnace to produce hot metal with consistent quality, because the harsh 

operating circumstances prevent the inside chemical heat from being directly detected. 

silicon content of hot metal is an important index indicating the chemical heat of molten 

iron. To carry on a steady operation of the blast furnace and produce hot metal with 

consistent quality, it is important to predict silicon content in real time. 

To construct the prediction model, the collected dataset is randomly separated into a 

training dataset (80k samples), a validation dataset (10k samples) and a test dataset (10k 

samples). The dataset contains 110 process variables. The key parameters of the 

proposed HbJIT-GPR are selected using the grid search method in terms of the RMSE 

criterion on the validation set. Table 1 summarizes the prediction accuracy and 

prediction time for the silicon content by all methods on the testing dataset. GPR 

obtained the worst prediction accuracy although the online prediction time is the 

shortest. Compared with GPR, JIT-GPR(brute) has higher prediction accuracy and longer 

online prediction time. In comparison, the proposed HbJIT-GPR achieved the similar 
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prediction accuracy as JIT-GPR(brute), but provided shorter online prediction time. As a 

result, the prediction accuracy couple with the reduction in online prediction time 

clearly demonstrated the success of the proposed HbJIT-GPR in handling large-scale 

dataset.  

Table 1. Prediction results for the silicon content on the testing dataset. 

Methods RMSE Time (ms) 

GPR 0.0211 121 

JIT-GPR(brute) 0.0126 460 

HbJIT-GPR 0.0127 350 

5. Conclusions 

In this paper, a novel hashing-based JIT (HbJIT) modeling method was proposed for big 

data quality prediction. HbJIT is a fast adaptive soft-sensor that can not only deal with 

process nonlinearity and time-varying characteristics but also be applicable to large-

scale industrial processes. The usefulness of the proposed method was verified through 

an industrial blast furnace ironmaking process. The experimental results show that the 

proposed method can reduce the online prediction time by a huge amount without 

sacrificing much in terms of accuracy. 
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Abstract 
With the advancement of digitization of industrial manufacturing, there has been  an  
increase in the application of machine learning methods to model these processes. These 

data-driven models are multivariate in nature and on occasion may  not  deliver the 
accuracy that can be obtained from first-principle models. The statistical a pproach in  
data-driven models is completely data-dependent and may give erroneous or undesired  

results due to noisy and incomplete database. Though accurate, first-princip le m odels 
are often slow to simulate and lack the ability to predict data in real-time (Chen et  a l., 
2020). Thus, to obtain real-time process predictions with accuracy similar to first-

principle models, there is a need to develop data -driven models with first principle-
based process constraints within their framework. In this study, several experimental 

datasets for twin-screw granulators (TSG) were considered. The data f or 13  d if feren t 
TSGs was collected from previously published studies. The collected data wa s sorted 
for process parameters, material properties and geometric conditions of the study. An  

autoencoder neural network was developed to model these processes. The output f rom 
this model not only predicted the data well but also showed granule growth 
characteristics with the output properties obeying first-principle la ws. The encoding 

section of the neural network helped find correlated inputs creat ing a  reduced order 
model and captured information about the underlying physics of the process. 

Keywords: Physics constrained neural network; autoencoders; twin screw granulat ion; 

Physics informed neural networks; PINN; PCNN 

1. Introduction 
Wet granulation is the process of agglomeration of fine powder into larger granules by  

adding a liquid binder. These granules help achieve desired quality attributes which can 
aid in improved flow, better dissolution rates, and better compression characterist ics 
(Iveson et al., 2001). Wet granulation find application in various powder p rocessing 

industries like mineral processing, agricultural products, detergents, food, and 
pharmaceuticals. It is an important unit operation in downstream oral dosage 

manufacturing in the pharmaceutical industry to more uniform distribution and 
dissolution characteristics. Previously wet granulation has been performed in  a  ba tch 
manufacturing scenario where, powder was mixed using an impeller and a liquid binder 

was sprayed using a liquid binder. This high-shear granulation can produce less 
compressible granules and operate in a very narrow range (Kumar et al., 2013). These 
challenges were overcome by converting this batch process to continuous 

manufacturing process. 
Twin-screw granulation (TSG) is a widely used continuous wet gra nulation p rocess. 

This equipment consists of a barrel which contain 2 co-rotating screws a long parallel 
axes helping in the transfer of material along its length (Seem et al., 2015). These 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50281-5 
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screws are made up of smaller several screw elements which can help alter the f low of 
the material along the axis and can aid the mixing, breakage a nd o ther m echanisms 
which can affect the CQAs of the final granules. TSG can also support higher 

production volume compared to a batch granulator. TSGs have a la rger design  space 
due to the large number of independent operating parameters. Th is resu lts in  a  la rge 
design of experiments which needs to be performed for optimization of the p rocess to  

obtain the desired granule critical quality attributes (CQAs). Performing large number 
of experiments in early-stage process development when large amounts of active 

pharmaceutical ingredient (API) may not be available. Thus, there is a need for 
development of generalized models that can predict the outcome of the TSG. This 
model would need to be trained on a large data set of experiments which incorporates 

the effects of various independent operating parameters on the final granule CQAs a nd 
process outputs.  
Neural networks with their dense structure have proven to be able to capture 

complicated relationships between inputs and outputs accurately. These neural networks 
can also be used to create reduce order models for faster prediction of these processes. 

Recently, to improve the prediction of neural networks for more complex physical 
processes, physical information about the process has been a dded to  supplement  it s 
training (Mao et al., 2020; Raissi et al., 2019). Other studies have focused on 

constraining outputs of the neural networks with physics-based  boundaries to  m ake 
better informed models which, have the ability to accurately predict process 
outcomes(Zhu et al., 2019). These physics-based boundaries when incorporated into the 

loss these neural networks, help the model learn the underlying physics of the p rocess 
leading to accurate predictions and more reliability under uncertain process condit ions 

(Sampat and Ramachandran, 2021). These physics-based boundaries can be a dded to  
both the representation loss as well as the supervised loss, which leads to the addition of 
an extra loss function to the training. They have also resulted in neural networks 

requiring less data to train, which is especially useful with TSGs as this would  reduce 
the amount of experimental data required. 
In this work, a physics-constrained autoencoder (PCSAE) network wa s developed to  

create a reduced order model to represent a complete TSG process. Experimental data 
from 13 previously published literature was collected for various operat ing p rocess 

parameters, process outputs and granule CQAs. The boundary  condit ions f or ea ch  
output were determined and were added the loss function o f  the developed PCSAE 
network. Sensitivity analysis was also performed on the PCSAE to determine whether it  

was able to capture the physical information about the process. 

2. Methods 

2.1. Data collection and completion methods 
Twin-screw granulators with a wide design space have a large number of process 

parameters and geometry which can be varied. These variations when combined with  
changes in formulation can lead to an almost infinite combinations which can make the 

development of a general model for TSG very complicated. To incorporate a ll these 
effects a detailed data collection is required. In this study, data was co llected f rom 9  
different previously published experiments encompassing changes in formulation, 

process parameters and geometry(Dhenge et al., 2013, 2012; Kumar et al., 2016; Meier 
et al., 2017; Meng et al., 2019; Mundozah et al., 2020; Shirazian et al., 2017; 
Vercruysse et al., 2012). A total of 227 data points were collected for the creation of the 

model. Granule growth within a granulation process can be inferred from the p rocess 



Physics-Constrained Autoencoder Neural Network for the Prediction

 a Twin-Screw Granulation Process   of Key Granule Properties in

outcomes and critical quality attributes (CQAs) of the granules obtained. Some of the 
process  outcomes of the TSG process commonly studied are residence time distribution 
(RTD),  mixing, torque inside the system, while granule size distribution (GSD) and 

granule  density / porosity are the commonly studied granule quality attributes (Seem et  
al., 2015).  Table 1 lists all the input parameters and outputs collected from each of the 
sources to develop the PCSAE model for a TSG process. In some literature, outputs had 

been reported in figures and each figure was processed individually for relevant  data. 
The data from each plot was extracted using WebPlotDigitizer (Rohatgi, 2021). The 

data was split in the ratio of 3:1 for training and validation.  

Table 1: Inputs and output monitored for the development of the PCSAE model 

Input Parameters Output Parameters 

Geometry Process  Material  

Number of CE and KE 

(nCE,nKE) 
Staggering angle (SA) 
of KE 

L/D Ratio 
Granulator diameter 
Liquid addition position 

L/S ratio 

Screw Speed 
Feed Rate 
Temperature 

Initial PSD 

Binder viscosity  
% API in powder 

Granule size distribution  

Torque 
Mean Residence Time 

 

In this study, a multivariate linear regression was used since the torque and MRT values 
for a TSG are dependent on several inputs instead of only a single input. The regression  

model (𝒀 = 𝐵𝑿+ 𝑋𝑖) was trained using the sklearn (Pedregosa et al., 2011) package in  
Python. The regression model used the existing data for torque and MRT for t rain ing.  

Here, 𝒀 is the response matrix of size 𝑛 ×  𝑝 , 𝑿 is the matrix containing all p red icto rs 

with size of 𝑛 × (𝑞 + 1). 𝑩 is a  (𝑞 + 1) × 𝑝 matrix of fixed parameters, 𝑋𝑖 is the 

intercept matrix of size 𝑛 ×  𝑝. Here 𝑛 represents the number of observations, 𝑞 are the 
number of inputs or predictors and 𝑝 represents the number of responses o r ou tputs. 
This model is often referred to as deterministic regression imputation.  Such an 

imputation can add a bias to the predictions. To remove such biases, uncertainty can be 
added back to these models.  

2.2. Development of Physics-constrained supervised auto-encoders (PCSAE) 

An auto-encoder (AE) is a neural network which output are the same as the inputs a nd 
during its training for reconstruction, they can extract underlying attributes which  can 
enable accurate predictions (Le et al., 2018). Single-layer AEs with  linea r a ct ivat ion  

functions are equivalent to principal component analysis, moreover non -linear a uto-
encoders have found to extract key attributes (Vincent et al., 2010). A supervised au to-

encoder (SAE) is an AE with the addition of a supervised loss on  the representation 
layer. A single linear layer SAE would perform like a partial least square method. The 
addition of a supervise loss to the AE better directs the representation learning. 

The PCSAE model for this study was developed in Python v3.7.6 using Keras(Chollet  
et al., 2015). Keras is a wrapper used for machine learning package Tensorflow (Martin  
Abadi et al., 2015) developed by Google. The network had 12 input nodes which  were  

divided into three separate groups as shown in Table 1. This helped create the 3 
different reduced dimensional bottleneck layers representing each of the group 

individually. This bottleneck layer was then used for both reconstruction of the inputs as 
well as training the outputs with the physical constraints. The output physical 
constraints were obtained using physics-based boundaries. Maximum value boundaries 
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for the median granule diameter and torque were determined using an empirical 
correlation and peak shear rate respectively, while a m in imum boundary  value wa s 
determined for the mean residence time (MRT). The minimum value wa s based on a  

screw configuration consisting only of conveying elements, which  a re known to a id  
conveying of material with little to no back-mixing. No physical constraints were 
introduced for the reconstruction. Figure 1 contains a schematic detailing the PCSAE 

model used. A single encoding layer with four nodes was used for the three ind iv idual 
inputs layers, a single decoding layer was used for reconstruction with eight nodes. Four 
layers were used for prediction of the outputs of the TSG with four nodes in each layer. 

All layers used the ‘tanh’ activation function. The ‘Adam’ optimizer was used for 
optimization of the PCSAE with a learning rate of 0.008. 

 

3. Results 
3.1. Performance of the PCSAE  
The total loss for the system was calculated as the summation of the reconstruction loss, 

training loss and the error due to the physical boundary constraints. These losses help  
aid the training of the system and prevent over-fitting of the m odel. For the PCSAE 

trained model no over-fitting was observed. The coefficient of determinat ion (𝑅2) f o r 
prediction and reconstruction of outputs and inputs were 0.64 and 0 .86 respect ively . 

These values indicate that PCSAE was accurate to reconstruct the inputs to the model 
while the prediction of the outputs may not always be accurate. Figure 2(a) represents a  
parity plot for the predicted values of the outputs v/s the actual experimental values and 

it can be observed that some of the points are away from the 𝑥 = 𝑦  line, indicating low 
accuracy. Figure 2(b) illustrates the parity plot for the reconstruction of the inputs and  

with an even spread across the 𝑥 = 𝑦 line. The accuracy for the output prediction can be  

Figure 2: Parity plots for (a) Output prediction (b) reconstruction. 

Figure 1: Physics-constrained supervised auto-encoder (PCSAE) model 
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improved in several ways including a deeper 
neural network for regression of the outputs, 
optimizing the hyperparameters of the neural 

network, improving the boundaries 
conditions.  

3.2. Sensitivity analysis of PCSAE 

To understand the effect of individual inpu ts 
on the outputs it is necessary to study their 

effects on the individual reduced dimension 
nodes. These nodes in-turn used to predict the 
outputs as well as reconstruct the inputs. It  is 

vital for a model to capture the physics of the 
system well such that it considers the ef fect  
of each input. In this study, a Sobol 

sensitivity analysis was performed by varying 
the inputs across the range of values found in  

the literature. This sensitivity was compared 
against a supervised autoencoder without 
physical boundary constraints, and it was 

found that the PCSAE’s sensitivity captured 
more physical information about the process 
than the non-physics constrained 

autoencoder. Figure 3 shows the sensit ivity  
of the inputs on the reduced dimensions 

nodes. The effect of L/S ratio and RPM 
seems to the highest from the process 
parameters, while the contribution of 

different material properties seems to be 
almost equal, and the effect of staggering 
angle is the most prominent from the 

geometry parameters. These effects have 
been studied in literature and are in close 

accordance with the observed results. The 
effects of the inputs in the normal 
autoencoder system were observed to be 

skewed and did not align with physical 
observations. 

4. Conclusions 
Twin-screw granulation is a complicated 

process with an infinite number of 
combinations possible for its operation. With  

the help of developed physics-constrained 
autoencoder model, we were able to 
incorporate all the effects into a single model. 

This robust modelling framework is required could reduce the number of dimensions of  
the inputs to 3 segregated latent spaces for better process understanding. This 
framework which has been trained on several experimental datasets was able to capture 

the underlying physics of the system with accuracy of ~65%. The m odel wa s ab le to  

Figure 3: Sensitivity analysis of each input 

on the reduced dimension layer. The blue 

bars represent direct effects while the red 

bars indicate the total effect of the inputs. 

Physics-Constrained Autoencoder Neural Network for the Prediction

 a Twin-Screw Granulation Process   of Key Granule Properties in
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identify key inputs affecting the outputs which may not be captured using a  regu lar 
autoencoder. The overall performance of the model can further be increased by 
optimizing the neural network structure and including more datasets with larger 

variations in the inputs. This model can further be used to reduce experimentation by  
supplementing the design of experiments. Prediction of the latent spaces could be used  
to assess the granule growth regimes and identify experiments which would yield 

desired granule CQAs resulting in material and cost saving. This framework could also  
be adapted to different unit operations with changes in boundary conditions for desired  

outputs for better cost saving during process development. 
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Abstract 
In this paper we have applied the use of the deep reinforcement learning (DRL) for 
process control, to explore its applicability. The main objective is to develop a controller 
based on the deep reinforcement learning methodology in order to keep the level and 
composition of a continuous stirred-tank reactor under control. 

Keywords: Deep Reinforcement learning; process control. 

1. Introduction 
The Oil&Gas and the process industry use mostly decentralized PID control and in some 
units Model Predictive Control. Both are mature technologies and well established in 
industry practices. But still, many PIDs are badly tuned and the costs of developing a 
model based predictive control are high. This classic control is difficult to implement and 
requires a lot of resources in complex processes that are not easy to model. 

Today, machine learning has had a new outburst and specifically reinforcement learning. 
The use of neural networks with reinforcement learning, in what is called deep 
reinforcement learning has shown astounding results in some domains, such as games, 
(where the machine called AlphaGo created by DeepMind defeated the world champion 
of the game Go), self-driving cars, medicine o process control. 

This paper is focused in the last one, specifically for the case of a continuous stirred-tank 
reactor with the aim of improving its classical process control, since this could have 
implications, such as replacing existing process control technology, mitigating the 
limitations of Model Predictive Control or helping to manage controller settings. 

The structure of this paper has two distinct parts: the first one presents a brief explanation 
of the deep reinforcement learning methodology and its application in process control 
(section 2), and the second one shows the case study in which the work has been carried 
out, with the corresponding results and conclusions obtained (sections 3 to 5). 

2. Reinforcement Learning and Deep Reinforcement Learning 
Reinforcement learning is one of the three methodologies, together with supervised 
learning and unsupervised learning, that make up Machine Learning (Bishop, 2006). 
Unlike the other two, reinforcement learning does not use a set of labelled data, but rather 
the agent learns a task by interacting with the surrounding environment and evaluating 
the actions performed (Sutton and Barto, 2018). Schematically, the process carried out in 
reinforcement learning is illustrated in Fig 1. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50282-7 
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Fig. 1. Reinforcement Learning loop 

The figure represents a cycle between the agent and the environment that starts with the 
observation of an action at time instant t, performed by the agent on the environment. 
This produces a series of changes at future instants (t+1) for both the reward and the new 
state of the environment, so that the cycle would continue with a new action by the agent 
(At+1). 

The aim of all this is for the agent to be able to learn the relationship between the actions 
executed and the states obtained, known as policy π (At=a | St = s), and to maximise the 
long-term value of the rewards according to the value function vπ(s): 

𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝐸𝐸{𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 + 𝛾𝛾2𝑅𝑅𝑡𝑡+3 … |𝑆𝑆𝑡𝑡 = 𝑠𝑠}    (1) 

The parameter γ ϵ [0, 1], denoted as discount factor, determines the behaviour of vπ(s) by 
prioritising long-term rewards. 

Through this value function, the algorithms update their parameters iteratively with the 
intention of improving the policy associated with this function. In such a way that if the 
agent performs good actions, so that its policy is good and improves, it means that the 
values of the associated function will be greater at each iteration. 

It is therefore conceivable that this function may reach a maximum value when the 
resulting policy is optimal. Optimal Control Theory supports this premise by means of 
Bellman's equation: 

𝑣𝑣∗(𝑠𝑠) = ∑ 𝑝𝑝(𝑠𝑠′, 𝑟𝑟 |𝑠𝑠, 𝑎𝑎) [𝑟𝑟 +  𝛾𝛾𝑣𝑣∗(𝑠𝑠′)]𝑠𝑠′,𝑟𝑟𝑎𝑎
𝑚𝑚𝑚𝑚𝑚𝑚     (2) 

Here the term v* refers to the optimal policy value function, and p(s’, r |s, a) is the 
transition probability. This factor indicates the probability that the environment 
transitions to a new state s’ and offers a reward r, when the environment is in the previous 
state s and the action a has been executed. 

Once the optimal value function is known, the associated optimal policy π∗( s ) can be 
found using the transition model (Shin, J. et al., 2019). The learning procedure is based 
on the Actor-Critic methodology, whereby according to the existing policy, an action is 
chosen to be performed on the environment (Actor), and subsequently evaluated, based 
on the reward issued by the environment (Critic). After this evaluation, the parameters 
governing the Actor policy are readjusted for immediate future actions. 

This process can be used with neural networks (deep reinforcement learning, DRL) to 
eliminate the need to store all state and value pairs and allow the agent to estimate state 
values using an approximation function. Within DRL there are numerous algorithms that 
differ mainly in their architecture to optimise the Actor policy. Examples are: Proximal 
Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Soft-Actor 
Critic (SAC) or Twin Delayed DDPG (TD3). 
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2.1. Twin Delayed DDPG: TD3 algorithm 

The TD3 algorithm is a model-free, online, off-policy reinforcement learning method, in 
which the agent follows the Actor-Critic methodology to achieve an optimal policy that 
maximizes the value of the expected cumulative long-term reward (MathWorks, 2021). 

As the name indicates, TD3 is an extension of the DDPG algorithm. This approach 
assumes that, for environments with continuous action spaces, the Bellman optimisation 
function with which the policy is learned is differentiable with respect to the action 
argument. Therefore, a gradient-based learning rule is established for a policy µ(s) that 
exploits this fact (Spinning Up, 2021). 

Since this estimation of the value function can imply an erroneous learning by the agent, 
the TD3 algorithm aims to solve this by means of three adjustments: (1) learning two 
Critic ("twin") functions to form the targets in the Bellman error loss functions, (2) 
updating the Actor parameters less frequently than Critic ("delayed") and (3) adding noise 
to the action chosen by Actor with the intention of preventing the policy from exploiting 
errors made in the value function estimates. 

2.2. Deep Reinforcement Learning for process control 

The control of industrial processes is a rather complex task, largely due to the non-
linearity of the processes and the fact that in many cases there is more than one control 
loop. This has motivated the development of new control techniques that adapt more 
efficiently to the process in question (Robayo, F., et al., 2015). 

The use of neural networks stands out among these techniques because they are non-linear 
models that can represent systems based only on the input and output data of the system, 
and they are highly adaptive by adjusting their parameters to changing operating 
conditions (Morcego, B., 2000). 

This technique has been applied in cases such as the gasoline blending process (Yu, W., 
et al., 2004) where the use of recurrent neural networks is proposed to model the process, 
without the need to know the equations that define it, the system of interconnected tanks 
(Robayo, F., et al., 2015) where a neural controller based on an inverse model is 
developed or the case of a predictive controller based on neural networks for the control 
of the water level in a steam generator (Parlos, A., 2001). 

The main objective pursued with the application of deep reinforcement learning in 
process control is to ensure that the value of a desired variable is the one established by 
its set point, while at the same time complying with the constraints of the process. 

It is important to emphasize that the action space to be performed by the agent is 
continuous, rather than discrete, as in other areas where reinforcement learning has been 
successful. 

In this framework, the agent represents the controller and the environment represents the 
process, so that the interaction between the agent and the environment is achieved through 
the actions (control actions) that the agent performs depending on the state of the 
environment it receives. In addition, the reward system is added to evaluate the quality of 
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the chosen action, according to the variation that the state of the environment has 
undergone (Spielberg, S.P.K., et al., 2017). 

3. Case study 
This section presents the continuous stirred-tank reactor (CSTR) unit that has been 
controlled using the TD3 algorithm. 

In this reactor, the first order reaction (A  B) takes place isothermally, while it receives 
the input of two flows with different concentrations of reactant, and the product is 
obtained by gravity. 

This work focuses on the control of two variables: the level of content inside the reactor 
and the concentration of the product. Moreover, it is intended to be able to work with 
different setpoints defined for each variable. 

3.1. Implementation of the process 

An agent has been designed to be responsible for performing two simultaneous actions 
on two other variables of the process, which have a direct impact on the variables to be 
controlled. These manipulated variables are the opening of the valve located in one of the 
inlet flows and the reactor temperature. 

The environment, which as shown in Fig.1 is the other major player in the reinforcement 
learning loop, has been defined following the correct mass balance of the CSTR. The state 
of this environment, which contains the information that the agent receives from it, is 
defined by the variables that define each change of state: the instantaneous measurements 
of the variables to be controlled (level and product concentration), the absolute errors 
made in each control variable with respect to their setpoints, and the integrals and 
derivatives of these errors. 

The most important hyperparameters of the reinforcement learning algorithm used by the 
agent in this work are shown in the following Table 1. 

Table 1. Hyperparametros del agente para la unidad CSTR 
Hyperparameter Value Note 
Batch size n  64  
Replay memory size 106 Older transitions are replaced 
Policy and Critic learning rate 3·10-4 Step size for ADAM 
Policy hidden layers 2 1st: 400 neurons; 2nd: 200 neurons 
Critic hidden layers 2 1st: 800 neurons; 2nd: 400 neurons 
Hidden activation function Relu  
Output activation function Tanh Only for policy 
Loss function MSE  
Target update rate (τ) 0.003  
Discount factor (γ) 0.99  
Exploration noise 0.2 Ornstein-Uhlenbeck process 
Warm-up time 1,000 Timesteps until training starts 
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4. Simulation results 
The resulting learning curve after application or the algorithm is shown in Fig.2 This 
curve represents the evolution of the reward values obtained throughout the episodes used 
to simulate the TD3 algorithm. 

 
Fig. 2. Learning curve 

The curve has been obtained for a simulation of 20,000 episodes. It starts with low reward 
values, as expected, and then grows progressively to high reward values as the episodes 
progress. It should be note that once a maximum reward value has been obtained, the 
learning curve declines from episode 10,000 onwards, which can be justified by a process 
of exploration by the agent seeking other possible solutions since the rewards already 
obtained do not continue to improve. This explanation is plausible because in episode 
12,500, the curve is back on track and grows until it reaches the maximum values already 
obtained. 

To complete the analysis of the learning curve, the TD3 algorithm is validated. This 
algorithm has been trained by achieving different set points for each control variable that 
are randomly generated episode after episode. 

The Fig.3 show the response of the agent when the set point for each control variable is 
specified. In addition, the evolution of the reactant inside the CSTR is represented. 

It can be seen that the evolution over time of the variables to be controlled is quite 
satisfactory, as the agent manages to achieve the objective of maintaining the control 
variables at their set points, when these are quite far apart. 

 
Fig. 3. Validation of the TD3 algorithm. 
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5. Conclusions and further work 
The application of the TD3 algorithm to control the level and composition of a continuous 
stirred-tank reactor has generated favourable results, although the learning process is 
complex due to the difficulty of creating a multivariable and adaptive controller to be 
applicable to several set points. To solve this, the research will continue with the 
application of other deep reinforcement learning algorithms and configurations. 

In addition, this work aims to give an advance with respect to PID controllers, since in 
this case the controller aims to cover a range of defined set points, without the need to be 
retuned. Furthermore, it has been shown that the reward function is important to obtain 
different results and it requires further work because a single function to achieve the 
control of two variables may be the cause of the learning problem, and it could be 
improved with the possibility of using two controllers (agents), so that each agent is in 
charge of controlling a single variable, with its corresponding reward function. 
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Abstract 

Within the Industry 4.0 context, platforms such as cyber-physical production system 

(CPPS) offer numerous opportunities for smart energy management in manufacturing. In 

this study, we demonstrate the application of big data and machine learning (ML) to foster 

such practices for real manufacturing environments by taking the Model Factory (MF) in 

Singapore as a testbed. We first used supervised learning algorithms to predict machine-

specific load profiles via energy disaggregation at the MF shop floor. Here, the light 

gradient boosting machines had the best predictive performance with a mean absolute 

error and root mean squared error of 0.035 and 0.106 (units in Watts). We then coupled 

unsupervised learning with mathematical optimization to devise an optimal energy 

scheduling plan for facility management at the MF. When applied for day-ahead 

scheduling, the data-driven optimizer showed cost benefits of 14% in comparison to the 

current existing conditions. The study successfully demonstrated the application of big data 

and ML in the drive towards smart manufacturing practices. 

Keywords: smart manufacturing, energy disaggregation, light gradient boost, k-mean 

clustering, data-driven optimization 

1. Introduction 

The emergence of the fourth industrial revolution in recent years, commonly referred to as 

Industry 4.0 has challenged and disrupted conventional manufacturing norms. Platforms 

such as cyber physical production systems (CPPS) and technologies such as Internet of 

Things (IoT), Artificial Intelligence (AI), digital twins etc. within the Industry 4.0 

framework, are transforming global manufacturing practices (Suvarna et al., 2021; Tao et 

al., 2018). The growing popularity of these technologies have sparked an interest on their 

potential application to reduce the energy consumption of manufacturing industries.  

The energy consumed in a typical manufacturing setting could stem from the power 

required by machines in the shop floor, process equipment, office buildings and facility 

management. Some of the common strategies employed to minimize the energy 

consumption in manufacturing include lean management principles (six-sigma) for 

machine performances, optimization of production planning and scheduling, and eluding 

power peaks during prolonged production (Suvarna et al., 2020; Tan et al., 2021). While 

recent works have proposed conceptual means to apply CPPS and AI for the above 

mentioned, there is dearth in literature on application of these technologies to real-world 

case studies. To this aim, we show how data-driven analytics, can be applied to real-world 

manufacturing practices via two case studies, 1) machine learning based energy 

disaggregation of individual machines in a shop floor, and 2) day-ahead energy scheduling 

via data-driven optimization. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50283-9 
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Methodology 

1.1. Machine specific energy disaggregation 

The Model Factory (MF) at the Singapore Institute of Manufacturing Technology 

(SIMTech) which is an actual production environment was used as a test bed for this study 

(Tan et al., 2021). Four machines from the MF, namely, laser welder (LW), laser trimmer 

(LT), oven 1 and oven 2 were selected. For each of the machines, the following 

information were logged: timestamp, individual electrical load profile (Watts) and 

operational states (1 = off, 2 = production and 3 = idle) at frequency of 1 minute for a 

duration of 15 months spanning from October 2017 to December 2018. This resulted in the 

extraction of 600,000 data points an ideal representation of industrial big data (IBD). 

 

The primary objective was to disaggregate the central power supply to the machine-specific 

load-profiles. As such, the total load was defined as the input feature whereas the 

individual load profiles for each of the four machines were defined as the target labels (Tan 

et al., 2021). Tree-based supervised algorithms including extreme gradient boost 

(XGBoost), light gradient boosting machines (LightGBM), and deep learning algorithms 

including ensemble regular and bidirectional long short-term memory (EnLSTM) and 

(EnBLSTM) were evaluated for their predictive performance for the task. 

 

During the modelling process, the entire data was first split into training and test data with 

temporal specifications. The 12-month period from Oct 2017 - Sept 2018 was labelled as 

training set while the last 3 months from Oct - Dec 2018 was labelled as the test set. The 

training data was subjected to hyperparameter tuning to find the optimum combination of 

hyperparameters for the various algorithms evaluated, using the Bayesian optimization 

strategy followed by k-fold cross validation (where k = 3). Once the best hyperparameters 

were identified on the training set, they were also used on the test data for each of the 

algorithms. The best performing algorithm was identified based on the terms of lowest 

MAE and RMSE scores on the test dataset. These are calculated as described in equations 

(1) and (2). 

 𝑀𝐴𝐸 =
1

𝑛
∑ (𝑛

𝑖=1 𝑦𝑎𝑐𝑡,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)    (1) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑎𝑐𝑡,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)2𝑛

𝑖=1

𝑛
        (2) 

where, 𝑦𝑎𝑐𝑡,𝑖  𝑎𝑛𝑑 𝑦𝑝𝑟𝑒𝑑,𝑖 are the actual and predicted values of the target variables and n is 

the total number of data points. 

1.2. Day-ahead energy scheduling via data-driven optimization  

Currently the MF sources all its energy requirements for the operations (shop floor and 

facility management) from the central power grid. To this cause, we proposed the 

implementation of a hypothetical hybrid grid – comprising of solar panels and waste to 

energy (WTE) plant, in addition to the central power grid. For this case study, we focused 

only on the energy consumption of the refrigeration system, which is part of the technical 

building services in the MF. The energy consumed by the refrigeration system 𝐸𝑐𝑜𝑚 , 

subjected to uncertainty in ambient temperature was modelled as:   

𝐸𝑐𝑜𝑚 = 𝑚̇𝑐𝑜𝑚(ℎ𝑐𝑜𝑚,𝑑𝑖𝑠𝑐 − ℎ𝑐𝑜𝑚,𝑠𝑢𝑐𝑡)/𝜂𝑐𝑜𝑚,𝑚𝑒𝑐     (3)  

 

where, 𝑚̇𝑐𝑜𝑚 is the mass flow rate of the working fluid (kg/s),  ℎ𝑐𝑜𝑚,𝑑𝑖𝑠𝑐 is the specific 

enthalpy of the discharge fluid (J/kg), ℎ𝑐𝑜𝑚,𝑠𝑢𝑐𝑡 is the specific enthalpy of the suction fluid 

(J/kg), 𝜂𝑐𝑜𝑚,𝑚𝑒𝑐  is the mechanical efficiency of the compressor (-). 

The energy consumption of the refrigeration system is simulated with the operating 

conditions presented in Table 1 as per (ASHRAE, 2020). The 𝑇𝑎𝑚𝑏  is obtained from the 

scenario generation method (discussed below). 
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Table 1. Relevant operational data for refrigeration system 

Parameters Values 

Working fluid R123 

Degree of superheat 27.8°C  

Degree of subcooling 0°C 

Saturated temperature of evaporator 7.2°C  

Mechanical efficiency of the compressor 85% 

Cooling capacity 40 kW 

Compressor speed 50 Hz 

 

The hybrid grid proposed in this study is subjected to uncertainty on both the supply and 

demand side. At the demand side, it has to meet the energy requirements by the 

refrigeration system which is significantly influenced by ambient temperature. On the 

supply side, it is subjected to the solar power availability (which is a function of the solar 

irradiance) and constantly changing price of the main power grid. Thus, the operation of 

the hybrid grid (comprising of solar panels, WTE and central grid) was formulated as a 

stochastic optimization for day-ahead energy scheduling; with the objective to minimize 

the total operating cost given as:  

min ∑ (𝐶𝑆
𝑡𝑁𝑇

𝑡=1 𝐸𝑆
𝑡,𝑠 + 𝐶𝑊𝑇𝐸

𝑡  𝐸𝑊𝑇𝐸
𝑡 + 𝐶𝑀

𝑡,𝑠 𝐸𝑀
𝑡  )   (4) 

 

The optimization problem is devised to ensure that the energy delivered by the hybrid grid 

should satisfy the energy requirements to the air refrigeration system at all times. This 

constraint is formulated as follows: 

  𝐸𝐷𝑡,𝑠 ≤ ∑ 𝐸𝑆
𝑡,𝑠 + 𝐸𝑊𝑇𝐸

𝑡 +  𝐸𝑀
𝑡  

𝐸

𝑒
    (5) 

The formulation also ensures that the amount of energy delivered by each energy sources 

should be always between the lower and upper bounds of the designed capacity of the 

energy sources. This constraint is formulated as follows: 

  𝐸𝑆,𝑚𝑖𝑛
𝑡 ≤  𝐸𝑆

𝑡,𝑠  ≤  𝐸𝑆,𝑚𝑎𝑥
𝑡       (6) 

  𝐸𝑊𝑇𝐸,𝑚𝑖𝑛
𝑡 ≤  𝐸𝑊𝑇𝐸

𝑡  ≤  𝐸𝑊𝑇𝐸,𝑚𝑎𝑥
𝑡    (7) 

  𝐸𝑀,𝑚𝑖𝑛
𝑡 ≤  𝐸𝑀

𝑡  ≤  𝐸𝑀,𝑚𝑎𝑥
𝑡       (8) 

 

where, NT is the total number of time slots in the horizon, t is the time period, s denotes 

stochastic parameters, e ϵ E denotes energy sources, 𝐶𝑆
𝑡 and  𝐸𝑆

𝑡,𝑠
is the cost associated and 

energy availability from solar at time period t, 𝐶𝑊𝑇𝐸 
𝑡  and 𝐸𝑊𝑇𝐸

𝑡  is the cost associated and 

energy availability WTE at time period t, 𝐶𝑀
𝑡,𝑠

 and 𝐸𝑀
𝑡   is the cost associated and energy 

availability from power grid at time period t, 𝐸𝐷𝑡,𝑠 is the energy demand by the 

refrigeration system at time period t, 𝐸𝑒,𝑚𝑖𝑛
𝑡  is the lower bound/capacity of the eth energy 

source and 𝐸𝑒,𝑚𝑎𝑥
𝑡  is the upper bound/capacity of the eth energy source. 

 

The decision variables are the energy contribution from solar (𝐸𝑆
𝑡,𝑠), WTE (𝐸𝑊𝑇𝐸

𝑡 ) and the 

power grid (𝐸𝑀
𝑡 ) respectively, while all the other variables in the problem formulation 

described from equations (1)-(8) are the given parameters.  

  

Conventional mathematical optimization approaches assume that the uncertainty 

set/scenarios are perfectly given a priori, which is then modelled via probability 

distribution function (PDF) or user defined uncertainty via sample average approximations 

or Monte Carlo simulation (Ning and You, 2019). In contrast, we use a data-driven 

approach in the form of unsupervised learning to create the scenarios. The application of 

unsupervised learning on big data for variable of interest (on which the scenarios are 

created), presents benefits such as reduced scenarios with greater confidence, thereby 
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resulting in enhanced optimization performance and faster computation (Ning and You, 

2019; Tao et al., 2018). Thus, in this study, the hourly historical data (2015-2018) of solar 

radiance, ambient temperature and electricity pricing was sourced from relevant weather 

and electricity board in Singapore. The details of this historical data in the form of upper 

and lower bounds is presented in Table 2.  

Table 2. The upper and lower bounds for relevant parameters in the stochastic optimization which 

determines the range uncertainty values 

Parameters Bounds Solar WTE Mains 

Price ($/kWh) 
Lower 0.00 0.05 0.07 

Upper 0.07 0.11 0.11 

Hourly energy 

availability (kWh) 

Lower 0.00 0.00 0.00 

Upper 3.64 3.98 6.81 

 

This data was then subjected to K-means clustering to create the scenarios. K-means 

partitions an N-dimensional population into 𝑘 sets on a basis of a sample (Mehar et al., 

2013). It is an unsupervised classification method to solve problems when no labels are 

available. In the dataset 𝑫 = {𝑥𝑡}𝑡=1
𝑛 , the number of clusters is 𝐾, the natural goal is to seek 

a partition of the dataset 𝐷1 ∪ … ∪ 𝐷𝐾 , as well an associated set of cluster centroids 𝝁 =
(𝜇1, … , 𝜇𝐾), such that the sum of Euclidian distances between features and each centroid is 

as small as possible. Initial 𝝁 are randomly selected. While finding the global minimum of 

distance, there are two related steps: (1). Minimize the distance with respect to regulating 

the partitioned dataset 𝐷𝐾  for fixed centroid 𝜇𝐾; (2). Minimize the distance with respect to 

regulating the centroid 𝜇𝐾  for fixed partitioned dataset 𝐷𝐾 . The K-means algorithm is 

optimized by alternating between these two steps until converges. Eventually, all points in 

the dataset locate around one of the 𝐾 cluster centroids that achieve stable state. When 

centroids do not change, clusters are fixed, which means 𝐾 scenarios are produced. Each 

probability of corresponding scene is the percentage of the number of labels in this cluster 

among the total count of labels in the dataset  
 

The stochastic optimization was solved using the CPLEX solver. Its performance was 

compared with a base case analysis i.e., the actual energy consumed by the refrigeration 

system on 5th of September 2019. The base case is the actual working condition of the 

refrigeration system, and it uses only the central power grid as the current available energy 

source.  

2. Results 

2.1. Energy Disaggregation 

In the energy disaggregation studies, it was observed that the tree-based algorithms 

(LightGBM and XGB) had lower MAE while the deep learning algorithms (EnLSTM and 

EnBLSTM) had lower RMSE to the tree-based counterparts. However, the performance of 

all the models were very comparable and the prediction accuracies were in close 

proximities to each other. Given the ease in tuning tree-based models, and the combined 

model balance in terms of MAE and RMSE, it was revealed that performance of order was 

LightGBM > EnBLSTM > XGBoost. Here it is worth a mention that, in the case of 

structured datasets as used in this study, tree-based models have very comparable 

performances to that of deep learning algorithms as they can fit the hyperparameters to the 

input features, which is a natural extension to their workflow. Moreover, both LightGBM 

and XGB are ensemble tree models and as such sum the predictions of many decision trees 

into a final one and thus closely compete to deep learning algorithms where the latter also 

use a multitude of neurons for their prediction performance. The average predictive 

performance of all the algorithms for the 4 machines is shown in Table 3. The actual (Act) 

v/s predicted (Pred) plot of energy disaggregation for LW and LT is show in Figure 1.  
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Table 3. Comparative evaluation of algorithms for energy disaggregation study 

Ranking  Algorithm 
MAE 

(Watts) 
Algorithm 

RMSE  

(Watts) 

1 LightGBM 0.035 EnBLSTM 0.100 

2 XGBoost 0.036 EnLSTM 0.103 

3 EnBLSTM 0.039 LightGBM 0.106 

4 EnLSTM 0.041 XGBoost 0.106 

 

 

Figure 1. Actual v/s predicted plots of energy disaggregation for LW and LT for the best performing 

LightGBM model. Sourced with permission from (Tan et al., 2021) 

2.2. Data-driven stochastic optimization for day-ahead energy scheduling 

The energy demand for day ahead scheduling under uncertainty was first compared with 

the base case, where it was seen that the MAE and RMSE of energy demands between the 

two was 0.25 and 0.27 kWh respectively. With an average energy demand throughout the 

day between 6.5 and 6.8 kWh, the energy demand projected by the day-ahead scheduling 

deviated from the base case by approximately 4%.  

 

On subjecting the day-ahead energy demand to stochastic optimization, it was identified 

that that the hybrid grid suitably met the demand by optimally distributing the three energy 

sources with the objective to minimize daily operating cost.  Specifically, it was observed 

that the solar panel contributed significantly to the hybrid grid during the morning and 

afternoon hours, i.e., almost 100% of its available energy to meet energy demand thereby 

minimizing the overall cost. On the other end, the early morning and the late-night hours 

were purely met by the optimal combination of WTE, and power mains based on their 

hourly cost distribution. In addition to the distribution of the individual energy sources in 

the hybrid grid, its performance was also compared to the base case condition for cost 

saving evaluation. Here it was realized that the actual energy consumed by the refrigeration 

system using power mains only for the entire day operation was 14.18 SGD. In contrast, 

the overall cost incurred by the hybrid grid inclusive of all the uncertainties was found to 

be 12.41 SGD, concluding that adopting a hybrid grid could potentially lead to cost savings 

by 14% with day-ahead energy scheduling even under uncertainty. The comparative results 

of the base case and stochastic optimized model (hybrid grid) along with potential cost 

savings are shown in Figure 2. The data-driven optimization presented in this study 
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essentially captures significant uncertainty in the data, as it is trained on big data (hourly 

interval data for 3 years) – which also make the optimization more reliable. 

One observed aspect in the creation of the uncertainty set via the k-means clustering 

algorithm was\s the variation of the uncertainty set on repeated implementation. This is due 

to the randomized component in k-means clustering. Although the results obtained from 

the k-means clustering varied in every iteration, the expected value of the uncertainty sets 

over every iteration remained the same. Hence, the final energy schedule resulting from the 

optimization problem did get affected by the random initialization in k-means clustering 

and gave consistently similar distribution mix and cost savings. 

 

Figure 2. A) Comparative evaluation of the base case energy consumed with respect to hybrid grid B) 

14% savings in terms of cost is observed with data-driven optimization under uncertainty  

3. Conclusion  

In this study, we first used various supervised algorithms to disaggregate the central load of 

the MF to four individual machines in the shop floor, where the LightGBM was found to 

be the most accurate in terms of the predictive as well generalization ability – as it was 

trained on a big data. In another case study, we showcased the application of unsupervised 

learning for creating scenarios essential to solve stochastic optimization. The approach is 

effective as was observed from the fact that this data-driven optimization resulted in cost 

savings of 14% for day-ahead energy scheduling for facility management. Both the 

approaches are purely data-driven and cross deployable in any manufacturing setting 

provided is availability of historical data in the plant. 
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Abstract 

Surrogate modeling has been increasingly used to predict the behavior of a given 

system as an alternative to complex formulations that often lead to time consuming 

solutions and convergence issues. Surrogates are addressed herein to replace complex 

formulations for reactor systems within optimization problems. An adaptive sampling 

algorithm explores the solution space by iteratively building surrogates. Latin 

Hypercube Sampling is used for the experimental design (input data), and a first 

principles reaction formulation calculates the output data. Then, discrete least-squares 

regression minimizes the deviation between the surrogate response and the function 

being approximated. An optimization problem based on a reaction system is formulated, 

in which complex first principles equations are successfully replaced by the surrogates. 

The results indicate highly accurate predictions and near optimal solutions. Therefore, 

the surrogates can replace the rigorous model without significant loss in the solution 

quality and objective function. This methodology can potentially provide several 

benefits and improvements for real-time applications and for integrated optimization 

environments, in which the use of complex or rigorous models is not suitable. 
 

Keywords: Surrogate modeling, adaptive sampling, optimization, data-driven, machine 

learning. 

1. Introduction 

Commercial tools for rigorous simulation have been widely used to provide highly 

accurate solutions for industrial problems. However, they are typically not suitable for 

large-scale optimization applications due to the expensive computational burden and 

convergence issues arising from their rigorous high-fidelity formulation. An alternative 

to overcome these mathematical and computational challenges derived from a detailed 

and complex modeling is the use of surrogate models. Several benefits have been 

reported in the use of surrogates in multiple applications, and the interest in developing 

reduced-size formulations for industrial applications has recently increased. Surrogates 

are built using data generated from the original model or any reliable source, and 

several aspects are important when designing a surrogate building strategy. First, there 

is a trade-off between model accuracy and computational tractability. In general, 

surrogates should be as accurate as possible given the availability of time and effort for 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50284-0 
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their application (Mencarelli et al., 2020). Second, their functional form should be 

selected considering the problem characteristics, availability of data, and dimensionality 

(Hüllen et al., 2019). Third, the design of experiments is chosen to generate the samples 

needed to train the surrogates (Simpson, 2001). Fourth, a performance method is 

selected to measure the fit from the surrogate to the data set (Alizadeh et al., 2020).  

Previous literature on the topic has shown significant benefits in the use of surrogates in 

optimization problems that involve complex models and the use of rigorous simulation 

tools (Yang et al., 2016; Franzoi et al., 2020; Franzoi et al., 2021). In this work, we are 

particularly interested in building simple surrogate models for replacing complex first 

principles equations from reaction systems. The surrogate functions are required to have 

high accuracy to achieve high-quality predictions and to lead to near optimum solutions, 

while providing simplified formulations that are faster to solve and easier to converge.  

The contribution of this work relies on the implementation of an adaptive sampling 

framework that iteratively builds accurate and small in size surrogates for reaction 

systems. Each iteration consists of bounds tightening, sampling selection, surrogate 

building, system optimization with surrogates, and system simulation with rigorous 

model. Latin Hypercube Sampling (LHS) (McKay, 1979) is used for experimental 

design with data generated from a rigorous formulation. The surrogates are 

multivariable second-order polynomial functions and include constant, linear, and 

bilinear terms. Discrete least squares regression minimizes the deviations between the 

surrogate response and the function being approximated. The proposed methodology 

can introduce useful applications in further embedding the simplified (yet accurate) 

reaction formulation into further optimization decision-making environments (e.g., 

scheduling, control), which can be extended to other processes and applications as well. 

This paper is structured as follows. In Section 2 we present the problem statement and 

the mathematical formulation. In Section 3 we introduce the surrogate model building 

framework. The case study and the respective results are presented and discussed in 

Section 4. Finally, we highlight the main findings of this work in Section 5. 

2. Problem statement 

The case study chosen to illustrate the surrogate model methodology is proposed by 

(Williams and Otto, 1960). The Williams-Otto plant is considered at steady state 

operation and it is illustrated in Figure 1. The problem is formulated using the unit-

operation-port-state-superstructure (UOPSS) formulation (Kelly, 2005), in which the 

mass balance consistency is ensured throughout the process.  

 

Figure 1: Williams-Otto plant flowsheet. 



Adaptive least-squares surrogate modeling for reaction systems 

Although small in size, this problem is highly nonlinear due to the complex reaction 

system and the reflux rate that typically imposes convergence issues in the optimization. 

Hence, the system is very sensitive, and inaccurate formulations often lead to 

infeasibilities, which provides a good case study for testing and tuning surrogate model 

building strategies. 

Two feed streams and a recycle stream enter the continuous stirred tank reactor, in 

which there are three exothermic reactions, with an Arrhenius temperature dependence. 

Eqs.(1) to (6) calculate the outlet flows of each individual component. 

In the above, Wr is the reactor total mass content, f1, f2, f3 are the frequency factors, 

E1, E2,  E3 are the activation energies, and Xrreactor are the mass fractions of each 

component inside the reactor. The reaction optimization problem maximizes the profit 

from revenue with products P and E by subtracting feedstock costs and treatment cost of 

by-product G in Eq.(7). Additional details of the problem and its mathematical 

formulation can be found in previous works (Chaudhary et al., 2009). 

A mixed-integer quadratic programming (MIQP) technique determines optimizable 

surrogates to correlate variations of independent X variables to dependent Y variables. 

Seven input variables (reactor temperature, flow, and five inlet compositions) and six 

output variables (reactor outlet compositions) are used. We choose the form of each 

equation to account for linear, bilinear, and quadratic coefficients, as shown in Eq.(8), in 

which DV and IV are the sets for the dependent and independent variables, respectively. 

Yi = ai + ∑ bij

j ∈ IV

Xj + ∑ ∑ cijk

k ∈ IV

XjXk

j ∈ IV

 ∀  i ∈ DV, 

∀  j ≤ k  
(8) 

The coefficients ai, bij and cijk are the parameters to be estimated within the surrogate 

model building strategy that minimizes the least squares error in Eq.(9), where yip and 

Yip are the real and the estimated value for the dependent variable i at point p. 

FA
reactor,out =  FA

reactor,in − Wrf1e
−(

E1
TR

)
XrA

reactorXrB
reactor (1) 

FB
reactor,out =  FB

reactor,in − Wrf1e
−(

E1
TR

)
XrA

reactorXrB
reactor + Wrf2e

−(
E2
TR

)
XrB

reactorXrC
reactor (2) 

FC
reactor,out =  FC

reactor,in + 2Wrf1e
−(

E1
TR

)
XrA

reactorXrB
reactor − 2Wrf2e

−(
E2
TR

)
XrB

reactorXrC
reactor

+ Wrf3e
−(

E3
TR

)
XrC

reactorXrP
reactor 

(3) 

FE
reactor,out =  FE

reactor,in + 2Wrf2e
−(

E2
TR

)
XrB

reactorXrC
reactor (4) 

FG
reactor,out =  FG

reactor,in + 1.5Wrf3e
−(

E3
TR

)
XrC

reactorXrP
reactor (5) 

FP
reactor,out =  FP

reactor,in + Wrf2e
−(

E2
TR

)
XrP

reactorXrE
reactor − 0.5Wrf3e

−(
E3
TR

)
XrC

reactorXrP
reactor (6) 

Max Z =   8400 (0.6614 Fp + 0.0150 Fe − 0.0441 Fa − 0.0661 Fb − 0.0220 Fg) (7) 

Minimize ∑(yip

n

p=1

− Yip )2 (9) 
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The model is subject to Eqs.(10) to (13), that limit the values of the coefficients in the 

surrogates, where M is a large enough number, z0, zj, and zjk are auxiliary binary 

variables, and K is the maximum number of coefficients. 

3. Surrogate model building: an adaptive sampling algorithm 

Three decisions should be made upon designing the surrogate model building strategy, 

which concern the surrogate functional form, data generation, and quality of fit. To keep 

the model simple, we choose to build the surrogate as second-order polynomial 

functions, which have been often used due to their robust performance and 

computational efficiency (Yang et al., 2016). The LHS technique randomly samples 

points for the input variables (building the independent X data set); then, a first 

principles model calculates the output variables for each point to build the dependent 

(Y) data set. Lastly, least squares regression is employed within an MIQP formulation 

using Eqs.(9) to (13) to find the optimal coefficients that form the surrogate. 

Building global surrogates for the entire solution space may introduce difficulties due to 

the wide search space in the optimization, which potentially leads to convergence 

issues. Therefore, an adaptive sampling framework is used to build locally accurate 

surrogates within their respective trust regions in an iterative fashion. Our algorithm 

selects the sampling bounds for each independent variable, and one surrogate is built for 

each dependent variable at each iteration, until a convergence criterion is met. 

The algorithm is implemented in Python 3 using Microsoft Visual Studio 2019 in the 

industrial modeling and programming language (IMPL) platform. The optimizations are 

carried out by CPLEX 12.10.0, and the non-linearities are handled by a sequential linear 

programming strategy. The machine used was an Intel Core i7 with 2.90 GHz and 16 

GB RAM. The following steps explain how the algorithm works. 

1) Generate data set: Data are generated by sampling points for the input variables using 
LHS and evaluating each point using the rigorous model to calculate the output variables. 

2) Update sampling survey: At each iteration, the sampling survey is updated around the 
incumbent optimal values of each variable. For that, a parameter δ is introduced, so that 
the sampling survey of an independent variable Xr is defined as (Xropt − δ) ≤ Xr ≤
(Xropt + δ). We initially set δ = 0.10, which is updated upon some shrinkage criteria. 

3) Build surrogate model: The surrogate model comprises a group of six surrogate 
functions, one for each output variable. These functions are obtained through MIQP 
optimizations to identify their optimal coefficients. 

4) Solve optimization problem using the Surrogate Model (SM): The surrogates are 
embedded in the reaction optimization problem, which is solved to local optimality. 

 

−Mz0 ≤ ai ≤ Mz0                  ∀  i ∈ DV (10) 

−Mzj ≤ bij ≤ Mzj                  ∀  j ∈ IV, i ∈ DV (11) 

−Mzjk ≤ cijk ≤ Mzjk                  ∀  {(j, k) ∈ IV, j ≤ k}, i ∈ DV (12) 

z0 + ∑ zj

j ∈ IV

 + ∑ zjk

j ∈ IV,k ∈ IV,j≤k 

 ≤  K       z0, zj, zjk ∈ {0,1} (13) 
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5) Simulate system using the First Principles (FP) model: After optimizing the problem 
using the incumbent surrogate model, the optimal values of the decision variables 
(FA, FB, TR) are fixed, and the system is simulated using the rigorous reaction model. 

6) Convergence criteria: The algorithm terminates if there is no improvement in three 
sequential objective functions (with 0.01% tolerance) or at a maximum of 20 iterations. 

7) Final surrogate model: The best surrogate is selected based on the objective function.  

4. Example 

The proposed case study is the Williams-Otto plant shown in Figure 1. Our framework 

iteratively builds surrogates for the reactor unit and solves the reaction optimization 

problem using the surrogates. The results are presented in Figure 2 (left plot). The line 

with circular markers represents the SM objective function, the line with square markers 

represents the FP objective function, and the straight line is the best objective function 

found by optimizing the model using the rigorous blending formulation. As the 

framework moves across iterations, there are improvements in the optimization search 

space chosen to build the surrogates, and a smooth convergence is achieved, reaching a 

high-quality solution within 11 iterations (beyond which there is no significant 

improvement in the surrogates). The best objective function found for this instance is 

$1683.81, while the best surrogate model leads to an objective function of $1683.71. 

Although achieving highly accurate surrogates, reducing the size of the model would be 

recommended for larger problems to keep its simplicity. Thus, additional tests were 

performed considering different numbers of terms. For that, we run the framework 

multiple times by setting the maximum number of terms to be K =
{8, 12, 18, 24, 30, 36}. Figure 2 (right plot) shows the objective function of the 

surrogates built within the framework for each scenario. 

Figure 2: Adaptive sampling algorithm results. 

All scenarios performed well, achieved high-quality predictions, and provided good 

solutions. The best performance is achieved by using 36 coefficients (0.01% lower than 

the best solution known), while the least accurate performance was achieved by using 

K = 8 coefficients, which resulted in a gap of 0.75%. Using less than 8 coefficients 

does not provide sufficiently accurate results. These results demonstrate that although a 

large number of terms can provide higher accuracy, sufficiently accurate surrogates of 

smaller size can also be built, which provides benefits in terms of reduced size, lower 

computational effort, and better convergence within simulation/optimization problems. 

In most instances, the non-improvement termination criterion is met prior to reaching 

the maximum number of surrogates. This provided an average reduction of over 20 % in 

the computational time with no loss in the objective function. 
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The methodology employed herein has shown to be efficient in terms of accuracy when 

building surrogates for highly nonlinear and complex systems, such as the Williams-

Otto plant. The nonlinear Arrhenius-based equations were efficiently approximated by 

second-order polynomial functions, and no convergence issues are detected when 

embedding the surrogates in the original reaction system. The adaptive sampling 

algorithm successfully explores the optimization search space to find more promising 

regions to build the surrogates within a few iterations of the method. High-quality 

solutions and smooth convergence are achieved in the case study tested. 

5. Conclusions 

Surrogate modeling has been increasingly used to predict the behavior of a system as an 

alternative to complex formulations that often lead to time consuming solutions and to 

both convergence and calibration difficulties. In this work, an adaptive sampling 

algorithm iteratively explores the solution space, whereby the incumbent surrogate is 

embedded into an optimization problem to assure feasibility and to collect feedback for 

the following iteration. The methodology is applied to a reaction system network and 

the surrogates are built to predict the reactor outputs within optimization environments. 

The results indicate that the surrogates are properly built, have high accuracy, and can 

effectively replace the first principles model in the optimization without significant loss 

in the objective function. The effectiveness of the method is also demonstrated in 

building smaller surrogates by limiting the maximum number of coefficients, which 

also provides high-quality predictions. We believe this methodology is appropriate for 

other reaction systems and can be useful for handling data-driven black-box nonlinear 

formulations. Moreover, several benefits and improvements can be achieved for time-

limited applications and for integrated optimization environments, in which the use of 

complex or rigorous models might not be suitable. 
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Abstract

Scheduling problems are widely used in recent production systems. In order to create an
appropriate modeling of a production scheduling problem more effectively, it is necessary
to build a mathematical modeling technique that automatically generates an appropriate
schedule instead of an actual human operator. This paper addresses two types of model
estimation methods for weighting factors in the multi-objective scheduling problems from
input-output data. The one is a machine learning-based method, and the other one is the
parameter estimation method based on an inverse optimization. These methods are applied
to multi-objectives parallel machine scheduling problems. The accuracy of the proposed
machine learning and inverse optimization methods is evaluated. A surrogate model that
learns input-output data is proposed to reduce the computational efforts. Computational
results show the effectiveness of the proposed method for weighting factors in the objective
function from the optimal solutions.

Keywords: Inverse Optimization, Machine Learning, Multi-Objective Optimization,
Production Scheduling, Weighting Factors, Model Identification

1. Introduction

Scheduling problems are widely used in chemical batch plants in current production sys-
tems. In recent years, the real-world scheduling problem is so large and it becomes so
complicated. Therefore, it is required to aid the decision-makers to model the problem
that enables the efficiency and flexibility of production systems. Data-driven optimiza-
tion methods have expected to build appropriate optimization model from historical data.
For multi-objective scheduling problem, a mathematical model that reflects the human op-
erator’s decision making is required based on the selection of multi-criteria optimization.
However, it is not easy to set the appropriate weighting factors that indicate the importance
of each objective function. If the weighting factors do not reflect the worker’s intention, the
desired solution cannot be obtained. Therefore, human operators must manually fine-tune
the schedule.

Some related works have been addressed for estimating weighting factors in the multi-
objective scheduling problems (Watanabe et al. (2002), Kobayashi et al. (2018)). Mat-
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suoka et al. (2019) developed a machine learning approach for the identification of the
objective function for parallel machine scheduling problems. Asanuma and Nishi (2020)
addressed machine learning and inverse optimization approach for estimating weighting
factors from historical data (Asanuma and Nishi (2020)). The exact solution algorithm
is adopted to solve the inverse optimization problem. Togo et al. (2021) reported an
approximate solution approach for the inverse optimization problem. However, the ap-
plicability of the practical scheduling data has not been studied in conventional works.
Even if the desired schedule is obtained, the situation surrounding production environment
changes. Therefore, it is necessary to repeatedly correct the weighting factors for multi-
objective scheduling problem. This paper presents an inverse-optimization approach for
model identification of production scheduling problem using historical data. The proposed
approach is applied to real data of chemical batch plants. Various approximate solutions
have been proposed for solving scheduling problems and they have advantages and disad-
vantages (Kise et al. (1995)). If the approximate solution method is used, the solutions are
sometimes different from those obtained by the exact solution method. In this paper, we
propose machine learning and inverse optimization methods to estimate weighting factors
in the objective function. In order to apply to large scale problems, a simulated anneal-
ing method is proposed to derive near-optimal solutions for the multi-objective parallel
machine scheduling problems. In the machine learning method, we try to extract features
to improve the estimation accuracy. From the result of numerical experiments, it is con-
firmed that the estimation accuracy is improved by adding the feature of the errors in due
date setting for each machine in the machine learning for the parallel machine scheduling
problem. This paper consists of the following sections. Section 2. explains the problem
definition. Section 3. introduces our proposed approach for estimating weighting factors
in the objective function. Section 4. provides computational experiments. Section 6. states
our conclusion and future works.

2. Problem description

2.1. Estimation problem for weighting factors in the objective function

We consider a parallel machine scheduling problem in a chemical batch plant. The plant
consists of several batch units and several tanks. The plant configuration, the demand and
recipe information are given. The plant has a number of daily schedules that are created
by human operators. The problem treated in this study is to estimate of the objective
functions and weighting factors for the scheduling problem by using the input and output
data. Given a set of problem instance data and the solutions of the scheduling problem
under the condition that the weighting factors of the scheduling problem are unknown, the
problem is to estimate appropriate weighting factors of the objective function.

2.2. Production scheduling problem

We consider a parallel machine scheduling problem. This scheduling problem is the de-
termination of the allocation of jobs to multiple machines and the processing order of
jobs under the condition that each job is processed by a single machine. The following
constraints are considered.
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Constraints
1. Each machine has no idle time.
2. One machine can only handle one job at a time.
3. Each job cannot be interrupted or divided once the processing has started.
Two types of objective functions (the sum of delivery delays f1 and the sum of setup costs
f2) are considered in this study.

3. Proposed approach

The outline of the proposed approach is shown in Fig. 1. In this approach, historical data is
used to estimate the weighting factors of the objective function. The details are explained
in the following sections.

Figure 1: Outline of the proposed method

3.1. Machine Learning Algorithm

We use a supervised learning method of machine learning. First, we prepare a large num-
ber of problem examples of scheduling problems and a large set of outputs are obtained by
solving them exactly via an approximate solution algorithm such as simulated annealing
or genetic algorithm. In the case study, the weight, delivery date, processing time, label,
and setup cost of each job are given as the parameters. In addition, the output includes the
starting time of each operation and the type of machine that performs the processing. The
weighting factor of each objective function actually used is taken as the correct answer.
Preprocessing is applied to the prepared problem examples and output, and the feature is
extracted. The square error between the estimated value of the obtained weighting coef-
ficient and the weighting factor of the correct answer is obtained. The machine learning
model trained from the process is evaluated. A recurrent random forest is used in the ma-
chine learning method. Random forest is learning using a large number of decision trees
that improve generalization performance by using the representative values of these output
results as the overall output (Breiman et al. (2001)).

In order to develop an accurate prediction model in a random forest, it is necessary to
extract effective features. It is difficult to improve the prediction accuracy by using only
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the input / output data. On the contrary, if unnecessary features or meaningless features are
included, noise may occur during learning, which may significantly increase the learning
time or lower the prediction accuracy. From here, we describe the data generation method
for use as features.

We consider the following features in the random forest.
Feature 1 The value of the objective function
Feature 2 Rank correlation coefficient
Feature 3 The error of delivery date setting for each machine
Feature 4 The sum of the processing completion times of each machine

3.2. Inverse Optimization Approach

The inverse optimization approach is to solve the problem that, given the result of an
optimization problem, determines the input to the optimization problem that generates
the correct result. To solve the problem, the forward optimization problem is repeatedly
solved for the given input parameters. It can be treated as a problem of determining the
input parameter that minimizes the loss function of the output. In order to reduce the
computation time, a surrogate model that can represent forward optimization model has
been used. In this study, we use a neural network that is often used as a surrogate model.
During the learning process, the data such as each parameter and the weighting factor
of the problem instance, and each objective function value is used as an output. The
accuracy and the computation time performance of the replaced neural network is the
forward optimization part are evaluated in the computational experiments.

4. Computational experiments

4.1. Randomly generated instances

We consider a parallel machine scheduling problem with 5 machines and 50 jobs. 100
problem examples are generated　 by setting parameters at random. Schedules are gener-
ated by changing the weighting factors of the objective function by using the approximate
solution method. Random forest is used for machine learning. Four types of features (Fea-
ture 1 only, Features 1 and 2, Features 1 and 3, Features 1 and 4) are utilized. Table 1
shows the mean square error of the proposed machine learning method and the inverse op-
timization method. The computational results show the effectiveness of using Features 1
and 3. The results of the inverse optimization are more effective than those of the machine
learning method.

Table 1: MSE of the machine learning method and inverse optimization method
Feature 1 only Features 1, 2 Features 1, 3 Features 1, 4 Inverse optimization

4.78e-3 4.75e-3 4.20e-3 4.33e-3 6.66e-4
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5. Application to petrochemical batch plant

The proposed approach is applied to a lubricant oil production plant. The lubricant process
consists of proportion mixing and additive oil mixing process, filling process into several
batch tanks from feed oil. The feed oil is obtained by hydrogenation and solvent desul-
furization for low, medium and high viscosity oils which are extracted from distilation
columns from feed crude oils. The batch plant treated in this study is the filling process.
There are six parallel filling units in the batch plant. The scheduling problem for filling
process of the lubricant oil production plant is regarded as a parallel machine scheduling
problem with several practical constraints.

5.1. Case study

For the input data, the amount of oil to be filled and the filling speed for each tank are given.
A week of job data is utilized. For the input data, production schedules are generated by
changing the weighting factor by 0.1 for each objective function. For the output data, the
starting time and ending time of each filling operation, allocation to the tank, and each
objective function value are obtained. The weighting factors of each objective function
are estimated from these input / output data. Two types of objective functions (the sum
of delivery delays f1 and the sum of setup costs f2) are considered in the problem for
filling process of the lubricant oil production plant. In machine learning, the value of the
objective function (Feature 1) and the value of the objective function and the sum of the
processing completion times of each machine (Features 1, 4) are used in the random forest.

In the inverse optimization, the weighting factors are updated so that the gradient between
the result obtained with the given weighting factor and the correct result becomes smaller.
The algorithm finishes when it is repeated a certain number of times. Table 2 shows the
estimation results when the weighting factor of f1 and f2 are (0.2, 0.8), (0.4, 0.6), (0.9,
0.1). The estimation result of (0.9, 0.1) of inverse optimization was far from the correct
answer. In the actual schedule data, the sum of setup costs increased significantly when
the weight of f2 changed from 0.2 to 0.1 and the accuracy of the proposed method is not
good. For randomly generated instances, the changes in the objective function value were
little. Due to the sudden increase in the objective function value, the weights updates were
increased. Then the MSE of the proposed method is not better in those situations.

Table 2: Weighting factors estimation results for machine learning (ML) and inverse opti-
mization

ML using Feature 1 ML using Features 1, 4 Inverse optimization
(0.200, 0.800) (0.252, 0.748) (0.222, 0.778) (0.266, 0.734)
(0.400, 0.600) (0.402, 0.598) (0.408, 0.592) (0.370, 0.630)
(0.900, 0.100) (0.842, 0.159) (0.847, 0.153) (0.991, 0.009)

Table 3 shows the mean square error (MSE) of the proposed machine learning method and
inverse optimization method. The results show the effectiveness of using feature the sum of
the processing completion times of each machine. Comparing with the three methods, the
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machine learning provides better results. The inverse optimization is more susceptible to
the range of change in the objective function value than machine learning. It is considered
that the cause of the actual schedule is that the range of change of the objective function
value is different from that of the randomly generated schedule.

Table 3: MSE of the machine learning (ML) and inverse optimization method
ML using Feature 1 ML using Features 1,4 Inverse optimization

MSE 5.96e-3 4.90e-3 2.61e-2

6. Conclusion and future works

We have studied the application of machine learning and inverse optimization method for
estimating weighting factors from thepractical petrochemical scheduling problem. The
effectiveness of our proposed approach to real chemical batch plants has been confirmed
from the computational results.
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Abstract

Surrogate models are commonly used to reduce the computational complexity of solv-
ing difficult optimization problems. In this work, we consider decision-focused surrogate
modeling, which focuses on minimizing decision error, which we define as the difference
between the optimal solutions to the original model and those obtained from solving the
surrogate optimization model. We extend our previously developed inverse optimization
framework to include a mechanism that ensures feasibility (or minimizes potential infea-
sibility) over a given input space. The proposed method gives rise to a robust optimization
problem that we solve using a tailored cutting-plane algorithm. In our computational case
study, we demonstrate that the proposed approach can correctly identify sources of infea-
sibility and efficiently update the surrogate model to eliminate the found infeasibility.

Keywords: surrogate modeling, learning for optimization, inverse optimization,
feasibility guarantee.

1. Introduction

A common strategy for solving difficult optimization problems, especially in real-time
applications, is to develop surrogate models of reduced computational complexity. In
particular, data-driven surrogate modeling methods have become very popular with the
opportunity to leverage recent advances in machine learning. Here, one uses the original
model to generate data, which are used to fit the surrogate model that can then be embedded
in the optimization problem. A key challenge in surrogate modeling is the balance between
model accuracy and computational efficiency. As a result, much of the research effort in
this area has focused on developing surrogate models that have simple functional forms
or specific structures such that the optimization problems are easier to solve using the
surrogate models [Cozad et al., 2014, Zhang et al., 2016].

The vast majority of existing surrogate modeling methods construct models that are given
as systems of equations, which represent all or part of the equality constraints of the orig-
inal optimization model [Bhosekar and Ierapetritou, 2018]. The goal of these surrogate
modeling algorithms is to minimize the prediction error with respect to the original sys-
tems of equations. However, as we found in our recent (not yet published) work, a low
prediction error in this kind of surrogate models does not necessarily lead to a low deci-
sion error, which is defined as the difference between the optimal solutions of the original
and the surrogate optimization models. Yet arguably, decision accuracy is what the user
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primarily cares about once the optimization model is deployed as a decision-making tool.
We developed a data-driven inverse optimization approach to construct surrogate models
that take the form of simpler optimization models and directly minimize the decision error;
hence, we refer to it as decision-focused surrogate modeling.

Decision-focused surrogate modeling focuses on the set of optimal solutions rather than
the larger set of feasible solutions. As such, it is prone to generating surrogate models that
violate constraints in the original model. In this work, we address this issue by extending
our inverse optimization framework to construct surrogate models with feasibility guaran-
tees. We propose a robust optimization approach where we treat the set of possible inputs
as an uncertainty set, and we develop a tailored cutting-plane algorithm to solve the result-
ing extended inverse optimization problem. Results from our computational case study
show that using the proposed approach, we can construct surrogate optimization models
with feasibility guarantees without substantial sacrifice of decision accuracy.

2. Mathematical Formulation

We consider an original optimization problem of the following general form:

minimize
x∈Rn

f(x, u)

subject to g(x, u) ≤ 0,
(1)

which is a, possibly nonconvex, nonlinear program (NLP). Here, x and u denote the deci-
sion variables and model input parameters, respectively. We assume that solving problem
(1) requires more time than what is allowed in our desired online application; however, we
can solve it offline to generate data in the form of (ui, xi)-pairs, where xi is the optimal
solution to problem (1) given the input ui.

Given a set of data points I, the goal is to generate a surrogate optimization model that is
easier to solve but achieves the same or almost the same optimal solutions as the original
model. We postulate a surrogate optimization model of the following form:

minimize
x∈Rn

f̂(x, u; θ)

subject to ĝ(x, u;ω) ≤ 0,
(2)

where f̂ and ĝ are parameterized by θ and ω, respectively, and are constructed to be convex
in x, which renders problem (2) a convex NLP.

The decision-focused surrogate modeling problems attempts to directly learn an optimiza-
tion model from data that are assumed to be optimal solutions to this model. As such, it
gives rise to a data-driven inverse optimization problem (IOP) [Gupta and Zhang, 2021],
which can be formulated as follows:

minimize
θ∈Θ, ω∈Ω, x̂

∑
i∈I

∥xi − x̂i∥ (3a)

subject to x̂i ∈ argmin
x̃∈Rn

{
f̂(x̃, ui; θ) : ĝ(x̃, ui;ω) ≤ 0

}
∀ i ∈ I, (3b)
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where x̂i denotes the solution predicted by the surrogate model. The objective is to deter-
mine the surrogate model parameters θ and ω that minimize the decision error defined in
(3a) as the difference between the optimal solution to the original problem xi and x̂i across
the given data set. Constraints (3b) state that for each i ∈ I, x̂i is the optimal solution to
the surrogate optimization model with input ui.

One potential issue with the IOP formulation (3) is that a predicted solution x̂i is not
guaranteed to be feasible in the original model (1). In addition, assuming that the input u
can be chosen from a set U , the optimal solution to the surrogate model is not guaranteed
to be feasible in (1) for all u ∈ U even if x̂i is feasible in (1) for all i ∈ I. Hence, to ensure
feasibility, we add the following constraints to problem (3):

x̄ ∈ argmin
x̃∈Rn

{
f̂(x̃, u; θ) : ĝ(x̃, u;ω) ≤ 0

}
g(x̄, u) ≤ 0

 ∀u ∈ U , (4)

which state that given a surrogate model defined by θ and ω, the optimal solution to the
surrogate model for any u ∈ U , x̄, also has to satisfy the original constraints g(x̄, u) ≤ 0.

3. Solution Strategy

The extended IOP is a bilevel semi-infinite program. To solve this problem, we propose a
cutting-plane algorithm that iterates between a master problem and a cut-generating sepa-
ration problem. The master problem is formulated as follows:

minimize
θ∈Θ, ω∈Ω, x̂, x̄

∑
i∈I

∥xi − x̂i∥

subject to x̂i ∈ argmin
x̃∈Rn

{
f̂(x̃, ui; θ) : ĝ(x̃, ui;ω) ≤ 0

}
∀ i ∈ I

x̄j ∈ argmin
x̃∈Rn

{
f̂(x̃, uj ; θ) : ĝ(x̃, uj ;ω) ≤ 0

}
∀ j ∈ J

g(x̄j , uj) ≤ 0 ∀ j ∈ J ,

(5)

which is a relaxation of the extended IOP since the semi-infinite constraints (4) have been
replaced by a finite number of constraints defined over a discrete set J . For each j ∈ J ,
we have a specific input uj and the corresponding predicted solution x̄j . If the optimal
solution to (5) satisfies constraints (4), then it is also optimal for the extended IOP. Other-
wise, we solve the following separation problem for each constraint function gk to identify
inputs for which the solutions of the surrogate model violate the original constraints:

maximize
u∈U, x̄

gk(x̄, u)

subject to x̄ ∈ argmin
x̃∈Rn

{
f̂(x̃, u; θ) : ĝ(x̃, u;ω) ≤ 0

}
.

(6)

If the optimal value of (6) is greater than zero (or some defined feasibility threshold ϵ),
we add the corresponding input u to the set J and re-solve problem (5). By doing so, we
iterate between the master and the separation problems until no more constraint violations
can be found, which indicates that we have solved the extended IOP.
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Both problems (5) and (6) are bilevel optimization problems. To solve them, we first refor-
mulate them into single-level problems by replacing the lower-level problems with their
KKT conditions, which is possible since the surrogate optimization model is designed to
be convex. The resulting formulations generally do not satisfy common regularity condi-
tions, which makes their direct solution using standard NLP solvers difficult. Instead, we
solve an exact penalty reformulation, which we do not describe here in detail due to space
limitations. Note that while a local solution to problem (5) is usually enough to provide
good results, problem (6) has to be solved to global optimality to guarantee feasibility.

4. Computational Case Study

In our case study, we consider the heat exchanger network shown in Figure 1, which is
adopted from Biegler et al. [1997]. Here, the inlet temperature of stream H2, T5, has a
nominal value of 583 K but is subject to random disturbances. Whenever there is a change
in T5, we optimize the operation of the heat exchanger network by solving the following
NLP in which we can adjust the cooling duty Qc and the heat capacity flowrate FH2:

minimize
Qc, FH2

10−2 Qc + 4 (FH2 − 1.7)2 (7a)

subject to 0.5Qc + 165 ≥ 0 (7b)
− 10−Qc + (T5 − 558 + 0.5Qc) FH2 ≥ 0 (7c)
− 10−Qc + (T5 − 393) FH2 ≥ 0 (7d)
− 250−Qc + (T5 − 313) FH2 ≥ 0 (7e)
− 250−Qc + (T5 − 323) FH2 ≤ 0 (7f)
Qc ≥ 0, FH2 ≥ 0, (7g)

which is nonconvex due to the bilinear term in constraint (7c).

Example 1

H1-C1 H2-C1

H1 2 kW/K
𝑇𝑇1 = 723 K

𝑇𝑇2

C1 2 kW/K

𝑇𝑇3 = 388 K 𝑇𝑇4 563 K

H2 𝐹𝐹𝐻𝐻𝐻
𝑇𝑇5N = 583 K

553 K

𝑸𝑸𝑪𝑪

H2-C2
393 K

𝑇𝑇7 ≤ 323 𝐾𝐾

C2 3 kW/K

𝑇𝑇8N = 313 K

𝑇𝑇6

Figure 1: Given heat exchanger network.
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Decision-Focused Surrogate Modeling with Feasibility Guarantee

We employ the proposed decision-focused surrogate modeling approach to replace the
bilinear term Qc FH2 in constraint (7c) with the following approximation:

Qc FH2 → a(T5)Qc + b(T5)FH2, (8)

where a and b are some functions of the input parameter T5. This change, together with
estimating the objective function f̂ as a convex quadratic function and keeping all linear
constraints, results in a surrogate convex QP for problem (7) that is much easier to solve.

We obtain the initial surrogate model by randomly sampling ten values of T5 in the range
[573 K, 593 K] and solving problem (3) with the corresponding global optimal solutions of
(7). Here, we assume a and b in (8) to be cubic polynomials in T5. The result is depicted in
Figure 2a, which shows, for each chosen T5, the true optimal Qc and the Qc obtained from
solving the surrogate optimization model. In addition, it shows the sets of feasible Qc for
the original (red area) and surrogate (blue area) models. One can observe that while the
feasible regions are quite different, there is very good agreement in the true and predicted
optimal solutions, which can be attributed to the decision-focused nature of our approach.

(a) Iteration 1 (b) Iteration 25

Figure 2: Comparison between the original model and the surrogate optimization model.

Next, we solve the extended IOP to minimize the violation of constraint (7c) at the optimal
solutions of the surrogate model. We perform 25 iterations of the proposed cutting-plane
algorithm. Figure 3 shows the maximum constraint violation, which is the optimal value
of problem (6) solved for constraint (7c), and the corresponding violated input tempera-
ture T5 that is then added to set J in problem (5) at each iteration. One can see that as
the algorithm progresses, violations across the entire input range are detected until from
iteration 13 onward, the algorithm only detects constraint violation in the region around
T5 = 586.3 K. This can be explained by Figure 2b, which shows all training data points ac-
cumulated over the 25 iterations and the feasible regions of the true and surrogate models.
We see that for T5 ≥ 586.3 K, part of the feasible region of the surrogate model is infea-
sible in the true model. While the surrogate model achieves a very good fit for almost all
optimal solutions in this region, there seems to be always some point at T5 ≈ 586.3 K that
is infeasible, which is where we see a “transition” in the feasible region of the surrogate
model. This indicates that the proposed cubic approximation of constraint (7c) is not suffi-
cient to achieve feasibility across the entire input range, resulting in the algorithm focusing
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on minimizing infeasibility by repeatedly sampling the area around 586.3 K. However, our
algorithm correctly identifies the main source of infeasibility. In this particular case, the
result instructs a simple remedy of the problem, which is to create two surrogate models,
one for T5 < 586.3 K and one for T5 ≥ 586.3 K. Then, with the same training data points,
solving the corresponding IOPs directly returns two surrogate optimization models whose
optimal solutions are feasible for the entire input space.

Figure 3: Progression of the cutting-plane algorithm.

5. Conclusions

In this work, we developed a decision-focused surrogate modeling approach that generates
surrogate optimization models with feasibility guarantees. This is achieved by combin-
ing concepts from inverse optimization and robust optimization, and solving the resulting
problem using a tailored cutting-plane algorithm. A computational case study considering
a heat exchanger network example demonstrates the ability of the proposed approach to
effectively identify and eliminate sources of infeasibility.

References
A. Bhosekar and M. Ierapetritou, 2018. Advances in surrogate based modeling, feasibility

analysis, and optimization: A review. Computers and Chemical Engineering, 108:250–
267.

L. T. Biegler, I. E. Grossmann, and A. W. Westerberg, 1997. Systematic methods for
chemical process design.

A. Cozad, N. V. Sahinidis, and D. C. Miller, 2014. Learning Surrogate Models for
Simulation-Based Optimization. AIChE Journal, 60(6):2211–2227.

R. Gupta and Q. Zhang, 2021. Decomposition and adaptive sampling for data-driven
inverse linear optimization. INFORMS Journal on Computing, forthcoming.

Q. Zhang, I. E. Grossmann, A. Sundaramoorthy, and J. M. Pinto, 2016. Data-driven con-
struction of Convex Region Surrogate models. Optimization and Engineering, 17(2):
289–332.

1722



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan ©  2022 Elsevier B.V. All rights reserved. 

Grade transition optimization by using gated 

recurrent unit neural network for styrene-

acrylonitrile copolymer process 

Shi-Chang Changa, Chun-Yung Changa, Hao-Yeh Leea*, I-Lung Chienb 

a Dept Chemical Engineering, National Taiwan University of Science and Technology, 

No.43, Sec. 4, Keelung RD., Da’an Dist.,10607 Taipei City, Taiwan; 
b Dept Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt 

Road, Da’an Dist.,10617 Taipei City, Taiwan; 

haoyehlee@mail.ntust.edu.tw 

Abstract 

The melt index (MI) of polymer products is an important quality reference for the product 

properties. However, MI cannot be measured in real-time, and the current value of MI 

can only be obtained by laboratory analysis after several hours, which leads to 

unsatisfactory quality control results. To solve the problem, this paper adopts the styrene-

acrylonitrile (SAN) copolymers process as a target process and uses the Gated Recurrent 

Unit (GRU) to establish a MI dynamic prediction model for different grades of SAN 

copolymer to estimate the current and future MI values, which ultimately improve the MI 

quality control performance. In addition, to solve the quality fluctuation caused by the 

difficulty of fine tune the chain modifier feed flow during the grade transition. Therefore, 

this paper also combines the GRU dynamic model and a virtual controller to provide 

recommended operating values for the chain modifier to reduce the transient time during 

grade transition. The simulation results in this paper show that the predicted value of MI 

is in agreement with the actual measured value. In addition, the recommended value of 

the chain modifier feed flow rate in comparison to actual manual control can significantly 

reduce about 28.6 hours of the grade transition time. 

Keywords: GRU, soft sensor, melt index, control, grade transition. 

1. Introduction 

SAN resin is composed of 70~80 wt% styrene (SM) and 20~30 wt% acrylonitrile (AN). 

The property of polymer products is usually adjusted according to market demand. To 

meet the different final product of physical or chemical properties requirements, the MI 

of polymer needs to be adjusted, and each MI value corresponds to each grade. The 

transfer of polymer products from one grade to another is called grade transition. Because 

no sensor can measure the MI value, it is through low-frequency manual sampling and 

laboratory analysis. Therefore, it will take about 4 to 8 hours or even 1 day to have one 

MI measurement data. This large delay measurement not only makes MI more difficult 

to control but also requires additional manpower for quality analysis. Therefore, a model 

needs to be established to simulate the dynamic behavior of the process to estimate the 

accurate real-time MI value, also known as a soft sensor. However, due to the complexity 

of the copolymer polymerization reaction and the lack of a complete reaction kinetic 

formula, it is difficult to establish a first-principle model of the system, so this paper uses 

a data-driven GRU (Cho et al., 2014) model is used to estimate the dynamic behavior of 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50287-6 
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MI of different grades of SAN copolymers. In addition, various fine-tune policies are 

often based on the operator experiences to adjust the feed flow rate of the chain modifier 

during the grade transition. It will cause quality fluctuations. Therefore, this paper designs 

a virtual velocity form of PI controller through the GRU dynamic model and calculates 

the recommended value of chain modifier feed flow rate in real-time, which can 

ultimately reduce transient time, the waste of raw materials, the output of secondary 

products. 

Neural networks have found widespread usage in modeling the complex and dynamic 

behavior of various polymer processes. Lee et al. (2009) used the first-principle EVA 

copolymerization reactor model to generate data, then established an artificial neural 

network (ANN) model to estimate the MI of the EVA process, and used PI controller for 

controlling melting index. Noor et al. (2010) reviewed various cases of ANNs used in 

polymer process simulation and emphasized the advantages of ANNs for fitting highly 

nonlinear systems. Jumari and Yusof (2017) used ANN and the first-principle model to 

simulate the MI of the polypropylene process, and compared the prediction performance 

of the two models. Compared with the past, this paper uses more novel deep learning 

modeling technology and GRU model to try to obtain a more accurate MI prediction value 

and combined with the virtual controller to provide the recommended value of the chain 

modifier feed flow rate. Finally, the model and virtual controller are applied to the SAN 

copolymer process. 

2. Process description 
The production process of SAN is shown in Figure 1. Fresh SM and AN monomers after 

being mixed with the recycled monomers in a mixing tank flow into the reactor for 

polymerization. An additional amount of chain modifier is also added into the feed stream 

before entering the reactor. The material inside the reactor is mixed at a constant mixing 

speed, while the reactor temperature is controlled through an external cooling utility. The 

reactor effluent is preheated and enters the devolatilizer from the top to separate unreacted 

monomers, solvent, and chain modifier. The molten resin is then passed through an 

extruder to obtain the final product, SAN. The gas phase material from the devolatilizer 

is first condensed, followed by the extraction of acrylonitrile by fresh styrene. The 

extracted acrylonitrile is then routed to the recycle tank. The sampling result of the recycle 

tank concentration is used to determine the amount of fresh monomer addition and the 

recycle flow to the mixing tank. After the initial adjustment to the flow of fresh monomers 

during grade transition, the chain modifier is mainly used for fine-tuning the MI to 

achieve new grade specifications. Low product MI means high molecular weight and low 

fluidity which necessitate increasing the chain modifier, and vice versa. 

 

Figure 1. SAN process flowsheet 
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3. Data-driven GRU dynamic model 
3.1. Data collection and pre-processing 

All the data in this paper is obtained from the plant distributed control system (DCS) and 

the quality measurement results. The DCS data sampling time is 10 minutes, and the 

quality data (MI) is 4 to 8 hours. There is a total of 6 product grades in the data, 

corresponding to grade A~F, with each grade having its unique MI. Since each process 

variable has different units, the obtained data is first normalized between 0 and 1 to 

prevent the convergence problem of the neural network. 

The data is divided into 8 data sets after excluding the abnormal data from a total of

48,541 DCS data sets and 2,105 MI measurement points. The training set accounts for 

51%, the validation set accounts for 27%, and the testing set accounts for 22% of all data 

sets. The training set and the validation data set contain all grades due to the model 

training requirements. Due to the insufficiency of the data, only 4 types of grades that are 

frequently produced are covered in the testing data set. 

3.2. Variable selection 

This paper attempts to quantitatively analyze the importance of all the variables affecting 

MI. Due to the nonlinear characteristics of the system, this paper uses eXtreme Gradient 

Boosting (XGBoost) (Chen and Guestrin, 2016) for analysis, and combines chemical 

engineering background knowledge to select the input variables of the model. There are 

15 DCS measurement variables in the SAN process, for which the importance analysis 

result is shown in Figure 2. The red bar represents the selected variable while the values 

on the y-axis signify the importance score. It is important to note that variables f10 and 

f13 which correspond to the total feed flow and reactor temperature, respectively, were 

ranked low despite their importance in estimating the MI. The reason is that the feed flow 

is dictated by the market demand, and in the case of fixed demand the feed flow usually 

remains constant. The temperature, on the other hand, is controlled by the temperature 

controller. Therefore, it is difficult for the XGBoost model to analyze the dynamic 

relationship between these two variables and MI. 

  

Figure 2. XGBoost variable importance analysis result 

3.3. MI simulation method and results 

This paper adopts Bayesian optimization (BO), a more efficient optimizer, as the 

hyperparameter tuning method. However, to prevent the model from overfitting, the 
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hidden layer of the model is fixed at 3 layers, and the early stopping method is added. 

Furthermore, the model training in this paper uses RAdam (Liu et al., 2019) combined 

with Lookahead (Zhang et al., 2019) optimizer, also known as Ranger optimizer. After 

selecting the hyperparameters, the iterative method based on Mini-Batch is used to 

optimize the parameters of the GRU model with the Ranger optimizer and the mean 

square error (MSE) as the objective function. An epoch represents one iterative loop over 

the entire training dataset. After completing an epoch training, the model is verified and 

it is decided whether to stop the training process (Early Stop) according to the validation 

result. The simulation results of each grade of the training set are found to be in good 

agreement to the actual MI having Mean Absolute Percent Error (MAPE) of each data set 

within 5%; As illustrated in Figure 3,  the MAPE of the test set is 3.629%.  

 

Figure 3. MI simulation result of the test data set 

3.4. MI real-time prediction 

To avoid data storage and calculations from increasing with time, this paper uses a rolling 

algorithm for online prediction. Since the GRU model in this paper considers time delay, 

it can predict the output response in the future. As a demonstration in Figure 4, it 

combines the concept of GRU input time step and time delay so that it can predict not 

only the current output y(t) but also the future output y(t+1) and y(t+2). 

 

Figure 4. Model online rolling prediction 



4. Improvement of grade transition 
4.1. Controller design 

In this paper, the Relay auto-tuning method (Å ström and Hägglund, 1984) is used to 

determine the PI controller parameters, and the controller parameters are tuned according 

to a different grade. When the Relay auto-tuning method is used for tuning, the controller 

is temporarily replaced with a relay, and the chain modifier feed flow is passed through 

the relay to convert its feedback value into an up-and-down oscillation. Other input 

variables remain at the steady-state values corresponding to the current tuning grade. The 

dynamic parameters between chain modifier flow and MI obtained as a result of the relay 

feedback test are used to calculate the ultimate gain and period. Finally, the parameters 

of the controller are calculated through the Ziegler-Nichols tuning relation (Ziegler and 

Nichols, 1942). 

The controller parameter of each grade does not apply for the situation of grade transition. 

Therefore, during the grade transition, the MI setpoint is set to the target MI of the next 

grade, while the virtual controller parameters are taken to be the average of current and 

next grades. If the current MI prediction value is already within the control range of the 

next grade, the controller parameters are set to the values of the next grade. 

4.2. Grade transition result 

Figure 5 is the result of the grade A to grade B transition when the virtual controller and 

the MI prediction model form a closed loop. The transition from grade A to grade B is a 

case of shifting from high MI to low MI. Therefore, the controller reduces the chain 

modifier flow to a minimum at the beginning of the transition, causing the MI to drop 

rapidly. The first yellow arrow in Figure 5 represents the time point when the MI 

simulation result reaches the product set point, while the second yellow arrow represents 

the time point when the measured MI reaches the set point. It is observed that the 

transition time reduces by 28.6 hours for the MI simulation when compared to actual data. 

Therefore, after adopting the recommended value of chain modifier flow, the MI 

simulation result during grade transition is found to be smoother, reaching the set value 

faster. In addition, transitions between the other products have similar results.  

 

Figure 5. Chain modifier feed flow rate and MI simulation result (grade A to B) 

1727 Grade transition optimization by 
 

using gated recurrent unit neural
network for styrene-acrylonitrile copolymer process



 S. C. Chang et al. 1728 

5. Conclusions 

In this paper, a GRU dynamic prediction model for the SAN production process is 

established to estimate the current and future MI values and combine with virtual PI 

controller provide the recommended value of chain modifier feed flow rate and 

consequently reduce the transient time during the grade transition.  

The GRU model is used to build the MI prediction model having MAPE of each training 

and validation dataset within 5%. The MAPE of the test dataset is 3.629%, which 

represents good simulation results. The model also shows an accuracy of about 95% when 

tested online. The actual MI values are also found to be in good agreement with the 

predicted values from this model.   

The model is then used to build a virtual controller that can suggest the values for chain 

modifier flow rate. The offline simulation results show that the MI simulation results are 

closer to the set value, and the product transitional time can be shortened by up to 28.6 

hours. The results of this research can reduce substandard products in the process of 

product transition in polymer plants to reduce costs. Moreover, this research has already 

been implemented in an actual plant, and indeed shorten the time for grade transition. 
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Abstract 

Chemical substances should be assessed for biodegradation in environment. The 

biodegradation tests usually require 28 days of continuous testing and expensive costs. 

To reduce the cost, some software has been proposed to estimate the biodegradation of 

chemicals. Although, the software has not enough performance. Therefore, we develop 

a new estimation algorithm for the biodegradation of chemicals using clustering and 

machine learning algorithms. The combination of the Birch clustering algorithm and the 

XGboost learning algorithm is proposed to estimate the biodegradation of chemicals. 

Using 4200 real tested chemicals, the proposed algorithm was examined. The Birch 

algorithm might collect chemicals that are clear relationship between the explanatory 

variables and biodegradation. 

Keywords: Biodegradation test; Chemical descriptor; Machine learning; Clustering. 

1. Introduction 

Chemicals should be assessed for biodegradation in environment. The collection of 

ready biodegradability tests is defined by the OECD (Organization for Economic Co-

operation and Development) (OECD, 1992). The OECD 301C (MITI (Ministry of 

international Trade and Industry, Japan) I) test, one of the biodegradation tests defined 

by the OECD, usually requires 28 days of continuous testing and expensive costs. To 

reduce the cost, some software has been proposed to estimate the biodegradation of 

chemicals (Tunkel, 2000; Jaworska, 2002). Many tools for estimating the 

biodegradation of chemicals have been reviewed (Singh, 2021). The CATALOGIC 

(Laboratory of Mathematical Chemistry, 2021) is one of the most well-known software 

for estimating the biodegradation of chemicals, with 94% correct answer rate for not 

readily biodegradable products and 77% correct answer rate for easily decomposable 

products (NITE, 2020). Therefore, we develop a new estimation algorithm for the 

biodegradation of chemicals using clustering and machine learning algorithms.  

2. Methods 

Since biodegradation tests are affected by various factors such as bacteria and enzymes, 

it is a very difficult task to estimate the biodegradation of chemical substances. This 

paper proposes a new estimation algorithm for the biodegradation of chemicals using 

clustering and machine learning algorithms. This section briefly describes the different 

types of clustering and machine learning algorithms. 
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2.1. Clustering algorithm 

There are several algorithms for clustering which automatically generate clusters from 

unlabelled data. The clustering algorithms such as K-Means (Sculley, 2010), Meanshift 

(Comaniciu, 2002), Ward (Ward, 1963), and OPTICS (Ester, 1996) use distances 

between points to make clusters. The K-Means algorithm clusters the data by trying to 

separate the samples into n groups of homoscedasticity, minimizing a criterion known 

as inertia or sum of squares within the cluster. The mini-batch K-Means algorithm is a 

variant of the K-Means algorithm. The Meanshift algorithm aims to find blobs with a 

smooth density of samples. The Ward algorithm is one of the hierarchical clustering 

algorithms. The Ward algorithm minimizes the sum of the squares of the differences in 

all clusters. The OPTICS algorithm creates a reachability graph to determine cluster 

membership. The DBSCAN algorithm (Schubert, 2017) is similar with the OPTICS 

algorithm but uses distances between nearest points. The Affinity propagation (Kettani, 

2014) and the Spectral clustering algorithm (David, 2017) use graph distance. The 

Affinity propagation algorithm creates a cluster by sending a message between a pair of 

samples until it converges. The Spectral algorithm performs low-dimensional 

embedding of affinity matrices between samples. The Agglomerative clustering 

algorithm (Kettani, 2014) and Birch algorithm (Zhang, 1996) use any pairwise distance. 

The Agglomerative clustering algorithm objects use a bottom-up approach to perform 

hierarchical clustering. The Birch algorithm builds a tree called the clustering feature 

tree for the given data. The Gaussian mixture algorithm (Duda, 1973) is a probabilistic 

algorithm that assumes all the data points are generated from a mixture of a finite 

number of gaussian distributions with unknown parameters.  

2.2. Machine learning algorithm 

Many kinds of machine learning algorithms for regression have been proposed. Two 

well-known algorithms are examined. One is linear and the other is non-linear. The 

Lasso algorithm (Kim, 2007) is a linear model that estimates sparse coefficients and 

effectively reducing the number of features. On the other hand, the XGboost algorithm 

(Tianqi, 2016) works as Newton Raphson in function space unlike gradient boosting 

that works as gradient descent in function space, a second order Taylor's approximation 

is used in the loss function to make the connection to Newton Raphson method. 

2.3. Objective data 

The predictive performances by several clustering and machine learning algorithm were 

evaluated by the biodegradation data for 4200 chemicals, which were tested under MITI 

I 301C test condition. The explanatory variables for estimating the biodegradation were 

chemical descriptors that contain 2D and 3D structural and charge information 

generated by the Gaussian software (Gaussian, 2019) using the PM6 method. The 

chemical descriptors were generated from a SMILES specification (SMILES, 2016) of 

each chemical by using of the AlvaDesc software (Alvadesc, 2019). After cleaning the 

generated data, 4293 chemical descriptors were obtained. 

3. Results and Discussions 

The result of clustering the explanatory variables by the explanatory variable was 

demonstrated in Fig. 1. The performance of various clustering algorithms was indicated 

in scores. The score is coefficient of determination for validation data by the Lasso for 

the largest cluster by each clustering algorithm. As shown in Fig.1, the mini-batch K-

Means and the Birch algorithms were higher performance than other algorithms. 
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Figure 1 Classification scores of various clustering algorithms. 

 

Then, clusters generated by the mini-batch K-Means and the Birch algorithms were 

examined. The other clustering algorithm cannot generate large clusters to train. Table 1 

shows the evaluation results for various datasets of chemicals in or out of cluster by the 

mini-batch K-Means algorithm, where RMSE is rooted mean square error for training 

data, RMSE_V is rooted mean squared error for validation data, R2 is coefficient of 

determination for training data, Q2 is coefficient of determination for validation data, 

classR2 is correct answer rate for readily biodegradable product in training data, and 

classQ2 is correct answer rate for not readily biodegradable product in validation data. 

The results were averages of three trials. The biggest cluster generated by the algorithm 

contained 3718 chemicals. The Lasso or the XGboost algorithm applied to the biggest 

cluster or the other chemicals. The XGboost algorithm took lower RMSE and RMSE_V, 

and higher R2, Q2, classR2, and classQ2 than those of the Lasso algorithm. However, due 

to overfitting of the training data, the differences between the training data results and 

the validation data results of the XGboost algorithm were larger than those of the Lasso 

algorithm.  
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Table 1 Evaluation results for various datasets of chemicals in/out cluster by the mini-

batch K-Means algorithm. 

 

Used Data 

(number of 

chemicals) 

Learning  

Algorithm 
RMSE RMSE_V R2 Q2 classR2 classQ2 

1st cluster  

(3718) 

Lasso 0.550 0.706 0.700 0.491 0.907 0.856 

XGboost 0.006 0.660 1.000 0.567 0.999 0.862 

Except for 

1st cluster 

(482) 

Lasso 0.314 0.817 0.888 0.325 0.980 0.888 

XGboost 0.000 0.727 1.000 0.510 1.000 0.911 

 

Table 2 shows the evaluation results for various datasets of chemicals in or out of 

cluster by the Birch algorithm. The biggest cluster generated by the algorithm contained 

1878 chemicals. The differences between the training data results and the validation 

data results of the Birch algorithm were smaller than those of the mini-batch K-Means 

algorithm. The results of 1st cluster were better than the other clusters results. It is 

indicated that the 1st cluster might be able to collect chemicals that are clear relationship 

between the explanatory variables and biodegradation. 

 

Table 2 Evaluation results for various datasets in/out cluster by the Birch clustering 

algorithm. 

 

Used Data 

(number of 

chemicals) 

Learning  

Algorithm 
RMSE RMSE_V R2 Q2 classR2 classQ2 

1st cluster  

(1878) 

Lasso 0.494 0.733 0.761 0.429 0.960 0.895 

XGboost 0.127 0.671 0.984 0.547 0.992 0.909 

Except for 

1st cluster 

(2332) 

Lasso 0.755 0.787 0.431 0.378 0.781 0.780 

XGboost 0.181 0.684 0.967 0.534 0.986 0.832 

2nd cluster 

(1239) 

Lasso 0.679 0.755 0.528 0.456 0.810 0.801 

XGboost 0.477 0.696 0.773 0.513 0.914 0.823 

3rd cluster 

(955) 

Lasso 0.727 0.812 0.469 0.341 0.806 0.764 

Xgboost 0.047 0.768 0.998 0.428 0.997 0.800 

4th cluster 

(39) 

Lasso 0.900 1.037 0.179 -0.080 0.716 0.722 

XGboost 0.000 1.093 1.000 -0.232 1.000 0.667 

 

Table 3 shows comparing among various cluster results. The cluster results of the mini-

batch K-Means algorithm were a little better than those of whole sample chemicals. On 

the other hand, the cluster results, especially classQ2, of the Birch algorithm were better 
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than those of whole sample chemicals. The classR2 and classQ2 of proposed 

combination algorithm were higher than those of the CATALOGIC. As control 

experiments, 1800 chemicals were randomly sampled. The results of the control 

experiment led to the Birch algorithm results not being due to sample size. 

 

Table 3 Evaluation results for various clustering and learning algorithm. 

 

Clustering 

Algorithm  

(number of 

chemicals) 

Learning  

Algorithm 
RMSE RMSE_V R2 Q2 classR2 classQ2 

Whole 

sample  

(4200) 

Lasso 0.639 0.711 0.594 0.488 0.895 0.866 

XGboost 0.134 0.649 0.982 0.579 0.992 0.881 

1st cluster by 

mini-batch 

K-Means 

(3718) 

Lasso 0.550 0.706 0.700 0.491 0.907 0.856 

XGboost 
0.006 0.660 1.000 0.567 0.999 0.862 

1st cluster by 

Birch  

(1878) 

Lasso 0.494 0.733 0.761 0.429 0.960 0.895 

XGboost 0.127 0.671 0.984 0.547 0.992 0.909 

Random 

sampling  

(1800) 

Lasso 0.730 0.767 0.471 0.366 0.850 0.836 

XGboost 0.223 0.670 0.944 0.525 0.983 0.872 

 

4. Conclusions 

The combination of the Birch clustering algorithm and the XGboost learning algorithm 

is proposed to estimate the biodegradation of chemicals. The mini-batch K-Means and 

the Birch algorithms were higher performance than other algorithms. Then, clusters 

generated by the mini-batch K-Means and the Birch algorithms were examined. The 

Lasso or the XGboost algorithms applied to the biggest cluster or the other chemicals. 

The correct answer rate for not readily biodegradable products and correct answer rate 

for easily decomposable products of proposed combination algorithm were higher than 

those of the CATALOGIC. The Birch algorithm might be able to collect chemicals that 

are clear relationship between the explanatory variables and biodegradation. The cluster 

results of the Birch algorithm were better than the other results. In future works, the 

characteristics of chemicals contained in the Birch algorithm will be investigated.  
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Abstract 

The prevalence of various machine-learning modeling techniques and numerous possible 

model configurations generates a long list of unique surrogate forms. Exhaustive 

enumeration and search for the best surrogate form from a large pool of candidate forms 

is a non-trivial task. In this work, we aim to assess similarities in modeling capabilities 

among many different surrogate forms. We examine modeling capabilities for noisy and 

non-noisy data based on two different surrogate performance metrics. We use a similarity 

metric to identify similar pairs of surrogate forms, and then group mutually similar forms 

into distinct families. The similarities among various forms vary depending on the quality 

of data set and choice of performance metric. This work enables us to exploit families of 

similar forms to create a reduced search set of contrasting surrogate forms, and facilitate 

surrogate form selection. 

Keywords: machine-learning, surrogate, surrogate selection. 

1. Introduction 

With growing digitalization in industrial process operations, the use of digital twins for 

decision making has been on the rise. While high-fidelity models provide detailed 

understanding and analysis, they are limited by computational expense. Computationally 

cheaper, data-driven surrogate models offer a viable alternative. They simply learn the 

correlations between the input-output data generated by the system under study. The 

development of a surrogate model starts with the identification of an appropriate 

modeling technique or a learning algorithm. Artificial Neural Network (ANN), Radial 

Basis Function (RBF), Support Vector Regression (SVR) are examples of modeling 

techniques. The next step is to create a surrogate form by choosing its configurations and 

analytical functions. For instance, an ANN technique using a sigmoid activation function 

and having one hidden layer with ten nodes defines an ANN form. Similarly, an RBF 

technique with a linear basis function creates an RBF surrogate form. The last step 

involves constructing the final surrogate model with known parameters by training the 

form on a data set. Various possible modeling techniques and associated model 

configurations can generate innumerable distinct surrogate forms. Determining the best 

form is demanding not only due to the expansive search required over many candidate 

forms, but also due to the importance of searching across various diverse forms. While 

one would expect unique forms to behave differently from the other, recent works 

(Ahmad and Karimi, 2021; Bhosekar and Ierapetritou, 2018; Garud et al., 2018) have 

indicated similarities in modeling capabilities among different surrogate forms. Clearly, 

it would be more rational to search across a set of contrasting surrogate forms to expedite 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50289-X 
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the selection process. To this end, in this work, we aim to assess and analyse the 

similarities in performance across many surrogate forms. We group forms with similar 

performance into distinct families such that all forms within a family are mutually similar. 

In the subsequent sections, we discuss our scope of work, detail our numerical 

methodology to construct families of similar surrogate forms, and highlight some key 

observations. Finally, we conclude in section 5 with the scope of future work. 

2. Data sets, Surrogate Forms, and Performance Metrics 

For the sake of consistency, let us denote the 𝑘𝑡ℎ sample point of any data set with 𝑁-

dimensional inputs as 𝑥𝑛
(𝑘)

 (𝑛 = 1, 2, … , 𝑁) . In this work, we only consider single 

response at any sample point. Let 𝑦(𝑘) denote the response at the 𝑘𝑡ℎ sample point. We 

train any surrogate form on a given data set to obtain the final surrogate model 𝑆(𝒙). 

2.1. Data sets 

We gather diverse data sets from various sources. The presence of noise in response 

affects the predictive performance of different surrogate models. Hence, we aim to study 

similarities in surrogate performances for non-noisy and noisy data sets separately. We 

gather various data sets from 93 analytical test functions (Surjavonic and Bingham, 2013), 

20 simulation runs (Coimbatore Meenakshi Sundaram and Karimi, 2021), and plant 

observations. In total, we have 1508 non-noisy data sets and 1591 noisy data sets, 

identical to those used in our previous work as well (Ahmad and Karimi, 2021). The 

maximum input dimension over all non-noisy and noisy data sets was 20. 

2.2. Surrogate Forms 

We considered 49 surrogate forms from eight modeling techniques: Polynomial Response 

Surface Model (PRSM), Kriging (KRG), RBF, SVR, Multivariate Adaptive Regression 

Spline (MARS), ANN, Gaussian Kernel Regression (GKR), and Power Law (PL). Each 

technique offers various options for functional forms and model configurations to 

generate many possible distinct surrogate forms. The 49 surrogate forms and their 

notations are listed in Table 1 in the next page.  

2.3. Performance Metric 

We use one accuracy-based performance metric and one hybrid accuracy-complexity-

based performance metric (PM) to evaluate each surrogate’s performance. We consider 

𝑅2  or coefficient of determination as the accuracy-based PM, and 𝑆𝑄𝑆  or Surrogate 

Quality Score (Ahmad and Karimi, 2021) as the hybrid PM. 𝑆𝑄𝑆 balances accuracy and 

complexity by favouring an accurate model based on 𝑅2  while penalizing a complex 

model based on extent of freedom (𝑒𝑜𝑓) or number of independent model parameters. 

𝑅2 = 1 −  ∑ (𝑦(𝑘) − 𝑆(𝒙(𝑘)))
2

𝐾′

𝑘=1

∑(𝑦(𝑘) − 𝑦̅)
2

𝐾′

𝑘=1

⁄                                                            (1) 

𝑆𝑄𝑆 = (1 − 𝑅2) × {
ln(1 + 𝑒𝑜𝑓)

ln(1 + 𝐾)
}

0.5

                                                                                     (2) 

𝑦̅ in Eq. 1 is the mean response, while 𝐾′ is the number of sample points over which PM 

is computed. 𝑆𝑄𝑆  can be used to compare across qualitatively different modeling 

techniques efficiently.  
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Table 1: Modeling Techniques, Surrogate Forms, and their Notations used in this work. 

Modeling 

Techniques 

Surrogate Forms (shorthand notation in 

parenthesis) 

Notations for Forms 

PRSM 1st order and 2nd order PRSM PRSM1, PRSM2 

KRG Regression Functions: constant (0), PRSM1 (1), 

PRSM2 (2) 

Correlation Functions: Exponential (e), 

Gaussian (g), Linear (l), Spherical (s), Cubic (c) 

K0e, K1e, K2e, K0g, K1g, 

K2g, K0l, K1l, K2l, K0s, 

K1s, K2s, K0c, K1c, K2c 

RBF Basis Functions: Bi-harmonic (BH), Multi-

quadratic (MQ), Inverse Multi-quadratic 

(IMQ), Thin Plate Spline (TPS), Gaussian (G) 

Tail Functions: constant (0), PRSM1 (1), 

PRSM2 (2)  

RBH0, RBH1, RBH2, 

RMQ0, RMQ1, RMQ2, 

RIMQ0, RIMQ1, RIMQ2, 

RTPS0, RTPS1, RTPS2, 

RG0, RG1, RG2 

SVR Kernel functions: Linear (lin), 3rd order 

Polynomial (poly), Gaussian (gauss) 

SVRlin, SVRpoly, 

SVRgauss 

MARS {Max interactions, Max basis functions}: 

{2,5𝑁} (1) and {3,10𝑁} (2) 

MARS1, MARS2 

ANN Activation functions: tansig (T), logsig (L), 

radial basis (R) 

{Number of hidden layers, Number of nodes in 

each layer}: {1,𝑁}, {1,2𝑁}, {2,𝑁} 

ANN1TN, ANN1T2N, 

ANN2TN, ANN1LN, 

ANN1L2N, ANN2LN, 

ANN1RN, ANN1R2N, 

ANN2RN 

GKR Projected dimension 𝑅 = 2𝑁 GKR 

PL Sum and Product of 𝑥𝑛, 𝑛 = 1, 2, … , 𝑁 terms APL, MPL 

 

3. Similarity Assessment and Families Identification 

Since the performance of any surrogate model would depend on the quality of data (noisy 

vs non-noisy) and performance metric (𝑅2 vs 𝑆𝑄𝑆), we aim to assess similarities among 

various forms for the four cases separately. We denote them as NNR2, NNSQS, NR2, 

and NSQS, where NN and N denote data quality (non-noisy and noisy respectively) while 

R2 and SQS denote PM (𝑅2 and 𝑆𝑄𝑆 respectively). Furthermore, for noisy data, KRG 

and RBF are not the ideal techniques since they always fit noise. Hence, we consider 49 

forms for non-noisy data and 19 forms (excluding 15 KRG and 15 RBF forms) for noisy 

data.  

The first step to initiate our assessment and analysis involves constructing and evaluating 

all surrogate models for all data sets. A surrogate is trained on a few input-output points 

which constitute the train set, while it is evaluated over a few additional new sample 

points which constitute the test set. To this end, for synthetic and simulated data, we 

generate additional 𝐾 sample points for each data set to make up a test set with 2𝐾 sample 

points (train set + 𝐾 new points). For real-world data, we randomly select a few points 

(𝑐𝑒𝑖𝑙(𝐾 2⁄ )) as the train set, while evaluate at all 𝐾 points. This gives us a performance 

vector (PV) for each surrogate. A surrogate’s PV consists of its PM values for all data 

sets. The next step involves identification of similar pairs of surrogates. For this, we used 
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the concept of concordance correlation coefficient ( 𝜌𝐶 ) (Lin, 1989) that measures 

similarity between two vectors of data based on the expected value of squared deviation 

between them. 𝜌𝐶  considers the direction of Pearson’s correlation and is a signed metric. 

However, in our case, we simply need to check for resemblance between the performance 

vectors of any two surrogates. Hence, we develop a metric Similarity Index (𝑆𝐼) by 

modifying the normalization factor used by 𝜌𝐶  such that 𝑆𝐼 ∈ [0,1]. 𝑆𝐼 = 1 for identical 

performance vectors.  

𝑆𝐼(𝑆1(𝒙), 𝑆2(𝒙)) = 1 −  
𝐸(𝑃𝑉𝑆1(𝒙) − 𝑃𝑉𝑆2(𝒙))

2

𝐸 [(𝑃𝑉𝑆1(𝒙) − 𝑃𝑉𝑆2(𝒙))
2

|𝜌 = −1]
                                             (3𝑎) 

𝑆𝐼(𝑆1(𝒙), 𝑆2(𝒙)) =
2(1 + 𝜌)𝜎𝑆1(𝒙)𝜎𝑆2(𝒙)

(𝜇𝑆1(𝑥) − 𝜇𝑆2(𝑥))
2

+ (𝜎𝑆1(𝑥) − 𝜎𝑆2(𝑥))
2                                             (3𝑏) 

𝜌, 𝜇, and 𝜎 denote Pearson’s correlation coefficient, mean, and standard deviation for the 

two PVs for 𝑆1(𝒙) and 𝑆2(𝒙). We compute 𝑆𝐼 between all pairs of surrogates for each of 

NNR2, NNSQS, NR2, and NSQS. The final step involves grouping mutually similar 

forms into distinct families. We use 𝑆𝐼 ≥ 0.90 to consider two forms to be similar. Then, 

we create families of similar forms by solving an MILP formulation. Considering 𝐼 forms, 

let us consider a similarity matrix with 𝑎𝑖𝑗 = 1 if 𝑆𝐼(𝑖, 𝑗) ≥ 0.9, otherwise 𝑎𝑖𝑗 = 0, for 

𝑖 = 1, 2, … , 𝐼; 𝑗 > 𝑖. We use a binary variable 𝑓𝑖 to indicate whether form 𝑖 belongs to a 

family (𝑓𝑖 = 1) or not (𝑓𝑖 = 0). First, we find the family with maximum size, or most 

number of mutually similar forms. This entails solving max ∑ 𝑓𝑖
𝐼
𝑖=1  subject to the 

following similarity constraint:  

𝑓𝑖 + 𝑓𝑗 ≤ 1 + 𝑎𝑖𝑗 ,     𝑗 > 𝑖                                                                                                            (4) 

Eq. 4 ensures that if forms 𝑖 and 𝑗 belong to a family, then they must be similar. Solving 

this problem gives us the largest family with size 𝑆. Then, starting with 𝑠 = 𝑆, we identify 

all distinct families of size 𝑠 = 𝑆, 𝑆 − 1, 𝑆 − 2, … , 1  one at a time. This essentially 

reduces to a feasibility problem to identify a family of a given size, if it exists. This can 

be achieved as follows.  

min 𝑜𝑏𝑗 = 1                                                                                                                               (5𝑎)  

∑ 𝑓𝑖 = 𝑠
𝐼

𝑖=1
                                                                                                                                (5𝑏)  

Solving Eq. 5a subject to constraints Eq. 4 and Eq. 5b gives us one family of size 𝑠. Since, 

we get one family on each run and multiple families of size 𝑠 may exist, we re-solve the 

MILP after adding the previously obtained solution (𝑧𝑖
∗) as a new cut-constraint (Eq. 5c).  

∑ 𝑧𝑖
∗

𝐼

𝑖=1
≤ 𝑠 − 1                                                                                                                        (5𝑐)  

This would eliminate the problem to yield previously found families or their subsets in 

subsequent runs. In case the problem is infeasible, we search for the next smaller sized 

family with size 𝑠 − 1. This procedure is repeated for each 𝑠 = 𝑆, 𝑆 − 1, 𝑆 − 2, … , 1 to 

get a complete set of families. 

4. Families for NNR2, NNSQS, NR2, and NSQS 

Based on the detailed methodology discussed in the previous section, we obtain different 

sets of families for NNR2, NNSQS, NR2, and NSQS (Tables 2 – 5). 

 M. Ahmad and Iftekhar A. Karimi
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Table 2: Families of surrogate forms for NNR2 

 Surrogate Forms  Surrogate Forms 

F1 K0l, K1l, K0s, K1s, K0c, K1c F6 RIMQ1, RIMQ2 

F2 K0e, K1e, K0l, K1l, K0s, K1s F7 RTPS1, RTPS2, RG0 

F3 K0g, K1g F8 MARS1, MARS2, ANN1T2N 

F4 RG1, RG2 F9 ANN1TN, ANN1T2N, ANN2TN, 

ANN1LN, ANN2LN, ANN2RN 

F5 K2e, K2l, K2s, K2c, RBH0, RBH1, 

RBH2, RMQ0, RMQ1, RMQ2, 

RIMQ0, RTPS0 

F10 PRSM2, SVRpoly, SVRgauss, ANN1TN, 

ANN1T2N, ANN2TN, ANN1LN, 

ANN1L2N, ANN2LN, ANN1RN 

 

Table 3: Families of surrogate forms for NNSQS 

 Surrogate Forms  Surrogate Forms 

F1 K0l, K1l, K0s, K1s, K0c, K1c F8 MARS1, MARS2 

F2 K0e, K1e, K0l, K1l, K0s, K1s F9 ANN2TN, ANN2LN, ANN2RN 

F3 K0g, K1g F10 ANN1TN, ANN1T2N, ANN2TN, 

ANN1LN, ANN1L2N, ANN2LN, 

ANN1RN 

F4 RG1, RG2 F11 PRSM2, SVRgauss, ANN1TN, 

ANN1T2N, ANN1LN, ANN1L2N 

F5 K2e, K2l, K2s, K2c, RBH0, RBH1, 

RBH2, RMQ0, RMQ1, RMQ2, 

RIMQ0, RTPS0 

F12 PRSM2, ANN1TN, ANN1T2N, ANN1LN, 

ANN1L2N, ANN2LN, ANN1RN 

F6 RIMQ1, RIMQ2 F13 PRSM2, K2l, K2s, K2c, RBH0, RBH1, 

RBH2 

F7 RTPS1, RTPS2, RG0   

 

Table 4: Families of surrogate forms for NR2 

 Surrogate Forms  Surrogate Forms 

F1 SVRgauss, SVRpoly, ANN1TN, ANN1L2N F6 SVRgauss, ANN1T2N, 

ANN1LN, ANN2LN 

F2 SVRgauss, MARS1, ANN1TN, ANN1L2N F7 SVRgauss, ANN1T2N, 

ANN1L2N, ANN2LN 

F3 SVRgauss, MARS1, ANN1T2N, ANN1L2N F8 ANN2TN, ANN2LN 

F4 SVRgauss, ANN1TN, ANN1LN, ANN2LN F9 PRSM2, SVRpoly 

F5 SVRgauss, ANN1TN, ANN1L2N, ANN2LN F10 SVRgauss, MARS1, MARS2 

 

Table 5: Families of surrogate forms for NSQS 

 Surrogate Forms  Surrogate Forms 

F1 MARS1, MARS2 F3 ANN1TN, ANN1T2N, ANN1LN, ANN1L2N, ANN2LN 

F2 ANN2TN, ANN2LN   

 

The derived sets of families reveal some important observations. For NNR2 and NNSQS, 

KRG forms with a constant or linear regression function show similarities irrespective of 

the correlation function, with the exception of Gaussian correlation. Similarly, K2e, K2l, 

K2s, and K2c show similarities, but K2g is not similar to any of them. This indicates a 

significantly contrasting behaviour of KRG using Gaussian correlation functions than 

others. Many RBFs show similarities with KRG using PRSM2 regression function for 

NNR2 and NNSQS. Both KRG and RBF techniques precisely learn the responses, and 
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hence can potentially make similar predictions. Since KRG and RBF have identical and 

maximum complexity (𝑒𝑜𝑓 = 𝐾), 𝑆𝑄𝑆  penalizes both models identically. Hence, we 

observe the same sets of families F1-F7 for NNR2 and NNSQS. For all cases, we see that 

MARS1 and MARS2 are similar as they only differ in their hyperparameter settings. Also, 

ANNs using tansig and logsig activations readily show similarities irrespective of the 

network depth and width. This may be attributed to similar analytical forms of the two 

activation functions, and simple, shallow networks considered in our work. However, 

ANNs using radial basis functions differ based on their network configurations. We also 

observe that SVRgauss shows similarities with many ANN forms for NNR2, NNSQS, 

and NR2. Both SVRs and ANNs offer sufficient fidelity to model complex data sets 

effectively. One final observation from all families is that certain forms such as PRSM1, 

SVRlin, GKR, APL, and MPL do not belong to any family. In other words, such forms 

do not show similarities with any other form for either non-noisy or noisy data based on 

either PM. 

The key application of families of similar forms is to facilitate and expedite surrogate 

form selection. In our future work, we aim to extract one representative surrogate form 

from each family to obtain a reduced search space of contrasting forms. We then search 

among the surrogate forms in this reduced search space. Based on the performance of the 

true best surrogate form and the form identified from the reduced space, we can validate 

the efficacy of our proposed surrogate form selection procedure.  

5. Conclusions 

This work aims to compare performances of various surrogate forms for modeling non-

noisy and noisy data sets based on two performance metrics. Based on our numerical 

evaluation of similarity, we group mutually similar surrogate forms into families. Certain 

forms having different modeling techniques show similar performance, while certain 

others do not resemble with any other form. This work may act as an important prelude 

to our future work on expediting the surrogate form selection process by identifying and 

searching across contrasting surrogate forms.  
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Abstract 

A common step in developing generalizable, dynamic mechanistic models is to fit 

unmeasured parameters to measured data.  Fitting differential equation-based models can 

be computationally expensive due to the presence of nonlinearity and stiffness.  This work 

proposes a two-stage indirect approach where Neural ODEs approximate state 

derivatives, which are used to estimate the parameters of a differential model.  In addition 

to its computational efficiency, the proposed method demonstrates the ability to work in 

concert with direct methods to accurately estimate parameters, even in the case of stiff 

systems. The method is shown here for the training of a microkinetic model. 

Keywords: Neural Networks, Parameter Estimation, Stiff ODEs, Neural ODEs. 

1. Introduction 

The task of finding parameter values of a differential equation (DE) model to explain 

available experimental data is ubiquitous throughout engineering. The physical meaning 

of these DE models (also referred to here as a mechanistic model) permit the modeler to 

predict a system’s behavior in unexplored experimental spaces, assuming the parameters 

have been estimated correctly.  However, due to the complexity of DE systems, methods 

that automate their parameter estimation must often balance efficiency and accuracy.  

Gradient-based ‘direct’ methods either rely on repeated integration of the ODEs being 

regressed, or formulating a constrained nonlinear program discretizing the system of 

ODEs to solve for the parameter values (Li et al. 2005, Hamilton 2011).  Both ‘direct’ 

methods face computational tractability issues, which become more severe when the 

initial parameter estimates are far from the true values, or the ODEs are nonlinear with 

respect to their parameters.  Another problem, common to reaction systems, is the 

presence of rate terms which vary over large orders of magnitude, resulting in a system 

with fast and slow dynamics (i.e., at different timescales).  Ultimately, to make these 

regression problems tractable for direct methods, a modeler may need to apply model 

reduction strategies, ranging from setting tight bounds on parameters to fixing insensitive 

parameters.  Such strategies require domain expertise, which may not be available, as 

well as user-intervention, preventing automation of the parameter estimation process.  

As an alternative to the direct approach, an indirect parameter estimation approach has 

been proposed, which avoids discretizing the mechanistic model (Swartz and 

Bremermann 1975, Brunel 2008).  In this 2-stage approach, the experimental data is 

interpolated by a data-driven model, which is differentiated to obtain system derivative 

estimates.  Those derivative estimates combined with state estimates of the interpolating 

model can be used to estimate the parameters of the mechanistic DEs via nonlinear 

programming (NLP).  The indirect 2-stage approach is so named since it breaks up a 

single regression problem into two regression problems whose combined computational 
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cost is generally less than that of the direct approaches.  Y et despite having the advantage 

of being computationally cheap, this method is often limited in accuracy due to the 

difficulty in accurately estimating a system’s derivative information. 

Recently, we proposed using Neural ODEs (NODEs) as the data-driven surrogate to 

interpolate measurement data (Figure 1) and for estimating system derivatives (Bradley 

and Boukouvala 2021). In that work, NODEs compared favorably with other methods for 

automated parameter estimation 

of a nonlinear mechanistic DE.  

However, one class of DEs not 

covered in that work were those 

with ‘stiff’ dynamics.  This class 

of problems can be particularly 

challenging for parameter 

estimation methods.  One reason 

for this is the need for numerical 

methods that balance the number 

of functional evaluations (i.e., 

computation) and stability (i.e.. 

accuracy).  Recent work has 

evaluated numerical techniques 

for fitting Neural ODEs to stiff 

system data, and for parameter estimation of stiff systems (Kim et al. 2021), however 

further work is needed to develop methods that are both general and accurate. 

2. Methods 

In this work, several approaches, and potential combinations thereof, are compared for 

the parameter estimation of stiff DEs. To start, direct approaches find the parameters 𝑝
to a mechanistic model 𝑓(𝑥, 𝑝) by minimizing the following discrepancy function: 

min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑎𝑠 − 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2   (1) 

𝑠. 𝑡.  
𝑑𝑥𝑘,𝑀𝑀

𝑑𝑡
= 𝑓(𝑥𝑘, 𝑝)   (2) 

Here, 𝐾 state variables 𝑥𝑘, where 𝑘 = 1, … , 𝐾, are measured and predicted at time points 

𝑗, where 𝑗 = 1, … , 𝐽, by integrating the mechanistic model (MM) with respect to 

independent variable 𝑡.  Though statistically robust, this method can be computationally 

intensive.  For such cases, a 2-stage indirect approach can be attractive. 

As illustrated in Figure 1, the 2-stage indirect approach fits the parameters of the 

mechanistic model by solving 2 separate regression problems.  In the first stage, the 

parameters of the data-driven model are fitted using the original measurement data.  In 

the second stage, the parameters of the mechanistic ODE are found using the state and 

derivative estimates of the data-driven model.  The data-driven model used in our work 

is a NODE model.  This is done by first solving Eq.(1) subject to Eq.(3): 

𝑠. 𝑡.  
𝑑𝑥𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
= 𝑁𝑁(𝑥𝑘, 𝑤)    (3) 

Neural Network parameters 𝑤 are fitted to minimize an objective function equal to the 

sum of squared errors between the model prediction and measured state data.  Once the 

Figure 1. Depiction of the direct vs indirect approach to 

parameter estimation 
Fi 1 D i ti f th di t i di t h t



   

NODE is trained, derivative estimates are obtained by evaluating the trained NODE at 

times where measured data was collected using the same process conditions of the 

measured data.  Following the procedure of (Bradley and Boukouvala 2021), we exclude 

derivative estimates at time t=0, which tend to be less reliable, to improve parameter 

estimates of the mechanistic DE.  For stage two, an NLP is formulated as in Eq.(4) and 

(5) to find the parameters of the mechanistic DE without integrating the mechanistic DE.  

min ∑ (
𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
−

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
)

2

   (4) 

𝑠. 𝑡.  
𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
= 𝑓(𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸 , 𝑝)       (5) 

Depending on the required accuracy, the indirect 2-stage approach may be sufficient for 

the needs of the model-building problem at hand.  However, if increased accuracy is 

required, we hypothesized a more robust fit would require including the mechanistic 

model constraints when fitting the measured state data.  A tempting option would be a 

simultaneous approach, which combines the objective functions of the 2-stage approach 

into a single hybrid objective function: 

min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑎𝑠 − 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2 + λ ∑ (
𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
−

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
)

2

  (6) 

Like the indirect approach, Eq.(6) uses the data-driven Neural ODE of Eq.(2) to fit the 

state data and provide derivative estimates.  However, in the hybrid objective both the 

Neural ODE fit and mismatch between NODE and mechanistic DE are minimized 

simultaneously, their relative weights controlled by the hyperparameter lambda, 𝜆. 

A final alternative to increasing model fidelity is to fit the mechanistic DE directly (i.e., 

minimize Eq.(1) subject to Eq.(2)).  However, as mentioned earlier this incurs an 

increased compute overhead.  In the case of stiff systems, the increased compute cost 

comes from the finer discretization required to stably integrate the mechanistic model.  

To reduce compute costs, the direct approach can use parameter estimates informed by 

the indirect approach.  Specifically, the parameters estimated from the 2-stage fitting are 

used as an initial guess for the DE of Eq.(2).  A single application of the indirect followed 

by the direct approach is herein referred to as the incremental approach. 

Throughout this work, we use PyTorch’s LBFGS solver and IPOPT within PYOMO as 

the nonlinear optimizers of the stage 1 and stage 2 regression problems, respectively. For 

the sake of consistency, the structure of the NODE is fixed to a single hidden layer with 

tanh activation function and 15 hidden nodes.  Further, we assume minimal knowledge 

of the true parameters prior to model-fitting, and thus all parameters are initialized to the 

same order of magnitude, specifically a value of 2, for the direct and indirect approaches.   

3. Results 

To demonstrate the effectiveness of the 2-stage approach, we chose as an example a 

microkinetic model (MKM) for heterogeneous catalysis (Gusmão et al. 2020).  MKMs 

represent a large class of coupled differential equations which exhibit stiffness due to the 

presence of both slow and fast rate terms caused by parameter values varying over large 

orders of magnitude. The MKM system of ODEs governed by a material balance and rate 

equations are outlined in Figure 2.  Table 1 lists the true parameter values. 
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Figure 2. Full MKM system of ODE equations  

In this process, gaseous reactants A and B adsorb to a solid surface to form intermediate 

species before the final product C desorbs into the gas phase.  Reactants bound to a 

catalyst surface site [*] are indicated by an asterisk ‘*’. All reactions are reversible.  

Two datasets were used to represent possible fitting scenarios for the 2-stage approach, 

each comprising data simulated from two sets of initial conditions.  In one dataset, state 

variables are sampled 15 times logarithmically for each run in the range t =  [10e-3, 0.5], 

amounting to a sample size of 30 datapoints.  The second dataset includes the same 

number of points sampled linearly from time t= 0 to t= 0.5.  At first, the 2-stage approach 

was applied on the linear dataset.  Specifically, the data was used to fit a NODE whose 

derivatives were then used to solve for the parameters of the mechanistic DE.  The 

parameters found through this approach are compiled in Table 1, column labelled 

‘Linear Indirect’.  Results show that some of the parameters found differ significantly 

from the true parameters.  This is not surprising since data is available only sparsely at 

earlier times where state values change rapidly due to the stiffness of the system.   

  
Figure 3. NODE fit (solid lines) to log-sampled data (dots). True derivative shown with x’s. 

The fitting procedure was repeated with data sampled logarithmically with respect to 

time.  The fit of the Neural ODE to the log-sampled data is presented in Figure 3 for the 

adsorbed species.  Noticeably, despite the NODE fitting the state outputs perfectly 

(effectively to machine precision), the data-driven model does not capture the exact 

profile of the derivatives.  This result is believed to be due to the inherent flexibility of 

NODEs, which are not as constrained in outcomes as the simulating mechanistic model.  

The results of the 2-stage regression including the mean absolute error (MAE) of the 

fitted model on the log-sampled data are compiled in Table 1 (‘Log Indirect’ column).   

Aiming to improve the accuracy of the fitted mechanistic model, the simultaneous 

approach was applied using various values for lambda.  However, minimizing the 

hybrid objective function did not result in significantly improved parameter estimates vs 



   

the indirect approach, notwithstanding its higher compute cost.  This finding was again 

attributed to the flexibility of NODEs, their being able to interpolate state data despite 

estimating derivatives that may not exactly match the ‘true’ derivatives.  Due to their 

low accuracy, results of the simultaneous approach were not included in Table 1. 

Instead, the remaining columns in Table 1 include the computational cost and model 

accuracy from integrating the mechanistic DE during training, either using an 

uninformed initial guess (i.e., the direct approach) or initializing the mechanistic 

parameters with the parameters found by the 2-stage methods (i.e., the incremental 

approach).  Figure 4 displays the mechanistic model fit to the linearly-sampled data via 

the indirect and direct approach.  The direct and incremental approaches gave similar 

simulated trajectories so only the results of the direct method are plotted. 

 
Figure 4. State and derivative estimates of the mechanistic model after parameter estimation via 

indirect (solid line) and direct approach (dotted line) on linearly-sampled data (solid dots). 

A couple trends are worth noting.  Firstly, the MAE of the final simulation is lower after 

using the direct approach, regardless of sampling strategy, indicating increased accuracy 

can be gained via the direct approach.  What’s more, applying the incremental approach 

offers compute savings over the direct approach with an uninformed initial guess, at 

least for the log-sampled case.  However, when fitting the linearly-sampled data, the 

compute savings from incremental approach are negligible.  At least two factors are 

believed to cause this discrepancy.  First, the parameters found through the indirect 

approach on the linear data were further from the true parameters than for the log-

sampled case, offering a poorer initial guess.  Second, an increased number of Euler 

steps were required between datapoints for integrating mechanistic model on the log-

sampled data (n= 256 vs 56 in the linear case) to avoid divergence issues near the 

equilibrium region, exacerbating the computational load in the log-sampled case when 

uninformed initial estimates are used.  U ltimately, this indicates that, given a 

sufficiently sampled experimental space, the incremental approach can merge the direct 

and indirect approaches in ways that balance both accuracy and efficiency. 
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Table 1. Table of compute times, parameters estimated, and model errors for different approaches 

 

True 

params 

Log 

Indirect 

Log 

Incr. 

Log 

Direct 

Linear 

Indirect 

Linear 

Incr. 

Linear 

Direct 

Fit (s) 

Time N/A 15.21 137.7 362.31 12.62 74.22 80.94 

MAE N/A 2.46E-3 6.05E-4 4.52E-4 1.45E-2 4.70E-4 2.69E-4 

k3 20 20.46 19.98 19.97 12.82 19.67 19.80 

k4 8 9.061 7.983 7.994 4.556 7.854 7.917 

k5 16 16.50 15.69 15.81 13.49 16.07 15.84 

k6 4 3.490 3.825 3.886 2.637 4.051 3.938 

k7 12 11.38 11.99 12.09 10.19 11.89 11.92 

k8 8 7.695 7.998 8.048 6.719 7.940 7.957 

k11 1200 2615 2607 1793 400.4 446.5 1809 

k12 400 849.3 871.6 600.8 138.7 147.6 604.0 

k13 2000 1672 1662 1117 38.28 2999 1745 

k14 1600 1320 1332 890.3 24.05 2401 1395 
*Abbreviations: Incr. (Incremental Approach) 

4. Conclusions 

This work demonstrated a method for accelerating the regression of mechanistic ODEs 

for stiff systems and evaluated the ability of NODEs to estimate mechanistic ODE 

parameters with a large magnitude of variability in their true values using different 

sampling strategies. While the NODE-based incremental approach presents a promising 

step towards automated parameter estimation of stiff systems, several challenges remain. 

Neural Networks have limited ability to make predictions that vary over large orders of 

magnitude, common to stiff systems, which to overcome may require modifying the data-

driven model structure to enable greater accuracy.  In future, a comparison with 

incremental and simultaneous methods employing other surrogate models should be 

performed to assess the Neural ODE’s suitability as a general-purpose DE estimator. 
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Abstract 
Proliferation of data owing to the onset of Industry 4.0 (I4.0) has led to many traditional 
data analysis approaches becoming redundant. Novel and innovative solutions are 
required to facilitate the new era of data-driven manufacturing characteristic of I4.0. This 
work demonstrates one such approach in the formation of a bespoke web-based 
visualisation and machine learning analytics platform, designed to bridge the gap between 
the old ways and new. Our unique I4.0 data analytics platform, called Wiz 4.0, enables 
advanced big data analytics in conjunction with user-friendly features and multivariate 
data visualisations. This allows for both a holistic overview of manufacturing processes 
as well as detailed analysis of data. Wiz 4.0 lays the foundations of an industry defining 
software to grant deep insight into the inner relationships between process variables to 
the everyday user. The software provides the ability to analyse data using a variety of 
machine learning algorithms and plot the data in high dimensional space through the 
innovative no-code platform hosted on the Siemens MindSphere. This approach is set to 
revolutionise the value creation of data in the new IoT and smart factory paradigms 
emerging from the transition towards I4.0.  

Keywords: visualization, analytics, dashboard, IoT, Industry 4.0 

1. Background 
Widespread development of technologies such as cloud computing, Internet of Things 
(IoT), Automated Intelligence (AI), additive manufacturing (AM) and digital twins are 
driving the adoption of new working paradigms in manufacturing. These have the 
potential to revolutionise the sector when implemented effectively to create large 
autonomous systems and smart factories. At the root of this is an increased reliance on 
data. The transition is seen as a new age in manufacturing and wider industry; this fourth 
industrial revolution (Industry 4.0, I4.0) is associated with increased productivity, 
efficiency, and profit.  
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run time, energy consumption, efficiency, and product output.  In this way, Wiz 4.0 
retains its power for a multitude of scenarios and users. More importantly, the 
implementation of ML algorithms enables key intelligent decision-making technologies 
such as fault detection and predictive maintenance: crucial capabilities for a truly 
successful smart manufacturing. 
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Abstract 
Optimal design and scheduling of energy systems with a high share of renewables is a 
complex and computationally demanding task. The mismatch of supply and demand of 
energy requires the consideration of timeseries with a granularity of a few minutes, which 
is in contrast to the lifetime of the system of multiple decades. This paper proposes an 
algorithm for systematically reducing the input data and computational effort in mixed 
integer linear programming (MILP) of energy systems. Unlike the state- of- the-art, the 
influence of different numbers of typical periods is not examined on the on the quality of 
the clustering algorithm but on the objective function and the integer decisions. The issue 
is addressed by exploiting the two-stage nature of the optimal design and planning of the 
system by sequentially performing k-medoids clustering. The demonstration of the 
proposed algorithm shows that very few typical periods are sufficient to achieve near 
optimal decisions. The proposed approach is outperforming algorithms for time series 
aggregation (TSA) in this field by reducing CPU time by more than 40 %. The inclusion 
of the integer decision in the algorithm allows the application to multi objective 
optimization (MOO). The case study demonstrates that the runtime of the MOO can be 
reduced by approximately 90 %, while diverting less than 2 % on Pareto optimal 
solutions. Outliers have no impact on the techno-economic analysis but may lead to 
significant electricity peaks in energy systems with a high share of renewables. 

Keywords: Energy system design, Renewable energies, Mixed integer linear 
programming, Data reduction, k medoids clustering, outliers 

1. Introduction 
Daily and seasonal cycles lead to reoccurring patterns in the supply and demand of 
energy. Hence, it is popular to aggregate yearly time series to typical periods, in order to 
reduce computational effort for optimization problems of energy systems. Hoffman et al. 
(2020) have reviewed Time Series Aggregation (TSA) methods for modelling energy 
systems applied in 130 different publications. The authors conclude that for the same 
computational time, the more intuitive aggregation of seasons or months result in 
insignificantly larger errors than machine learning techniques. TSA methods of latter 
category performed similarly well, although k-medoids were most reliable for 
approximating costs.  
In current TSA methods, the identification of the optimal number of typical periods is the 
first challenge. State-of-the-art approaches in modelling complex energy systems almost 
exclusively base their decision on Key Performance Indicators (KPI) of the clustering 
algorithm itself. The performance of the intended application to the energy system 
optimization is not considered in the selection process. Schütz et al. (2018) have 
demonstrated that the KPI sum of square error, typically applied when evaluating the 
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2.2. Outlier detection 

Similar to the method developed by Liu et al. (2021), outliers are detected during the 
process of clustering. The procedure is as follows:  

1. Clustering data set  
2. Calculation of Euclidian distance from all points to their centroid 
3. Removal of o outlier periods with the largest distance from data set 
4. Repetition of steps 1-3 until centroids do not change anymore. 

The detected o outliers are added as individually occurring typical period to the 
optimization problem. In contrast, demand peaks remain as extreme period. As current 
standard in optimization of energy systems, one cold weather and one hot weather period 
is added, both consisting of one single timestep (Stadler et al., (2018)).  

3. Case study 
The data reduction technique is demonstrated on optimizing the energy system of a typical 
residential building located in the climatic zone of Geneva, Switzerland. The building is 
a single- family home with 2 floors and in total 250 m2 heated surface from around 1980. 
The considered energy demands are: electricity demand, thermal demand for space 
heating and hot water. The optimization is formulated as a MILP problem with the aim 
to find the optimal sizing and operation among nine energy conversion and storage 
technologies. For further insights on the modelling approach of the building energy 
system, the reader is kindly referred to Middelhauve et. al (2021). On a full timeseries of 
one year, this case study leads to over 840 thousand constrains and 790 thousand 
variables, among which are almost 10’000 binaries. The tuning parameter of the 
algorithm are set to be 𝜀1 = 5%, 𝜀+ = 5% and 𝑚 = 3. 
The k-medoids clustering with the R package wcKMedoids is performed for aggregating 
one typical year (DOE, (2020)). The problem is formulated in AMPL Version 20191001 
and solved with CPLEX 12.9.0.0 on a local machine with following processor details: 
Intel(R) Core (TM) i7-8559U CPU @ 2.70GHz. The relative tolerance between relaxed 
linear problem and best integer solution is set to mipgap=5e-7. The remaining CPLEX 
settings are equal to the default settings reported at (CPLEX, (2020)). 

4. Results and Discussion 
In a pre-processing step, global irradiation and the ambient temperature are clustered to 
increasing number of k-medoids, each typical period is chosen to be the length of one full 
day. The state-of-the-art procedure, which bases the selection of optimal number of 
periods at KPI slope thresholds, would lead to around 10 typical periods. Thus, the result 
of the proposed TSA is compared to 10 typical periods in the following.  
4.1. Time Series Aggregation 

First, the AP with an increasing number of clusters is solved. The objective function is 
total expenses, which is equally weighting two conflicting objectives, the capital expenses 
(CAPEX) and operational expenses (OPEX). Part one of the proposed TSA algorithm is 
demonstrated in Figure 3. After already three clusters, the first convergence is 
approximately 5%. The unit decisions are fixed and the OP is solved. The second 
convergence criterion is also below 5 % and therefore three typical periods are chosen as 
result of Part 1. Both problems the AP and the OP are solved for up to 12 typical days for 
demonstration purposes. The difference of the objective functions, which is the second 
convergence criterion, remains below 1% after 7 typical periods. 
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5. Conclusion 
This work proposes a novel method for TSA of complex energy systems. Compared to 
state-of-the-art approaches in this field the CPU time was reduced by 40% in the 
presented case study. This is achieved by using two convergence criteria, which avoids 
the computationally intensive computation of the OP at each iteration step. Additional 
innovation is to take unit decisions into account, which allows the application of the TSA 
method to MOO problems.  
In contrast to comparable work in MOO of energy systems, the selection of the 
appropriate number of typical days is not based on KPIs evaluating the underlying 
machine learning algorithm. Hence, presented TSA method allows to significantly reduce 
the runtime by more than 90%, while diverting less than 2% on optimal solutions. The 
impact of the TSA is greater, the more renewable energies are included in the system. For 
systems with a high share of renewables, outliers reveal electrical peaks, which are greater 
than during typical periods. Outliers are however neither impacting the thermal energy 
side nor economic evaluation of presented MOO problems. One possible extension of this 
work is to analyse the impact of the tuning parameter of the proposed TSA method. 
Additionally, the usage of one typical year to represent a project horizon can be 
questioned. This includes the challenge to predict changing weather data subject to 
climate change.  
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Abstract 

Data-driven modeling provides a viable alternative for process modeling especially in 

applications where mechanistic modeling falls short of explaining the underlying 

phenomena. The increasing amount of plant data collected through various sensors and 

lab tests lays the foundation for various data-driven modeling approaches such as Deep 

Neural Networks (DNN). In this work, we present a new software tool, named deepGSA, 

incorporating well-established variance-decomposition and derivative-based global 

sensitivity analysis (GSA) methods, such as Sobol sensitivity indices, with the plant data-

driven deep learning modeling techniques. The deepGSA aims at enabling non-specialist 

practitioners to leverage DL-based models for GSA application purposes. The tool is 

successfully applied on a benchmark case study as well as the case of modeling liquid 

nitrous oxide concentration in a wastewater treatment plant to highlight its capabilities. 

The deepGSA toolbox, documentation, installation guide, and several examples are freely 

available on GitHub through the link: https://github.com/gsi-lab/deepGSA. 

Keywords: Deep-Learning, Big Data, Sensitivity Analysis, Wastewater Treatment 

1. Introduction 

Digitalization has become an increasingly hot topic in various fields across academia and 

the chemical industry issuing a new industrial revolution under the guise of “industry 

4.0”. At the core of this digital transformation, we find Digital Twins, which are virtual 

mock models capable of simulating/describing real-life physical processes (de Beer and 

Depew, 2021). These models often rely on first principle mechanistic models particularly 

in cases where the phenomena occurring are well understood e.g. distillation and 

extraction processes. However, this process understanding is not as mature in many life 

science applications especially if it combines a wide range of different processes e.g. 

chemical, biological, and mechanical processes. A prime example of this is the modeling 

wastewater treatment plants (WWTP) (Sin and Al, 2021). Mathematical models have 

been applied to model the microbial activity in WWTP in the form of Activated Sludge 

Models (ASMs)(Sin and Al, 2021). The original ASM models have been modified and 

expanded in the past decades to include additional microbial conversion processes such 

as single-pathway and two-pathway models for N2O production (Sin and Al, 2021). 

However, these efforts resulted in very complex mathematical models that are difficult to 

apply in practice due to the high number of model parameters that need to be calibrated 

(Chen et al., 2019). Data-driven modeling of industrial processes provides an alternative 

approach to construct digital twins by leveraging the vast amount of plant data collected 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50293-1 
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through sensors to some extent considered “Big data”. Data-driven models such as Deep 

Neural Networks (DNNs) although providing good predictive performance across many 

fields and applications (Hwangbo et al., 2021), lack the aspect of transparency and 

interpretability due to their black-box nature. Global Sensitivity Analysis (GSA) could 

potentially help elucidate the workings of these models. In this work, we present a 

Matlab-based toolbox, deepGSA, with the aim of streamlining data-driven modelling to 

non-specialist practitioners and enabling them to leverage their plant data to gain process 

understanding through various GSA methods implemented in the toolbox.  

2. Methods 

Global sensitivity analysis aims at quantifying the effect of an independent variable while 

all other variables are also varied. In doing so, the GSA takes into account interactions 

among the variables (in contrast to One-At-a-Time methods) and does not depend on the 

choice of a nominal point. Two GSA techniques are integrated into the tool: the Sobol 

method and the derivative-based global sensitivity method (DGSM). 

2.1. Sobol Method 

Sobol's method is based on variance decomposition of Monte-Carlo simulations. The 

method provides both first order (Si) and total order indices (STi) for the input parameter 

xi. Si measures the individual contribution of input xi to the total output variance, while 

STi measures the total contribution to the total output variance including those resulting 

from interactions with other inputs (Saltelli et al., 2007). The expressions for Si and STi 

are shown in Eq.(1), where 𝑉[𝐸(𝑦|𝑥𝑖)], 𝑉[𝐸(𝑦|𝑥−𝑖)] and 𝑉(𝑦) are the conditional 

variance, the conditional variance derived from all variables but xi varied, and the 

unconditional total output variance respectively, all of which are numerically estimated 

through Monte-Carlo simulations. The difference between the two indices (STi-Si) is a 

direct indicator of the strength of interactions variable xi is involved in.   

𝑆𝑖 =
𝑉[𝐸(𝑦|𝑥𝑖)]

𝑉(𝑦)
        𝑆𝑇𝑖

= 1 −
𝑉[𝐸(𝑦|𝑥−𝑖)]

𝑉(𝑦)
 (1) 

2.2. Derivative-Based Global Sensitivity Method (DGSM) 

DGSM uses the second moment of the model derivatives to measure the importance of 

the input parameter xi as formulated in Eq.(2) (Kucherenko et al., 2009). The aim of this 

is to avoid canceling off negative and positive impacts of the local sensitivity (Ei) over 

the entire input domain Hn.  

𝑣𝑖 = 𝐸 [(
𝜕𝑓(𝑋)

𝜕𝑥𝑖

)

2

] = ∫ (
𝜕𝑓

𝜕𝑥𝑖

)
2

𝑑𝑥

𝐻𝑛

with Ei,n  
𝜕𝑓

𝜕𝑥𝑖

 (2) 

A mean measure for the global sensitivity can then be obtained by Eq.(3). 

𝜇𝑖 = √𝑣𝑖 (3) 

The mean measure is often used to screen unimportant factors in the input domain for 

which 𝜇𝑖 is very small or negligible. Additionally, the method gives insights into the 

directional pull of the input factor (positive or negative) by capturing the local sensitivity. 
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Although empirical, there is a link between the Sobol STi and vi as expressed in Eq.(4), 

where D is the total variance. The relation can be interpreted as the upper bound of STi. 

𝑆𝑇𝑖
 ≤

𝑣𝑖

𝜋2𝐷
= 𝑆𝑇𝑖

𝐷𝐺𝑆𝑀 (4) 

3. DeepGSA: Toolbox for plant data-driven and DL-assisted GSA 

Data-driven modeling 

Given a large dataset X representing inputs and the corresponding response variable 

vector y, deepGSA is able to develop a DNN model to predict y from the supplied 

information X. The DNN model hyperparameters are optimized using a grid-search 

tuning policy for which a user can supply a pool of architectures, a set of training 

functions, and a set of activation functions. Each possible combination is trained on 80% 

of the supplied data, while the remaining data are equally split between validation and 

test purposes to avoid data leakage and overfitting. The toolbox also leverages Matlab’s 

parallel computation using high-performance GPUs and computer clusters (if present) to 

speed up model development and GSA calculations. The optimal model can be selected 

based on various criteria evaluated on the validation set. The user can choose between: 

the coefficient of determination (R2), the mean squared error (MSE), the root mean 

squared error (RMSE), the Bayesian/Akaike information criterion (BIC/AIC). 

Inference of input distributions 

Sampling from the input data is an important step to perform data-driven GSA. In some 

cases, the distributions of the input factors are known a priori, thus can be readily supplied 

to the toolbox. However, in many engineering applications, the underlying distribution of 

X is unknown. By supplying X, the toolbox can also infer the distributions of variables 

by fitting a kernel distribution to the data, which then allows sampling from a distribution 

similar to the input factor distributions to preserve the characteristics of the system. 

 

Figure 1: deepGSA Framework 

4. Case Study 

4.1. Benchmark Case Study: Sobol g-function 

The g-function of Sobol, as given in Eq.(2), is often used as a benchmark function for 

numerical experiments in sensitivity analysis literature. The reason being the theoretical 

first-order Sobol indices are analytically available (Marrel et al., 2009). 
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𝑓(𝑥) =  ∏
|4𝑥𝑖 − 2| + 𝑎𝑖

1 + 𝑎𝑖

𝑑

𝑖=1

 , with 𝑎𝑖 =
𝑖 − 2

2
 and 𝑥𝑖~𝑈(0,1) for all 𝑖 = 1, . . , 𝑑 (2) 

Through Monte-Carlo simulations, a sample of size N = 5,000 is generated and used to 

evaluate the corresponding f(x) values following Eq.(2) and perform GSA. Figure 2 

shows the sensitivities indices obtained: analytically, by evaluating the g-function, and 

by constructing DNN. All methods produce the same sensitivity indices which validate 

not only the implementation of the GSA techniques but also that DNN models retain the 

dynamics of the process it models. The obtained DNN was trained with the Bayesian 

regularization backpropagation algorithm in MATLAB and had the layers [32,16,8,4] 

with hyperbolic tangent sigmoid transfer function. 

 

Figure 2: Sensitivity indices for the Sobol g-function estimated through various methods 

4.2. Plant Data Case Study: Modelling liquid N2O concentration in WWTP 

DeepGSA is applied on a second case study using various sensor data collected from 

Avedøre WWTP located in Copenhagen Denmark to predict the liquid Nitrous oxide 

concentration (N2O). The data and the plant are described in detail by (Hwangbo et al., 

2020, 2021). In this case study, a sample of the data spanning over 90 days starting on 

March 26th, 2018, and ending on June 24th, 2019 was selected. The input factors chosen 

are the dissolved oxygen (DO), ammonium concentration (NH4), nitrate concentration 

(NO3), temperature (T), the airflow for aeration (Qair), and the influent flow (Qinf). A total 

of 25,500 data points were used and all inputs were smoothed using the moving median 

method with a moving window of 12 timesteps and scaled between 0 and 1. The grid 

search included the following architectures: [128,64,32,16,8,4], [64,32,16,8,4], 

[32,16,8,4] with two possible training functions: ‘trainlm’ and ‘trainbr’ and two possible 

transfer functions: the log-sigmoid and positive linear functions. The selection criteria 

chosen is the R2, the distributions of the input factors are inferred by the tool and a sample 

of size N=100,000 was used to conduct GSA. The sampling number was set very high 

since the computational solution of DNN is very affordable. The output layer activation 

function adapts to the characteristics of the target output e.i. constrained between [0, inf] 

through the positive linear (poslin) activation function. The selection criteria in this case 

study were chosen to be the R2 metric. The best DNN achieved R2 of 0.81 with a hidden 

configuration of [12,8,64,32,16,8,4] trained with ‘trainbr’ with poslin activation function.  

Adem R.N. Aouichaoui et al. 
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Table 1: Inference statistics and sensitivity measures related to the DGSM and Sobol methods 

 DGSM Sobol 

Variable μ (E)  σ (E)  STi
DGSM Si STi 

Qinf 00.2 63.2 2.121 0.0000 0.3502 

DO 00.1 46.9 1.169 0.0083 0.3238 

NH4 15.3 96.1 5.018 0.0317 0.4553 

NO3 11.4 103.2 5.718 0.1087 0.5848 

T 01.1 109.2 6.332 0.0329 0.6579 

Qair 04.4 79.9 3.398 0.0529 0.5821 

Table 1 provides various inferred statistics related to the DGSM and Sobol. The Sobol 

method identifies T, the NO3, NH4 concentrations as well as the influent and air flowrates 

as the most important factors. This is in line with the results obtained by (Hwangbo et al., 

2021). There is a large difference between Si and STi, with the Si values being very close 

to zero and the sum of STi exceeding unity. These are all evidence of the presence of strong 

interaction effects of the input factors on the response variable (N2O liquid concentration). 

These observations are consistent with the process insight of the N2O dynamics in a 

WWTP and are explained in detail by (Hwangbo et al., 2021). The STi
DGSM is qualitatively 

valid for all input factors. Furthermore, the ranking is almost identical to the one obtained 

by Sobol indices except for two factors for which the ranking is swapped (Qair and NH4). 

This is in line with observations by (Sobol and Kucherenko, 2009) that for highly non-

linear systems the ranking might not hold, and instead, the Sobol indices are more reliable. 

The statistics of the local sensitivity reported in Table 1 and the visualization of the 

empirical cumulative distribution function for selected input factors in Figure 3 suggest 

that the factors influence the output both positively and negatively. This is in fact due to 

data coming from a closed-loop (controlled) plant and it shows the effects of the inputs 

are nonlinear and therefore the effects depend on relative values of other inputs (input 

space has both regions where a factor produces a negative impact and positive impacts). 

Figure 3 further shows that the distribution exhibits some heavy-tailed distribution known 

as “fat tails”, making reporting the mean and standard deviation misleading. 

 

Figure 3: Empirical Cumulative distribution function of the local sensitivities of T and DO revealing 

a heavy-tailed distribution. In the tails, one observes a small change input has a disproportionately 

high effect on the output which is N2O emissions. 
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5. Conclusions & Future work 

DeepGSA provides an easy-to-use, plug and play tool to perform data-driven modeling 

using deep neural networks and perform global sensitivity analysis using both variance 

decomposition-based and derivative-based sensitivity analysis methods. The tool 

constructs a search space to tune the hyperparameters of the neural network and provide 

various metrics to select the optimal network. The GSA performed on the model is then 

used to provide process insights that conform with domain knowledge for two cases 

studies presented in this work. Future improvements to the toolbox include implementing 

more GSA techniques (Morris screening, standard regression coefficient (SRC), and GSA 

for dependent inputs) and the addition of new features such as an internal plotting tool, 

data cleaning, and scaling options. Finally, a wrapper function will be developed to allow 

users to plug in DNN models developed in open source DL frameworks such as 

TensorFlow and Pytorch. 
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Abstract 
Harmful air pollutant such as PM2.5 is still a major concern in many countries. At high 
concentrations, it could lead to adverse health effect on human, escalating the risk of 
cardiovascular and respiratory diseases. In order to mitigate this issue, continuous air 
quality monitoring systems have been deployed to alert the general public of high PM2.5 
level. However, such monitoring system requires substantial budget and resources to 
construct, thus may not be accessible in some regions especially developing countries. 
Therefore, it is important to develop a high performance PM2.5 prediction model that 
only employs easily attainable input parameters as a more cost-effective alternative. In 
this study, common meteorological data from five different cities in China were utilized 
for the PM2.5 prediction model. Dynamic model such as the nonlinear autoregressive 
network with exogenous inputs (NARX) with different input/output time lag were 
applied to transform training dataset into different data structures. Additionally, 
machine learning algorithms were analysed and evaluated to predict PM2.5, namely: 
multi-linear regression (MLR), and feed-forward artificial neural network (FANN). The 
results shows that FANN model with 10 hidden neurons using NARX-2 data structure is 
the best model combination with an R2 values of up to 0.973. 

Keywords: PM2.5, NARX, MLR, FANN. 

1. Introduction 
The world population has grown significantly in the past decades, as a result, this causes 
the rise in rapid industrialization and urbanization to cope with the high demand of food 
and energy resources (Mobaseri et al., 2021). The excessive rate of industrialization 
consequently translates to generation of pollutants leading to extreme deterioration in 
global air quality. PM2.5 which stands for particulate matter 2.5, is considered as one of 
the major and most dangerous atmospheric pollutants in the air. Any airborne particle 
that has an aerodynamic diameter of less than 2.5 μm is categorized as PM2.5. Various 
researchers have shown in their study that PM2.5 is associated with serious health 
diseases such as strokes, chronic heart disease, lung cancer, respiratory infections, and 
premature death (Gakidou et al., 2017). In a 2019 study, Chen et al. (2019) discovered 
that an increase of 10 μg/m3 in atmospheric PM2.5 levels would lead to a reduction in 
adult life expectancy by approximately 0.8 years. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50294-3 
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With the growing concern over the dangerous health hazard poses by PM2.5, continuous 
PM2.5 monitoring stations have been proposed by many to alert the general public. 
However due to the high initial investment required, such system is only available in 
specified locations. In fact, the world health organization (WHO) reported that 
approximately 9 out of 10 people in the world still resides in area with PM2.5 level 
exceeding the WHO air quality guidelines (WHO, 2021). In search for a more cost-
effective alternative, numerous studies have been carried out to develop prediction 
models that can accurately reflect PM2.5 concentrations. A feed forward artificial neural 
network (FANN) model was developed by (Perez et al., 2020) to predict PM2.5 
concentrations in Coyhaique, Chile. Their results shows that the model was able to 
capture the instance when PM2.5 falls under critical region 85 % of the time. 
(Biancofiore et al., 2017) compared three different models to predict the levels of PM2.5 
for multiple days ahead (recursive neural network, feed forward neural network, and 
multiple linear regression). They concluded that recursive neural network outperforms 
the other models with correlations coefficients up to 0.89.  

In recent years, artificial neural network model seems to be of the up most interest for 
PM2.5 forecasting. However, the number of research that analysed the effect of time 
series data structure on the ANN model seems pale in comparison. Therefore, in this 
study, a dynamic time series model with different input/output time lag were utilized to 
transform the data structure, namely nonlinear autoregressive network with exogenous 
inputs (NARX). Additionally, a feed forward artificial neural network (FANN) model 
utilizing different form of input data structure were analysed to predict PM2.5 
concentration. Furthermore, the resulting performance were compared against widely 
popular multi linear regression (MLR) model that utilized untransformed input data. 

2. Methodology 
2.1. Dataset 

The data used for this study is an hourly air quality and meteorological measurements 
recorded for six years between 2010 and 2015 in five Chinese cities, which are Beijing, 
Chengdu, Guangzhou, Shanghai, and Shenyang. These data were obtained from UCL 
Machine Learning Repository published by (Liang et al., 2016). There are 52,584 rows 
of data and with a total of 10 parameters this translates to about 525,840 individual data 
points for each city. The list of the input and output parameters for the PM2.5 prediction 
model could be found in Table 1. 

 

Table 1: List of input and output features for PM2.5 prediction model. 
 

List of input 
parameters 

Seasons, temperature, pressure, dew 
point, humidity, combined wind 
direction, cumulated wind speed, hourly 
precipitation, cumulated precipitation 

List of output 
parameters 

PM2.5 concentration 
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2.2.  Data Pre-processing 

Multiple pre-pre-processing techniques were performed on the original dataset before 
transformation on the data structure and development of the prediction model. In the 
missing data analysis, it was found that more than half of the dataset comprised of 
missing values. Due to the high degree of missing data, median value substitution could 
not be carried out as it will generate unwanted bias in the training data. Therefore, the 
missing data were instead discarded from the dataset, with approximately 20,000 rows 
of data remaining for each city. Normalization was then performed on the data, since the 
dataset has parameters with highly varying magnitude which similarly could lead to bias 
when training the model. Lastly, label encoding was performed to convert the parameter 
with categorical value such as wind direction into numeric value as most machine 
learning algorithms prefer to work with numerical attributes.  

 

2.3.  Data Structures 

A dynamic time series model called nonlinear autoregressive network with exogenous 
inputs (NARX) was used to transform the training data set into different data structure. 
In this study, three type of data structures were analyzed, namely: The base structure 
without any transformation, NARX-1 (NARX with time lag of 1), and NARX-2 
(NARX with time lag of 2). The complete equations for the different transformation on 
the data structure could be observed from Eq.(1) for base structure, Eq.(2) for NARX-1 
and Eq.(3) for NARX-2.  
 
𝑦(𝑡) = 𝐹𝑛(𝑥!)                             (1) 
 
𝑦(𝑡) = 𝐹𝑛(𝑦!"#, 𝑥!"#)                     (2) 
 
𝑦(𝑡) = 𝐹𝑛(𝑦!"#, 𝑦!"$, 𝑥!"#, 𝑥!"$)             (3) 
 
Where 𝑦(𝑡) represent the output and 𝑥(𝑡) is the input of the model at time 𝑡. 1 and 2 is 
the maximum input and output time lag. 𝐹𝑛 is the nonlinear function.  
 
NARX is one of the more robust time series models that has exogeneous inputs, it has 
the ability to generate forecast of future output value based on the past input and output 
values with varying degree of time lag. In theory, by transforming the training data 
structure with NARX model, the learning rate of the resulting trained neural network 
model should be more effective and generate better prediction performance. 
Additionally, the neural networks model should converge to the desired solution much 
faster, leading to an overall better training efficiency and generalization capability (Lin 
et al., 1996).  A two-step combined algorithm based on NARX neural network were 
compared by (Buevich et al., 2021) against other models to predict various greenhouse 
gases (CH4 and H2O) concentrations. They found that the algorithms coupled with 
NARX model consistently outperform other models in predicting the greenhouse 
gaseous concentrations with correlation coefficient up to 0.87 when validated against 
the test dataset. In another study, Mohebbi et al. (2019) analyzed NARX modelled 
artificial neural network model against static neural network model to predict carbon 
monoxide concentration in Shiraz city. Their results, shows that the NARX-ANN model 
significantly improve the model performance with an R2 values of up to 0.72 compared 
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to that of static neural network model that has an R2 value of only 0.31. In our study the 
feed forward artificial neural network (FANN) model will utilized the NARX 
transformed data as the input to the model with maximum input and output lag time of 1 
and 2.  
 
2.4. Prediction Model 

Multiple linear regression (MLR) and Feed forward artificial neural network (FANN) 
model were analyzed and evaluated to predict the PM2.5 concentration. MLR is one of 
the most popular machine learning regression technique due to its simplicity, 
fundamentally, it explains a linear relationship between multiple input features to 
predict a single output feature. Eq.(4) below describe the universal formula for multiple 
linear regression model: 
 
𝑦 = 𝛽% + 𝛽#𝑋# +⋯+ 𝛽&𝑋& + 𝜀             (4) 
 
Where 𝑦 is the independent variable, 𝛽' is the coefficient, 𝑋' is the independent variable, 
and 𝜀 is the residual error between the real value and forecasted value. When 
performing MLR modelling it is assumed that the data is normally distributed, achieved 
linearity, without extreme values, and input parameters must be independent of each 
other. 
 
FANN were then analyzed which theoretically has better capability to capture the 
dynamic nonlinear relationship between the input parameters. Being one of the earliest 
classes of artificial neural network, FANN has been widely popular amongst the 
scientific community especially since it is generally superior compared to traditional 
statistical technique such as multi regression and ensemble decision tree technique 
(Grivas and Chaloulakou, 2006). Generally, the FANN algorithm has multiple neurons 
grouped within three types of layers: Input layers, hidden layers, and output layers. The 
input layer consists of various neurons that receive information from the dataset, each 
neuron is connected to every single neuron in next layer (hidden layers) with its own 
associated weight. The weight determines the strength between the two connected 
neurons. Each neuron sums all of the information received and pass it on to the output 
layer where the output value will be computed based on predefined activation function 
or transfer function (Kim et al., 2010).  
 
Levenberg-Marquardt algorithms was selected to train the network, as it converges 
faster to the desired solution compared to the more popular error backpropagation 
algorithm (EBP). Early stopping mechanism was also utilized, where training will be 
stopped immediately once the changes in validation errors no longer improve, thus 
avoiding overfitting and poor generalization capability. From early analysis, it was 
discovered that the best training parameter for the FANN model is 1 hidden layer and 
10 neurons. Therefore, there are three type of FANN model that will analyzed, the base 
FANN model, FANN-NARX(1), and FANN-NARX(2) 
 
The training dataset is randomly split into 70% training set, 15% test set, and 15% 
validation set. The performance of the model is compared and evaluated based on the 
coefficient of determination (R2) values and root mean squared error (RMSE). 
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3. Results and Discussion 
Meteorological data from five different cities in china were utilized to predict PM2.5 
concentration, where the performance of four different machine learning models were 
analysed, namely: MLR, FANN, FANN-NARX(1), and FANN-NARX(2). Initially, 
MLR and FANN model were trained using the original untransformed data structure. 
The performance of these base models in predicting the PM2.5 concentration for the test 
data set could be observed from Table 2. Due to the slight difference in scale between 
dataset from different cities, the RMSE values may slightly varies. 
 
Table 2: PM2.5 prediction performance of base MLR and FANN models for test dataset. 

 
The results from Table 2 shows that the FANN model consistently outperform the MLR 
model with much higher R2 values and lower RMSE values throughout all five cities. It 
could be observed that even the best performing MLR model (Beijing dataset) could 
only score an R2 values of 0.29 which is about 58% lower than that of the best 
performing FANN model that scored an R2 values of 0.69. The RMSE is also lower at 
only 0.528 compared to MLR model at 0.873. This shows that despite of only using the 
base untransformed data structure, FANN model is far superior to MLR model in 
predicting the PM2.5 concentration. However, as described in earlier section, the 
performance of the FANN model could be further improved by training it with NARX 
transformed data. Table 3 below depicts the performance of FANN model coupled with 
NARX with time lag of 1 and 2 on test data. 
 
Table 3: PM2.5 prediction performance of FANN-NARX(1) and FANN-NARX(2) 

 
By utilizing the NARX transformed data structure on the FANN model, significant 
improvement in prediction performance could be observed across all five datasets. In 
term of time lag, the result shows that FANN-NARX(2) has an overall slight edges in 
performance compared to FANN-NARX(1) model, this is especially evident through 
the lower RMSE scores. The largest increase in performance could be observe from the 
Guangzhou dataset, where the FANN-NARX(2) model scored an R2 values of 0.94 
which is 53% higher than the base FANN model and a staggering 79% higher than the 
base MLR model.  

Model 
Beijing Chengdu Guangzhou Shenyang Shanghai 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

MLR 0.29 0.873 0.27 0.840 0.20 0.899 0.26 0.881 0.22 0.858 

FANN 0.69 0.528 0.64 0.586 0.44 0.737 0.54 0.695 0.53 0.688 

Model 
Beijing Chengdu Guangzhou Shenyang Shanghai 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

FANN-
NARX(1) 0.96 0.084 0.97 0.047 0.93 0.148 0.96 0.069 0.97 0.406 

FANN-
NARX(2) 0.96 0.080 0.97 0.044 0.94 0.136 0.97 0.063 0.97 0.360 
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4. Conclusion 

In this study, nonlinear autoregressive network with exogenous inputs (NARX) were 
analysed in transforming the training data structure for PM2.5 predictions. Two 
variations were examined NARX(1) with time lag of 1 and NARX(2) with time lag of 
2. The models utilised for the prediction models are multi linear regression (MLR) and 
feed forward artificial neural network (FANN). When only trained with the base 
structure, the results shows than the FANN model is vastly better with an R2 values of 
up to 0.69 (Beijing dataset) compared to that of MLR at 0.29. However, when coupled 
with NARX transformed data structure, the performance of the FANN model 
significantly improved. The best performing FANN-NARX(2) model achieved an R2 
values of up to 0.97 (Chengdu dataset) which is about 34% higher than base FANN 
model and 72%  higher than MLR model. In future study, the generalization capability 
of the model could be further improved by training the model with a combined dataset 
instead of individual dataset and testing the model with real world external data. 
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Abstract 

This work discusses a multi-output strategy to generate surrogate models in the 

chemical engineering context. The rationale behind our approach is that in a chemical 

process many outputs, such as concentrations of different species, are highly related by 

the underlying physicochemical phenomena. Hence, the expressions that model them 

should have terms that are common to all. In here, we extend our previous work on 

surrogate modelling to develop an algorithm that, in the same execution, learns models 

for several related output variables. We evaluate the algorithm by taking different 

combinations of CSTR arrangements as case studies, that represent structures with 

different levels of sharing. We conclude that the multi-output strategy is successful in 

building models that share common functionalities with adequate errors.  

 

Keywords: Machine Learning; Surrogate model; Multi-output regression; Kaizen 

Programming; Evolutionary Algorithms. 

1. Introduction 

The use of surrogate models is related to the need of simple but accurate representations 

of the variation of output variables with several different input variables. Common 

techniques to build surrogate models including Gaussian Process (Kriging, Krige, 

1951), Support Vector Machine (Smola and Scholkop, 2004) or ALAMO (Cozad et al., 

2014), make use of a set of predefined functional bases to generate single-output 

models. 

However, chemical processes are rarely single-output; many outputs such as 

concentrations of different species are highly related by the underlying physicochemical 

phenomena. For this reason, it is desirable to have techniques that can construct multi-

output surrogate models. We hypothesize that in these multi-output models, outputs that 

we know have the same underlying physical-chemical phenomena, need to have models 

with terms that are common.  

In this work, we extend the algorithm in Ferreira et al. (2019) to allow for the generation 

of several surrogate models concurrently for the different outputs of a system in one 

execution of the algorithm.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50295-5 
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Figure 1 – Generation of surrogate models for several outputs with the same input data. Left: the 

single-output strategy repeatedly executes the algorithm to learn one model at a time. Right:  the 

multi-output strategy learns all the models in the same run.  

As before, the models are learned based on our implementation of Kaizen programming 

(KP, Ferreira et. al, 2021a). KP is an iterative algorithm for solving symbolic regression 

problems as a linear combination of nonlinear bases, with no a priori assumption of the

functional bases. Thus, in the proposed multi-output extension of KP, models that share 

functional bases are favoured. A first approach to multi-output KP applied to the 

benchmark functions in Veloso et al. (2018) was included in Ferreira et al. (2021b).   

The paper is organized as follows: section 2 presents the multi-output strategy, section 3 

discusses the case studies, section 4 presents the numerical results.     

2. Multi-output machine learning strategy  

Figure 1 schematizes the general problem we are solving and the difference with the 

current approach. The general problem is finding surrogate models for several related 

output variables. Currently, most machine learning methods solve this problem by 

repeatedly executing the same algorithm using the same inlet data (represented by 

several vectors x) and the corresponding outlet data (one of the vectors y). We refer to 

this approach as the single-output (SO) strategy.  By doing this, we obtain a set of outlet 

surrogate models for y, where each yj is computed as a combination of the nonlinear 

basis 𝑓𝑖
𝑗
 In KP these 𝑓𝑖

𝑗
 are learned from the data, thus not necessarily the same set of 

𝑓𝑖
𝑗
 is obtained if a different execution is run for each output yj. We will refer to the 

single-output strategy using Kaizen Programming as SO-KP. 

If, the output variables yj are related to each other, as is the case with many chemical 

engineering applications, it is desirable to learn the surrogate models for all the output 

variables in the same execution, as this allows for using the same functional bases for all 

the models that are being learned. We will refer to this multi-output strategy using 

Kaizen Programming as MO-KP. 

Recalling that that there are two main steps in SO-KP: one where the functional bases 

(𝑓𝑖
𝑗
) are created and modified using genetic programming, and another one where the 
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coefficients (𝛽𝑖
𝑗
) are calculated by ordinary least squares (OLS), the modifications 

required for the MO-KP algorithm were at this second step and are as follows:  

(i) We substituted the SO-OLS step, by a multi-output linear regression based on OLS 

(MO-OLS). At the MO-OLS step we first specified that the same set of functional 

bases 𝑓𝑖
𝑗
 was considered for all outputs yj; then, we added a step in which the 

functional bases were ranked according to the p-value (this parameter is used to 

measure the relevance of a particular functional basis in each final expression for 

yj). 

(ii) We used a different fitness function as a criterion for selection of the model: in SO-

KP an adjusted 𝑅2 of the output variable model was used, whereas in MO-KP, the 

minimum of all the adjusted 𝑅2 of the output variables was used. In both cases this 

adjusted 𝑅2 refers to training data. 

It is important to note that these changes do not force the final expressions of yj to all 

have the same functional bases but enhances the probability of that happening. More 

details of the algorithms can be found in Ferreira et al. (2019) and Ferreira et al. (2021).  

3. Case studies 

The proposed MO-KP algorithm was evaluated by considering three levels of overlap in 

the terms of the output variable models yj, that may arise in chemical engineering 

settings (see Figure 2):  

Case study 1-Large overlap (CS1): considers the dynamic model of a CSTR with three 

first order reactions in series (A→B→C→ D). By deriving the analytical solution for 

this system (for a constant volume and inlet flowrate of reactant A) it can be shown that 

the functional bases of y1 (in this case CA (t, CAin)) are included in the functional bases 

of y2, (in this case CB (t, CAin)), those of y2 in y3 (in this case CC (t, CAin)), and so on.  

Case study 2-Least overlap (CS2): considers three steady state CSTRs in parallel, with a 

mixing point to combine the outlets. A first order reaction (A→B) occurs in each 

reactor. This could model, for example, three municipal wastewater treatment plants 

that receive different loads and are combined before final disposal. In the analytical 

solution of this system, y1 (in this case CA1(q1)), y2 (in this case CA2(q2)) and y3 (in this 

Figure 2 – Case studies and the scheme of shared functional bases. Output variables are in bold. 
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case CA3(q3)) do not share any functional bases, and y4 (in this case CA(q1, q2, q3)) shares 

functional bases with the other three output variables.  

Case study 3 (CS3)-Medium overlap: considers two steady state CSTRs in parallel and a 

third one in series with the other two; first order reactions (A→B) are considered for the 

three of them. This could represent also waste water treatment plants that receive 

different loads and are sent to a final treatment plant before disposal. In the analytical 

solutions for this case, y1 (CA1(q1)) and y3 (CA3(q1, q2)) share some functional bases, y2 

(CA2(q2)) and y3 share some other functional bases, but y1 and y2, do not share any 

functional bases; y4 (CA(q1, q2, q3)) shares functional bases with the other three.  

4. Numerical results and discussion 

Input-output datasets were obtained by considering the analytic solutions of each output 

variable for each case study in Fig. 2. The following values were used: V=1 L, k1=3.7 

min-1, k2=4 min-1, k3=3 min-1, q=2 Lmin-1, CA(0)=CB(0)=CC(0)=CD(0)=0, CA1in =1 molL-1, 

CA2in =2 molL-1, and CAin =3 molL-1. 100 points were randomly generated using a 

uniform distribution with the following ranges: CAin [0.5-3] molL-1, t  [0-3] min, 

𝑞 [0.5-4] Lmin-1. Each case study was executed 100 times, with a different training 

set, the parameters of the algorithm were as in Ferreira et al. (2021), except the number 

of iterations, which is set in 3000. The expressions with the best adjusted 𝑅2 of MO 

algorithm over the learning set are as follows:  

Case study 1: 

𝑦1 = 41.38𝑓1 + 0.026𝑓2 + 0.075𝑓3 + 0.11𝑓4 + 0.31𝑓5 + 15.28𝑓6 + 4.01𝑓7 + 40.91𝑓8 

𝑦2 = 28.70𝑓1 + 0.012𝑓2 + 0.69𝑓3 + 0.40𝑓4 − 0.66𝑓5 + 8.86𝑓6 + 4.15𝑓7 − 28.58𝑓8 

𝑦3 = −33.67𝑓1 + 0.074𝑓2 − 1.98𝑓3 − 0.53𝑓4 + 1.51𝑓5 − 11.50𝑓6 − 4.36𝑓7 + 34.34𝑓8 

𝑦4 = −64.59𝑓1 − 0.32𝑓2 + 4.87𝑓3 − 0.10𝑓4 − 0.26𝑓5 − 24.70𝑓6 − 5.33𝑓7 + 63.07𝑓8 

With 𝑓1 =
𝐶𝐴𝑖𝑛

𝑡

(𝑡 + 0.46)
 , 𝑓2 =

𝐶𝐴𝑖𝑛
 𝑡

(0.087𝑡2+ 1.03)
, 𝑓3 =

𝐶𝐴𝑖𝑛
𝑡

(1.73 𝑡 + 0.087𝑡2+ 0.66)
, 𝑓4 =

𝐶𝐴𝑖𝑛

(0.28
𝑡⁄ + 0.50 𝑡)

 

𝑓5 =
𝐶𝐴𝑖𝑛

(0.63
𝑡⁄  + 𝑡)

, 𝑓6 =
𝐶𝐴𝑖𝑛

(𝑡 + 0.50)
  , 𝑓7 =

𝐶𝐴𝑖𝑛

(𝑡 + 0.087𝑡2+ 0.38)
 , 𝑓8 = 𝐶𝐴𝑖𝑛

 

 

Case study 2: 

𝑦1 = 1.49𝑓1 + 0.034 𝑓2 + 1.59 𝑓3 − 0.0097𝑓4 + 0.034𝑓5 + 0.86𝑓6 + 0.14𝑓7 − 0.92
+  0.031𝑞1 + 0.031𝑞2 

𝑦2 = 0.32𝑓1 + 0.049 𝑓2 + 3.04 𝑓3 − 0.049𝑓5 + 0.18𝑓6 + 0.13𝑓7 − 0.59 +  0.073𝑞1 +
0.073𝑞2  −  0.0039 𝑞3   
𝑦3 = −0.0058 𝑓1 −  0.0058 𝑓2 +  1.32 𝑓4   +  0.010 𝑓7  −  0.34 +  0.20 𝑞3  

𝑦4 = −2.57 𝑓1 +  0.66 𝑓2 − 2.37𝑓3  −  0.36𝑓4  +  0.66𝑓5 −  1.48 𝑓6 −  0.76 𝑓7 +  2.09
+  0.068 𝑞1 +  0.068 𝑞2  +  0.081 𝑞3 

With 𝑓1 =
𝑞1

 (𝑞1 + 𝑞2 + 1.59)
,  𝑓2 =

𝑞1

 (𝑞1 + 2 𝑞2 + 1.38)
,  𝑓3 =

𝑞2

(𝑞1 + 2 𝑞2 + 1.40)
,  𝑓4 =

𝑞3

 (𝑞3 + 0.65)
,  

𝑓5 =  
 𝑞3

(𝑞1 + 2𝑞2 + 1.38)
,  𝑓6 =

1

 (𝑞1 + 𝑞2 + 1.59)
,    𝑓7 =

1

(𝑞1 𝑞2 + 0.58 𝑞1 + 𝑞2𝑞3)
 

 

Case Study 3: 

𝑦1 = −0.0015𝑓1 −  0.00078𝑓2 −  0.25𝑓3 − 0.34𝑓4  + 0.0070 𝑓5 − 1.51𝑓6 + 0.63
+  0.18𝑞1 − 0.071𝑞2  

𝑦2  =  −0.0028 𝑓1  −  0.0014 𝑓2  −  0.39 𝑓3 +  1.04 𝑓4 −  0.54 +  0.28 𝑞1  

𝑦3 = 0.0062 𝑓1  +  0.0031 𝑓2  +  1.017 𝑓3 −  1.18 𝑓4 −  0.023 𝑓5 −  3.83 𝑓6 +  1.73
−  0.66 𝑞1 +  0.26 𝑞2 



  

𝑦4 = 0.00042 𝑓1  +  0.00021 𝑓2  +  0.43𝑓3 −  0.70 𝑓4  −  0.0069 𝑓5 −  1.40 𝑓6 +  0.60
−  0.24 𝑞1 +  0.17 𝑞2 

With 𝑓1 = 𝑞1𝑞2, 𝑓2 = 𝑞1 𝑞2
2,  𝑓3 =

𝑞1
2

(1.56 𝑞1 + 𝑞2 + 1.26)
,  𝑓4 =

𝑞2

(0.67𝑞1𝑞2 + 1.02 𝑞2 + 2.17)
,      

𝑓5 = 𝑞2
2,  𝑓6 =

1

(0.85 𝑞1 + 𝑞2 + 2.17)
 

A graphical comparison of the number of terms shared by the different models in each 

case study, together with a comparison with the results from the SO-KP algorithm, is 

depicted in Figure 3. From here we conclude that MO-KP successfully finds all the 

overlaps that should be found (e.g., y4 with all the other yi in every case study, y3 with y1 

and y2 in CS3). However, it is also noticeable that expressions with overlapping terms 

for cases where there should not be any, are also returned. Examples of the latter are y1-

y2-y3 in CS2, and y1-y2 in CS3. This is a side effect of tuning the algorithm to favor 

common bases in all cases, regardless of the expected degree of sharing. On the other 

hand, SO-KP rarely finds a common term between expressions that do have them.  

A comparison of the average and median RMSE (over validation sets) for the 100 

executions is shown in Table 1. As seen both MO-KP and SO-KP provide accurate 

models. As expected, as every function is learned independently, SO-KP generally 

performs better in terms of the median of the error. However, it is interesting to note 

that in CS1, where the overlap of the functions is the largest, the error of MO-KP is 

similar or even better than that of SO-KP. Figure 4 shows a typical comparison between 

the output data points and the distribution of responses for both algorithms. As seen, 

despite lower overall errors, the SO-KP produces a few but significant outliers, which 

suggests that the model overfitted the learning data, thus did not generalize well to 

validation data. This was not seen in MO-KP, hence suggesting that MO-KP models 

should be preferred for applications as there is a lower risk of a highly erroneous 

prediction. However, preventing overfitting was not the main objective of this work, 

thus further studies on this direction may be needed.  

5. Conclusions and future directions 

In this work we analyse a multi-output strategy for learning surrogate models for several 

related output variables. In the analysis we consider three arrangements that are 

commonly found in Chemical Engineering settings and have different structures in 

terms of expected share of functional bases. We conclude that in terms of error in 

validation data the multi-output strategy builds models that are competitive with those  

Figure 4 – Validation data points vs predictions 

for MO-KP and SO-KP for 100 executions. 

Results correspond to CS2.   

Figure 3 - Pairwise comparison of shared terms 

for each outlet expression, ordered as: y1-y2, y1-

y3, y1-y4, y2-y3, y2-y4, y3-y4. 

PTTV(A multi-output machine learning approach for generation of surrogate models
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Table 1 - Average and median of RMSE distribution for 100 executions over validation sets 

obtained with single-output strategy, and even better in the case study whose structure 

has a large overlap of terms. In addition, the multi-output strategy performs better than 

the single-output in terms of the presence of outliers. However, the strategy tends to 

find shared terms even in those cases where the structure prevents so. Thus, future 

versions of the algorithm should include steps that allow to find a balance in term-

sharing based on the structure of the problem. Another future direction includes learning 

expressions that resemble the underlying physicochemical phenomena. In this sense, the 

expressions learned for CS2 and CS3 already include terms that have similarities with 

the analytical ones. This feature should be further exploited so that the algorithm returns 

models that are closer to the theoretically expected expression.  
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Output Alg. 
Case study 1 Case study 2 Case study 3 

Average Median Average Median Average Median 

y1 
SO 3.16E+00 1.59E-03 9.02E-05 1.93E-05 2.83E-05 4.31E-06 

MO 8.01E-02 4.41E-04 8.34E-03 8.27E-03 1.73E-03 1.89E-03 

y2 
SO 4,64E-01 1,74E-03 6,41E-02 2,26E-05 4,02E-05 6,50E-06 

MO 4,04E-01 1,18E-03 1,61E-02 1,55E-02 3,59E-03 3,72E-03 

y3 
SO 1,22E+03 1,90E-03 2,46E-04 5,24E-05 1,83E-03 1,39E-03 

MO 2,89E-01 1,13E-03 2,48E-02 2,50E-02 2,73E-03 2,69E-03 

y4 
SO 6,02E-01 9,58E-04 1,52E-02 1,16E-02 6,32E-04 5,39E-04 

MO 4,73E-01 1,66E-03 1,95E-02 1,95E-02 1,52E-03 1,48E-03 
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Abstract 

In chemical plants, transition operations, such as changing the production load from 100% 

to 80%, are commonly performed to satisfy production needs. As plant models used in 

conventional automatic control methods (e.g. step response models) cannot predict non-

steady states, these transition operations warrant manual control. Previously, we proposed 

an automatic optimal control method using dynamic simulators and reinforcement 

learning, a machine learning method in artificial intelligence (AI), for transition 

operations. We implemented this existing AI system in an actual industrial plant and 

determined that further improvements were required in the interaction between the system 

and human operators for reliable and acceptable guidance. In this paper, we propose a 

human interface system for realising optimal transition operations by enabling AI to 

cooperate with human operators. To validate and authorise the AI-proposed 

manipulations performed by human operators, the interface system presented the entire 

procedure and sensors influencing the AI decision for online disturbance rejection prior 

to actual manipulations. The interface, coupled with the control method, was evaluated 

experimentally in an actual chemical plant. The proposed system demonstrated optimised 

transition operations for producing purity changes under abrupt heavy rain disturbance in 

terms of guidance. 

Keywords: chemical plant, reinforcement learning, optimisation, explainable AI. 

1. Introduction 

Modern chemical plants are commonly equipped with advanced controllers, such as 

model predictive control (MPC), to maintain steady states and stable production. In 

addition to steady operations, transition operations, such as changing production loads, 

are frequently performed in chemical plants to satisfy production needs. Although several 

automation methods, including sequence control, have been introduced to aid these 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50296-7 
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transition operations, limited methods exist for their optimal control. Previously, we 

proposed an automatic optimal control system for transition operations that leverages 

dynamic simulation and reinforcement learning (RL) (Kubosawa et al., 2021a and 2021b). 

However, in addition to control methods, the human interface is crucial for realising 

acceptable and reliable operations. This particularly applies to chemical plants, wherein 

any unforeseen incident can significantly impact society. In this paper, we propose a 

human interface system to guide transition operations in chemical plants. The interface 

system coupled with the control method was evaluated experimentally in an actual plant, 

which demonstrated that the optimised operations were efficiently performed with 

guidance from the system. 

2. Related work 

2.1. Simulation-based optimal control 

Kubosawa et al. (2021a) proposed a method to optimise and control the transition 

operation of an actual plant by leveraging dynamic simulation, tracking simulation, RL 

and domain randomisation. The proposed method utilised dynamic simulators for training 

human plant operators as the plant model. They further improved the state identification 

performance using RL and proposed an RL-based disturbance rejection method 

(Kubosawa et al., 2021b). Both improvements were aimed at reducing the gaps between 

simulated and real states. These gaps can be triggered by multiple factors, including 

modelling errors, incorrect identification of states and external disturbances, such as 

changes in weather. If the difference in behaviours can be reduced by adjusting the 

parameter values of the model with time, then RL can potentially improve the simulation 

behaviour and enhance the state identification accuracy of the tracking simulation. As the 

simulation-to-reality gaps can also be caused by disturbances, human operators are 

required to handle disturbances by leveraging domain knowledge and plant dynamics 

based on their experiences. This defines the quantitative relationship between 

manipulation and response. Previously, we focused on this aspect and designed the RL 

task to minimise the gaps between simulated states and real states online. These methods 

were evaluated in an actual chemical plant, and the results verified the optimisation of 

transition operations under abrupt heavy rain disturbances. 

Notably, the objectives of the proposed framework and nonlinear MPCs can be identical, 

that is, optimal control; however, their approaches are significantly different. MPCs 

commonly adopt online (on-site) optimisation methods, whereas RL is an offline 

optimisation method (i.e. prior optimisation to actual control). In addition, RL is a variant 

of machine learning methods, which consist of a field of artificial intelligence (AI). In 

this light, we distinguish the two approaches and refer the proposed method as an AI. 

2.2. Explainable AI 

As machine learning and AI applications include mission-critical systems, performance 

improvement alone is insufficient to determine whether AI can be adopted in actual 

operations. Therefore, the Defense Advanced Research Projects Agency initiated the 

Explainable AI (XAI) program in 2017. This program aimed to develop AI systems 

capable of explaining their rationale, strengths, weaknesses and future behaviour. As the 

explainability of a policy is essential in RL, one concept of the program explored the 
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development of explainable policy functions, whereas the other focused on developing 

an analysis method for existing black-box policies (Gunning and Aha, 2019). 

2.3. Sensitivity analysis 

Sensitivity analysis involves investigating the behaviours of mathematical models 

considering the changes in variables, including parameters and inputs (Pannell, 1997).  

  Eq. (1) is an example index 𝑔(𝒙, 𝑖) for the analysis of a model 𝑓:ℝ2 → ℝ using a partial 

derivative of the 𝑖-th input variable 𝑥𝑖. This index describes the effect of a minor change 

in 𝑥𝑖 on the output. In other words, it indicates the importance of each input in the model 

prediction (i.e. weight of the nonlinear model at the input). Sakahara and Kubosawa 

(2021) proposed the directions of applying these analysis methods to RL models. 

3. Proposed method 

3.1. Operation flow 

The transition operations of chemical plants involve non-steady states and unfamiliar 

situations. Therefore, human operators conduct these procedures cautiously to handle 

unforeseen situations during operation. To support human operators anticipating various 

situations, AI-based procedures should be validated by human operators before 

acceptance or rejection. To develop validation methods, we leveraged the two concepts 

of XAI. One concept presents the future behaviour of the AI, whereas the other analyses 

the AI’s perspective by determining which sensor affects AI decisions.  

Figure 1 depicts the workflow of the human operator, overall architecture of the AI 

controller and proposed interface system. The thick and thin arrows indicate the process 

and data flows, respectively. The AI system comprises three RL agents: First, the 

𝑔(𝒙, 𝑖) = |
∂𝑓(𝑥1, 𝑥2)

𝜕𝑥𝑖
| (1) 
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Figure 1. Operation flow and AI architecture with the proposed interface system. 
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parameter estimator provides optimised parameter values to the tracking simulator, which 

receives real-time manipulations from the actual plant and estimates the plant state online. 

Second, the plan generator presents an optimised procedure that begins with the current 

plant state and finally achieves the required target state. Third, the disturbance rejecter 

adjusts the planned manipulation values and presents optimal values if the gap between 

the actual and predicted states is unexpectedly widened (Kubosawa et al., 2021b).  

As indicated in Figure 1, two major interaction points exist between human operators and 

AI in this interface. The first point (A) presents the time-series of the optimised procedure 

and predicted future response of the total operation to a specified target state and 

condition, such as target production load of 80%, or the priority of the procedure, 

including energy efficiency and robustness. The second point (B) presents the adjusted 

manipulations to reduce simulation-to-reality gaps. 

3.2. Assessment of the offline procedure  

To begin transition operations, human operators determine and input the target situation 

and desired conditions to the interface system. The system presents (A) the operation plan 

comprising the time series of the optimised procedure, which includes the set-point values 

of the proportional–integral–differential controllers, and the predicted future response. 

The future behaviour of the AI is presented in its entirety prior to the actual manipulations. 

Figure 2(a) depicts a screenshot of the plan presented during the experiment. The 

qualitative direction of the manipulation over time, such as increasing or decreasing, is a 

major aspect that verifies the procedure. Human operators review the entire plan and 

determine its acceptance or rejection. If the plan is accepted, then it is initiated, and the 

system monitors the gaps between the predicted and actual responses.  

Figure 2. Interface system screenshots. 

← (a) Original plan for review  

by the operators in advance (A) 

↓ (b) Online guidance  

for rejecting the disturbances (B) 

 

← (a) Original plan 

for review by the operators in advance (A) 

↓ (b) Online guidance  

for rejecting the disturbances (B) 
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3.3. Assessment of the online action  

D u r i n g  t h e  p r o c e d u r e ,  g a p s  m a y  e m e r g e  b e t w e e n  t h e  p r e d i c t e d  a n d  a c t u a l  r e s p o n s e s  

o w i n g  t o  a  m i s m a t c h  i n  t h e  d y n a m i c s ,  s u c h  a s  t e m p o r a l  c h a n g e s  i n  m o d e l  p a r a m e t e r s ,  a n d  

e x t e r n a l  d i s t u r b a n c e s .  T o  h a n d l e  s u c h  a b r u p t  c h a n g e s  i n  a c t u a l  s i t u a t i o n s ,  t h e  d i s t u r b a n c e  

r e j e c t i o n  a g e n t  w o r k s  o n l i n e .  T h e  a g e n t  m o n i t o r s  t h e  g a p s  a n d  p r o p o s e s  t h e  a d j u s t e d  a n d  

u p d a t e d  m a n i p u l a t i o n  v a l u e s  t o  c a n c e l  t h e  g a p  p e r i o d i c a l l y .  W e  u s e d  a  c o n t r o l  i n t e r v a l  o f  

5  m i n  i n  t h e  e x p e r i m e n t .  T o  e x p l a i n  t h e  a d j u s t m e n t  a n d  r e v i e w  t h e  m a n i p u l a t i o n s  b e f o r e  

p e r f o r m i n g  t h e m ,  t h e  i n t e r f a c e  s y s t e m  a n a l y s e s  t h e  b e h a v i o u r  a n d  p r e s e n t s  t h e  r e s u l t  ( B )  

t o  t h e  o p e r a t o r s  3  m i n  p r i o r  t o  t h e  s u b s e q u e n t  m a n i p u l a t i o n ,  d u r i n g  w h i c h  t h e  o p e r a t o r s  

r e v i e w  t h e  m a n i p u l a t i o n  a n d  d e t e r m i n e  i t s  a c c e p t a n c e  o r  r e j e c t i o n .  F i g u r e  2 ( b )  i l l u s t r a t e s  

a  s c r e e n s h o t  o f  t h e  g u i d a n c e  f o r  r e j e c t i o n  d u r i n g  t h e  e x p e r i m e n t .  T h e  s y s t e m  p r e s e n t s  t h e  

i m p o r t a n c e  o f  t h e  s e n s o r s  i n  t h e  a d j u s t m e n t  u s i n g  t h e  s e n s i t i v i t y  a n a l y s i s  o f  t h e  a d j u s t i n g  

p o l i c y  r e g a r d i n g  t h e  c u r r e n t  s t a t e ,  w h i c h  i s  a  p a r t i a l  d e r i v a t i v e  o f  t h e  p o l i c y  f u n c t i o n  o f  

s t a t e s  o r  e a c h  s e n s o r .  I f  t h e  A I - f o c u s e d  s e n s o r s ,  w h i c h  a r e  t y p i c a l l y  m i s m a t c h e d ,  a r e  

c o n s i d e r e d  i n a p p r o p r i a t e  i n  t h e  c u r r e n t  s i t u a t i o n ,  t h e n  t h e  o p e r a t o r s  c a n  r e j e c t  t h e  p r o p o s a l .   

4. E x periment 

W e  e v a l u a t e d  o u r  s y s t e m  a t  a n  a c t u a l  m e t h a n o l  d i s t i l l a t i o n  p l a n t  f o r  t r a i n i n g  h u m a n  

o p e r a t o r s ,  a s  d e s c r i b e d  i n  p r e v i o u s  s t u d i e s  ( K u b o s a w a  e t  a l . ,  2 0 2 1 a  a n d  2 0 2 1 b ) .  T h e  p l a n t  

s e p a r a t e s  m e t h a n o l  a n d  w a t e r  f r o m  i t s  l i q u i d  m i x t u r e .  T h e  e x p e r i m e n t a l  t a s k  i n v o l v e s  t h e  

t r a n s i t i o n  o p e r a t i o n  o f  p r o d u c i n g  p u r i t y  c h a n g e s  ( d o w n g r a d e  a n d  u p g r a d e )  u n d e r  a b r u p t  

d i s t u r b a n c e s  c a u s e d  b y  h e a v y  r a i n s .  A  d e t a i l e d  d e s c r i p t i o n  o f  t h e  p l a n t  a n d  i t s  m o d e l  u s e d  

i n  t h i s  e x p e r i m e n t  i s  p r e s e n t e d  i n  K u b o s a w a  e t  a l .  ( 2 0 2 1 b ) .  

I n  t h e  e x p e r i m e n t  p r e s e n t e d  i n  F i g u r e  3 ,  a l l  p r o p o s a l s  w e r e  a c c e p t e d  b y  t h e  h u m a n  

o p e r a t o r s .  F i g u r e  3  i l l u s t r a t e s  t h e  r e s p o n s e s  o b t a i n e d  d u r i n g  t h e  d o w n g r a d e  a n d  u p g r a d e  

o p e r a t i o n s .  T h e  d a s h e d  l i n e s  i n d i c a t e  t h e  o r i g i n a l l y  p r e d i c t e d  a c t i o n s  o r  r e s p o n s e s .  I n  

F i g u r e  3 ( a ) ,  t h e  g a p s  b e t w e e n  t h e  s o l i d  ( a d j u s t e d )  a n d  d a s h e d  ( o r i g i n a l l y  p l a n n e d )  l i n e s  

( a )  P e r f o r m e d  a c t i o n s  ( b )  T o w e r  t e m p e r a t u r e  p r o f i l e  

( c )  T o p  M e O H  P u r i t y  ( d )  B o t t o m  M e O H  P u r i t y  

S t e a m  

 
S t e a m  

R e f l u x  

 
R e f l u x  

A c c e p t a b l e  
r a n g e  

 
A c c e p t a b l e  

r a n g e  

F i g u r e  3 .  E x p e r i m e n t a l  r e s u l t s  o f  t h e  p u r i t y  t r a n s i t i o n  o p e r a t i o n  u s i n g  t h e  p r o p o s e d  

s y s t e m .   
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indicate the adjustment of actions. Figure 3(b) depicts the oscillation phenomena 

observed in the response, which were suppressed owing to the adjustments. Figure 3(c) 

illustrates the time series of the top purity, and the points indicate the actual sampled 

purity. The shaded region in the figure indicates the acceptable purity. Both operations 

achieved acceptable states when counteracting the heavy rain disturbance, which began 

shortly after the first downgrade operation. 

In the other experiment of a downgrade operation, the transmission of the sensor readings 

to the system was abruptly suspended (i.e. the sensor readings were fixed since then), and 

the excessive action values has been proposed. This is because the temperatures of the 

actual plant were changing, whereas, as for the system, the response of the proposed 

corrected action seemed to be stayed; thus, the system significantly increased the action 

values. In this case, the human operators rejected the proposal during 3 min for the 

judgement and selected the originally planned values instead. 

5. Conclusions 

As transition operations in chemical plants involve non-steady states, unforeseen 

situations may be triggered. Therefore, explainable interfaces for AI guidance systems 

are required. In this study, we proposed a practical explanatory interface system using an 

existing automatic control system. The interface system proposes optimal procedures that 

can be performed by human operators with reliability and acceptability. We evaluated the 

entire system considering the transition operation for producing purity changes in an 

actual chemical plant and demonstrated the optimisation of the operations. In the future, 

we intend to investigate the application and installation of the proposed system to 

industrial chemical plants to optimise the actual production. 
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Abstract 

The application of surrogate modeling in engineering is surging recently for predicting 

the functional behavior of a system using analytical formulations as an alternative to 

complex models that often lead to non-convergence issues and not sufficiently accurate 

solutions in decision-making problems. The surrogate model building procedure 

addressed in this paper consists of four major steps to be applied in nonlinear blending 

of gasoline streams. The first is the input (x) dataset generation, performed using the 

Latin Hypercube Sampling (LHS) technique, which is coupled with a rescaling strategy, 

and used for evaluating the output (y) dataset. Secondly, the generated data are 

improved with a normalization procedure to mitigate numerical issues and to avoid 

biased surrogates. Thirdly, mixed integer quadratic programming (MIQP) formulation 

based on the least-squares regression is employed to build an optimizable surrogate 

function for each variable of interest. Fourthly, smaller and simpler surrogates are 

established and selected to be employed for gasoline blending operations by substituting 

the complex nonlinear and nonconvex rigorous formulation in an optimization case.  

Keywords: surrogate modeling, blending operations, optimization, machine learning. 

1. Introduction 

Quality specifications, operational complexity, and environmental regulations are the 

most challenging obstacles in chemical processes, especially in crude-oil refineries, 

which affect the supply-chain profitability (Lotero et al., 2016). Most blend properties 

of final products are nonlinear and non-convex. Hence, estimating data-driven final 

product properties from computer-controlled in-line databases can be a quite complex 

process (Ounahasaree et al., 2016). The optimization addressed herein uses predicted 

formulas based on amounts of inlet streams to replace nonlinear complexities for 

optimizing the final products’ amounts by matching blended properties with regulated 

specifications. Rigorous models of first principles, mechanistic, physics and 

engineering-based techniques can be reduced to black-box surrogate models to predict 

causation and correlation in blended properties of amounts of intermediate streams in 

scheduling, planning, multi-unit coordinating, and real-time optimization problems. 

There are previous works on surrogate-based optimization addressing MIQP (mixed-

integer quadratic programming). Straus et al. (2018) applied MIQP on ammonia 

reaction processes to predict the optimal selection matrix that reduces the sampling-

space in a self-optimizing variable surrogate modeling. Franzoi et al. (2020) used 

MIQP-based surrogate modeling to predict blending calculations of distillation unit 

outputs considering multiple feedstocks and operational variables. Franzoi et al. (2021) 

proposed an adaptive sampling MIQP-based surrogate modeling to predict reaction 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50297-9 
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system conversions. Moreover, surrogates can also be used as factor-flow balances in 

blenders for blend scheduling optimization (Kelly et al., 2018). In general, surrogate 

modeling is employed for representing algebraic formulas 𝑌 = 𝑓(𝑥) that formulates the 

causation relationships between the input of independent variable (𝑥) and the output of 

dependent variable (𝑌) to model complex, unmodeled, or unknown systems.  

2. Problem statement 

Blending operations are continuous processes of feedstocks entering a blender to 

produce a final product with determined specification on qualities. In this paper, the 

gasoline blending operation is addressed. There are nine feedstocks (𝑥) in the process 

presenting the most common refinery blends, which are shown in Table 1, with their 

respective nomenclatures for j ∈ {1. .9}. Similarly, yields of  i ∈ {1. .7} for properties 

(𝑦) are considered, namely, Reid vapor pressure (RVP), aromatic content (ARO), olefin 

content (OLE), specific gravity (SG), sulfur content (SUL), research octane number 

(RON), and motor octane number (MON). These are the most important properties in 

operational and economical levels for enhancing the gasoline octane rating, which is 

especially important to increase fuel performance, suitability, and efficiency. These 

properties are also relevant for the fuel volatility, combustibility, and level of pollution. 

Table 1: Gasoline blending feedstocks and their properties (Menezes et al., 2014). 

)iProperties (y            

 
 

 

Feedstocks (xj) 

RVP 

(kPa) 

RON MON ARO 

(vol%) 

OLE          

(vol%) 

SG 

(g/cm3) 

SUL 

(ppmw) 

Hydrotreated Light 

Cracked Naphtha 

55 93 82 25 10 0.729 0.005 

Hydrocracked 

Naphtha 

52 94.05 81.78 45 29 0.758 0.002 

Hydrotreated Cocker 

Light Naphtha 

56 83 76 2 1 0.718 0.005 

Light Naphtha 90.24 69.1 67.1 0.001 0.00001 0.699 0.0059 

Reformate 85 98 90 54 20 0.79 0.005 

Ethanol 17 109 90 0.1 0.02 0.79 0 

Isomerate 69 106 100 0.1 0.02 0.85 0.005 

Alkalyte 85 96 92 54 20 0.85 0.005 

Butane 51.52 93.8 90 0 0 0.601 0 
 

3. Surrogate modeling methodology 

1) Data Generation: the independent input (𝑥) variables of compositions are generated 

using the Latin Hypercube Sampling (LHS) technique, a statistical method of near-

random distribution sampling. Each point in the data set is constrained by Eq.(1) to sum 

to 1; each sampled 𝑥′ of feedstock 𝑗 in IV (independent variables) is constrained to 

produce a final 𝑥 of 𝑗. This ensures the mass balance across the blending operations.  
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𝑥𝑗 =
𝑥′

𝑗

∑ 𝑥𝑗𝑗 ∈𝐼𝑉
  ∀  𝑗 ∈ 𝐼𝑉    (1) 

The dependent output (𝑦) variables of yields are generated using the formulas from Eq. 

(2) to Eq.(6) for each sampled point of the dataset (Ounahasaree et al., 2016), which are 

regarded as the nonlinear properties. The subscripts 𝑗 refer to the feedstock of the 

stream 𝐼𝑁 resembled in a data point entering the blender, and 𝐺 is the gasoline product. 

The terms 𝑄𝑗 , 𝑠𝑢𝑙𝑗  , and 𝑠𝑔𝑗 respectively resemble the volumetric flowrate, sulfur 

content, and specific gravity of feedstock 𝑗. The octane properties of gasoline (RON and 

MON) are calculated using Eq.(7) to Eq.(11). Index 𝑣 is the volume-based property, 

𝐴𝑅𝑂𝑉𝑄 is the volume-based property for 𝐴𝑅𝑂2, and coefficients 𝑎 to 𝑔 are 

experimentally estimated values from real data retrieved from Menezes et al. (2014). 

𝑅𝑉𝑃𝐺 =
(∑ (𝑄𝑗𝑅𝑉𝑃𝑗

1.25))𝑗∈𝐼𝑁
0.8

∑ 𝑄𝑗j∈𝐼𝑁
 

(2) 

ARO𝐺 =
∑ QjARO𝑗j∈IN

∑ Q𝑗j∈IN
  (3) 

 

OLE𝑠 =
∑ QjOLE𝑗j∈IN

∑ Q𝑗∈IN
 

(4) 

 

𝑠𝑔𝑠 =
∑ 𝑄𝑗𝑠𝑔𝑗j∈𝐼𝑁

∑ 𝑄𝑗j∈𝐼𝑁
 

(5) 

 

𝑠𝑢𝑙𝐺 =
∑ 𝑄𝑗𝑠𝑔𝑗𝑠𝑢𝑙𝑗j∈𝐼𝑁

∑ 𝑄𝑗𝑠𝑔𝑗𝑗∈𝐼𝑁
 

(6) 

 

𝑅𝑂𝑁𝑗𝑣 = 𝑅𝑂𝑁𝑗 + 𝑎[(𝑅𝑂𝑁𝑗 − 𝑅𝑂𝑁𝑣)(𝐽𝑗 − 𝐽𝑣)] + 𝑏(𝐴𝑅𝑂𝑗 − 𝐴𝑅𝑂𝑣)
2

+ 𝑐(𝑂𝐿𝐸𝑗 −

𝑂𝐿𝐸𝑣)
2

+ 𝑑[(𝐴𝑅𝑂𝑗 − 𝐴𝑅𝑂𝑣)(𝑂𝐿𝐸𝑗 − 𝑂𝐿𝐸𝑣)]                                     ∀    𝑗 ∈ 𝐼𝑁   

(7) 

 

𝑀𝑂𝑁𝑗𝑣 = 𝑀𝑂𝑁𝑗 + 𝑒[(𝑀𝑂𝑁𝑗 − 𝑀𝑂𝑁𝑣)(𝐽𝑗 − 𝐽𝑣)] + 𝑓(𝐴𝑅𝑂𝑗 − 𝐴𝑅𝑂𝑣)
2

+ 𝑔[2(𝑂𝐿𝐸𝑗 −

𝑂𝐿𝐸𝑣)
2

(𝐴𝑅𝑂𝑉𝑄 − 𝐴𝑅𝑂𝑣
2) − (𝐴𝑅𝑂𝑉𝑄 − 𝐴𝑅𝑂𝑣

2)
2

]                             ∀    𝑗 ∈ 𝐼𝑁  

 

(8) 

𝐽𝑗,𝑣 = 𝑅𝑂𝑁j,𝑣 − 𝑀𝑂𝑁𝑗,𝑣                                                                                ∀   𝑗 ∈ 𝐼𝑁  (9) 

𝑅𝑂𝑁𝐺 =
∑ Qj𝑅𝑂𝑁𝑗𝑣j∈IN

∑ Qjj∈IN
      

(10) 

 

𝑀𝑂𝑁𝐺 =
∑ Qj𝑀𝑂𝑁𝑗𝑣j∈IN

∑ Qjj∈IN
      

(11) 

 

The data set points are partitioned into 50% training and 50% testing, the former for 

building the surrogate functions, and the latter to evaluate their performance, reliability, 

and robustness. 

2) Data improvement: the normalization of the generated 𝑥 and 𝑦 variables (𝑉𝑎𝑟) using 

Eq.(12) is performed to prevent the data from being biased or running across numerical 
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issues when building the surrogates through MIQP optimizations. The terms of 

𝑚𝑖𝑛(𝑉𝐴𝑅𝑖,𝑗
𝑡𝑟) and 𝑚𝑎𝑥(𝑉𝐴𝑅𝑖,𝑗

𝑡𝑟) refer to the minimum and maximum values of the training 

set array. Also, DV and IV refer to dependent and independent variables, respectively. 
 

𝑉𝐴𝑅𝑖,𝑗 =
𝑉𝐴𝑅𝑖,𝑗 − 𝑚𝑖𝑛(𝑉𝐴𝑅𝑖,𝑗

𝑡𝑟)

𝑚𝑎𝑥(𝑉𝐴𝑅𝑖,𝑗
𝑡𝑟) − 𝑚𝑖𝑛(𝑉𝐴𝑅𝑖,𝑗

𝑡𝑟) 
     ∀  𝑗 ∈ 𝐼𝑉, 𝑖 ∈ 𝐷𝑉 

 

(12) 

 

3) Surrogate Model Building: surrogates are built following a bilinear functional form 

estimation as in Eq.(13) that correlates the normalized 𝑥 and 𝑦 variable sets, with 

coefficients of 𝑏𝑖𝑗  and 𝑐𝑖𝑗  to be predicted using this correlation. The intercepts are 

eliminated to avoid any multi-collinearity issues. The estimation uses MIQP 

optimizations, utilizing the objective function of Eq.(14) that minimizes the least-

squares error (LSE) for linearly regressing the 𝑦 into 𝑌, subject to constraints Eq.(15) to 

Eq.(17), using 𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 points only, with 𝑧 as a binary decision variable and 𝑀 as a 

sufficiently large number (Franzoi et al., 2020). 

𝑌𝑖 = ∑ 𝑏𝑖𝑗𝑗 ∈ 𝐼𝑉 𝑋𝑗 + ∑ ∑ 𝑐𝑖𝑗𝑘𝑘 ∈ 𝐼𝑉 𝑋𝑗𝑋𝑘𝑗 ∈ 𝐼𝑉      ∀ {(𝑗, 𝑘) ∈ 𝐼𝑉, 𝑗 ≤ 𝑘}, 𝑖 ∈ 𝐷𝑉   (13) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑦𝑖𝑝
𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑝=1 − 𝑌𝑖𝑝 )2  (14) 

−𝑀𝑧𝑗 ≤ 𝑏𝑖𝑗 ≤ 𝑀𝑧𝑗                                          ∀  𝑗 ∈ 𝐼𝑉, 𝑖 ∈ 𝐷𝑉  (15) 

−𝑀𝑧𝑗𝑘 ≤ 𝑐𝑖𝑗𝑘 ≤ 𝑀𝑧𝑗𝑘                                    ∀ {(𝑗, 𝑘) ∈ 𝐼𝑉, 𝑗 ≤ 𝑘}, 𝑖 ∈ 𝐷𝑉  (16) 

 ∑ 𝑧𝑗𝑗 ∈ 𝐼𝑉  + ∑ 𝑧𝑗𝑘𝑗 ∈ 𝐼𝑉,𝑘 ∈ 𝐼𝑉,𝑗≤𝑘  ≤  𝐾       ∀ 𝑧𝑗 , 𝑧𝑗𝑘  {0,1}  (17) 

 

4) Performance Check: surrogates are used to-recalculate the generic dependent 

variables of Y, which are regarded as bilinear qualities of surrogates. The model 

performance is investigated by calculating the prediction errors and carrying out 

statistical analysis to ensure good predictability and reliability of results. 

4. Results and discussion  

Two distinct case studies are established for constructing the surrogate models and 

investigating their performance. For simplicity, only blended properties of the Y2 and 

Y3 plots are shown in Figure 1, Figure 2, and Figure 3, as they represent the most 

complex and difficult to predict variables considered in the formulation.  

Case I: The model is built using data sizes 𝑁 ∈ {100, 1000}; to testify the effect of the 

data set size in building it by comparing the MAE, referred to as prediction errors. 

Figure 1 illustrates that increasing the set size enhances the model overall performance, 

with lower testing and training MAE errors. In contrary, Table 2 reveals comparable 

model performance for both 𝑁 trials, that shows prediction errors not exceeding 𝑀𝐴𝐸 ≈

10−4 for both trials. In contrast, the percentual errors did not exceed 𝑀𝐴𝐸% ≈ 10−3 and 

𝑀𝐴𝐸% ≈ 10−4, respective to the trials, proving that prediction errors are enhanced with 

the data size increment. The overall results account for satisfying model performance. 

However, this is not sufficient for evaluating the model robustness and reliability. 

Hence, statistical analysis of MAE average, variance, standard deviations, and 

confidence intervals are also carried out to complement the analysis. Thus, 5% 
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u n c e r t a i n t y  i s  a c c o u n t e d  f o r  t e s t i n g  t h e  p o o r  p r e d i c t i o n  r e g i o n s  ( r e l i a b i l i t y )  a n d  t h e  

e x t e n t  o f  a p p l i c a b i l i t y  ( r o b u s t n e s s ) .  W i t h  u s i n g  9 5 %  c o n f i d e n c e  i n t e r v a l  p r o b a b i l i t y ,  

F i g u r e  2  i l l u s t r a t e s  t h e  e s t i m a t i o n  o f  t h e  s t a t i s t i c a l  a n a l y s i s  a r r a n g e d  i n  a s c e n d i n g  o r d e r .  

C o n s e c u t i v e l y ,  i t  r e s u l t e d  i n  b a s e  p o i n t s  p l o t ,  l y i n g  b e t w e e n  u p p e r  a n d  l o w e r  b o u n d s  

c u r v e s  o f  M A E  a d d e d  t o  a n d  s u b t r a c t e d  f r o m  t h e  c o n f i d e n c e  i n t e r v a l s  r e s p e c t i v e l y ,  

s h o w i n g  n a r r o w  c o n v e r g e n c e  b e t w e e n  a l l  t h e  c u r v e s .  T h i s  i l l u s t r a t e s  t h a t  t h e  v a r i a n c e s  

and the standard deviations are too small, and all regions’ MAE are approximate to the 

p u n c t u a l  v a l u e s ,  a c c o u n t i n g  f o r  s a t i s f y i n g  m o d e l  r e l i a b i l i t y  a n d  r o b u s t n e s s .  

T a b l e  2 :  M e a n  a b s o l u t e  e r r o r s  f o r  t h e  s u r r o g a t e  p r e d i c t i o n s .  
 Y 1  

( R V P )  
Y 2  
( R O N )  

Y 3  
( M O N )  

Y 4  
( A R O )  

Y 5  
( O L E )  

Y 6   
( S G )  

Y 7   
( S U L )  

M A E  ( N = 1 0 0 )  6 . 1 0  1 0 - 4  7 . 2 8  1 0 - 8  8 . 9 8  1 0 - 5  8 . 9 4  1 0 - 8  1 . 0 9  1 0 - 7  3 . 4 3  1 0 - 1 0  1 . 1 6  1 0 - 8  

M A E %  ( N = 1 0 0 )  1 . 0 7  1 0 - 3  7 . 8 1  1 0 - 8  1 . 0 9  1 0 - 4  3 . 9 7  1 0 - 7  1 . 0 9  1 0 - 6  4 . 6 2  1 0 - 8  2 . 7 0  1 0 - 4  
M A E  ( N = 1 0 0 0 )  3 . 1 9  1 0 - 4  6 . 1 2  1 0 - 8  8 . 0 8  1 0 - 5  1 . 2 5  1 0 - 7  5 . 4 4  1 0 - 8  3 . 2 0  1 0 - 1 0  9 . 3 6  1 0 - 9  

M A E %  ( N = 1 0 0 0 )  5 . 6 8  1 0 - 4  6 . 5 7  1 0 - 8  9 . 7 5  1 0 - 5  5 . 7 0  1 0 - 7  5 . 4 8  1 0 - 7  4 . 3 0  1 0 - 8  2 . 2 1  1 0 - 4  

 

 

F i g u r e  1 :  M A E  o f  b i l i n e a r  s u r r o g a t e s  v e r s u s  t h e  n u m b e r  o f  s a m p l e  p o i n t s .  

 

F i g u r e  2 :  M A E  w i t h  c o n f i d e n c e  i n t e r v a l  r a n g e  f o r  t h e  s a m p l e  p o i n t s  o f  Y 2 .  

Case II: B i l i n e a r  s u r r o g a t e s  w i t h  s i m p l e r  f o r m u l a t i o n  a n d  s m a l l e r  s i z e  f o r  𝑁 ∈  1000 

a r e  i d e n t i f i e d  b y  l i m i t i n g  t h e  n u m b e r  o f  t e r m s  ( K )  i n  t h e  s u r r o g a t e  ( o r i g i n a l l y  5 4 ) .  T h u s ,  

t h e  s u r r o g a t e s  a r e  t e s t e d  b y  p l o t t i n g  t h e  M A E  a g a i n s t  K  a s  s h o w n  i n  F i g u r e  3  t o  i d e n t i f y  

w h e t h e r  a  l o w e r  n u m b e r  o f  c o e f f i c i e n t s  w i t h  p r o v i d e s  s u f f i c i e n t  a c c u r a c y .  A s  a  r e s u l t ,  

t h e  p l o t  c o n f i r m e d  t h a t  u s i n g  u p  t o  4 5  s i m p l i f i e d  t e r m s ,  t h e  s u r r o g a t e s  a r e  p r e d i c t e d  t o  

g e n e r a t e  t h e  s a m e  o r i g i n a l  m o d e l  a c c u r a c y .  U s i n g  f e w e r  c o e f f i c i e n t s  c o m p r o m i s e s  t h e  

q u a l i t y  o f  t h e  s u r r o g a t e .  I n  g e n e r a l ,  t h i s  p r o c e d u r e  d o e s  n o t  g i v e  t h e  e x a c t  o p t i m a l  v a l u e  

o f  K ,  e s p e c i a l l y  a s  i t  d e p e n d s  o n  d i f f e r e n t  a s p e c t s ,  s u c h  a s  t h e  p r o b l e m  t y p e ,  

d i m e n s i o n a l i t y ,  f u n c t i o n a l  f o r m ,  d a t a  s i z e ,  e t c .   

PTZT(
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Figure 3: MAE versus different number of coefficients for Y 2 surrogate. 

5. Conclusion 

Surrogate modeling is utilized to predict analytical formulations for complex systems. 

In this work, nonlinear equations used to predict gasoline blending properties are

replaced by constructed bilinear surrogates. The surrogates for both values of 𝑁 show 

percentual errors not exceeding 𝑀𝐴𝐸% ≈ 10−3 and 𝑀𝐴𝐸% ≈ 10−4 respectively, with 

noticeable error decrement as the data size increases. The deviation from MAE is also 

calculated using 5%  uncertainty to account for eventual poor predictions, and to 

measure the extent of the model applicability. Hence, a 95%  confidence interval is used 

to calculate the lower and upper bounds of the MAE. As a result, the surrogates show 

sufficient performance, robustness, and reliability in replacing the original equations. In 

the second case study, simpler and smaller size surrogates are achieved. Presenting Y 2 

results, decreasing the surrogate terms from fifty-four to forty-five shows prediction 

errors of high proximity between the two models. However, further methodologies need 

to be developed in future to properly adj ust the surrogate model size within an 

automatic and systematic fashion. 
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Abstract 
In the era of intelligent manufacturing, the continuous manufacturing industry will benefit 
from digitalization technologies such as digital twins. This paper proposes a temporal 
convolutional network sequence-to-sequence (TCN-StS) model as a data-driven 
simulation tool for the construction of digital twins. The proposed model captures time 
delay information through temporal convolution operation and thus better predicts the 
process state variations than recurrent neural networks on an actual industrial sintering 
dataset and shows good robustness over time. This study sheds new light on process 
sequence-to-sequence modelling through convolutional networks. 

Keywords: sequence-to-sequence; temporal convolution; digital twin 

1. Introduction 
The continuous process is ubiquitous in steel, chemical, pharmaceutical, and other 
manufacturing industries. Prediction and operation decision-making in traditional 
continuous manufacturing processes rely on the knowledge reserve and cognitive level of 
operators, which severely restricts the safe and efficient operation of the production 
process. Over the decades, the soaring development of big data and artificial intelligence 
has brought transformational opportunities for the digitization of the process industry. 
The concept of digital twin (Glaessgen and Stargel, 2012; Gockel et al., 2012), initially 
proposed by the National Aeronautics and Space Administration (NASA), has recently 
been transplanted and deemed as the future solution to the manufacturing industry (Rosen 
et al., 2015).  

Sequence-to-sequence modelling is the closest approach as a digital twin, as it uses the 
historical operation sequences to capture the dynamics of the process and predict the 
future evolution. Chou et al. first designed a sequence-to-sequence soft sensor model and 
performed excellently for product impurity predictions of an industrial distillation column 
(Chou et al., 2020). Kang et al also built a sequence-to-sequence model and achieved 
rolling predictions in the process of vapor-recompression C3 (Kang et al., 2021). 
Although canonical recurrent neural networks such as LSTMs and GRUs are considered 
by most deep learning practitioners synonymous with sequence modelling, Bai et al 
indicated that temporal convolutional networks (Lea et al., 2016) outperformed recurrent 
neural networks across a diverse range of tasks and datasets, while demonstrating longer 
effective memory (Bai et al., 2018).   

These recent researches illustrate the importance of sequence-to-sequence modelling for 
the manufacturing industry and the potential of convolutional neural networks as a 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50298-0 
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positive option for sequential modelling. This paper proposes a temporal convolutional 
network sequence-to-sequence (TCN-StS) model to achieve continuous manufacturing 
process sequential prediction. The model is applied to the sintering process in the iron-
making industry and tested in an actual industrial dataset. 

2. Methodology 
2.1. Process description 

The sintering process is an important thermochemical process in the blast furnace 
ironmaking system. It involves the heating of fine iron ore with flux and coke fines or 
coal to produce a semi-molten mass that solidifies into porous pieces of sinter with the 
size and strength characteristics necessary for feeding into the blast furnace.  
This process is a typical continuous manufacturing process (Figure 1). Firstly, iron ore, 
coke, limestone, and returning sinter are mixed and then fed in a moving trolley to form 
a uniform sintering bed. Next, the igniter ignites the surface of the bed, and the blower 
under the moving trolley generates negative pressure in the bellow below the bed through 
the exhaust. As the trolley gradually moves to the end of the sintering machine, the 
combustion continues to develop downward (Zhou et al., 2019). In the end, the raw ore 
powder will gradually form sintered ore with a certain particle size, which will enter the 
subsequent blast furnace ironmaking production as iron material. 

 
Figure 1. Sintering process schematic. 

The sintering process owns the following two characteristics: 

Time delay. There is a time interval between the change of process variables in the 
sintering system and its downstream variables, which is called mechanism time lag. In 
addition, for the same batch of raw materials, because different variables are measured at 
different times, there will be a technical time lag. The coexistence of the two types of 
time delays makes the sintering process exhibit strong time-delay characteristics. 

Non-linearity. In the sintering process, a large number of chemical reactions such as coke 
combustion and limestone decomposition and a two-dimensional three-phase complex 
heat and mass transfer relationship exist at the same time, so the sintering system variables 
present obvious nonlinear relationship characteristics. 



Continuous Manufacturing Process Sequential Prediction using Temporal 
Convolutional Network   

An industrial sintering process dataset of 27,000 samples was obtained and used in this 
study. The dataset was collected from 2019/12/05 to 2019/12/24 with a sampling 
frequency of 1 min. There are 15 key variables including 9 operating variables (OVs) and 
6 state variables (SVs) in the process (Table 1). 

Table 1. Key variables of the process. 
Variable Notation 
Sintering bed thickness OV1 
Ignition intensity of row A OV2 
Ignition intensity of row B OV3 
Ignition temperature OV4 
Trolley speed OV5 
Round roller speed OV6 
Seven roller speed OV7 
Frequency of No.1 exhaust fan  OV8 
Frequency of No.2 exhaust fan OV9 
Bellow 14 negative pressure SV1 
Bellow 22 negative pressure SV2 
Bellow 14 gas temperature SV3 
Bellow 22 gas temperature SV4 
End point of sintering SV5 
End point temperature of sintering SV6 

2.2. Temporal convolutional network sequence-to-sequence (TCN-StS) Model 

The basic temporal convolutional network is a one-dimensional fully convolutional 
network with zero padding applied to make sure that the output sequence has the same 
length as the input sequence. To keep the convolution operation causal, which means for 
every i in {0, …, input_length－1}, the i-th element of the output sequence only depends 
on the elements of the input sequence with indices {0, …, i}, zero-padding is applied only 
on the left side of the input tensor. 

Nevertheless, it is very challenging to apply basic causal convolution directly to long-
term sequence problems due to its ability to look back only in a linear order in the depth 
of the network. Dilated convolution, which enables an exponentially large receptive field, 
eliminates this problem. Formally, for a one-dimensional sequence input x ∈ R𝑛𝑛 and a 
filter f: {0, … , k − 1} → R , the dilated convolution operation F  on elements s  of the 
sequence is defined as Eq. (1). 

F(s) = (𝐱𝐱 ∗𝑑𝑑 𝑓𝑓)(𝑠𝑠) = �𝑓𝑓(𝑖𝑖) ∙ 𝐱𝐱𝑠𝑠−𝑑𝑑∙𝑖𝑖

𝑘𝑘−1

𝑖𝑖=0

 (1) 

where d denotes the dilation factor, k is the filter size, and s − d ⋅ i accounts for the 
direction of the past. 

Besides, to avoid the gradient exploding/vanishing problems in deep neural networks, 
residual blocks with skip connections initially designed in ResNet (He et al., 2015) are 
used in TCN. The skip connection is a branch leading out to a series of transformations 
𝑭𝑭, whose outputs are added to the input 𝐱𝐱 of the block as Eq. (2). 

o = Activition(𝐱𝐱 + (𝑭𝑭(𝐱𝐱)) (2) 
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Within a residual block, two layers of dilated causal convolution, rectified linear unit 
(ReLU) activation, weight normalization, and spatial dropout are stacked. Figure 2(a) 
illustrates the TCN architecture. 

 
Figure 2. Proposed TCN-StS model. (a) Temporal convolutional network (TCN) 
architecture. (b) Sequence-to-sequence prediction demonstration. 

A sequence-to-sequence prediction manner is proposed in Figure 2(b). At time T, a 
sequence of shape (input length, feature dimensions) are combined with zero values of 
shape (output length, feature dimensions). This sequence represents the history from time 
(T－input length) to T. The model output is a sequence of shape (output length, output 
dimension) predicting the process state from time T + 1  to (T + output length) . 
Formally, the TCN-StS model produces the mapping as Eq. (3). 

𝐲𝐲�T+1,𝐲𝐲�T+2,⋯ , 𝐲𝐲�T+out_len = TCN_StS (𝐱𝐱T−in_len,⋯ , 𝐱𝐱T−1, 𝐱𝐱T) (3) 

3. Result and discussion 
The dataset is split into 70 % training, 10 % validating, and 20 % testing. Each feature of 
the original dataset is standardized separately. The input feature dimension is 15 
containing 9 OVs and 6 SVs while the output dimension is 6. An input length of 40 
minutes is set according to the time delay of the sintering process and predictions are 
made by the TCN-StS model for the time length of 5, 10, 15, and 20 minutes.  

Figure 3(a) presents a snapshot of sequential prediction for SV6. The prediction sequence 
shows good coincidence with the true sequence, especially at shorter prediction lengths 
such as 5 minutes and 10 minutes. The predictions shift away from the true values at 
longer prediction lengths. Two canonical recurrent neural networks, RNN and LSTM are 
adopted for comparison. The mean squared errors (MSEs) and mean absolute errors 
(MAEs) of the three models are given in Table 2. The TCN-StS model has lower MSEs 
and MAEs at all prediction lengths. The results indicate TCN-StS model outperforms 
recurrent neural networks at the sintering process sequential prediction. 

Table 2. Sequential prediction accuracy of RNN, LSTM, and TCN-StS model. 

Model 5 min 10 min 15 min 20 min 
MSE MAE MSE MAE MSE MAE MSE MAE 

RNN 0.32  0.38  0.46  0.48  0.55  0.54  0.62  0.57  
LSTM 0.30  0.37  0.38  0.44  0.50  0.52  0.54  0.55  

TCN-StS 0.26  0.33  0.36  0.40  0.41  0.44  0.46  0.47  

H. Li and T. Qiu
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Figure 3. Prediction results. (a) A sequential prediction snapshot for SV6 at 5, 10, 15, 
and 20 minutes prediction length. (b) Prediction results at 10 minutes time points in the 
10 minutes prediction sequence. 

To better present the prediction performance over time, prediction results for each time 
point are extracted separately from the sequence. Figure 3(b) shows prediction results at 
10 minutes time points in the 10 minutes prediction sequence. Prediction accuracies for 
each point in 10 minutes are shown in Figure 4. It can be found that as the prediction 
length increases, the prediction accuracy of all three models will become worse. For 
example, the TCN-StS model, with the average MSE of 0.36 and MAE of 0.40, shows 
the MSE and MAE of 0.24 and 0.33 at 1 min point, and 0.43 and 0.45 at 10 min point, 
respectively. The same growing trends are also found in RNN and LSTM models. 
Nevertheless, the TCN-StS model still has lower prediction errors than RNN and LSTM 
models at nearly all given time points, showing good robustness over time. 

 
Figure 4. Prediction accuracy for each time point in the sequence. (a) Mean squared 
errors (MSEs). (b) Mean absolute errors (MAEs). 

4. Conclusions 
This paper designed a new convolutional-based sequence-to-sequence model architecture 
for continuous manufacturing process sequential prediction. Comparted to recurrent 
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neural networks, the proposed TCN-StS model demonstrates better prediction accuracy 
at all given time lengths on an actual industrial dataset as well as a robust prediction 
capability over time. This study addresses the effectiveness of convolutional networks for 
sequence modelling and gives insights into utilizing sequence-to-sequence modelling as 
an effective simulation tool for constructing digital twins in the continuous manufacturing 
process. 
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Abstract 

Given the importance of liquefaction processes in the LNG value chain, it is necessary to 

model the complexity of such process. A key stage is the mixed refrigerant (MR) cycle 

used to liquify the natural gas in the liquefaction plant. The MR refrigeration cycle 

consists of compressors and heat exchangers in different compression stages that affect 

the MR properties in terms of temperature and pressure. In this work, the use of surrogate 

models is addressed for the compressor’s power consumption and efficiency formulations 

along with the heat exchanger’s performance in terms of heat duty after each compression 

stage. A training data set containing 500 points is used for building the surrogates, while 

a testing data set of 500 points verifies their accuracy. The surrogates built herein are 

shown to be sufficiently accurate to be further employed in decision-making industrial 

applications such as simulation, optimization, and control. 

Keywords: Surrogate modeling, refrigeration cycle, machine learning, liquefaction. 

1. Introduction 

The natural gas liquefaction plant is the most essential and critical process in the liquefied 

natural gas (LNG) value chain. In this process, the natural gas is cooled and liquified to a 

cryogenic temperature of around -162 ◦C. To achieve good quality of liquified natural 

gas, a comprehensive understanding of the process is required for improved design and 

operations of liquefaction plants. A key component in such processes is the mixed 

refrigerant (MR) stream, which plays a significant role in precooling, subcooling, and 

liquifying the natural gas to produce LNG. The MR streams undergo certain processing 

in the refrigeration cycle that consists mainly of refrigerant compressors and cooler type 

heat exchangers. In this work, a MR network is considered, in which propane (C3) and 

MR (C1, C2, C3, and N2) are used to cool and liquify natural gas. The mixed refrigeration 

process controls the LNG production outputs, while the propane refrigeration system aims 

to provide cooling to the MR (Mokhatab et al., 2014). Since the MR is precooled and 

liquified using propane during the process, the criticality of this operation arises from 

maintaining optimal MR temperature in the refrigeration cycle. Very high temperature of 

MR results in lower LNG production. A main reason of operating with warm MR is due 

to the high-power consumption of the compressor and its lower efficiency in addition to 

the low heat duty of heat exchangers. Therefore, it is important to include details of 

rigorous liquefaction process to better optimize the power consumption, the compressor 

efficiency, and the heat duty to produce cooler MR, and hence, more efficient LNG 

production. However, given its thermodynamics complexity, it is intractable to introduce 
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such nonlinearities in optimizable and controllable environments. Therefore, additional 

methods are required for achieving simplified correlations that simultaneously provide 

good accuracy and can be further embedded in decision-making problems.  

Recently, there has been an extensive use of surrogate modeling approaches for predicting 

the behavior of complex systems to provide improved computational tractability and 

avoid convergence issues in decision-making problems (Franzoi et al., 2021a). This work 

aims to build surrogate models from supervised simulated data of an MR refrigeration 

cycle unit that calculate the power consumption, efficiency of compressors, and heat duty 

of heat exchangers based on variable inputs. This method relies on three steps: 1) define 

base functions to be selected by a coefficient-setup approach that minimizes the variable 

outputs as the difference between 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  and 𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ; 2) the design of 

experiments including the sampling method and the data generation approach; and 3) the 

regression or identification method to determine the selected base functions and their 

respective coefficients (Tran and Georgakis, 2018; Hullen et al., 2020). To build the 

surrogate model, the data shall be accurate and can be determined in rigorous simulation 

software, collected from experiments in the plant, etc. Moreover, a proper balance 

between the quality of the model accuracy and the computational effort must be 

considered depending on the processing time and resources for a certain application 

(Mencarelli et al., 2020).  

In this paper, a surrogate modeling approach is used to handle the compressor’s power 

consumption and efficiency formulations as well as the heat exchanger performance after 

each compression stage in the liquefaction of natural gas, in which complex nonlinear 

equations are transformed into simpler bilinear and trilinear equations. The surrogate 

models correlate variations of independent X variables to dependent Y variables, which 

can be used to model different types of complex and unknown systems. 

2. Problem Statement 

The type of problem addressed herein concerns the cooling of mixed refrigerant, used to 

cool and liquefy the LNG in the main cryogenic heat exchanger. MR is widely employed 

within the natural gas liquefaction. The complexity of this process arises from the 

nonlinear terms that calculate the compressors efficiency and power and heat exchangers 

heat duty. The case study proposed in this work addresses the MR refrigeration cycle that 

undergoes three compression stages with intermediate cooling processes. Figure 1 

illustrates the MR refrigeration network, in which the MR   flow is recycled. It exits the 

main cryogenic heat exchanger (MCHE) top side in gaseous form and low pressure; 

throughout the network, the MR pressure is increased, liquefied in the C3 refrigeration 

cycle, and enters the MCHE again for cooling and liquefying the natural gas. 

Figure 

1: MR refrigeration cycle network. 
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This type of process is nonlinear and nonconvex because of the fluctuating temperatures 

and pressures after each stage and the requirement of calculating related variables such 

as the density and heat capacity for each temperature and pressure points. For each 

compression stage, Eqs.(1) and (2) are used to calculate the efficiency and power 

consumption for the compressors and the heat duty for the heat exchangers. The variables 

𝑇𝑖−1, 𝑇𝑖, and 𝑇𝑖
′ are the inlet, outlet, and ideal discharge temperatures from the 

compressors, respectively, and 𝜂𝑐𝑗 is the compressor’s efficiency. The indices 𝑖 and 𝑗 

respectively belong to the stream flows (before and after each compressor (SFC)) and to 

the compression stage (CS). The compressor power consumption is calculated using 

Eq.(3), in which 𝑊𝑗 is the power consumption for each compression stage and 𝐶𝑝𝑗 is the 

heat capacity for each compression stage. 

 

The heat duty for each heat exchanger is calculated using Eqs.(4) and (5). 

 

In which 𝑄𝑗 is the heat duty for each compression stage 𝑗, 𝜌𝑗 is the density for each 

compression stage, 𝑉𝑖 is the flow at each stream flow 𝑖 before and after each heat 

exchanger (SFH), while 𝑃𝑛𝑜𝑟𝑚𝑎𝑙 = 101,325 𝑃𝐴 and 𝑇𝑛𝑜𝑟𝑚𝑎𝑙 = 293 𝐾. 

3. Methodology 

The main purpose of this paper is to build surrogate models that can effectively replace 

the complex thermodynamic equations. The surrogates are built to represent three 

dependent variables of interest 𝑌, which are the properties of the compressors and heat 

exchangers shown in Figure 1 and represented by Eqs.(2), (3), and (5). Independent-

dependent variations correlate as 𝑌𝑖 = 𝑓(𝑋𝑗). The input variables considered to form the 

surrogates represent the stream properties (i.e., temperature, pressure, and flow). When 

building surrogate models, it is important to consider some important aspects concerning 

the required data for training and testing, functional form of the surrogates and proper 

evaluation to verify their performance. A simplified framework methodology proposed 

by Franzoi et al.(2021b) is used in this work, as shown in Figure 2. 

 

Figure 2: Framework for the surrogate model building strategy (adapted from Franzoi et al. 

2021b). 

𝑇𝑖
′ = 𝑇𝑖−1 × (𝑟𝑝

(
𝑦−1

𝑦
)
)                                  ∀  i ∈ SFC (1) 

𝜂𝑐𝑗 =
𝑇𝑖

′ − 𝑇𝑖−1

𝑇𝑖 − 𝑇𝑖−1
                           ∀  j ∈ CS, i ∈ SFC (2) 

𝑊𝑗 = 𝐶𝑝𝑗(𝑇𝑖 − 𝑇𝑖−1)                              ∀  j ∈ CS, i ∈ SF𝐶 (3) 

𝑉𝑎𝑐𝑡𝑢𝑎𝑙 = [
𝑃𝑛𝑜𝑟𝑚𝑎𝑙 ×  𝑉𝑖

𝑇𝑛𝑜𝑟𝑚𝑎𝑙
] ×

𝑇𝑖−1

𝑃𝑖−1
                                  ∀  i ∈ SFH (4) 

𝑄𝑗 = [𝜌𝑗 × 𝑉𝑎𝑐𝑡𝑢𝑎𝑙] × 𝐶𝑝𝑗 × [𝑇𝑖 − 𝑇𝑖−1]                           ∀  j ∈ CS, i ∈ SFH (5) 
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1) Data Generation: Latin Hypercube Sampling (LHS) method is used to generate the 
required data for training the surrogates. This generates random sample points for the input 
(independent variables) dataset that includes temperatures, pressures, and flows. There are 
boundaries for each independent variable in each compression stage based on experiments. 
The independent dataset is used to calculate the output values (dependent variables) from 
compressors and heat exchangers related formulas in Eqs.(2), (3), and (5) for each sample 
point. Then, a complete X-Y input-output data set is constructed to estimate the behavior 
of the surrogates. The dataset is equally split into training and testing data. The former 
focuses on building the surrogates by identifying their bases and coefficients, while the 
latter is used to fairly evaluate the accuracy and performance of the surrogates. 

2) Data Improvement: This step is performed to avoid any biased surrogates or numerical 

issues due to the different units and magnitudes used in the model, mostly because 

variables that are too small or too large can affect obtaining the accurate and reliable 

coefficients. Hence, data normalization is used to normalize all training input and output 

data sets for each variable using Eq.(6), which results in minimum and maximum values 

 

                           𝑥𝑗𝑝 =
𝑥𝑗𝑝−𝑚𝑖𝑛(𝑥𝑗

𝑡𝑟)

𝑚𝑎𝑥(𝑥𝑗
𝑡𝑟)−𝑚𝑖𝑛(𝑥𝑗

𝑡𝑟)
                            ∀  𝑝 ∈ 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (6) 

In which the minimum and maximum values of the training data 𝑥𝑗 correspond to 

min (𝑥𝑗
𝑡𝑟) and max(𝑥𝑗

𝑡𝑟). 

3) Surrogate Model Building: To estimate the behavior of the MR refrigeration cycle 

processes for the compressors and heat exchangers, trilinear surrogate models are used, 

as shown in Equation (7) to calculate the dependent variable 𝑌𝑖. 

𝑌𝑖 = 𝐼𝑖 + ∑ 𝑏𝑖𝑗

𝑗 ∈ 𝐷𝑉

𝑋𝑗 + ∑ ∑ 𝑐𝑖𝑗𝑘

𝑘 ∈ 𝐼𝑉

𝑋𝑗𝑋𝑘

𝑗 ∈ 𝐼𝑉

 

+  ∑ ∑ ∑ 𝑡𝑖𝑗𝑘𝑛

𝑛 ∈ 𝐼𝑉

𝑋𝑗𝑋𝑘𝑋𝑛

𝑘 ∈ 𝐼𝑉𝑗 ∈ 𝐼𝑉

 

∀  𝑖 ∈ 𝐷𝑉, 

∀  𝑗 ≤ 𝑘, 

∀  𝑘 ≤ 𝑛 

(7) 

In which 𝐼𝑖 is the intercept of each point 𝑖 within dependent variables (DV), and 𝑏𝑖𝑗, 𝑐𝑖𝑗𝑘 , and 𝑡𝑖𝑗𝑘𝑛 

are the coefficients to be determined or estimated during the building process of the 

surrogate model by evaluating the accuracy of the input-output data to achieve the target 

of minimizing the prediction error for each independent variable point (IV). This 

optimization target is presented in Eq.(8) for minimizing the least-squares error (LSE).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑦𝑖𝑝

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑝=1

− 𝑌𝑖𝑝 )2 (8) 

In which 𝑦𝑖𝑝 is the actual calculated value using thermodynamics equations for the variable 

𝑖 at each point 𝑝 within the training data set 𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, whereas 𝑌𝑖𝑝 represents the calculated 

values using the surrogate model estimated coefficients for each independent variable 𝑖 at 
each point 𝑝. 

4) Performance Check: The last step in the framework is to evaluate the surrogates by 
employing the identified coefficients from the surrogate model. This is done by using 
different set of points from the calculated ones previously, which are referred to as testing 
data set. Testing data sets are the points that were not used in training the surrogate, which 
can identify the accuracy of the predictions. The evaluation is done via calculating the 
mean absolute error using the testing data that indicate the surrogate accuracy.  

to be within 0 to 1 range. 



4. Results 

The surrogate models built are tested for three compression stages in the MR refrigeration 

cycle including compressors and heat exchangers, as shown in Figure 1. The size of the 

dataset considered in the surrogates is set to be 𝑁 ∈ {1000}, which is equally split between 

training and testing data sets. Bilinear and trilinear surrogates are built for each 

compressor and heat exchanger. For the compressors, surrogates are built testing the 

accuracy of efficiency and power consumption equations, whereas heat duty is considered 

for the heat exchangers. The mean absolute error is calculated for each system to illustrate 

the difference between the calculated and predicted values, as shown in Table 1. Trilinear 

surrogates provide higher accuracy, mostly because the higher amount of coefficients and 

higher predictability power given their complexity. The methodology employed herein 

has proved its efficiency in terms of accuracy for nonlinear and complex systems, as those 

surrogates can successfully be employed in replacement of the thermodynamic equations 

and can be potentially used in further optimization and decision-making processes.  

Table 1: Mean absolute error (MAE) for bilinear and trilinear surrogates. 

Bilinear 

    LP- MAE MP- MAE HP- MAE 

System SM Training Testing Training Testing Training Testing 

Compressors 

Y1- 

Efficiency 
2.83 10-3 7.48 10-3 1.73 10-2 3.35 10-2 2.11 10-2 5.28 10-2 

Y2- 

Power 
1.22 10-5 1.77 10-5 2.00 10-3 2.18 10-6 2.63 10-6 2.68 10-5 

Heat 

Exchangers 

Y3- 

Heat Duty 
9.45 10-4 9.12 10-4 8.14 10-4 7.04 10-4 8.14 10-4 7.04 10-4 

Trilinear 

  LP- MAE MP- MAE HP- MAE 

System SM Training Testing Training Testing Training Testing 

Compressors 

Y1- 

Efficiency 
2.03 10-4 5.64 10-4 3.26 10-3 7.68 10-3 3.91 10-3 1.18 10-2 

Y2- 

Power 
2.92 10-6 2.94 10-6 5.7110-7 1.52 10-6 3.72 10-7 2.81 10-6 

Heat 

Exchangers 

Y3- 

Heat Duty 
1.73 10-4 1.64 10-4 1.55 10-4 1.33 10-4 3.12 10-4 2.77 10-4 

5. Conclusion 

The cooling and liquefaction of natural gas involves complex networks that require the use 
of refrigerants within a rigorously controlled environment. Those refrigerants shall meet 
certain temperature and pressure points via undergoing cooling cycle, called refrigeration 
cycle. This work considered the MR refrigeration cycle with three compression stages, LP, 
MP, and HP. This cycle consists mainly of compressors and heat exchangers, whereby 
such a system is studied considering certain variables of interest associated with the 
compressors, such as the efficiency and power consumption, in addition to the heat duty 
for heat exchangers. Complex and nonlinear thermodynamics equations are typically used 
to calculate those variables. However, this work addresses the use of the surrogate models 
for the purpose of simplifying the formulas into bilinear and trilinear terms, which can 
open opportunities for integrating such complex modeling systems with further 
optimization decision-making approaches. The methodology employed uses a surrogate 
model building framework comprised of four steps. First, the input dataset is generated 
experimentally from the Latin Hypercube Sampling method, which is utilized to calculate 
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the required output variables using the first principles thermodynamics equations. Then, 
datasets are enhanced by normalization, in which the data points are normalized to lie 
between 0 and 1 aiming to avoid numeric issues. The third step builds the surrogates using 
input-output datasets and generates bilinear and trilinear coefficients used to calculate the 
required variables. Finally, performance check is carried out to determine the accuracy of 
the surrogates using testing datasets.  

Depending on the complexity of the equations to be predicted, bilinear surrogates can be 
sufficiently accurate. However, trilinear surrogates typically provide significant higher 
accuracy than their bilinear counterparts. Overall, both provide good efficiency and 
accuracy for replacing the thermodynamics equations and can be further utilized for 
simulation, control, and optimization cases. The proposed surrogate modeling approach 
builds a data-driven model that can be used in different optimization applications, such as 
in: a) optimizing the power consumption of compressors considering certain design 
boundaries for each parameter (e.g., allowable temperature and pressure for the 
compressors); b) optimizing the efficiency of the compressors, which lead to colder MR 
after the C3 refrigeration cycle resulting in a higher production of LNG with lower 
temperature; and c) optimizing the heat exchanger duty after each compression stage 
aiming to achieve better usage of MR in terms of liquifying the natural gas without 
requiring makeup MR to provide a better cooling and liquefaction to the natural gas. Such 
approach would allow the utilization of optimization-based tools instead of their 
simulation counterparts that rely on complex thermodynamics equations. 
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Abstract 

Recently, polypropylene composites (PPCs) are in the spotlight because of their 

versatilities in composite industries. Properties of PPCs are determined by numerous 

physical property values (PPV), among which heat deflection temperature (HDT), 

polymer’s resistance to distortion, is a key indicator. However, enormous trial and error 

is required to produce PPCs with desired PPV because there is no theoretical equations 

between material composition and PPV. Hence, to reduce the cost and time of finding 

material composition to meet the desired PPV, we proposed a machine learning-based 

PPV prediction model. However, some categorical data which can have an influence on 

the prediction model performance are included in the dataset, because some of data were 

from repeated experiments. Therefore, algorithm case study (Multiple linear regression 

(MLR), XGBoost, and CatBoost) was conducted to develop the optimal HDT prediction 

model which could process the normal data as well as the categorical data. The 

performances of each prediction model were evaluated with R2 and RMSE. As a result, 

the CatBoost-based HDT prediction model was proposed as the optimal model to solve 

the trial and error problem. 

 

Keywords: PP composites; Categorical data; Machine learning; Catboost 

 

1. Introduction 

In recent years, polypropylene composites (PPCs) have been highlighted owing to their 

versatility in composite industries. PPCs exhibit excellent physical properties, such as 

high strength, light weight, and high impact resistance. These excellent physical property 

values are afforded by the addition of additives that can improve the physical properties 

of polypropylene (PP). For example, fillers such as talc are added to improve the rigidity 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50300-6 
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and toughness of PP, whereas rubber is added to improve its flexibility and ductility. 

Hence, because the physical properties depend on the type and composition of PP and the 

additives, i.e., the “recipe,” before synthesizing PPCs, the appropriate recipe should be 

selected based on the target physical property values.  

Among the various physical properties of PPC products, specific heat deflection 

temperature (HDT) is one of the key indicators in the design of PPC products. HDT 

provides an indication of the temperature at which materials begin to soften when exposed 

to a fixed load at elevated temperatures. Hence, HDT is an important physical property 

in PPC applications because it allows engineers to determine the temperature limit above 

which the material is not appropriate for a structure. Despite the importance of the HDT, 

achieving the required HDT remains challenging. The required HDT for applications is 

achieved via numerous trials and errors because the HDT cannot be calculated using the 

recipe before synthesizing the PPC specimen and testing the HDT. The numerous 

experiments revealed time-and cost-consuming problems that should be solved to ensure 

the efficiency of the PPC development process.  

As an alternative to the trial-and-error approach, machine learning (ML) has been 

proposed as it can reduce the number of trials and errors based on the use of a data-driven 

model that can predict specific values. The data-driven model extracts the relationship 

between the input and output data, analyzes the relationship, and predicts the output data 

using the input data. By predicting the output values, the number of trials and errors can 

be reduced as additional experiments are not required. However, one of the most 

significant problems in ML is that the prediction performance of a data-driven model 

depends on the data quality. For instance, if some data have the same input values with 

different output values in the dataset, then the predictive performance of the model will 

be low because of overfitting; this is because most ML algorithms replace different output 

values with the mean value in the categorical data. Among many ML-based algorithms, 

the CatBoost algorithm was developed to manage categorical data in data-driven 

modeling. Unlike other regression algorithms, CatBoost can manage categorical data 

without overfitting by considering various values instead of replacing the output values 

with the mean value. 

Herein, we propose a CatBoost-based model for HDT prediction to reduce the number of 

trials and errors in the PPC development process and to solve overfitting by categorical 

data. First, we discovered that some categorical data existed in the dataset because the 

HDT values depended on the experimental environment, such as temperature, person, 

machine, and humidity. The categorical data were extracted by comparing them with a 

dimensionless number “A,” which we defined. Second, three data-driven models were 

developed using multiple linear regression (MLR), XGBoost, and CatBoost, separately, 

to compare their predictive performances. Finally, their R2 and RMSE were compared to 

identify the best data-driven model for HDT prediction.  

 

2. Method  

2.1. Categorical data treatment 

Because some categorical data existed in the recipe dataset, a method was suggested to 

analyze them. The method comprised two steps: First, “same recipes” which imply the 

categorical data in a recipe dataset, are defined; second, a dimensionless number, denoted 
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as “A,” is calculated to obtain the distribution of the same recipes. The same recipes were 

detected in two steps, i.e., encoding and detecting, as shown in Figure 1. Because the 

recipes contain information regarding the materials and their weight percentages, it was 

challenging to count the number of same recipes. Therefore, encoding to assign codes to 

the recipes was performed to count the number of same recipes. In this step, all of the 

recipes were assigned codes that contained information regarding the weight percentage 

of the materials. By comparing the codes, the same recipes were detected, as shown in 

Figure 1. 

 

Figure 1 Procedures to detect and count same recipes in dataset 

After detecting the same recipes, the HDT distribution of the same recipes was obtained 

by calculating the dimensionless number “A” using Eq. (1). Subsequently, “A” was used 

to compare the differences in the HDT for the same recipe dataset. Using the minimum 

HDT in the same recipe as the denominator and the HDT of a recipe as the numerator, 

the differences in the same recipes can be obtained, as listed in Table 1. 

 

A = 
𝐻𝐷𝑇 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑖𝑝𝑒

𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐻𝐷𝑇 𝑜𝑓 𝑠𝑎𝑚𝑒 𝑟𝑒𝑐𝑖𝑝𝑒𝑠
 (1) 
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Table 1 Example of calculating A from the same recipe 

 
Materials (wt%) HDT 

(℃) 
A 

P006 R013 OTH1 OTH7 

Recipe 

369 
87.977 9.775 1.955 0.293 79.5 

1.174 

(79.5/67.7) 

Recipe 

378 
87.977 9.775 1.955 0.293 80.4 

1.188 

(80.4/67.7) 

Recipe 

617 
87.977 9.775 1.955 0.293 67.7 

1.000 

(67.7/67.7) 

Recipe 

679 
87.977 9.775 1.955 0.293 79.2 

1.170 

(79.2/67.7) 

 

2.2. Catboost 

Unlike other regression algorithms, because CatBoost uses ordered encoding instead of 

mean encoding, it can solve overfitting when a categorical dataset are used for data-driven 

modeling. The two encoding methods for categorical data are presented in Figure 2. The 

regression algorithms using mean encoding replace all categorical data with the mean 

value of the data. Overfitting is incurred in this process because the mean value is 

proposed as the criterion when the loss of the regression is calculated in every iteration. 

By contrast, CatBoost, which uses ordered encoding, proposes various mean values that 

are calculated using random samples in a categorical dataset. Using different loss criteria 

in each iteration, regression can be generalized.  

 

Figure 2 Procedure to process categorical data: (a) mean encoding and (b) ordered target encoding 

3. Results and discussions 

3.1. Dimensionless number “A” for categorical data treatment 

By encoding to count the number of same recipes, 199 recipes among 993 recipes were 

detected. Because each recipe belonged to a different categorical data group and the 

groups had different HDT ranges, a criterion to normalize the categorical values was 
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required to visualize the differences in the HDT. Therefore, a dimensionless number “A” 

was calculated in this study. The calculation results are shown in Figure 3. As shown, the 

minimum and maximum A values were from 1 to 2 which implies that some recipes have 

twice as large HDT values in the same recipe groups at the maximum. In the same recipe 

groups, 59 recipes were randomly selected and then used as the test dataset to compare 

the predictive performances of the three ML algorithms in Section 3.2. The remaining 

recipes were segregated for data-driven modeling, and the ratio of the segregated data is 

shown in Table 2. 

 

Figure 3 Calculation result of A 

Table 2 Ratio of data segregated for data-driven modelling 

 Number of recipes Number of the same recipes 

T rain dataset 638 119 

V alidation dataset 152 21 

T est dataset 203 59 

T otal 993 199 

3.2. Comparison of the three algorithms 

In this study, three different algorithms (MLR, XGBoost, and CatBoost) were used to 

perform data-driven modeling to predict HDT values. MLR is a simple linear regression 

algorithm that uses mean encoding. XGBoost and CatBoost are classification and 

regression tree (CART)-based nonlinear regression algorithms based on the boosting 

method. However, CatBoost uses ordered encoding, whereas XGBoost uses mean 

encoding. 

The predictive performances of the three models are shown in the evaluation results in 

Figure 5. The R2 and RMSE were calculated to compare the model performance 

quantitatively. We discovered that the MLR-based model yielded the lowest R2 (0.8162) 

and the highest RMSE (9.7934) when all the recipes in the test dataset were tested. 

However, the XGBoost-based model indicated a higher R2 (0.8578) and a lower RMSE 

(8.7007) than the MLR-based model. Meanwhile, the CatBoost-based model yielded the 

highest R2 (0.8965) and lowest RMSE (7.3477). Moreover, the R2 and RMSE were 

calculated for only 59 same recipes. The MLR-based model indicated the lowest R2 
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(0.8256) and the highest RMSE (7.8899) for 59 same recipes. By contrast, the XGBoost-

based model indicated a higher R2 (0.9690) and a lower RMSE (2.6105) than the MLR-

based model. Meanwhile, the CatBoost-based model indicated the highest R2 (0.9801) 

and lowest RMSE (2.6105). This shows that the CART-based nonlinear regression 

algorithms are more appropriate for the data-driven modeling of HDT prediction than the 

linear regression algorithm, and that the CatBoost-based model can predict the HDT with 

better performance than the XGBoost-based model even when the dataset includes some 

categorical data with a high value of A.   

 

Figure 4 Evaluation result for all recipes in test dataset (left), and for only the same recipes in test 

dataset (right) 

4. Conclusion and future work 

In this study, we proposed a CatBoost-based HDT predictive model to reduce the number 

of trials and errors in the PPC development process. In addition, to detect categorical data, 

a new approach was proposed, where a recipe is encoded to a code, and the difference in 

the HDT is calculated for the same recipe group using a dimensionless number “A.” The 

results indicated that although the HDT in the same recipes was different, the CatBoost-

based predictive model performed better than the MLR and XGBoost-based models. 

Therefore, if the proposed model is applied to the PPC development process, then the 

number of trials and errors can be reduced.  

In future studies, we will use Shapley additive explanations to further explain the model 

as well as extend this study to other properties of the PPC.  
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Abstract 

Metal-organic frameworks (MOFs) are recognized as promising materials for gas 

storage and separation due to their structural diversity, high porosity, and tailorable 

functionality. Considering the large number of possible MOFs, an integrated machine 
learning framework is proposed to discover promising candidates with desirable 

adsorption properties. The framework consists of structure decomposition, feature 

integration, and predictive modelling. Unlike most of the previous studies employing 

solely structural or geometric descriptors, our method integrates both structural and 

chemical features of MOFs for adsorption property prediction using the graph 

convolutional network (GCN) and feed-forward neural network (FNN) approaches. The 

machine learning framework is first introduced and then applied to hydrogen storage. 

Promising MOF candidates exhibiting respectable hydrogen storage capacities are 

successfully identified, which potentially outperform the existing porous materials for 

hydrogen storage. 

Keywords: machine learning, metal-organic framework discovery, graph convolutional 

network, hydrogen storage 

1. Introduction 

Metal-organic frameworks (MOFs) are an important type of porous materials with large 

structural diversity, high porosity, and tailorable functionality. In the past two decades, 

MOFs have been attracting wide attentions in many applications, especially gas storage 

and separation (Gándara et al., 2014; Cui et al., 2016; Zhou et al., 2020; Zhang et al., 

2021; Chen et al., 2018). Through the combinations of numerous metal nodes and 

organic linkers under specific topologies, we can in principle synthesize an infinite 

number of different MOFs. This makes MOF discovery via experimental trail-and-error 

extremely challenging. High-throughput screening techniques in tandem with molecular 

simulations or ab-initio calculations are being used to calculate properties of MOFs. 

Although the grand canonical Monte Carlo (GCMC) simulation has shown remarkable 

accuracy (Moghadam et al., 2018; Chung et al. 2016) for MOF adsorption property 
prediction, it is computationally inefficient for finding the best MOFs from a large 

number of candidates. 

Over the past few years, many researchers have applied various supervised machine 

learning (ML) methods to predict MOF properties (Chong et al., 2020; Altintas et al., 

2021; Zhou et al., 2019) from available data. With the established ML models, one can 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50301-8 
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perform in-silico predictions on a large number of new MOFs and quickly find the best 

candidates. So far, most of the previous ML works have employed only geometric 

descriptors, e.g., void fraction, surface area and pore diameters, to correlate MOF 

adsorption properties (Fernandez et al., 2013; Shi et al., 2020; Yuan et al., 2021; 

Thornton et al., 2017). Although geometric descriptors largely affect the adsorption 

performance, chemical diversity of building blocks can also play a crucial role 

(Moosavi et al., 2020). Unfortunately, given the massive chemical descriptors (e.g., 

number of atom, atomic charge and dipole moment), applying them for ML requires a 
lot of domain knowledge and labour for descriptor (or feature) generation and optimal 

selection. In contrast, representation learning allows the machine to automatically learn 

important features directly from material structures without any human input. 

In this contribution, we propose an end-to-end ML framework where the MOF structure 

is imported as input, chemical and structural features are learned automatically, and the 

corresponding adsorption property is finally predicted in one step. The framework is 

trained with a relatively small amount of GCMC-derived data and the resulting ML 

model can then be used for a fast MOF discovery from a much larger set of candidates. 

The proposed method is applied to hydrogen storage aiming to find MOFs with superior 

volumetric storage capacity. 

2. Methods 

Prior to GCMC simulations and ML modelling, MOF database pre-treatment is 
conducted. We select the hypothetical MOF (hMOF) database (Wilmer et al., 2012) as 

our basis. First, MOFid and MOFkey identifiers are obtained for each hMOF in the 

database based on their CIF files (Bucior et al., 2019). Second, the metal nodes, organic 

linkers, and underlying topological networks are extracted from the identifiers. Finally, 

data cleaning is performed to remove those MOFs sharing duplicate and incomplete 

identifiers, with invalid organic linkers, and consisting of more than three types of 

linkers. This finally results in 9156 unique MOFs. 

Figure 1 summarizes the integrated ML framework. As indicated, features of the 

organic molecule are automatically generated by the graph convolutional network 

(GCN) approach. Initially, each atom in the molecule is assigned with a fixed-length 

vector of randomized features. Afterwards, atoms learn their representations by 
aggregating features from their neighbors (i.e., connected atoms). With two GCN layers, 

two unconnected atoms can learn features from each other if both of them are attached 

to the same atom. In this way, with multiple GCN layers, all the atomic features are 

iteratively updated several times to capture the local and global information about the 

whole molecular structure. Finally, a global pooling is performed on the graph to 

generate the overall molecular features by aggregating all the atomic features with a 

certain mathematical rule. After obtaining the organic linker’s features, a feedforward 

neural network (FNN)-based ML model can be finally constructed to predict MOF 

adsorption uptakes using all the chemical and structural features as inputs. The chemical 

features include directly embedded metal node and GCN-based organic linker’s 

features, while the structural features incorporate both embedded topology and five key 

MOF geometric descriptors. Notably, the initial atomic features, GCN layers, and the 
FNN model are optimized or trained simultaneously to minimize the overall prediction 

error of the model. After the ML model is built and successfully validated, it can replace 

the traditional molecular simulation for providing in-silico predictions on thousands or 
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millions of new MOFs and quickly find the best candidates possessing the most 

desirable adsorption properties. 

 

Figure 1. Schematic diagram of the proposed ML framework 

3. Case Study 

Hydrogen is an appealing energy carrier due to its high gravimetric energy density and 

low environmental impact. It is industrially stored at around 700 bar, requiring 

substantial amount of energy and special safety considerations (Gómez-Gualdrón et al., 

2016). Recently, MOFs have emerged as promising materials for adsorption-based 

hydrogen storage at a much moderate pressure around 100 bar. The objective of this 

work is to use the ML method to find potential MOF candidates that possess high 

volumetric hydrogen storage capacity. To do so, GCMC simulations are first carried out 

to compute the hydrogen uptakes at 100 bar/77 K and 2 bar/77 K for the 9156 MOFs. 

Based on the obtained data, two different ML models are established according to the 

framework in Figure 1 to predict the two uptakes separately. Using the ML models, the 
hydrogen storage capacity (maximal amount of hydrogen that can be stored/released for 

one charging/discharging process), is directly calculated as the difference between the 

two uptakes. 

In order to obtain reliable ML models, the entire dataset is divided into training, 

validation and test sets accounting for 80%, 10% and 10% of the 9156 data points. 

These three sets are used for model training, hyper-parameter optimization and early 

stopping, and model assessment, respectively. Considering all possible hyper-parameter 

combinations, the optimal ML configuration is first determined by the grid search 

method using the validation set. After determining the best hyper-parameters, the ML 

models are trained with the training and assessed with the test data. Model performance 
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is evaluated with mean absolute error (MAE) and coefficient of determination (R2), as 

summarized in Table 1. The parity plot and error distribution of the obtained ML 

models is visualized in Figure 2. In general, the two ML models achieve accurate 

predictions for hydrogen uptakes at both 100 bar and 2 bar, with an MAE of 1.04 g/L 

(1.25 g/L) and 1.03 g/L (1.29 g/L) for the training set (test set), respectively. 

Table 1. Model performance in the prediction of hydrogen uptakes 

Prediction target Dataset MAE (g/L) R2 

H2 uptake at 100 bar/77 K Training 1.04 0.984 

 Validation 1.24 0.975 

 Test 1.25 0.976 

H2 uptake at 2 bar/77 K Training 1.03 0.961 

 Validation 1.29 0.927 

 Test 1.29 0.928 
 

 
Figure 2. Parity plot and error distribution of the simulated and ML predicted hydrogen uptakes at 

100 bar/77 K (a, b) and 2 bar/77 K (c, d) 

The ultimate goal is to employ the ML models to discover potential MOFs for efficient 

hydrogen storage. For this purpose, we collect another much larger MOF database, 

consisting of 21,384 new MOFs. The two established ML models are then used to 
predict hydrogen uptakes for these new MOFs, based on which the best candidates 

possessing the highest storage capacities are screened out. Top 100 candidates are 

identified, whose storage capacities are between 45.44 g/L and 47.20 g/L. Verification 

on these top 100 MOFs by GCMC simulations leads to similar capacities. The best two 

MOFs showing the highest GCMC-derived capacities are illustrated in Figure 3. As 

indicated, their computed hydrogen storage capacities are higher than the best 

experimentally verified MOF that shows a capacity of ~ 42 g/L (Ahmed et al., 2017). 

This proves the great potential of the identified two MOFs for practical applications. As 



indicated in Figure 3, these two MOFs have similar structures. For instance, the same 

topology pcu is shared and three types of similar organic linkers are found as well. This 

provides some useful insights for optimal MOF synthesis. 

 

Figure 3. Top two MOF candidates identified for hydrogen storage 

4. Conclusions 

An integrated ML framework is proposed for the prediction of gas adsorption capacities 

using both chemical information and structural characteristics of MOFs. The method 

has been successfully applied to a hydrogen storage case study. High-potential MOFs 

are successfully identified by large-scale database screening using the obtained ML 

models. Their superior performances have been validated by GCMC simulations and 
should be further verified by experiment. It is anticipated that the approach can be used 

for other applications, e.g., CO2 capture and methane storage, with a variety of porous 

materials including zeolites, porous polymers, and covalent-organic frameworks. 

Unlike other works using engineered features to train ML models, our approach 

automatically learns useful features most relevant to adsorption properties. This is 

efficient, reliable, and can help to discover promising materials. However, it is difficult 

to draw useful insights on how MOF chemical and structural characteristics influence 

their performance. This knowledge can be acquired by using the so-called interpretable 

ML technique, which certainly deserves future studies. Besides, our MOF discovery is 

achieved by large-scale screening on existing databases. An alternative and probably 

more efficient way for direct targeting of optimal MOFs is to formulate and solve an 

optimization-based reverse design problem based on the ML model. 
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Abstract 

Crystallization processes have been widely used for separation in many fields, such as 

food, pharmaceuticals, and chemicals. The crystallization process is a highly nonlinear 

system, owing to complex crystallization dynamics; therefore, it is difficult to model the 

process to control the crystal product quality. In this study, a data-driven neural network 

was implemented to predict the magma density of the continuous crystallization process 

that produces maleic acid crystals from the mother liquor. Three neural network 

algorithms, namely deep neural network, long short-term memory, and gated recurrent 

unit (GRU), were applied for magma density prediction. Process variables, such as the 

feed flow rate, pressure, and steam flow rate were defined as input, while  magma density, 

the most important control variable in continuous crystallization, was defined as an output 

variable. The grid search method was used to select suitable hyperparameters for each 

method, and the predictive accuracy of the models was compared with the root mean 

square error (RMSE). The GRU-based model afforded the best prediction accuracy 

among the applied models, with an RMSE of 2.04. Consequently, the developed 

predictive model can be used as a proper control strategy. 

Keywords: Crystallization predictive model; product density prediction; artificial neural 

network; machine learning and big data 

1. Introduction 

The crystallization process is used in many fields to produce high-purity products 

(Velásco-Mejía et al., 2016). Indeed, the quality of the produced crystals has a significant 

influence on the efficient operation of the downstream process. Therefore, it is crucial to 

maintain a high and stable quality of the crystallization products. However, the 

crystallization process consists of several complex mechanisms, such as nucleation, 

crystal growth, and agglomeration. Moreover, it is difficult to solve the model equation 

because the mechanisms consist of nonlinear algebraic and partial differential equations. 

Thus, reliable modeling of the crystallization process remains challenging (Griffin et al., 

2016). 

To overcome the limitations of equation-based process modeling, the application of 

artificial neural networks (ANNs) to crystallization process modeling has been studied. 

Thus, ANNs have been used to model the nonlinear relationship between the input and 

output variables with high performance. Meng et al. (2021) attempted to monitor the 

process using a hybrid soft sensor model capable of predicting the mother liquor purity, 

supersaturation, particle size distribution, and crystal content, which are difficult to 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50302-X 
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measure in continuous cane sugar crystallization. On the other hand, Manee et al. (2019) 

developed a model to measure the particle size distribution (PSD) in batch crystallizers 

through deep learning. Furthermore, in many studies related to the crystallization process, 

models have been developed to predict the mother liquor purity, particle size, and 

distribution.  

Although the size of each particle is important in the batch crystallization process, it is 

more crucial to produce products with stable magma density in a continuous process for 

high productivity. Therefore, in continuous crystallization, the magma density, rather than 

the PSD, is used as the primary process control variable. However, it is difficult to control 

the magma density because of the nonlinearity and instability of the process. To solve this 

problem, this study developed a dynamic prediction model based on an artificial neural 

network (ANN) to predict the magma density in the continuous crystallization process. 

Magma density predictive models were developed using three algorithms: deep neural 

network (DNN), long short-term memory (LSTM), and gated recurrent unit (GRU), 

wherein LSTM and GRU are recurrent neural network algorithms that reflect the time 

series of the process. The most suitable model for the continuous crystallization process 

was selected by comparing the accuracies of the three algorithms for magma density 

prediction. In addition, the developed data-driven model was applied to control the steam 

flow rate, and its applicability was verified. Thus, the off-spec of the process was 

significantly reduced, and the crystals were produced more stably. 

2. Preliminaries 

2.1. Deep neural network 

A DNN is an ANN with multiple layers consists of input, output, and hidden layers. 

DNNs have been applied to forecast many problems with relatively high performance. 

Each layer is given the output from the previous layer and transfers it to the next layer. 

The hidden layers are trained by a backpropagation stochastic gradient descent. The 

model accuracy highly depends on the algorithms, hyperparameters, the property of the 

data, and the learning scheme. The outputs (𝐡) of the first, hidden, and output layers are 

expressed as 

𝐡𝑖 = 𝜎(𝐖𝑖
𝑇𝐱 + 𝐛𝑖) (1) 

𝐡𝑛 = 𝜎(𝐖𝑛
𝑇𝐡𝑛−1 + 𝐛𝑛) (2) 

 

Figure 1 Cell structure of (a) LSTM and (b) GRU 
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𝐲̂ = 𝐖𝑜
𝑇𝐡𝑁 + 𝐛𝑜 (3) 

 

where 𝐖  and 𝐛  represent the weight matrix and bias vector of the nth hidden layer, 

respectively. For the input layer, the input variable vector (𝐱) is used instead of 𝐡𝑛−1, 

while for the output layer, the predicted values of the output layer (𝐲̂) are used instead of 

𝐡𝑛. 

2.2. Recurrent neural network : LSTM and GRU 

An RNN stores the past data and forwards the information to calculate the output of the 

next step. Unlike the DNN, temporal dynamics can be considered, which is commonly 

used for time series prediction. Two RNNs, LSTM and GRU, were developed to solve 

the gradient vanishing problem of standard RNNs. Figure 1 shows the cell structure of 

the developed LSTM and GRU, comprising three and two gates, respectively, for long-

term memory to be efficiently stored. Both algorithms are described in detail in the 

literature (Hochreiter and Urgen Schmidhuber, 1997). 

3. Development of the magma density prediction model  

3.1. Process and data description 

The target process of this study (Figure 2) is a continuous crystallization process in which 

an approximately 60% maleic acid–water mixture is concentrated to 78% maleic acid, 

and 30% of the feed flow rate is crystallized (Ulsan, Republic of Korea). A forced 

circulation crystallizer was used for crystallization, in which a feed enters the equipment 

after being heated by 45 ℃ in a heat exchanger. The crystallizer was vacuumed to 50 

mbar using a vacuum ejector. The maleic acid crystal was discharged with the mother 

liquor as magma, where the density of magma was used as a control variable in the 

process. For stable product production, the magma density was maintained constant at 

1,330 kg/m3 as the set point. 

In this study, 10 process variables collected every hour from January to June 2020 were 

used to develop the data-driven model. Because missing values and outliers in the data 

 

Figure 2 Target process description 
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due to instrumental failure adversely affect predictive model training, they were 

removed and used. The model was developed and evaluated using 80% of 3,300 data as 

learning data and 20% as test data. 

3.2. Model structure 

Three algorithms, DNN, LSTM, and GRU, were used to develop a magma density 

prediction model for the continuous crystallization process. The input variables used in 

each model were the feed flow rate, low-pressure steam flow rate, pressure, and 

temperature instruments measured for process monitoring to control the density. The 

predicted performance was compared using RMSE and calculated using Equation (4). 

The RMSE, defined as the average absolute ratio error, indicates a higher performance as 

it approaches 0. The structures of the three predictive models were optimized using grid 

research, and each model structure is listed in Table 1. In addition,  the model with the 

best performance among the three was derived by analyzing the prediction error 

distribution. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑘 − 𝑦̂𝑘)

2

𝑘
 (4) 

where 𝑦𝑘 and 𝑦̂𝑘 are the actual and  predicted data, respectively, and 𝑁 is the total number 

of data samples. 

4. Results and discussion 

4.1. Density prediction accuracy 

The magma density prediction performance in the continuous crystallization process 

using the three models is presented in Table 2. Comparison of the RMSEs reveals that the 

difference in accuracy between the models is not significant. Figure 3 shows the results 

predicted by each model, wherein the red line represents the conditions under which  the 

predicted and actual values are equal. Thus, the closer the points are to this line, the more 

accurate is the model. A point marked in red refers to a data sample with a relatively large 

error, which is far from the red line. In the three models, the positions marked with red 

dots were similar, which indicates that a significant error occurred due to an abnormal 

Table 2 Prediction accuracy 

Model DNN LSTM GRU 

RMSE 2.02 2.23 2.04 

 

Table 1 Parameters of each network 

 DNN LSTM GRU 

Hidden layers 2 1 3 

Hidden neurons 20 100 90 

Batch size 64 

Early stopping patience 30 

Loss function Mean square error 

 



state of the process. As shown in Figure 3, the DNN and GRU models afforded better 

predictions than did the LSTM model. Additionally, the box plots in Figure 4 show the 

distribution of absolute errors in each model, wherein the model accuracy increases as the 

box at the 0 point becomes narrower. The plot reveals that the absolute error of the GRU 

is distributed in a narrower area than that of the DNN. Therefore, based on the above 

analysis, we concluded that the most accurate model for magma density prediction was 

the GRU model. 

 

Figure 3 Predicted vs. actual value plots of (a) DNN, (b) LSTM, and (c) GRU models 

 

Figure 4 Error distribution boxplot 

 

Figure 5 Magma density of before and after steam flow rate control 
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4.2. Application for steam flow rate control 

The density prediction model developed in this study was applied to the steam flow rate 

control of the target process and compared with the actual steam data. In the current 

process state, the steam flow rate was changed from -30% to +30%, and the steam flow 

rate satisfying the set point of the process was derived. In the actual process, an average 

of 897.2 kg/h of steam was used. However, the prediction model developed in this study 

revealed that a product that satisfies the setpoint can be produced with an average of only 

771.9 kg/h of steam. In addition, as shown in Figure 5, the off-specs generated in the 

process were also significantly reduced, even though the amount of steam used was 

decreased by 14%. 

5. Conclusion 

In this study, we developed an artificial neural network-based dynamic prediction model 

that can predict the magma density of a continuous crystallization process, which we 

subsequently applied to control steam usage. We determined that the most suitable model 

in this process was an RNN-based model using GRU, which presented an RMSE of 2.04. 

Furthermore, by controlling the steam flow rate using the developed model, 14% of the 

existing steam usage could be reduced. The dynamic prediction model developed in this 

study exhibits a high performance, but still has room for improvement. Data used for 

model development  cannot reflect real-time information owing to long sampling rate. 

Therefore, in future research, if a model is developed by reducing the data sampling 

interval through data interpolation, it can be applied to an actual process with a more 

reliable prediction. 
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Abstract 
Novel solid-state thermoelectric (TE) materials have the potential to improve energy 
efficiency by converting waste heat into electricity. However, the performance of many 
state-of-the-art TE materials remains inadequate for adoption beyond niche applications. 
Current efforts to optimize photonic sintering, an important step in additive 
manufacturing of TE devices, rely on expert-driven trial-and-error search which is often 
extremely time-consuming and without the guarantee of improvement. Emerging 
Bayesian optimization frameworks offer a principled approach to intelligentially 
recommend optimized experimental conditions by balancing exploitation and 
exploration. In this paper, we develop a Gaussian Process Regression (GPR) machine 
learning model to predict the thermoelectric power factor of aerosol jet printed n-type 
𝐵𝑖!𝑇𝑒!.#𝑆𝑒$.% TE films. We compare hyperparameter tuning methods and perform 
retrospective analysis to quantify the predictivity of GPR. Finally, we discuss the 
challenges and opportunities of adopting Bayesian optimization for photonic sintering 
and fabrication of high-performance TE devices. 
 
Keywords: Additive Manufacturing; Data Science; Bayesian Optimization; Machine 
Learning; Gaussian Process Regression  

1. Introduction 
1.1. Background 

Discover functional materials with desired properties is a central goal of material science 
and engineering; yet materials discovery and optimization is often slow and expensive. 
For example, out of the 10!% possible drug-like molecules, only 10& have been 
synthesized. (Elton et al., 2019) Computer-aided molecular design (CAMD) is frequently 
used to design new functional material, however, its success is usually limited by the 
accuracy and efficiency of the physical models. (Austin et al., 2016) Supervised machine 
learning has demonstrated great promise for predicting the physical properties of material 
and revolutionizing the design process. (Lookman et al., 2019) For example, Gaussian 
Process Regression (GPR) and Bayesian optimization have been shown over the past 
decade to accelerate the design and manufacturing of new functional material. (Wang et 
al., 2022)  
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Gaussian Process Regression Machine Learning Models for Photonic Sintering
   

Let D	 = 	 {(𝒙, , 𝑦,), |𝒙, 	 ∈ 	R., 𝑦, 	 ∈ 	R, 𝑖	 ∈ 	1, . . . ,31}	 be a collection of 31 photonic 
sintering experiments (Figure 1). For convenience, we denote the data 𝐷	 = 	 (𝑿, 𝒚) using 
matrix 𝑿	 = 	 (𝒙-, . . . , 𝒙/)0 and vector 𝐲	 = 	 (𝑦-, . . . , 𝑦/)). However, each dimension of 
𝒙,, as well as 𝑦,, has different units. To address this, each dimension of D is standardized 
using the mean (expected value) and standard deviation where 𝒙1 is the 𝑗th column of 𝑿:  
 

𝒚	 ← 	
C𝒚 − 𝐸(𝒚)F
G𝑉𝑎𝑟(𝒚)

	, 𝒙1 	← 	
K𝒙1 − 𝐸C𝒙1FL

M𝑉𝑎𝑟C𝒙1F
(1) 

2.2. Gaussian Process Regression 

Gaussian Processes (GPs) are non-parametric probabilistic models that are well-known 
to emulate expensive continuous functions, 𝑓(. ), by interpolating between training data.  
 

𝑓	 ∼ 	𝐺𝑃C𝑚(𝒙), 𝑘(𝒙, 𝒙2)F														𝒙, 𝒙2 	 ∈ 	𝑅3 (2) 
 
The output of a GP model is a normally distributed random variable fully specified by the 
mean function, 𝑚(𝒙) = 𝐸[𝑓(𝒙)], and the kernel function 𝑘(𝒙, 𝒙2) = 𝐸XC𝑓(𝒙) −
𝑚(𝒙)FC𝑓(𝒙2) − 𝑚(𝒙2)FY. (Rasmussen, 2003) The kernel function determines how the GP 
model interpolates between the encoded data 𝐷. In doing so, the kernel function also 
specified the uncertainty in GP predictions. 𝑘(. , . ) contains hyperparameters which often 
include the length-scales, denoted by 𝒍 ∈ 𝑅3, for each dimension of the input data 𝑿. The 
smaller the 𝑙1, the more important that corresponding feature	(𝑥1). Training the 
hyperparameters is often performed by using log marginal likelihood or cross-validation 
methods. The optimal length-scales 𝒍 help identify which features are most important. For 
simplicity, we set 𝑚(𝒙) to zero and use Radial Basis Function (kRBF) defined in Eq. (3), 
where 𝒍 = (𝑙-, 𝑙!, 𝑙%, 𝑙.)0. 

𝑘456(𝑥, 𝑥2) = 𝑒
7-!∑ 9

:!7:!
"

;!
	=
#

													$
!%& 𝜃 = 𝒍	 (3)

 

We define new inputs values 𝑿∗ with corresponding prediction 𝒇∗. Given training data 
(𝑿, 𝒚) and values of the hyperparameters θ, we can write the outputs y	and 𝒇∗ as a 
multivariate normal (Gaussian) distribution, Eq. (4), where 𝑲(. , . ) kernel function	
𝑘(. , . )	is evaluated elementwise. Moreover, we assume each measurement is corrupted 
by normally distributed observation error 𝜀 with zero mean and variance 𝜎!, 𝜀	 ∼
	𝑁(0, 𝜎!).  

b
𝒚
𝒇∗c ∼ 𝑵ef

𝒎(𝑿)
𝒎(𝑿∗)

h , f𝑲(𝑿, 𝑿) + 𝝈
𝟐𝑰 𝑲(𝑿,𝑿∗)

𝑲(𝑿∗, 𝑿) 𝑲(𝑿∗, 𝑿∗)
hl (4) 

The conjugacy properties of multivariate Gaussian distribution give (Bishop, 2006): 

𝐸(𝒇∗) = 𝒎(𝑿∗) + 𝑲(𝑿∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎!𝑰]7-C𝒚 −𝒎(𝑿)F (5𝑎) 

𝑉𝑎𝑟(𝒇∗) = 𝑲(𝑿∗, 𝑿∗) − 𝑲(𝑿∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎!𝑰]7-𝑲(𝑿,𝑿∗) (5𝑏) 

2.3. Hyperparameter Tuning 

A key step in GP modeling is training the hyperparameters. We start by comparing the 
performance of log marginal likelihood (LML) Eq.(6) and cross-validation (CV) Eq.(7) 
for training the length scales of each dimension (𝑙-, 𝑙!, 𝑙%, 𝑙.) and the optional observation 
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error 𝜎 as hyperparameters. LML (a.k.a. maximum likelihood estimation, MLE) uses all 
the training data 𝐷 to find the hyperparameter values which maximize the log-likelihood 
function:  

log 𝑝(𝒚|𝑿, 𝜃) = −
1
2𝒚

0[𝑲(𝑿, 𝑿|𝜃) + 𝜎!𝑰]7- −
1
2 log

|𝑲(𝑿,𝑿|𝜃) + 𝜎!𝑰| −
𝑛
2 log 2𝜋

(6) 

In contrast, CV uses only a subset of the data to reduce the variance of the prediction 
evaluation. The LML is computed with data 𝐷7, = (𝑿7, , 𝒚7, 	) where −𝑖 denotes all data 
except sample 𝑖: 

log 𝑃(𝑦,|𝑋7, , 𝑦7, , 𝜃) = −
1
2 log 𝜎,

! −
(𝑦, − 𝜇,)!

2𝜎,!
−
1
2 log2𝜋	

(7𝑎) 

The conjugacy property of GPR greatly reduces the computation cost of evaluating Eq. 
(7a). The overall leave-one-out CV (Loo-CV) likelihood function is computed by 
averaging all the leave-one-out samples: 

𝐿@AA7BC(𝑋, 𝑦, 𝜃) =
1
𝑛{log𝑃(𝑦,|𝑋7, , 𝑦7, , 𝜃)

/

,D-

	 (7𝑏) 

The domain knowledge of experimentalists believed that the four proposed variables are 
all influential for determining power factor (𝑦,). To incorporate this prior knowledge, we 
bounded hyperparameter values, including 𝒍 and 𝜎, between 0 and 1 for this preliminary 
analysis, since a large value for 𝑙1 would imply that dimension 𝑗 is not important. 

3. Results 
3.1. Log Marginal Likelihood (LML) and Leave-one-out Cross-Validation (Loo-CV) 
identify similar hyperparameter values 

We start by comparing LML and Loo-CV hyperparameter training approaches for the 
photonic sintering data. Table 1 shows LML and Loo-CV identify identical optimal 
hyperparameters using grid search. The first two rows correspond to optimizing 𝒍 with 
fixed 𝜎 = 0.1 which is informed by the experimental observation error. The optimal 𝒍 
obtaining with LML and Loo-CV methods are the same which suggests the simpler 
method, LML, is adequate for this photonic sintering dataset. Conversely, the third and 
fourth rows consider both 𝒍 and 𝜎 as optimized hyperparameters. With 𝜎 considered as a 
tuneable hyperparameter, 𝜎 increases from 0.1 to 0.2, and 𝑙! increases from 0.635 to 
0.687. These changes reflect the trade-off between bias and variance (Bishop, 2006) and 
correspond to the conclusion that relatively more complicated model (e.g., 𝑙! = 0.635) 
usually obtaining low observation error (e.g., 𝜎 = 0.1), while a simpler model (e.g., 𝑙! =
0.687) has higher observation error (e.g., 𝜎 = 0.2).  
 

Table 1: Comparison of hyperparameter values from LML and Loo-CV training 
 𝑙! 𝑙" 𝑙# 𝑙$ 𝜎 
LML with 𝜎 fixed 1 0.635 0.322 1 0.1 
Loo-CV with 𝜎 fixed 1 0.635 0.322 1 0.1 
LML with 𝜎 tuned 1 0.687 0.322 1 0.2 
Loo-CV with 𝜎 tuned 1 0.687 0.322 1 0.2 

 
Next, we consider the predictive uncertainty of the GP model. Figure 2 is a parity plot for 
LML optimal hyperparameters (𝑙- = 1, 𝑙! = 0.687, 𝑙% = 0.322, 𝑙. = 1, 𝜎 = 0.2). This 
plot shows the leave-one-out predictions with the GP model. The x-axis and y-axis are 
experimental and predicted power factor, respectively. The five symbols demark groups 
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Abstract 

The textile dyeing process consumes a significant quantity of energy as it is necessary to 

maintain the water temperature between 60–120 °C during the dyeing of reactive dyes. 

Therefore, to reduce the overall cost of the process through reducing the quantity of waste 

energy, it is crucial to increase the right first time (RFT) rate, which corresponds to the 

rate at which the target color is imparted through a single dyeing process (Park et al., 

2009). To improve the RFT rate, the proper operation with following the optimal dye 

exhaustion behavior in consideration of the color difference and dyeing uniformity is a 

critical factor. The color difference is determined according to maximal absorption and 

the dyeing uniformity is decided by dye exhaustion behavior [Bouatay et al., 2016]. In 

this study, we developed a model for predicting dyeing exhaustion behavior, and utilized 

the model to predict optimal dye exhaustion behavior under various dyeing conditions.  

A deep neural network-based on the dye exhaustion behavior prediction model was 

developed through regression analysis, the model was further developed and evaluated 

by dividing the entire dataset into learning and evaluation data. The model’s performance 

was evaluated using the root mean square error (RMSE) parameter alongside the 

coefficient of determination (R2) which acted as performance evaluation metrics. Using 

these performance metrics, it was found that the proposed DNN regression exhibited the 

highest performance and the smallest error in comparison with established models, with 

root mean square error RMSE and R2 values of 0.016 and 0.994, respectively. The results 

reported in this study demonstrate that the proposed model exhibits superior performance 

in predicting the dye exhaustion behavior. 

Keywords: Textile industry, re-dyeing, right-first-time, deep neural network-based 

prediction 
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1. Introduction 

Within the textile industry, dyeing forms a cost-intensive process requiring considerable 

volumes of hot water and the chemicals required for reactive dyeing. In addition, this 

process generates significant volumes of wastewater, which forms a severe environmental 

pollutant. The exhaust method is frequently used within the textile industry to dye 

cellulose fibers with reactive dyes as it achieves the highest productivity over a short 

period of time. However, the exhaust method exhibits a disadvantage in that the quality 

of the final product exhibits significant variations as a result of slight fluctuations in 

dyeing conditions, such as the dye ratio, temperature, and the Na2SO4 and Na2CO3 

concentrations. Therefore, to obtain the product’s target quality, a re-dyeing procedure is 

often required, which increases the overall dyeing cost by 98–169 % in comparison to a 

one-time dyeing process, while environmental pollution is also increased owing to the 

increased wastewater volume. Thus, to address this problem, it is crucial to increase the 

right first time (RFT) rate, which is the rate at which the target color is reproduced with 

only one dyeing cycle in the dyeing machine.To increase the RFT rate during the textile 

dyeing process, active research has recently been conducted to increase the compatibility 

of the dye and also to determine the optimal dyeing conditions to increase the final 

exhaustion rate, which impacts the target color change. To increase the dye compatibility, 

Kim et al. determined the optimal pH conditions for mononicotinic acid triazine-type dyes. 

It was found that the highest final exhaustion rate was achieved at pH values greater than 

9. Kim et al. proposed the optimal dyeing conditions for the application of both reactive 

and acidic dyes to Angora fibers to improve the final exhaustion rate. The optimal dyeing 

conditions were reported to be a dye concentration of 8 % o.w.f. for both the reactive and 

acidic dyes, a pH of 3–4 at 110 °C for reactive dyes, and a pH of 3–4 at 70 °C for acidic 

dyes. 

Despite the considerable number of reports aiming to increase the RFT rate, a significant 

limitation still remains. During the textile dyeing process, the dyeing quality was 

determined based on the color difference relative to the target color and dyeing uniformity. 

If the dye is adsorbed into the fabric at a greater rate than the optimal exhaustion behavior, 

the dye alkalizes rapidly during the reaction stage. This results in uneven fixation and 

dyeing, which degrades the dyeing uniformity. Thus, in order to increase the RFT rate, it 

is crucial to consider dyeing uniformity, which simultaneously determines both the 

exhaustion behavior and color difference. At present, no relevant studies have been 

conducted in this respect.  

To address these limitations, we propose a dye exhaustion behavior prediction model, 

utilizing a deep neural network (DNN), to determine the optimal dyeing conditions. The 

aim of this particular study was to increase the RFT rate by deriving the optimal dyeing 

conditions, which are obtained through a determination of the optimal exhaustion 

behavior which considers both  the color difference and dyeing uniformity to overcome 

the significant limitations imparted by excessive costs and environmental contamination. 
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2. Process description 

 
Figure 1. Schematic diagram of a round-configuration jet dyeing machine 

 

Figure 1 shows a schematic diagram of a round-configuration jet-dyeing machine. In this 

particular apparatus, dyeing proceeds under high temperature and pressure to facilitate 

the reactive dyeing procedure. In general, the reactive dyeing process proceeds as follows. 

Initially, the dye is ejected through a nozzle attached to the cloth guide tube within the 

closed tube system of the cloth chamber. During the continuous dye ejection through the 

nozzle, the dye is absorbed into the fabric, which is rotated over the reel lifter through the 

application of the injection pressure. The resultant turbulence facilitates dye penetration 

into the fabric, while simultaneously reducing the mechanical impact on the fabric. 

Finally, the dyeing solution containing the reactive dye is heated using a heat exchanger 

to obtain a suitable temperature for reactive dyeing. 

3. Methodology 

3.1. Data generation and preprocessing 

In order to develop the dye exhaustion behavior prediction model with respect to the 

dyeing procedure, 615 datasets were extracted detailing time, temperature, and Na2SO4 

and Na2CO3 input quantities. The time values ranged between 0 and 120 min at 3 min 

intervals, and the temperature fluctuated according to certain set values over this time 

period. Three Na2SO4 input quantities were evaluated, specifically, 10, 30, and 50 g; 

while five Na2CO3 input quantities were evaluated, specifically, 0, 5, 10, 15, and 20 g. 

Following this, the extracted datasets were preprocessed in two steps. First, any datasets 

that were not required for the dye exhaustion behavior prediction model were removed. 

As a result, since no trend was observed at an Na2CO3 input quantity of 0 g, the 

corresponding dataset was eliminated. Secondly, each dataset was normalized as the units 

ascribed to each data point vary, which, in turn, hinders the learning process. In this study, 

the z-score normalization method was applied, while the mean and standard deviation for 

each value of the same parameter were used to scale the data to exhibit a normal 

distribution with a mean of 0 and a standard deviation of 1. In addition, any time warping 

or alignment of the data sets were ignored.  
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3.2. Development of DNN-based prediction model  

A DNN-based prediction model was developed to predict the exhaustion behavior 

exhibited during textile dyeing procedures. Typically, a DNN is a machine learning 

algorithm based on an artificial neural network (ANN) which mimics the principles and 

structure of a human neural network. An ANN is composed of an input layer, a hidden 

layer, and an outer layer. If the number of hidden layers is greater than or equal to three, 

the system is denoted as a DNN. Figure 2 shows a typical DNN structure. During 

regression analysis or classification problems, a linear estimation function of the type y 

= wTx + b is used to solve the linear problem. Typically, a DNN applies an activation 

function to a linear estimation function to solve nonlinear problems. 
 

 
Figure 2. Typical DNN structure 

 
In order to develop the DNN-based dye exhaustion behavior prediction model, the 

datasets obtained after preprocessing were used. These were the exhaustion rates 

according to time, temperature, and the Na2SO4 and Na2CO3 input quantities. The pre-

processed datasets were divided into training (75 %) and test (25 %) sets. With respect to 

the DNN hyper-parameter, the model consisted of three hidden layers (h_1, h_2, and h_3), 

with the unit corresponding to each hidden layer set to 100. ReLU was used as the 

activation function for h_1 and h_2, while a sigmoid was used for h_3.  

 

ReLU(x) = max(0, x)                                                                                                       (1) 

sigmoid(x) = (1 + e−x)−1                                                                                                   (2) 

Finally, Adam was applied as the optimizer function, while the mean squared error (MSE) 

was determined to form an appropriate loss function for this regression analysis. 

 

𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
                                                                                                          (3) 

 

4. Results and discussion 

4.1. Performance of the DNN-based prediction model  

This section discusses the performance of the exhaustion behavior prediction model 

developed using a DNN-based regression analysis, in which the MSE and R2 were used 

as performance indicators. To evaluate the performance of the DNN model, other 
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regression analysis methods, such as lasso, ridge, and support vector regression, were 

applied to identical datasets. Each model was subjected to 100 regression experiments, 

and the training and test data were varied randomly each time. Table 1 lists the 

performance of each model. 

 

Table 1. Performance of each regression model 

Regression model 𝑅2  𝑅𝑀𝑆𝐸  
Lasso regression 0.726 ± 0.040  0.110 ± 0.015  
Ridge regression 0.723 ± 0.037  0.273 ± 0.020  
Support vector regression 0.902 ± 0.035  0.066 ± 0.017  
DNN regression 0.994 ± 0.004   0.016 ± 0.006  

 

From the data shown in table 1, it can be seen that the DNN regression exhibited the 

highest performance and the smallest error, with root mean square error (RMSE) and R2 

values of 0.016 and 0.994, respectively.  

4.2. Prediction results of the dye exhaustion behavior  

Based on the proposed DNN-based prediction model, the dye exhaustion behavior as a 

function of time, temperature, and the Na2SO4 and Na2CO3 input quantities was predicted. 

Figures 3 correspond to the cases for which the Na2CO3 input quantities were 5 and 10 g, 

and 15 and 20 g, respectively. 

 

 
Figure 3. Dye exhaustion behavior prediction  
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It is clear that the data obtained from the DNN-based prediction model strongly agrees 

the exhaustion behavior exhibited over time. Hence, the prediction model which is 

defined using the true dataset can be considered reliable. Through the application of the 

proposed DNN-based prediction model, the optimal dye exhaustion behavior can be 

predicted with high accuracy under various dyeing conditions. Therefore, it is possible to 

derive the optimal dyeing conditions that are derived from the targeted optimal dye 

exhaustion behavior without the need to perform the dyeing process several times. 

 

5. Conclusions 

In this study, we developed a dye exhaustion behavior prediction model which utilized a 

DNN to determine the optimal dyeing conditions. As the proposed DNN-based prediction 

model was used to predict the dye exhaustion rate under various dyeing conditions, it was 

then possible to derive the optimal dyeing conditions through an evaluation of the optimal 

dye exhaustion behavior. Thus, it will be possible to increase the RFT rate by considering 

both the color difference and dyeing uniformity to overcome the significant hinderances 

of excessive cost and environmental contamination through the generation and release of 

wastewater. As a result, the application of the proposed DNN-based prediction model 

reduces the re-dyeing rate through increasing the RFT rate. Therefore, the proposed 

model facilitates a significant improvement in the environmental and economic impact 

imparted during the dyeing process, while also providing valuable insight into the textile 

dyeing process. 
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Abstract
We present a data-driven surrogate modeling technique and demonstrate its applicability
to replace complicated thermodynamic models for efficient process simulation and
synthesis. We employ data-driven edge-concave underestimators and edge-convex
overestimators to provide guaranteed error-bounded approximation over the entire
domain. A surrogate model is then achieved by performing a parameter estimation
that ensures the approximation to be bounded between the vertex polyhedral under- and
over-estimators of the original model. We also present GEMS (Guaranteed Error-bounded
Modeling of Surrogates) framework, which is a package with automated dataflow for
sample evaluation, Hessian bound estimation and parameter estimation to obtain the
surrogate models. We apply the technique to predict the solubility of hydrofluorocarbon
(HFC) refrigerants in ionic liquids.

Keywords: Surrogate Modeling, Simulation-based Optimization, Data-driven Modeling

1. Introduction

Thermodynamic models are key to design realistic chemical processes to address
climate change, decarbonization and other grand challenges. For example, ionic liquid
(IL)-assisted innovative separation processes using extractive distillation require rigorous
solubility modeling. Also, due to the nature of ILs as ’designer solvents’, selection
of optimal IL from many candidate solvents for the same separation task requires the
understanding of phase behavior. In general, computer aided process intensification
guides the discovery of innovative process units that may result in dramatic performance
improvement. To attain confidence in the proposed design, the underlying mathematical
model must be able to sufficiently capture the physical phenomena. To achieve
this, rigorous thermodynamic models are incorporated while solving process synthesis
problems. However, attaining globally optimal solutions has been a challenge due to the
nonlinear and nonconvex nature or large size of thermodynamic models.

In simulation based optimization approach, a thermodynamic model is treated as
black-box. The sampling data is generated over the operating domain and the output
data is utilized by an optimizer which performs derivative-free optimization (Bajaj
et al., 2021). To obtain guaranteed convergence to optimal solution, one requires
dense sampling. If the black-box model is very large, the samplings can become
computationally expensive. To increase efficiency, a set of sampling data can be used

http://dx.doi.org/10.1016/B978-0-323-85159-6.50305-5 
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to generate surrogate (reduced order) models (Cozad et al., 2014; Boukouvala et al.,
2017). Such simpler models can achieve computational efficiency by replacing the
original computationally expensive models. However, the prediction accuracy remains
a challenge. For example, single/piecewise linear approximations, polynomial response
surfaces, Artificial neural networks (ANN) suffer from not being able to reliably predict
the type of approximation (under vs overestimation) (Jones, 2001). Also, Kriging (Jones
et al., 1998), radial basis functions (RBF) and other interpolating surrogates (Bhosekar
and Ierapetritou, 2018) exactly predict the training points (Wang et al., 2014) while
providing no guarantee on the quality of prediction over the entire domain of interest.

It has been recently shown that theoretically guaranteed lower bounds can be tractably
obtained just by data-driven black-box sampling (Bajaj and Hasan, 2019). The only
information required is the global upper bound on the diagonal Hessian elements which
can be obtained by either physical intuition, solving an NLP procedure or automatic
differentiation over the whole discretized domain. Specifically for the application of
thermodynamics, since it is possible to derive the bounds on the diagonal Hessian
elements for known models, the edge concavity-based relaxation provides an attractive
way towards developing surrogate thermodynamic models with theoretically guaranteed
bounds on the prediction errors. In this work, we extend the underestimator formulation
and propose a new data-driven surrogate modeling technique that provide theoretically
guaranteed tight error bounding (under and overestimation) of blackbox models over the
entire domain. We also present a framework that performs sampling of the blackbox
models, calculates Hessian via automatic differentiation, and performs globally bounded
parameter estimation through GAMS thereby facilitating the data transfer and allowing a
single flexible and user friendly package.

2. THEORETICAL BOUNDED APPROXIMATION OF BLACKBOX
MODELS

2.1. Edge-concave underestimation and edge-convex overestimation based bounding

We adopt the edge-concave underestimator (Hasan, 2018; Bajaj and Hasan, 2019) and
utilize vertex polyhedral property (Tardella, 2004) to construct linear facets of the convex
envelope solely based on evaluation of a given greybox/blackbox function f (x) at the
domain bounds and interior (sampled) points. Assuming twice-differentiability of f (x),
its edge-concave underestimator, L(x) is given by:

L(x) = f (x)−
n

∑
i=1

θ
L
i (xi − xInt

i )2 (1)

where, xInt
i is the value of sampled variable xi, and the parameter θ L

i is defined as:

θ
L
i = max

{
0,

1
2

[
∂ 2 f
∂x2

i

]U
}

(2)

Similarly, edge-convex overestimator, U(x) is expressed as follows:

U(x) = f (x)+
n

∑
i=1

θ
U
i (xi − xInt

i )2 (3)
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where, the parameter θU
i is defined as:

θ
U
i = max

{
0,

1
2

[
−∂ 2 f
∂x2

i

]U
}

(4)

For an n-dimensional problem, J simulations result in J underestimators and J
overestimators. The linear facets of which result in 2J number of n + 1 dimensional
simplices (polytopes) each having 2n vertices at the domain bounds and 1 interior vertex
(simulation point) pertaining to that particular simplex j.

2.2. Bounded Surrogate Model Parameter Estimation Formulation

We limit our focus on generating regression based non-interpolating polynomial
surrogates. To attain guarantee in the type of approximation, we bound the surrogate
prediction using the linear facets of the estimators, i.e., enforce necessary constraints so
that the surrogate prediction lies within a prescribed error bound. To that end, we generate
the under and over-estimators from f L

i and f U
i which correspond to the shifted points

(below and above respectively) of the sampled point fi. The mathematical formulation is
as follows:

min
N

∑
n=1

[(
f̂i − si

f̂i

)2

+

(
f U
i − f̂i

f̂i

)2

+

(
f̂i − f L

i

f̂i

)2]
(5)

s.t.

si = α +
N

∑
n=1

βnx̂i,n +
N

∑
n=1

N

∑
m=n

γn,mx̂i,nx̂i,m (6)

f L
i −

N

∑
n=1

θ
f ,L

n · (xi,n,v − xInt
i )2 = si −

N

∑
n=1

θ
s,L
n · (xi,n,v − xInt

i,n )
2 i ∈ I,v ∈V (7)

f U
i +

N

∑
n=1

θ
f ,U

n · (xi,n,v − xInt
i )2 = si +

N

∑
n=1

θ
s,U
n · (xi,n,v − xInt

i,n )
2 i ∈ I,v ∈V (8)

θ
s,L
n ≥ γn,n n ∈ N (9)

θ
s,U
n ≥−γn,n n ∈ N (10)

The first term in the objective function (Eq. 5) minimizes the error of the surrogate fit from
the sampled data while the second and third terms reduce the shifts of f L

i and f U
i from

the original sampled point. Eq. 6 denotes the general form of an n-dimensional quadratic
function where α , βn and γn,m are the estimated parameters. Eqs. 7 and 8 ensure that the
linear facets of the under- and over-estimator of the surrogate fit are bounded by the linear
facets of the under- and over-estimator of the original function shifted by some value at
each sampled point. Here, θ

f ,L
n and θ

f ,U
n are the parameters required to construct the

under- and over-estimators of the original function respectively. Similarly, θ
s,L
n and θ

s,U
n

are the variables required to generate the estimators of the surrogate function. Eqs. 9 and
10 guarantee the edge-concavity and edge-convexity of the under and over-estimators of
the surrogate function respectively. For estimating n-dimensional functions using a higher
order (> 2) polynomial, the model formulation essentially remains the same. However,
in this case, the upper bounds of the second derivatives of the surrogate function depend
upon the sign of the estimated parameters. This justifies incorporating mixed-integer logic
in Eqs. 9 and 10 for evaluating θ

s,L
n and θ

s,U
n .
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3. GEMS FRAMEWORK

Figure 1: GEMS framework.

For a specified model defined by
closed functional forms or a system
of equations, and the bounds on the
independent variables, the GEMS
framework (shown in Figure 1) allows
data sampling (e.g, via Latin Hypercube
sampling). To generate the upper bound
of the Hessian (θ ), the framework
utilizes two different approaches: 1)
If the model is of closed form and the
symbolic differentiation is tractable,
the NLP with an objective function
of maximizing the second derivatives
subject to the domain bounds, can
be solved through GAMS. 2) If the
model is not of closed form, or the
number of independent variables is
high, then the GEMS framework
allows efficient computation of the
Hessian by Automatic differentiation (AD). AD employs techniques similar to
backpropagation and provides numerical values of derivatives (Griewank, 2003).

Figure 2: Flash separator: (a) conventional
representation and (b) building block-based
representation.

The calculated θ values, together with
the sampled data are utilized to solve the
globally bounded parameter estimation
problem (see Section 2.2). The output
is a reduced order surrogate polynomial
that is guaranteed to not overshoot
above and below a certain threshold
defined by the relaxed piecewise linear
bounding of the edge-concave under
and edge-convex overestimators of the
original blackbox model. The main
advantage of the framework is that
it allows the linking between Python
(PyTorch), C++ (ADOL-C) for calculating Hessians via automatic differentiation,
sampling of the blackbox model via either uniform sampling or Latin hypercube sampling
and parameter estimation in GAMS thereby handling the required data transfer and
facilitating a user friendly package.

4. APPLICATION TO SURROGATE THERMODYNAMIC MODELING

To combat global warming, ILs have garnered significant attention as a potential
solvent for the separation of high global warming potential refrigerants, such as
hydrofluorocarbons (HFCs). To design innovative and intensified processes for such
separation task, one must accurately represent the HFC/IL binary system through
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thermodynamic models. Rigorous models such as Gamma-Phi or equation of state
(EOS) have higher prediction accuracy. However, these models are highly non-linear
and nonconvex, which significantly increase the computational burden for any process
synthesis and optimization frameworks. Therefore, a surrogate model with a simpler
functional form can evade the model complexity. To that end, we focus on generating
surrogate for the well-known Gamma-Phi thermodynamic model, which for the prediction
of the amount of HFC absorbed in IL, can be simplified as follows:

f (P,T, x̃1) = lnP+
(P−Ps

1)(B1 −Ṽ1)

RT
− lnPs

1 − ln x̃1 − lnγ1 (11)

Figure 3: Solubility isotherms of R-32 with
Margules activity coefficient model. The
lines represents the solubility isotherms by
the Gamma-phi based method, the symbol (o)
represent the solubility predicted by the surrogate
model.

Here, Ps
1 is the saturated vapor

pressure, B1 is the second virial
coefficient, Ṽ1 is the molar volume
of the ionic liquid, P is the total
pressure of the system, x̃1 is the
equilibrium liquid phase composition
of HFC. Activity coefficent model for
component i, (γi) can be represented
via well-known Margules or
NRTL model. More details on
the thermodynamic modeling can
be found elsewhere (Shiflett and
Yokozeki, 2006).

Here we consider R-32/[bmim][PF6]
binary system. We derive the
analytical expression of the Hessian
from the thermodynamic model (see
Eq. 11.) Given the variable bounds,
i.e., [PL,PU ], [T L,TU ], [x̃1

L, x̃1
U ],

we determine the required
θ L

P ,θ L
T ,θ L

x̃1
,θU

P ,θU
T ,θU

x̃1
(see Eq.

2 and 4) which are used to
construct the piecewise linear
bounding of the Gamma-Phi model. Since the goal is to predict mole fraction,
x̃1, for a given P,T ; we divide the entire P,T space into four subregions as follows:
R1 = {P,T : P ∈ {0.01,0.5},T ∈ {280,330}}, R2 = {P,T : P ∈ {0.5,1},T ∈ {280,330}},
R3 = {P,T : P ∈ {0.01,0.5},T ∈ {330,375}}, R4 = {P,T : P ∈ {0.5,1},T ∈ {330,375}}.
For each of the subregions, we apply the model formulation as described in Section 2.2,
and obtain a cubic surrogate polynomial.

After that, we incorporate the surrogate to a flash-separator (see Figure 2) through SPICE
(Monjur et al., 2021a,b) framework that leverages building-block based representation
followed by superstructure optimization. To represent the vapor-liquid phases using
building blocks, we require two blocks. The phase contact is represented by a
semi-restricted boundary depicted by the thick vertical line in Figure 2b. Mass transfer
between the phases takes place through this boundary which is represented by the VLE
model (see Eq. 11).

Guaranteed Error-bounded Surrogate Modeling and Application to
Thermodynamics
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When the surrogate prediction from the flash separator is compared to the Gamma-Phi
prediction (see Figure 3), we observe that the averaged prediction error lies within ≈
8.45%. We obtain four different best fitted surrogates for each of the subregions which
explains the discontinuity at P = 0.5 MPa for each of the isotherms in Figure 3. It can be
seen that the surrogates intersect the Gamma-Phi based isotherms more than once. This
may suggest that the surrogate model may be of higher order than the original function.
Since we assumed a simple polynomial form, i.e. cubic, the possibility of exponential
or logarithmic terms in the actual function may also lead to this behavior. The main
takeaway point is that through the GEMS framework, we are able to replace the nonlinear
thermodynamics by a simpler surrogate with guaranteed error bounds, allowing us to use
the same problem formulation for process synthesis applications.

5. CONCLUSIONS

The data-driven approach presented through the GEMS framework can be efficiently
applied for the approximation of VLE models. It also shows a promising pathway for
solving general data-driven global optimization problems. Incorporation of automatic
differentiation in the framework allows the calculation of the upper bound on the Hessian
even if a system of equations rather than an explicit functional form of the model is
available. The approach could be an efficient way for accelerating computationally
demanding process simulations employing complex models by proposing simple and
more computationally favorable accurate enough surrogates, thereby providing a means
to attain the global convergence of data-driven process optimization problems.
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Abstract 

Based on the experimental data of colorimetric indication, an artificial neural network 

was first established to classify the pH ranges of the intelligent food packaging device. 

An intelligent packaging system monitors the package product's condition to provide 

information about the quality and/or safety during transport, distribution, and storage. The 

intelligent packaging senses and informs the conditions of the product in an easy and 

accessible manner, without opening the package. Food pH is strongly related to the 

quality of food packaged products, indicating deterioration, microbial growth, and 

adulteration. In the case study, the development and training of an artificial neural 

network (ANN) aimed to easy quality control of food products that can present 

alterations/adulterations from pH variation reactions, based on a functional colorimetric 

indicators' response from a sustainable, intelligent packaging device (biopolymeric 

chitosan films) of easy and renewable source manufacturing. Chitosan intelligent films 

were formulated with different chitosan and natural colorimetric indicator (anthocyanin) 

concentrations, forming the intelligent device. The intelligent devices were immersed in 

a wide pH range (1.0 to 13.0) solutions, and color parameters (L*, a*, b*) variations were 

measured. An empirical multivariable model was developed based on artificial 

intelligence (ANN) to classify pH ranges through the indicator's color variation and the 

chitosan and anthocyanin concentrations. The ANN of chitosan intelligent films device 

could ensure acceptable food quality and safety levels to provide adequate protection for 

consumers and facilitate trade. 

Keywords: Intelligent Packaging; Machine Learning; IA; colorimetric indicator 

1. Introduction 

Packaging technologies are being developed to improve products preservation, quality, 

and safety. Among recent technologies, intelligent packaging is products' condition 

monitoring systems, providing quality information during transportation, distribution, 

and storage. The intelligent packaging device senses the environment inside or outside 

the package and informs the manufacturer, retailer, and consumer regarding the product's 

condition (Kuswandi et al., 2011). 

Food products' shelf-life tests demand time and cost, while colorimetric indicators can 

assist the consumer or retailer when buying the products, ensuring quality and food safety. 

Supply chain management based on pH measurements can significantly decrease food 
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waste, a critical environmental and social concern. An efficient supply chain management 

could save food disposal, water, energy, increase return-on-investment, improve 

consumer satisfaction and support regulatory requirements (Mercier & Uysal, 2018). 

Yoshida et al. (2014) developed an easy-manufacturing and sustainable colorimetric 

indicator using anthocyanin as a pH colorimetric indicator incorporated into a natural 

polymer matrix (chitosan). The intelligent films presented final properties to be applied 

as intelligent devices material, with a color variation due to pH range, which was observed 

pink color to acid pH, green-blue color to neutral pH, and yellow color to basic pH.  

The food industry, like many others, benefits a lot from modernization and the use of 

technology. Industry 4.0 brings connections and interactions between machines and 

operators from different sectors using artificial intelligence, including artificial neural 

networks (ANN). ANN is a computational model built from several simple processing 

units (neurons) capable of assimilating data and information presented and, from the 

acquired knowledge, estimating solutions that were not known until now. In this way, an 

ANN simulates the nervous system behavior of a living being. The definitions involved 

make an analogy to the components and processes related to the functioning of the human 

brain (Haykin, 2009). 

This work aimed to apply artificial intelligence, specifically artificial neural networks, to 

determine the pH value range displayed on the sustainable colorimetric indicating device. 

The empirical pH model was obtained by varying the formulation (concentrations of 

chitosan and anthocyanin) and measuring the respective color parameters measured in a 

colorimeter. 

2. Materials and methods 

2.1. Chitosan Intelligent films 

The chitosan intelligent films were obtained accordingly to (Yoshida et al., 2014), using 

different anthocyanin (Cath, 0.5, 1.0 e 2.0 % m/m) and chitosan (Cch, 0.5, 1.0 e 2.0 % 

m/m) concentrations.  

2.2 Color indication intelligent device 

The different pH values were measured using standard solutions in a wide range of pH 

from 1.20 (HCl 1 mol/L) to 13.29 (NaOH 1 mol/L) using MilliQ water, generating the 

data required to train the artificial neural network. Buffer solutions were prepared to 

obtain intermediate pH solutions: McIlvaine, Kolthoff, boric acid-potassium chloride-

sodium hydroxide. Chitosan intelligent films were immersed in pH solutions for ninety 

seconds. Instrumental color parameters (L*, a*, b*) were measured using a portable 

colorimeter (Konica Minolta, CR-400, Osaka, Japan) in three random positions. 

2.3 Development of empirical mathematical models using Artificial Neural Networks 

Experimental tests were carried out to create a database used to determine the empirical 

model of the pH of the chitosan film. Chitosan and anthocyanin concentrations and 

measured color parameters (L *, a *, and b *) were used as ANN input variables. The pH 

value of the chitosan film was used to create three distinct classes for the network output. 

The database was divided into three sets for use in the training, validation, and testing 

phases of the ANNs. The database consists of 430 data, each one containing 5 inputs 

(Cch, Cath, L *, a *, and b *) and 1 output (pH class). 

The ANNs were developed using the dedicated libraries Tensorflow and Keras. Adam 

optimization was used as an optimizer, and the categorical cross-entropy was chosen as 

the objective function. The experimental database was divided randomly into training and 
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test datasets with 80 and 20 % of the original set. The input variables were normalized in 

the range of -1 and 1 to ensure unbiased models. Three pH ranges were selected as labels 

for the outputs corresponding to pH under 4, between 4 and 8, and over 8. Early-stopping 

was introduced during the training stage to avoid model overfitting, using 10 % of the 

training dataset after performing cross-validation with the selected hyper-parameters 

summarized in Table 1. It was used 10-fold cross-validation to improve the ANN model's 

choosing, eliminating usually found consequences of random choosing.   

Different architectures of multilayer feedback artificial neural networks (hidden layers 

and an output layer) were proposed. Python, an interpreted language guaranteeing a free 

tool with easy installation and platform independence, was used to implement 

computational models. The hyper-parameters were optimized using a grid-search 

algorithm. The output layer is a three-neuron-densely-connected layer with a SoftMax 

activation function to determine the likelihood of each category. For each input vector, 

the output with the highest value was selected as the predicted output for direct 

comparison with the real data. 

The methodology applied to this case study is illustrated in Figure 1. 

Table 1. Hyper-parameters for this classification problem. 

Hyper-parameter Values 

Hidden layers 1 and 2 

Neurons 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Weight initialization Identity, random normal, and random uniform 

Activation function Hyperbolic tangent, sigmoid and ReLU 

 

 

 
 

Figure 1.  Scheme of the methodology adopted. 

 

3. Results 

Chitosan intelligent films containing different concentrations of anthocyanin presented a 

violet color. Films with lower chitosan concentration were more transparent and flexible, 

facilitating visual color variation. The chitosan intelligent films were immersed in 

different solutions in a wide pH range (1.20 to 12.58), from acidic to alkaline (Figure 2). 

The chitosan intelligent film device presented a reddish color for the pH range from 1 to 

5 (acid condition), a blue-greenish color for the range 6 to 10, changing to a yellowish 

color in a more alkaline range (pH > 12). For the pH values of 7.77 and 8.87 and 3.79 and 

Chitosan Intelligent 
indicator films 
development

Immersion in 
different pH 

solutions

Color variation indication 
(parameters L* a* b* 

measurements)

Artificial Neural Network 
development (Inputs: Cch, Cath, L*, 

a*, b*; Output: pH value classes)

ANN training, 
validation and 

testing
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5.87, the films presented a very similar color even though representing different pH 

values. 

        

(a) 1.20 (b) 3.79 (c) 5.87 (d)7.77 (e) 8.87 (f) 9.96 (g)11.40 (h)12.58 

Figure 2. Visual color variation of chitosan intelligent film device in contact with 

different pH conditions (a-h). 

In this study, an ANN was designed to classify the pH range of a chitosan film from the 

concentrations of chitosan and anthocyanin used in the film formulation and from the 

measured color parameters (Cath, Cch, L *, a *, b *), as seen in Figure 3.  

  

Figure 3. Representation of a neural network used to predict the pH at chitosan 

intelligent from the device. 

The database used for the cross-validation consists of the pH values of 1.20, 3.79, 5.87, 

7.77, 9.96, and 12.58 due to the previously exposed problem of having similar colors 

representing different pH values. This way was observed a better-quality training of the 

neural network, consequently giving better prediction results. 

Several models were generated involving changes in the number of hidden layers (1 or 

2), number of neurons (10 to 100), weight initialization (identity, random normal and 

random uniform), and activation function (hyperbolic tangent "tanh," rectified linear unit 

"ReLU" and sigmoid). Table 2 summarizes the best model regarding test accuracy. 

Table 2. Best generated model 

 

Hidden 

Layers 

Neurons 

1st layer 

Neurons 

2nd layer 

Weight 

initialization 

Activation 

function 

Training 

accuracy 

Precision 

Mean 

2 80 20 
Random 

normal 
tanh 0.79 0.62 
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The following results represent the best model illustrated in Table 2. The confusion matrix 

is shown in Figure 4. 

 

Figure 4. Confusion matrix: a summary of the prediction results of this study's best 

model. 

The accuracy for the first and second classes was over 80 %, while the "pH > 8" class 

was misclassified as the "4 < pH < 8" class at a maximum rate of 27 %. This 

misclassification can result from similar color parameters (inputs L*, a*, b*) of the 

intelligent films immersed in pH values solutions closest to the edge of the two last classes 

(pH values 7 to 9, as seen in Figure 2.). Previous types show more accurate results due to 

more significant color changes in the films, and consequently, distinct color parameters, 

allowing the network to distinguish the pH ranges more efficiently. Again, the accuracy 

presented can result from similar film colors on the edge of both pH ranges. 

Due to the relatively low test accuracy of the model (79 %) and the favorable 

misclassification rate of the third class, classification algorithms such as decision trees 

and support vector machines could be tested to obtain better pH-classification models.  

Mainly, the ANN applied to intelligent packaging is unexplored. The devices are based 

on biopolymer matrix formation that could not form a standard linkage between the 

chains. It is necessary to get more experimental data for successful of AI techniques. 

However, this is a very promising area in the future. 

4. Conclusions 

The artificial neural network was developed with data obtained from the color parameters 

for all formulations of chitosan intelligent films devices in contact with different pH 

solutions (from 1.20 to 12.58) and chitosan and anthocyanin concentration values. The 

chitosan intelligent films formulation with the most efficient colorimetric results were 

Cch = 0.5 % and Cath = 0.5 % (w/w).  

A classification model to identify the devices out of the non-spoilage range (pH values 

from 4 to 8) ensures a better standard of quality and safety of the food product during the 

supply chain, also allowing the use of the model as a software sensor, assisting in the 

decision-making of changes. The best ANN showed a decent generalization accuracy, 
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about 79 %, but still below the desirable rate. This could have resulted from similar sensor 

colors on the classes' edges, leading to a misconception of the ANN. However, the results 

showed that classification algorithms based on colorimetric measurements could be 

explored to indicate alterations/adulterations from pH variation reactions. 

The sensor device formulation needs to be improved to show the most significant 

distinction between color changes; that way, it would be possible to use a more extensive 

database with more pH values, leading to a better trained ANN. 

The commercial implementation of the sustainable, intelligent device is still a challenge, 

but a global market of food products with strict laws can be good support. 
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Abstract

Auditory perceptual analysis (APA) is the primary method for clinical assessment of speech-
language deficits, one of the most prevalent childhood disabilities. Due to multiple limita-
tions of APA including being susceptible to intra- and inter-rater variabilities, automated
methods such as Landmark (LM) analysis that quantify speech patterns for diagnosing
speech disorders in children are developed. This work investigates the utilization of LMs
for automatic speech disorder detection in children. Leveraging the similarities between
disease detection in medical/clinical research and fault detection in process systems en-
gineering (PSE), we propose to improve the detection of speech disorder in children via
PSE principles. Specifically, the parsimony principle is followed for reducing feature and
parameter spaces. Domain knowledge is utilized for generating a set of novel knowledge-
based features to address the challenge of large within-class variations in LM measure-
ments. A systematic study and comparison of different linear and nonlinear machine
learning classification techniques are conducted to assess the effectiveness of the novel
features in classifying speech disorder patients from normal speakers.

Keywords: systems engineering, machine learning, feature engineering, child speech
disorder, landmark

1. Introduction

Speech-language deficits are one of the most prevalent childhood disabilities affecting
about 1 in 12 children between the ages of three and five years old. Approximately 40 %
of children with speech and language disorders do not receive intervention because their
impairment goes undetected (Nelson et al., 2006). Auditory perceptual analysis (APA)
is the main method for clinical assessment of disordered speech; however, results from
APA are susceptible to intra- and inter-rater variabilities. Another factor to consider is that
some children may be reluctant to participate in long testing sessions, and even if they
do, transcription of large data sets of audio recordings is time-consuming and requires a
high level of expertise from therapists. These limitations of manual or hand transcription
based diagnostic assessment methods have led to an increasing need for automated meth-
ods to quickly and consistently quantify child speech patterns. Landmark (LM) analysis
is such an approach that characterizes speech with acoustic markers that are developed
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based on the LM theory of speech perception. LM analysis has been suggested as the
basis for automatic speech analysis (Ishikawa et al., 2017). Therefore, in this work we
focus on the utilization of LMs for automatic speech disorder detection in children, with
LMs extracted using SpeechMark® toolbox (Boyce et al., 2012). The description of each
landmark detected by this tool and used in this study are presented in Table 1.

Different LM-based features have been proposed in the literature. The most common one
is the counting of individual LMs, a.k.a. unigrams, which does not consider the specific
order or sequence of the LMs. n-gram, which is a generalization of unigrams and is defined
as a sequence of n consecutive LMs, takes the specific LM order into consideration when
n ≥ 2. It was found that n-gram counts (n=1, 2, 3, 4) were good features for depression
detection. Besides n-gram count, time based LM features have also been proposed in the
literature. These time based LM features include durations of the bigrams (i.e., 2-grams)
and LM pairs (i.e., onset and offset of a LM as defined in Table 1) (Huang et al., 2019), and
speech rate, which is defined as the number of phonetic units, such as syllables or words,
uttered per unit time (Huici et al., 2016). Syllabic cluster (SC) analysis, which clusters
LMs into syllabic units, has also been found to be an important feature for speech disorder
detection (Boyce et al., 2012; Atkins et al., 2019).

Systems engineering principles have been instrumental in analyzing various biological
data. For instance, we have recently reviewed a large body of research that utilizes PSE
principles and techniques to address some of the technical challenges in Big Data ana-
lytics for biological, biomedical and healthcare applications, including the principle of
parsimony in addressing overfitting, the dynamic analysis of biological data and the role
of domain knowledge in biological data analytics (He and Wang, 2020). This work aims
to improve speech disorder detection following PSE principles. The basic idea is that,
despite the extremely different physical implementations, a human body can be viewed
as a complicated biochemical plant and they share many common features at the system
level. For example, a human disease or disorder can be viewed as an anomaly (or “fault”
in a PSE term) in a human body. As a result, the principles and techniques developed for
fault detection and diagnosis in the PSE community can be adopted to address some of
the challenges in disease detection. The first step when developing a model is to select
input features or variables from the PSE perspective. In particular, many PSE applications
have demonstrated that raw features are often not the best features for capturing process
characteristics, while engineered features with statistical and/or physical meanings are
often more informative and robust in characterizing process behavior, and therefore are
more effective in fault/disease detection (He and Wang, 2011, 2020; Lee et al., 2020; Shah
et al., 2020; Suthar and He, 2021; Wang and He, 2010). Specifically, we propose novel
knowledge-based features that are the ratios of the count of n-grams (n ≥ 2) to that of un-
igrams. Ratios are usually better features than the absolute individual values in addressing
the individual variations of samples within the same class. In addition, the parsimony prin-
ciple of PSE leads us to develop robust models by reducing feature space (through feature
selection) and parameter space (e.g., through the utilization of simple linear models). The
final contribution of this work is a systematic study and comparison of different linear and
nonlinear machine learning classification techniques and their effectiveness in classifying
speech disorder patients from normal speakers.

The remainder of this work is organized as follows: Section 2 describes materials used
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in this study, the features proposed in this work, and introduces the analytical methods.
Section 3 presents results and discussions of this work, and Section 4 draws conclusions.

2. Materials and Methods

2.1. Data description

The speech of 51 children ages 33 - 94 months was retrieved from the Speech Evaluation
and Exemplars Database (SEED) (Speights Atkins et al., 2020). 39 were typically devel-
oping, and 12 with speech sound disorder without language impairment. Speech samples
retrieved for this study were recordings of children uttering the word “flower” which is
one of the 11 triage words of the set from Anderson and Cohen (2012).

2.2. Methodology

The raw features extracted from audio recordings using the SpeechMark MATLAB Tool-
box include time stamp and strength of each LM listed in Table 1, plus SC count. We
have adopted all LM and SC based features proposed in the literature, including n-gram
counts, and duration and rate features based on LMs and n-grams. In addition, we ex-
plore LM strength based features and propose n-gram ratio based features to better ad-
dress within-class variations. We have 189 engineered features after removing illegitimate
or trivial features (e.g., n-gram counts that are all zeros, or ratios with a denominator
of zero) and redundant features (i.e., the features that are highly correlated with an ex-
isting feature- Pearson correlation coefficient of 0.99). Recursive feature elimination with
cross-validation (RFECV) from scikit-learn is utilized for feature selection with the default
5-fold cross-validation with a linear discriminant analysis (LDA) model as the classifier.
Result indicates that only 10 features are needed to obtain the optimal cross-validation
score. Nine out of the ten features (seven ratio-based and two strength-based features) are
new features proposed in this work that have not been utilized before.

There is approximately a 3:1 class imbalance between the normal speaker samples and
the disordered ones. The synthetic minority over-sampling technique (SMOTE) is utilized
in this work, in which new samples are synthesized from the existing samples. Once the
training set is balanced using SMOTE, we train four different classification algorithms,
namely linear discriminant analysis(LDA), support vector machine (SVM), extreme gra-
dient boosting (XGBoost), and random forest (RF), tune their hyperparameters with a

Table 1: Description of landmarks used in this study

Landmark Description
g (glottis) Onset (+) and offset (-) of sustained motion of vocal fold
b (burst) Onset (+) and offset (-) of frication or bursts in an unvoiced

segment
s (syllabicity) Release (+) and closure (-) of sonorant consonant in a voiced

segment
f (unvoiced frication) Onset (+) and offset (-) of frication in an unvoiced segment
v (voiced frication) Onset (+) and offset (-) of frication of in a voiced segment

Screening in Children
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10-fold stratified cross-validation (CV), apply the models to the left-out test samples, and
report the sensitivity and specificity which are two most commonly used critical metrics
when dealing with binary classification problems in healthcare. This whole procedure is
referred to as one Monte-Carlo validation and testing (MCVT). We report the mean and
standard deviation of sensitivity and specificity of 50 such MCVT runs, which is a ro-
bust way of comparing different modeling techniques and assessing their performances.
Sensitivity is the true positive rate, i.e., the classifier’s ability to detect diseased patients
correctly, and specificity is the true negative rate, i.e., the classifier’s ability to detect nor-
mal controls (i.e., the ones without diseases) correctly. We also use accuracy as a single
measure when we need to evaluate the overall performance of a classifier. Throughout the
modeling procedure, grid search and random search are used for hyperparameter tuning.

3. Results and discussion

In this work, we conduct investigation from two perspectives: (1) comparing classifica-
tion performance when different feature sets are used, and (2) comparing classification
performance when different classification techniques are used. When comparing different
features, the following two feature sets are studied: (a) the original 21 features directly
obtained from the SpeechMark Toolbox, which include the counts and strengths of the
ten LMs (listed in Table 1, considering both onset and offset) for each sample, plus one
syllabic count per sample; and (b) The ten selected features selected via RFECV.

As shown in Table 2, when the 21 raw features are used, SVM with RBF kernel provides
the best overall classification performance with 75.0 % accuracy (i.e., 75.0 % of the sam-
ples are classified correctly) and has somewhat a balanced specificity and sensitivity of
80.0 % and 70.0 %, respectively. LDA provides the second-best result with 71.0 % ac-
curacy. The overall performances of all methods, linear or nonlinear, are relatively poor,
indicating that the raw features are not very informative in classifying the two classes.

Next, we apply different classification methods to the selected ten features obtained through
rational feature engineering and selection. The results are listed in Table 3 and shown in
Figure 1. By comparing Table 2 and 3, we can see that the performances of all methods
have significantly improved classification accuracy. The significantly improved perfor-
mance with these features across all classification methods demonstrates that the proposed
features are more informative than the raw features. Since there are seven features that are

Table 2: Comparison of classification performance based
on raw features

Method Sensitivity Specificity Accuracy
LDA 64 54 59
SVM (Linear) 68 74 71
SVM (Poly) 78 32 55
SVM (RBF) 70 80 75
SVM (Sigmoid) 80 54 67
XGBoost 50 86 68
RF 28 76 52
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Table 3: Comparison of classification performance based
on rationally engineered and selected features

Method Sensitivity Specificity Accuracy
LDA 94.0 92.0 93.0
SVM (Linear) 86.0 92.0 89.0
SVM (Poly) 84.0 94.0 89.0
SVM (RBF) 72.0 94.0 83.0
SVM (Sigmoid) 88.0 88.0 88.0
XGBoost 60.0 88.0 74.0
RF 76.0 94.0 85.0

ratio based, the improved performance is most likely due to our hypothesis that ratio-based
features are better at addressing individual variations of samples from the same class. In
particular, LDA classifier achieves 94.0 %, 92.0 % and 93.0 % in sensitivity, specificity,
and overall accuracy respectively. Several other methods also achieve nearly 90.0 % in
sensitivity, specificity and overall accuracy, including SVM with linear, polynomial and
sigmoid kernels. In comparison to the raw features, the sensitivity and specificity based
on the selected engineered features are much more balanced.

4. Conclusions

In this work, we propose an automated computer-assisted screening method for detecting
speech disorder in children following PSE principles. Specifically, the proposed knowledge-
based features have been found particularly informative in characterizing audio recordings
for speech disorder detection, and the parsimonious models derived from these features
are found to be not only accurate but also robust. It is demonstrated that, with raw fea-
tures, all classification methods fail to achieve high classification performance. In compar-
ison, with the ten selected features, which contain nine features proposed in this work, the
performances of all classification methods are significantly improved indicating that the
proposed features are more effective for characterizing speech disorder using speech LMs.
With knowledge-based features, LDA achieves a classification sensitivity of 94.0 %, speci-

Figure 1: Comparison of classification performance when selected features are used

Process Systems Engineering Guided Machine Learning for Speech Disorder
Screening in Children
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ficity of 92.0 %, and overall accuracy of 94.0 % compared to the SVM with RBF kernel
using raw features reaching 70.0 % sensitivity, 80.0 % specificity, and 75.0 % overall ac-
curacy. This work demonstrates that integration of domain knowledge into ML techniques
can significantly improve the performance of purely data-driven or data-centric methods.
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Abstract 

This study aims to analyse the effects on emissions and land use resulting from the 

increase of productivity in cattle farming in Brazil, focusing on the Brazilian Pantanal 

region. Considering public data from the municipalities comprising the Pantanal, the 

study considers alternative scenarios for the reduction of ranching areas through 

sustainable intensification and technological improvements, identifying the effects of 

alternative policies on emissions and natural vegetation preservation. By employing a 

System Dynamics model, the study analyses the effects of these policies and identifies 

the relationship between cattle intensive practices, land use distribution and CH4 

emissions. 

Keywords: Energy, Food and Environmental Systems, Emissions, Brazilian Pantanal, 

System dynamics 

1. Introduction 

The increase in the demand for agricultural commodities and meat products in the world 

has a significant impact on the carbon footprint and in the land use. According to FAO, 

the global livestock is responsible for 7.1 Gigatons of CO2-equiv per year, with cattle 

being responsible for about 65 % of the livestock sector’s emissions (Gerber, 2013). 

Global methane emissions were addressed at the COP-26 event, held in November/2021 

in Glasgow, Scotland, where the Methane Agreement was signed, establishing the global 

commitment to cut the gas emissions by 30% by 2030, bringing great challenges to the 

Brazilian cattle production chain. 

Brazil is the second largest producer and the largest beef exporter in the world, with large 

part of the livestock’s herd raised on pasture. The use of pastures reduces financial costs 

for the producers but results in a significant reduction of natural vegetation and 

productivity. The evolution of Brazilian cattle ranching practices in recent decades has 

increased productivity mainly through technological improvements, but the numbers are 

still far from ideal. The increase of pasture area from 135 million hectares in 1990 to 167 

million hectares in 2019 (MapBiomas, 2020) indicates that there is room for significant 

improvement in the country. 
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The Pantanal, surrounded by the Amazonia, Cerrado, and Chaco biomes, is a megadiverse 

tropical wetland. It supports numerous valuable ecosystem services including the 

provision of wild foods, environmental regulation, and maintenance services such as 

carbon storage and sediment retention, a diverse tourism industry, water supply and a 

growing cattle ranching industry. The biome has recently received global attention due to 

an alarming increase in the frequency and extent of wildfires, the causes of which are 

diverse and complex. A challenge for decision-makers is how to report on the 

environmental and socio-economic impacts of these competing human uses of the biome, 

to inform decisions that maximize benefits to local, regional, and global communities 

while maintaining ecosystem integrity. 

Based on system dynamics modelling, this study indicates how technological changes in 

cattle ranching can improve productivity and can lead to a decrease in emissions, and 

simultaneously to the preservation on the concept of natural capital.  

2. Livestock in the Brazilian Pantanal region 

The Pantanal encompasses an area of 150,355 km², occupying 1.76% of the Brazilian 

territory and comprising about 3% of the entire world’s wetlands (IBGE, 2004). Brazilian 

beef cattle development is historically based on the expansion of the agricultural frontier, 

through the deforestation of regions without infrastructure and lands depleted by 

agriculture. Brazil has the second largest cattle herd in the world and is the largest meat 

exporter, exporting around 20% of its production. Even so, it still has productivity rates 

below other great producers’ countries. In Pantanal, the cattle herd had an impressive 

increase in the last three decades, growing from around 3.5 million to 4.2 million heads 

(21.8 %) from 1990 to 2018 in the municipalities covered by the bioma (IBGE, 2004), 

resulting in a conversion of around 2.1 Mha of land to new pastures, that went from 2.6 

Mha to 4.7 Mha. The decrease in the savanna and forest formations during the period, 

from 9,0 Mha to 7.0 Mha (MapBiomas, 2020), indicates the use of part of these lands to 

ranching activities through deforestation. Although cattle raising methods have improved 

in some municipalities with intensification of cattle practices, use of new technologies 

and high-quality production, the efforts have not been enough to assure the Pantanal 

natural resources conservation.  

This study focuses on livestock activities as one of the major factors driving land change 

and emissions in the Brazilian Pantanal. Negative impacts on ecosystem services resulting 

from the decrease in native vegetation, methane and CO2 emissions and socio-economic 

effects are assumed to be the main results from the significant increase of new pastures 

of the region. Enteric methane emissions from cattle are responsible for an expressive 

amount of world’s GHG emissions and improving animal productivity is recognized as 

an important pathway to achieve global sustainable goals. 

Alternative public policies can modify the global greenhouse emissions resulting from 

livestock as presented by Avery Cohn et al. (2014), who examined policies to encourage 

cattle ranching intensification in Brazil as a strategy to reduce GHG emissions. Semi 

intensive practices may not be the best alternative for Pantanal region, but several 

alternatives related to productivity increase and emission reductions can be adopted. The 

strength of the policy depends on wellbeing and the economic value of ecosystem 

services. 
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Figure 1 – Main subsystems. Source: Own Elaboration 

3. The system dynamics (SD) model

System Dynamics model applies for dynamics complexity related problems in which 

links of different natures are made through various types of variables, flows, auxiliary 

variables, and parameters, with simulation modelling based on feedback systems theory. 

In this paper, the interaction of seven subsystems (land, economy, policies, emissions, 

welfare, livestock, and population) were considered, based in Fiddaman (2012).  

The proposed system dynamics (SD) model illustrates the stock and flow of cattle pasture 

and pastureland, focusing on the emissions subsystems and measuring the relationships 

among indicators identified in each subsystem, as showed is Figure 1. For that, it is 

assumed that the CH4 resulting from enteric fermentation of the digestive process of the 

cattle is the main source of emissions in Pantanal. Additionally, the study considers the 

pastures as the major cause of natural vegetation reduction. Water and biodiversity 

changes are considered exogenous, possibly resulting from climatic changes. The main 

driving factors for a policy shift from the Business as Usual (BAU) model to a climate 

policy focusing on emission reduction through the adoption of good ranching practices 

and restoration of natural vegetation are assumed to result from social and environmental 

pressures. 

4. Material and methods 

For this research, the Insight Maker®, a free simulation tool that runs in the web browser, 

was used to support the system dynamics application, enabling diagramming, and 

modelling features and creating representations of the system. The SD model is presented 

with emphasis on sustainable cattle ranching practices to cover issues on Pantanal over 

the period of 1990-2019. Through the SD simulation, we can analyse the impact of 

productivity policies on CH4 emission and land use and the relationship between cattle 

intensive practices, natural vegetation restoration and land use distribution. 

Historical time series from municipalities comprising the Brazilian Pantanal were 

gathered from public databases, from 1990 to 2019 in a yearly basis, considering 

information related to land use, cattle production, and regional socioeconomic indicators. 

Parameters related to jobs, income, cattle productivity and CH4 emissions, among others, 

were obtained from literature.  
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Figure 2 - Main data used in the BAU scenario. Figure 2(a) represents the area of pasture in 

Pantanal Municipalities. Figure 2(b) represents the Pantanal head of cattle supply growth 

Figure 2 represents actual data adopted as initial assumptions for the SD model, to 

illustrate the BAU scenario. Figure 2(a) depicts the area of pasture in Pantanal 

municipalities, while Figure 2(b) gives rise to the supply growth of head of cattle in 

Pantanal, which is assumed to be linear for this study, from 1990 to 2019. 

A reduction proxy of 38.5 % in the use of area (ha/head of cattle) was adopted to illustrate 

a pasture intensification scenario, based on an experience with cattle in the Mato Grosso 

state. The productivity gain when applying intensive cattle in comparison to the 

traditional one gives rise to a great number of recovered pastures (Fabiano Alvim 

Barbosa, 2015).  

A report by EMBRAPA (2014) showed that the intensification of cattle, despite 

increasing methane emissions, increases carbon sequestration in the recovered pastures, 

resulting in a positive net balance in the total emissions. According to their study, the 

average annual net emission of enteric methane (CH4) per animal is 57 CH4  kg per year 

per animal and that, through better cattle management practices, such as ranching and 

feeding conditions, this number can reach 37.7 kg, representing a 33.9 % emission 

reduction of this gas, which is one of the main global greenhouse gases.  

To simulate the impact of cattle intensification policies under emission and land use 

behaviours, two hypothetical public policies (PP1 and PP2) were proposed. With supply 

growth and pressure for more sustainable cattle, these policies aim to increase 

productivity, reconciling rural development, supply growth and environmental 

conservation, represented here by CH4 emissions and land use from cattle. PP1 assumes 

that all supply growth shall be attended by new ranching practices with higher 

productivity (heads/ha). PP2 considers that, after its implementation, a percentage of the 

existing cattle will have their ranching regime changed, moving from extensive to semi-

intensive cattle practices within a fixed horizon (5 years).  

The SD model was tested to evaluate its accuracy in interpreting the actual scenario (BAU 

– Business as Usual model). The policies were assumed to be adopted in 2000 (year 10) 

and with a linear ramp-up of 5 years for full implementation of policy PP2 in year 2005 

(year 15).  

5. Results 

By employing the System Dynamics modelling, the study analyses the results of the 

proposed policies and identifies the relationship between cattle intensive practices, land 

use distribution and CH4 emissions. For that, three scenarios were considered. Scenario 

1 considers the Business as usual (BAU), which replicates what happened with the 
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number of cattle heads and land use between 1990 and 2019 in Pantanal; Scenario 2 

contemplates the application of PP1 and PP2 policies disregarding any supply growth. 

This is a theoretical scenario aimed at controlling and isolating the effect of the policies 

and illustrating how supply growth plays an important role in land use and global 

emissions, when compared to the Scenario 3, which applies, in addition to the policies, 

an annual supply growth. 

The application of policies PP1 and PP2 reflects how ranching time optimization and 

better management practices impacts on cattle productivity and CH4 emissions. In 

comparison to the BAU scenario, it is possible to identify an improvement in the land use 

area, as showed in Figures 3(a) and 3(b). By comparing Scenario 3 with Scenario 1 

(BAU), the natural vegetation, which in 2019 totalled 15.1 Mha, would reach 16.2 Mha 

(an increase of 6.8 %). Supply growth is responsible for more than 10 % of natural 

vegetation consumption with pasture, by comparing Scenario 2 and 3. The pastureland 

would experience a significant reduction of almost 28 % in Scenario 3.  

Regarding the number of heads, considering the policies application in Scenario 3, in year 

30, intensive cattle practices would represent more than 35 % of the region's cattle supply. 

The total emissions per year, in tons of CH4, by year 30, went from 244,100 tons of CH4 

in the BAU scenario to 203,000, by applying policies PP1 and PP2 (Scenario 3), 

representing an important reduction of 20.4 %. When analyzing the number of tons of 

CH4 emitted per ton of meat, considering cattle with average weight of 400 kg, there is a 

significant reduction of 26.4% (from 2.28 ton of CH4 per ton of meat to 1.67 ton of CH4 

per ton of meat). Even with supply growth (Scenario 3), this number remains descending 

in the analyzed horizon, as shown in figure 3(d). 

From the perspective of socioeconomic impact, there was an improvement in HDI index. 

However, it is not possible to correlate this improvement with livestock practices in the 

region, since it proportionally follows the growth of the country's HDI, resulting from 

federal socio-economic measures implemented in the last 30 years. In addition, the 

income, with the new practices would increase by 50%, according to specialists, since 

intensive techniques would require greater professional qualification of ranching 

employees, contributing to technical development and quality of life improvement for the 

region. 

6. Conclusion 

This study aimed to analyze the impacts of productivity increase in cattle farming on the 

Brazilian Pantanal region on CH4 emissions and land use. It was considered the 

application of public policies (PP1 and PP2) that only admitted intensification practices 

for new cattle and proposed a change in a percentual of existing cattle, from extensive to 

intensive regime, by year 10. The proposed SD model compared the actual scenario, 

based on actual data (Scenario 1), with two theoretical scenarios (Scenario 2 and 3), that 

contemplated these new policies, from 1990 to 2019. The employment of a System 

dynamics model connects and gives rise to the system’s behavior, enabling better policy 

decisions and design.  

It was found that the application of public policies that are not so restrictive can 

effectively reduce the number of emissions and offer more efficient livestock practices in 

the Pantanal. Even considering supply growth, the total emissions per year went from 

244,100 ton of CH4 in the actual scenario to 203.000 ton of CH4 in Scenario 3, in year 

30 (a reduction of more than 20 %). 
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Figure 3 - Results from scenarios analysis for Pantanal cattle case. Figure 3(a): land used for 

pasture; Figure 3(b): natural vegetation available in Pantanal; Figure 3(c): total CH4 emissions 

per year, in tons of CH4; Figure 3(d): total emissions of CH4 per ton of meat of cattle 

A reduction of 26.4 % in tons of CH4 per ton of meat could also be observed, (from 2.28 

ton of CH4 per ton of meat to 1.67 ton of CH4 per ton of meat). The natural vegetation 

could experience an important achievement, by applying these policies, reaching an 

increase of almost 7 % (from 15.1 Mha to 16.2 Mha) in comparison to the actual scenario. 

From a socioeconomic point of view, these policy changes would lead to an increase in 

the region's income and a need for more professional qualification. An in-depth study is 

recommended to study how improvements in livestock production practices could lead to 

an improvement in socioeconomic conditions in the region. 

These important results ensure that improvements in land use and in CH4 emissions can 

be made with easy-to-implement measures, helping Brazilian institution to meet the 

objective of COP-26.  
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080007, Colombia

emartinher@usal.es

Abstract

Intensive farming activities release large amounts of phosphorus into the environment in
the form livestock manure, contributing to the eutrophication of waterbodies, and can lead
to algal bloom episodes. This work conducts a study on the design and analysis of incen-
tive policies to promote the implementation of phosphorus recovery systems at intensive
livestock facilities minimizing their negative impact on the economy of livestock oper-
ations. The Great Lakes area is used as case study, analyzing the economic impact of
the implementation of phosphorus recovery systems, either considering the deployment
of standalone phosphorus recovery processes, or integrated systems combining nutrient
recovery with anaerobic digestion for the production of electricity. Moreover, the fair allo-
cation of monetary resources when the available budget is limited has been studied using
the Nash allocation scheme.

Keywords: Environmental Policy, Circular Economy, Resource Recovery, Nutrient
Pollution, Organic Waste

1. Introduction

Since the 19th century, the agricultural sector has experienced an accelerated industrial-
ization pursuing its intensification to satisfy the demand of food and agricultural products,
i.e., increasing the agricultural production per unit of input resources (land, labor, time, fer-
tilizer, seeds, and investment) (FAO, 2004). However, multiple environmental challenges
must be faced as a consequence of the industrialization of the agricultural and farming
activities. One of the main sources of concern are the nutrient releases from intensive
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livestock facilities in the form of manure, which contribute to the nutrient pollution of
waterbodies, and contribute to eutrophication and harmful algal blooms (HABs) episodes.
Therefore, nutrient recovery and recycling is not only a desirable but also a necessary
approach to develop a more sustainable agricultural paradigm.

In this work, the effect of different incentive policies to promote the implementation of P
recovery systems at concentrated animal feeding operations (CAFOs) is evaluated. Since
P recovery systems can be implemented either as standalone systems, or integrated with
biogas production and upgrading processes, the combination of incentives for the recovery
of both phosphorus and electricity has also been considered. In addition, we study the
allocation of limited monetary resources using a Nash scheme; this determines the break-
even point for the allocation of monetary resources based on the availability of incentives.

2. Framework for the assessment of incentive policies

A two-stage framework is proposed for the evaluation of incentive policies, as shown in
Figure 1. In the first stage, the size and geographical location of the studied CAFOs are
analyzed, selecting the most suitable P recovery process for each CAFO assessed from a
pool of six P recovery technologies. We note that these technologies can be implemented
either standalone, or integrated with anaerobic digestion (AD) for biogas production. The
P recovery selection stage is composed of different models that are fed with data regarding
the type and number of animals in the studied CAFO, as well as its geographical location
(box a). The assessment of the regional environmental vulnerability to nutrient pollution
is performed through a geographical information system (GIS) model (box b). Addition-
ally, the techno-economic assessment of the different phosphorus recovery technologies,
and biogas production in those cases where this process is considered, is performed based
on the characteristics of each CAFO under evaluation in parallel (box c). The information
returned by these models is normalized and aggregated in a multi-criteria decision anal-
ysis (MCDA) model to select the most suitable nutrient management technology for the
evaluated livestock facility (box d). A detailed description of decission-support framework
used for the assessment and selection of P recovery systems considering the environmental
vulnerability to nutrient pollution can be found in Martı́n-Hernández et al. (2021).

In a second stage, the effect of incentives on the economic performance of the P recovery
systems selected in the first stage is evaluated. This study is performed through an eco-
nomic model that estimates the profit of the P recovery systems implemented and the total
cost of phosphorus recovery. Additionally, a cost-benefit analysis comparing the recovery
cost and the economic looses due to nutrient pollution is performed (box e).

The incentives considered in this study to promote the implementation of nutrient recovery
systems are phosphorous credits (P credits) and renewable electricity certificates (REC).
P credits can be articulated as a system for the acquisition of phosphorus emission al-
lowances, or conversely, as an income obtained by recovering phosphorus, which is the
P credits definition considered in this work. In addition, in those scenarios where biogas
production is integrated, REC are also considered. REC incentives provide a fixed re-
muneration for the electricity produced, which can result in a higher transaction price of
electricity to cover the extra production costs and guarantee long-term price stability.
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Figure 1: Flowchart of the models for selection, sizing, and evaluation of nutrient recovery
systems at livestock facilities.

The states of the Great Lakes area, i.e., Minnesota, Indiana, Ohio, Pennsylvania, Wis-
consin, and Michigan, are the study region considered to analyzed the impact of incentive
policies on P recovery. The CAFOs considered for the deployment of livestock waste treat-
ment processes are those livestock facilities with more than 300 animal units reported in
the National Pollutant Discharge Elimination System (NPDES) by the U.S. Environmental
Protection Agency (US EPA) in the states under evaluation. An animal unit is defined as
an animal equivalent of 1,000 pounds live weight. 2,217 CAFOs are considered in total.

3. Results and discussion

The results of the implementation and allocation of incentives for phosphorus recovery are
shown in this section. The results regarding the techno-economic assessment of the dif-
ferent processes, technology selection, and phosphorus recovered can be found in Martı́n-
Hernández et al. (2021).

3.1. Combined effect of incentives for phosphorus and renewable electricity recovery

The net processing costs obtained for different scenarios combining multiple values of P
credits and REC incentives are shown in Figure 2. They show a base cost for the recovery
of phosphorus between 5.81 and 12.47 USD per ton of processed manure if no incen-
tives or anaerobic digestion stages are considered. The installation of biogas processes
is not profitable by itself, increasing the processing costs by 1.2-1.9 times over the base
case, and it is only beneficial for large size CAFOs unser specific scenarios combining
moderate P credits (>3 USD/kgP recovered ) and electricity incentives (>60 USD/MWh).
The scenarios combining states with large CAFOs and high value for P credits, and the
optional production of renewable energy from biogas result in negative processing costs,
i.e., they are profitable. Since the analysis of the different scenarios is carried out at the
state level, this means that the profitable P recovery processes are able to balance out the
non-profitable ones in the state.

3.2. Environmental cost-benefit analysis

The cost-effectiveness of the total cost involved in phosphorus recovery, including the
amortization of the investment, operating costs, and total cost of incentives for each sce-
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Figure 2: Net processing cost per metric ton of manure (USD).

nario under evaluation has been studied to determine the long-term economic benefits of
phosphorus recovery.

Figure 3 shows the total cost of phosphorus recovery under different policies, including
all the items previosuly described. The economic losses due to phosphorus releases have
been estimated in 74.5 USD per kg of phosphorus released by Sampat et al. (2021). It
can be observed that P recovery is economically beneficial in all scenarios considered,
even those resulting in the largest P recovery costs as a result of high incentive values.
The role of the size of CAFOs in the cost of phosphorus recovery can be also observed in
this study. Those states with larger average size of CAFOs, such as Wisconsin, Ohio, and
Michigan, have recovery costs significantly lower than the states where medium and small
size CAFOs are predominant.

3.3. Fair distribution of incentives

In those scenarios where the available budget is not sufficient to cover the operating ex-
penses of the unprofitable P recovery processes, the fair distribution of incentives is a
relevant problem. For the CAFOs in the study region considered in this work, the neces-
sary budget to cover the economic losses of the unprofitable P recovery systems is 222.6
MM USD. We note that Due to the marginal benefits obtained by installing AD processes,
as described in Section 3.1., the implementation of only P recovery systems is assumed in
both studies, and therefore only incentives for P recovery are considered.

The fair allocation of limited incentives has been addressed by using the Nash allocation
scheme. This approach has been selected because this scheme is able to capture the scales
of the different stakeholders (CAFO facilities) in order to achieve a fair distribution of a
certain resource (incentives), as it was demonstrated by Sampat and Zavala (2019).
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Figure 3: Comparison of the total cost of phosphorus recovery for each scenario assessed
and the environmental remediation cost due to phosphorus releases. REC denotes the elec-
tricity incentive values considered in USD/MWh, and PC denotes the value of phosphorus
credits in USD/kgP recovered. The red dotted line represents the economic losses due to
phosphorus releases to the environment.

Figure 4 illustrates the distribution of incentives as a function of the net revenues of the
P recovery system installed in each CAFO c before any incentive is applied. The cases
where the available budget are the 10%, 30%, 50%, 70%, and 100% of the incentives
needed to cover the economic losses of unprofitable CAFOs are analyzed (22.3, 66.8,
111.3, 155.8 and 222.6 MM USD respectively). Since the available incentives are limited,
a break-even point determining the profitability level of the P recovery systems below
which the incentives should be allocated is set for each scenario. As a result, the fewer
incentives available, the more restrictive the break-even point is. Additionally, it can be
observed that the displacement of the break-even points is progressively reduced as the
available incentives increase, resulting in a marginal improvement between the scenarios
considering the 50% and 70% of the economic resources needed to guarantee the economic
neutrality of the nutrient management systems.

4. Conclusions

This work aims at analyzing incentive policies for the implementation of phosphorus re-
covery systems for the abatement of nutrient releases from CAFOs. The deployment of
phosphorus recovery processes is self-profitable through struvite sales only for the largest
P recovery processes, which represent less than the 5% over the total CAFOs in all the
studied states. However, the application of P credits increases the fraction of profitable
processes around to 100% in the states with large-size CAFOs (Michigan, Ohio and Wis-
consin), and up to 80% for the states with medium-size CAFOs (Indiana and Pennsylva-
nia). The incentives necessary for covering the economic losses of unprofitable CAFOs
estimated in 222.6 million USD. The integration of phosphorus recovery technologies with
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Figure 4: Distribution of incentives considering the Nash allocation scheme. Scenarios
assuming available incentives equal to the 10%, 30%, 50%, 70%, and 100% of the incen-
tives needed to cover the economic losses of unprofitable P recovery systems in the Great
Lakes area are illustrated.

anaerobic digestion and biogas upgrading processes does not result in any practical im-
provement in terms of economic performance. The total cost of phosphorus recovery, in-
cluding the investment amortization, operating costs, and total cost of incentives is lower
than the long-term economic losses due to phosphorus pollution for all the evaluated states
and policies, proving that sustainable nutrient management systems are economically and
environmentally beneficial. Additionally, the fair distribution of limited incentives has
been studied, determining the break-even point for the allocation of monetary resources
based on the availability of incentives.

Disclaimer: The views expressed in this article are those of the authors and do not neces-
sarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention
of trade names, products, or services does not convey, and should not be interpreted as
conveying, official U.S. EPA approval, endorsement, or recommendation.
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Abstract 

This work focuses on the evaluation of the economic performance and carbon and water-

related environmental impacts of a biorefinery scheme using olive tree pruning wastes as 

feedstock. The considered process is based on a multiproduct biorefinery producing 0.66 

m3/h of ethanol, 114 kg/h of xylitol and 144.4 kg/h of antioxidants valorising both the 

cellulose/hemicellulose and the extractives fraction. The plant is not energetically self-

sufficient (even considering the combined heat and power production from the 

combustion of the waste solids fraction) requiring a supply of natural gas. Nonetheless, 

the plant shows a positive investment balance with a net present value of 11.56 M€ in a 

20-year period being the most important product the antioxidant which represent 66.2 % 

of total revenues. In addition, the biorefinery also shows a better environmental profile in 

comparison to the business-as-usual production of ethanol, xylitol and antioxidant. 

Keywords: Lignocellulosic biorefinery, Technoeconomic Analysis, Life Cycle 

Assessment. 

1. Introduction 

Europe established in the European Green Deal an impulse on circular bioeconomy, 

replacing fossil-based materials and energy by biobased solutions (European 

Commission, 2019), in which biowaste is the principal feedstock. This strategy helps to 

mitigate the problem of the generation of high-volume residues, and at the same time 

products of great interest are obtained. Furthermore, several biorefinery projects in 

Europe using biowastes as feedstock have already shown a substantial reduction of energy 

and greenhouse gas emissions (GHGs) with respect to the reference fossil-based 

processes (IEA, 2021).  

Mediterranean countries in Europe could take advantage of incorporating this circular 

bioeconomy, because one of the most promising feedstocks for the obtention of a wide 

range of chemical products is olive tree waste (Lo Giudice et al., 2021). Those countries 

produce 70 % of the total world olive oil production (21 million t), being Spain the main 

world producer (1.8 million t) (FAOSTAT, 2021). Furthermore, the olive oil industry 

(olive cultivation and olive oil production) produces 10 million tonnes of residues per 

year, with a great potential to be valorised by means of different biorefinery processes. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50310-9 
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One of the residues is olive tree pruning (OTP), which is an abundant lignocellulosic 

residue (1-2 t/ha each year) from olive cultivation. This residue must be removed from 

the field to prevent the propagation of vegetal pests (Contreras et al., 2020), but it is 

usually burned in the field, being this burning the main source of fine aerosol in winter in 

Mediterranean countries (Kostenidou et al., 2013).  

OTP has been used to obtain marketable products such as ethanol and xylitol and it is also 

a good source of natural antioxidants such as hydroxytyrosol, tyrosol, and oleuropein 

(Conde et al., 2009a). There are previous works that have studied the economic feasibility 

of plants that manufacture those products (Susmozas et al., 2019); however, an 

assessment of the associated environmental impacts (carbon and water) has not been 

carried out so far.  

This work focuses on the economic performance and the carbon and water-related impact 

assessment of a biorefinery plant using OTP as feedstock. The biorefinery was modelled 

using commercial process simulation software (Aspen Plus). The subsequent economic 

and environmental analysis carried out were rooted on data from the process simulations. 

Economic performance is studied using the net present value as economic metric. The 

carbon footprint and water consumption were accounted using a life cycle assessment 

(LCA) methodology to compare the impacts of the biorefineries with respect to the 

business-as-usual solution. 

2. Materials and Methods. 

2.1. Feedstock 

The OTP composition %wt (dry basis)is the same described by Ballesteros et al.(2011): 

28.0 cellulose (as cellulose); 20.6 hemicellulose (as xylan); 25.2 lignin; 2.7 acetic groups; 

5.9 Ash (as CaO); 7.9 glucose, 0.1 arabinose, 0.1 mannose, 1 galactose, 0.7 xylose, 4 

mannitol, and 3.8 antioxidant. (Ballesteros et al.(2011). The OTP is assumed to be already 

crushed (this will affect the price). 

2.2. Process modelling. 

Materials and energy balances of the considered scheme were computed using Aspen Plus 

v.11. Two thermodynamic packages (NRTL and UNIF-LL) were used in this simulation. 

The semi-empirical NRTL model was used as the default method in the simulation, with 

the only exception the liquid-liquid extraction of antioxidants. For this purpose, the 

UNIF-LL package was used to estimate the activity coefficients required in calculations 

of fluid phase equilibria of the mixtures involving antioxidants, ethyl acetate, sugars, and 

water. Missing pure component parameters were estimated using the built-in property 

estimation models (group contribution models from molecular structure). The antioxidant 

is simulated as hydroxytyrosol because it represent the 90 % of total compounds in this 

fraction (Conde et al., 2009b). The process is design to work with 96 t/day of OTP, which 

represent the 0,7 % of total available OTP residue at year. Process parameters such as 

stoichiometric conversion and operating conditions for pre-treatment, saccharification, 

and fermentation were retrieved from literature. 

2.3. Process description. 

In figure 1 can be observed that OTP is firstly subjected to a hot water extraction process 

with water at 393.15 K and 5 bar, to extract 90 % of the extractives. A mixture of solids 

and liquids is obtained in this unit operation: a liquid fraction with the extractives and a 

solid fraction (SF) with the insoluble solids. The liquid fraction is quenched to 308.15 K 

and pumped to a liquid-liquid extraction process using ethyl acetate solvent in a 3:1 (v/v) 
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liquid-solvent ratio. Ethyl acetate selectively extracts 99 % antioxidants from the feed to 

the organic liquid, while sugars remain in the aqueous fraction. 

On the other hand, a significant amount of ethyl acetate dissolves in the aqueous stream 

so it must be separated and sent back to the process. This is required to improve the 

economy of the process (recovering as much solvent as possible) and to reduce the 

organic fraction sent to the wastewater treatment plant.  

The organic liquid with the antioxidant dissolved is sent to a flash vessel at 373.15 K and 

0.1 bar, where the solvent is recovered by evaporation (light component) and the extracted 

antioxidants are collected from the bottom with a purity of 97.33 wt %. A total recovery 

of 90 % of the incoming antioxidants from OTP is obtained.  

The SF is sent to a steam explosion process with steam at 468.99 K and 14 bar and 

phosphoric acid (1 %) as catalyst. This operation breaks lignin and eases the subsequent 

saccharification and fermentation of cellulose. Two fractions are obtained after filtration: 

water-insoluble solids (WIS) and water-soluble solids (WSS).  

The WSS fraction is composed of xylose as the main organic constituent and is sent to 

the xylitol production route. The WSS is cold down at 323 K and mixed with lime to 

remove furans and phenolic compounds, followed by neutralization with H2SO4. The 

resulting solids are filtered and disposed. The filtered liquid is fermented at 303 K, 

obtaining a yield of 75 % of xylose to xylitol, then subjected a filtration to remove yeast, 

and evaporation process at 313.15 k and 0.5 bar to concentrate xylitol up to 50 wt%. 

Finally, xylitol is mixed with ethanol to decrease xylitol solubility at a 0.13:1 (w/w) 

ethanol-dissolution ratio. Finally, a crystallization process takes place at 268.15 K and 1 

bar to obtain xylitol crystals with 99 % purity. 

The WIS mainly contains insoluble cellulose and lignin. This fraction is converted to 

ethanol by a conventional sequence of pre-saccharification, saccharification, and 

fermentation steps (PSSF). Pre-saccharification is carried out at 323 K. Then the resulting 

stream is further cooled to 308 K and fermented to ethanol (70% of the theoretical yield 

is obtained). The resulting ethanol stream is firstly purified in a beer column which 

increases ethanol concentration up to 50 %wt and further concentrated in a purification 

column which increases ethanol concentration to 93 %. Finally, 99% ethanol is obtained 

using molecular sieves. 

The aqueous wastes from the process are sent to the wastewater treatment system 

(anaerobic and aerobic processes) where methane, sludge, and biogas are produced and 

then burned in a combined heat and power section to partially compensate the plant 

energy requirements.  

 
Figure 1. Biorefinery process flow diagram 
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2.4. Economic evaluation 

Net present value (NPV) has been used as the financial metric to measure the profitability 

of the plant with a lifetime of 20 years, an interest rate of 15 % and 25 % of taxes. The 

Inside battery limit (ISBL) plant cost is obtained by means of Aspen Economic Analyzer 

(Aspen Technologies Inc., USA). The cost of all equipment has been increased by 30% 

to cover possible uncertainties.  

A sensitivity analysis is also studied, varying the prices of the OTP and the three products 

until the NPV is equal to zero. The base prices of the products are: 0.58 €/L ethanol, 3170 

€/t xylitol, 11000 €/t antioxidants and the OTP 44.77 €/t (Susmozas et al., 2019) 

2.5. Carbon footprint and water consumption 

The carbon and water footprints analysis were calculated in line with the Life Cycle 

Assessment (LCA) principles, which is an internationally standardized methodology that 

helps to quantify the environmental impact of processes and products. 

First, the main goal is to quantify the environmental impacts of producing ethanol, xylitol, 

and antioxidants from OTP, compared to the conventional counterparts of biorefinery 

products (reference system). The reference system is made up of ethanol from ethylene, 

xylitol from corncob, and propyl gallate from spruce bark was considered as the 

counterpart reference for antioxidant production. The overall functional unit of the whole 

system is 1 kg of OTP.  

As the studied biorefinery is a multiproduct system, an economic allocation approach has 

been adopted following the value-based methodology proposed by Gnansounou et 

al.(2015). 

Data to build the OTP biorefinery inventory are obtained from the process simulations 

carried out in this work, this information is quantified and transformed into environmental 

impacts categories ReCiPe 2016 impact assessment methodology. SimaPro v11 software 

was used to assist in the calculation of the four environmental impacts selected: global 

warming (kg CO2) and water consumption (m3), The database Ecoinvent 3.5 is used. 

3. Results and Discussion 

3.1. Process design and simulation.  

The modelled biorefinery produces 0.66 m3/h of ethanol, 114 kg/h of xylitol and 144 kg/h 

of antioxidants with a raw material consumption of 4040 kg/h. The thermal need of the 

plant is 61.2 GJ/h, but the plant just produces 23.9 GJ/h from the combustion of the solid 

organic residues and biogas of the plant, so the plant needs an external supply of energy 

by means of natural gas. This plant is thermally integrated, and the consumption of heat 

is already optimized using the Aspen Energy Analyzer tool. 

The main areas of thermal energy consumption are steam explosion pretreatment and 

antioxidant extraction (63 % of thermal consumption). Besides, these processes consume 

73 % of total process water in the entire plant. 

3.2. Economic evaluation.  

The capital expenditure of the plant is 39.5 M€ and the operating expenses are 7.14 M€/y, 

being OTP the most important operating cost (23 %). Revenues are accounted for 20.3 

M€/y, being the most important product the antioxidant that accounts for 66.2 % of the 

total revenues. The NPV is 11.53 M€, with a pay-back time of 4 years. Meaning that the 

plant is profitable. 

In the sensitivity analysis, the price of OTP could increase by 224.45 % with respect its 

original price, even being the most important operating cost, the plant could resist price 

variations keeping positive profits. Furthermore, the price of ethanol could be reduced by 
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a maximum of 98 %, and xylitol could be sold for free, and the plant would reach a NPV 

of 1.5 M€. On the other hand, the antioxidant price just could be reduced by 27 %.   

This means that the plant profits are supported by the antioxidant market, making this 

part of the production scheme the most important in terms of process economics. So future 

optimization of the plant should focus on the improvement of the antioxidant production 

or even on the consideration of a standalone antioxidant production plant. 

3.3. Carbon footprint and water consumption 

The indirect and direct emissions in terms of kg CO2 equivalent (carbon footprint) and 

the total water consumptions were calculated for both the considered biorefinery and the 

reference system (Table 2). It can be seen a clear reduction in the carbon footprint of the 

biorefinery products with respect to the individual reference counterparts. The global 

warming impact is reduced from 8.17 to 0.42 kg CO2 equivalent. However, in terms of 

water consumption the advantages of the biorefinery are not so clear. On the one hand, 

there is a global reduction of water use which is a consequence of the higher water 

consumption of the reference antioxidant production process (propyl gallate). On the 

other hand, both ethanol and xylitol produced in the biorefinery have a higher water 

footprint than the individual reference systems.  

Table 1. LCIA results of the OTP biorefinery and the reference system for 1 kg of OTP. 

Biorefinery  Reference System 

Global warming (kg CO2eq) 

Total 0.42 8.17 Total 

Antioxidant 0.16 7.62 Propyl Gallate 

Ethanol 0.14 0.16 Ethanol (fossil) 

Xylitol 0.12 0.38 Xylitol (corncob) 

Water consumption (m3) 

Total 0.12 0.16 Total 

Antioxidant 0.071 0.150 Propyl Gallate 

Ethanol 0.026 0.006 Ethanol (fossil) 

Xylitol 0.019 0.001 Xylitol (corncob) 

 

As stated above, antioxidants are the most economically appealing product in the 

considered multiproduct biorefinery scheme. However, in terms of environmental aspects 

they are also responsible for the highest impacts of the plant in comparison to ethanol and 

xylitol. This is mainly due to the high water and energy consumptions required in the 

antioxidant hot water extraction process (Section 3.1). At the same time, the antioxidants 

produced from OTP are the only product of the plant which reduces both the carbon and 

water footprints with respect to its reference (propyl gallate). 

4. Conclusions 

From the results shown, it can be clearly seen that the use of OTP as feedstock for the 

production of ethanol, xylitol and antioxidants is both economically profitable and less  

environmentally harmful in terms of carbon footprint and water consumption than the 

business-as-usual solution. At the same time, antioxidants are the most economically 

interesting product of the plant (66.2 % of revenues). From an environmental point of 

view, they also reduce drastically all the impacts with respect to the reference propyl 

gallate production.  
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Abstract 

In this study, we are tackling systems design with assessments for emerging technologies. 
Computer-aided process engineering (CAPE) tools such as process design heuristics, 
process simulation, optimization, parametric analysis for characterizing sensitivity and 
alternative generation, and decision making with uncertainties have huge potential to 
compensate the data limitation of emerging technology and jump up to the deep 
technology assessments with quantified results. A case study on the application of CAPE 
tools into prospective life cycle assessment was conducted for the acetylated cellulose 
nanofiber-reinforced plastics, which has been developed to replace the conventional 
structural materials, e.g., steel or fossil-based plastics, in applications automobile or home 
appliances. We performed simulation-based life cycle inventory analysis to reveal the 
environmental and economic performance of CNF-reinforced plastics considering the 
future scale-up of production processes. Through this case study, it was demonstrated that 
the application of CAPE tools into prospective LCA enables the strategic technology 
assessments for systems design. Especially in the proof of concept on technology 
implementation can be verified and validated with the ranged values of uncertainties in 
emerging technology under development. 

Keywords: LCA, CNF, greenhouse gas emission, production cost 

1. Introduction 

In order to achieve the decarbonization target by 2050 with defossilization, we must focus 
on the early introduction and diffusion of state-of-the-art elemental technologies. 
However, many promising elemental technologies are still under development, and even 
if they are expected to be commercialized, there is uncertainty about their decarbonizing 
effects in implementation. Therefore, for these promising elemental technologies, an 
early technology assessment on the economic and environmental aspects of the 
technology should be carried out before large-scale implementation, and a roadmap for 
the diffusion of the technology should be formulated, taking into account technological 
characteristics such as the maturity of technological development, technological change, 
and economies of scale, while limiting uncertainties. In recent years, there has been an 
increase in the number of case studies using prospective life cycle assessment (LCA), 
which take into account the future potential of the technology and aim to predict the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50311-0 
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environmental impacts on the technology under development. (Arvidsson et al., 2018; 
Moni et al., 2020; Thonemann et al., 2020)  

In this study, we are tackling systems design with assessments for emerging technologies. 
Because of the data limitation on the systems and processes adopting emerging 
technologies, their design and assessments have uncertainties and difficulties to 
implement them into society smoothly. Computer-aided process engineering (CAPE) 
tools such as process design heuristics, process simulation, optimization, parametric 
analysis for characterizing sensitivity and alternative generation, and decision making 
with uncertainties have huge potential to compensate such data limitation and jump up to 
the deep technology assessments with quantified results. In this paper, we examine the 
applicability of CAPE tools for systems design and assessment adopting emerging 
technologies with a case study in acetylated cellulose nanofiber-reinforced plastics 
(AcCNF-RP). AcCNF-RP has been developed to replace the conventional structural 
materials, e.g., steel or fossil-based plastics, in applications automobile or home 
appliances. Cellulose nanofibers (CNF) can be produced from plant-derived renewable 
resources and have advantage of mechanical properties in lightness and strength when it 
was applied as the filler of the composites. Examining the proof-of-concept, mitigating 
fossil use and greenhouse gas (GHG) emissions, is strongly needed before such emerging 
technologies spread to the market and society. In this study, we performed simulation-
based life cycle inventory analysis to reveal the environmental and economic 
performance of AcCNF-RP considering the future scale-up of production processes.  

2. Materials and methods 

2.1. Application of CAPE tools into prospective LCA 

Figure 1 shows the description of systems assessments applying CAPE tools for 
prospective LCA. In management activity and resource provider, data estimation and 
interpretations are assigned to CAPE tools considering the conditions in prospective LCA. 

 

Figure 1 Description of multiple assessment activities with the necessary conditions for 
prospective LCA. n is the number of assessment methods. (Modified from previous studies 
(Kikuchi, 2014; Kikuchi et al., 2010; Kikuchi and Hirao, 2009)) 
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Conventional LCA does not take into account changes in technology level, because it 
refers to information on the current technology level and specifically estimates the 
environmental impacts of each process related to the provision of products and services. 
On the other hand, efforts to tackle climate change have become more active in recent 
years, and new products and technologies are changing concepts and models more rapidly, 
making the transition to a low-emission society more urgent.  

The significance of conducting a strategic LCA of emerging technologies for the 30-year 
time horizon up to the target year of 2050 arose regarding the issues on the climate change. 
Emerging technologies, as defined by Rotolo et al. (2015), are; “innovative and rapidly 
growing technologies that have the potential to have a significant social and economic 
impact in the domains in which they are structured, with some degree of persistent 
coherence, actors, institutions, ways of interacting with them and related knowledge 
production processes. It is characterised by its potential to have significant social and 
economic impacts. However, its most prominent impact lies in the future and is therefore 
somewhat uncertain and ambiguous at the stage at which the technology emerges.” These 
technologies are characterized as “innovative”, “rapid growth”, “consistent”, “significant 
impact” and “uncertain”, which makes technology assessment difficult due to lack of 
existing data and knowledge. 

Four main issues were identified as needing to be addressed in conducting prospective 
LCAs of emerging technologies (Thonemann et al., 2020; Moni et al., 2020). (1) 
comparability of technologies; (2) availability and quality of data; (3) scale-up 
challenges; and (4) uncertainty of assessment results. Process modeling and simulation 
are effective in estimating the missing process inventories in industrial scale production, 
because these technologies are under development in lab or pilot scale. 

2.2. Case study: Acetylation of pulp for AcCNF-RP  

Figure 2 shows the boundaries examined in this study. AcCNF-RP have been developed 
as substitutes for conventional structural materials (Eichhorn et al., 2010). Although 
kneading with polymers is required for pulp disintegration into nanofibers, it was 
excluded in this paper to focus on the chemical processes of acetylation applying CAPE 
tools (see also the previous paper (Kanematsu et al., 2021) on kneading process). 

 

Figure 2 Related boundaries for AcCNF-RP life cycles in this study. KP: kraft pulp, AcKP: 
acetylated KP, AcCNF-RP: acetylated CNF-reinforced plastic, Ac2O: acetic anhydride. (Modified 
from the previous literature (Kanematsu et al., 2021)) 
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Figure 3 Process flow including all designed alternatives of the AcKP production process at an 
industrial scale. DST-1, -2, and -3 are optional processes, and the effects of their addition were 
compared through the process simulation. All reflux ratios in distillation column were set as the 
1.3 times the theoretical minimum reflux ratio. This process consists of the process sections of 
reaction (RXN), filtration (FLT), evaporation (EVP), distillation (DST), washing (WSH), and 
drying (DRY). (Modified from the previous literature (Kanematsu et al., 2021)) 

As shown in Figure 2, Acetylation was defined as foreground processes, and kraft pulp 
(KP) obtained from a paper mill was used as pulp feedstock for CNF. The chemical 
modification process was examined in a scaled-up industrial process system implemented 
in the process simulator AspenPlusTM as well as in a lab-scale production (Kanematsu et 
al., 2021). The model constructed on process simulator is shown in Figure 3. The process 
simulation enables the evaluation of the process system in the actual production, which 
is not considered in the lab-scale production. For example, acetic anhydride (Ac2O) can 
be recovered from the mixture of unreacted Ac2O and acetic acid (AcOH) after the reactor 
and can be reused (DST-1 and -2). This is not normally done in the laboratory, but is a 
recycling process that is always considered in chemical plants. It is also possible to purify 
the byproduct, i.e., AcOH, to a level of purity that can be sold externally (DST-3). 
However, these unit operations are only optional and it is necessary to analyse the effect 
of introducing them. 

LCA is carried out by combining the foreground data obtained by process simulation with 
the background data. In this study, the functional unit is the production of 1 kg of 
acetylated KP (AcKP), and the greenhouse gas emissions from the life cycle (LC-GHG) 
are calculated. The production scale was set at 100 tonnes/day of hydrous pulp as 
feedstock. Capital expenditure for equipment and other costs including staff costs and 
general administrative costs were calculated for each process alternative using the Aspen 
Process Economic Analyzer (APEATM) and costed in the same way as for LC-GHG. 

3. Results and discussion 

Figure 4 shows the assessment results on LC-GHG and production cost for unit amount 
of AcKP. Case 1 shows the results applying the inventories of lab-scale experiment. Cases 
2 to 4 shows the results with CAPE tools. The dominant factor of the difference of case 
1 against cases 2 to 4 was the recovery of Ac2O, due to the relatively high cradle-to-gate 
LC-GHG of Ac2O. In experiment, excess Ac2O were consumed rather than raw materials. 
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(a) Cradle-to-gate LC-GHG [kg-CO2eq/kg-AcKP]          (b) Production cost [JPY/kg-AcKP]  

Figure 4 Assessment results based on process simulation by CAPE tools. (110 JPY/USD) 

Even for the results in Cases 2 to 4, the contribution of Ac2O is significant rather than the 
other factors. As it is important to reduce the consumption of Ac2O, it is effective to 
mitigate the reaction of Ac2O with the water content in the KP, e.g., 27.8 wt% of water 
in this paper. However, it is essential to consider the effect of moisture in KP on the 
kneading mechanism of friction and disintegration. In addition, although there is a benefit 
from the recovered AcOH, Case 4 is not the best case because the increase in LC-GHG 
and production costs due to energy consumption is greater than the increase in AcOH 
recovery by building more distillation columns. 

The results of Case 1 are based on the assumption that the production is carried out as it 
was in the laboratory. Such calculations have been adopted if environmental impacts and 
costs are needed for technologies with low technology readiness level (TRL), especially 
in the evaluation of emerging technologies. The CAPE tool particularly enables analyses 
of the additional energy input required to recover unreacted material, which is usually not 
done in the laboratory. The change from Case 1 to Case 2 can therefore be easily analysed 
using the CAPE tool, which also simulates the relationship between the recovery of by-
products, i.e., AcOH, and the additional energy required as shown in the results of Cases 
2 to 4. In Figure 1, the CAPE tool can be used for the activity: "Provide resource", which 
allows a certain analysis of the low TRL emerging technology. 

4. Conclusions 

In this study, we performed simulation-based life cycle inventory analysis to reveal the 
environmental and economic performance of AcCNF-RP considering the future scale-up 
of production processes. Through this case study, it was demonstrated that the application 
of CAPE tools into prospective LCA enables the strategic technology assessments for 
systems design. Especially in the proof of concept on technology implementation can be 
verified and validated with the ranged values of uncertainties in emerging technology 
under development. 
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CAPE tools have huge potentials for systems design and assessment adopting emerging 
technologies, which are necessitated towards carbon neutral society. Especially in 
chemical production, biomass-derived production can become one of the production 
routes with sustainable feedstocks. Not only conversion routes, but also the acquisitions 
of feedstocks from agriculture or forestry are now under development and construction. 
Before their huge installation, CAPE tools should be combined with prospective LCA to 
visualize the performances of such low TRL emerging technologies. 
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Abstract 

The climate in controlled environment agriculture (CEA) is a highly nonlinear complex 
system that contains nonlinearity. In addition, there are dependencies between each 
system state. In order to simultaneously control multiple system states in CEA climate, 
this paper develops a nonlinear model predictive control (NMPC) framework for the 
CEA climate control to minimize the total control cost and the constraint violation 
probability. The nonlinear dynamic model of the CEA climate, including temperature, 
humidity, CO2 level, and lighting, will be first constructed. After constructing all 
dynamic models, historical weather data is gathered to identify the system parameters 
for the nonlinear CEA climate model. A nonlinear optimization problem can then be 
developed to obtain the optimal control inputs. A case is used to demonstrate the 
performance of the proposed NMPC framework. 

Keywords: Controlled environment agriculture, temperature, humidity, CO2, lighting. 

1. Introduction 

Because the controlled environment agriculture (CEA) climate is a multi-input multi-
output system, model predictive control (MPC) has advantages over other classical 
control methods (e.g., On-Off control and proportional–integral–derivative (PID) 
control). In some past studies, linear MPC is adopted for CEA climate control (Piñón et 
al., 2005). However, CEA climate contains nonlinearity due to the complex system 
itself and the relationship between each system state (Chen and You, 2021), which 
makes nonlinear MPC (NMPC) a suitable approach to deal with the nonlinearity within 
CEA climate control (Ding et al., 2018). Several system states should be considered in 
CEA climate control. Among the studies that adopted NMPC, many only control one or 
two system states instead of simultaneously controlling all four system states mentioned 
(Blasco et al., 2007; Gruber et al., 2011; Liang et al., 2018; Lin et al., 2021). So far, 
there is still a lack of comprehensive studies that integrate temperature, humidity, CO2 
concentration, and lighting using the NMPC framework. Therefore, in this work, we 
propose a novel NMPC framework for CEA climate control to minimize the total 
control cost and the constraint violation probability. 

2. Dynamic model formulation 

Within an MPC framework for CEA climate control, a dynamic model is required in 
order to predict CEA climate (e.g., temperature, humidity, CO2 concentration, and 
lighting) as a function of control inputs and certain disturbances, to minimize the 
control cost and avoid the CEA climate from becoming harmful to crop growth. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50312-2 
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In this work, the states we consider are indoor air temperature, relative humidity, CO2 
concentration, and photosynthetically active radiation (PAR). Control actuators are fans, 
pad cooling, CO2 injection, supplemental lightings, and blinds. The disturbances 
considered are ambient temperature, ambient relative humidity, ambient CO2 
concentration, and solar radiation. The structure of the proposed dynamic model for 
CEA climate control is shown in Figure 1. 

 

Figure 1: CEA structure that shows control actuators, disturbances, and system states. 

The differential equation can be determined by analyzing the energy and mass balance 
between objects. The continuous-time CEA temperature model can be generally 
described as the following form: 

a light cover vent pad
i

sol pipe

dT
VC q q q q q q

dt
        (1) 

where   is the air density, V  is the volume of the CEA, aC  is the air specific heat, iT  

is the indoor temperature, solq  is the net solar radiation, pipeq  is the heat flux from 

heating pipes, lightq  is the heat flux from lighting, coverq  is the heat flux through the 

cover, ventq  is the heat flux from ventilation, and padq  is the heat flux from the pad.  

The humidity inside the indoor can also be modeled by differential equations. The 
absolute humidity is first modeled by using the mass balance equation. The relative 
humidity is then calculated from absolute humidity and indoor temperature (Chen and 
You, 2022). The mass balance equation of water, including the net flow from ventilation, 
evapotranspiration, and the fogging system, is shown as: 

d

d g
i

vent trans fo

h
m m

t
V m     (2) 

where ih  is the absolute humidity, ventm  is the water net flow from ventilation, transm  is 

the water net flow from transpiration of the plants, and fogm  is the water net flow from 

the fogging system. 

In the CO2 mass balance equation, the photosynthesis process consumes CO2. The mass 
balance of CO2 level is shown as: 

d

d pho
i

injv

X
X X X

t
V     (3) 
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where iX  is the indoor CO2 concentration level, vX  is the CO2 net flow from 

ventilation, phoX  is the net consumption from photosynthesis, and injX  is the control 

input of CO2 injection. The total light intensity in the CEA is the sum of the PAR from 
the sun and PAR provided by the supplemental lightings. The light intensity model can 
be shown as: 

  ,max1a s bl tind lighta l lighI I uuK u     (4) 

where aI  is the outdoor global radiation, aK  is the coefficient of the solar equation, s  

is the shading percentage, blindu  is the control input of blind ranging from 0 to 1, l  is 

the energy to light conversion percentage, ,maxlightu  is the maximum energy input of the 

supplemental light system, and lightu  is the control input of the supplemental light 

ranging from 0 to 1. 

3. Nonlinear model predictive control 

NMPC is used for controlling the CEA climate in this work. The system dynamic 
models are discretized using the Euler method. Under a given length of prediction 
horizon H, a compact form of the dynamic CEA climate model can be expressed as: 

 0 , ,xx f u v  (5) 

where x, u, and v are the system state, control input, and disturbance sequences vectors, 
respectively, and x0 is the initial system state. 

After constructing the dynamic model, we could then develop the nonlinear 
optimization problem to be solved at each time step. For the optimization problem, there 
are constraints on system states and control inputs. The constraints are defined for 
control inputs and system states throughout the entire prediction horizon H. The control 
inputs should be between the minimum and maximum values. A CEA environment 
should also be maintained within a specified range to facilitate the growth of plants and 
fruits and prevent them from being damaged by harsh climate conditions. The compact 
form of constraints for control inputs and system states can be represented as: 

,   x x u u G x g G u g  (6) 

where Gx and gx are vectors that define the system state constraints in compact form. Gu 
and gu are vectors that represent the control input constraints in compact form. 

Once the dynamic model and the constraints are prepared, the optimization problem can 
then be written out. The objective function is to minimize the total control cost. cc 
represents the cost coefficient for different control actuators, and the coefficients are 
higher for actuators using energy with higher energy costs. A vector of slack variables 
ε  is added to the objective function because there are limitations on control inputs 
which could cause the optimization problem to become infeasible. In order to penalize 
the constraint violation, the penalty weight S  is added to the objective function. Since 
the slack variables are always positive, the state constraints are therefore softened (Lu et 
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al., 2020). In this control framework, the optimization problem is solved to get the 
optimal control inputs for each time step. The system states at the next time step can be 
updated by using the dynamic models. 

 0
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4. Case studies on simulated CEA 

 

Figure 2: System identification results for greenhouse climate. The darker lines are the 
predicted trajectories by system identification; the lighter ones are measurement data. 

In this work, a CEA located in Ithaca, New York, USA, for tomato production is 
simulated for closed-loop temperature, humidity, CO2 concentration level, and lighting 
control under the NMPC control framework. The system states controlled in this work 
are indoor temperature, relative humidity, CO2 level, and PAR. System identification is 
first conducted to obtain the undetermined parameters in the CEA climate model. The 
weather data and CEA indoor climate data from November 1, 2019, to May 31, 2020, 
are gathered to conduct the system identification. The simulation is performed for one 
week in winter during December 17-23, 2019. The weather forecast data from 
December 17-23 are collected for the optimization problem. The actual measurement 
data at the same period are also collected to reveal the system states at the next time 
step. The sampling interval is 15 min, and the control horizon is 5 hours. The average 
CPU time for solving the optimization problem is 2.53 seconds on a computer with an 
Intel Core i7-6700 processor at 3.40 GHz and 32 GB of RAM. 
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Figure 3: The profiles in winter (December 17-23, 2019), (a) temperature profile, (b) 
humidity profile, (c) CO2 level profile, (d) lamp PAR profile. 

Figure 2 shows the system identification results of indoor temperature, relative 
humidity, and CO2 concentration. The darker lines are the trajectories predicted by 
system identification, and the lighter lines are the trajectories of CEA measurement 
data. The figure shows that the temperature model and relative humidity model predict 
better than the CO2 model with around 78% and 65% accuracy compared to the 43% 
accuracy of the CO2 model. The CO2 model is not as accurate as of the other two 
models due to the lack of CO2 injection data. The way to overcome the lack of CO2 
input data is by estimating data using back-calculation. The CO2 model can still be used 
to minimize the total control cost in practice because the system states would be updated 
in each time step. The effect of model error will then be reduced. 

Figure 3(a) shows the temperature profile in winter during December 17-23, 2019. The 
lower and upper bound are set differently throughout the day for the light period and 
dark period of the photosynthesis. The light period starts from 4 am to midnight and the 
dark period is between midnight and 4 am. When the CEA changes from light period to 
dark period or vice versa, the lower and upper bound are set to be gradually increased or 
decreased to avoid the abrupt changes of the indoor temperature. There is a clear diurnal 
pattern, and the profile could be maintained within the region between lower and upper 
bounds. However, the constraint violation still occurs sometimes due to forecast errors. 
The relative humidity profile in winter during December 17-23, 2019, is presented in 
Figure 3(b). The lower bound and upper bound are set as 50% and 70%. The humidity 
profile is better maintained within the region between lower and upper bounds 
compared to the temperature profile in winter. The cold outdoor air is drier than indoor 
air so that the ventilation system could help draw in the outdoor air when the humidity 
level is about to surpass the upper bound. Figure 3(c) depicts the CO2 level profile in 
winter during December 17-23, 2019. The CO2 injection occurs from 4 am to midnight 
for the light period. During the light period, the CO2 level is maintained above 1000 
ppm to stimulate tomato growth. CO2 is not necessary during the dark period, so the 
CO2 injection is set to zero. The CO2 level would gradually drop to the ambient level 
because of the ventilation. The lamp PAR result in winter during December 17-23, 2019, 
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can be found in Figure 3(d). The supplemental lightings are turned off during the dark 
period from midnight to 4 am and are turned on during the light period to ensure the 
plants receive sufficient PAR. When the sunlight PAR is adequate during the day, lamps 
are turned off to reduce energy consumption. Yet, supplemental lightings are required 
even at midday when the sunlight PAR is insufficient, which is the case on the last day. 

5. Conclusions 

In this work, we developed a nonlinear MPC framework for a CEA that could 
simultaneously control multiple system states of the CEA climate. Energy and mass 
balance equations followed by system identification were utilized to generate nonlinear 
dynamic models for temperature, relative humidity, CO2 concentration level, and light 
intensity. The nonlinear optimization problem was then solved at each time step to 
obtain the optimal control inputs for the CEA climate. A case study of a CEA located in 
Ithaca, New York was conducted. The results showed the NMPC framework could 
efficiently minimize total control cost and constraint violation. Future extensions of this 
work could include irrigation control (Shang et al., 2020), sensor integration (Chen et 
al., 2021), and accounting for uncertainty in weather forecast (Shang et al., 2019). 
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Abstract 

The utilization of energy, water and food resources across multiple technologically 
driven sub-systems has attracted much attention in the literature. In this work, a solar 
energy-based system integrated with a utility unit is proposed to generate fresh water 
from seawater by desalination, power, ammonia/urea, and syngas from biomass 
utilisation. The main objective is to design a combined integrated system (solar/biomass 
system) based on solar energy, and to study the dependence of the Energy-Water-Food 
nexus performance on the solar capacity. The core components of the developed system 
include solar thermal collectors, Rankine cycle, reverse osmosis (RO) desalination unit, 
food/agriculture sector, biomass gasification process, ammonia and urea production 
units. The beneficial uses of reverse osmosis brine streams in agriculture sector is 
considered. The syngas produced from gasification process is used for Ammonia/Urea 
production as well as in the Rankine cycle to generate electricity. A comphrensive 
thermodynamic model and energy-exergy balances are used to assess the performance 
of the proposed system using the Engineering Equation Solver (EES). Different 
scenarios are solved to capture the trade offs amongst different technologies and explore 
the optimum EWF interlinkages. Furthermore, the effects of different load changes such 
as solar radiation and ambient temperature on some of the outputs of the system are 
investigated. In addition, the energy and exergy efficiencies of the system are calculated 
and compared.  

Keywords: Multi-generation system, EWF Nexus, Solar, Biomass, Exergy. 

1. Introduction  

As the global population increases towards 9 billion in 2050, the need for energy, water 
and food (EWF) resources will increase accordingly. It is expected that the demand for 
food and water resources will rise by 50 % (Karan et al., 2018). Incidentally, there are 
inherent inter-linkages between EWF resources. As such, the EWF nexus concept was 
developed at the Bonn Nexus Conference in 2011 as a consequence to the realization of 
these inter-dependencies. The underlying analysis within the EWF Nexus concept 
enables the identification of the inter-linkages amongst different resources, and as such 
supports the identification of synergies and trade-offs (Al-Ansari et al., 2017; 2015). 
Multi-generation systems, which are integrated resource systems can support the 
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development of EWF nexus systems. For instance, Luqman et al. (2020) presented a 
multigeneration system that explores the thermodynamics of oxy-hydrogen combustor 
based on wind and solar energy. The useful products of the developed system are 
freshwater, power, hydrogen, cooling, and domestic water heating. Energy and exergy 
balances are used to evaluate the performance, where the overall respective efficiencies 
of the system were 50 % and 34 %, respectively. Nazari and Porkhial (2020) developed 
a multi-generation system that integrates solar energy and a biomass utilization unit to 
generate heating, cooling, freshwater, and electricity. The thermodynamic and economic 
model of the system was conducted, which demonstrates that through biomass 
integration, an exergy efficiency of 21.48 % can be achieved. Moreover, a multi-
objective optimization problem considering second law efficiency maximization and 
total product cost minimization were solved. The cost of the optimum solution is 
decreased by 10 %, while the exergy efficiency was 0.2% higher than the base case 
results. Ghasemi et al.(2018) analyzed a multi-generation system operating through 
solar-biomass energy using a thermodynamic and thermo-economic approach. The 
energy system includes both the desalination process and liquefaction of natural gas 
(LNG). Results indicate that the proposed system has energy and exergy efficiencies of 
approximately 46 % and 11 % respectively. 

Evidently, there are numerous multi-generation systems, which study the utilization of 
waste streams, demonstrating that integrating renewable resources can enhance 
sustainability, decentralization and resilience of integrated systems. Incidentally, in 
most previous studies, biomass utilization was studied without considering the wider 
EWF nexus elements. The hybrid EWF nexus and multigeneration concepts can be 
further expanded to include biomass utilization, associated with food production units 
and the energy-water nexus in an integrated manner (Fouladi et al., 2021). The novelty 
of this work is the trade-off analysis of an integrated solar-biomass energy system 
driven by the EWF nexus combined with a fertilizer production unit. The main 
objectives of this study are to design an integrated renewable EWF nexus system, and to 
capture the trade-offs between multiple resources to optimize the EWF interlinkages. 
 

2. System Description 
Figure 1 illustrates a representation of the integrated EWF multigeneration system. In 
this multigeneration system, the main sources of energy are from the syngas generated 
from biomass gasification process and solar energy. A Rankine cycle is used within the 
system to produce power and to be utilized within the existing energy sinks. Parabolic 
Trough Collectors (PTCs) are integrated to utilize solar energy to satisfy the required 
demand. The main components of the system include an agriculture unit, a reverse 
osmosis desalination plant, a biomass utilization process, and an ammonia/urea plant for 
fertilizer production. Moreover, the brine stream from the desalination plant is 
integrated to enhance the system and reduce. Finally, to improve the environmental 
emissions of the overall system, the potential for CO2 reduction via capture technology 
from the Rankine cycle for reuse within urea production is considered.  
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Figure 1: Proposed Integrated System. 

Multiple assumptions and input data have been used to simulate the integrated system 
using EES. Table 1 indicates the main parameters used in this study. 

Table 1: Input data for the proposed system. 

 

3. Thermodynamic Analysis & Results  

The thermodynamic analysis of the integrated system is performed using mass, energy, 
entropy, and exergy balances (using the first and second laws of thermodynamics). 
Therefore, to evaluate the performance of every component and the overall system, the 
energy and exergy efficiencies of all units in the proposed system are calculated.  Figure 
2 illustrates the obtained efficiency values. Overall, the energy and exergy efficiencies 
of the system is found to be approximately 46 % and 19 %, respectively. Furthermore,  
the maximum exergy destruction rates correspond to the gasifier and ammonia process. 
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Parameters Value 
Reference Temperature, T0 and Pressure, P0 25 ℃ and 101 kPa 
Biomass gasifier operating conditions  888 ℃ and 101 kPa 
Reverse osmosis recovery ratio  0.4 
Seawater salinity 35000 ppm 
Fresh water salinity 450 ppm 
Isentropic efficiencies of pump and turbine 85 % 
Rankine cycle pressure ratio 100 
Surface temperature of the Sun  5500	℃ 
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Figure 2: Energy and Exergy efficiencies of all components. 

The trade-offs analysis of the integrated system demonstrates that the syngas produced 
from the biomass utilization process offsets the natural gas requirement as input to other 
processes, which results in reduced energy consumption. Figure 3 indicates that by 
optimizing the energy-food nexus segment and increasing the biomass flow rate, the 
overall energy and exergy efficiencies of the system reduce. The large exergy 
destruction rates of these processes are the main reason of this behaviour. The most 
common sources of irreversibility in the gasifier and ammonia unit are the chemical 
reactions occurring within the process, which lead to destruction of chemical exergies. 
Moreover, physical exergy destruction are also associated with the expansion and 
compression unit within the plants.   

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 3: Effect of input biomass rate variation on overall system efficiencies. 
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Furthermore, the impact of changing the solar radiation on the performance of the 
turbine and seawater supply flow are illustrated in Figure 4 and Figure 5. The solar 
radiation linearly affects the outputs of the combined system. By increasing the solar 
radiation value, the net power generated by the Rankine cycle turbine increases linearly. 
This is due to the higher outlet temperature of the PTCs, which causes a higher 
temperature at the inlet of the Rankine cycle as well.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Effect of solar radiation variation on work generated by turbine. 
 

From Figure 5, it is observed that the mass flow rate of seawater in the desalination unit 
increases as the solar radiation rate increases. The parametric studies demonstrate that 
the variation of some parameters has direct impact on the overall efficiencies of the 
system, which further integrates the system by optimizing the operational conditions.  

Figure 5: Effect of solar radiation variation on seawater flowrate 
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4. Conclusion  

This study developed an integrated renewable energy driven EWF nexus system by 
combining various units, such as those within food systems, Rankine cycle, biomass 
utilization, ammonia/urea process and desalination. Electricity, freshwater, and fertilizer 
are the main outputs of the proposed system. Thermodynamic analysis including mass, 
energy, entropy, and exergy balances are implemented using Engineering Equation 
Solver (EES). Exergy destruction rates are calculated, which indicates the units that can 
be further integrated and optimized to enhance the exergy efficiencies. Using parametric 
studies, variation in certain factors are studied. The system generated net electrical 
power of almost 78 MW, 28 kg/s of freshwater, and approximately 7 kg/s of fertilizer. 
The maximum exergy destruction rates are within the biomass utilization unit and 
Ammonia production unit. The feed biomass flow rate and solar radiation value affects 
the different outputs and the overall performance of the proposed system. For future 
studies, cooling/heating loads can be integrated further into the system to enhance the 
resilience. 
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Abstract 

Hydrogen has gained a huge hype as future fuel that might aid in the transformation to a 

zero-carbon energy system. In this work, a dynamic model of green hydrogen production 

is proposed to assess the trade-offs between the economic and environmental impacts of 

incorporated green hydrogen in energy-intensive chemical processes. The model 

considers the intermittency of renewable energy sources and their effect on the sizing of 

the renewable energy and hydrogen production units, as well as on the size required for 

H2 storage. The validity of the model was tested in the decarbonization of two energy-

intensive processes namely, ammonia and methanol. The results outputs clearly show the 

trade-offs between the economic and environmental performances at various 

decarbonization targets based on hourly solar availability from a time horizon of one year. 

Keywords: Renewable Hydrogen, Decarbonized Economy, Solar Electrolysis 

1. Introduction 

In light of climate change, the Intergovernmental Panel on Climate Change (IPCC) 

establishes a protocol to cut down the Greenhouse Gas (GHG) emissions in order to 

achieve so-called carbon neutrality by 2050 (IPCC 2018). Unfortunately, the majority of 

the global energy is generated by carbon-based resources, which leads to the continuous 

release of CO2 emissions. Most of these emissions are driven from hard-to-abate sectors, 

such as petrochemical production, steel, oil refining, etc.In this context, Hydrogen (H2) 

would play a substantial role to decarbonize the global energy system since it is a clean-

burning molecule. Many factors are reinforcing why hydrogen is the key block in energy 

transition, which are, H2 can solve the renewable energy intermittency issue by utilizing 

H2 as a cleaner, affordable, and available storage. In addition, H2 can deliver a deep 

reduction in CO2 emissions specifically in the hard-to-abate sectors. In these sectors, 

renewable energy may not contribute significantly to decarbonize of these sectors as 

much as it can contribute to utility and power sectors. Although there many factors 

favoring a sustainable uprising in the investment of H2 , which are substantially stronger 

than any period, significant challenges are yet to be overcome. The major challenge to be 

addressed is the enormous emissions associated with current H2 production. The majority 

of H2 production accounting for 95%  of the world capacity is produced from fossil fuels 

via Steam Methane Reforming (SMR), resulting in so-called grey H2 (Renewable and 

Agency 2019). One promising solution is to produce the H2 from a wide variety of 

renewable resources, which is labelled as green H2. The main technology to produce green 

H2 is water electrolysis in where water decomposed into H2 and Oxygen (O2) molecules 

in presence of electric current. For green H2 to become a major energy carrier, production 

scale will need to be increased and in so partly address the production cost. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50314-6 
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Notwithstanding, there has been little quantitative analysis of green H2 from variable 

renewable energy in off-grid connection. (Schnuelle et al. 2020) developed a simulation 

model to determine the economic performance based on determined operating 

characteristics of onshore and offshore wind, as well as Photovoltaics (PV) plants. 

(Decker et al. 2019)  evaluated the cost breakdown of a baseline case for PEM in on-grid 

settings. (Glenk and Reichelstein 2019) proposed a techno-economic model to investigate 

the H2 produced from variable renewable energy considering the scalability of the 

electrolyzer in their analysis. (Mallapragada et al. 2020) developed a framework to decide 

the plant size and operating condition through the optimization of the size of the 

components taking into account hourly solar availability, and production requirement. 

However, it did not consider the utilization of the H2 produced. (Koleva et al. 2021) 

established a mathematical model to evaluate PV-powered water electrolysis from an 

economic point of view. The model was tested under different weather conditions. The 

majority of the previous work has been focused on the economics of green H2; 

nevertheless, there is no detailed investigation of dynamic modelling of PV-powered 

electrolysis. Therefore, a comprehensive dynamic model is developed to assess the trade-

offs between the economic and environmental impacts of the green H2. Furthermore, the 

dynamic model was formulated based on the intermittency of renewable energy that can 

affect the size of renewable energy units, the H2 production and utilization facilities, as 

well as the H2 storage. The mass and energy balance is calculated based on the hourly 

solar availability. The economic and environmental impacts are characterized by two 

metrics, which are total cost and CO2 emissions saved respectively. A detailed discussion 

on the mechanism of the proposed dynamic model is present in the following section. 

2. Methodology 

The aim of this study is to analyze the economic and environmental impacts of utilizing 

green hydrogen on the performance of chemical processes that act as H2 sinks. The study 

considers the intermittency of renewable energy sources and their effect on the sizing of 

the renewable energy and hydrogen production units, as well as on the size required for 

H2 storage. The economic impact of introducing green H2 is characterized by the total cost 

of establishing and operating the different units. Figure 1 shows the flow diagram with 

the different components considered in the evaluation. H2 can be supplied to the chemical 

process either through green hydrogen production, or through grey hydrogen production. 

The production of grey hydrogen is accompanied with a relatively high level of CO2 

emissions that can be avoided by using green hydrogen with a low environmental 

footprint. The dynamics of the varying renewable energy source are considered by 

discretizing the annual operation into hourly time steps; in each time step, mass and 

energy balance calculations determine the renewable power generated, the rate of 

production of green hydrogen, and the flowrate of H2 deliver to and from storage. These 

outcomes depend on the size of the different units, and on different technical parameters 

that are used as inputs. The hourly capacity factor of the renewable energy production 

unit (CFRE(t)) can be determined based on the radiation data of the geographic location 

chosen, and the expected losses in energy transformation. The green hydrogen production 

unit is characterized by its efficiency-ε (the amount of electricity required to produce H2 

– kWh/kgH2) and cost-Cgreen ($/kW). The hourly production of green H2 is determined as 

shown in Eq.(1) 
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Figure 1 Flow diagram of the considered process 

𝐹𝐻2
𝐺𝑟𝑒𝑒𝑛(𝑡) =

𝑆𝑖𝑧𝑒𝑅𝐸 × CFRE(t) × ∆t

𝜀
 (1) 

The size of the renewable energy production unit is selected so that the total annual 

production of green hydrogen meets the annual demand for green hydrogen, which is set 

based on the H2 intake of the utilization unit (kgH2/kgProduct), and the contribution of 

the green hydrogen to the total demand (%Green). This is shown in Eq.(2). Two different 

cases for addressing the temporal variation in green hydrogen production are investigated 

in this work: introducing H2 storage and oversizing the H2 utilization unit. 

∑ 𝐹𝐻2
𝐺𝑟𝑒𝑒𝑛(𝑡)

𝑡=𝑡𝑓

𝑡=1

= 𝑖𝑛𝑡𝑎𝑘𝑒𝐻2
× 𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑅𝑎𝑡𝑒 × %Green (2) 

Note that the rate of H2 production from the grey H2 unit is equal to the difference between 

the demand for H2 and the supply of green H2. The introduction of H2 storage allows the 

utilization of the excess H2 when the rate of green H2 production is higher than the demand 

for H2 by the sink, while maintaining a consistent production rate by the sink. In this case, 

the production rate of the sink in each timestep is equal to the annual production rate 

divided by the number of timesteps. The storage capacity is tracked to determine the 

initial H2 storage requirement and the total size of the storage. Eq (3), (4), and (5) show 

the equations that describe the storage. 

𝐻2𝑡𝑜𝑆𝑡𝑟 (𝑡) = (𝐹𝐻2
𝐺𝑟𝑒𝑒𝑛(𝑡) − 𝐻2𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)) × 𝑥(𝑡) (3) 

𝐻2𝑓𝑟𝑜𝑚𝑆𝑡𝑟 (𝑡) = (𝐻2𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) − 𝐹𝐻2
𝐺𝑟𝑒𝑒𝑛(𝑡)) × (1 − 𝑥(𝑡)) (4) 

𝐻2𝑖𝑛𝑆𝑡𝑜𝑟 (𝑡) = 𝐻2𝑖𝑛𝑆𝑡𝑟 (𝑡 − 1) − 𝐻2𝑓𝑟𝑜𝑚𝑆𝑡𝑟 (𝑡) + 𝐻2𝑡𝑜𝑆𝑡𝑟 (𝑡) (5) 

Note that x(t) is a binary variable that is equal to one when there is excess H2, and it is 

zero otherwise. The initial mass of H2 in the storage (𝐻2𝑖𝑛𝑆𝑡𝑜𝑟 (0)) is selected such that 

the minimum content of the storage is zero. The size of the storage is set equal to the 

maximum 𝐻2𝑖𝑛𝑆𝑡𝑜𝑟 (𝑡) achieved throughout the year. The other option of addressing 

the dynamic variations in the hydrogen production is to allow the dynamic variation in 

the production of the H2 utilization unit. This will result in varying product flowrate, and 

the size of the sink to allow the utilization of all the hydrogen produced. Hence, for each 

time step, the produced hydrogen (𝐹𝐻2
𝐺𝑟𝑒𝑒𝑛(𝑡)) is determined (equation (1)), and the 
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corresponding production rate is determined based on H2 intake, and the contribution of 

the green hydrogen to the total hydrogen demand (eq.(6)). 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑅𝑎𝑡𝑒 (𝑡) =
𝐹𝐻2

𝐺𝑟𝑒𝑒𝑛(𝑡)

𝑖𝑛𝑡𝑎𝑘𝑒𝐻2
× %Green

 (6) 

The total cost of the process is the summation of the annualized capital and operating 

costs of all the considered units. The total environmental impact is characterized by the 

emissions flowrate from the grey hydrogen production unit and from the sink. The 

assessment is conducted for different H2 utilization technologies to investigate the 

variation in the impact of introducing green hydrogen to different processes on their 

environmental and economic performance. This can be reflected in the marginal 

abatement cost (MAC) of introducing green hydrogen, which is defined as below 

𝑀𝐴𝐶 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑤𝑖𝑡ℎ 𝑔𝑟𝑒𝑒𝑛 𝐻2 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐵𝑎𝑠𝑒 𝐶𝑎𝑠𝑒

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑎𝑠𝑒 𝐶𝑎𝑠𝑒 − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑒𝑒𝑛 𝐻2 
 (7) 

3. Results & Discussion 

In this section, the versatility of the dynamic model was tested to assess the trade-offs 

between the economic and environmental impact of decarbonizing specific energy-

intensive chemical processes. Two chemical processes were analyzed namely, ammonia 

and methanol. The decarbonization is achieved through incorporating direct green H2. 

The proposed dynamic model will provide insights into these trade-offs at various 

decarbonization targets.  These targets are varied from 50% to 100% in 10% intervals. In 

each interval, the dynamic model will determine the size of the production and utilization 

of the green H2, and the flowrate of H2 deliver to and from storage, adhering to the hourly 

solar availability from a time horizon of one year. For the environmental impacts, the 

green H2 contribution is compared with blue H2, which is grey H2 accompanied with 

Carbon Capture and Storage (CCS) based on their MAC. Integrating CCS with grey 

hydrogen can cut down emissions up 90% (IEA 2019a). The MAC of blue H2 is not 

dependent on H2 utilization process, and it depends only on grey H2 and H2 storage. It 

should be noted that this work uses Proton Exchange Membrane PEM electrolysis for 

green hydrogen production for its flexibility with the variation in renewable energy and 

SMR for grey and blue hydrogen. The techno-economic data assumptions are 

summarized in Table 1. The results of the analysis described in the methods section are 

shown in figuresFigure 2 andFigure 3.  

Table 1 Techno-economic data assumptions 

Parameter Value Reference 

Ammonia Cost ($/ton) 901 (IEA 2019b) 

Methanol Cost ($/ton) 392 (Al-Mohannadi et al. 2017) 

PV Installation cost ($/kW) 714 (Agency 2020) 

PEM Electrolysis Cost ($/kW) 1,100 (IEA 2019b) 

Grey H2 Cost ($/kg H2) 348 (IEA 2019b) 

H2 Storage Cost ($/kg H2) 615 (Nordin and Rahman 2019) 

OPEX of % CAPEX 2.5 (IEA 2019b) 

CCS Cost ($/ton H2) 80.2 (Ahmed et al. 2020) 
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Figure 2 The effect of the decarbonization target on the total cost of utilization plant 

 

Figure 3 Options comparison between oversizing the utilization plant and the optimal H2 storage  

 

It can be seen clearly from Figure 2 that the decarbonization target significantly affects 

the total cost since the cost of ammonia and methanol produced. At 100% green H2 is 1.6 

and 2.4 times that of ammonia and methanol produced at 0% green H2 respectively. It 

should be emphasized that the option of oversizing the utilization plant to address the 

variation of the production of the green H2 is not attractive from an economic point of 

view. As shown in Figure 3, there is less variation in the cost for the two options (optimal 

H2 storage and oversizing the utilization plant) at a lower decarbonization target. 

However, at a higher decarbonization target, the variation in the cost is significant since 

the total cost of oversizing the utilization plant is increased by 143% and 91% for 

ammonia and methanol respectively. For the environmental impacts, as mentioned in the 

methodology section MAC metric is selected to assess the environmental performance of 

incorporating green H2. The MAC of ammonia and methanol is $304, and $802/ton of 

CO2 saved respectively. It can be noted that MAC of methanol is higher than MAC of 

ammonia due to the high emissions associated with methanol production. As expected, 

the MAC of blue H2 is lower than the MAC of green H2 as it was estimated at $110/ton 

of CO2 saved, considering 90% can be captured from both production process and energy 

emission streams.  

4. Conclusions 

A dynamic model to evaluate the economic and environmental impacts of incorporating 

green H2 for decarbonizing energy-intensive chemical processes. The proposed dynamic 

model takes into account the intermittency of renewable energy sources and their effect 
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on the sizing of the renewable energy and hydrogen production and utilization units, as 

well as on the size required for H2 storage. This analysis assesses the trade-offs between 

the economic and environmental impacts at various decarbonization targets based on 

hourly solar availability from a time horizon of one year. The model was examined to 

decarbonize two energy-intensive industrial processes at various CO2 reduction targets. 

The total cost and MAC measurements are selected as economic and environmental 

performances. The dynamic model is implemented on a spreadsheet to enable a user-

friendly interface so that the results output can be obtained within a matter of seconds. 

Nevertheless, further aspects still need attention to improve and add resilience to the 

model. These aspects are investigation of centralized vs decentralized H2 production 

facility in terms of economic and environmental impacts. In addition, further modelling 

work is needed to determine the optimum decisions related to capacity of H2 production 

and utilization plants, size of the H2 storage, and size of PV. Moreover, further research 

might explore well-established as well as emerging H2 production technologies (e.g., 

Photoelectrocatalysis).  
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Abstract 

As hydrogen is becoming an increasingly important energy carrier for renewable energy 

systems, a need for efficiency improvements of hydrogen cooling and liquefaction rises 

as well. An additional challenge associated with these processes in cryogenic conditions 

is the exothermic conversion between ortho and para isomers of hydrogen, which requires 

removing extra heat and accelerating this reaction with catalysis. In this paper, a new 

system with flowing-through hydrogen and elegantly combined thermoacoustic heat 

pump and catalytic regenerator is analyzed using thermoacoustic theory. Calculations 

with variable channel sizes in a regenerator and acoustic impedances are conducted for 

standing-wave and travelling-wave variants of this system. The corresponding optimal 

second-law efficiencies of these setups are estimated to be about 0.3 and 0.6. The 

throughput of cooled hydrogen is assessed for systems with catalyzed and non-catalyzed 

regenerators.  

Keywords: Hydrogen; Thermoacoustics; Cryogenics; Cooling. 

1. Introduction 

Hydrogen is one of the most promising fuels for the future “green” economy, as it does 

not produce harmful emissions when reacting with oxygen. As a liquid, hydrogen is one 

of the most energy-dense carriers. However, the process of cooling hydrogen at cryogenic 

temperatures either for subsequent liquefaction or to reduce boil-off during storage and 

transportation is a challenging problem, especially in small- and medium-scale systems 

(Rivard et al., 2019), which are needed to broaden applications of hydrogen fuel.  

In this study, a novel system for cooling cryogenic hydrogen is analyzed. This system 

involves hydrogen flowing through a porous medium where both thermoacoustic heat 

pumping and conversion between hydrogen isomers are taking place (Figure 1). Acoustic 

oscillations can produce heat flux in fluids near solid surfaces that can be utilized for 

refrigeration (Swift, 2002). To achieve significant thermoacoustic cooling, porous 

materials with large surface-to-volume ratio are required. 

A peculiar feature of cooling cryogenic hydrogen is a spin conversion of hydrogen 

molecules from predominantly ortho- to para-state that happens primarily below 100 K 

prior to condensation (Pedrow et al., 2021). When unassisted, this conversion is a very 

slow process. Moreover, this reaction is exothermic, thus requiring removal of additional 

heat. If this conversion does not happen during cooling processes, then the liquefied 

hydrogen evaporates more intensely during storage or transport, and thus, it will be lost. 

To accelerate the ortho-to-para conversion, surface catalysis can be employed, which 

requires porous materials to be effective. The main idea explored in this study is to utilize 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50315-8 
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a single porous matrix for both thermoacoustic heat pumping and as a catalytic bed. Such 

a system can be more efficient, compact and reliable than competing technologies. 

 

Figure 1 Schematic of thermoacoustic-catalytic system for cooling cryogenic hydrogen. 

A device that accommodates both thermoacoustic and catalytic processes is shown in 

Figure 1. Acoustic power comes from either a linear motor or thermoacoustic engine. At 

appropriate phasing between acoustic pressure and velocity, heat is pumped from one side 

of the porous material (also called regenerator or stack) to the other side. Hydrogen 

entering at the warmer end cools down when flowing toward the cold end and exits the 

system at lower temperature. If a regenerator matrix is covered with a catalyst boosting 

ortho-to-para conversion, some hydrogen molecules will not only cool down but will also 

change their spin orientation. Hence, both a catalytic converter and a cooling device are 

efficiently combined in a single setup. Additional advantages include elimination of the 

cold heat exchanger, minimization of moving parts, and intrinsically efficient continuous 

heat transfer at smaller temperature differences along the stack. A few exploratory studies 

with flow-through thermoacoustic systems were done in the past, but not in cryogenic 

conditions or spin-transforming fluids (Hiller and Swift, 2000; Reid and Swift, 2000).  

This paper outlines a simplified thermoacoustic model that can be used for initial 

assessment of the system operation in standing- and travelling-wave configurations. 

Amounts of hydrogen that can be cooled down are estimated in setups with catalyzed and 

non-catalyzed stacks. The presented model and results can benefit practitioners working 

on hydrogen systems and implementation of sustainable energy concepts. 

2. Mathematical Model 

A simplified approach to evaluate thermoacoustic heat transport in a stack or regenerator 

follows a theory developed for thermoacoustic devices (Swift, 2002). It is assumed that a 

stack contains a number of narrow channels between hot and cold ends. Other stack 

geometries, including random porous materials, can also be considered (Matveev, 2010), 

and basic thermoacoustic effects will remain similar.  

Fluid inside the stack performs oscillations with the primary motions along the channels, 

while acoustic power comes from an external source, such as a motor or thermoacoustic 

engine. Due to thermal and acoustic interactions, heat can be transported along the 

channels. In case of large temperature gradients imposed in the stack, acoustic power can 

be generated. In case of relatively low temperature gradients, heat can be pumped from 

colder to warmer space, while acoustic power will be consumed in the process.  

    Acoustic  
motions 

To resonator/  
acoustic network 

Warm H2 

Cold H2 with 
increased para fraction 

Input acoustic  
power 

Acoustic heat pumping 
inside regenerator 

Ortho/para catalytic  
conversion inside  
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At the starting point of computing the heat flow and acoustic dissipation in stacks of 

thermoacoustic systems, one need to define acoustic pressure fluctuation 𝑝′ and 

volumetric velocity fluctuation 𝑈′. The common notation involves complex numbers, 

𝑝′(𝑥, 𝑡) = 𝑅𝑒[𝑝1(𝑥)𝑒𝑖𝜔𝑡]  (1) 

𝑈′(𝑥, 𝑡) = 𝑅𝑒[𝑈1(𝑥)𝑒𝑖𝜔𝑡]  (2) 

where 𝑝1 and 𝑈1 are the complex amplitudes of acoustic pressure and volumetric velocity 

fluctuations, 𝑖 is the imaginary unity, 𝜔 is the angular frequency of oscillations, and 𝑡 is 

the time. The x-axis is directed along the primary orientation of gas particle motions in 

the acoustic wave (along the stack). A relation between acoustic pressure and volumetric 

velocity at the stack depends on the entire system (not just stack), so that the system can 

be designed to achieve desirable impedances at the stack location (Matveev et al., 2006). 

The heat transport rate produced by this thermoacoustic mechanism with a correction 

for ordinary heat conduction can be calculated as follows (Rott, 1975), 

𝑄 =
1

2
𝑅𝑒 [𝑝1𝑈1

𝑓̃𝑣−𝑓𝑘

(1+𝜎)(1−𝑓̃𝑣)
] + [

𝜌𝑚𝑐𝑝|𝑈1|2

2𝜔𝐴(1−𝜎2)|1−𝑓𝑣|2 𝐼𝑚(𝑓𝑘 + 𝜎𝑓𝑣) − (𝐴𝑘 +

𝐴𝑠𝑜𝑙𝑘𝑠𝑜𝑙)]
∆𝑇𝑚

∆𝑥
  

(3) 

where 𝑓𝑘 and 𝑓𝑣 are the thermoacoustic functions that depend on viscous and thermal 

penetration depths, 𝛿𝑣 = √2𝜇/(𝜔𝜌𝑚) and 𝛿𝑘 = √2𝑘/(𝜔𝜌𝑚𝑐𝑝), and the channel 

thickness ℎ; 𝐴 and 𝐴𝑠𝑜𝑙 are the cross-sectional areas of the stack occupied by gas and 

solid, respectively; tilde indicates complex conjugate; 𝜎 is the Prandtl number; 𝜇, 𝜌𝑚 and 

𝑐𝑝 are the gas viscosity, mean density and specific heat, respectively; 𝑘 and 𝑘𝑠𝑜𝑙  are the 

heat conductivities of gas and solid, respectively, and ∆𝑇𝑚 is the variation of temperature 

in the x-direction over distance ∆𝑥 (stack length). 

The pumped heat already accounts for heat conduction along the stack in Eq. (3). 

However, besides providing cooling power 𝑄𝐶 , this pumped heat must also remove 

acoustic power 𝑊𝑎 dissipated in the stack, which can be estimated as follows, 

𝑊𝑑 =
1

2
𝑅𝑒[𝑈1∆𝑝1 + 𝑝1∆𝑈1]  (4) 

where ∆𝑝1 and ∆𝑈1 are relatively small changes of acoustic pressure and velocity 

amplitudes over the stack. As additional dissipation will occur in the other parts of the 

system (outside stack), the total acoustic power that need to be supplied is estimated as 

𝑊𝑎 = 𝑏𝑊𝑑, where 𝑏 is a given resonator loss correction. Then, the coefficient of 

performance and the second-law efficiency can be calculated as follows, 

𝐶𝑂𝑃 =
𝑄𝐶

𝑊𝑎
=

|𝑄|−𝑊𝑑

𝑏𝑊𝑑
  (5) 

𝜂𝐼𝐼 =
𝑄𝐶

𝑊𝑎

𝑇𝐻−𝑇𝐶

𝑇𝐶
  (6) 

where 𝑇𝐻  and 𝑇𝐶  are the temperatures of the hot and cold ends of the stack, and ∆𝑇𝑚 in 

Eq. (3) is the difference between these temperatures, 𝑇𝐶 − 𝑇𝐻. 
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3. Sample Results 

Two examples of thermoacoustic coolers are presented below. The first setup involves a 

standing-wave phasing, whereas the second system is of the traveling-wave type. Their 

selected parameters, corresponding to typical thermoacoustic and hydrogen systems 

(aiming at H2 flow rates of the order of 1 g/s), are listed in Table 1. The desired 

temperature drop is initially specified as 15 K. The inlet temperature of 77 K is chosen as 

the boiling temperature of liquid nitrogen, which permits economical cooling of hydrogen 

down to this temperature. The variable parameters used for optimization included a 

spacing distance ℎ between plates in the stack and a magnitude of normalized acoustic 

impedance |𝑧| at the stack location. The normalized impedance is defined as follows, 

|𝑧| =
𝑝1𝐴

𝑈1𝜌𝑎
  (7) 

where 𝑎 is the speed of sound. Additional requirements imposed in this optimization study 

are the cooling capacity of at least 200 W (needed for intended applications) and acoustic 

power input within 300 W, whereas the optimized parameter is the second-law efficiency.  

Table 1. Selected system parameters. 

 

Mean pressure 106 Pa Stack length 2 cm 

Warm temperature 77 K Porosity 0.8 

Cold temperature 62 K Acoustic frequency 350 Hz 

Stack plate material  steel Acoustic pressure amplitude 2·105 Pa 

Resonator diameter 5 cm Resonator loss correction 1.5 

 

The calculated performance metrics for the standing-wave system, with velocity lagging 

pressure by about 90°, are shown in Figure 3. These metrics include the cooling power 

𝑄𝐶 , coefficient of performance 𝐶𝑂𝑃, and the 2nd-law efficiency 𝜂𝐼𝐼. This efficiency peaks 

at a certain value of the channel thickness normalized by the thermal penetration depth, 

ℎ/𝛿𝑘. Among the considered variations of the plate spacing and acoustic impedance, the 

configuration with ℎ/𝛿𝑘 ≈ 2.9 and |𝑧| = 8 produces the highest 𝜂𝐼𝐼 ≈ 0.340, while 

providing 207 W of cooling power and requiring 147 W of power input, thus satisfying 

criteria for the minimum cooling capacity and maximum acoustic power. 

For the found optimal values of the stack-plate spacing and acoustic impedance, 

calculations have been also conducted to determine the amount of hydrogen flowing 

through the stack that can be cooled down to 65 K, 62 K, and 59 K, which correspond to 

temperature drops in the stack of 12 K, 15 K, and 18 K. Two situations were considered. 

First, no ortho-para conversion of hydrogen was assumed, implying a non-catalyzed 

stack. In the second scenario, a catalytic stack was used, and the complete conversion 

down to the equilibrium ortho-para ratio at the exit temperature was assumed. The results 

are shown in Figure 4. The dependence of the input acoustic power on flow rate of 

hydrogen is linear, as higher-order phenomena were neglected in this study. The larger 

the required temperature differential, the less hydrogen can be cooled.  

The equilibrium ortho-para fraction ratio at the entrance temperature of 77 K is about 

0.49, whereas this ratio decreases down to 0.39, 0.36 and 0.33 at the three exit 

temperatures considered here. When the maximum possible ortho-para conversion is 

achieved, the amounts of cooled hydrogen will be smaller (thin lines in Figure 4), since 

some of the cooling power has to compensate for the heat released during this conversion. 

K. I. Matveev and J. W. Leachman 
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Figure 3 Characteristics of standing-wave system: cooling power 𝑄𝐶 , COP, and 2nd-law 

efficiency 𝜂𝐼𝐼. Normalized impedance |𝑧|: 7, solid line; 8, dashed, 9 dash-dotted line.  

 

Figure 4 Acoustic power required to cool down flowing hydrogen in standing-wave 

system. Bold lines correspond to no para-to-ortho conversion, and thin lines to complete 

conversion. Temperature drops: 12 K, solid lines; 15 K, dashed; 18 K, dash-dotted lines. 

Results of the optimization study conducted for the travelling-wave system, where 

pressure acoustic velocity and pressure fluctuations are in phase, are shown in Figure 5. 

Narrower channels and higher impedances are needed in such systems in comparison with

standing-wave setups (Swift, 2002). The second-law efficiency for the travelling-wave 

reaches 0.574 for the relative plate spacing ℎ/𝛿𝑘 ≈ 0.4 and acoustic impedance |𝑧| = 40, 

although the difference between peaks of the efficiency curves is small (Figure 5). The 

cooling power in this state is 538 W, while acoustic power of 227 W is required. One can 

note significantly higher efficiency is attained in the travelling-wave setup.  

Results of calculations for the amount of flowing-through hydrogen in the optimized 

travelling-wave system are given in Figure 6 for the same temperature drops. Due to 

higher efficiency of this configuration, roughly twice larger flow rates of the cooled 

hydrogen are possible. Again, in case of catalyzed regenerators enabling ortho-para 

conversion, the amounts of cooled hydrogen are lower (thin lines in Figure 6). 

4. Conclusions 

A novel approach to cool cryogenic hydrogen, involving a flow-through thermoacoustic 

system, has been analyzed. Using thermoacoustic theory, high-performing geometrical 

and acoustic parameters of this device were determined under given operational 

conditions. The second-law efficiencies around 0.3 and 0.6 for standing-wave and 

travelling-wave setups were estimated. Mass flow rates of hydrogen flowing through the 

system and undergoing ortho-para conversion were evaluated. The possible theoretical 

extensions of this study can include modeling of the entire apparatus, accounting for finite 

convection heat transfer rate and ortho-para conversion rate, and modification of the 
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model to account for condensation process to consider a possibility of hydrogen 

liquefaction inside a thermoacoustic system.  

 

Figure 5 Characteristics of travelling-wave system: cooling power 𝑄𝐶 , COP, and 2nd-law 

efficiency 𝜂𝐼𝐼. Normalized impedance |𝑧|: 25, solid line; 40, dashed; 90 dash-dotted lines.  

 

Figure 6 Acoustic power required to cool down flowing hydrogen in traveling-wave 

system. Bold lines correspond to no para-to-ortho conversion, and thin lines to complete 

conversion. Temperature drops: 12 K, solid lines; 15 K, dashed; 18 K, dash-dotted lines. 
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Abstract 

The production of green hydrogen from renewable energy produced from wind and solar 

resources is deemed a more promising solution due to high energy quality, comparatively 

easy storage compared to electricity, and the prospect of using it at the time of use. 

Hydrogen has increasingly emerged as a potential energy carrier, making a global 

hydrogen mobility infrastructure essential to accelerating the transition to a hydrogen 

economy. Therefore, this work presents a cradle-to-gate life cycle assessment (LCA) for 

four hydrogen delivery pathways: compressed gas via tube trailers (CGH2-TT), liquid 

hydrogen (LH2), liquid organic hydrogen carrier (LOHC), liquid ammonia (LNH3). The 

LCA results depict that for short distance of 100 km CGH2-TT is the most eco-friendly 

option with the lowest global warming potential (GWP) of 1.81 kgCO2-eq/kgH2. 

Whereas, the LOHC pathway has shown the worst results with the highest GWP of 3.58 

kgCO2-eq/kgH2. Likely, delivery via LNH3 also showed significant emissions of 3.14 

kgCO2-eq/kgH2 and remained the second worst candidate or hydrogen delivery. 

Keywords: Green hydrogen, Life cycle assessment, Hydrogen transportation and 

distribution, Liquid organic hydrogen carriers, Green ammonia. 

1. Introduction 

The intermittency of solar and wind power results in the overproduction of electricity at 

times or in less production than needed at other times. Therefore, it is deemed important 

to store the overproduced electricity and use it when needed. Large scale energy mobility 

infrastructure is other challenge that needs to be addressed by finding the most sustainable 

energy carrier. Hydrogen owing to its high gravimetric energy density (120 MJ/kg) is 

being considered as a game changer. However, its low volumetric energy density hinders 

its mobility on a large scale and long distances (Akhtar and Liu, 2021a). Hydrogen can 

be stored as gaseous state as a compressed gas in high-pressure vessels or medium 

pressure pipelines, as a liquid state in cryogenic tanks, and as a liquid state in material 

based hydrogen storage (e.g., chemical hydrides and metal hydrides) (Abdin et al., 2020; 

Niermann et al., 2019; Wan et al., 2021). 

So far, high pressure compressed hydrogen gas (CGH2) and liquid hydrogen (LH2) are 

the most hydrogen storage forms. However, both methods are not efficient on economic 

perspective depending on the current technological conditions, as CGH2 storage uses 

around 15% of the stored energy of hydrogen to achieve 700 bar compression and LH2 

uses as much as 30% for the process of liquefaction (based on lower heating value of 120 

MJ/kg) (Felderhoff et al., 2007). Liquid organic hydrogen carriers (LOHCs), a material-

based hydrogen storage, are gaining much importance owing to easy handling, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50316-X 
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transportation, and no CO2 emissions during hydrogenation or dehydrogenation.(Aakko-

Saksa et al., 2018; Niermann et al., 2019; Preuster et al., 2017). LOHCs have hydrogen 

storage capacities of 6%–8% and can generally store hydrogen at atmospheric pressure 

and temperature.(Aakko-Saksa et al., 2018). Hydrogen storage and transportation using 

LOHCs can therefore be more cost-effective and environmentally friendly than 

conventional methods, which require high-pressure vessels or cryogenic tanks. A second 

advantage of the LOHCs is that they are chemically similar to gasoline and diesel, 

therefore can be transported at a larger scale while using the existing infrastructure for 

petroleum processing and transport. Recently, hydrogen transportation via liquid carriers 

was studied and LOHC was declared as a favorable solution from an economic 

perspective (Wulf and Zapp, 2018). Moreover, in another study, LOHCs were compared 

with CGH2 and LH2 with regard to hydrogen transportation and were declared as feasible 

solution for hydrogen transportation compared with CGH2 and LH2 (Reuß et al., 2017).   

Ammonia (NH3) is also considered a potential candidate for hydrogen storage owing to 

its high hydrogen content of 17.8% and existing transportation infrastructure. (Akhtar and 

Liu, 2021b) In a recent study, Aziz et al. studied the transportation of hydrogen from 

Australia to Japan in the form of LOHC, LH2, and NH3 and concluded that NH3 is the 

most cost effective solution for hydrogen transportation over long distances (Aziz et al., 

2019). In another study, Akhtar and Liu presented a comparative feasibility study on NH3 

as a hydrogen carrier via a techno-economic analysis of transporting NH3 from Australia 

to Korea and concluded that using imported green NH3 is an economically viable 

alternative compared with the domestic production and transportation of hydrogen 

(Akhtar and Liu, 2021b). 

It is important to note that not all economically optimal solutions are environmentally 

sustainable. Hydrogen supply chain has been thoroughly studied on economic perspective 

but a comprehensive analysis on environment sustainability perspective is still needed. 

Recent studies have exclusively focused on the gaseous transportation of hydrogen, while 

others have looked at the liquid transport, concluding the best and worst 

methods. However, afterward, the goal of what to do next was left as a question for 

research. Therefore, in this work, a comprehensive life cycle assessment (LCA) on a 

cradle-to-gate approach has been performed for four pathways: 

1. Hydrogen delivery as highly compressed (500 bar) gas via tube trailers (CGH2-

TT). 

2. Hydrogen delivery as liquid in cryogenic tanks via liquid trucks (LH2).  

3. Hydrogen delivery in dibenzyl toluene (DBT) with the natural gas-assisted 

dehydrogenation process (LOHC). 

4. Hydrogen delivery by liquid NH3 (LNH3).  

2. Methodology 

Life cycle assessment (LCA) is a universal tool to access or quantify the environmental 

impacts associated with a product throughout its life cycle based on ISO 14040 and 14044 

(Akhtar and Liu, 2021a). In LCA, all energy and material flow that occur during 

upstream, midstream, and downstream stages including recycling or disposal of the 

analyzed products are quantified and evaluated. Simapro 9.1.1.1 is used to evaluate the 

environmental impacts of the entire lifecycle of the above-mentioned hydrogen delivery 

pathways.1kg of hydrogen gas is used as a functional unit and CML-IA baseline V3.06 
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method is used for the evaluation of the environmental impacts. A case study for the city 

of Perth, which is located in Western Australia and has an urban market and a population 

of 2.1 million is presented. The four hydrogen delivery pathways as mentioned above are 

shown in Fig. 1. The hydrogen delivery network consists of (1) hydrogen production, (2) 

pre-treatment and storage of the hydrogen gas, (3) hydrogen gas/carrier transportation 

from production facility to hydrogen refueling station (HRS), (4) post-treatment of 

hydrogen gas, and (5) dispensing of the hydrogen gas to fuel cell vehicle. In all pathways, 

hydrogen is produced via alkaline water electrolysis using the electricity from an on-site 

wind power plant.  

 

 

Table 1. Main process conditions and life cycle inventory. 

Process  Parameter Units CGH2 LH2 LOHC LNH3 

Pre-treatment  Pressure bar 500 1 1 150 

Temperature °C - -253  150 450 

Electricity kWh/kgH2 2.2 10 0.7 4.2 

Transport Capacity per 

truck per trip 

kgH2 1100 4300 1800 7200 

Post-treatment Pressure bar - - 350 1 

Temperature °C - - - 400 

Electricity kWh/kgH2 - 0.5 0.4 0.2 

Heat kWh/kgH2 - - 10.5 14.3 

Dispensing Pressure bar 700 700 700 700 

 
Electricity 

compression 

kWh/kgH2 1.6 0.5 3.96 3.45 

 
Electricity 

pre-cooling 

kWh/kgH2 4 - 4 4 

Fig. 1. Hydrogen delivery pathways. 
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At the pre-treatment stage, different processes such as compression, liquefaction, 

catalytic hydrogenation of LOHC, or NH3 synthesis occur to increase the volumetric 

density of the hydrogen gas. Whereas, compression, pumping and evaporation, 

dehydrogenation of LOHC, and NH3 cracking are the post-treatment processes occurring 

at HRS. For the analysis of hydrogen delivery by LOHC, dibenzyl toluene (DBT) is used, 

since it is the most promising hydrogen carrier.(Teichmann et al., 2012) The distance for 

transportation is taken as 100 km for the base case. However, in order to see the impact 

of distance variation, the distance is varied from 100 km to 500 km. The LCI and details 

of pre-treatment and post-treatment processes for all pathways is presented in Table 

1.The annual operating hours are 8300 and the capacity of HRS is 850 kg/d (Reuß et al., 

2017). 

3. Results and discussion 

The entire supply chain is divided into three stages: (a) production (hydrogen production 

using alkaline water electrolysis), (b) delivery (pre-treatment: compression, liquefaction 

or hydrogenation, and storage in underground salt caverns or liquid tanks; transport: via 

liquid carriers in trucks, pressurized transports in trucks, or by pipelines; post-treatment: 

evaporation or dehydrogenation at HRS), and (c) dispensing (operational activities like 

compression to bring hydrogen/NH3 at FCV pressure, followed by filling into vehicles). 

Fig. 2 illustrates that hydrogen delivery via CGH2-TT is the most environmentally 

friendly option, as it resulted in the lowest contribution to global warming potential 

(GWP) of 1.81 kgCO2-eq/kgH2. On the contrary, hydrogen delivery via LOHC is the least 

environmentally friendly option with a GWP of 3.57 kgCO2-eq/kgH2. Fig. 2 further 

shows that hydrogen production and hydrogen delivery are the two main stages 

contributing to emissions in all the pathways. For hydrogen production, the key driver of 

environmental emissions is the windmill-derived electricity used for electrolysis. 
 

 

Fig. 2. Breakdown of LCA results for a transport distance of 100 km. 

The delivery through LOHC presented the highest number of emissions because the post-

treatment process, i.e., dehydrogenation at the HRS, is very energy-intensive, as shown 

in Fig. 3(c). Following LOHC, the delivery via LNH3 results in the highest CO2 emissions. 

A temperature of over 500°C is required for releasing hydrogen from NH3. More than 

80% of the CO2 delivery emissions through LNH3 are caused by the post-treatment 
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process of NH3 cracking, and 99% of the 86% are produced by the energy required to 

achieve the required reaction temperature, whereas NH3 synthesis only contributes 11% 

to the CO2 emissions, as shown in Fig. 3(d). 

With the increase in the distance of transportation from 100km to 400km, the highest 

increase of 75% is observed for transporting hydrogen via CGH2-TT with a distance 

increase from 100 to 400 km as shown in Fig. 4. With the distance increase from 100 to 

400 km, hydrogen delivery via LNH3 showed the lowest increase for transporting 

hydrogen by trucks compared with hydrogen delivery via LOHC since the amount of 

hydrogen transported per trip is much higher (7200 kg for LNH3 trucks compared with 

LOHC (1800 kg)) owing to the high volumetric densities of 682 kg/m3 for NH3 and 57 

kg/m3 for DBT. 

 

 

Fig. 3. Breakdown of LCA results for the impact category GWP for the delivery of hydrogen via 

(a) CGH2-TT, (b) LH2, (c) LOHC, and (d) LNH3. 

 

 

Fig. 4. Comparison of LCA results for GWP of all pathways. 
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4. Conclusions 

In order to use hydrogen as an energy carrier for intermittent power sources, such as wind 

and solar, a sustainable, safe, and efficient method for storing and delivering hydrogen is 

needed. This paper presented a LCA for four hydrogen delivery pathways for short and 

long transport distances for the city of Perth, located in Western Australia. The results 

show that for short distances CGH2-TT is the most responsible candidate on 

environmental perspective. However, with the increase in distance of transportation from 

100km to 400km the highest increase in GWP is observed for CGH2-TT. On the contrary 

the lowest increased is observed for the case of LHN3 when the distance is increased to 

400km. Therefore, for long distances of transportation at a larger scale, the delivery via 

CGH2-TT would not be an ecologically responsible option. On the contrary, LNH3 can 

play a vital role in development of a large-scale hydrogen delivery infrastructure if in 

future NH3 can be directly utilized in fuel cells in order to mitigate the significant impact 

related to NH3 cracking. 
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Abstract 

‘Sector coupling’ of large industries to national power networks has been identified as a 

technique to stabilise energy systems as they electrify, and hence to reduce the cost of 

decarbonisation. This work explores sector coupling of green ammonia production, for 

which the grid can provide a stable backup power supply to reduce the costs of energy 

and hydrogen storage; in turn, green ammonia plants can provide renewable electricity to 

displace fossil fuels in the grid. We present a model which minimises the levelised cost 

of ammonia at 701 locations across Australia; it finds that in almost 50% of cases, paying 

for a grid connection reduces the cost of ammonia production, with savings of more than 

10% realisable in some locations. We further show that a grid connection creates a 

relationship between LCOA and production scale, and improves operational stability. 

Keywords: Green Fuels, Levelised Cost of Ammonia, Electricity Arbitrage, MILP  

1. Introduction 

Green ammonia is a derivative of green hydrogen, produced from renewable electricity, 

water and air. It is carbon-free, and has applications as an energy transport and storage 

vector, as a shipping fuel and as a fertiliser (Nayak-Luke and Bañares-Alcántara, 2020). 

Because of Australia’s reliable renewable energy resource, large land availability, and its 

proximity to large future markets in East Asia, green ammonia production represents a 

significant economic opportunity (Srinivasan et al., 2019). 

In this work, we explore how a further strategic advantage – namely, Australia’s high 

reliability electricity network – can further improve the economic potential of green 

ammonia production. This coupling of a large export industry to the national electricity 

system has been identified as a promising opportunity to decarbonise affordably without 

threatening the stability of energy systems (Bloomberg New Energy Finance, 2020). 

We extend on the work of previous authors who have optimised green ammonia plant 

designs (Fasihi et al., 2021, Nayak-Luke and Bañares-Alcántara, 2020) by developing a 

MILP model which includes the opportunity for a grid connection (if that connection 

reduces overall costs), which we solve using the Gurobi optimisation solver. Some non-

linear optimisation techniques, such as a brute force calculation and genetic algorithms, 

are considered in the literature; however, because they take much longer to converge, and 

do not significantly improve solution accuracy, these techniques are not appropriate for 

this application.  

This work further considers the relationship between a grid connection and the optimum 

plant scale, as well as exploring the modifications which might be required for plant 

design in order to achieve stable operation with and without grid connectivity.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50317-1 
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 2. Methodology 

 

Figure 1 - Green ammonia production flowchart. 

Figure 1 shows the green ammonia production process from renewable electricity. As 

described in detail in other works, green ammonia production ceases to benefit from 

economies of scale at a production rate of around 1 MMTPA (Salmon et al., 2021). This 

eliminates nonlinearities, meaning MILP is suitable to solve this problem.  

In design mode, the solver uses location-specific weather and grid data to minimise the 

levelized cost of ammonia (LCOA) production by deciding (i) whether the plant should 

invest in a grid connection; (ii) the size in MW (or MWh for storage equipment) of the 

non-grid units shown on Figure 1; and (iii) the plant’s operating behaviour. The design is 

subject to physical (i.e. mass and energy balances over each unit) and technical (i.e. 

minimum operating rates and maximum ramp rates of the HB plant) constraints.  

The capital cost of grid connection is estimated based on the distance between the site 

and the nearest electricity transmission line. AC connections are used for distances of <40 

km; HVDC connections are used for larger distances. The plant can import electricity 

using the live power price for the state in which it connects to the grid, and export excess 

electricity back to the grid. Imported electricity carries a transmission usage cost 

estimated to be 10 AUD/MWh. Costs of Australian equipment were estimated using the 

IRENA database (for renewable energy/electrolysers); CSIRO estimates (for grid 

connections/battery storage) and data from Nayak-Luke and Bañares-Alcántara (2020) 

(for the ammonia plant/air separation unit). Operating costs are calculated from the power 

withdrawn from the electricity grid, water consumption (estimated at 2 USD/kL), and an 

operations and maintenance (O&M) fraction of 2%. The LCOA is estimated from the 

CAPEX and OPEX using a discount rate of 7%.  

In operation mode, the model takes as inputs both the plant design and a different year of 

weather/grid electricity data, and selects operating conditions which maximise cash flow. 

As an approximation, the costs of water and O&M are neglected, and the cash flow is 

calculated simply as ammonia sales minus net electricity cost. The sale price of ammonia 

is estimated as 500 USD/t, which is at the higher end of spot prices from the last decade.  

The design problems have 157,684 constraints and 122,650 variables; all but one of these 

variables are continuous, the binary variable being used to decide if a grid connection is 

suitable. The root relaxation and node relaxation are solved using the concurrent and 

barrier algorithms respectively, since these were found to converge the fastest. 
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Figure 2 - Impacts of grid connection compared to a no grid case. (a) - Left: Distribution of LCOAs 

with grid connection compared to the same sites without grid connection. (b) - Cost reduction 

achieved from grid connection (Sites with a black dot and no shading did not connect to the grid). 

3. Grid Connectivity Results 

Over 701 cases, the average time taken for the model to solve on an i7 processor with 8 

cores and 16 GB of RAM was 70 s/problem; it solves almost twice as quickly if the binary 

variable is fixed to a value of 0 (i.e. the grid connection is disallowed). In all cases, the 

model solved to within a tolerance of 10-4. 

The benefits of connecting to the grid are meaningful in many locations. Figure 2 (a) 

shows the cost distribution shifts to the left when a grid connection is included; on 

average, this reduction was 6%; however, as Figure 2 (b) demonstrates, there is a 

correlation between the distance of the site from the grid and the cost benefit. Less than 

50 km from the grid, the cost reduction averages more than 8%. The best site, in 

Tasmania, is cheapest in both grid and non-grid cases; it sees a cost reduction from grid 

connection of almost 60 USD/t. Some sites become active, bi-directional participants in 

the market: at 63 sites, the revenue from power sales exceeds the cost of power purchased. 

The main cause of cost reduction is the replacement of energy storage equipment. No site 

with a grid connection requires battery storage or hydrogen fuel cells, and the hydrogen 

storage equipment reduces in size by ~30% compared to a no-grid case. Figure 2 (b) 

shows that sites which are grid connected are more concentrated near population centres 

on the coastline. This geographical spread could enable both (a) power generation at non-

coastal sites that is transmitted through the grid; and (b) access to infrastructure, including 

a skilled workforce, spare equipment, water for desalination, and ports for export. 

4. Impacts of Scale 

Without grid connection, the production LCOA at industrial scale has limited dependence 

on production rate; while downstream infrastructure may benefit from economies of 

scale, most equipment required for ammonia production is modular. However, including 

a grid connection introduces scale dependency. At small scales (<0.1 MMTPA), the fixed 

cost of grid connection is not worthwhile; at large scales (i.e. ~10 MMTPA), a grid 

connection will not be sufficient to supply a meaningful amount of electricity to the 

ammonia plant without impacting the local network (meaning the grid connection is small 

relative to overall plant size). Between these extremes lies a minimum production cost, at 

which the plant makes maximum use of its investment in the electricity grid.  

1905 
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The precise value of this minimum production cost depends on the distance of the plant 

from the electricity grid, the extent to which the plant makes use of the grid connection, 

and the size of grid connection available. For this analysis, it was assumed that the 

maximum size of the grid connection was ~175 MW, which is equivalent to a large LVAC 

connection, and equivalent to ~10% of the average demand in Australia’s smaller states 

(meaning larger sizes are very unlikely to be suitable). At small scales, the per unit cost 

of the Haber-Bosch plant increases. To factor this effect into the analysis, the Haber-

Bosch plant size was estimated using a load factor of 80% before optimisation to estimate 

its per-unit cost (which is required for the linear optimisation problem). 

The carbon intensity of the local grid must also be considered; if grid electricity represents 

too large a fraction of the input electricity, the ammonia may not be considered ‘green’. 

Because of its limited use, there is no common standard at present for the maximum 

carbon intensity of ammonia to be considered ‘green’; one European model, CertifHy, 

specifies a maximum of 36 g CO2-e/MJ of fuel for hydrogen; that limit is marked on 

Figure 3 (b). For carbon accounting, we here assume that green electricity sold onto the 

electricity grid displaces fossil fuels, and therefore counts as a carbon credit. 

Figure 3 shows the impact of scale on production in two locations. At the first location, 

which uses more grid electricity than it exports, the minimum production cost 

corresponds to a high carbon intensity; to reduce these emissions, a larger plant scale is 

required at which the grid provides less of the power, slightly increasing costs. On the 

other hand, at the second location in Tasmania (the cheapest identified for 2019 data), 

which sells more electricity than it purchases, the ammonia is carbon negative at all 

scales. At this location, it is profitable to sell electricity from the renewable energy 

production; that sale effectively subsidises the cost of green ammonia, and therefore 

benefits from very small scales – the larger the production rate, the smaller the subsidy 

from electricity export per ton.  

The different behaviour at the two locations is caused both by different weather patterns, 

and different electricity grids; Western Australia has a stable, carbon intensive grid 

powered dominantly by gas; Tasmania’s grid uses mostly hydropower and wind, enabling 

more opportunity for cost arbitrage and low-carbon grid connection.  

 

Figure 3 - Impact of scale on LCOA and carbon intensity at two low-cost sites, one in Western 

Australia (top), and the other in Tasmania (bottom). 



5. Operating Considerations 

Because the plant is optimised to minimise the LCOA, the plant (grid-connected or not) 

may not operate as efficiently in different weather conditions than in those under which 

it was designed. To some extent, grid-connected sites can use back-up power to maintain 

stable operation, but doing so increases costs, so electricity inputs should be minimised. 

Non-grid connected (islanded) sites rely on energy and hydrogen storage when they 

cannot generate power; if storage is too small, there is a risk of system failure (shutdown).   

The main operating challenge is the requirement of the Haber-Bosch (HB) plant to operate 

above a minimum rate. Ambitious estimates put this minimum rate at around 20% of rated 

capacity. If the designed plant cannot maintain this rate for a given weather profile, 

regardless of how it is operated, the operating model will fail to converge, which occurs 

for many grid-connected and islanded cases. To reduce the likelihood of failure, the plant 

was overdesigned by imposing increasingly tight restrictions on the green ammonia 

minimum rate (i.e. > 20%) (in design mode only), but allowed to operate at the most 

flexible minimum rate (i.e. = 20%); this reduces failure frequency, but increases costs.  

Two sets of islanded sites are compared to grid-connected sites: The Islanded (I) set refers 

to sites in the same location as grid-connected sites at which the model was re-run without 

the grid; the Islanded (II) set refers to different sites where grid connection is not optimal, 

whether or not it is allowed. At islanded sites, costs are mostly capitalised; at grid-

connected sites, electricity costs are operational, and therefore impact cash flow. For fair 

comparison between sets, we report the “Cash flow delta”, which is given by the cash 

flow in the operating year minus the cash flow that was anticipated in the design year. 

Both grid-connected and islanded sites require overdesign to reduce the plant failure risk, 

but grid-connected sites still outperform islanded sites on two fronts. Firstly, the cost to 

overdesign is higher at both sets of islanded sites than at grid-connected sites – see Figure 

4 (a). Secondly, while imposing stricter overdesign requirements reduces the failure rate 

at all sites, there are fewer failures at grid connected sites than at either set of islanded 

sites – see Figure 4 (b). Figure 4 (c) also indicates that sites are more likely to connect to 

the grid during the design process if the constraints imposed on the HB plant are tighter.  

 

Figure 4 - Plots showing operating performance of the three sets of sites at different minimum HB 

rates in plant design. No operating failures were recorded for grid sites with minimum rates of 35% 

or greater, which is recorded as a rate of 0.5/thousand years so it can be read on a log scale. 
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With no overdesign, the average cash flow delta overall is below 0, which indicates that 

performance is generally worse during operation than was anticipated during system 

design, because the plant is not optimised for the new weather or grid electricity profile. 

However, grid-connected sites on average had a cash flow delta slightly greater than 0, 

even though the operating timeframe included both years in which the grid was cheaper 

and years in which it was more expensive than the design year. The cash-flow delta 

worsens for islanded sites as the plant is more overdesigned, while for grid-connected 

sites it stays relatively constant: this is an artefact of cases which were previously non-

converging being factored into the averages.  

6. Conclusions 

This research explores the benefits of sector coupling for green ammonia production. It 

demonstrates that significant reductions in the LCOA are achievable using a grid 

connection. The most substantial cost reductions, which are in the order of 10%, occur 

when the plant is located near the electricity grid. In Australia, these sites are mostly 

coastal, which will locate them close to other supporting industry and to export ports. 

Further cost reductions are achievable by optimising the plant scale relative to the 

maximum allowable size of the grid connection. In some locations, ammonia production 

can be significantly subsidised by profitable participation in the grid. 

When a site connects to the grid, it is less likely to fail during operation, and will generate 

more cash flow than if a grid connection is not used. Regardless of whether a site is grid-

connected, it requires some overdesign, which can be achieved by designing with tighter 

limitations on the minimum rate of the HB plant than are achievable during operation; the 

cost of overdesign at grid-connected sites is less than at islanded sites. 

The integration of optimised green ammonia production and grid electricity is a first step 

in understanding how sector-coupling in the energy system can reduce the costs of 

decarbonisation. Further research should consider other industries which may have 

synergies with electricity grids, and how electricity grids themselves will transform over 

time. Additionally, the operating model demonstrated that there is a risk of plant failure 

caused by a shortage of back-up power or hydrogen that can occur whether connected to 

the grid or not; further research is required to understand how ammonia plants will be 

operated with imperfect weather forecasting information. 
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Abstract 

1-dimentional (1D) physical modeling methods of the fuel cell (FC) system including the 

FC stack, air system, H2 system, and cooling system were investigated. To ensure the 

simulation of life-long system operation (> 100,000 km) of a vehicle with the allowable 

calculation time, the proper model resolution was selected and the in-house high-speed 

numerical solvers were developed. The acceptable accuracy was confirmed by the 

comparison between the model outputs and the actual FC-system data collected with 2nd-

generation MIRAI under a variety of operating condition. 

Keywords: Fuel cell system; Model-based development; Physical modeling;  

1. Introduction  

Hydrogen energy is regarded as one of the most promising alternative energies to fossil 

fuels from the view of CO2 emission and energy efficiency. The FC-system manufacturers 

are required to develop the products for the wide range of applications such as passenger 

vehicles, commercial vehicles of buses and tracks, railways, marine vessels, aviation, and 

stationary power generator purposes.  

 

On the other hand, due to the complexity in the hardware and software configuration of 

the FC systems, neither a system model nor a systems approach for the FC-system 

simulation, analysis, optimization, and manufacturing has not been proposed, in spite of 

intensive investigation on the simulation of fuel cell itself (Weber et al., 2014). Thus a 

significant effort and cost of trail-and-error for the development of each commercial 

application is required to the FC-system manufacturers, which is one of the largest 

barriers of entry to the fuel cell industry. The purpose of this research is the development 

of a state-of-the-art FC-system model, with which the FC-system manufacturers can do 

the model-based design, evaluate the system, and reduce the difficulty described above. 

 

In this study, the FC system implemented to 2nd-generation MIRAI (Takahashi and 

Kakeno, 2021) shown in Fig. 1, is taken as an example of the application of the developed 

model to describe the modeling strategies and detailed implementation methods.   

  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50318-3 
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Fig. 1. Flow diagram of the FC system implemented in 2nd generation MIRAI 

 

The FC system in Fig. 1 consists of the FC stack as main engine, air system, H2 system 

and cooling system, and the components in each system and their functions are listed in 

Table 1.  

  

Table 1. The components and their functions in the FC system shown in Fig. 1 
System Component Function 

Air Air compressor  Air supply 

 Air intercooler  Air cooling for the FC-stack materials protection  

 Air shut-valve  Seal-up during system shut-down condition 
 Air regulation valve Pressure control, seal-up during system shut-down condition 

 Air bypass valve  Control of air flowrate to the FC stack and the exhaust line 

H2 Injectors Hydrogen supply from high-pressure H2 tank 
 Liquid-vapor separator Separation of exhausted liquid water 

 Purge valve Exhaust of gaseous impurities (N2,O2, and H2O), and liquid water 

 H2 recirculation pump Recirculation of unreacted H2 to inlet-side 

Cooling Coolant pump Coolant supply 

 Radiator Heat exhaust from the coolant 

 Radiator fan Enhancement of heat exchange rate at the radiator 
 Coolant 3-way valve Control of coolant flowrate to the radiator and the bypass lines 



Development of Multi-Purpose Dynamic Physical Model  
of Fuel Cell System    

2. Physical modeling methods of FC system 
The modeling strategies and implementation methods of the FC stack and H2 system, 

whose configuration is shown in Fig. 1, are explained. The system configurations are 

described as the function-block diagram shown in Fig. 2(b), where the overall system 

configuration is broken-down to the component level. In each function block, state 

variables (pressure, flowrate, temperature, and gas composition) and individual 

component models are encapsulated. In more detail, physical models of mass-transfer and 

electrochemistry in the FC stack are developed (Hasegawa et al., 2021) and implemented 

in ‘(5) aFC’ block, and physical models of fluid and thermal dynamics of various system 

components (Bird et al, 2006) are implemented in the other blocks. 

 

 
Fig. 2. Schematic drawings of the configurations of the FC stack and the H2 system 

in a (a) flow-diagram and (b) function-block diagram  

 

The dynamic relationships between state variables in each function-block are described 

as the algebraic equations of pressure balance, material balance, and energy balance. An 

example of pressure balance is shown in Eq. (1),  
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where 𝑃tot,𝑖 is the total pressure in function-block i [Pa], 𝑎𝑖,𝑗 is the (i, j) element of the 

coefficient matrix, and 𝑏𝑖 is constant term of the function-block i. The coefficient matrix 

is sparse since only the elements of connected function blocks have non-zero values. The 

relationship between the function-block diagrams and the equations is considerably 

simple and clear. Because these equations are derived by implicit methods (Patankar, 

1980), the solutions of these equations directly result in the pressure, concentration, and 

temperature distribution, throughout the entire FC system. To reduce the error caused by 

the linearization of the physical models, which is necessary to implement the physical 

models in the Eq. (1) expression, the numerical solver for error-convergence was 

implemented. Owing to the function-block-diagram modeling method and numerical 

implementation methods of in the linear algebraic equations, it is remarkably easy to 

modify, replace, add, and remove the component specifications in the proposed model. 

This reduces the lead-time to develop the system models for the individual applications. 

The other system models of air and cooling system in Fig. 1 were developed with the 

same strategies and integrated as an entire dynamic FC-system simulation model. 

 

The parameters of each system component model are determined with the test data 

collected in the unit-testbeds before the integration of the components as an entire system. 

Fig. 3(a) is an example of the unit-testbed configuration, where the pump speed and valve 

angle are changed in the various gas composition conditions and the response of the 

flowrate and pressure head of the pump are measured. The dynamics of hydrogen pump 

is expressed by Eq. (2) (Akaike et al., 1983),  

 

𝑣̇ = 𝐶1𝑁 − (𝐶2𝑁𝐶3
Δ𝑃𝐶4

𝜇𝐶5𝜌𝐶6
) (2) 

 

where 𝑣̇ is volumetric flowrate [m3/s], 𝑁 is rotational speed [rad/s], ΔP is pump head [Pa], 

𝜇  and 𝜌  are fluid viscosity [Pa ∙ s ] and density [kg/m3], and 𝐶1  - 𝐶6  are the tuning 

parameters defined by pump geometries. The parameters 𝐶1  - 𝐶6  were determined by 

non-linear least-square method to fit the experimental data in Fig. 3(b). Such parameter 

determination procedures require only unit-testbed data. In other words, no system-

testbed data, and the effort of data collection can be considerably reduced. The parameters 

for the other system component models were determined by such simple methodologies 

with the unit test data.  

 

 
Fig. 3. (a) The unit-testbed configuration and (b) collected test data  

for parameter determination for H2 recirculation pump 

S. Hasegawa et al. 



 

3. Model validation and verification 
For the model validation and verification (V&V), the special test vehicles were 

manufactured by attaching many sensors in addition to the original ones throughout the 

entire FC system as shown in Fig. 4. Within the FC system, the H2 system has a unique 

hardware configuration and controller specification compared with other powertrains as 

internal combustion engine, and it was necessary to develop special measurement 

instruments to collect V&V data efficiently. Moreover, ultra-compact and highly-

integrated sensors were essential to collect the V&V data in the realistic dynamic vehicle 

operating conditions due to the limitation in the packaging space of the test vehicle. These 

sensors also have to be durable even in high humidity condition where large amount of 

liquid water exists around the sensors. To meet such requirements, H2 concentration 

sensor and liquid-water level sensor were newly developed and utilized in V&V data 

collection by the test vehicles (Hasegawa et al, 2021). As described in the previous 

section, these data were not used for the parameter determination but only for V&V of 

the integrated model. When the experimental data and model output do not agree with 

each other, the possibilities of the missing physics or the deficiencies of parameter 

determination procedures were investigated repeatedly. 

 

 

Fig. 4. Schematic drawing of the experimental configuration of data collection  
for the validation and verification of the developed models 

 
Fig.5 is an example of the results of V&V of the models. A considerable amount of test 

data was collected by the test vehicle under a wide range of operating condition of low to 

high loads, operating temperatures, and atmospheric pressures. The same inputs were 

given to the model and the model output data were compared with the experimental data. 

It was confirmed that the simulation results and the measured fuel cell voltage were in 

good agreements within 10 % error as shown in Fig. 5 (e) and the other model outputs in 

Fig. 5 agreed with the experimental data, although the deviations between measured and 

calculated liquid-water levels in the liquid-vapor separator were observed during 300-400 

s and 500-550 s in Fig. 5 (c). The deviations were not mainly caused by modeling error, 

but by erroneous measurements from the liquid-water level sensor in Fig. 4, whose 

accuracy is not guaranteed when FC-current is low.   
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Fig. 5. An example of validation and verification results in (a) FC current as the 

system input, (b) H2 concentration and (c) liquid-water level in liquid-vapor 
separator of H2-system, and (d) IV and (e) IR plot of the FC stack 

Conclusions 
Physical modeling methods and numerical solving methods for the dynamic simulation 

of the entire FC system were investigated. The parameter determination procedures for 

each system component with unit-testbed data were proposed. The integrated model was 

validated and verified with a considerable amount of test data collected with the 2nd-

generation MIRAI test vehicles. It is expected that the developed model can be a powerful 

platform of the FC-system simulation, analysis and optimization, which enables the FC-

system manufacturers to investigate a wide range of specifications of the FC stack and 

the system components with less difficulty.   
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Abstract 

The chemical industry, like other industrial sectors, is expected to embrace renewable 

resources as replacement for fossil fuels in the coming decades. Focusing on the special 

challenges arising from the use of intermittent and variable renewable energy in large-

scale chemical production, this paper presents two case studies, one of methanol and 

another of aluminium, to explore the role of operational flexibility in mitigating the 

burden of energy storage requirement. Whole-system optimisation and unit-level 

dynamic simulation were applied in the two cases, respectively, with both results 

showing potential benefits of shifting process operation from a constant-load mode to 

one that accommodates a certain degree of flexibility.   

Keywords: Renewable energy, chemical production, aluminium, methanol, operational 

flexibility 

1. Introduction 

Grand environmental challenges such as climate change, ecosystem deterioration and 

resource depletion have greatly re-shaped the landscape of energy supply in recent 

decades, with the production and use of renewable energy emerging clearly as the 

preferred direction. The transition to renewable energy systems will contribute greatly 

to the decarbonisation of the chemical industry which conventionally depends on energy 

and feedstock derived from fossil sources.  

To date, much work has been done on incorporating renewable feedstock, in particular 

biomass, based on the concept of biorefinery (Kokossis and Yang, 2010). On the energy 

front, considerations have been given to the utilisation of renewable energy such as 

wind and solar power in the framework of “power-to-X” (Sternberg and Bardow, 2015), 

where “X” typically represents hydrogen and chemicals and materials that can be 

derived from hydrogen in combination of other molecules such as CO2. Currently, most 

large-scale chemical production processes have been designed to operate with a 

relatively stable load, supported with stable energy input from either the grid or on-site 

generation by consuming fossil fuels. In contrast, renewable energy generation is often 

intermittent and variable, which requires costly energy storage to supply to chemical 

processes with a rigid demand profile. To overcome this barrier, it is desirable to 

explore the possibility of operating a chemical process with a certain degree of 

flexibility in its load, to reduce the energy storage requirement via a closer match 

between the energy supply and demand profiles. While the perspective of flexible 

operation has been discussed recently in the context of power to ammonia (Cheema and 
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Krewer, 2018), methane (Matthischke et al., 2018) and methanol (Hank et al., 2018), 

detailed model-based assessment of the potential of this strategy is still rather limited. 

In this paper, we present two distinctive case studies to demonstrate the potential of 

using operational flexibility as a tool to reduce the burden of energy storage when 

powering large-scale chemical production with variable renewables. The first study 

extends our earlier work (Chen and Yang, 2021) on methanol production based on CO2 

hydrogenation, which uses an optimisation model of the combined system of energy 

supply, storage and chemical production to reveal the potential of a holistically 

optimised system enabled by different levels of operational flexibility. This study 

considers H2 for both energy and feedstock storage. It focuses on the impact (i.e. “what-

if”), not the realisation (i.e. “how”), of process flexibility in a complex system 

comprising a number of subsystems. In contrast, the second study offers a detailed, 

process unit-level analysis of aluminium production, considering the replacement of 

grid electricity with power from a wind energy facility to run the smelter, where the 

energy storage to be tackled is in the form of batteries. It is based on dynamic 

simulation of the smelter to predict (1) the extent to which flexible load can be achieved 

within operational constraints and (2) the corresponding impacts. 

2. Case study 1: methanol production 

2.1. System overview and modelling approach 

As shown in Fig. 1, the system consists of electrolytic H2 production, CO2 capture, 

methanol synthesis and purification. Compressed H2 storage and fuel cell-based H2-to-

power conversion are included to reconcile the mismatch between variable renewable 

energy generation and the demands for H2 and power by methanol production, while 

supplementary power supply from a dispatchable source (e.g. grid) is also available. In 

terms of operational flexibility, the electrolyser was assumed to be fully flexible (i.e. 

with no restrictions with respect to the minimum load). In the methanol production 

subsystem, the methanol synthesis reactor was assumed to be flexible to a certain degree 

(specified by a minimum load), while the other components, namely CO2 capture (by an 

amine-based absorption-desorption cycle) and methanol purification (by distillation) 

were assumed to operate at a constant load, thus giving rise to the potential need for 

CO2 storage and raw methanol storage. Further details of the system can be found in 

Chen and Yang (2021). 

For a specified minimum load of the methanol synthesis reactor and a targeted level of 

annual methanol production rate, an optimisation model developed in our previous work  

(Chen and Yang, 2021) can be used to identify the design and operational decisions 

leading to the minimisation of the levelized methanol production cost (LMeOH), which 

comprises the cost for power supply and all the components for conversion and storage 

of energy and chemicals. A key factor to be explored is the trade-off between the 

oversizing of the methanol reactor and the reduction of H2 storage requirements, 

varying with the assumed degree of flexibility of the synthesis reactor. Our previous 

study investigated two specific geographical locations, namely Norderny in Germany 

and Kramer Junction in the US, which are known to have superior wind and solar 

energy sources, respectively. The optimisation model has now been further applied to 

more locations to assess the impact of process flexibility under a wider range of 
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conditions, including particularly an area near Tokyo (latitude 35.75; longitude 140.75) 

for which the results are presented below for a system producing 400,000 t/y of 

methanol. The global horizontal radiation and wind speed data were obtained from 

NASA’s worldwide energy resource (POWER) database; monthly averages were taken 

over Jul 1983 - Jun 2005 and Jan 1984 - Dec 2013 for solar and wind, respectively. 

Either wind, solar or a combination of the two may be utilised to power the production.   
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Figure 1. Methanol production based on CO2 hydrogenation with renewable energy.   

2.2. Results 

As shown in Fig. 2 (left), a system with the greatest operational flexibility in the 

methanol reactor (with minimum load = 10%, referred to as “flexible design”) could 

achieve a LMeOH up to 12% lower than that with no flexibility in the load of the reactor 

(with minimum load = 100%, referred to as “nonflexible design”), which occurs at the 

higher end of the dispatchable energy price, a circumstance where the use of (variable) 

renewable energy is highly preferred. The detailed optimisation results (not shown) 

reveal that under such circumstance, the flexible design for a system fully powered by 

renewables would need to increase the annualised capital cost of the methanol reactor 

from ~$28m (of the nonflexible reactor) to ~$40m due to a larger reactor size needed to 

compensate for operating not always at its full load, but the corresponding annualised 

cost of hydrogen storage would reduce dramatically from ~$46m to ~$6m, which was 

predicted to be economically advantageous even after adding the costs of ~$11m for 

intermediate storage of CO2, raw methanol and heat (the latter is omitted in Fig. 1 for 

clarity) needed to accommodate flexibility of the reactor. However, compared to the 

cost reduction (in terms of LMeOH) previously predicted of Norderny (~20%) and of 

Kramer Junction (~30%), the benefit of process flexibility predicted of this near-Tokyo 

site is lower. The discrepancy is due to the difference in the renewable energy profiles 

between these sites in terms of the combination of diurnal and seasonal variations which 

affect the relative importance of energy storage in the system for meeting a specified 

annual methanol output, which in turn affects the impact of process flexibility. 

In addition to the reduction in LMeOH, Fig. 2 (right) shows that in a cost-optimized 

system incorporating process flexibility, the proportion (indicating the penetration level) 

of renewable energy in total energy supply also increases particularly when the 
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dispatchable energy price is in its mid-range, which is particularly ideal from the 

perspective of carbon emission reduction if the dispatchable energy is generated with a 

high carbon intensity. Note that in this case study, the range of flexibility tested by 

simulation was an assumption; its operational feasibility has not been evaluated. In 

principle, such evaluation could be carried out using detailed dynamic simulation, as 

demonstrated for a different process in the second case study.    

 
Figure 2: Impact of minimum load of methanol synthesis reactor on levelized MeOH 

production cost (left) and renewable energy penetration (right), plotted against 

dispatchable energy price. The four series indicate levels of flexibility, which is 

measured in terms of the minimum load of the reactor.  

3. Case study 2: aluminium production 

3.1. System overview and modelling approach 

This second study considers aluminium production by the typically adopted Hall 

Héroult process, in which alumina is dissolved in molten cryolite (as the electrolyte) 

and electrolysed with a direct current (Fig. 3, right). The overall chemical reaction, 

taken into account the loss of current to side reactions, is 

(𝜂 + 1) 𝐴𝑙2𝑂3 + 3 𝐶 → 2(𝜂 + 1) 𝐴𝑙 +  3𝜂 𝐶𝑂2 +  3(1 − 𝜂) 𝐶𝑂  Eq. (1) 

where 𝜂 is the current efficiency. The (simplified) energy balance equation for the 

smelter bath is 

𝑚 ∙ 𝑐𝑝
𝑑𝑇𝑏𝑎𝑡ℎ

𝑑𝑡
=  𝐼 ∙ 𝑉𝑏𝑎𝑡ℎ −  ∆𝐻𝑅 − ∆𝐻𝑓𝑒𝑒𝑑 − 𝑄     Eq. (2) 

where m, cp and Tbath are the mass, heat capacity and temperature of the bath, 

respectively, I is the current, Vbath is the bath voltage, ∆𝐻𝑅, ∆𝐻𝑓𝑒𝑒𝑑 , and 𝑄 are the net 

enthalpy of all the reactions in the bath, the thermal energy required to heat and dissolve 

the feed alumina and the heat loss from the bath, respectively. The bath voltage has 

multiple components including the reversible voltage of the electrolysis reaction, 

resistive voltage of the bath and the bubble layer, and voltage drops at the anode and the 

cathode. The detailed model of these components and that of the other terms in Eq. (2), 

together with the detailed mass balance model and the model for estimating current 

efficiency, can be found in Knight (2021).  

Aluminium reduction cells are operated within a very tight region which provides the 

best conditions for efficiency, alumina dissolution and cell life. This means the reaction 
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has to take place at approximately 970°C with less than 40°C tolerance. Due to these 

constraints, most aluminium smelters operate under a constant energy input to help 

control the bath conditions. To allow a smelter to run with a more flexible load, the use 

of a shell heat exchanger (SHE) as developed by Energia Portior (Depree et al., 2016) 

was considered. A SHE can be installed on the outside of a cell by acting as either an 

insulator or conductor (hence regulating Q in Eq. (2)) to give smelter operators a new 

tool to aid in control of cell conditions. As part of the temperature regulation, the use of 

a SHE also offers extra control to facilitate the maintenance of another operational 

constraint, the minimum thickness of the cell’s ledge (consisting of cryolite) which 

melts and freezes during operation. 

Anode

Yoke

Lining 
and shell

Bath

Ledge

Aluminium

Cathode  

Figure 3. Structure of a system comprising an aluminium smelter (right) powered by 

variable renewable energy (left), mediated by a battery-based electricity storage 

(middle).  

Dynamic simulation was performed to a system with a battery-based electricity storage 

to connect a wind farm and a smelter (Fig. 3). The degree of operational flexibility of 

the smelter was represented by a simple approach that manipulates the deviation 

between the current profile provided by the wind farm (Iwind) and that taken up by the 

smelter (Ismelter): 

𝐼𝑠𝑚𝑒𝑙𝑡𝑒𝑟(𝑡) =  𝐼𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −  𝑏(𝐼𝑤𝑖𝑛𝑑(𝑡) −  𝐼𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)    Eq. (3) 

where b is an adjustable parameter ranging from 0 to 1; these two extremes represent an 

operation with no flexibility (where the smelter takes a constant current, 𝐼𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, hence 

requiring greatest energy storage) and one completely following the current output from 

the wind farm (hence requiring no energy storage), respectively. The feasibility of a 

chosen value for b is predicted by the dynamic simulation of the smelter, against the 

permitted range of bath temperature and minimum ledge thickness.    

3.2. Results 

Table 1 summarises representative simulation results for a 24-hour operation feeding on 

wind power with a profile scaled from German national data 

(https://www.amprion.net/Netzkennzahlen/ Windenergieeinspeisung/) recorded on 5 

April 2020. The bath temperature was restricted to the range of 955°C to 985°C and the 

minimum ledge thickness set to 5 cm (i.e. 1/3 of the initial thickness) which equates to 

~2500 kg of frozen cryolite for the system considered. One can see that a 

“conventional” smelter (without using a SHE) can already accommodate a certain 

degree of load flexibility. However, the use of the SHE, thanks to its extra regulation of 

heat loss, allows the system to implement greater load fluctuation (reflected by a larger 

b value) and hence achieve greater reduction in electricity storage size. Although a more 

robust comparison needs to balance the storage cost with the cost of the SHE and the 
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slight penalty in aluminium production rate and current efficiency (shown in Table 1), 

the more than 25% of battery size reduction due to the use of a SHE suggests that 

technologies enhancing the operational flexibility of aluminium smelters may hold 

considerable potential.  

Table 1. Results of applying different load modulation strategies to the smelter. 
Current modulation b = 0 b = 0.14 

(without SHE) 

b = 0.34 

(with SHE) 

Maximum temperature (°C) 965.9 982.3 984.9 

Minimum ledge mass (kg) 3780 2685 2559 

Battery size (kWh) 2599 2001 1489 

Al produced (kg) 1399.6 1382.7 1359.7 

Energy to produce Al (kWh/kg) 11.48 11.76 11.78 

Average current efficiency (%) 92.0 90.1 90.3 

4. Conclusions 

Transitioning to the era of renewables calls for re-consideration of how large-scale 

chemical processes should be designed and operated. Through the two complementary 

case studies presented in this work, it is evident that increasing operational flexibility to 

allow load fluctuation could bring considerable benefits when feeding on variable 

renewable energy, in terms of reducing the electricity or chemical storage burden 

arising from the mismatch in the “rhythm” of energy supply and process operation. In 

this context, PSE tools such as detailed dynamic simulation and whole-system 

optimisation can play an important role, respectively, in assessing flexibility-

accommodating operational feasibility of existing and adapted process units and 

revealing best system designs corresponding to location-specific energy supply patterns.  
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Abstract 

Post-combustion carbon capture is one of the feasible methods to reduce emission of 

carbon dioxide (CO2) from coal-fired power plants. This work proposes a hollow fiber 

based rapid temperature swing adsorption (RTSA) method for capturing CO2 from a 

typical 550 MW coal-fired power plant. The proposed RTSA approach can shorten the 

operating time and using low-grade energy for regeneration of adsorption elements.  

This work studies the impact of using low-grade steam extracted from a low-pressure 

turbine as the heating source of the dual column vacuum RTSA (DC-vRTSA). The DC-

vRTSA at 120 °C-55 °C will reduce the efficiency of the coal-fired power plant by 8.2 % 

to 1.9 %. The lowest CO2 capture cost, 19.20 US dollars per tons of captured CO2, is 

located at 60 °C desorption temperature.  

Keywords: CO2 capture; Coal-fired power plant; Hollow fiber; Rapid temperature swing 

adsorption (RTSA). 

1. Introduction 

1.1. Global Warming and Carbon Capture 

Carbon dioxide emissions are one of the major contributors to greenhouse effects and 

global warming. IEA (2021) indicates that there are 31.5 Gt of CO2 emissions worldwide 

in 2020 where fossil-fired power generation plays the dominant role in manmade CO2 

emissions. The carbon capture technique becomes a key to reduce the greenhouse gas 

effect in the near future. 

In the carbon capture adsorption process, there are several available methods that can be 

used to desorb CO2, such as Pressure Swing Adsorption (PSA), Temperature Swing 

Adsorption (TSA), and Vacuum Swing Adsorption (VSA). Haghpanah et al. (2013) 

presented a systematic analyses of several VSA cycles with Zeochem zeolite 13X as the 

adsorbent to capture CO2 from dry flue gas. Joss et al. (2017) studied the design of TSA 

cycles and analyzed how individual steps within TSA cycles would affect the purity and 

recovery of the CO2. Liu et al. (2019) investigate the relationship between CO2 recovery, 

productivity rate, purity, specific energy consumption, and second-law efficiency based 

on experimental data. The effect of CO2 concentration, desorption duration, adsorption 

temperature and desorption temperature has been considered in a lab-scale 4-step TSA 

system. However, the pressurizing cost of PSA or long heating time for regeneration of 

TSA is a limitation for large-scale carbon capture (Rezaei and Webley, 2010). For the 
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carbon capture technology mentioned above, there are many literature that compared the 

cost for different capture technologies. Wang et al. (2017) have reviewed the economic 

performance of the post-combustion CO2 capture technologies from a coal-fired power 

plant, including chemical absorption and membrane-based separation.  

1.2. Hollow Fiber-Based Rapid Temperature Swing Adsorption 

Lively et al. (2009) proposed a novel porous hollow fiber to overcome the temperature 

swing limitation. The hollow fiber has a large contact area to speed up the heat transfer 

rate much faster than the conventional packed bed tower. Therefore hollow fiber based 

adsorption column is expected to realize the Rapid Temperature Swing Adsorption 

process. This process utilizes hollow fiber morphology to pass cooling water through the 

pores to maximize the adsorption capacity, and steam to pass through the pores to 

effectively desorb CO2. Rezaei et al.(2014) developed a two-dimensional mathematical 

model of a rapid temperature swing adsorption (RTSA) process for the first time to predict 

polymer supported amine hollow fiber sorbent performance during post-combustion CO2 

capture from flue gas. This work focuses on manufacturing a single fiber model to 

simulate a four step RTSA process. Also, the sensitivity analysis to parametrric values 

such as gas and water velocities and initial temperatures are evaluated. Hosseini et al. 

(2017) developed a two-dimensional mathematical model to analyze the effects of 

operating variables on RTSA performance (recovery, purity, productivity, the amount of 

separated pure carbon dioxide in 24 h, and specific energy consumption).  

However, the existing work is limited to small-scale single column simulation for the 

RTSA process. The cost analysis of the RTSA process has not been thoroughly discussed. 

This paper proposes a large-scale hollow fiber for the dual-column RTSA process to 

capture CO2 from a 550 MW coal-fired power plant. In order to enhance the performance 

of the RTSA process, the vacuum system is used in the desorption step.  

2. Process Description 

The process configuration and mathematical model details are described in previous work 

(Chen et al., 2020). In this paper, the research focus will be economic analysis. The DC-

vRTSA (Dual Column vacuum Rapid Temperature Swing Adsorption) is evaluated to a 

typical coal-fired power plant. The stream data of the illustrated coal-fired power plant 

come from Urueli (2010). Figure 1(a) shows approximate flowsheet diagram of steam 

from the coal-fired power plant. The high pressure water first sends to steam generator to 

generate high pressure steam and then electricity by pass thought the high-pressure (HP) 

turbine. It is then sent to steam generator again for reheating, and goes thought 

intermedium-pressure (IP) turbine and low-pressure (LP) turbine for generation of more 

electricity. The outlet of low pressure turbine is sent to condenser using cooling water to 

condense. Finally, it passes through condensate pump, de-aerator and feed water pump to 

make high pressure water than recycle to steam generator. Figure 1(b) also shows the 

process detail stream data of the typical power plant with the DC-vRTSA, which includes 

steam temperature, pressure, enthalpy, flow rate, turbine energy output, condense heat, 

cooling water flow rate and the power plant efficiency.  
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(a) (b) 

Figure 1. The illustrative coal-fired power plant (a) without carbon capture and (b) with the DC-

vRTSA at 120 °C desorption temperature. 

The steam extracted from the low-pressure turbine is used to provide the heat required by 

the DC-vRTSA process. In the first step of this simulation, stream enthalpy, temperature, 

pressure and DC-vRTSA desorption temperature data are given. Then saturated 

temperature and pressure are searched from steam table. Using saturated pressure to find 

the superheated temperature that should be used to provide heat for the DC-vRTSA 

process extracted from the low pressure turbine. Then one can find the superheated steam 

enthalpy. The appropriate amount of superheated steam will be extracted to provide 

sensible heat and latent heat for desorbing CO2 from the DC-vRTSA process. For 

example, in the 120 °C desorption temperature, the extracted superheated steam 

temperature is 258.8 °C. This will provide the sensible heat of the superheated steam from 

258.8 °C to 120 °C, then the latent heat from saturated 120 °C steam to 120 °C liquid 

water. Therefore the inlet is 258.8 °C superheated steam, and the outlet is 120 °C saturated 

liquid water. The latter will be mixed with the condensate water and returned to the boiler. 

Next, one makes a guess of the total steam flow rate to estimate the heat duty and the CO2 

emission (88 kg of CO2 per GJ) from the steam generator. The DC-vRTSA is set to 

capture 90 % of CO2 emission from the steam generator. Following one can calculate 

steam flow rate to the DC-vRTSA process and all stream data for the power plant. One 

calculates a new total steam flow rate which can provide 582.6 MW (including 550 MW 

output and total auxiliaries 32.6 MW, Zoelle et al., 2015) power and see if the new total 

steam flow rate equals to the guessed value afterward. If not, one uses the new one as an 

updated guess value and calculates again until the new value is equal to the previous one, 

which means the simulation is completed. Then the simulation results will be used in 

economic analysis. 

3. Economic Analysis 

For economic analysis, the detailed model of cost estimation can be found elsewhere. The 

desorption temperature from 120 ℃ to 55 ℃ DC-vRTSA has been used to analyze the 

total cost (50 ℃ cannot achieve 90 % purity and 90 % capture ratio).  

The total capital cost (TCC) includes the RTSA material and frame, vacuum pump (for 

low desorption pressure). The annual capital cost (ACC) is the total capital cost divided 

by the designed power plant lifetime (25 years). The annual operating cost (AOC) 

includes the penalty, vacuum pump electricity, cooling water and RTSA material 

replacement. The penalty is estimated by the electricity lost in the power plant due to the 
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extraction of low pressure steam. For example, for the 120 ℃ desorption temperature 

DC-vRTSA process (see Figure 1(b)), the total steam flow rate increases from 385.1 kg/s 

to 523.4 kg/s. The penalty for this process is thus calculated by the difference of electricity  

generation between these two steam flow rates and then times the unit electricity price 

(0.065 US$/kWh, Ramasubramanian et al., 2012). Similarly, the cooling water cost is 

calculated by the amount of saved cooling water demands times unit cooling water price 

(0.354 US$/GJ, Turton et al., 2008).  

The total annual cost (TAC) is the sum of annual capital cost and annual operating cost. 

Furthermore, the capture cost is estimated by TAC divided by the captured CO2. The cost 

of DC-vRTSA in the 550 MW coal-fired power plant is listed in Table 1. From the table, 

it is found that TAC of the process is increased as desorption temperature increases, where 

the penalty is the biggest contributor of TAC and the higher desorption temperature leads 

to a higher penalty. We can invent the penalty of 120 ℃ desorption temperature process 

(90.67 US$/year) is about four times of 55 ℃ desorption temperature process. But the 

lower desorption temperature process has a lower gas volume flow rate (see Table 1). It 

needs more DC-vRTSA unit to capture 90 % of carbon emission. The DC-vRTSA unit 

will affect the DC-vRTSA price and the RTSA replacement price.  

Table 1. The cost summary of DC-vRTSA in a 550 MW coal-fired power plant 

Desorption 

temperature(℃) 
120 110 100 90 80 70 60 55 

Capital cost      (million US$) 

DC-vRTSA unit         

Material 9.13 9.63 9.61 11.14 9.76 12.25 16.21 21.89 

Frame 97.61 101.09 100.93 111.09 101.98 118.19 141.75 172.34 

Total 106.74 110.72 110.54 122.23 111.74 130.44 157.96 194.23 

Vacuum pump 65.96 64.22 78.48 76.87 112.83 110.09 108.38 108.33 

TCC 172.70 174.94 189.02 199.10 224.57 240.53 266.34 302.56 

ACC (/25 years) 6.91 7.00 7.56 7.96 8.98 9.62 10.65 12.10 

Operating cost       (million US$/year) 

Penalty 90.67 77.53 62.37 52.79 37.45 27.58 21.28 20.88 

Electricity 

(vacuum pump) 
16.08 15.65 19.13 18.74 27.50 26.83 26.42 26.40 

Cooling water 3.22 2.73 2.18 1.82 1.23 0.83 0.58 0.57 

Rplacement 1.46 1.54 1.54 1.78 1.56 1.96 2.59 3.50 

AOC 111.43 97.45 85.22 75.13 67.74 57.20 50.87 51.35 

TAC 118.34 104.45 92.78 83.09 76.72 66.82 61.52 63.45 

Captured CO2 

(Mton/year) 
3.74 3.64 3.53 3.45 3.34 3.25 3.21 3.20 

CO2 capture cost 

(US$/ton) 
31.68 28.71 26.32 24.07 23.00 20.53 19.20 19.81 

(US$/kWh) 0.0289 0.0255 0.0226 0.0203 0.0187 0.0158 0.0150 0.0154 

Table 1 shows the lowest desorption temperature process (55 ℃) has the highest DC-

vRTSA capital cost and replacement cost. The vacuum pump price mainly depends on 

the desorption pressure, lower desorption pressure leads to higher vacuum pump price 

and electricity demand. Also, the desorption temperature will affect the cooling water 

cost, too. The best total annual cost and CO2 capture costs of these processes is 61.52 

million US dollars and 19.20 US dollars per tons of captured CO2. The capture cost that 

needs to be shared for each kWh also be calculated. For 120 ℃ and 55 ℃ desorption 
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temperature process, each kWh of electricity needs to bear 0.0289 and 0.0154 US$, 

respectively. 

3.1. Sensitivity of Price Annualize Factor 

For the economic analysis above, the price annualize factors are fixed. In this section, we 

will investigate how the material price of DC-vRTSA, power plant lifetime and electricity 

price affect the capture cost. 

Figure 2(a) shows the effect of material price on the capture cost. For those process with high 

material area, applying high material price brings the addition in the capture cost; on the other 

hand, it reduces the difference of capture cost between high and low desorption temperature 

processes.  Figure 2(b) shows the effect of power plant lifetime on capture cost. The price of 

electricity will mainly affect the penalty and the vacuum pump electricity in the annual operating 

cost. In the above economic analysis, the electricity price is 0.07 US$/kWh. Figure 2(c) illustrates 

how the price of electricity affects the capture cost. 

  
(a) (b) 

 
(c) 

 

 

Figure 2. Sensitivity analysis of (a) material price, (b) power plant life time and (c) electricity 

price. 

4. Conclusions 

In this study, the Rapid Temperature Swing Adsorption (RTSA) process for capturing 

CO2 from the coal-fired power plants has been simulated. With considering the possibility 

of using steam extracted from the low-pressure turbine as the heat source for the DC-

vRTSA process, the impact on the efficiency and stream data of a typical coal-fired power 

plant were studied. The DC-vRTSA at 120 °C-55 °C reduces the efficiency of the coal-

fired power plants by 8.2 % to 1.9 %. The economic analysis of the DC-vRTSA (120 °C-

55 °C desorption temperature) used in the coal-fired power plant was performed. The best 

total annual cost and CO2 capture costs of these processes located at 60 °C desorption 

temperature, which are 61.52 million US dollars and 19.20 US dollars per tons of captured 

CO2. The sensitivity analysis shows that material price and power plant lifetime have 

significant effect on lower desorption temperature area.  

1925 Hollow Fiber-based Rapid Temperature Swing Adsorption (RTSA) Process
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Abstract 

The adoption of sustainably produced second generation biofuels will rely heavily on an 

optimized and integrated biofuel supply chain (SC) system from field to product, and a 

large amount of land will need to be converted to dedicated bioenergy crops to support 

sufficient economies of scale. Efficient models are needed to determine the optimal 

upstream ‘landscape design’ decisions that balance trade-offs with more commonly 

studied SC decisions. Landscape design optimization, deciding where in the landscape to 

plant bioenergy crops and how to manage that land (e.g. fertilization), has been shown to 

improve the environmental impact of farm-scale biomass production (including soil 

carbon (C) sequestration), but has been studied largely separately from biofuel SC 

network design (SCND). In this paper we present a model for landscape design 

optimization and a model/data integration strategy that enables the use of both high spatial 

resolution crop simulations and simultaneous optimization of the downstream biofuel SC. 

Using crop simulations that include realistic yield and environmental data, we present an 

illustrative case study in Michigan, USA and highlight the benefits of the model 

formulation and insights from simultaneously optimizing the SC and the landscape. 

Keywords: Sustainable Supply Chains, MILP, Biofuels 

1. Background 

In previous research related to biofuel supply chain (SC) optimization, researchers 

assume fixed locations and availability for biomass feedstock and do not explicitly 

consider design decisions related to the crop and landscape system as decision variables 

(Ghaderi et al., 2016; O’Neill and Maravelias, 2021). Contrary to this assumption and 

because dedicated bioenergy crops have yet to be planted in large quantities, decisions 

related to landscape design and crop management can have downstream effects on the 

optimal configuration and operation of the biofuel SC. There is an opportunity to extend 

mathematical optimization approaches for biofuel supply chain network design (SCND) 

to include the simultaneous optimization of the upstream landscape decisions to find 

sustainable and economically favorable solutions for both SC and landscape design and 

operation.  

There are two major challenges to integrating a landscape optimization model with the 

biofuel SCND. First, the yield and soil carbon (C) sequestration potential has been shown 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50321-3 
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to be highly field specific which necessitates landscape optimization models with a high 

spatial resolution (Field et al., 2018). Second, accurately predicting the field-specific 

yield and soil C potential for crops like switchgrass is difficult and relies on 

biogeochemical crop model simulations for high-resolution data (Basso and Ritchie, 

2015). A strategy for efficient model/data integration between crop simulations and 

optimization models is needed to preserve the computational tractability of the 

optimization model without sacrificing landscape design accuracy.  

Accordingly, in this paper we propose a computationally efficient model formulation 

designed with the data in mind, and a model/data integration strategy. We then 

incorporate the landscape design model into a biofuel SCND model and present a case 

study to demonstrate the benefit from making simultaneous landscape and SC decisions 

at a high spatial resolution. 

2. L andscape Design M odel 

The landscape design model makes decisions regarding the establishment, fertilization, 

and harvesting of biomass. Harvest decisions correspond to a multi-period (𝑡 ∈ 𝐓) model 

to remain general to crops having multiple harvests. The primary outputs are the yield at 

each field and the amount of soil C that is sequestered. An overview of the integrated 

model and data approach is shown in Figure 1. 

 

Figure 1. Overview of the integrated model and data approach. Parameter definitions are described 

below, and the data integration strategy is discussed in Section 3. 

First, we introduce the set of fields 𝑓 ∈ 𝐅. The fraction of field 𝑓 established with crop 

𝑖 ∈ 𝐈𝐹 is controlled by decision variable 𝐸𝑖,𝑓 in Eq.(1).  

0 ≤ 𝐸𝑖,𝑓 ≤ 1 (1) 

To capture the effect of nitrogen (N) fertilization we also introduce continuous variable 

𝑅𝑖,𝑓 ∈ [0,1], which represents the fraction of fertilization to apply between 0 and the 

maximum, 𝜔 (kgN/ha). The variable 𝑅𝑖,𝑓 is not used in the actual formulation, instead we 

construct auxiliary variable 𝐷𝑖,𝑓 = 𝐸𝑖,𝑓𝑅𝑖,𝑓 which is used to calculate the additional yield 
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from fertilization and its effect on soil C in Eq.(3) and Eq.(4). Because 𝐸𝑖,𝑓 is bounded by 

one, 𝐷𝑖,𝑓 is bounded as in Eq.(2). 

0 ≤ 𝐷𝑖,𝑓 ≤ 𝐸𝑖,𝑓 (2) 

The biomass yield 𝑌𝑖,𝑓,𝑡 (Mg) of each field 𝑓 is given by Eq.(4) where 𝛼𝑖,𝑓,𝑡 is the potential 

yield (Mg) at time period 𝑡 ∈ 𝐓 with zero fertilization if the field had been fully planted 

with crop 𝑖. The second term represents the change from fertilization where 𝜍𝑖,𝑓,𝑡
1  is the 

additional yield (Mg) achieved from fertilization (calculated as the potential yield at full 

fertilization minus the potential yield at zero fertilization). The auxiliary variable is used 

because a fraction of the additional fertilization yield can be equivalently attained by 

planting or fertilizing a fractional amount. The soil C sequestration,𝐺𝐻𝐺𝑖,𝑓
𝑆𝑂𝐶 , is calculated 

similarly (Eq.(4)) with Γ𝑖,𝑓
SOC and 𝜍𝑖,𝑓

2  being the annualized soil C sequestered at 0 kgN/ha 

and the change from full fertilization respectively. 

𝑌𝑖,𝑓,𝑡 = 𝐸𝑖,𝑓𝛼𝑖,𝑓,𝑡 + 𝐷𝑖,𝑓𝜍𝑖,𝑓,𝑡
1  (3) 

𝐺𝐻𝐺𝑖,𝑓
𝑆𝑂𝐶 = 𝐸𝑖,𝑓Γ𝑖,𝑓

SOC + 𝐷𝑖,𝑓𝜍𝑖,𝑓
2  (4) 

The actual area of field 𝑓 that is planted 𝐴𝑖,𝑓 (ha) and the actual amount of fertilizer 

applied 𝐹𝑖,𝑓 (kgN) are given by Eq.(5) and Eq.(6) respectively. Where 𝜎𝑓 is the full area. 

𝐴𝑖,𝑓 = 𝐸𝑖,𝑓𝜎𝑓 (5) 

𝐹𝑖,𝑓 = 𝐷𝑖,𝑓𝜔𝜎𝑓  (6) 

In a realistically sized SC, there are a very large number of potential fields. To connect 

the output of the landscape optimization model to a SC model while maintaining 

computational tractability, we consider transportation at a coarser spatial resolution 

represented by a set of ‘harvesting sites’ 𝑗 ∈ 𝐉. Multidimensional set 𝑔 ∈ 𝐆 ⊂ (𝐅 𝐱 𝐉) 

describes the membership of fields to harvesting sites. The amount of harvested biomass 

𝐻𝑖,𝑗,𝑡 transported to downstream SC nodes is constrained in Eq.(7). 

𝐻𝑖,𝑗,𝑡 ≤ ∑ 𝑌𝑖,𝑓,𝑡

𝑓∈𝐆𝑗

 (7) 

By modelling transportation at the harvesting site level, we preserve landscape design 

detail but avoid adding flow variables for every field. 

The costs associated with landscape design are given in Eq.(8) where 𝜆𝑖 are the per-Mg 

costs from harvesting, 𝜌 is the cost of fertilization per kgN, and 𝜙𝑖 is the combined 

annualized cost of establishment and per hectare cost of land management.  

𝐶𝐿𝐴𝑁𝐷 =  ∑ 𝜆𝑖𝐻𝑖,𝑗,𝑡

𝑖,𝑗,𝑡

+ ∑ 𝜌𝐹𝑖,𝑓

𝑖,𝑓

+ ∑ 𝐴𝑖,𝑓𝜙𝑖

𝑖,𝑓

 (8) 
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Similarly, the emissions from landscape activities are given by Eq.(9) where Γ𝑖
𝑀𝐺are the 

per-Mg emissions, Γ𝑁 are the emissions from fertilization, and Γ𝑖
𝐻𝐴 are the annualized 

per-hectare establishment and management emissions. 

𝐺𝐻𝐺𝑠
𝐿𝐴𝑁𝐷 =  ∑ Γ𝑖

𝑀𝐺𝐻𝑖,𝑗,𝑡,𝑠

𝑖,𝑗,𝑡

+ ∑ Γ𝑁𝐹𝑖,𝑓

𝑖,𝑓

+ ∑ 𝐴𝑖,𝑓Γ𝑖
𝐻𝐴

𝑖,𝑓

+ ∑ 𝐺𝐻𝐺𝑖,𝑓
𝑆𝑂𝐶

𝑖,𝑓

 (9) 

For brevity, the full mixed-integer linear SC model is not presented here, but a similar 

model without extensions to measure SC specific GHG emissions or landscape design is 

presented by (Ng et al., 2018). The modified SC model is a multi-period MILP 

formulation that minimizes the total annualized cost. Key decisions include the location, 

technology, and capacity of pre-processing depots and biorefineries, inventory levels, and 

shipment and production schedules. GHG emissions are considered in the case study via 

the 𝜖-constraint method and include emissions from shipment, production, landscape, and 

soil C sources, but do not include any credit for replacing fossil fuels. 

3. Model and Data Integration     

Because biomass yield and soil C sequestration potential are field specific and depend on 

local weather and soil quality, modelling landscape design at high resolution is critical. 

The model presented in section 2 uses large amounts of spatial data for parameters 𝛼𝑖,𝑓,𝑡, 

Γ𝑖,𝑓
𝑆𝑂𝐶 , 𝜍𝑖,𝑓,𝑡

1 , and 𝜍𝑖,𝑓
2  and requires a convenient way to integrate the model and the data.  

Biogeochemical crop models such as SALUS (Basso and Ritchie, 2015) are tools that 

simulate crop growth and capture the spatial variability of crop yields and soil C 

sequestration. The underlying data that SALUS uses to capture spatial variability is a 

weather layer (gridMET (Abatzoglou, 2013)), a soil layer (SSURGO 30m resolution), 

and a geographic raster defining the available fields for planting biomass. Identifying 

potential fields is outside the scope of this paper, interested readers can refer to (Lark et 

al., 2020). Holding all other inputs constant, simulations with the same soil type and 

weather will result in the same yield and soil C sequestration. With this observation, we 

define the weather grid’s 4x4 km pixels as harvesting sites and the soil types as fields. 

For a given weather grid, if there are fields with identical soil types, the fields are 

aggregated into a single element of 𝐅 without losing landscape design accuracy.  

The model data integration strategy allows for the aggregation of ‘identical’ fields which 

reduces the model size without aggregating unlike fields which could reduce the impact 

of the landscape design decisions. The model data integration strategy can also be 

extended to a user defined harvesting site resolution. A coarser resolution may be of 

interest because it can reduce the model size and enable the modelling of larger study 

areas. A coarser harvesting site grid can be produced by overlaying an arbitrary grid, 

labelling the fields enclosed in each cell with a ‘grid label’, then aggregating (summing 

yield, soil C, and field area) fields with identical grid labels and soil types. 
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4. Results 

4 .1. Case Study Description 

We consider 24 potential biorefineries and 500 potential pre-processing depots in the 

lower peninsula of the state of Michigan, USA. SALUS simulations were performed for 

switchgrass grown on recently abandoned, expanded, and intermittent cropland identified 

by (Lark et al., 2020). There are originally 275,502 fields in the study area.  

Table 1. Model size and error in yield from applying the model/data integration procedure for 

various harvesting site resolutions in Michigan, USA. 

Harvesting Site 

Resolution 
|𝐅| |𝐉| 

Mean error (std.) in 

yield (Mg/ha) 

4x4 km 69,835 5,720 reference 

8x8 km 41,120 1,656 0.57 (0.59) 

12x12 km 29,874 794 0.58 (0.59) 

16x16 km 22,801 453 0.60 (0.62) 

Results from applying the data integration strategy for several harvesting site resolutions 

are shown in Table 1. The error in yield for each soil type is calculated as the absolute 

value of the yield at the 4x4 km resolution minus the aggregated yield at the coarser 

resolution for that same soil type. The mean and standard deviation are taken for all soils 

in the study area. 

4 .2. Landscape Design Benefit 

Figure 2 shows the benefit of designing the landscape simultaneously with the supply 

chain. In panel (a) we use the 𝜖-constraint method to find the minimum supply chain cost 

(Eq.(10)) while constraining the GHG emissions. Note that the GHG emissions are 

negative due to a sequestration of soil C which offsets the other sources of CO2  (CO2 

equivalents from transportation, production, and land management) and does not include 

any credits from bioethanol replacing fossil fuels. Panels (b) and (c) correspond to the 

configuration of the minimum cost SC for a high and low amount of GHG emissions 

respectively.  

 

Figure 2. (a) The pareto frontier for the 𝜖-constraint method constraining GHG emissions. (b) The 

SC configuration at a high emission level. (c) The SC configuration at a low emission level. 
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As the upper bound on GHG emissions decreases (becomes more restrictive), the 

landscape design becomes more important. Panel (c) shows that the optimal configuration 

avoids planting biomass at fields which are ‘poor’ at sequestering soil C and instead 

transports biomass further for the added benefit of sequestering carbon at more distant 

fields, opposed to panel (b) where biomass is planted close to the refinery to lower 

transportation costs. Furthermore, at lower GHG solutions, additional biorefineries are 

constructed to reduce the emissions from transportation, and depots are avoided which 

have a GHG penalty from using local grid energy to pelletize biomass. Interestingly, by 

designing the SC and landscape simultaneously, significant reductions in GHG emissions 

are possible for only a marginal increase in costs as shown by the flat region in the bottom 

right of Figure 2(a). 

5. Conclusions 

The high-resolution landscape design model described in section 2 allows the 

incorporation of the data integration strategy and results in a computationally efficient 

way to consider landscape design and management simultaneously with SC optimization. 

The large amount of spatial data needed for modelling dedicated bioenergy crops is 

aggregated in a way that maintains the separation of un-like fields (allowing the model 

greater control over the outcomes from landscape design) while ensuring a tractable 

model. We showed that by introducing the upstream landscape design model, integrated 

solutions could be found that leverage crop establishment locations to find attractive GHG 

solutions for only a relatively small increase in SC costs. The flexible model and data 

integration strategy can be used to model biofuel SCs with landscape design 

considerations on a much larger scale. Decision makers could use the integrated model to 

analyze the environmental and economic trade-offs between land quality, land 

distribution, SC configuration, and SC operation and the influence of key parameters on 

the integrated system. 
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Abstract 

In 2019, nearly 370 million tonnes of waste plastic were generated, an amount that has 

been steadily increasing over the years. Here we assess hydrogen production from waste 

polyethylene in the context of a circular economy of plastics. Based on the gasification 

of polyethylene waste (wPG), we performed a Life Cycle Assessment (LCA) study 

following the ReCiPe method. Our results show that the wPG process coupled with 

carbon capture and storage (CCS) performs very well environmentally relative to other 

H2 production routes, outperforming steam methane reforming (SMR) with and without 

CCS and biomass gasification (BG) in the three endpoint impact categories. 

Keywords: Hydrogen; Waste polyethylene; Circular economy; Life cycle assessment 

1. Introduction 

Every year, the global demand for single-use polymers increases and, with it, the 

generation of plastic waste. According to Geyer et al. (2017), as of 2015, 79 % of all 

plastic ever made had been disposed of in landfills or the environment. Although the 

percentage of polymer waste destined for recycling has been increasing over the years, 

millions of tonnes of residues are annually mismanaged globally. This continuous 

accumulation underlines the need for a circular economy that valorizes polymer residues.  

The circular economy of plastics is based on the recycling, repurposing, refurbishing, and 

revalorization of the generated waste. Notably, valuable feedstocks to the chemical 

industry could be produced from waste polymers through chemical recycling, as pointed 

out by Pacheco-Lopez et al. (2021). For instance, waste polyethylene and polypropylene 

can be processed to recover their respective monomers through pyrolysis or to produce 

synthesis gas (syngas), a key feedstock for chemical production, through gasification 

(Saebeaa et al. 2020). While the first route would be ideally preferred due to the higher 

value of monomers, the second is significantly easier to implement due to the more mature 

gasification technologies.   

Here we explore the benefits of recycling the hydrogen chemically stored in polymers via 

gasification of waste polyethylene (wPE). Hydrogen has attracted increasing attention as 

an energy carrier and low-carbon feedstock for various fields. Steam methane reforming 

(SMR), currently the standard and cheapest route for hydrogen production, relies on 

natural gas (Parkinson et al. 2019), which leads to significant carbon emissions.  

Alternatives with lower emissions include SMR with carbon capture and storage (CCS) 

and electrolysis powered by renewable energies. Based on process modeling and LCA, 

here we investigate whether H2 from recycled plastics is environmentally appealing, 

which at present remains unclear.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50322-5 
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2. Methods description 

2.1. Process description 

We consider a hydrogen production process from waste polyethylene, alone or coupled 

with CCS, based on data collected from Saebeaa et al. (2020), Luyben (2018), and 

Susmozas (2015). The resulting block flow diagram is shown in Figure 1. The waste-

polymer gasification (wPG) process consists of two main parts: syngas generation 

through steam gasification of wPE, followed by H2 production and purification through 

water-gas shift (WGS) and pressure swing adsorption (PSA). CCS (wPG+CCS) is done 

on a CO2-rich  stream (95.6 mol%), which is compressed to 150 bar prior to injection. 

The gasification takes place at 800 ºC and 1.013 bar with steam as the gasifying agent to 

generate syngas with 67.25 mole% H2, 25.24 mole% CO, 7.33 mole% CO2, and 0.18 

mole% CH4, as in Saebeaa et al. (2020). The stream is then compressed to 32.5 bar with 

intercooling before entering the WGS section to meet the conditions in Luyben (2018). 

The syngas undergoes a high-temperature water-gas shift (HT-WGS) at 400 ºC with        

88 % conversion and a low-temperature water-gas shift (LT-WGS) at 250 ºC with 95 % 

conversion, following the reaction in Eq.(1). 

The H2-enriched stream is cooled down to 40 ºC and flashed before being sent to the 

pressure swing adsorption (PSA) unit, obtaining H2 at 99.9 mole% purity based on 

Susmozas (2015). The tail gas is decompressed and undergoes combustion at 1300 ºC and 

1.5 bar, covering the energy needs of the gasification. Combustion is performed with air, 

and the post-combustion stream is vented after cooling and flashing at 40 ºC.  

Figure 1. Block flow diagram of the process for hydrogen production from waste polyethylene. 
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𝐶𝑂 + 𝐻2𝑂 ⟷ 𝐶𝑂2 + 𝐻2  (1) 



Assessing the Environmental Potential of Hydrogen from Waste Polyethylene  

For the process with CCS (wPG+CCS), oxy-combustion with a near stoichiometric O2 

ratio is considered at the same conditions as in wPG, obtaining a stream 95 mole% in CO2 

after cooling and flashing, which is compressed to 150 bar in four steps with inter-cooling 

and flashing, requiring 0.09 kW/kg CO2 (Pipitone and Bolland of 2009). We considered 

that the flashed streams from this multi-stage compression are decompressed to 1.013 bar 

and undergo a final flash, recycling the gaseous stream to the combustion reactor. 

Therefore, no direct emissions are produced in the wPG+CCS process. The waste water 

streams from all flash units are sent to water treatment. Only cooling utilities are required. 

2.2. Life cycle assessment (LCA) and scenarios definition 

The environmental assessment was performed according to the ISO 14040 (2006). For 

each technology, the endpoint impacts on human health (HH), ecosystems quality (EQ), 

and resource depletion (RD) were calculated for 1 kg of hydrogen with the ReCiPe2016 

method (Huijbregts et al. 2017) using data of global activities from Ecoinvent 3.7 (Wernet 

et al. 2016) in Simapro 9.2. The assessment follows a cradle-to-gate approach that 

considers the impacts from raw materials, electricity, process utilities, products, and 

direct emissions at point of substitution (APOS), disregarding the end-of-life of the plant 

infrastructure and use phase of the produced hydrogen. The ReCiPe2016 methodology 

quantifies the impacts on HH in disability-adjusted life years (DALY), which are the 

number of years during which individuals are not in total health; the effects on EQ are 

measured as the fraction of species that may be lost over time due to changes in 

environmental systems (species.y); RD in USD 2013 represents the extra cost required 

for the exploitation of resources in the future. 

We quantified the life cycle inventories (LCI) for wPG and wPG+CCS from the mass and 

energy balances of the process in section 2.1. Moreover, we expanded the system 

boundaries to account for the treatment of waste polyethylene. Hence, we assume that our 

process avoids the landfilling and incineration of wPE, considering the proportion 

destined to each alternative worldwide in 2015, showcased by Geyer et al. (2017): 55 % 

of wPE to landfills and 25.5 % to incineration, using processes from Ecoinvent v3.7. The 

impacts of the remaining 19.5 % of waste, which is recycled, were omitted. 

The wPG and wPG+CCS processes were compared to other hydrogen production routes, 

of which the inventories were taken from literature: SMR with and without CCS, 

following Dufour et al. (2012); biomass steam gasification (BG) with and without CCS, 

based on Susmozas et al. (2016); proton exchange membrane (PEM) electrolysis powered 

by various energy sources, following Lee et al. (2010), i.e., bioenergy with CCS 

(BECCS), hydropower, nuclear power, solar power from photovoltaic cells, wind power 

and the electricity mix from the 2018 power grid. 

3. Results and Discussion 

Figure 2 displays the endpoint environmental impacts of 1 kg of H2 for the 12 scenarios 

studied here. The total values per impact category are also available in Table 1. 

wPG and wPG+CCS perform differently for various reasons. wPG+CCS requires 14 % 

more electricity and 78 % more cooling water per kg of H2 than wPG due to the CO2 

compression unit. Additionally, wPG+CCS includes the impacts embodied in the oxygen 

feedstock for oxy-combustion, avoided in the standard wPG route that uses excess air as 

an oxygen source and vents the post-combustion stream. Overall, wPG+CCS is worse in 

RD and better in HH and EQ. 
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Figure 2. Endpoint environmental impacts of the hydrogen production routes assessed in this study, 

broken down by process components. The electricity term corresponds to the impacts of the energy 

sources used in the process (different for each PEM scenario). The following acronyms are 

employed: wPG: waste polyethylene gasification; CCS: carbon capture and storage; SMR: steam 

methane reforming; BG: biomass gasification; PEM: proton exchange membrane electrolysis; 

beccs: bioenergy with CCS; hydro: hydropower; nuclear: nuclear power plant; solar: photovoltaic 

energy; wind: wind power; current mix: electricity from the power grid of 2018. 
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Table 1. Total endpoint environmental impacts of the different technologies per impact category. 

 

In terms of impacts on HH, technologies involving biomass coupled to CCS (PEM-beccs 

and BG+CCS) are the most favorable scenarios, with negative impacts. wPG+CCS, 

PEM-nuclear, BG, PEM-hydro, wPG, SMR+CCS, PEM-wind, SMR, PEM-solar, and 

PEM-current mix follow. In terms of EQ, PEM-nuclear has the least impact, followed by 

wPG+CCS, PEM-wind, SMR+CCS, wPG, PEM-hydro, SMR, PEM-solar, BG+CCS, 

BG, PEM-current mix, and PEM-beccs. As for RD, PEM-hydro and PEM-nuclear are the 

least impactful technologies. wPG, wPG+CCS, BG, PEM-wind, BG+CCS, PEM-solar, 

PEM-beccs, SMR, SMR+CCS, and PEM-current mix follow. 

wPG H2 with and without CCS outperforms SMR H2 in all three endpoint categories. 

Moreover, except for technologies involving biomass coupled with CCS (PEM-beccs and 

BG+CCS), wPG+CCS has the lowest impact on HH among the studied routes. 

In terms of EQ, wPG+CCS is the second least harmful route, only behind PEM-nuclear. 

The technologies involving biomass and CCS, which performed very well in HH, are the 

most damaging to the ecosystems. This is due to the significant land requirements of 

biomass plantations (i.e., poplar). 

As for RD, the PEM-current mix presents the highest impact because the 2018 energy 

mix is heavily reliant on fossil resources, as reported by the IEA 2019 World Energy 

Outlook. SMR with and without CCS follow as they require natural gas as feedstock, 

representing 83 % of the total RD impact for SMR and 73 % from SMR+CCS.  

Interestingly, PEM-solar and PEM-wind are not the preferred option in any category. This 

is due to their life-cycle impacts, linked to the manufacture of photovoltaic panels and 

wind turbines, which are higher than those associated with other energy sources. For 

photovoltaic panels, these impacts mostly come from material and the energy provision 

for manufacturing, while for wind turbines, it is the material provision and construction. 

These results are consistent with the ones presented by Turconi et al. (2013). 

4. Conclusions 

Our work assessed the potential environmental benefits of producing hydrogen from 

waste polyethylene (wPE). Our results show that wPG+CCS outperforms SMR (business 

as usual) and SMR+CCS in the studied impact categories. Moreover, wPG+CCS 

performs better in human health than biomass (BG) and electrolytic H2 (PEM) from 

renewables, excluding BECCS. It also shows lower impacts on ecosystems quality than 

 Human health 

[DALY/kg H2] 

Ecosystems quality 

[species.y/kg H2] 

Resource depletion 

[USD 2013/kg H2] 

wPG+CCS 3.62×10–6 9.16×10–9 0.13 

wPG 9.84×10–6 2.92×10–8 0.10 

SMR 1.46×10–5 3.93×10–8 1.09 

SMR+CCS 1.13×10–5 2.44×10–8 1.24 

BG 5.19×10–6 9.43×10–8 0.17 

BG+CCS –7.43×10–6 5.33×10–8 0.23 

PEM-beccs –7.88×10–5 2.13×10–7 0.62 

PEM-hydro 7.95×10–6 3.51×10–8 0.02 

PEM-nuclear 3.95×10–6 6.63×10–9 0.06 

PEM-solar 1.66×10–5 4.12×10–8 0.32 

PEM-wind 1.40×10–5 1.91×10–8 0.18 

PEM-current mix 8.62×10–5 1.82×10–7 1.79 
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most processes (except for PEM-nuclear). The processes using wPE as a feedstock also 

display lower impacts on resource availability than SMR and BG with and without CCS.  

Overall, our results suggest that hydrogen production based on plastic waste via 

wPG+CCS is environmentally appealing. This technology would help realize the circular 

economy concept in chemicals production by recycling polymer residues that would 

otherwise end up in landfills or incineration facilities. 
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Abstract 
Energy store will be essential in the future power system due to the inherent fluctuations 
of the renewable resources. The use of liquid fuels, such as methanol or ammonia, 
allows for seasonal storage and, as energy carriers, can be used for different energy 
applications. In this work, a systematic evaluation of different alternatives to produce 
power from methanol and ammonia has been performed. Particularly, for each of them, 
the thermochemical (combustion) and electrochemical (fuel cells) routes are evaluated. 
The operating conditions of each of the alternatives are optimized yielding energy 
efficiencies between about 15-40 %. From an economic point of view, the cost of 
electricity for the proposed power facilities is around 0.8 €/kWh for the fuel cell based 
production and 0.25 €/kWh for the combustion one, with lower prices for ammonia 
based alternatives. The fuel cells are more suitable for small scale applications, hence, 
with lower economies of scale. Therefore, this techno-economic assessment 
demonstrates the feasibility of liquid fuels to provide a robust power grid based on 
renewable resources meeting sustainable development.  

Keywords: Ammonia, Energy Storage, Methanol, Power-to-X, Renewable fuels 

1. Introduction 
Renewable energy is a vital resource for the energy transition and sustainable 
development, in order to achieve the UN target of ensuring access to affordable, 
reliable, sustainable, and modern energy for all. Therefore, an increase in the share of 
renewable energy sources (RES) is expected in the coming years. IRENA (2018) 
forecasts that, by 2050, renewable generation will account for about 85 % of the global 
power generation, and around 60 % of the total final energy consumption.  However, 
this increase in renewable penetration threatens the stability of the power system due to 
the inherently stochastic nature of the two main RES, wind and solar. At this point, 
energy storage will be crucial to ensure demand satisfaction at every time regardless of 
weather conditions in an optimal way. In this area, two alternatives emerge as the most 
promising in the future scenario, lithium-ion batteries and hydrogen and its derivatives 
(Schmidt et al., 2019).  This latter option is particularly suitable for long-term energy 
storage (more than 700h). Apart from the power system, the share of renewables in 
other activities must be increased to achieve a high sustainable final energy 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50323-7 
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consumption rate. In this field, energy carriers arise as one of the main tools for 
different applications where direct electrification is difficult.  
Regarding energy storage/carriers, liquid fuels, such as methanol or ammonia, emerge 
as one of the most attractive options. Liquid fuels have a high volumetric energy 
density, a scalable and flexible behavior for different time scales and power capacities, 
and easy conditions of storage and transportation. Several works in the literature have 
analysed Power-to-liquids (PtL) technology taking into account the variability of the 
solar/wind availability and its influence on the chemical production. Once the fuel has 
been synthesised, the second stage will be the generation of electricity when it is 
needed, for instance, when renewable generation is low. At this point, two different 
alternatives are available for this purpose. The first one is based on the combustion of 
the liquid fuels to produce power using, mainly, a gas turbine. On the other side, liquid 
fuels can be converted into power using a fuel cell. Direct methanol/ammonia fuel cells 
are being developed, but another alternative is a first step based on the reforming of the 
fuels and, subsequently, using a hydrogen fuel cell which is a more mature technology. 
Different experimental works have evaluated the transformation of liquid fuels to power 
at laboratory scale from different perspectives. However, a process-scale analysis is 
required, including all the stages involved in the transformation, determining the energy 
efficiency of the process, and computing the cost of electricity for the different 
alternatives. This step is essential for planning an orderly introduction of these liquid 
fuels in real applications such as grid storage, mobility, etc.  
In this work, a holistic comparison of the two main hydrogen liquid carriers, methanol 
and ammonia, is performed. For each of them, two different transformation routes have 
been studied: thermochemical (combustion) and electrochemical (fuel cell). The 
preparation of the raw material, the power conversion, and the different gas treatment 
operations have been included in this assessment. With this work, a fair comparison of 
both liquid fuels is conducted from a technical and economic perspective.  

2. Process Description 
Two different alternatives are possible to transform methanol or ammonia into power: 
thermochemical or electrochemical (Figure 1). The combustion of methanol alone is 
difficult due to the cold start (related to the high latent heat of vaporization of methanol) 
and the associated emissions. Therefore, the methanol/hydrogen blends have been 
proposed as one of the most promising fuels in order to overcome the issues associated 
with methanol combustion. Hence, the first step of the process is the preparation of the 
mixture, in this case, a proportion of 85 % methanol and 15 % of hydrogen is used 
(Zhen & Wang, 2015). The hydrogen required is generated using methanol steam 
reforming in a catalytic reactor using Cu/ZnO/Al2O3 as catalyst. In the combustion of 
the blend, undesirable NOx is generated. Its concentration is computed using an 
experimental-based correlation. The maximum temperature in the combustion chamber 
is limited to 1873 K due to material limitations. To produce power using the gases from 
the combustion chamber, a combined cycle is employed with a first step based on a gas 
turbine and a second part including a Rankine cycle.  
Ammonia combustion follows a similar pattern than methanol. Due to issues related to 
ammonia combustion, a mixture of 70 % of ammonia and 30 % of hydrogen is used as 
fuel (Sánchez et al., 2021). Hydrogen is produced through ammonia decomposition in a 
membrane catalytic reactor. As in the methanol alternative, a combined cycle is set up 
to generate power. To overcome the maximum gas turbine operating temperature, an 
inert component (argon) is introduced into it. Due to the combustion characteristics, 
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different gas clean-up operations are required. Firstly, NOx removal can be introduced if 
necessary to meet the environmental restrictions. Secondly, hydrogen is leaving the 
combustion chamber and must be recovered using a selective membrane. After the gas 
clean-up section, a mixture of N2 and Ar is obtained and, to reuse these components, a 
distillation column is used to separate them.  

Figure 1: Process superstructure diagram of power production using methanol or 
ammonia 

The electrochemical alternative is also evaluated. Methanol can be transformed into 
power in a fuel cell. An aqueous solution of methanol (1 mol/L) is fed to the unit along 
with air as oxidizer (Goor et al., 2019). From the anode of the cell, carbon dioxide, 
water and traces of methanol are obtained and, from the cathode, water, carbon dioxide, 
oxygen and nitrogen leave the cell. The operating conditions of the fuel cell (mainly 
voltage and intensity) determine the amount of power that can be produced from 
methanol. The anode stream is separated to recycle methanol and water into the fuel 
cell. Finally, the CO2 from the cathode stream is also recovered by a zeolite system for 
synthesis purposes.  
The last analysed system in this work is the electrochemical conversion of ammonia 
into power (Siddiqui & Dincer, 2019). In this alternative, ammonia is fed to the fuel cell 
together with wet (50 %) air. The main products of the reaction are nitrogen and water. 
From the anode, a mixture of nitrogen, water and traces of ammonia is produced. In the 
cathode, nitrogen, water, oxygen from the air but also NOx is obtained that must be 
removed using a selective catalytic removal (SCR).  
All the units and operations of each section in Figure 1 have been modelled using an 
equation based approach. Different modelling techniques have been used including 
mass and energy balances or experimental correlations. The entire superstructure is 
decomposed as a set of non-linear programming problems, one for each of the 
alternatives and fuels (up to 2000 equations per alternative). The formulation is 
implemented in GAMS and CONOPT 3.0 has been used as preferred solver in a 
multistart optimization approach. As objective function, a simplified operating cost of 
the facility is used such that (Eq.(1)): 

1941 
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𝑍𝑍 = �𝑓𝑓𝑖𝑖𝐶𝐶𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

− � 𝑓𝑓𝑗𝑗𝐶𝐶𝑗𝑗
𝑗𝑗𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗

 (1) 

where 𝑓𝑓𝑖𝑖 is the flow of the inlet or outlet resources of the facility and 𝐶𝐶𝑖𝑖 is the cost 
associated. A price of 0.43 €/kg and 0.55 €/kg is set for methanol and ammonia 
respectively (Matzen et al., 2015). The optimization procedure determines the optimal 
operating conditions of the different alternatives proposed in order to improve the 
energy performance of the system minimizing the cost of electricity.  

3. Results
First, some technical and operating results of the power facilities using liquid fuels are 
presented. The main operating variables of each of the alternatives are optimized 
minimizing the cost of electricity. For this optimized scenario, the efficiency and 
specific energy are shown in Table 1 for two different fixed capacities. The fuel cells 
are more suitable for small scale applications; therefore, the production capacity is set 
considerably lower than in the thermochemical way. 

Table 1: System efficiency results for the methanol/ammonia to power transformation 

Capacity 
(MW) Technology alternative Efficiency 

(%) 
Specific energy 

(kWh/kg) 

100.0 
Methanol combined cycle 38.08 2.122 
Ammonia combined cycle 33.95 1.768 

1.0 
Methanol fuel cell 22.99 1.032 
Ammonia fuel cell 15.00 0.710 

Figure 2: Sankey diagram for the energy flows in thermochemical ammonia 
transformation 



   

In general, the thermochemical alternatives present better efficiencies than the 
electrochemical options with differences of almost double. The better efficiency is 
achieved in the methanol combined cycle reaching about 38 %. The thermochemical 
processes are based on the combination of a gas turbine and a Rankine cycle, achieving, 
a good performance in efficiency terms. Nevertheless, the main limitation to improve 
the efficiency values of these alternatives is the maximum temperature allowed in the 
gas turbine due to material restrictions. If this constraint is removed, a significant 
increase in the efficiency values could be expected. Therefore, a detailed research in the 
gas turbine construction should be made to widen the operating conditions of these 
units. Methanol combined cycle shows better efficiency results than ammonia based 
alternatives. The ammonia transformation is a more complex process that includes gas 
clean-up operations and N2/Ar separation. These operations, particularly the last one, 
are energy demanding reducing the energy performance of the whole system.  
The electrochemical systems show a drastically reduction in the efficiency values, about 
15-20 %. These technologies are still under development at laboratory scale and,
therefore, further research is required to improve the energy efficiency of these devices.
These values are significantly lower than those obtained in the hydrogen alternative
because the liquid fuels studied have a lower electrochemical reactivity. The lower
values of efficiency in the methanol/ammonia fuel cells are due to the low operating
voltage of these devices. At this point, the temperature is limiting the cell voltage to
avoid the damage of the electrochemical catalyst. A better design of the cell membrane
could improve the performance of these systems reducing the fuel crossover or
improving the catalyst features. Methanol fuel cell shows better efficiency due to,
according to experimental results, can operate with higher voltage and intensity and,
therefore, with higher power density.

Figure 3: Capital and production costs of the different methanol/ammonia power 
generation system 

A Systematic Comparison of Renewable Liquid Fuels for Power Generation:
   Towards a 100% Renewable Energy System

1943 



 A. Sánchez et al. 1944 

The performance of the entire system, including all the operations involved, is analysed 
to determine the flows of energy in each section. For instance, in Figure 2, a Sankey 
diagram is included to analyse the energy operation of the thermochemical conversion 
of ammonia. A significant amount of energy is required in the different operations in the 
facility reducing the total performance of the system. For example, around 50 % of the 
produced power is devoted to internal operations. Similar results are obtained for the 
rest of the alternatives, however, for the sake of brevity, only one is included in this 
chapter. This holistic analysis is necessary to a fair evaluation of the system because 
including only the fuel cell or the combustion system is not enough to determine the real 
energy operation.  
An economic evaluation of this power generation system based on liquid fuels is also 
performed in this work (as shown in Figure 3). The thermochemical alternatives exhibit 
a production cost about 0.2-0.3 €/kWh with an associated investment of about 3-5 
MM€/MW depending on the capacity. For the electrochemical alternatives, the 
production costs significantly increase to values around 0.75-0.85 €/kWh requiring an 
investment of around 10 MM€/MW due to the lower production capacities than the 
previous alternatives. The lower energy efficiency of these systems and the lower power 
capacities (with reduced economies of scale) determine the worst economic 
performance of this electrochemical route.  

4. Conclusions 
In this work, a systematic evaluation of the transformation of methanol/ammonia into 
power is performed. Two different main routes have been assessed: thermochemical 
(combustion) and electrochemical (fuel cell). The entire process is analysed including 
the preparation of the raw materials, the power production and the final purification 
operations. The technical performance of these systems is demonstrated yielding 
efficiency values of about 35 % for the thermochemical and 18 % for the 
electrochemical alternatives. The operating cost is about 0.25 €/kWh for the combustion 
based processes and 0.8 €/kWh for the fuel cells due to the lower energy performance 
and the reduced power capacities.  This analysis leads to a successful integration of 
these technologies in real applications with the objective of a fully decarbonized energy 
system.  
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Abstract

While the current linear state of the economy has led to large scale natural-resource ex-
ploitation and pollution, circular economy can also lead to unexpected harm to environ-
mental sustainability. Thus, there is a need to design product value-chains to achieve a
Sustainable and Circular Economy (SCE). Previous work has focused on developing a
systems engineering framework using life-cycle assessment with ‘superstructure’ network
optimization to find optimal value-chain pathways while considering product life-cycles.
However, the role of innovations in the form of novel technologies, societal action and new
policy action has become increasingly crucial to establish SCE. In this work, we propose a
sensitivity optimization framework to find the most attractive innovation directions within
the value-chain using parameter perturbations as additional decision variables over path-
way choice. The objectives include maximizing circularity and minimizing carbon dioxide
emissions. We quantify the trade-off between these objectives and determine win-win in-
novative solutions using pareto and perturbation fronts. The method is demonstrated for
an illustrative example, and its applicability to real value-chain networks has been probed.

Keywords: Life-cycle design, Sustainable and circular economy, Multi-objective
optimization, Innovation modeling

1. Introduction

The current ‘linear’ state of the economy is contributing to many man-made disasters like
climate change, plastic oceanic gyres, resource scarcities, harmful algal blooms in lakes,
etc. While ‘circular economy’ is expected to bring about reduction in waste and pollution,
it may not always be aligned with sustainability requirements such as curtailing climate
change and respecting nature’s carrying capacity. Progress toward a Sustainable Circular
Economy (SCE) is crucial to mitigate large-scale exploitation of natural resources and pile-
up of man-made materials like plastics in the environment. For achieving a SCE there is a
need to holistically design entire value-chains of products and services while considering
the environmental, economic, and social implications of potential alternatives. The field
of Process Systems Engineering (PSE) has the potential to contribute towards establishing
SCE for material life-cycles provided it expands its system boundary to account for the life
cycle, economy, and ecosystems (Bakshi, 2019). This work is aimed at expanding PSE
models and methods toward Sustainable Engineering to find optimal value-chain reforms
and discover most attractive innovation directions.
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Figure 1: Illustrative example of a typical circular value-chain network

We construct the connection between SCE and PSE using the framework of life-cycle
assessment (LCA), which focuses on calculating net environmental impact of ‘singular’
product value-chains, while considering entire life-cycles of the product - right from nat-
ural resource extraction to disposal. The computational structure of LCA involves solving
a linear programming (LP) problem on life-cycle inventory data of value-chains (Heijungs
and Suh, 2002). In our previous work (Thakker and Bakshi, 2021a), we have developed
the SCE design framework which uses optimization to evaluate multiple alternative value-
chains by creating a ‘superstructure’ network of alternatives. In this work, we expand the
scope of design to identify the optimal perturbations in technology efficiencies, supply
chains, policies and behavior that can be brought about by innovations. These pertur-
bations do not consider systemic disruptions to value-chains that can be brought about by
innovations, which need to be modeled as separate processes in the superstructure network.
Sections 2 and 3 of this paper are devoted to finding SCE optimal value-chain pathways
from the illustrative example network in figure 1 using previous work. Section 4 then de-
scribes the novel sensitvity optimization framework developed for innovation guidance,
which is followed by insights on potential applications of the framework in conclusions.

2. Life Cycle Assessment (LCA) framework

LCA is used to find the impact of catering to a particular demand of a product, from the
processes in its entire life cycle. The input, output and emissions data for each process
is found from national averages, and are included within columns of the technology and
intervention matrices (A and B). These matrices are available from national agencies and
commercial organizations. LCA method consists of the equations, As = f, g = Bs
which ensures flow conservation of all products (rows), while meeting the final demand
‘f ’, specified for the LCA study. ‘s’ is the scaling vector, which represents the scale of
operation of each process in A to meet the demand. ‘g’ is a vector of total resource use and
emissions for meeting the demand, and is found by scaling the interventions B with the
same ‘s’. One short-coming of LCA is that it requires separate analysis for each alternative
value-chain pathway, which is rectified using the SCE design method described below.
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3. SCE Design Framework

In our previous work (Thakker and Bakshi, 2021a), we have developed a multi-objective
superstructure optimization method to find optimal value-chain pathways for SCE objec-
tives, and develop pareto fronts to quantify trade-offs between these objectives.

3.1. Node-alphabet representation of superstructure networks

The framework is generally applicable to any circular system owing to the node-alphabet
representation. Nodes in a typical life-cycle network are classified into 4 types (T1−4)
according to the substitutability of inputs and outputs, and whether the streams undergo
transformations. Any SCE network may be represented as a combination of these node
types, as shown for the illustrative example in figure 1.

3.2. Illustrative example

This paper describes the foundational work and methodological developments using an
illustrative example, shown in figure 1. This example involves finding the optimal-value
chain to meet a consumer demand from one of the two-products (P1 & P2), which are
sent either to segregation (and recycling) or to incineration. The goal is to find optimal
pathways to meet SCE requirements. This illustration is chosen since the network is rep-
resentative of typical product life-cycles, e.g. plastic containers, semi-conductors, laptops,
etc., thereby highlighting the wide applicability of this work to relevant SCE problems.

3.3. Constraints

The decision variables of the SCE design problem are the scaling factors ‘s’ denoting the
pathway selection, i.e. sj is 0 if value-chain process j is inactive. Since the technology
matrix A represents a ‘superstructure’ network of alternatives, A is a rectangular matrix
(not full rank) and pathways design for an arbitrary objective Z(s) is possible. However,
optimizing value-chains requires flow conservation with the life-cycle which is established
by specifying the LCA equations as constraints on the decision variables.

min
s
z := Z(s)

Subject to: As = f

g = Bs

(1)

In addition, the network needs to be scaled to meet consumer demand, which is added
as a constraint on the life-cycle flows (Hs). Furthermore, governing equations such as
material, energy and component balances are specified as balance constraints (FB). Node
efficiencies are also specified as constraints (Fn) for each node based on its type (T1−4).

Hs ≥ u (2)
FB(s) ≤ 0 (3)
Fn(s) ≤ 0 (4)
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Finally, non-negative scaling (s ≥ 0) and the net-zero final demand of intermediate flows
(fi = 0) are ensured using variable bounds. All these constraints yield a feasible design
space of pathway choices and technology options in a non-linear problem (NLP), which is
optimized for various SCE objectives and to characterize the trade-offs between them.

3.4. Objectives and Pareto-front generation

SCE objectives must comprise of Environmental, Economic and Circularity aspects. The
emission and effluent flows are captured within the g vector and can be used as environ-
mental objectives. In the illustrative example, there are two emission flows, i.e. carbon
dioxide (CO2) and sulfur dioxide (SO2), which need to be minimized. However, real life-
cycle inventory data contains hundreds of emission flows, which can be aggregated into
midpoint indicators such as global warming, acidification and eutrophication potential.

The economic objective can be formulated as life cycle cost (LCC), which would consider
the cost of directly and indirectly used natural resources. For simplicity, this objective has
been excluded from the illustrative example. Within the circularity domain, we formulate
a novel metric θ using life-cycle flows of the network to quantify the circularity of the
network. It is calculated as the ratio of the value of circular flows within the system to
the value of manufactured products (M.s). Circular flows comprise of recycling, refur-
bishment, down-cycling and up-cycling in the technological system (C ∈ A) and valuable
effluents such as compost gc to the environment. The general expression for θ is as follows,

θ =
ΣγiC.s+ Σγkgc

ΣγiM.s
i ∈ products, k ∈ emissions, C ∈ Acircular, M ∈ Amanufacturing (5)

γ denotes the value function, typically in monetary, exergetic or physical units, and it de-
termines the nature of the circularity metric, θ. In this example, we consider monetary cir-
cularity with both recycled raw material and electricity generating monetary value. Since
we consider multiple objectives of SCE, there are bound to be trade-offs and win-win so-
lutions. These are quantified using pareto optimal solutions, found using the ε-constraint
method. The pareto-optimal solutions form a front which represent the best possible solu-
tions without bias to any one of the three objective domains. The points lying above the
front are sub-optimal and the ones lying below are infeasible. Thus, pareto front generation
provides quantification and visualization of trade-offs.

3.5. SCE designs for the illustrative example

The SCE design solutions for the illustrative example are shown on the extremities of the
black solid line pareto front in figure 2. The P1-C-S-R1 pathway corresponds to minimum
CO2 emissions, whereas the P2-C-S-R2 pathway has maximum circularity. ε-constraint is
used to find points on the pareto front (solid line) which correspond to impartial compro-
mise solutions between the objectives. The objective space below the front is sub-optimal,
whereas the space above corresponds to win-win solutions which can only be achieved by
innovations and pathways outside the superstructure network.

4. Sensitivity optimization for innovation discovery

It is crucial to identify the most attractive directions for innovations in the value-chain to
improve SCE objectives. This is achieved by modifying the SCE design framework to
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Figure 2: Pareto and Perturbation fronts for SCE design of network in figure 1.

include additional decision variables corresponding to the sensitivity of the parameters in
the technology matrix(A). Each element in A (aij) represents a particular property of a
life-cycle activity (j). We introduce binary variables y1ij and y2ij to assume the value
‘1’ if aij can be increased or decreased (respectively), by a factor of Γ ∈ [0, 1]. These
perturbations to aij are assumed to be brought about by innovations, better technologies, or
improved policy, and the number of such permitted perturbations (N ) are set by the user of
the framework. Flow conservation and material-energy balances need to hold despite these
perturbations, which is done by changing the original design formulation to the following.

min z := kgCO2, kgSO2

max
s,y1,y2

z := Circularity (θ)

Subject to: A� (1 + Γy1 − Γy2)sj = f

y = y1 + y2∑
i

∑
j

yij ≤ N, # of permitted perturbations

G(s) ≥ 0, other constraints on s

y1, y2, y ∈ Zi×j ; Γ ∈ [0, 1]; s ≥ 0

(6)

Here, ‘�’ represents element-wise multiplication, and (y1, y2) are binary variables to iden-
tify the optimal innovative perturbations in the positive and negative directions. The re-
sulting optimization is a MINLP that finds best value-chain pathways and most attractive
perturbations within a user-defined range (Γ=0.1). The pareto fronts for SCE objectives
using this formulation are referred to as ‘perturbation fronts’. These fronts provide win-
win solutions over the original pareto front, and greater win-win is obtained when more
innovation perturbations (N ) are allowed. For the illustrative example, two perturbation
fronts are developed; with N = 1 (dashed line), N = 3 (dotted line), as shown in figure 2.
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While the value-chain pathways on the extremes are identical to the original pareto front,
the perturbed value-chain activities (shaded boxes) vary. For instance, minimum CO2

emissions demand innovations to focus on manufacturing and consumer use, whereas
highest circularity requires them to perturb sorting and recycling of P2. A ‘compromise’
solution on the perturbation front is found (top left pathway in figure 2), which improves
both objectives from the original SCE design. This solution says that innovations must
be focused towards improving efficiencies and yields of sorting and recycling, while also
increasing consumer re-use. Through this illustrative example, we prove the utility of the
method to guide value-chain reforms and innovations for any SCE network of relevance.

5. Conclusions

In this work, we have expanded the previously developed SCE design framework (Thakker
and Bakshi, 2021a) to include sensitivity optimization for finding most attractive innova-
tion directions, along with pathway design of value-chains. The new modeling framework
is demonstrated upon an illustrative example, to find the optimal perturbations in technol-
ogy and societal parameters that can lead to win-win solutions from circularity and CO2

emissions viewpoint. Pareto front generation allows quantification of trade-offs and selec-
tion of pareto-optimal solutions, which can inform new research directions based on a rea-
sonable ‘compromise’ between SCE objectives. Future work will pertain to application of
this methodology to a real-life value-chains of products, such as plastic-containers, wind-
mills, etc. While the general applicability of the framework is established in section 3.1.,
the tractability of sensitivity optimization for large value-chain network is currently being
explored using a case study on plastic grocery bags. In addition, it may be needed to intro-
duce a physico-chemical transformation network using a multi-scale approach (Thakker
and Bakshi, 2021b) to provide a realistic constraints on allowable perturbations.
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Abstract 
District heating systems based on industrial waste heat play an important role in using 
energy efficiently. Combined with a thermal energy storage technology, such as 
pressured-water tanks, they have the potential of significantly reducing greenhouse gas 
emissions as well. However, installing thermal energy storage requires capital and, 
therefore, it is important to find an optimal design that balances the benefits of energy 
storage with the costs of installing such system. In this work we formulate a dynamic 
optimization model for designing a thermal energy storage tank based on operational 
conditions and apply it to a case study using historical data from a district heating 
system that recovers heat from an industrial plant in Norway. We found that a relatively 
large tank (greater than 5000 m3) would be necessary to store all excess energy 
provided by the plant that cannot be immediately used for the period and input data 
considered. However, the results can be used to investigate uncertainties and their 
effects on the optimal tank volume and return of investment.  

Keywords: Energy systems; thermal energy storage; optimal operation; optimal design. 

1. Introduction 
Environmental, energetic and climate issues of today require a shift from society’s fossil 
fuel dependency to renewable energy sources. The pace of this change must accelerate, 
and significant measures are taken to increase the development and use of renewable-
energy-based technologies (Mirandola and Lorenzini, 2016), and environmental policies 
implemented by governments. For such shifted scenario, decarbonized energy system, 
district heating (DH) systems and thermal energy storage (TES) can play a critical role 
and contribute significantly to Europe’s 2050 emission goals (Connolly el al., 2014). An 
important DH system type is those utilizing industrial waste heat; however, due to the 
commonly high variation of the waste heat availability, its combination with TES is of 
interest to further reduce the use of peak-heating sources. Pressured-water tanks are the 
most suitable TES technology for DH systems, yet they can be very costly and space 
availability may be limited (Knudsen et al., 2021). 

In this work we focus on the optimal operation and design of a TES tank for utilization 
in a DH system based on waste–heat recovery. Integrating operation into the sizing 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50325-0 



 C. S. M. Nakama et al. 1952 

problem is important, as operational conditions have a significant impact on how 
efficiently the waste heat is utilized, which in turn can influence the size of the TES 
tank. We present an approach that formulates a single nonlinear dynamic optimization 
problem that accounts for optimal operation and sizing simultaneously, as opposed to 
combined optimization/simulation-based methods previously proposed, e.g., Knudsen et 
al., 2021; Li et al., 2021. We demonstrate this method on a historical data set from a DH 
plant in Norway that recovers heat from a ferrosilicon plant.  

2. Case Study 
We consider a case study for designing a TES tank for the heating plant of the DH 
system of Mo i Rana in Norway. The DH plant is located inside Mo Industry Park and 
receives waste heat from a ferrosilicon plant. The objective of the TES is to increase the 
waste-heat utilization and thereby reduce necessary peak-heating.  
The DH system has 6 boilers heating up the water that is sent back to the city. Two of 
them use waste-heat from the industrial park and four of them are peak-heating boilers. 
They run primarily on electricity or CO-gas as energy source, the latter being a by-
product from a manganese plant in the industry park and thus with varying availability. 
Since today waste-heat availability does not exactly match demand, excess heat is 
dumped, and deficit heat is supplied by the peak-heat boilers. Figure 1 shows a 
simplified diagram of the process with a TES tank; the waste-heat boilers (WHB) and 
peak-heat boilers (PHB) are lumped together and represented as one unit. Nodes A and 
B represent split or merging of the main water flow, depending on whether the TES 
tank is charging or discharging, since there is no variation of volume in the TES tank. A 
description of the variables is presented in the Modelling section. 

 
Figure 1. Flow diagram of the DH system of Mo i Rana. 

2.1. Historical Data 

For this case study, we selected March of 2019 as a representative month in which 
waste-heat availability oscillates from shortage to excess when compared against the 
heat demand from the city, as seen in Figure 2. This behaviour, usually seen during the 
transition months between summer and winter, has a potential for short-term savings, as 
opposed to long periods of shortage (winter) or excess (summer) of heat availability that 
would require long-term storage. From the DH system, we also have given the return 
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and supply temperatures and mass flow rate of water for every hour available as input 
data; the temperatures are shown in the top Figure 3. 

 
Figure 2. Historical waste-heat and heat demand data from Mo i Rana district heating system for 

March 2019. 

3. Methodology 
We formulate an optimization model to obtain the optimal volume of a TES tank for the 
Mo i Rana DH system taking operational conditions into account. For that, we need 
mass and energy balances of the process, as well as operational and cost functions that 
can be minimized to express our main goal. The mass and energy balances act as 
constraints in the model and are as follows 

𝑞𝑞dh(𝑡𝑡) − 𝑞𝑞sys(𝑡𝑡) − 𝑞𝑞bp(𝑡𝑡) = 0 

𝑞𝑞sys(𝑡𝑡) − 𝑞𝑞whb(𝑡𝑡) − 𝑞𝑞A(𝑡𝑡) + 𝑞𝑞B(𝑡𝑡) = 0 

𝑞𝑞sys(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇dh,ret(𝑡𝑡) + 𝑞𝑞𝐵𝐵(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇TES(𝑡𝑡) − 𝑞𝑞whb(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇𝐴𝐴(𝑡𝑡) − 𝑞𝑞𝐴𝐴(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇𝐴𝐴(𝑡𝑡) = 0 

𝑞𝑞whb(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇whb(𝑡𝑡) + 𝑞𝑞𝐴𝐴(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇TES(𝑡𝑡) − 𝑞𝑞sys(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇𝐵𝐵(𝑡𝑡) − 𝑞𝑞𝐵𝐵(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇𝐵𝐵(𝑡𝑡) = 0 

𝑞𝑞bp(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇dh,ret(𝑡𝑡) + 𝑞𝑞sys(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇𝐵𝐵(𝑡𝑡) − 𝑞𝑞dh(𝑡𝑡)𝐶𝐶𝑝𝑝𝑇𝑇𝐶𝐶(𝑡𝑡) = 0 

𝑄𝑄phb(𝑡𝑡) − 𝑞𝑞dh(𝑡𝑡)𝐶𝐶𝑝𝑝 �𝑇𝑇phb(𝑡𝑡) − 𝑇𝑇𝐶𝐶(𝑡𝑡)� = 0 

𝑄𝑄whb,used(𝑡𝑡) − 𝑞𝑞whb(𝑡𝑡)𝐶𝐶𝑝𝑝�𝑇𝑇whb(𝑡𝑡) − 𝑇𝑇𝐴𝐴(𝑡𝑡)� = 0 

𝑄𝑄whb(𝑡𝑡) − 𝑄𝑄whb,used(𝑡𝑡) − 𝑄𝑄dump(𝑡𝑡) = 0 

𝑑𝑑
𝑑𝑑𝑡𝑡
�ρ𝑉𝑉TES𝐶𝐶𝑝𝑝𝑇𝑇TES(𝑡𝑡)� = 𝑞𝑞𝐴𝐴(𝑡𝑡)𝐶𝐶𝑝𝑝�𝑇𝑇TES(𝑡𝑡) − 𝑇𝑇𝐴𝐴(𝑡𝑡)� − 𝑞𝑞𝐵𝐵(𝑡𝑡)𝐶𝐶𝑝𝑝�𝑇𝑇TES(𝑡𝑡) − 𝑇𝑇𝐵𝐵(𝑡𝑡)� 

(1a) 

(1b) 

(1c) 

(1d) 

(1e) 

(1f) 

(1g) 

(1h) 

(1i) 

where 𝑞𝑞⋅ are flow rates in kg/s, 𝑇𝑇⋅ corresponds to the temperature at the outlet of the 
subscript reference in °C, 𝐶𝐶𝑝𝑝 is the specific heat capacity of the water in kJ/(kgK), 𝑄𝑄⋅ are 
heat rates in W, ρ is the density of the water in kg/m3, and 𝑉𝑉TES is the volume of the TES 
tank in m3. It is important to point out that 𝑞𝑞𝐴𝐴 and 𝑞𝑞𝐵𝐵 correspond to the same flow but in 
opposite direction. For example, when the TES tank is charging, 𝑞𝑞𝐵𝐵 > 0 and 𝑞𝑞𝐴𝐴 must be 
zero, and vice versa. If we enforced this condition in the optimization model, we would 
get a mathematical program with complementarity constraints, which is a class of 
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nonconvex optimization models that can be particularly challenging to solve. To avoid 
that, we rely on information we have available; we enforce that, if the waste-heat 
available is higher than the city demand, then the tank can only be charged, i.e., 𝑞𝑞𝐴𝐴 = 0 
while 𝑞𝑞𝐵𝐵 is a free positive variable. The opposite is also added as constraint to the 
model.  

For the operational term in the objective function, we choose to minimize dumped 
waste-heat that could be later used during periods of low waste-heat availability. Peak-
heat use, which we also wish to minimize, is considered in operational costs. The 
economic term in the objective function to be minimized is the payback period since it 
is one of the most relevant economic aspects in designing a tank. It relates both 
investment and operational costs, allowing for one term to account for them 
simultaneously and avoiding tuning separate weights. 

The dynamic optimization model is then given by 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞,𝑉𝑉TES

    𝑁𝑁 + 𝐶𝐶 ∫ 𝑄𝑄dump(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
0 + 10−7 ∫ 𝑞𝑞whb𝑑𝑑𝑑𝑑

𝑇𝑇
0 + 10−5 ∫ 𝑞𝑞bp𝑑𝑑𝑑𝑑

𝑇𝑇
0   

 s.t.       𝑁𝑁 = 𝑙𝑙𝑙𝑙(𝑆𝑆/(𝑆𝑆 − 𝐼𝐼{𝑉𝑉}𝑟𝑟))
𝑙𝑙𝑙𝑙(1+𝑟𝑟)

 

             𝑆𝑆 = 𝑛𝑛 𝐶𝐶 ∫ �𝑄𝑄phb,noTES(𝑡𝑡) − 𝑄𝑄phb(𝑡𝑡)�𝑑𝑑𝑑𝑑𝑇𝑇
0  

             𝐼𝐼(𝑉𝑉) = 4.7𝑉𝑉0.6218 

             𝑞𝑞𝐴𝐴(𝑡𝑡) = 0   if  𝑄𝑄whb(𝑡𝑡) < 𝑄𝑄demand(𝑡𝑡) 

             𝑞𝑞𝐵𝐵(𝑡𝑡) = 0   if  𝑄𝑄whb(𝑡𝑡) ≥ 𝑄𝑄demand(𝑡𝑡) 

             𝑥𝑥lb ≤ 𝑥𝑥 ≤ 𝑥𝑥ub 

             The model in Eq. (1) 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(2f) 

(2g) 

where 𝑁𝑁 is the payback period in years, 𝑇𝑇 is the total length of the considered period in 
hours, 𝐼𝐼(𝑉𝑉) is an expression describing initial investment cost in 103 euros as a function 
of the volume of the tank in m3 (Li et al., 2021), 𝑟𝑟 is the annual interest rate, 𝑆𝑆 is 
financial savings in 103 euros/year, 𝑛𝑛 is the number of representative periods in a year, 𝐶𝐶 
is the cost of heat composed by the price of the energy source (in this case, 𝐶𝐶CO or 𝐶𝐶elect) 
and associated tax emissions (𝐶𝐶𝐶𝐶𝐶𝐶2  and 𝐶𝐶𝑁𝑁𝑂𝑂𝑥𝑥), 𝑥𝑥 is a vector containing all variables in 
the model, and 𝑥𝑥lb and 𝑥𝑥ub are the corresponding lower and upper bounds, respectively. 
The extra two terms in the objective function are regularization terms, which help the 
solver converge to a local solution, since the flow distribution within the DH system is 
not necessarily unique for some 𝑄𝑄 profiles and 𝑉𝑉TES. Note that, here, 𝐶𝐶 is also used as a 
weighting parameter for the waste-heat dump term. 

Eq. (2) was discretized using implicit Euler with time step of one hour and implemented 
in Julia using JuMP as the mathematical modelling language (Dunning et al., 2017) and 
IPOPT as the nonlinear programming solver (Wächter and Biegler, 2006). Table 1 
shows the values of parameters and variable bounds used for the calculation.  



Table 1. Parameters and variable bounds for Eq. (2) (The cost of CO-gas is confidential). 

Parameter Value Bounds Value 
Electricity cost, 𝐶𝐶elect € 0.087/kWh 𝑇𝑇 lower bound 40 °C 
CO2 emission tax, 𝐶𝐶𝐶𝐶𝐶𝐶2 € 58.82/t CO2 𝑇𝑇 upper bound 120 °C 
NOx emission tax, 𝐶𝐶NO_x € 2,340.9/t NOx 𝑄𝑄whb,used upper bound 22 MW 
Annual interest rate, r 5 % 𝑄𝑄 and 𝑞𝑞  lower bound 0 
Initial tank temp., 𝑇𝑇TES(0) 95 °C 𝑞𝑞whb upper bound 333 kg/s 

4. Results 
The results for operational conditions considering electricity and CO-gas as peak 
heating were the same. In both cases, the optimal volume was 6323 m3 and Figure 3 
shows some of the optimal operational conditions. The bottom plot shows peak heating 
and waste heat used, as well as the peak heating use without a TES tank. The total peak 
heating originally used during the period considered was 876.4 MWh. With the 
implementation of a TES tank of the optimal volume, this consumption is reduced in 48 
% in total for the period. The top plot shows the TES tank, the supply temperatures to 
the DH system, and the corresponding return temperature. Initially during this the 
month, up to around 300 h, heat demand from the city is mostly greater than waste-heat 
supply, so the energy initially stored in the tank is consumed. Then, the TES tank 
temperature increases as excess waste-heat is available and reaches the maximum 
temperature at the end of the period.  

 
Figure 3. Optimal operation conditions for the optimal TES tank. 

Regarding the economic aspect, if we consider that there are 3 months such as the 
representative period per year, and that the remaining months are not able to induce 
significant savings, the payback time for electricity as peak-heating source would be 
13.7 years. Since in Norway, electricity is mainly from hydropower, the corresponding 
emission tax is lower. Consequently, for the case with CO-gas as peak-heating source 
the payback period is reduced to 12.2 years. Although these values imply large 
investment costs, uncertainties in the cost parameters, such as varying electricity price 
and emission taxes, the latter expected to increase in the next years (Klima- og 
Miljødepartementet, 2021), can reduce the payback time. Indeed, if the CO2 tax is 
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increased to the value expected by the Norwegian government in 2030, the payback 
time is reduced in about half for CO-gas as peak-heating source. 

Since the investment cost of the TES tank is directly related to its volume, the payback 
period is also dependent on it. The bottom plot of Figure 3 shows that no waste heat is 
discarded, i.e., 𝑄𝑄dump = 0, and the large volume obtained for this TES tank is due to 
minimizing heat dump. The weighting parameter 𝐶𝐶 can be seen as a cost for dumping 
heat and, in this case study, we used the actual cost of peak-heating. Decreasing its 
value could potentially allow for some excess waste-heat to be discarded, which, in turn, 
could reduce the tank volume. However, that would also increase peak heating and a 
balance should be found. 

5. Conclusions and Future Work 
The results show that using a single dynamic optimization model based on operation 
conditions can indeed be applied to design a TES tank and systematically investigate the 
influence of parameters subjected to uncertainties. The calculated TES tank volume for 
the case study is relatively large, which is a result from the selected input data (one 
month), and the available price parameters. For future work, we seek to apply this 
optimization model to a longer horizon that can comprehend an entire season and find a 
systematic approach to balance storing enough heat to obtain significant savings while 
keeping the tank as small as possible to reduce investment costs. 
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Abstract

In this work, we present a two-stage optimisation-based approach to obtain key
metrics for use in a rules-based energy storage dispatch strategy. In electrical power
systems, electrical energy storage (EES) devices have been shown to improve power
reliability, quality and reduce electricity bills in behind-the-meter applications.
However, owing to problems of a prolonged pay-back period, the scheduling of
these EES devices play an important role in for asset owners. Existing optimisation-
based approaches heavily rely on a rigid implementation of the obtained solutions,
perfect foresight, and may not perform well even when uncertainties are considered.
A flexible alternative, quite common in practice, involves the use of rules to guide
battery actions. In our approach, we propose a two-stage approach to determine
the value of key metrics which can be used in rules-based strategy. The first
stage solves a 2-step optimisation model to determine the optimal charging and
discharging electricity price from previous historical data, and the second stage
simulates, in real-time, the battery actions based on the price rules initially created.
This proposed method was applied to a microgrid with local load and PV power
generation with access to the UK Day-Ahead energy market, with results showing
an improvement in electricity cost savings across board when compared with the
more popular time-based rules dispatch strategy.

Keywords: Energy storage dispatch, Energy arbitrage, Optimisation

1. Introduction
In electrical power systems, electrical energy storage (EES) devices have been
shown to improve power reliability, flexibility, and quality, and reduce electricity
bills in front-of-meter and/or behind-the-meter applications, especially with the
increased penetration of intermittent renewable energy (RE) generators (Ma et al.,
2018). Owing to problems of a prolonged pay-back period in large scale deployment
of these devices, quite a number of research efforts have been focused on revenue
stacking – where a collection of tasks are performed by the EES device in order to
generate more revenue (Roberts and Brown, 2020). In such cases, the scheduling
of the EES device plays an important role both in the total revenue generated as
well as the lifetime of the device.
A great deal of research has thus focused on optimising the operation of such devices
under differing conditions of energy demand, energy generation sources, electricity
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prices and/or accessible revenue streams (Garćıa Vera et al., 2019). Hannan
et al. (2020) presented a review on existing optimisation methods/algorithms,
amongst others, for EES sizing and scheduling in microgrid (MG) applications. Zia
et al. (2018) also presented a critical review on methods and solutions for energy
management systems - generation dispatch, frequency regulation, etc. Despite
the accuracy these optimisation-based methodologies reviewed achieve given the
underlying assumptions, results obtained are almost always a single set of time-
dependent decision variables, which must be followed precisely to obtain the same
objective function value considered in the model. In reality, these solutions require
rigid implementation, and do not always perform well when conditions of energy
demand, price, generation, or any other adopted data fall far from assumptions or
predictions, even with uncertainty considerations. An alternative and more flexible
approach towards energy dispatch scheduling involves using a rules-based approach.
The rules-based approach uses a simple algorithm, iterating over each time step to
determine the EES devices operating mode and action in real-time. Key metrics or
system parameters, for example, the threshold prices or times during a day, which
characterise the optimal operation of the EES device and thus specify periods for
certain battery action (charging/discharging), are examples of rules-based strategies.
Kanwar et al. (2015) compared optimisation and rules-based strategies for a MG
on a time-of-use (ToU) tariff, with the former strategy obtaining just a 2% increase
in savings with additional computational complexities. These rules-based methods
also present an easy-to-implement strategy for EES device owners and are applicable
over a wider range of system variability. They do however, have the drawback of
lacking a guarantee on cost optimality. An ideal strategy will therefore comprise a
combination of the cost optimality merits of the optimisation-based strategy and
the ease-of-implementation and flexibility of the rules-based approach. Zhang et al.
(2017) proposed rules-based strategies with some metrics determined via a linear
programming (LP) problem to increase the accuracy of the rules generated. These
LP problems were, however, solved at each period of operation.
To this end, we present a 2-step optimisation-based approach to obtain key metrics
for use in a rules-based energy storage dispatch strategy. The key metrics to
be identified in this work include the minimum/maximum prices, and thus the
corresponding times, to charge/discharge an EES device in real-time. Kanwar
et al. (2015) adopted a ToU tariff with known electricity price values per time
which may not be applicable to wholesale market trading. Our proposed strategy
further seeks to evaluate the threshold prices for rules-based battery operation.
The first step solves an optimal energy dispatch optimisation model to obtain a
set of distinct optimal solutions, and the second is a feature extraction stage which
finds the optimal price range where charge and discharge actions are executed so
as to minimise the total electricity cost of the MG. The approach is applied to a
MG with an EES asset having access to the UK day-ahead energy market. Given a
load demand which it must satisfy, this approach proffers the optimal price range
(and times) for charging and discharging the EES device to minimise the electricity
cost.
In the rest of the paper, the proposed strategy and associated mathematical for-
mulation of the mixed integer linear programming (MILP) models are described in

1958 Jude O. Ejeh et al.



A flexible energy storage dispatch strategy for day-ahead market trading

section 2. The strategy is then applied to a case study is section 3., with findings
discussed and some conclusions drawn in section 4.

2. Methodology

Figure 1 gives a flow diagram of the proposed strategy. The first stage involves
two optimisation models. The first model (an MILP scheduling model - MILP SH)
minimises the total electricity cost of the MG. The second model (an MILP selection
model - MILP SL) determines similar battery actions from a set of distinct optimal
solutions generated from MILP SH, by maximising the number of similar battery
actions.

Figure 1: Proposed rules-based strategy

2.1. Problem description & assumptions

The problems solved by these models are described as follows. For the MILP
scheduling model (MILP SH), given a microgrid (MG) with known local electricity
demands over time (DB

t ), local photovoltaic (PV) power generation (Gt), and an
EES device (battery) with a known initial state of charge (SOC, SOC0), maximum
power output (Pmax), safety capacity ranges (SOCmin, SOCmax) and charge (ηC)
and discharge (ηD) efficiencies; with direct access to the UK Day-Ahead (DA)
markets with known historical buy (ρIt ) and sell (ρEt ) prices;
Determine the optimal schedule of the EES device - charging and discharging times,
power (P s+

t , P s−t ) and SOC (SOCt) - so as to minimise the total cost of electricity
for the MG.
For the MILP selection model (MILP SL), given a set of differing optimal solutions
from the MILP SH model, and their corresponding battery charging and discharging
actions, determine the set of common battery charging and discharging actions per
time amongst a subset of optimal solutions, so as to maximise the total number of
similar battery actions.
The corresponding buy and sell electricity prices associated with the solution of
MILP SL model provides the threshold price ranges for charging and discharging
the ESS which are used in a price-based rules strategy. It is assumed that the MG
acts as a price taker, with its electricity demand not having an impact on the DA
market prices.
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2.2. Mathematical Formulation

The objective of the proposed MILP SH model given by eq. (1) is to minimise the
total electricity cost subject to eqs. (2) - (9).
min

∑
t

∆
(
ρIt · P It − ρEt · PEt

)
(1)

subject to:
SOCmin ≤ SOCt ≤ SOCmax ∀ t (2)

SOCt = SOC0 |t=0 +SOCt−1 |t>0 +∆ · (ηCP s+
t − P s−t

ηD
) ∀ t (3)

P It − PEt = DB
t

∆ + P s+
t − P s−t − Gt

∆ ∀ t (4)

P It ≤M · (1−BNt ) ∀ t (5)
PEt ≤M ·BNt ∀ t (6)
BCt +BDt ≤ 1 ∀ t (7)
P s+
t ≤ Pmax ·BCt ∀ t (8)
P s−t ≤ Pmax ·BDt ∀ t (9)
Eq. (2) ensures that the SOC of the battery is within predefined safety limits. The
SOC at time t is evaluated using eq. (3) as the net charging/discharging action
with respect to its initial SOC, where ∆ represents the time step. The total power
imported/exported is determined by eq. (4) as the local energy demand less the
amount of solar and battery energy generated. At any given time, energy may only
be imported or exported (eqs. (5) and (6); BNt ∈ {0, 1}) to/from the MG. Finally,
the battery cannot simultaneously charge and discharge (eq. (7); BCt , BDt ∈ {0, 1}),
and its output power must not exceed its rating (eqs.. (8) - (9)).

Distinct optimal (& near-optimal) solutions for MILP SH are obtained by including
the integer cut given by eq. (10) where τ is an index denoting the saved optimal
solution in question, UCτ and UDτ represent the set of time periods in which BCt
and BDt equal 1 respectively; LCτ and LDτ represent the set of time periods in which
BCt and BDt equal 0 respectively; and σ is a positive integer which represents the
degree of variation between generated optimal solutions. MILP SH model with eq.
(10) included is solved repeatedly, updating the sets UCτ , UDτ , LCτ , LDτ in order to
generate a set of distinct optimal solutions, T .∑
t∈UCτ

BCt +
∑
t∈UDτ

BDt −
∑
t∈LCτ

BCt −
∑
t∈LDτ

BDt ≤ | UCτ | + | UDτ | −σ ∀ τ ∈ T (10)

The objective of the proposed MILP SL model given by eq. (11) is to maximise
the total number of similar battery actions (charging, βCt , and discharging, βDt )
amongst distinct optimal solutions subject to eqs. (12) - (14).
max

∑
t

βCt + βDt (11)

subject to:∑
τ

B
C

tτ+ | T | (1− βCt ) ≥ ψ ∀ t (12)
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∑
τ

B
D

tτ+ | T | (1− βDt ) ≥ ψ ∀ t (13)

βCt + βDt ≤ 1 ∀ t (14)
B
C

tτ and B
D

tτ denote the saved battery charging and discharging actions for each
generated optimal solution τ at time t respectively. Eqs. (12) - (14) ensure that a
battery action is evaluated as similar only if it occurs in some predefined minimum
number of distinct optimal solutions ψ. Eq. (14) is a feasibility constraint that
ensures that whatever similar battery actions are selected by the model, the battery
still does not charge and discharge at the same time period. The threshold price
range for charging and discharging is then obtain by matching the buy and sell
electricity prices with the optimal values of βCt and βDt for each time period
respectively.

3. Case study
For a case study, a MG with local load, a 3kW PV cell and a 25kWh, 16.7kW Li-
ion battery with a round-trip efficiency of 81% was considered. The MG has direct
access to the UK DA energy market to purchase/sell electricity. Local electricity
demand was generated from ELEXON’s 10-year average for 2018 and 2019. Each
of the proposed optimisation models were solved using Pyomo 5.6.8 with Gurobi
9.0 to a 0% relative gap using an Intel Xeon E-2146G with 32GB and 4 threads
running Windows 10.

Figure 2: Annual electricity cost savings

Six scenarios were explored to demonstrate the impact of the proposed strategy.
First, the MILP SH model was solved as is using the historical data to provide a
basis for the maximum electricity savings possible for the MG assuming perfect
foresight (MILP). A rules-based approach based on set times of charging and
discharging the battery in any day (Time-based) was simulated to reflect a popular
approach used by asset owners. Finally, using the proposed 2-stage approach four
additional scenarios were solved differing in how many historical days were used by
models MILP SH and MILP SL to obtain the threshold prices for the price-based
rules approach. “Price (7d)” thus consisted of a scenario where for each 7-day
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period simulated in a year using the price-based rules strategy, the threshold prices
were generated using the previous 7-days load, PV and energy prices data. In each
of the rules-based strategies, the algorithm was implemented over a 7-day period.
Figure 2 shows the electricity savings for each of the scenarios solved for the
years 2018 and 2019 respectively. In both years, results show that the time-based
approach (charging at night and discharging at peak hours in the afternoon) made a
loss when compared to scenarios without any battery installed. All cases using the
proposed rules-based strategy obtained electricity savings in varying degrees. The
maximum electricity cost savings were however obtained from generating threshold
prices using 14 or 21 days of historical data.

4. Conclusions
In this work, a flexibile energy storage dispatch strategy was proposed for DA
market trading by a MG. The strategy consisted of a two-stage approach. In
the first stage, threshold buy and sell prices required for real-time simulation of
battery actions were obtained by generating multiple optimal solutions for an MILP
scheduling model which minimises the total electricity cost of the MG. The MG
was assumed to have a local load, PV generation, and an installed battery with
known capacity with access to the UK DA market. Next, an MILP selection model,
is used to extract the threshold prices by maximising the total number of similar
battery actions from the set of optimal solutions. The first stage thus uses historical
data to generate the threshold prices which are used in a real-time simulation of
battery actions in the second stage. This strategy was applied to a MG with
a 3kWp PV system and 25kWh, 16.7kW Li-ion battery for years 2018 and 2019.
Results showed that up to 34% of the maximum possible electricity cost saving was
captured, exceeding the time-based simulations popularly adopted which made a
loss in both years. As future work, additional metrics to improve the performance
of the proposed rules-based strategy will be included.
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Abstract 

The rising share of renewable energies increases supply uncertainty in the energy system. 

To make short-term adjustments more cost-efficient, the continuous intraday market was 

introduced. The continuous intraday market allows flexible capacity to exploit the price 

volatilities by asset-backed trading. In asset-backed trading, flexible capacity is 

continuously traded depending on the real-time electricity price and the marginal cost for 

electricity production. However, the flexibility for the continuous intraday market needs 

already be considered during the commitment on the day-ahead market. Hence, this paper 

proposes an optimal joint bidding strategy for day-ahead and continuous intraday market 

participation. For this purpose, we employ option-price theory and stochastic 

optimization. A case study for a flexible multi-energy system shows savings of 11 % by 

participating in both markets compared to only the day-ahead market. Thus, the bidding 

strategy provides efficient decision support in short-term electricity markets. 

Keywords: electricity markets, stochastic optimization, optimal bidding strategy, spot 

markets, continuous trading 

1. Introduction 

The expansion of renewable energies increases supply uncertainty in the electricity grid. 

To make short-term adjustments in the grid more economical, several European countries 

introduced the continuous intraday market that settles imbalances with continuous real-

time trading (Koch and Hirth, 2019). The continuous intraday market is characterized by 

strong electricity price volatilities driven by updates in the renewables forecast (Kremer 

et al., 2020). These price volatilities can be monetized by asset-backed trading (Löhndorf 

and Wozabal, 2021). Asset-backed trading uses flexible capacity. Its electricity output is 

continuously traded depending on the current electricity price and the marginal cost for 

electricity production. When electricity prices rise above marginal cost, electricity from 

flexible capacity is sold. When prices fall below marginal cost, electricity is purchased 

on the market. Hence, asset-backed trading is particularly valuable when the electricity 

price fluctuates around the marginal costs. Eventually, the sum of all trades determines 

the actual electricity output of the flexible capacity. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50327-4 
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Participation in the day-ahead and continuous intraday market is a sequential decision-

making process. The day-ahead market clears first. Afterward, trading in the continuous 

intraday market is possible until shortly before delivery. An optimal bidding strategy 

considers both markets simultaneously to determine an optimal amount of flexible 

capacity for asset-backed trading. However, before day-ahead market clearing, only 

limited information is available on the continuous intraday market. 

Due to its recent introduction, only a few studies investigate the continuous intraday 

market as a trading opportunity. Garnier and Madlener (2015) propose a bidding strategy 

for renewable energies participating in the continuous intraday market. Based on a multi-

period lattice, intraday market participation is simulated using dynamic programming. 

Corinaldesi et al. (2020) analyze the flexibility of end-user technologies in the day-ahead 

and continuous intraday market. Intraday market trading is considered with an hourly 

updated rolling horizon with new price forecasts. Additional intraday market participation 

saves around 8 %. However, the rolling horizon limits the interaction between both 

markets as only the first optimization considers the day-ahead market participation.  

This paper proposes a method that considers trading in the continuous intraday market in 

a multi-market optimization. The method determines an optimal bidding strategy for a 

flexible energy system in the day-ahead and continuous intraday market. 

2. Method for optimal bidding strategies in day-ahead and intraday markets 

The method allocates the flexible capacity of a market participant to the day-ahead and 

continuous intraday market to determine an optimal bidding strategy (Figure 1). In 

sequential decision making, the value of the intraday market opportunity needs to be 

considered while deciding on the day-ahead market participation. In Section 2.1, the 

value of trading in the continuous intraday market is derived based on forecast data using 

option-price theory (Björk, 2009). In Section 2.2, a two-stage stochastic optimization 

optimizes flexible capacity allocation to the day-ahead and continuous intraday market. 

2.1. Deriving the option value for the continuous intraday market 

Here, we propose to estimate the revenues from trading in the continuous intraday market 

with the option value. At the time of day-ahead market clearing, the joint market 

participation requires knowledge on the revenues in the continuous intraday market. The 

option-price theory allows estimating the revenues based on parameters available one day 

before delivery, i.e., at the time of commitment to the day-ahead market. 

The option value is derived with the multiperiod binomial model based on Cox et al. 

(1979). In the multiperiod binomial model (Figure 2), the trader adjusts the 

Figure 1: Method for an optimal bidding strategy in the day-ahead and continuous intraday 

market. First, the option value derives the revenue from trading flexible capacity in the 

continuous intraday market. Second, a two-stage stochastic optimization models the sequential 

decision-making process to optimally allocate flexibility in both markets. 
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purchased/sold share of flexible capacity at each trading opportunity to realize the 

estimated option value within a trading session. This adjustment is based on the stochastic 

price process and the marginal costs for electricity production, assuming a risk-neutral 

trader. Hence, we refer to this strategy as the risk-neutral asset-backed trading strategy. 

Using this strategy, option price theory assumes that the option value is realized 

independent of the price scenario. Therefore, the price volatility in the continuous 

intraday market is monetized without any financial risk. Therein, we assume that the 

stochastic price process sufficiently captures the price volatility. 

For the sake of simplicity, we consider only trading hourly electricity contracts in the 

continuous intraday market, thus neglecting other trading opportunities such as half-

hourly and quarter-hourly products. The trading session for each traded hour 𝑡 ∈ 𝑇 starts 

after clearing the day-ahead market and ends shortly before delivery. In each trading 

session, we discretize continuous trading with 𝑁𝑡 trading opportunities. At each trading 

opportunity, the adjustment of the trading position follows the risk-neutral asset-backed 

trading strategy. Furthermore, the marginal costs 𝑚𝑐𝑡 are known for the flexible capacity. 

Each trading session starts with the forecasted initial price-level 𝑆𝑡
𝑖𝑛𝑖. Then, the electricity 

price follows a stochastic price process modeled as arithmetic Brownian motion 

(Alexander et al., 2012). In contrast to the often used geometric Brownian motion, the 

arithmetic Brownian motion models the absolute price change (in €/MWh). Hence, the 

stochastic price process can also lead to negative electricity prices. Assuming the 

arithmetic Brownian motion throughout a trading session, the price moves up 𝑢𝑡 or down 

𝑑𝑡 at each trading opportunity. The up-movement 𝑢𝑡 and down-movement 𝑑𝑡 are 

determined as follows: 

𝑢𝑡 = 𝜇𝑡 ⋅
1

𝑁𝑡
+ 𝜎𝑡 ⋅ √

1

𝑁𝑡
  and 𝑑𝑡 = 𝜇𝑡 ⋅

1

𝑁𝑡
− 𝜎𝑡 ⋅ √

1

𝑁𝑡
 ∀𝑡 ∈ 𝑇, (1) 

by multiplying the price drift 𝜇𝑡 and the price volatility 𝜎𝑡 with the trading frequency 
1

𝑁𝑡
. 

Hence, the price drift 𝜇𝑡 and the price volatility 𝜎𝑡 are allocated over the trading session. 

At the end of a trading session, the last electricity price 𝑆𝑡,𝑘 deviates from the initial price-

level 𝑆𝑡
𝑖𝑛𝑖. In Eq. (1), we assume that the absolute price deviation from the initial price-

level 𝑆𝑡
𝑖𝑛𝑖 is normally distributed with 𝒩(𝜇𝑡, 𝜎𝑡

2). The arithmetic Brownian motion 

determines the last price as the summation of up-movements and down-movements. In 

the stochastic price process, 𝑁𝑡 + 1 last prices 𝑆𝑡,𝑘 are possible for each traded hour: 

𝑆𝑡,𝑘 = 𝑆𝑡
𝑖𝑛𝑖 + 𝑘 ⋅ 𝑢𝑡 + (𝑁𝑡 − 𝑘) ⋅ 𝑑𝑡 ∀𝑡 ∈ 𝑇, 𝑘 ∈ {0,1, … , 𝑁𝑡}. (2) 

The option value 𝑜𝑝𝑡𝑡
𝑠𝑒𝑙𝑙/𝑝𝑢

 for positive (𝑠𝑒𝑙𝑙) and negative (𝑝𝑢) flexible capacity for 

each traded hour 𝑡 is derived with Eq. (3) for the multiperiod binomial model: 

𝑜𝑝𝑡𝑡
𝑠𝑒𝑙𝑙/𝑝𝑢

= ∑ (𝑁𝑡
𝑘
)⏟

(1)

𝑁𝑡
𝑘=0 ⋅ (

−𝑑𝑡

𝑢𝑡−𝑑𝑡
)
𝑘

⏟    
(2)

⋅ (
𝑢𝑡

𝑢𝑡−𝑑𝑡
)
𝑁𝑡−𝑘

⏟      
(3)

⋅ Φ𝑠𝑒𝑙𝑙/𝑝𝑢(𝑆𝑡,𝑘)⏟        
(4)

 ∀𝑡 ∈ 𝑇. 
(3) 

Figure 2: Calculation of revenues from trading in the continuous intraday market using the 

multiperiod binomial model from option-price theory. Therein, the risk-neutral trading strategy 

can be derived at each trading opportunity to replicate the option value for each traded hour 𝑡 ∈ 𝑇. 
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Eq. (3) is adapted to the continuous intraday market, assuming a zero interest rate due to 

the short-term nature of the market. In Eq. (3), the binomial coefficient (1) derives the 

absolute frequency that the last price 𝑘 is reached. The terms (2) and (3) are the martingale 

measures, i.e., the risk-neutral probabilities, for an up-movement and down-movement, 

respectively. The term (4) evaluates the option value Φ𝑠𝑒𝑙𝑙/𝑝𝑢 at the end of a trading 

session for the sell option and the purchase option for each traded hour 𝑡 and last price 𝑘: 

 Φ𝑠𝑒𝑙𝑙(𝑆𝑡,𝑘) = {
𝑆𝑡,𝑘 −𝑚𝑐𝑡 , 𝑖𝑓 𝑆𝑡,𝑘 > 𝑚𝑐𝑡
0,                 𝑖𝑓 𝑆𝑡,𝑘 ≤ 𝑚𝑐𝑡

 and Φ𝑝𝑢(𝑆𝑡,𝑘) = {
0,                  𝑖𝑓 𝑆𝑡,𝑘 ≥ 𝑚𝑐𝑡
𝑚𝑐𝑡 − 𝑆𝑡,𝑘, 𝑖𝑓 𝑆𝑡,𝑘 < 𝑚𝑐𝑡

. 

In summary, the option value sums up and weights the revenues from all last prices. 

Therein, the scenario probabilities 𝜋𝑡,𝜔 for utilizing positive and negative flexibility are 

obtained from the stochastic price process and the marginal cost. The derived option value 

𝑜𝑝𝑡𝑡
𝑠𝑒𝑙𝑙/𝑝𝑢

 accounts for the revenues from asset-backed trading. Both parameters are the 

input parameters for the two-stage stochastic optimization presented in the following. 

2.2. Two-stage stochastic optimization of day-ahead and intraday market participation 

The two-stage stochastic optimization derives an optimal bidding strategy in the day-

ahead and continuous intraday market. Hence, at the 1st stage, decisions are made to buy 

or sell electricity in the day-ahead market. Moreover, flexible positive capacity (sell 

option) and negative capacity (purchase option) are blocked for trading in the continuous 

intraday market. At the 2nd stage, trading in the continuous intraday market ends, and the 

energy system operation is adapted according to intraday market trading. The 2nd stage 

considers two scenarios 𝜔 ∈ 𝛺 = {S < 𝑚𝑐 , S > 𝑚𝑐} that depend on the marginal costs 

for electricity production 𝑚𝑐 and the electricity price S at the end of a trading session. In 

the scenarios, we assume that trading flexibility in the continuous intraday market utilizes 

the blocked positive and negative flexibility.  

The objective function of the two-stage stochastic optimization minimizes the expected 

costs consisting of operational costs 𝐶𝑡,𝜔
𝑜𝑝

 subtracting the revenues from the day-ahead 

market 𝑅𝑡
𝐷𝐴 and the continuous intraday market 𝑅𝑡,𝜔

𝐼𝐷 : 

𝑚𝑖𝑛∑ ∑ 𝜋𝑡,𝜔 ⋅ (𝐶𝑡,𝜔
𝑜𝑝
− 𝑅𝑡

𝐷𝐴 − 𝑅𝑡,𝜔
𝐼𝐷 )𝜔∈𝛺𝑡∈𝑇   (4) 

𝑠. 𝑡.  𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 ∀ 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑇, 𝑒 ∈ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟𝑚𝑠 (5) 

𝑠. 𝑡.  𝑚𝑎𝑟𝑘𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∀𝜔 ∈ 𝛺, 𝑡 ∈ 𝑇,𝑚𝑎𝑟𝑘𝑒𝑡 ∈ {𝐷𝐴, 𝐼𝐷} (6) 

𝑠. 𝑡.  𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∀𝜔 ∈ Ω, 𝑡 ∈ 𝑇, 𝑢 ∈ 𝑢𝑛𝑖𝑡𝑠 (7) 

Therein, the costs and revenues are weighted with the scenario probability 𝜋𝑡,𝜔. 

Furthermore, the energy system is operated to fulfill the product balances and to comply 

with the constraints set by market participation. In both scenarios 𝜔 ∈ 𝛺, trading flexible 

capacity 𝐼𝐷𝑠𝑒𝑙𝑙/𝑝𝑢 in the intraday market is reimbursed with the respective option value 

for positive and negative flexibility. Hence, the revenues 𝑅𝑡,𝜔
𝐼𝐷  can be expressed with 

𝑅𝑡,𝜔
𝐼𝐷 = 𝐼𝐷𝑡,𝜔

𝑠𝑒𝑙𝑙(𝑜𝑝𝑡𝑡
𝑠𝑒𝑙𝑙 + 𝑠𝜔

𝑠𝑒𝑙𝑙 ⋅ 𝑚𝑐𝑡) + 𝐼𝐷𝑡,𝜔
𝑝𝑢
(𝑜𝑝𝑡𝑡

𝑝𝑢
− 𝑠𝜔

𝑝𝑢
⋅ 𝑚𝑐𝑡) ∀𝑡 ∈ 𝑇, 𝜔 ∈ 𝛺, (8) 

whereas 𝑠𝜔
𝑠𝑒𝑙𝑙  (𝑠𝜔

𝑝𝑢
) is a binary parameter that is 1 if electricity is sold (purchased) in the 

continuous intraday market or 0 if no electricity is sold (purchased) in the continuous 

intraday market. By following the risk-neutral asset-backed trading strategy, the option 

value for positive and negative flexibility 𝑜𝑝𝑡𝑡
𝑠𝑒𝑙𝑙/𝑝𝑢

 is realized independently from the 

last price in the intraday market. Hence, the arising (saved) endogenous generation costs 

are compensated in Eq. (8) for the sell (purchase) option in scenario 𝑆 > 𝑚𝑐 (𝑆 < 𝑚𝑐). 
Finally, the stochastic optimization models trading in the continuous intraday market as 

a series of sell and purchase options, whereas the sell option (purchase option) models 

the positive (negative) flexibility of the energy system. 
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3. Case study: market participation of a multi-energy system 

The method is applied to a multi-energy system based on Baumgärtner et al. (2019). The 

multi-energy system consists of 4 combined-heat-and-power engines, 2 electrode boilers, 

3 adsorption chillers, 3 compression chillers, and 4 gas boilers. The multi-energy system 

covers time-varying demands for electricity, heating, and cooling. The multi-energy 

system participates in the day-ahead and continuous intraday market in Germany. 

The case study is conducted for Wednesday, October 9th, 2019. The day is chosen because 

the average day-ahead market price is in the same range as the marginal costs. Hence, 

asset-backed trading in the continuous intraday market is particularly interesting. 

The day-ahead market is assumed to be deterministic with time-varying electricity prices 

taken from Bundesnetzagentur | SMARD.de (2021). For the calculation of the option 

value, the stochastic price process and the marginal costs are modeled as follows: the day-

ahead market price approximates the initial price-level 𝑆𝑡
𝑖𝑛𝑖. The price drift 𝜇𝑡 and the 

price volatilities 𝜎𝑡 are derived using historical data from the years 2019 and 2020 from 

EPEX SPOT based on the ID3 price (EPEX SPOT, 2021). For each traded hour of 2019 

and 2020, the price deviation between the continuous intraday market and the day-ahead 

market is calculated as the difference between ID3 price and day-ahead market price. All 

price deviations are clustered based on the hourly wind generation forecast, solar 

generation forecast, and residual load forecast available at ENTSO-E (2021). In each 

cluster, a normal distribution is fitted to obtain the price drift 𝜇 and the price volatility 𝜎. 

Finally, each traded hour is matched with the respective cluster and 𝑢𝑡 and 𝑑𝑡 are derived 

based on Eq. (1). The marginal costs 𝑚𝑐𝑡 are derived from operational optimizations with 

varying electricity demands but without market participation for each traded hour. A 

linear regression is applied to determine the operational costs as a function of the 

electricity demands. The slopes are the marginal costs 𝑚𝑐𝑡.  
Two cases are compared for market participation: participation only in the day-ahead 

market (DA) and participation in the day-ahead and continuous intraday market (DA, ID). 

Both cases are solved to optimality with the solver Gurobi 9.1.1 in less than 5 minutes. 

Our method lowers expected operational expenditures by 11 % by intraday market 

participation (DA, ID) compared to only participating in the day-ahead market (DA).  

Figure 3 shows the electricity exchange with the day-ahead and continuous intraday 

market. In case (DA), electricity is sold if the electricity price is higher than the marginal 

costs and purchased vice versa. In case (DA, ID), the commitment in the day-ahead 

market differs from the case (DA). For some traded hours, no electricity is purchased or 

sold in the day-ahead market. Thereby, the multi-energy system uses its positive and 

negative flexibility in the continuous intraday market. For the remaining traded hours, 

selling electricity on the day-ahead market maximizes negative flexibility. Overall, the 

flexibility is used for asset-backed trading in the continuous intraday market, while the 

Figure 3: Electricity exchange with the day-ahead and continuous intraday market. In case (DA), 

electricity is only delivered to the day-ahead market. In case (DA, ID), two scenarios arise as the 

exchange of electricity in the continuous intraday market depends on the last price in the 

continuous intraday market 𝑆 compared to the marginal costs 𝑚𝑐. 
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last price in the continuous intraday market determines the overall physical delivery of 

electricity. Hence, utilizing the flexibility of the multi-energy system lowers operational 

expenditures. Finally, adapting the operation of the multi-energy system realizes the 

flexibility provision while still satisfying the internal heating, cooling, and electricity 

demand.  

Hence, participation in the continuous intraday market allows marketing the flexibility of 

the multi-energy system. Overall, the method shows the ability to optimally deploy the 

flexibility of an energy system in the markets. 

4. Conclusions 

This paper presents a method based on option-price theory and two-stage stochastic 

optimization to derive an optimal bidding strategy for the day-ahead and continuous 

intraday market. The option-price theory derives the value of trading in the continuous 

intraday market based on forecast data. Afterward, the estimated option value serves as 

the input parameter for the two-stage stochastic optimization. The two-stage stochastic 

optimization models the sequential bidding process of joint day-ahead and continuous 

intraday market participation. The proposed method is applied to a case study of a multi-

energy system. In this case study, savings of 11 % are expected by the proposed method 

for a selected day. Overall, the method is an efficient decision-making tool for operational 

optimization one day ahead of delivery, incorporating the complex market structure of 

the day-ahead and continuous intraday market. 
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Abstract 

Here we evaluated Fischer Tropsch-diesel (FT-diesel) use in heavy-duty trucks based on 

various production pathways differing in the CO2 and H2 provenance. To better 

understand the global environmental implications of fuelling heavy-duty trucks (HD 

trucks) with FT-diesel, we quantified environmental impacts over the entire life cycle 

using seven Planetary Boundaries (PBs) regulating the Earth’s resilience. Our 

environmental assessment follows a well-to-wheel scope with the functional unit based 

on the global annual freight demand. The baseline scenario corresponds to the 

conventional fossil fuel. Our results show that the fossil fuel alternative is unsustainable 

as it transgresses the climate change PBs. Using FT-diesel based on captured CO2 could 

help operate within the safe operating space but it could induce critical burden-shifting if 

the CO2 and H2 sources are not adequately selected.   

Keywords: Energy, Food and Environmental Systems 

1. Introduction 

In recent years, liquid fuels based on renewable carbon that can substitute conventional 

ones with minimal changes to current infrastructure have attracted increasing interest. 

Notably, fossil diesel can be replaced with "drop-in" fuels with similar or better 

characteristics. FT-diesel is a promising alternative to fossil diesel due to the high cetane 

number and improved properties with the potential to optimize combustion efficiency and 

decrease emissions.  

So far, studies related to FT-diesel have focused mainly on the production process based 

on biomass as a raw material (Martín and Grossmann 2011), and very few on the CO2-

based production process (Al-Yaeeshi et al. 2019). Environmental assessments of FT-

diesel often quantify impacts based on conventional life cycle assessment (LCA) metrics 

(Holmgren and Hagberg 2009; Wernet et al. 2016), which are hard to interpret due to the 

absence of thresholds that can classify the studied systems as environmentally 

unsustainable. Hence, the absolut environmental sustainability implications of this fuel 

remain unclear.   

Here we evaluated FT-diesel use in HD trucks based on various production pathways 

differing in the provenance of the raw material using seven PBs. The PBs concepts 

developed initially by Rockström et al., 2009, provides a framework to carry out absolute 

environmental sustainability assessments considering the Earth's carrying capacity. The 

framework considers 11 control variables linked to nine Earths' biophysical subsystems 

or processes. These include climate change, stratospheric ozone depletion, ocean 

acidification, biogeochemical flows of nitrogen and phosphorus, land system change, 
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freshwater use, biosphere integrity, atmosphere aerosol loading, and introduction of novel 

entities. All the PBs jointly establish the so-called safe operating space (SOS) for 

humanity. Consequently, for a scenario to be regarded as sustainable, none of the 

planetary boundaries should be transgressed. In essence, referring the LCA results to the 

safe operating space (SOS) delimited by these environmental guardrails facilitates the 

interpretation phase, particularly when evaluating systems that can be potentially 

deployed at a large scale. Based on this concept, we conducted an absolute environmental 

assessment over the global annual freight demand (33 trillion tkm), covering eight FT-

diesel HD truck scenarios while benchmarking them against the fossil diesel HD truck 

counterpart –business as usual (BAU scenario)–. Hence, going well beyond standard 

LCAs, we analyze whether the FT-diesel trucks would help humanity operate safely 

within the PBs. 

2. Methodology 

2.1. Life cycle assessment and planetary boundaries 

Following the general life cycle assessment (LCA) methodology, we carried out an 

environmental assessment based on the ISO 14040/44 framework using the SimaPro 9.0 

software. The environmental assessment aims to assess the absolute sustainability of 

fuelling the global freight activities with FT-diesel from various sources. The functional 

unit corresponds to the global annual tkm demand for on-road HD truck activities, 

estimated by the International Energy Agency to be around 33·1013 tkm. 

For our analysis, we adopted a well-to-wheel scope using an attributional approach. The 

system boundaries cover all the upstream activities, from the production of H2 and CO2, 

through the FT-diesel synthesis, to the fuel combustion in HD trucks. We estimated the 

life cycle inventory for FT-diesel by assuming that most of the emissions can be attributed 

to CO2 and H2, as shown in Galán-Martín et al. (2021) for various bulk chemicals.  

In order to construct the life cycle inventory, we first simulated the production of FT-

diesel. Our calculations are based on the works of Shafer et al. (2019) for the FT-reactor, 

and Tomasek et al. (2020), for the wax hydrocracker. The Anderson-Shulz-Flory 

distribution (a) of choice for maximum diesel production is 0.88, and H2/CO equals 2, 

based on which we calculated the product distribution of the FT-reactor. To calculate the 

total CO2 and H2 needed for the process, we assume that all the CO is converted into C1-

C22 in the FT-reactor. Hydrocracking of the waxes was modelled according to Tomasek 

et al. (2020). The total production of diesel, gasoline, kerosene, and C1-C4, coming from 

the FT-reactor and the wax hydrocracker are summed in order to get the final products. 

Furthermore, the light ends are combusted to produce CO2, which is then recycled to the 

water-gas shift reactor (WGSR). Since gasoline and kerosene are co-produced, our LCA 

considers a system expansion approach with avoided burdens. The final inputs of the FT-

diesel life cycle inventory are presented in Table 1. 

Table 1: Life cycle inventory for the production of 1 kg FT-Diesel from CO2 and H2 

FT-diesel 1 kg 

Avoided products   

Gasoline 0.89 kg 

Kerosene 0.72 kg 

Inputs 
 

 

H2 0.29 kg 

CO2 1.42 kg 
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The foreground system, i.e., truck and road constructions, etc., is based on the "Lorry 16-

32 metric ton, EURO6" of the Ecoinvent v3.5 database. In essence, we consider the LCI 

for the BAU scenario, replacing the fossil diesel’s inventory with that of FT-diesel, and 

adjusting the direct emissions  based on Schemme et al. (2017). The scenarios differ in 

the origin of the educts (Figure 1). For this study, CO2 is captured either from point 

sources at coal power plants, or directly from air (Coal and DAC). H2 is produced through 

an electrolytic or thermochemical route. Polymeric water electrolysis is considered as the 

electrolytic route, powered by different energy sources, i.e., onshore wind, nuclear, and 

bioenergy with CCS (BECCS). Furthermore, for the thermochemical route, the 

conversion of biomass to hydrogen with carbon capture and storage (BTH CCS) is 

considered.  

Data for the production of electrolytic H2 were taken from Bareiß et al. (2019), 

considering for wind power a capacity factor of 0.34, respectively. For the different 

electricity sources, we used data from Ecoinvent v1.03, except for the BECCS scenario, 

based on Oreggioni et al. (2017). For the thermochemical route, the inventory was 

retrieved from Susmozas et al. (2016). Concerning the capture of CO2, the Coal scenario 

is based on Iribarren, Petrakopoulou, and Dufour (2013), and the DAC scenario on Keith 

et al. (2018). 

The life cycle impact assessment (LCIA) quantifies the absolute environmental 

sustainability level of FT-diesel by converting the LCI elementary flows into impacts on 

the control variables of seven PBs. Consequently, for a scenario to be regarded as 

sustainable, none of the planetary boundaries should be transgressed  Our study follows 

the characterization factors proposed by Ryberg et al. (2018) to quantify the impact on 

six PBs, together with the ones introduced by Galán-Martín et al. (2021)  to evaluate the 

impact on biosphere integrity.  

 

 

Figure 1: System boundaries of the different scenarios. From the production of CO2 and H2 from 

different sources to the production of FT-Diesel, and lastly, the end-use in HD trucks. 
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3. Results 

3.1. Relative impact to the Safe Operating Space 

Figure 2 shows that the current BAU scenario is unsustainable due to the transgressions 

of the climate change PB (CO2, EI). Overall, all the FT-diesel scenarios have the potential 

to decrease the impacts of the BAU scenario. However, only two are sustainable, namely 

those based on DAC with electrolytic H2 from nuclear, and H2 from Biomass with CCS. 

These scenarios operate within the SOS for all th PBs. On the CO2 boundary (75%, -

140%, respectively), 1% and 2% in nitrogen flows (N-flows), and 7% and 25% in 

biosphere integrity (BII). All the remaining scenarios fail to be sustainable because they 

lead to burden-shifting to the N-flows and BII. Focusing on the scenarios with electrolysis 

routes powered with wind and nuclear electricity (DAC + Wind, DAC + Nuclear, coal + 

Wind, coal + Nuclear), undoubtedly, DAC scenarios would perform better than those 

relying on coal. The CO2 coming from fossil resources was modelled as a positive 

emissions entry in contrast to the DAC scenario, where CO2 is coming from the air, and 

hence is modeled as a negative emissions entry. Ultimately, these scenarios represent an 

interim solution as fossil fuels should be ultimately phased out.  Scenarios that make use 

of CCS and biomass (DAC + BTH CCS, DAC + BECCS, coal + BTH CCS, coal + 

BECCS) show a great potential in the GHG-related PBs (CO2, EI, OA), but lead to 

burden-shifting due to biomass growth. Notably, the N-flows are affected by the 

fertilisers, and the BII category by the use of land, e.g., DAC + BECCS and coal + BECCS 

take 30% of the SOS in the N flows. 

 

Figure 2: Relative impact in percentage of the safe operating space (SOS). The abbreviations of the 

PBs are: CO2 (Climate change CO2 concentration), EI (Energy imbalance), O3D (Stratospheric 

ozone depletion), P (Phosphorus flows), N (Nitrogen flows), LSC (Land system chage), FWU 

(Fresh water use), BII (Biosphere integrity). 
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3.2. Impact breakdown 

The breakdown of impacts in Figure 3 (upper) shows that most carbon-positive impacts 

come from the combustion emissions, i.e., 45%-85% of the total positive contributions in 

all the scenarios. Carbon negative impacts come from the biomass based scenarios with 

CCS (BTH CCS, BECCS), and are linked to the H2 production. Electrolysis powered with 

BECCS has the most negative impacts due to the carbon-negative nature of the electricity 

generated, which requires large amounts of biomass. Furthermore, H2 from nuclear 

performs 1.2-fold better in the CO2 PB compared to H2 from Wind. Regarding the CO2 

capture technologies, DAC is the only technology that can provide negative impacts since 

CO2 is modelled as a negative emission entry. With regard to the biosphere integrity (BII), 

Figure 3 (lower) shows that the biggest impacts come BTH CCS and BECCS, with the 

latter  being the worst. These high impacts are linked to the extensive land use for biomass 

growth. All the other scenarios perform better comparing to the BAU, however, it is 

important to mention that 65% of the carbon positive impacts are coming from the 

combustion emissions and 25% from the construction of roads.  

Figure 3: Breakdown of impacts in the CO2 boundary (upper), nitrogen flows (middle), and 

biosphere integrity (lower). 
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4. Conclusions 

Using CO2-based fuels has attracted increasing attention, yet their broad sustainability 

implications remain unclear. Here we assessed the absolute environmental sustainability 

of FT-diesel from renewable carbon as an alternative fuel for HD trucks using seven 

planetary boundaries (PBs). We found that the current fossil-based fuel alternative 

transgresses the climate change-related PBs, while renewable-carbon fuels could help 

operate within these ecological limits. However, burden-shifting to BII and N-flows may 

occur. This collateral damage would be more critical in the biomass-related scenarios, 

which remove large amounts of CO2 but need land and fertilisers for biomass growth. 

Hence, the CO2 and H2 sources for producing these fuels should be selected carefully to 

mitigate climate change without exacerbating the damage in other critical Earth-system 

processes, thereby preserving the planet’s stability.            
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Abstract 

In this work, we propose a novel multi-scale bottom-up optimization framework to 
address the decarbonization transition planning for power systems, which incorporates 
multiple types of information for each existing or new unit in the power systems, 
including its technology, capacity, and age. To reduce the computational challenge, a 
novel approach integrating Principal Component Analysis (PCA) with clustering 
techniques is proposed to obtain representative days. To illustrate the applicability of 
the proposed framework, a case study for New York State was presented. The proposed 
approach obtaining representative days using PCA coupled with K-means shows better 
performance than multiple state-of-the-art clustering approaches.  

Keywords: decarbonization, renewable electricity transition, multi-scale optimization. 

1. Introduction 

Power systems decarbonization has been a priority topic for countries around the world 
(Gong et al., 2015). It facilitates the design of power systems decarbonization transition 
pathways to simultaneously optimize the systems’ capacity changes and simulate the 
corresponding hourly operations, while considering each individual unit in the power 
systems (Zhao et al., 2020, 2021). Existing multi-scale energy transition optimization 
models typically include two time scales on yearly and hourly bases (Bennett et al., 
2021). The yearly time scale accounts for the decisions of capacity changes to the power 
systems, while the operational decisions are made on an hourly basis in conjunction 
with the design decisions (Brown et al., 2018). To reduce the computational 
requirements associated with simultaneous planning for the energy transition pathways 
and simulating the hourly systems operations for the next multiple decades (Prina et al., 
2020), the representative day approach has been widely applied in multi-scale energy 
transition optimization studies (Teichgraeber et al., 2019). Multiple approaches have 
been used to obtain the representative days, such as rule-based selection, agglomerative 
hierarchical clustering, and K-means clustering (Gabrielli et al., 2018). On the other 
hand, most of the existing multi-scale bottom-up energy transition models include only 
the capacity and technology information of a unit, while including the ages of both 
existing and future units in the framework is crucial for developing more reliable 
transition pathways, because existing units with large ages and new units with short 
facility lifetimes may retire during the transition period of decades owing to the lifespan 
limits. To the best of our knowledge, there is no existing research work on the multi-
scale bottom-up renewable electricity transition optimization that incorporates multiple 
dimensions of information for each individual unit, including its technology, capacity, 
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and age. To fill the knowledge gap, we propose a multi-scale bottom-up optimization 
framework that incorporates multiple dimensions of information for a unit as well as a 
machine learning-based approach to construct the reduced model. 

2. Multi-scale bottom-up energy transition optimization framework 

The overview of the proposed framework is presented in Figure 1. The proposed 
framework consists of three steps: (1) data processing based on machine learning, (2) 
multi-scale transition optimization, and (3) detailed hourly operational simulation.  

 

Figure 1. Overview of the proposed multi-scale bottom-up energy transition framework. 

In the first step, machine learning techniques, which have been widely used in 
optimization (Shang et al., 2019), are applied to obtain the representative days based on 
the power load data from an entire year for developing a reduced optimization model, as 
it can be extremely computationally demanding for the multi-scale energy transition 
optimization to account for the yearly capacity planning and the hour-by-hour 
operational simulation simultaneously for the whole planning horizon of multiple 
coming decades. Specifically, a novel approach is proposed to obtain the representative 
days by coupling Principal Component Analysis (PCA) with clustering techniques that 
include agglomerative hierarchical clustering (AHC), Gaussian mixture model (GMM), 
Dirichlet process mixture model (DPMM), and K-means clustering. The data being 
clustered is the 24-dimension hourly power loads for all days in a year. We investigate 
the performances of using PCA coupled with each clustering approach. The clustering 
performances are evaluated by three metrics, namely intra-cluster variance, inter-cluster 
variance, and the Calinski-Harabasz index. 

In the second step, multi-scale energy transition optimization is conducted based on a 
reduced model using representative days that are obtained from the first step. Two time 
scales are applied in the proposed optimization framework, namely the design periods 
and the operational periods. The planning horizon is equally partitioned on an annual 
basis, and the capacity planning decisions that include the additions and deactivations of 
generators and storage units should be determined for each year of the resulting design 
periods. On the other hand, to ensure the reliability and energy balance of the deep-
decarbonized electric power systems with high penetration of renewable energy, hourly 
systems operations during the operational periods are incorporated in the proposed 
optimization model in conjunction with the changes to the electric power sector resulted 
from the capacity planning decisions.  
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In the third step, the hourly power systems operations, namely unit comment (Padhy, 
2004), are simulated via optimization of each design period, based on the optimal 
energy transition results from the multi-scale optimization step, hourly power demand 
projections, and the hourly availability of renewable energy. Specifically, the generation 
and electricity storage capacities are fixed in the simulation according to the optimal 
capacity planning decisions in the second step, and the simulation aims to minimize the 
total operational cost by determining the outputs of each generator, the charging and 
discharging of energy storage units, and the importation and exportation of electricity 
on an hourly basis (Qiu et al., 2020), while ensuring the reliability, potential faults 
(Ajagekar and You, 2021), and balances of the electric power systems. 

3. Case study for New York State 

A case study on the renewable electricity transition for the New York State is presented 
to illustrate the applicability of the proposed multi-scale bottom-up optimization 
framework. The renewable electricity requirements and the climate targets for the New 
York State are set following the state legislation. The generation and storage capacity 
data, the annual electricity generation projections, and the scheduled power systems 
capacity changes for the New York State are obtained based on a report from the New 
York Independent System Operator (NYISO). In addition, the data on generation 
capacities for existing distributed solar PV in the state are collected following a study of 
the New York State Energy Research and Development Authority (NYSERDA). The 
technological and economic data projections for the power generation and electricity 
storage technologies are collected from a recent study  (Tian and You, 2019). The 
hourly operations data for the state are obtained from the NYISO energy market and 
operation data, while the hourly availability of solar, on-land wind, and offshore wind 
are retrieved from the literature (Ning and You, 2019, 2022).  

 

Figure 2. Intra-cluster variance, inter-cluster variance, and the Calinski-Harabasz index using 
PCA coupled with clustering approaches. Horizontal lines indicate performance without PCA. 

To obtain the representative days, we investigate the performances of coupling PCA 
with multiple clustering approaches that include AHC, DPMM, GMM, and K-mean, as 
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well as the performances using each particular clustering technique without coupling 
with PCA, as shown in Figure 2. From the performance evaluation results, using PCA 
coupled with clustering techniques could provide more effective or at least the same 
clustering results compared with using these techniques individually without PCA. For 
AHC, all three metrics are not as good as the other types of clustering techniques, 
regardless of whether it couples with PCA or not, and the best clustering result using 
AHC coupled with PCA is the same as using AHC alone. On the other hand, coupling 
PCA with other clustering techniques could improve the data grouping performances 
compared to using these techniques without PCA, as shown by lower intra-cluster 
variances, higher inter-cluster variances, and higher Calinski-Harabasz indices when 
PCA is involved. The improvement is owing to the effectiveness of PCA in capturing 
the correlations of the high-dimensional input data.  

The optimization programs of the energy systems transition problem are coded in 
GAMS 27.3 on a PC with an Intel Core i7-8700 @ 3.20 GHz and 32.00 GB RAM, 
running on a Windows 10 Enterprise, 64-bit operating system. The energy transition 
planning is solved using CPLEX 12.9.0.0 with an optimality tolerance of 1%. The 
problem has 4,889 integer variable, 2,294,943 continuous variables, and 1,596,333 
constraints. The optimal objective value is $ 96,343MM, and it takes 12,294 CPUs to 
solve the problem using the proposed optimization framework. Furthermore, to obtain 
detailed optimization results, power systems operations are simulated on an hourly basis 
for the entire planning horizon, based on the optimal transition pathway for electric 
power systems. The total transition cost under detailed operational simulation is 
$97,729MM, indicating that the difference between the optimal costs from energy 
transition planning and detailed hourly simulation is less than 1.5%. The simulation 
time of less than 70 CPUs is significantly less than the optimization time for energy 
transition planning, because the capacities of generators and storage units in each year 
are fixed for the operational simulations. As a result, each year's simulations are 
independent of other years, leading to a substantial reduction of computational demand. 

The power generation capacity and annual electricity generation by the source during 
the decarbonization transition are shown in Figure 3(a) and Figure 3(b), respectively. As 
for generation capacities, offshore wind starts to participate in power generation in 
2024, and its total capacity remains relatively stable during 2025-2030. In the 2030s, 
offshore wind power capacity gradually increases until the end of the planning horizon. 
Regarding solar PV, the generation capacity of utility solar PV has no significant 
changes during the beginning years of the planning horizon, and it starts to increase 
after 2027. This is mainly because the annual electricity consumption in the New York 
State is expected to decrease at the beginning years, owing to efficiency improvements 
across the state, while the total annual power load is projected to increase after 2027. 
On the other hand, distributed solar PV has a stable capacity across the planning 
horizon, which is owing to two reasons: it has lower economic efficiency compared to 
utility solar PVs, and most of the existing ones will not retire by 2040. For annual 
electricity generation shown in Figure 3(b), offshore wind would generate the most 
electricity by the end of the planning horizon, while hydropower and utility solar PV are 
the other two primary generation technologies in 2040. Note that although the total 
capacity of offshore wind is less than that of utility solar PV in 2040, offshore wind 
turbines tend to have much higher average capacity factors than utility solar PV, which 
enables them to generate more electricity on an annual basis. Hydropower currently 
accounts for the majority of renewable electricity generation in the state, and it 
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continues to provide stable electricity on an annual basis across the planning horizon, 
owing to its relatively stable total generation capacity over the planning years. 

 

Figure 3. Electricity generation capacity and annual electricity generation by the source during the 
renewable electricity transition. (a) Electricity generation capacity according to the optimal 
transition pathway. (b) Annual electricity generation according to the operational simulations. 

 

Figure 4. (a) Hourly power systems operations. (b) Annual greenhouse gas emissions. (c) 
Electricity storage capacities. 

Figure 4 shows the hourly power systems operations, annual greenhouse gas emissions, 
and electricity storage capacities. Note that the fluctuation of electricity supply capacity 
is significant, owing to the high penetration level of variable renewable energy, such as 
solar and wind, and consequently, the charging and discharging activities are conducted 
frequently on a large scale. Solar PVs show clear periodic power outputs, because of the 
limited availability of solar energy during the evening, while the power outputs from 
offshore wind show no clear intra-day correlations. As for greenhouse gas emissions, 
they reduce decrease almost linearly across the planning horizon, while the reduction 
rate at the beginning years is slightly higher compared to the later periods, owing to 
more deactivated fossil-based power generation capacities in this period. Note that the 
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greenhouse gas emissions reach zero in 2040, indicating that the goal of 100% 
decarbonized power systems is achieved. For electricity storage changes, lithium-ion 
batteries have the highest storage capacity by the end of the transition process, because 
of their higher economic efficiency, and their increasing trend is consistent with the 
increasing power generation capacities from intermittent sources. 

4. Conclusion 

In this work, a novel multi-scale bottom-up optimization framework was proposed to 
address the decarbonization transition planning for power systems, which incorporated 
multiple dimensions of information for each existing or new unit in the power systems, 
including its technology, capacity, and age. To reduce the computational challenge, a 
novel approach integrating PCA with clustering techniques was proposed to obtain 
representative days. To illustrate the applicability of the proposed framework, a case 
study for New York State was presented. The proposed approach showed better 
performance than multiple state-of-the-art clustering approaches.   
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Abstract 

Integration of distributed energy systems for entities can further reduce greenhouse 

(GHG) emissions beyond the minimum emissions achieved by the individually operated 

energy systems. This work introduces an optimization approach with relative sizes of 

integrated entities, design and operation of the integrated energy system equipment, and 

production rates of plants as decision variables to maximize GHG emissions reduction 

brought by the integrated operation. The approach also differentiates temperature levels 

of heating demands to ensure feasible heat transfer by formulating heat balance for each 

process that requires heating. Results from case studies on an integrated system with a 

residential building with electric vehicles, a supermarket, a confectionery plant, a bakery 

plant, and a brewery show that, when optimizing the size of entities, the maximum GHG 

emissions reduction achieved by the integrated system is relatively constant under the 

various sizes of the residential building. 

Keywords: Distributed energy network; GHG emissions reduction; Light industry; 

Energy system integration; Energy, Food and Environmental Systems. 

1. Introduction 

The integration of energy sectors reduces GHG emissions of urban areas by combining 

the heating, cooling, and electricity demands of civic structures, industrial plants, and 

transportation sectors (Fichera et al., 2017). The combined cooling, heating, and power 

(CCHP) system provides a solution for integrating energy sectors, where the power 

generation unit (PGU) is the critical equipment. It combusts fuel to generate electricity 

and uses the waste heat for the heating and cooling demand of an entity. Generally, the 

electricity and heat generated cannot be entirely consumed at the same time. Besides 

implementing additional equipment and energy resources, the unbalanced energy load 

and supply can also be solved by integrating individually operated CCHP systems of 

entities through heat and electricity transfer. Thus, an energy network forms, where each 

entity performs both as an energy supplier and consumer.  

Knowledge gaps in existing studies on the integration of energy systems are identified as 

the following: 1. Existing studies assume the heating demands of all entities are at a 

uniform temperature. The assumption is not valid when the integrated system includes 

industrial plants, which require utilities at different temperatures for production. 2. 

Existing studies are based on fixed industrial energy demand profiles. It can lead to all 

entities having high energy demands at the same time. 3. There lacks an approach that 

identifies the optimal relative size of entities being involved.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50330-4 
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Thus, this work introduces a novel optimization approach for the integration of energy 

systems in residential buildings with electric vehicles, commercial buildings, and 

industrial plants. The approach addresses the following areas not previously explored: 1. 

differentiates temperature levels of heating demands to ensure feasible heat transfer 

among entities; 2. sets production rates of integrated industries as decision variables to 

adjust industrial energy demands and further increase GHG emissions reduction of the 

integrated system; 3. provides optimal relative sizes of integrated entities, design, and 

operation of energy system equipment that maximize GHG emissions reduction. The 

formulation of the optimization problem is presented in Section 2. The approach has been 

tested by the case study presented in Section 3, where the results are shown in Section 4. 

Section 5 summarizes the main findings. 

2. Optimization problem formulation 

The optimization approach intends to maximize GHG emissions reduction brought by the 

integrated operation, compared to the non-integrated system. It is achieved by finding the 

optimal design and operation of energy system equipment, the relative size of entities in 

the integrated network, and the production rates of integrated industries. This work 

assumes the energy system of an entity has the structure shown in Figure 1. 

 

 
Figure 1 – A representation of the energy system in an entity. 

2.1. Decision variables 

Decision variables of the optimization approach can be classified as design decision 

variables, which are time-invariant, and operation decision variables, which can be 

manipulated during the operation.  

Design decision variables include (i) size of energy system equipment: 𝐶𝑎𝑝𝑖
𝑒𝑞𝑝

; (ii) size 

of each entity: 𝑆𝑖. Operation decision variables include (i) amount of fuel used by PGU 

and boiler: 𝑛𝑖,𝑡
𝑃𝐺𝑈 and 𝑛𝑖,𝑡

𝑏𝑜; (ii) amount of electricity an entity purchases and sells to the 

external grid: 𝐸𝑖,𝑡
𝑔𝑟𝑖𝑑

 and 𝐸𝑖,𝑡
𝑔𝑟𝑖𝑑𝑠

; (iii) whether there is heat and electricity transfer between 

two entities: 𝑦𝑖,𝑖′,𝑡 and 𝑧𝑖,𝑖′ ,𝑡 and the amount: 𝑄𝑖,𝑖′,𝑡
𝑑𝑖𝑠  and 𝐸𝑖,𝑖′,𝑡

𝑑𝑖𝑠 ; (iv) production rate of the 

plants: 𝑥𝑖,𝑡; (v) whether electric vehicles are charged or discharged: 𝑢𝑡 and 𝑤𝑡  and the 

corresponding amount:  𝐸𝑡
𝐸𝑉−𝑐ℎ and 𝐸𝑡

𝐸𝑉−𝑑𝑖𝑠. 
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2.2. Constraints 

Constraints for the optimization problem can be further divided into four categories: 

energy generation of equipment, electric vehicles, energy transfer, and energy balances. 

(1) Energy generation of equipment: Constraints under this category calculate the amount 

of heat (𝑄𝑖,𝑡
𝑒𝑞𝑝−𝑜𝑢𝑡

), electricity (𝐸𝑖,𝑡
𝑒𝑞𝑝−𝑜𝑢𝑡

), or cooling (𝐶𝑖,𝑡
𝑒𝑞𝑝−𝑜𝑢𝑡

) generated by a piece of 

equipment (𝐸𝑔𝑦𝑖,𝑡
𝑒𝑞𝑝−𝑜𝑢𝑡

) based on its energy consumption. 

𝐸𝑔𝑦𝑖,𝑡
𝑒𝑞𝑝−𝑜𝑢𝑡

=  𝜂𝑖
𝑒𝑞𝑝

𝐸𝑔𝑦𝑖,𝑡
𝑒𝑞𝑝−𝑖𝑛

 (1) 

𝜂𝑖
𝑒𝑞𝑝

 is the efficiency of the equipment. Depending on the equipment, 𝐸𝑔𝑦𝑖,𝑡
𝑒𝑞𝑝−𝑖𝑛

 can 

represent fuel, heat, or electricity used by the equipment. Taking PGU and boiler as 

examples, 𝐸𝑔𝑦𝑖,𝑡
𝑒𝑞𝑝−𝑖𝑛

 represents the amount of fuel combusted (𝑛𝑖,𝑡
𝑃𝐺𝑈−𝑖𝑛 and 𝑛𝑖,𝑡

𝑏𝑜−𝑖𝑛) in 

the equipment. Besides energy consumption, heat, electricity, or cooling generated by an 

entity should be less than or equal to the equipment capacity (𝐶𝑎𝑝𝑖
𝑒𝑞𝑝

). 

(2) Electric vehicles: This work assumes all electric vehicles (EVs) can only be charged 

or discharged in the residential building and investigates all EVs as an aggregated 

subsystem to simplify the formulation. The amount of electricity in the battery (𝐸𝑡
𝐸𝑉) 

equals the amount of electricity at the previous time (𝐸𝑡−1
𝐸𝑉 ), plus the charged electricity 

(𝐸𝑡
𝐸𝑉−𝑐ℎ), and minus the electricity discharged (𝐸𝑡

𝐸𝑉−𝑑𝑖𝑠). 

Since the charging and discharging behavior cannot occur at the same time, binary 

variables - 𝑢𝑡 and 𝑤𝑡  are used, as formulated in Eq. (2). 𝐸𝑅𝐸𝑉 represents the maximum 

charging and discharging rate of EVs. Eq. (3) restricts EVs to be fully charged when 

leaving the building (𝑡𝑙) and defines the amount of electricity in EVs when returning 

home (𝑡𝑟). 𝐸𝐸𝑉−𝑐𝑜𝑛 is the amount of electricity consumed by EVs outside.  

𝐸𝑡
𝐸𝑉−𝑐ℎ ≤ 𝐸𝑅𝐸𝑉𝑢𝑡 , 𝐸𝑡

𝐸𝑉−𝑑𝑖𝑠 ≤ 𝐸𝑅𝐸𝑉𝑤𝑡 , 𝑢𝑡 + 𝑤𝑡 ≤ 1, 𝑢𝑡 , 𝑤𝑡  ∈ {0,1} (2) 

𝐸
𝑡=𝑡𝑙
𝐸𝑉 = 𝐶𝑎𝑝𝐸𝑉 , 𝐸𝑡=𝑡𝑟

𝐸𝑉 = 𝐶𝑎𝑝𝐸𝑉 − 𝐸𝐸𝑉−𝑐𝑜𝑛 
(3) 

(3) Energy transfer: Constraints associated with energy transfer of the integrated system 

(i) ensure energy transfer between two entities at a period is unidirectional by using the 

binary variables 𝑦𝑖,𝑖′ ,𝑡 and 𝑧𝑖,𝑖′,𝑡 , which indicate whether heat and electricity are being 

dispatched from entity i to i’, respectively; (ii) restrict the amount of energy dispatched 

based on the amount of heat and electricity generated in the entity and the heat transfer 

pipe size; (iii) calculate the available heat and electricity an entity received by excluding 

energy loss during the transfer from the dispatched heat. 

(4) Energy balance: Constraints under this category ensure the energy demand of an entity 

can be fully satisfied by all available energy resources. Since the proposed optimization 

approach differentiates temperatures of heating demands, the heat balance of each process 

is developed individually to reflect whether the process can use the transferred heat or 

not. For processes that cannot use the transferred heat, Eq. (4) is applied without the 

received heat item – 𝑄𝑖,𝑖′ ,𝑝,𝑡
𝑟𝑒𝑣 . 

𝑄𝑖,𝑝,𝑡
𝑑

𝜂𝑖,𝑝
ℎ𝑥 = 𝑄𝑖,𝑝,𝑡

𝑃𝐺𝑈−𝑜𝑢𝑡 + 𝑄𝑖,𝑝,𝑡
𝑏𝑜−𝑜𝑢𝑡 +  ∑ 𝑄𝑖,𝑖′,𝑝,𝑡

𝑟𝑒𝑣

𝑖

 (4) 
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𝑄𝑖,𝑝,𝑡
𝑑  represents the heating demand of a process p. For industrial plants, the energy 

demand of a process is calculated based on the production rate – 𝑥𝑖 (decision variable) 

and the energy used to produce a unit of product. 𝑄𝑖,𝑝,𝑡
𝑃𝐺𝑈−𝑜𝑢𝑡  and 𝑄𝑖,𝑝,𝑡

𝑏𝑜−𝑜𝑢𝑡  are heat 

generated by the PGU and boiler. For residential buildings and commercial buildings 

whose heating demands are at a uniform temperature, p equals one. 

2.3. Objective function 

As mentioned, the objective function of the problem is maximizing GHG emissions 

reduction led by the integrated operation. It is based on the minimum GHG emissions of 

the integrated system and the non-integrated system, as shown in Eq. (5). 

𝐺𝐻𝐺𝐷 % =  (𝐺𝐻𝐺𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 −  𝐺𝐻𝐺𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑) 𝐺𝐻𝐺𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 ⁄  (5) 

The minimum GHG emissions of the integrated (𝐺𝐻𝐺𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 ) and non-integrated 

system (𝐺𝐻𝐺𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 ) are calculated based on the amount of fuel (𝑛𝑖,𝑡
𝑃𝐺𝑈−𝑖𝑛 and 

𝑛𝑖,𝑡
𝑏𝑜−𝑖𝑛), electricity (𝐸𝑖,𝑡

𝑔𝑟𝑖𝑑
) used by the system, and electricity sold to the external grid 

(𝐸𝑖,𝑡
𝑔𝑟𝑖𝑑𝑠

). 𝜎𝑁𝐺 and 𝜎𝐸 are GHG emissions coefficients associated with using fuel and grid 

electricity. Eq. (6) shows an example of GHG emissions for the integrated system. 

𝐺𝐻𝐺𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 =  ∑ ∑ 𝜎𝑁𝐺(𝑛𝑖,𝑡
𝑃𝐺𝑈−𝑖𝑛 + 𝑛𝑖,𝑡

𝑏𝑜−𝑖𝑛) + 𝜎𝐸𝐸𝑖,𝑡
𝑔𝑟𝑖𝑑

𝑡

− 0.5𝜎𝐸𝐸𝑖,𝑡
𝑔𝑟𝑖𝑑𝑠

𝑖

 
(6) 

The minimum GHG emissions of the non-integrated system can be simplified as a linear 

equation related to entity sizes. The linear relationship holds because there exist optimal 

operation patterns for the energy system of each non-integrated entity, which minimizes 

GHG emissions of the non-integrated system. When the sizes of the entities change, the 

optimal operation patterns of equipment do not change; however, the equipment sizes 

increase or decrease correspondingly to maintain the minimum GHG emissions.  

3. Case study description  

An integrated system with a residential building, a supermarket, a confectionery plant, a 

brewery, a bakery plant, and EVs has been used for case studies. The residential building 

and supermarket are assumed to have fixed energy profiles based on published 

information from Sullivan (2020) and Ghorab (2019), respectively. The sizes of the two 

entities are relative sizes, which represent the number of buildings having the base-case 

energy demands. Sizes of the confectionery plant, brewery, and bakery plant are the 

maximum production rates of the plants. Energy used to make a unit of product for the 

three plants is obtained based on the process studied by Singh (1986) and Therkelsen et 

al. (2014). Since the supermarket requires a large amount of energy for low-temperature 

refrigeration, the supermarket has been assumed does not have the PGU, heat recovery 

unit, or absorption chiller. For reducing the computation time, the relative size of the 

supermarket is set to be equal to the size of the residential building. Additionally, each 

unit of the relative size of residential building has been assumed to have 870 EVs. 

4. Results and discussion 

It has been found that the integrated operation can reduce GHG emissions of the system 

by a maximum of 17.5 %. The reduction is achieved by integrating a residential building, 
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a supermarket, 870 EVs, a brewery with a capacity of 2,720 kg/hr, and a 5,000 kg/day 

bakery plant. There is no confectionery plant in the system. The reduction is due to, with 

energy transfer among entities, the integrated system purchasing 65.0 % less electricity 

from the external grid and operates boilers 79.6 % less. 

As shown in Figure 2, although the maximum GHGD% (Case 1) is achieved when the 

relative size of the residential building is one, under larger relative sizes of the residential 

building, the highest GHGD % (Case 2, Case 3, and Case 4) at lower values can be 

achieved when optimizing sizes of the other entities. The values are 17.2 %, 16.7 %, and 

15.9 % when relative sizes of the building are three, five, and ten, respectively. Table 1 

presents the corresponding plant sizes. The case studies reflect the situation when there 

are specific requirements on entity sizes of the integrated system. 

 
Figure 2 – GHGD % of the integrated system under various entity sizes. 

According to the results shown in Figure 2 and Table 1, there is a small difference 

between the maximum GHGD % and the highest GHGD % when increasing the relative 

size of the residential building. The results indicate requirements on entity size do not 

significantly impact GHGD % of the overall integrated system. With requirements on 

entity sizes, the optimization problem can be formulated by adding additional constraints 

to define the desired entity sizes and find the optimal sizes of other entities. 

Results also show that as the relative size of the residential building increases, the highest 

GHGD % decreases. It is due to upper bounds on industrial capacities force the integrated 

system to operate in a way, which deviates from its optimal relative entity sizes and 

optimal operation pattern. Thus, the maximum GHGD % cannot be held. 

With an increase in the size of the residential building, the size of the bakery plant reaches 

its upper bound first (5,000 kg/day), followed by the brewery (8,000 kg/hr) and the 
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confectionery plant (3,000 kg/hr). It is due to the bakery plant performing as a critical 

energy supplier in the integrated system, where all heat transfer and 20.2 % electricity 

transfer is dispatched by the bakery plant under the optimal entity sizes (Case 1). The 

brewery reaches its maximum size before the confectionery plant, which indicates the 

brewery is more suitable for the integrated operation. Compared to the confectionery 

plant, the brewery requires heating at lower temperatures. Thus, the brewery has a better 

ability to use the transferred heat.  

Table 1 – Highest GHGD % under different relative sizes of the residential building. 

 Relative size of 

residential building 

Bakery plant 

(kg/day) 

Brewery 

(kg/hr) 

Confectionery 

plant (kg/hr) 

GHGD % 

Case 1 1 5,000 2,720 0 17.5 % 

Case 2 3 5,000 8,000 0 17.2 % 

Case 3 5 5,000 8,000 800 16.7 % 

Case 4 10 5,000 8,000 3,000 15.9 % 

5. Conclusions 

This work quantifies reductions in GHG emissions that can be achieved by cross-sector 

integration of energy systems.  Even if the energy systems within each sector are 

optimized for the lowest GHG emissions within that sector, further reduction in GHG 

emissions can be accomplished by integration between the sectors (residential buildings, 

commercial buildings, light industries, and electric vehicles). Each entity in the integrated 

system implements an independently operating combined cooling, heating, and power 

(CCHP) system, where there are heat and electricity transfers among entities. The optimal 

design and operation of energy systems are determined for equipment in each entity, the 

optimal production rate of plants, and the optimal relative size of entities, considering 

temperatures of heating demands.  

Results from case studies on an integrated system with a residential building, a 

supermarket, a confectionery plant, a bakery plant, and a brewery show the integrated 

operation can lead to a maximum GHGD % of 17.5 %. If optimizing sizes of entities, the 

highest GHGD % can be maintained between 15.9 % and 17.5 %, even when there are 

requirements on sizes of specific entities and the integrated system deviates from its 

optimal relative entity sizes and operation. Future studies, which include more types of 

entities and consider partial load effects on equipment efficiency are worth investigating. 
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Abstract 

This article addressed the sustainable design of carbon-neutral energy systems with 
earth source heat, lake source cooling, on-site electricity generation, and peak heating 
systems. A multi-period optimization model given time horizon and temporal resolution 
is built based on the proposed superstructure of carbon-neutral energy systems to 
minimize the total annualized cost. The aim is to determine the optimal design of the 
carbon-neutral energy systems in the target region, seasonal operations, energy mix, and 
corresponding capacity of each base-load and peak-load technology involved while 
fulfilling the seasonal demand for electricity, heat, and cooling. The applicability of the 
proposed modeling framework is illustrated through case studies using Cornell 
University as the living laboratory. 

Keywords: carbon neutrality; energy systems; renewables; decarbonization. 

1. Introduction 

The Paris Agreement sets a goal to curb global greenhouse gas (GHG) emissions, 
driving vast penetration of renewable energy worldwide. Extensive research on deep 
decarbonization of energy systems is conducted at the city-level (Wiryadinata et al., 
2019), state-level (Zhao and You, 2020), and country-level (Vaillancourt et al., 2017). 
Electrification of heat and cooling generation and decarbonization of electricity 
generation is identified as a promising lever to address the ambitious climate goals (de 
Chalendar et al., 2019). However, heat and cooling generation stand a chance to destroy 
the stability of the power system due to the surge in electric load involved if they are 
electrified in an uncontrolled way (Sánchez-Bautista et al., 2017). Therefore, it seems to 
be a reliable and promising decarbonization option by exploring renewable heat and 
cooling generation technologies rather than simply using electrified counterparts (Gong 
and You, 2015). Among the vast array of renewable heat and cooling generation 
technologies, geothermal energy and deep water source cooling system show great 
potentials for the decarbonization transition of energy systems (Lee et al., 2019). Recent 
research efforts have also identified the values of green hydrogen (Dodds et al., 2015), 
large-scale heat pumps (Bach et al., 2016), biomass and biogas (Kassem et al., 2020), 
and thermal energy storage (Ochs et al., 2020) for decarbonizing the heating system. 
There is a lack of studies addressing the sustainable design of energy systems toward 
carbon neutrality by simultaneously exploring renewable electricity, heat and cooling 
generation, and electrified heating and cooling options in the region with a humid 
continental climate, such as New York State (NYS) (Zhao and You, 2021). In this 
paper, a multi-period optimization model, given time horizon and temporal resolution 
for total annualized cost (TAC) minimization, is built. The aim is to determine the 
optimal design of the carbon-neutral energy systems in the investigated region, seasonal 
operations, energy mix, and corresponding capacity of each base-load and peak-load 
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technology involved. The applicability of the proposed modeling framework is 
illustrated through case studies developed using the data from the Cornell campus. 

2. Problem Statement and Model Summary 

We are given a superstructure of carbon-neutral energy systems, including a set of 
renewable electricity generation technologies and a set of renewable and electrified 
heating and cooling options, as shown in Figure 1. To capture the optimal design, 
seasonal operations, energy mix, and corresponding capacity of each base-load and 
peak-load technology in the carbon-neutral energy systems, a time horizon and a set of 
time periods are specified to improve the temporal resolution of the model. The multi-
period optimization problem of the proposed carbon-neutral energy system with earth 
source heat, lake source cooling (LSC), on-site electricity generation, and peak heating 
options for the total annualized cost minimization is formally defined in this section. 
The aim is to determine the optimal design of the carbon-neutral energy systems in the 
target region, seasonal operations, energy mix, and the corresponding capacity of each 
base-load and peak-load technology involved while fulfilling the seasonal demand for 
electricity, heat, and cooling. 

 
Figure 1. Superstructure of the proposed carbon-neutral energy systems. 

The general multi-period optimization model is subjected to the mass balance and 
configuration constraints, energy balance constraints, logic constraints, and techno-
economic evaluation constraints. The integer decision variables represent the selection 
of technologies. The number of geothermal well-pairs is an integer decision variable 
(Tian et al., 2019). Other essential decision variables such as the mass flow rates, energy 
flows, and capacities are continuous variables. The objective function, total annualized 
cost, includes integer variables such as the numbers of production wells and injection 
wells and thus is a mixed-integer function. The nonlinear terms mainly come from the 
separable concave terms induced by the economy of scale. Therefore, the resulting 
problem is a mixed-integer nonlinear programming (MINLP) problem. The general 
form of this MINLP problem is summarized as follows. 
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min  TAC AIC AOC RE                 (1) 
s.t. mass balance and configuration constraints; 
      energy balance constraints; 
      logic constraints; 
      techno-economic evaluation constraints; 

where AIC, AOC, and RE refer to the annualized investment cost, annual operating cost, 
and replacement cost, respectively. 

3. Global Optimization Strategy 

The resulting MINLP problem embraces both integer and continuous variables, along 
with nonlinear functions, so the global optimization of this problem is likely to be 
computationally challenging for general-purpose global optimization solvers. A global 
optimization strategy is utilized to solve the proposed MINLP problem efficiently 
(Gong and You, 2018). Specifically, we substitute the separable concave functions 
induced by the economy of scale for capital investment estimation with successive 
piecewise linear relaxations. The resulting MINLP problem is solved iteratively 
following the tenet of the branch-and-refine algorithm (You and Grossmann, 2011). The 
pseudocode of the global optimization algorithm is presented in Figure 2. ub and lb 
stand for the upper and lower bound, respectively. 

 

Figure 2. The pseudocode of the global optimization algorithm. 

4. Application to Cornell University Campus Energy Systems  

The proposed multi-period optimization modeling framework for energy systems 
decarbonization is applied to address the optimal design of the carbon-neutral energy 
systems using the main campus of Cornell University located in Ithaca as the living 
laboratory. Based on the optimization results, the optimal configuration of the carbon-
neutral energy system in the target region, seasonal operations, energy mix, and 
corresponding capacity of each base-load and peak-load technology involved are 
determined while accommodating the seasonal demand for electricity, heat, and cooling 
across the main campus of Cornell University located in Ithaca, NYS. Three case 
studies are developed based on the real data from the main campus of Cornell 
University located in Ithaca with a consideration of different scopes of peak-load 
technologies (Tian et al., 2019). The first case study aims to obtain the global optimal 
solution of the multi-period optimization problem with a monthly model resolution for 
the proposed carbon-neutral energy system with earth source heat, LSC, on-site 
electricity generation, and peak heating options, including biomass or biogas heating, 
heat pumps, green hydrogen, and thermal storage. The second one explicitly excludes 
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biomass or biogas as the peak heating options to evaluate the economic potential of 
electrified peak heating systems based on heat pumps. 

 
Figure 3. Selection of technologies and economic performance for case study 1. 

 
Figure 4. Selection of technologies and economic performance for case study 2. 

Figure 3 shows the selection of technologies of the global optimal solution and the 
corresponding economic performance. When the capacity of base-load earth source heat 
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is low, burning torrefied biomass is selected as the optimal peak heating technology 
through optimization. However, as the number of the geothermal well-pairs attains four, 
the ground source heat pump outperforms the torrefied biomass from the economic 
perspective. No peak heating technologies are needed when five geothermal well-pairs 
serve as the base-load heat supplier based on a monthly model resolution. Specifically, 
the annual consumption of torrefied biomass is 31.2 dry kton and 13.1 dry kton for the 
two-well-set case and three-well-set case, respectively. Overall, torrefied biomass 
outperforms the ground source heat pumps when the base-load capacity is low. We note 
that as the number of geothermal well-pairs increases from two to five, the annualized 
investment cost increases from $93.73 MM/yr to $95.64 MM/yr. The annual operating 
costs corresponding to the four cases are $29.27 MM/yr, $28.57 MM/yr, $28.35 MM/yr, 
and $28.20 MM/yr, respectively. When the number of base-load geothermal well-pairs 
equals two and three, torrefied biomass treated at 250 ℃ for 30 minutes is selected, 
accounting for 3% and 2% of the annualized investment cost, respectively. When the 
number of geothermal well-pairs attains four, 493 ground source heat pumps with a 
typical capacity of 19 kW in the North American region are employed to address the 
peak-load heat demand. 

Figure 4 demonstrates the peak heating options with different base-load capacities, 
where only ground source heat pumps are employed with no thermal energy storage. 
Specifically, 2,037, 1,265, and 493 ground source heat pumps with a typical capacity of 
19 kW for each in the North American region are deployed to handle the peak-load heat 
demand for the cases with two, three, and four base-load earth source heat pumps, 
respectively. The number of geothermal well-pairs is chosen as the investigated input 
parameter, ranging from two to five. We note that as the number of geothermal well-
pairs increases from two to five, the annualized investment cost increases from $93.62 
MM/yr to $95.64 MM/yr, while the annual operating cost decreases from $31.56 
MM/yr to $28.20 MM/yr. In terms of capital investment, solar panels (58%-59%), wind 
turbines (23%), and hydroelectric power plant (8%-9%) are the major contributors. 
When the base-load earth source heat capacity is low, the operating cost associated with 
the ground source heat pump is more pronounced. The remaining annual operating cost 
is mainly sourced from the operations of solar and wind farms. 

When the capacity of base-load earth source heat is low, i.e., the number of geothermal 
well-pairs equalling two, both green hydrogen and hot water tanks are needed through 
optimization with capacities of 53.5 GWh and 35.5 GWh, respectively. As the 
geothermal well-pairs attains three and four, green hydrogen is no longer needed to 
pursue the lowest total annualized cost. When five geothermal well-pairs serve as the 
base-load heat supplier based on a monthly model resolution, i.e., some short-term 
peak-load demands are neglected by considering a monthly average, no peak heating 
technologies are needed. Specifically, the capacity of hot water tanks for the three-well-
set case and four-well-set cases are 41.4 GWh and 7.0 GWh, respectively. We note that 
as the number of geothermal well-pairs increases from two to five, the annualized 
investment cost decreases from $191.33 MM/yr to $95.64 MM/yr, while the annual 
operating costs decrease from $57.85 MM/yr to $28.20 MM/yr. When the number of 
base-load geothermal well-pairs equals two, both green hydrogen and hot water tank are 
in need to manage the peak-load heat demand, which accounts for 42% and 11% of the 
annualized investment cost, respectively. In addition to the operating cost of solar and 
wind farms, other operating costs are associated with green hydrogen and the 
replacement of hot water tanks. The total annualized cost corresponding to the two-
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well-set case is substantially higher than the other cases by a factor of 1.6 - 2.0 due to 
the high capital investment of hydrogen generation through electrolysis and storage. 

5. Conclusion 

A multi-period optimization model, given time horizon and temporal resolution for total 
annualized cost minimization, was built. The aim is to simultaneously determine the 
optimal design of the carbon-neutral energy systems in the investigated region, seasonal 
operations, energy mix, and corresponding capacity of each base-load and peak-load 
technology involved while fulfilling the seasonal demand for electricity, heat, and 
cooling. The applicability of the proposed modeling framework was illustrated through 
three case studies developed by leveraging the real-world data from the main campus of 
Cornell University, located in Ithaca, NYS. 
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Abstract 

Currently, energy storage systems are in the research spotlight as they can support the 

application of renewable energy. Owing to their high energy density and low cost, zinc-

air flow batteries (ZAFBs) are seen to have great potential for use as renewable energy 

storage devices. However, the battery management system (BMS) for ZAFBs is still 

underdeveloped as a precise prediction of their nonlinear behavior is required. To 

overcome this drawback, a linear parameter varying (LPV) model is established via a 

multiple linear time-invariant (LTI) model with charge/discharge current and state of 

charge (SOC) as scheduling parameters. Validation of the developed model is carried 

out using various battery data from different experimental batches. According to the 

discharge current and SOC, results demonstrate that the nonlinear behavior of the 

ZAFBs can be predicted by the LPV model developed. Thus, the LPV model is found to 

be comparable with the linear model for local accuracy.  In the case of global accuracy, 

it is seen that the LPV model outperformed the linear model. Such a result reveals the 

ability of the LPV model to predict the dynamics of the ZAFBs and their feasibility for 

use in the BMS. 

Keywords: Zinc-air battery; battery modeling; Linear-parameter varying model. 

1. Introduction 

Nowadays, renewable energy technologies have attracted widespread interest due to the 

increase in energy consumption and the critical environmental crisis. Renewable energy 

sources such as solar and wind energy are intermittent by nature. Therefore, the power 

generated from these energy sources is found to be inconsistent. To address this issue, 

energy storage systems (ESSs) exhibit great potential because they can provide the 

stability for energy utilization. Zinc-air batteries (ZABs) are promising candidates for 

ESSs due to their high energy density and low cost (Lao-atiman et al., 2019, 

Radenahmad et al., 2021, Khezri et al., 2020). 

In battery research, BMS is generally studied as it can enhance the safety and 

operability of the battery (Pop et al., 2008). One of the research aspects involving the 

development of BMS is modeling. Battery modeling can be done in a variety of ways. 

For example, simulation using a theoretical continuum model has been conducted to 

analyze the phenomena occurring inside the battery (Schröder and Krewer, 2014, Maia 

et al., 2017). The empirical model has also been studied for use in BMS in various types 

of batteries because this type of model is suitable for online prediction due to its speed 
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and simplicity of calculation. Recently, a LPV model has been proposed to predict the 

discharge behavior of ZABs (Lao-atiman et al., 2020). Another example is the data-

driven model developed for lithium-ion battery health monitoring (Sukanya et al., 

2021). One important feature of BMS, which must be established, is battery state 

estimation, especially SOC estimation (Chang, 2013). As regards SOC estimation, an 

empirical model has also been used with various adaptive filters such as state observer 

(Hu and Yurkovich, 2012) or Kalman filter-based estimator (Wassiliadis et al., 2018). 

Nevertheless, studies of empirical models involving SOC changes are still inadequate in 

ZAB research. 

This work aims to develop the LPV model and use it to predict the dynamic 

behavior of tri-electrode ZAFBs including the influence of charge/discharge current and 

SOC. Battery data used for dynamic identification and validation have been measured 

from the laboratory-made tri-electrode ZAFB. Linear state-space models identified from 

different conditions have been used to create the LPV model, which has discharge 

current level and SOC as scheduling parameters. After that, the LPV model was tested 

for validity using battery data from different experimental batches. 

2. Description of tri-electrode ZAFB and experimental data 

As shown in Figure 1A, the laboratory made ZAFB in this work was designed as a 

tubular cylinder cell. The cylinder support structure was made of poly vinyl chloride 

(PVC). The cell is circulated by an electrolyte, which is an 8 M solution of potassium 

hydroxide (KOH) having 0.5 M zinc oxide (ZnO). The anode active material is Zn 

electroplated onto the current collector, which is nickel (Ni) foam. The cathode active 

material is oxygen from the ambient air. The oxygen reduction reaction (ORR) occurred 

at the cathode current collector, which is Ni foam coated with a catalytic layer and gas 

diffusion layer. The charging electrode is made of Ni foam. 

  

Figure 1 (A) Schema of laboratory-made tri-electrode ZAFB and (B) Electrical equivalent circuit 

diagram of battery: second-order RC model. 

To obtain the experimental data, battery testing equipment (NEWARE, CT-

4008-5V20mA, Neware Technology Ltd., Shenzhen, China) was used. Sampling time 

was 1 s. The used data are battery response data with current as input and voltage as 

output. For the dynamic identification, the pattern of the used profile was charge / 

discharge for 50 mAh alternating with a rest period of 5 min. The procedure was 

repeated until the voltage cutoff of 0.5 V was met for discharging or the capacity 

reached 500 mAh for charging. The applied current values were 500, 1000, 1500 and 
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2000 mA. As regards model validation, different sets of random charging and 

discharging data were used.  

For the nomenclature of data, the data starting with DSOC is the discharge 

steps data and the data starting with CSOC is the charge steps data. The following 

numbers define the discharge current, for example, the data DSOC500A contain 

discharge steps with a current of 500 mA for 50 mAh alternating with a rest for 5 min. 

The data named MULTI A and MULTI B are discharge steps data with multiple current 

levels. Likewise, CMULTI refers to the charge steps data with multiple discharge 

currents. 

3. LPV modeling 

The LPV model is a time-variant model whereby parameters are varied as a function of 

scheduling parameters (p). The LPV model was constructed from a set of discrete state 

space model. The model contains 3 states: VRC1, VRC2 and SOC. Both VRC1 and VRC2 

represent the overpotential of the zinc electrode and counter electrode (air or charging), 

respectively. SOC represents the state of charge of the battery. SOC is included as a 

state because the model is used with a state estimator to estimate SOC in the next part. 

To make the LPV model more practical, the model was established having an equivalent 

circuit second-order RC model, as illustrated in Figure 1B. The LPV model can be 

written as follows: 

⌈

𝑉𝑅𝐶1(𝑘 + 1)

𝑉𝑅𝐶2(𝑘 + 1)

𝑆𝑂𝐶(𝑘 + 1)

⌉ = [
𝐴1 0 0

0 𝐴2 0

0 0 1

] [

𝑉𝑅𝐶1(𝑘)

𝑉𝑅𝐶2(𝑘)

𝑆𝑂𝐶(𝑘)

] + [

𝐵1

𝐵2
∆𝑡

3600∙𝐶𝑛

] 𝐼𝑐𝑒𝑙𝑙(𝑘)  (1) 

𝑉𝑐𝑒𝑙𝑙(𝑘) = 𝑉𝑜𝑐 + [1 1 0] [

𝑉𝑅𝐶1(𝑘)

𝑉𝑅𝐶2(𝑘)

𝑆𝑂𝐶(𝑘)

] + 𝐷 ∙ 𝐼𝑐𝑒𝑙𝑙(𝑘)  (2) 

where A1, A2, B1, B2 and D are state space parameters. Vcell, VOC and Icell are cell voltage, 

open circuit voltage and cell current, respectively. Δt and Cn are sampling time and 

nominal capacity, respectively. 

The calculation of SOC in Eq.(1) is based on the coulomb counting (CC) 

method. Eq.(2), which includes VOC, ensures that the model is able to calculate cell 

voltage; Vcell. Icell and SOC have been selected as scheduling parameters for A1, A2, B1, 

B2 and D. However, some arbitrary assumptions have been made in order to adapt the 

model with the scenarios of battery data. Firstly, for discharging, when SOC decreased, 

Zn at the electrode fully depleted. Thus, VRC1 is affected but VRC2 is not affected by the 

SOC change. This outcome enabled both A2 and B2 to become functions of only the 

current level for discharging. The next assumption is that the SOC effect on the 

overpotential is less significant for both electrodes when the battery is charged. Hence, 

B1 and B2 become functions of the current level for charging. The last assumption made 

infers that the internal resistance of the system is independent of current  (Zhong et al., 

2021). As seen in Figure 1B, D is equivalent to R0 which is related to ohmic resistance. 

D is, therefore, assumed to be a function of SOC for both discharging, i.e., A2(I), B2(I) 

and D(SOC) and for charging, i.e., B1(I), B2(I) and D(SOC).  

Regarding varying model parameters, the correlations between model 

parameters and scheduling parameters were constructed from the identified model 

parameters. For instance: model parameters as identified from the discharge step data 

with a discharge current of 1000 mA and SOC of 0.5 demonstrated scheduling current 
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levels and SOCs of 1 A and 0.5, respectively. After the correlations were accounted for, 

the LPV model was validated according to the various dataset, including data obtained 

via a different batch of the experiment. For comparison purposes, the linear state space 

model was introduced. The expression of the linear model is the same as Eqs. 1 and 2 

but the model parameters are not varied with scheduling parameters. 

4. Results and discussion 

As mentioned previously, the LPV model for the tri-electrode ZAFB was developed 

from the state space model as a based linear time-invariant (LTI) model. The state space 

parameters of the identified model were fitted to make the correlation with the 

scheduling parameters. From Eqs.(1) and (2), five parameters enabled the correlations to 

be set up viz. A1, A2, B1, B2 and D. There were also two scheduling parameters, 

including current level and SOC; the fitted correlations became surface functions. 

Nevertheless, some model parameters are functions of only one scheduling parameter 

according to the assumption made in the previous section. Additionally, VOC has also 

varied with SOC. Therefore, a correlation with VOC was also made. In Table 1, a list of 

the functions used to fit the correlations for both discharging and charging are tabulated. 

Table 1 Functions used to fit the model parameter correlations. 

Fitting function parameter 

Discharging 

𝛼𝑒𝑥𝑝(𝛽(𝑆𝑂𝐶) + 𝛾(𝐼𝑐𝑒𝑙𝑙)) + 𝛿𝑒𝑥𝑝(𝜀(𝐼𝑐𝑒𝑙𝑙) + 𝜃(𝑆𝑂𝐶)) + 𝜗 A1 

𝛼𝑒𝑥𝑝(𝛽(𝑆𝑂𝐶) + 𝛾(𝐼𝑐𝑒𝑙𝑙)) + 𝛿𝑒𝑥𝑝(𝜀(𝐼𝑐𝑒𝑙𝑙) + 𝜃(𝑆𝑂𝐶)) B1 

𝛼𝑒𝑥𝑝(𝛽(𝐼𝑐𝑒𝑙𝑙)) + 𝛾𝑒𝑥𝑝(𝛿(𝐼𝑐𝑒𝑙𝑙)) A2, B2 

𝛼𝑒𝑥𝑝(𝛽(𝑆𝑂𝐶)) + 𝛾𝑒𝑥𝑝(𝛿(𝑆𝑂𝐶)) D 

Charging 

𝜇 
00

+  𝜇 
10

(𝑆𝑂𝐶)  +  𝜇 
01

(𝐼𝑐𝑒𝑙𝑙)  +  𝜇 
11

(𝑆𝑂𝐶)(𝐼𝑐𝑒𝑙𝑙)  +  𝜇 
02

(𝐼𝑐𝑒𝑙𝑙)
2 A1, A2 

𝛼𝑒𝑥𝑝(𝛽(𝐼𝑐𝑒𝑙𝑙)) + 𝛾𝑒𝑥𝑝(𝛿(𝐼𝑐𝑒𝑙𝑙)) B1, B2 

𝛼𝑒𝑥𝑝(𝛽(𝑆𝑂𝐶)) + 𝛾𝑒𝑥𝑝(𝛿(𝑆𝑂𝐶)) D 

Open Circuit Voltage 

𝛼𝑒𝑥𝑝(𝛽(𝑆𝑂𝐶)) + 𝛾𝑒𝑥𝑝(𝛿(𝑆𝑂𝐶)) VOC 

Regarding validation of the LPV model, the model was tested by predicting 

various response data. Testing data included the same data used to identify the LTI 

model and the data obtained from a different batch of the experiment. In Figure 2, the fit 

percentages of the prediction of the LPV model and linear model are shown. Results 

revealed that the LPV model was more accurate than the linear model in most cases for 

both discharging and charging. Such an outcome occurred due to the effect of SOC 

change in the LPV model. Thus, the LPV model proved to be more accurate than the 

linear model over a wider range of SOC. For further validation, the model was tested 

with data obtained from a different batch of the experiment including the data named 

MULTI A and MULTI B for discharging and CMULTI for charging. In Figure 2, it was 

observed that the fit percentage of LPV model prediction was acceptably high although 

the data were obtained from a different experimental batch. 

In Figure 3, graphical prediction results for data MULTI A and CMULTI are 

displayed. In Figure 3A, for data MULTI A, prediction errors were still observed at 

some current levels. The highest error occurred upon discharging near the battery 



depletion zone. Besides, the LPV model performed adequately in predicting the 

response at the resting zone. As regards CMULTI data, a high error occurred at the 

beginning range of the predicted response. Such an error may have arisen from the 

mismatch between the VOC correlation of the model and the resting voltage of this data. 

It is evident that the LPV model was quite accurate as it was able to address the effect of 

different currents and SOC changes. This outcome demonstrated the potential of the 

LPV model and its feasibility for use in SOC estimation with a model-based state 

estimation algorithm. 

 

 

Figure 2 Comparison of fit percentage of model prediction between various models and data for 

(A) discharging and (B) charging. Fit % can be expressed as: 100 × (1-
𝑚𝑒𝑎𝑛|y-ŷ|

𝑚𝑒𝑎𝑛|y-mean(y)|
) . 

5. Conclusion 

An LPV model for a tri-electrode ZAFB was proposed. Thus, parameters of the LTI 

model at various current and SOC values were used to construct the correlations for the 

LPV model. The experimental data used for dynamic identification and validation were 

obtained from the laboratory-made tri-electrode ZAFB. Results of the validation 

confirmed that the LPV model was able to predict the behavior of the ZAFB. Moreover, 

it was found that the LPV model was more accurate than the linear model based on the 

comparison using normalized mean absolute error. The proposed LPV model was also 

able to handle the effect of SOC changes as SOC was one of the scheduling parameters 

of the model. Overall, results show that the LPV model is a promising dynamic model 

for predicting the dynamic behavior of a tri-electrode ZAFB. 
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Figure 3 Comparison of response between measured data, predicted data from LPV model and 

linear model: (A) multiple discharge current steps and (B) multiple charge current steps. 
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Abstract 

In light of the ever-increasing demand on food products and the associated intensification 

of agricultural activities, the environment and natural capital are witnessing 

unprecedented pressures. Alleviating these stresses will require the deployment of more 

sustainable and resilient food systems that offer a cost efficient and environmentally 

friendly alternatives to the conventional energy and water intensive food technologies. 

Greenhouses represent a promising solution to accommodate sustainable food supplies 

despite uncooperative external climate conditions. However, conventional greenhouses 

continue to rely on resource inflows originating from unstainable practices and systems 

such as groundwater abstraction and energy intensive production of fertilisers. Circular 

economy represents an opportunity to enhance resources utilisation and mitigate 

environmental burdens associated with their intensive exploitation at competitive costs 

through deploying novel solutions. In this study, waste integration involving CO2 

enrichment and sequestration along with wastewater reuse in irrigation are investigated 

for tomato cultivation in a greenhouse system in the State of Qatar. In this regard, a multi-

objective optimisation model based on a mixed-integer linear program (MILP) is 

proposed to determine the optimal technology configuration and supply network that 

delivers resources for a greenhouse operation. The purpose of this framework is to 

minimise water and carbon footprints in addition to the total costs associated with 

resource provision to the greenhouse. Considering results from the pareto front, the 

optimal distribution requires 54,3579 $/year and generates around 20,043 kg of 

CO2eq/year. This option suggests a sustainable cultivation alternative attributed to its 

environmental efficiency with regards to water savings, CO2 offsetting, and fertiliser use 

reduction.  

Keywords: Circular economy, greenhouse, wastewater, CO2 sequestration, 

optimisation, MILP.  
 

1. Introduction   

One of the most pressing global challenges faced nowadays is ensuring food security 

under restrained resource availability and a continuously growing population. Demand 

for food is prognosticated to increase by 60% by 2050, which will further increase the 

consumption of resources, mainly water and energy (Godfray et al., 2010). The 

agricultural sector already accounts for 70% of the total freshwater withdrawals, and 3.5% 

to 4.8% of the total energy consumption. As such, there is an impetus to shift agricultural 

systems to more sustainable practices that will not only produce more food, but also 

enable an efficient use of resources and reduce the associated environmental impact 

(Ghiat et al., 2021a, 2020). A key aspect of sustainable agriculture is water irrigation 

management. Irrigation water is traditionally supplied from unstainable sources, mainly 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50333-X 
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groundwater or desalinated seawater which is an energy-intensive process. The reuse of 

wastewater for irrigation requirements represents an opportunity for the agricultural 

sector, whereby it can alleviate stresses on freshwater resources and curb environmental 

emissions related to desalination processes as well as the production of fertilisers. The 

use of treated wastewater for irrigation also provides a solution for fertilisation in which 

nutrient requirements such as nitrogen (N), phosphorus (P) and potassium (K) can be met. 

The levels of nutrients and contaminants present in the treated wastewater can vary 

depending on the sector or type of wastewater (e.g. municipal wastewater, industrial 

wastewater) and can also vary within the same sector (Lahlou et al., 2021). Several studies 

investigated the use of treated wastewater to meet plant nutrient requirements and 

concluded that it can be a valuable solution to substitute industrial fertilisers either 

partially or completely. The reuse of wastewater instead of conventional discharge can 

also save water resources and reduce the greywater footprint, because it eliminates the 

need of diluting wastewater with freshwater resources before sea discharge. In fact, the 

agricultural sector can tolerate higher levels of nutrients and contaminants, especially N, 

P, and K, as compared to wastewater discharge in the sea, which renders its use in 

agriculture not only meet plant water requirements but also their nutrient requirements 

(García-Delgado et al., 2012; Lahlou et al., 2020; Musazura et al., 2019; Raju and Byju, 

2019). The need for sustainable intensification of food systems has also led researchers 

to investigate novel techniques to enhance production and reduce resource consumption 

such as CO2 enrichment. CO2 levels between 800-1200 ppm in the air have been linked 

to enhanced yields and reduced water consumption due to improved photosynthesis and 

lower transpiration rates. In this case, CO2 is perceived as a commodity which can be 

supplied from industrial carbon capture systems, compressed, and transported either via 

pipeline or trucks to agricultural production sites (Ghiat et al., 2021b; Nederhoff, 1994). 

The expensive costs and complexities related to CO2 capture and transportation are still a 

major challenge in the implementation of this practice. Many studies have investigated 

the supply chain of CO2 enrichment in agricultural greenhouses in efforts to optimise the 

economic and environmental costs (Govindan and Al-Ansari, 2019). Similarly, this paper 

contributes to solving logistical complexities in the supply of novel and sustainable 

agricultural methods.    

Previous studies have not considered the optimised allocation of both treated wastewater 

and CO2 captured from wastewater treatment plants (WWTPs) to agricultural production 

systems. Thus, the objective of this study is to develop an optimisation model for the 

sustainable supply of water, fertilisers, and CO2 to agricultural greenhouses all from 

WWTPs. The presented model can be applied to a network of multiple WWTPs and 

greenhouses. The optimisation model is applied to a case study in the State of Qatar, 

comprising of two existing WTTPs and an agricultural greenhouse producing tomatoes. 

The aim is to supply the greenhouse with the necessary water, nutrients, and CO2 

requirements while; 1) minimising the greywater footprint of wastewater, 2) minimising 

the carbon footprint, and 3) minimising the economic cost. A mixed integer linear 

program (MILP) model is presented to allocate the necessary resources to the greenhouse 

from the WWTPs at a reduced greywater footprint, environmental and economic costs.  

 

2. Methodology  

2.1. Model Formulation  

The methodology proposed in this study consists of designing a multi-objective 

optimisation model that investigates the benefits of supplying an agricultural greenhouse 
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with the required water, fertilisers, and CO2 for an enhanced crop yield. The model fosters 

the concept of circular economy by introducing the reuse of treated wastewater for 

irrigation and fertilisation purposes, in addition to the enrichment of the greenhouse using 

CO2 as means to improve the photosynthesis of the grown crops. In order to conduct this 

optimisation, a multi-objective mixed-integer linear program (MILP) is developed, 

wherein the first objective is to maximise the amount of greywater saved by the process 

of reusing wastewater instead of discharging it (equation 1). The second objective consists 

of minimising the environmental impact associated with the allocation of water and CO2 

to the greenhouse (equation 2). As for the third objective, it aims to minimise the 

economic costs associated with the reuse of treated wastewater and the CO2 generated 

from different sources (equation 3). The mathematical formulation of the model is 

presented in the following section.  

Maximise: GW=  𝑄𝑤 ∑
𝑛𝑖−𝑁𝑚𝑎𝑥

(𝑁𝑚𝑎𝑥−𝑁𝑤)
𝑥𝑖

𝑤10−3 𝑚
𝑖=1            (1) 

Minimise:  EC= ∑ 𝑥𝑖
𝑤𝑐𝑖

𝑤𝑚
𝑖=1 + ∑ 𝑥𝑖

𝐶𝐶𝑐𝑖
𝐶𝐶𝑚

𝑖=1 −  𝑄𝑤 ∑ 𝑥𝑖
𝑤  𝑛𝑖 𝑐

𝑁𝑚
𝑖 10−3                       (2) 

Minimise:  Env= ∑ 𝑥𝑖
𝑤𝑒𝑖

𝑤𝑚
𝑖=1 + ∑ 𝑥𝑖

𝐶𝐶𝑒𝑖
𝐶𝐶𝑚

𝑖=1 − 𝑄𝑤 ∑ 𝑥𝑖
𝑤 𝑛𝑖 𝐶𝐹𝑁𝑚

𝑖 10−3         (3) 

The decision variables are 𝑥𝑖
𝑤 and 𝑥𝑖

𝐶𝐶  which represent the percentage contribution of 
different water sources and CO2 origins to the total requirements of the greenhouse, 

respectively. 

Subject to the following constraints:  

𝑥𝑖
𝑤;  𝑥𝑖

𝐶𝐶 > 0               (4) 

∑ 𝑥𝑖
𝑤𝑚

𝑖=1  = 100%                (5) 

∑ 𝑥𝑖
𝐶𝐶𝑚

𝑖=1  = 100%                            (6) 

Such that:  

GW is the grey water footprint in m3; 

EC is the total cost in $;  

Env is the total environmental impact represented by Global Warming Potential (GWP) 

emissions in kg of CO2eq; 

m is the total number of treated wastewater sources;  

i is the index of the treated wastewater source;  

 𝑄𝑤  is the total quantity of water required for growing the crop inside the greenhouse in 

m3; 

 𝑛𝑖  is the amount of nitrogen content in wastewater coming from the different sources in 

mg/L;   

𝑁𝑚𝑎𝑥  is the maximum allowable concentration of nitrogen in the treated wastewater 

mg/L;  

𝑁𝑤 is the concentration of nitrogen in the freshwater mg/L; 

𝑐𝑁 is the cost of 1kg of nitrogen fertilizer in $/kgN; 

𝐶𝐹𝑁 is the carbon footprint associated with the production, packaging, and transportation 

of 1 kg of nitrogen fertilizer in kg-CO2-eq/kgN; 

𝑐𝑖
𝑤 and 𝑐𝑖

𝐶𝐶  are the total economic costs associated with each source of treated wastewater 

and CO2 capture, respectively. They include the cost of transportation of the treated water 

or CO2 by means of pipelines, CO2 compression in addition to the operational cost of the 

treatment or the capture.  

They can be defined using the following equations:  

 𝑐𝑖
𝑤 = (𝑐𝑖

𝑤𝑇𝑑𝑖 + 𝑐𝑖
𝑤𝑂)𝑄𝑤                            (7) 

 𝑐𝑖
𝐶𝐶 = (𝑐𝑖

𝐶𝐶𝑇𝑑𝑖 + 𝑐𝑖
𝐶𝐶𝑂)𝑄𝐶𝐶               (8) 

where 𝑐𝑖
𝑤𝑇 and  𝑐𝑖

𝐶𝐶𝑇 are the unit costs of transporting water and CO2. 𝑑𝑖 is the distance 
between the greenhouse and the wastewater treatment plant, which is also to location of 
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the captured CO2. 𝑐𝑖
𝑤𝑂  and 𝑐𝑖

𝐶𝐶𝑂  are the unit environmental impacts associated with 

transporting and generating water and CO2. As for 𝑄𝐶𝐶  is the total quantity of CO2 to be 

injected in the greenhouse. 

 

2.1. Illustrative example and available data 

Increasing water scarcity levels, limited land available for agricultural activities and harsh 

climatic conditions have rendered the satisfaction of local demands for food and water a 

challenging target. To overcome this problem, the State of Qatar has shifted the focus to 

some alternative water and food systems that can meet the local need while preserving 

the environment. In fact, greenhouses were adopted to support the local food production 

by providing an adequate environment for crops cultivation. As part of the strategies 

deployed to improve the efficiency of greenhouses and enhance their yields, CO2 

enrichment represents a sustainable technique to increase the productivity while offsetting 

the emissions generated from energy intensive technologies such as wastewater 

treatment. The reuse of wastewater also provides an opportunity to lift the burden on 

groundwater and represents a cleaner alternative in terms of the engendered emissions in 

comparison with desalination. In this study, the potential of utilising treated wastewater 

and CO2 from two water treatment plants in a greenhouse producing tomatoes. The 

example is formulated as a planning problem where the allocation of resources from the 

sources (wastewater treatment plants (WWTP) to the sink (greenhouse) is optimised 

following the formulation presented in section 2.1. Tables 1 and 2 presents the input data 

used in the model. 

Table 1. Water and carbon requirements of the greenhouse and the distance to the different sources. 

  Water 

Requirements 

CO2 

Requirements 

Distances from 

 Sink Doha 

North 

WWTP 

Shahaniyah 

 𝑄𝑤 (m3/year) 𝑄𝐶𝐶  (kg/year) 𝑑𝑖  (km) 

Greenhouse 1,664 14,300 23   8 

Table 2. Economic and environmental costs input data. 

 Operations 

(production or 

treatment) 

Transportation 

and CO2 

compression 

Unit economic 

cost  

Water treatment  0.11 $/ m3 0.000671 $/ m3/km        

CO2 Capture 0.000241 $/kg 0.0000172 $/ kg of 

CO2/km 

Unit 

Environmental 

cost 

Water treatment 0.49 kg of CO2eq/ 

m3 

0.00162 kg of 

CO2eq/ m3/km 

CO2 Capture  0 kg of CO2eq/ kg  0.036 kg of CO2eq/ 

kg of CO2/km 

3. Results  

Results of the multi objective optimisation are summarised in Figure’s 1 and 2. The 

optimal solution suggests that 60% of the amount of water supplied to the greenhouse can 

be sourced from Doha North treatment plant, while the remaining 40% can be supplied 

by Shahaniyah. As for the CO2 requirements, Shahaniyah contributes with 96%  of total 

 S. Namany et al.



 

needed quantity while only 4% is taken from Doha North. Considering the costs and 

savings associated with the optimal solution, the Pareto Front demonstrates that an 

amount of  2,629 m3/year could be achieved in terms of greywater footprint. As for the 

economic and environmental costs, the optimal distribution requires 54,3579 $/year and 

generates around 20,043 kg of CO2eq/year. As for the nutrient’s intake, the wastewater 

used for irrigation supplies 20 kg/year of Nitrogen, which can substitute 15% of the 

nitrogen supplied from industrial fertilisers that are produced using energy-intensive 

technologies and processes.  

 

 

 

 

 

 

 

 

 

Figure 1: The optimal contribution of each resource source to the sink. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 2: The Pareto Front. 

4. Conclusion 

Shifting to sustainable agricultural practices is essential in the light of the increasing 

pressures on the natural resource base and the environment. Adopting alternative water 

sources and deploying efficient cultivation techniques is deemed beneficial in alleviating 

the environmental burden that energy-intensive systems are inflicting. In this paper, the 

potential of using treated wastewater and CO2 carbon sequestration in a greenhouse is 

investigated through a multi-objective optimisation model aiming to minimise 

environmental impacts and economic costs. Results of the study assert that requirements 

Optimal 

Solution  
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of the greenhouse can be fulfilled from two wastewater treatment plants that can deliver 

the necessary water, CO2, and nitrogen. The optimal solution implies an investment of 

54,3579 $/year and produces 20,043 kg of CO2eq/year with a significant reduction of 

greywater footprint amounting to 2,629 m3/year. In addition, the use of wastewater 

instead of the conventional aquifer or desalinated water offsets almost 15% of the nitrogen 

required by the plant, reducing the dependency on industrial fertilisers.  
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Abstract 
The exergoeconomic optimization performed on different industrial processes is used to 
reduce investment costs, operational costs and the exergy destruction rate in order to 
increase at the same time the rentability and sustainability of a factory. This study focuses 
on exergoeconomic optimization of a double effect evaporation process of coffee extract 
in a factory located in Ecuador. The specific product cost was minimized, and the 
exergetic efficiency was maximized by a parametric study with an iterative methodology 
and the integration of a sub-optimized steam recompression system. The parametric study 
showed that the exergetic efficiency could be increased by 5% and the exergy destruction 
cost cost rate reduced by $1143/h by changing the concentration of the feed extract, the 
pressure of the 1st effect and the outlet pressure in the expansion valve to 26 w/w%, 35 
kPa and 300 kPa, respectively. However, by integrating the mono-objective optimized 
steam recompression system in the process, the exergy destruction cost rate could be 
reduced up to 73%, the exergetic efficiency could be increased by 13% and the specific 
product cost could be reduced by $225/t. 

Keywords: Exergoeconomic Optimization; Double Effect Evaporation; Exergetic 
efficiency 

1. Introduction 
The economic growth in the world requires an increase of the energy consumption. The 
World Council of Energy estimated that by 2030 there will be an increase of 
approximately 35% in the energy consumption (Tvaronavičienė & Ślusarczyk, 2019). 
The food factories, such as the plants that produces instant coffee, have one of the highest 
consumptions of energy (around 60.2 MJ/kg of product) using as energy source fossil 
fuels (95%), and electricity (5%) (Maroulis & Saravacos, 2007). An exergetic 
optimization is necessary to improve the sustainability of these industrial processes, by 
the reduction of the exergy destruction foot print (Romero & Linares, 2014). Also 
exergoeconomic optimization could be used as a tool to simultaneously improve the 
thermodynamic and economic performance of a system (Abusoglu & Kanoglu, 2009). 

Many methods for the optimization of process have been developed, but they possess 
certain strengths and weaknesses. The optimization by GA (genetic algorithm) allows for 
a rapid search of solutions, however they could be lost in a sub-optimal solution (Ding et 
al., 2020). Utilizing a parametric study results in a better solution when the studied system 
is complex and modeled by a high resolution simulator or neural networks (Alirahmi & 
Assareh, 2020). The exergoeconomic optimization has mainly developed for power plants 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50334-1 
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2.2. Exergoeconomic Optimization 

A mono-objective optimization was performed to the recompressor in order to minimize 
the specific product cost. The mathematical formulation of the optimization problem is 
shown in Eq (1)-(4) and based in the literature (Bejan et al., 1996). 

𝑍"#$ = 𝛽(𝑇𝐶𝐼") (1) min
/0

𝐶̇2." = 𝐶̇4," + 𝑍̇"#$ + 𝑍̇"78 (2) 

𝑇𝐶𝐼" = 𝐵" :
𝜀"

1 − 𝜀"
>
?0
𝐸𝑥̇B,"

C0 (3) 𝑍"78 = 𝛾"(𝑇𝐶𝐼") + 𝜔"𝜏𝐸𝑥̇B," + 𝑅" (4) 

Where the subscript k is the k-component, CI the Capital Investment, TCI the Total 
Capital Investment, 𝛽 the Capital Recovery Factor, 𝜏 is the average annual plant operation 
hours, 𝑐4," the specific fuel cost which is the electrical energy price, 𝛾" is a coefficient 
that takes into account the Operational and Maintenance Cost (OM) and is assumed as 
1.06. The 𝜔" and 𝑅" constants have not be taken into consideration because it is assumed 
that the variability in OM are negligible, as suggested by Liu & He, 2020. For determining 
the non-linear regression constants 𝐵", 𝑛", and 𝑚", the TCI was fitted as a function of 
the exergetic efficiency (𝜀") and product exergy (𝐸̇𝑥2,") by using the software Wolfram 
Mathematica®. The isentropic efficiencies for the compressor were varied between 50% 
to 90%. With this assumption the Eqs (5)-(7) are used in order to find the optimal 
exergetic efficiency (𝜀"72K), and exergoeconomic factor (𝑓"72K),  for the compressor C-101.   

𝜀"72K =
1

1 + 𝐹"
 (5) 𝐹" = N

(𝛽 + 𝛾")𝐵"𝑛"
𝜏𝑐4,"𝐸𝑥̇2,"

(OPC0)
Q

O
?0RO

 (6) 𝑓"72K =
1

1 + 𝑛"
 (6) 

 
Furthermore an iterative methodology proposed by (Hamdy et al., 2019) was followed 
for the exergoeconomic optimization, the routine is presented on Figure 2. For the 
parametric study, the operational parameters were selected in function of the most critical 
components presented in the previous exergoeconomic analysis of the base case (Tinoco-
Caicedo et al., 2021). In order to balance the overall exergetic destruction cost rate (ĊT,U) 
and investment cost rate (ŻU) of the process, a value of 50% was considered as the 
optimum exergoeconomic factor (fk). 

 

Figure 2. Algorithm used for the exergoeconomic optimization 
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3. Results and Discussion 

The parametric study was performed first by analysing the effect of some important 
operational parameters presented on Table 1. These parameters were selected because 
they affect significantly the components which have the highest exergy destruction cost 
rate (𝐶̇W,") and investment cost rates (𝑍̇"). 

Table 1. Recommended changes for the main components of the process. 

Component 𝒇𝒌(%) 𝜺𝒌(%) Goal 𝑺. 𝑺𝑭𝒆𝒆𝒅 𝑷𝟏𝒔𝒕 𝑷𝒐𝒖𝒕	𝒎𝒂𝒏 
D-101 85.8% 52% 𝑍̇" ↓ ↑ ↓ ↑ 
D-102 54.8% 60% 𝑍̇" ↓ ↑ ↑ - 
E-101 2.0% 19% 𝐶̇W," ↓ ↑ - - 

The table shows some recommended changes in order to adjust the exergoeconomic 
factor to 50%. In order to achieve a reduction in the investment cost rate of the evaporators 
(D-101 y D-102), and the exergy destruction cost rate in the heat exchanger E-101, an 
increment in the concentration of soluble solids (S.SFeed) in the feed extract is required. 

On Figure 3. a) it is shown that an increment of the concentration of the feed extract to 
26% allows the reduction of the overall exergy destruction cost rate of the process. 

 
Figure 3. Effect of a) the initial concentration of soluble solids in coffee extract; b) the 1st 
effect pressure; c) the outlet pressure expansion valve; on the overall exergy destruction 
cost rate (•) and the product cost (•). 

21,860

21,864

21,868

21,872

21,876

5800

6000

6200

6400

6600

12 112 212 312 412

Pr
od

uc
t C

os
t (

$/
t)

Co
st

 D
es

tr
uc

tio
n 

($
/h

)

Outlet Pressure Expansion Valve

a) b) 

c) 

21,870

21,880

21,890

21,900

21,910

4000

5500

7000

8500

10000

17 20 23 26 29

Pr
od

uc
t C

os
t (

$/
t)

D
es

tr
uc

tio
n 

Co
st

($
/h

)

Concentration of Feed Extract (w/w%)

21,872
21,873
21,874
21,875
21,876
21,877
21,878
21,879
21,880

5000

5350

5700

6050

6400

12.00 32.00 52.00

Pr
od

uc
t C

os
t (

$/
t)

D
es

tr
uc

tio
n 

Co
st

($
/h

)

1st Effect Pressure (kPa)

a) b) 

2008 



Furthermore, on Figure 3.b) it is shown that a reduction in the 1st effect pressure (𝑃Olm) 
causes a reduction of the exergy destruction cost rate and a negligible increase of the 
product cost. An intermediate pressure of 33 kPa could minimize the product cost. 

Additionally, an increment of the outlet pressure in the expansion valve (𝑃nom	Cp?) causes 
a negligible reduction of the specific product cost as is shown in Figure 5. This is caused 
because the purchased equipment cost of the first effect evaporator is slightly reduced 
with the increment of pressure of the steam used for the heat exchanging. 

For the mono-objective optimization of the recompression system, the constants for the 
non-linear regression model (𝐵":275.834, 𝑛":0.85488 and 𝑚":0.9564) were estimated, 
with a R2 of 0.9972. The optimum values of 𝑓" y 𝜀" were 53,9% and 64% respectively. 
This result could be obtained when the compressor C-101 has an isentropic efficiency of 
65%.  

The results of the parametric study and the structural change are summarized on Table 2. 
It is shown that the steam recompression (structural change) allows for a more significant 
reduction of the specific product cost and an increase of 10% in the exergetic efficiency. 
This is caused because most of the exergy destruction rate is due to the condensation of 
the steam after the evaporation process. When this steam is recompressed and reused in 
the process, the exergy destruction rate is significantly reduced and therefore the specific 
product cost is also reduced. 

Table 2. Results of the exergoeconomic optimization  

Parameter Units Base 
Case 

1st  2nd  3rd  Optimized 
Case   

Parametric Study Structural 
Change  

𝑆. 𝑆4rrs % 22 26 26 26 26 
𝑃Olm kPa 25 25 35 35 35 

𝑃nom	Cp? kPa 101.3 101.3 101.3 300 300 
𝐶̇W,Knm $/h 7555 5973 6092 6412 2034 
𝑐2,Knm $/t 21888 21875 21873 21866 21663 
𝑍̇Knm $/h 199 182 179 163 203 
𝑓Knm % 2.57 2.96 2.85 2.48 9.09 
𝜀Knm % 80 84 84 83 93 

4. Conclusions 

The purpose of this study was to perform an exergoeconomic optimization of the 
recompressor of the DEEP of coffee extract to minimize de product cost and a parametric 
study to balance the investment costs and the exergy destruction cost rate. The results of 
this research show that the optimized recompressor has an isentropic efficiency of 65% 
and an exergetic efficiency of 64%. Furthermore the structural change had a more 
significant effect because the specific product cost was reduced by $225/t and the exergy 
destruction cost rate was reduced by 73%, while the exergetic efficiency increase was 
13%.  The parametric study allows to reduce the exergy cost rate and increase the 
exergetic efficiency by 15% and 5% respectively, while the specific product cost was not 
affected significantly. The initial concentration of soluble solids proved to be a significant 
parameter for the process, given that an 8 w/w% increase of the initial concentration of 
soluble solids reduced the avoidable exergy destruction cost by 15%. Finally, the results 
suggest that a reduction of the exergy destruction rate in the system can be achieved and 
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it is possible to have annual savings of $8.37x105 in the overall operating costs. Further 
research is needed to optimize the solid-liquid extraction of coffee, in order to achieve a 
higher initial concentration of soluble solids in the coffee extract. Also, the recompression 
system has to be proved in a pilot scale in order to confirm the results of the simulation.   
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Abstract 

In this work, we address the water-food-energy nexus by formulating an optimal control 
problem to mitigate extreme events, such as droughts and floods, by taking into account 
aquatic, agricultural livestock systems with associated carbon capture, as well as the 
required energy for irrigation. 

The resulting dynamic optimization problem is subject to a differential algebraic equation 
system with four modules that include ecohydrological, agricultural and livestock models, 
as well as the associated carbon dioxide capture. Energy is calculated to pump water in 
aqueducts, if necessary, and for drip irrigation. Numerical results show that the integrated 
management of the aquatic and agricultural livestock system in a semiarid region can 
effectively mitigate, even avoid, the effects of droughts and floods, while improving the 
economic incomes in the region. 

Keywords: optimal control, ecohydrological model, dynamic optimization, water-food-
energy-health nexus. 

1. Introduction 

According to the UN Food and Agriculture Organization (FAO), water footprint 
associated to food production is around 70% of global water consumption. Water 
footprint is an indicator of the amount of water required for a production process and is 
used as a basis for more efficient management of this valuable resource (FAO, 1998). In 
arid and semi-arid regions, water is a resource of highly variable availability, where 
management becomes fundamental to reduce uncertainty in predicting mid- and long-
term oscillations and thus supporting sustainable ecosystem services, particularly food 
safety food production. Droughts cause death of livestock, since animals cannot get 
access to drinking water, do not fatten and do not produce milk due to high temperatures 
associated to the lack of water and shade. Further, the uncontrolled variation of 
hydrochemical properties of water bodies can produce deleterious effects on reproduction 
and growth of valuable fish species. In Argentina, floods cause economic losses that can 
represent 1.1% of the Gross Domestic Product (World Bank, 2000), including crops, rural 
and urban inundation They increase uncertainty in investment strategies of touristic 
developments related to water bodies. The formation of transient, slow-moving, shallow 
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water surfaces can promote the explosive proliferation of disease vectors such as 
mosquitoes, snails, parasites, etc. Similarly, migration of wild birds that use wetlands for 
breeding and resting can exchange viruses with domestic poultry. In the last years, the 
water-food-energy (WFE) nexus concept has been promoted as a tool for achieving 
sustainable development accounting the relationship among these three resources. From 
a nexus perspective, integrated aquatic and agricultural livestock systems approaches, can 
help to solve some water-food-energy issues. Therefore, to achieve sustainability of 
hydrographic basins, interactions among the WFE fluxes and the ecosystems fluxes. For 
this reason, mathematical models that allow simulation and optimization representing 
environmental extreme events, such as droughts and floods, become fundamental tools 
for decision-making in the socio-economic development of a region (Siniscalchi et al, 
2018; 2019).  

In this work, we propose the formulation of an optimal control problem to address 
mitigation of extreme environmental events such as floods and droughts. The preservation 
of a valuable fish species within a salt lake is also addressed, as well the use of water as 
a resource in a productive livestock-agricultural system located in a semi-arid region. The 
optimization problem is constrained with a system of differential and algebraic equations 
representing ecohydrological and agricultural livestock models of a salt lake and its basin. 
Within this framework, four main objectives are addressed: a) to prevent flooding of a 
nearby village and its touristic areas during a wet period by diverting part of the flow 
from a Chasicó Lake tributary into a constructed reservoir (the diversion flowrate is a 
control variable); b) to optimize management of the constructed reservoir to keep salinity 
in the lake within a desired value for fish species (silverside) during drought periods; c) 
to include restoration strategies for native species that comprise a xerophilic woodland 
currently existing within the salt lake basin, combining new plantations of Prosopis sp, 
with drought resistant crops (Chenopodium quinoa) and pasture (Eragrostis curvula) 
,irrigated with freshwater taken from the proposed constructed artificial reservoir and d) 
to provide drinking water and shade to cattle. For the last three objectives, the outlet 
freshwater flowrate from the constructed reservoir is a control variable. Numerical results 
show that if water is accumulated in an artificial reservoir during wet periods (six-year 
period, with average annual precipitations of 650 mm), a subsequent ten-year drought 
period (average annual precipitations 250 mm) can be mitigated, while maintaining the 
salinity of Chasicó Lake for the conservation of silverside fishing. In this way, during the 
dry period, quinoa and pasture can be sown and Prosopis sp. can provide shade and fodder 
to cattle and long-term ecosystem benefits. The proposed dynamic optimization model 
has proven to be a powerful tool for water management in an integral way. 

2. Methodology 

We propose an optimal control problem for medium term planning of management 
strategies in integrated aquatic, agricultural livestock systems in semiarid regions under 
extreme events, such as droughts and floods. The main concept is to address this problem 
under the water-food-energy (WFE) nexus. The dynamic optimization problem is subject 
to a differential algebraic equations system that represents the integrated model. The 
objective function is an integral one that aims to keep a salt lake volume (and its 
associated salinity, as it is an endorheic basin), at a desired value, to avoid flooding of the 
nearby village and fields and to keep salinity at optimal values for reproduction of a 
valuable fish species, silverside (Odontheses bonariensis), which has been exported to 
several countries, as Japan. There are two control variables: the diverted stream flow to a 
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nearby constructed reservoir to avoid flooding while keeping salinity at 23 kg/m3 in a wet 
scenario and the stream flow that is fed to the salt lake from the constructed reservoir to 
keep lake salinity at the desired value in dry periods 𝑄ோ௘௦ሺ𝑡ሻ. When solving the dynamic 
optimization problem, the definition of a “wet” or “dry” period is not required, since this 
is determined by the input profiles provided for precipitations, temperature, wind and 
current conditions at daily time intervals. 

The agroecohydrological model has four integrated submodels: 

a) Ecohydrological model. It includes dynamic mass balances for water and salt within a 
salt lake and an artificial fresh water reservoir that is constructed to derive water during 
wet periods and to provide water for irrigation and to keep lake salinity within low values 
in dry periods.  

𝑑𝑚
𝑑𝑡

= ቈ𝑄௣௣ሺ𝑡ሻ ቆ
𝑉ሺ𝑡ሻ

ℎሺ𝑡ሻ
ቇ +𝑄௥௜௩௘௥ሺ𝑡ሻ+𝑄௚௪ሺ𝑡ሻ- Evap ሺ𝑡ሻ ൬

𝑉ሺ𝑡ሻ
ℎሺ𝑡ሻ

൰቉ 𝛿௪/1000 (1) 

here 𝑚 is the total water mass in the lake (kg); 𝛿௪, is water density (kg.m-3), which is 
assumed constant; 𝑉 corresponds to salt lake volume (m3) and ℎ is average depth 
(m). 𝑄௣௣ (L.day-1.m-2) corresponds to precipitations, 𝑄௚௪ (L.day-1) is groundwater 
flowrate. 𝑄௥௜௩௘௥ L.day-1) is the tributary discharge to Chasicó Lake, which is calculated 
as 

𝑄௥௜௩௘௥ሺ𝑡ሻ ൌ 𝑄௖௥ሺ𝑡ሻ െ 𝑄ௗ௜௩௘௥௧ሺ𝑡ሻ ൅ 𝑄௥௘௦ሺ𝑡ሻ (2) 

where 𝑄ௗ௜௩௘௥௧ (L.day-1) is the stream flowrate that could be diverted when necessary 
from Chasicó River (𝑄௖௥ሻ (L.day-1) to the reservoir during wet periods, to keep Chasicó 
Lake salinity within desired values (it is a control variable). 𝑄௥௘௦ (L.day-1) is the daily 
water amount that could be diverted from the reservoir to Chasicó River and, 
subsequently to the salt lake for salinity and volume control (this is also a control variable) 
in drought periods, if required. Evaporation per unit area (𝐸𝑣𝑎𝑝, L.day-1.m-2) is 
calculated taking into account energy and momentum balances (Penman, 1948; 
Siniscalchi et al., 2018a). As salt concentration in both groundwater and the tributary is 
negligible, we assume that salt mass is constant within the salt lake and salt concentration 
(Cs) is calculated as: 

𝑑𝐶𝑠
𝑑𝑡

ൌ - 
𝐶𝑠ሺ𝑡ሻ
𝑉ሺ𝑡ሻ

ቈ𝑄௣௣ሺ𝑡ሻ ቆ
𝑉ሺ𝑡ሻ

ℎሺ𝑡ሻ
ቇ ൅𝑄௥௜௩௘௥ሺ𝑡ሻ൅𝑄௚௪ሺ𝑡ሻ- Evapሺ𝑡ሻ ൬

𝑉ሺ𝑡ሻ
ℎሺ𝑡ሻ

൰቉ 𝛿௪/ሺ𝛿௪1000ሻ ሺ3ሻ 

The water mass balance in the artificial reservoir is as follows 
ௗ௏௥௘௦

ௗ௧
ൌ 𝑄ௗ௜௩௘௥௧ሺ𝑡ሻ ൅  𝑄௪௘௟௟ሺ𝑡ሻ ൅ 𝑄௣௣ሺ𝑡ሻ𝐴ሺ𝑡ሻ𝛿ுమை െ 𝐸𝑣𝑎𝑝ሺ𝑡ሻ𝐴ሺ𝑡ሻ𝛿ுమை െ 𝑄௥௘௦ሺ𝑡ሻ െ

∑ 𝑄௝ሺ𝑡ሻ௝ ,                       jൌ Prosopis sp, quinoa, E. curvula., cattle
ሺ4ሻ 

Where  𝑄௪௘௟௟ሺ𝑡ሻ corresponds to a stream from a flowing well; 𝑄௝ሺ𝑡ሻ is the daily water 
requirement for Prosopis sp (once seedlings are transplanted to field), quinoa, Eragrostis 
curvula irrigation and water requirement for cattle, respectively. Water requirement for 
trees and crops is calculated as a function of crop evapotranspiration 𝐸𝑇𝑞ሺ𝑡ሻ and 
precipitations.  
b) Agricultural model. It includes grow models and evapotranspiration calculations for 
Prosopis sp., quinoa (a high value crop), and a native pasture species, Eragrostis curvula. 
Biomass for Prosopis is calculated as follows. 
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𝐵𝑃 ൌ 𝑒ሺିଶ.ଵସାଶ.ହଷ଴∗௟௡ ሺ஽஻ுሻሻ (5) 

𝐷𝐵𝐻 ൌ 6.1 10ିସሺ𝑡ሻ ൅ 2.43 (6) 

where DBH stands for diameter breast height of Prosopis stem 
Actual evapotranspiration is 𝐸𝑇𝑖ሺ𝑡ሻ  is calculated as: 

𝐸𝑇𝑖ሺ𝑡ሻ ൌ 𝐾𝑖ሺ𝑡ሻ ∗ 𝐸𝑇0ሺ𝑡ሻ    ,iൌProsopis, quinoa, E. curvula.  (7) 

where Ki(t) correspond to the cultivation “coefficient” for each species, which is 
represented with Fourier series, which were adjusted based on data on their water 
requirement through the different growth stages in a semiarid region, based on data from 
from the literature. ET0 is calculated as function of air temperature, solar radiation, wind, 
vapor pressure, etc (Siniscalchi et al., 2019). 
c) Livestock model. It includes water requirement calculation for both breeding (270kg) 
and fattening (450kg) cattle, which is calculated at each time interval, as follows: 

𝑄௖௔௧௧௟௘ଶ଻଴ሺ𝑡ሻ ൌ ሾ16.765 ∗ 𝑒଴.଴ଶଽହ∗்ೌ೔ೝሿ ∗ 𝑁ଵ
(8) 

𝑄௖௔௧௧௟௘ସହହሺ𝑡ሻ ൌ ሾ27.64 ∗ 𝑒଴.଴ଶ଼଼∗்ೌ೔ೝሿ ∗ 𝑁ଶ
(9) 

where N1 and N2 is the number of cows from each size. Correlations are based on data 
collected from the semiarid region that constitutes our case study. 

d) Carbon capture model. Carbon capture (kg C/d) is calculated as function of tree and 
crop biomass as follows, 

𝐶𝐶ா௥௔௚௥௢௦௧௜௦ሺ𝑡ሻ ൌ 0.3 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠ா௖
(10) 

𝐶𝐶௉௥௢௦௢௣௜௦ሺ𝑡ሻ ൌ 0.5 ∗ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠௉௦௣
(11) 

Finally, energy calculations are carried out for pumps used in drip irrigation for crop and 
pasture. 

3. Numerical results 

In this work, the case study is Chasicó Lake and its endorheic basin, located in a semiarid 
region in Argentina. It is a salt lake. The optimal control problem described in Section 2 
has been implemented and solved with a control vector parameterization methodology 
within gPROMS (Siemens Process Systems Engineering, 2020), for a time horizon of ten 
years of drought, considering an initial lake salinity of 22.9 kg/m3 and an initial reservoir 
volume of 4.48E8 m3. Freshwater flowrate from a 700 m depth flowing well is 348 m3/h 
(𝑄௪௘௟௟ሺ𝑡ሻሻ. Precipitation, temperature, wind profiles are represented by Fourier series 
whose parameters have been estimated based on historical data for dry periods 
(Siniscalchi et al., 2019). Average total annual precipitations are 256 mm and average 
calculated evaporation in both the salt lake (6000 ha surface area) and the artificial 
reservoir (2800 ha surface area) is 1104 and 770 mm, respectively. The objective is to 
keep the salt lake volume within 4.8E8 m3 or, equivalently, lake salinity within 23 kg/m3, 
which is optimal for silverside fish reproduction. The dynamic optimization problem has 
13 differential equations and 42 algebraic ones. Total CPU time was 7168 s, considering 
time intervals of 15 days within a time horizon of 10 years. 
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Figure 1 shows salinity profiles without management; i.e., simulation results. It also 
shows profiles obtained with the proposed management strategy; i.e., solving the optimal 
control problem (by deriving freshwater from the artificial reservoir). It can be seen that, 
without management, salinity values increase to 73 kg/m3, deeply affecting fish 
reproduction and survival.  

 
 
 
 
 
 
 
 
 
 

 

Figure 1: Salinity profiles with (green 
lines) and without management (blue 
line)  

Figure 2: Water requirement for agriculture 
(blue line) and optimal profile for control 
variable (Qlake) (orange line)

 
  

Figure 3: Evapotranspiration profile for  
Eragrostis curvula 

Figure 4: Water requeriment for breeding 
(red line) and fattening (blue line) cattle 

 
 

 

 
 
 
 
 
 
 
 
 

Figure 5: Carbon storage by E. curvula Figure 6: Carbon storage in Prosopis wood 
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When the optimal control problem is solved, salinity is kept around 23 kg/m3 throughout 
the 10-year dry period, by deriving freshwater, Qlake, from the artificial reservoir. Qlake 
profiles (orange lines) are shown in Fig. 2, together with other water stream flows taken 
from the artificial reservoir and used for trees, crop and pasture irrigation. Figures 3 to 6 
show variable profiles in the optimal solution, i.e., obtained by applying the proposed 
management strategy. Figure 3 shows Eragrostis c. evapotranspiration profile, with a 
detail of the first year. Figure 4 shows water requirement for cattle, which includes 30 
breeding and 70 fattening cattle. 
Figure 5 shows carbon storage in Eragrostis c., with a detail of the first year profile, while 
Fig. 6 shows carbon storage in Prosopis sp. (a native tree species) wood, during the 10-
year period. The function is a sigmoidal one for a 30-year life cycle, but the studied period 
corresponds to the exponential growth phase. It can be noted that Eragrostis c. carbon 
capture is two orders of magnitude lower, as it is pasture for cattle. 
 

4. Conclusions 

In this work we have formulated an integrated model for planning management strategies 
under extreme weather events in aquatic, agricultural and livestock systems, by 
formulating an optimal control problem. Dynamic models are formulated for each system, 
rendering dynamics for water flowrates, salinity within the lake, volume, crop, pasture 
and trees biomass and carbon capture, among others. 

The model has proven to be an efficient tool to plan management within the concept of 
water-food-energy nexus. It can be demonstrated that the effects of droughts can be 
effectively mitigated, even avoided, while improving the economic incomes in the region 
preserving valuable fish population, allowing for the cultivation of high value-added 
crops (quinoa), pasture and even growing cattle in dry periods. 

Current work deals with the inclusion of detailed energy calculation, as well as the study 
of the effects of severe droughts on local population health. 
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Abstract 

Hydrogen is an energy carrier and is produced just like electricity. Hydrogen is liquefied 

for storage and transportation purposes to overcome the shortcomings of its low 

molecular weight and energy density per unit volume. The liquefaction of hydrogen is 

different from that of other substances as it involves a reactive transformation of its 

isomers: ortho-hydrogen and para-hydrogen. As the temperature decreases, the 

equilibrium concentration shifts toward a higher para- content from the normal 

concentration of 25 % at 25 °C. Para-hydrogen is preferred because of its lower boil-off 

rate, which is a major challenge at cryogenic temperatures. Ortho-para conversion, heat 

leak, sloshing, and flashing are considered as the reasons for such losses. The self-

conversion rate of hydrogen in a non-equilibrium state is extremely slow; however, at 

cryogenic temperatures, o-p conversion is an exothermic affair. From the liquefaction 

point of view, this exothermic heat of conversion is an added work, increasing he 

liquefaction energy requirement by about 15 %. Catalysts are used to achieve the 

equilibrium concentration of p-H2 at a finite rate. Little work has been done from the 

process systems point of view regarding o-p H2 conversion. Therefore, parametric 

analysis of this vital conversion reaction, the spatial distribution of intermediate heat 

exchangers, and impact on the energy efficiency of the liquefaction process have been 

studied and partially presented here. 

Keywords: Hydrogen Economy; Hydrogen Liquefaction; Ortho-Para Conversion; 

Hydrogen Energy Network. 

1. Introduction 

Hydrogen (H2) is considered a fuel that may revolutionize the future energy mix. It is 

the only zero-emission, sustainable, and flexible energy carrier with the potential to 

overcome multifaceted problems and serve as a comprehensive solution to the carbon 

footprint. High purity, high energy mass density, and high-power density are the 

hallmarks of hydrogen. Whereas, apart from its production woes, H2 does face some 

storage and transportation issues. However, the low molecular weight of H2, which 

results in a very low volumetric energy density, impedes its adoption as an energy 

vector, especially from the perspective of storage and bulk transport (Abdalla et al., 

2018; Zheng et al., 2019). H2 is usually stored and transported as compressed gas or 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50336-5 
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cryogenic liquid. Cryogenic liquid hydrogen (LH2) has three to four times higher 

volumetric energy density than compressed H2 (International Energy Agency (IEA), 

2019). LH2 is usually preferred over the gaseous form for longer distances or high 

volumes. With the advent and commercial success of liquified natural gas (LNG), H2 

liquefaction is drawing more interest and attention ever. 

LH2 has a very low boiling point (˗253 °C). Commercially, H2 is liquefied in a three-

stage process: precooling (up to ˗193 °C), cooling (up to ˗243 °C), and liquefaction (up 

to ˗253 °C). Liquid nitrogen is used as a refrigerant in the precooling phase, while a 

combination of JT valves or expanders and H2 itself is used in the subsequent stages 

(Riaz et al., 2021). The specific energy consumption (SEC) is the benchmark used for 

comparing commercial and conceptual process designs; the ideal value for a feed at 25 

bar is approximately 2.7 kWh/kgLH2 (Aasadnia & Mehrpooya, 2018; Stolzenburg et al., 

2013). However, the commercial plants operate at SEC in the range of 12.5–15.0 

kWh/kgLH2 (Yin & Ju, 2020).  

Moreover, there are two variants of molecular H2 depending upon the relative 

orientation of the nuclei of its constituent atoms: ortho-H2 (nuclei spin in the same 

direction) and para-H2 (nuclei spin in the opposite direction). The mixture composed of 

75 % ortho-H2 (o-H2) and 25 % para-H2 (p-H2) at 25 °C is called Normal H2 (n-H2). The 

two isomers are not at the same energy level with o-H2 being the excited state. The 

temperature dependent equilibrium between the two isomers shifts towards a more 

stable form with the decrease in temperature. This shift is called ortho-to-para 

conversion (OPC), and has a significant contribution to the SEC. 

The OPC is critical from the storage and transportation point of view. If n-H2 is 

liquefied without OPC, a portion of liquid will boil and trigger mass vaporization and 

energy losses. This happening is called boil-off and may vaporize 50% of the storage 

(Sherif et al., 2014) starting from 1% per hour (Baker & Shaner, 1978; Weitzel et al., 

1958). The best way to mitigate these boil-off losses is to convert and store as p-H2 

(Ghorbani et al., 2019). As the initial concentration of o-H2 decreases, there are lesser 

chances of boil-off losses, as depicted by Figure 1. Therefore, OPC is not neglected 

commercially, and a p-H2 concentration >95 % is ensured (Stolten & Scherer, 2013). 

The best way is to conduct OPC simultaneously with the liquefaction. Therefore, the 

commercial processes use the approach of converting ortho- to para-hydrogen together 

with liquefaction.  

2. Ortho–to–Para Conversion 

The impact of this spin on the properties of matter is so weak that the spin isomers 

almost remain conserved (Zhang et al., 2021). The fast cooling and instant liquefaction 

does not alter the molecular composition of H2 because of the slow OPC. It has been 

reported that the reaction is second-order (reaction rate = 0.0114 h-1) and takes a long 

time to establish equilibrium in the absence of a catalyst. This mode of OPC is called 

self-conversion, which is also governed by temperature. 
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Figure 1 Effect of OPC on the liquid hydrogen boil-off rate as a function of storage time 

(McCarty et al., 1981) 

The introduction of a suitable catalyst enhances the rate of reaction manifolds, magnetic 

materials, and radiation fields are often employed for the purpose. Generally, catalysts 

like iron oxide and nickel silica are pakced on the hydrogen side of the exchangers in an 

arrangement similar to a shell and tube heat exchanger (Jacob H. Stang et al., 2006). 

The following equation describes the chemical reaction inside the catalytic heat 

exchanger reactor: 

𝑜 − 𝐻2    →     𝑝 − H2   +    ∆𝐻 (1) 

It is said that the catalysis increases the energy requirements by 15 %, but it is the OPC 

that increases the heat load by around 15–20 % (Stetson et al., 2016; Stolten & Scherer, 

2013). The additional heat duty is the exothermic enthalpy of conversion, i.e., 527 

kJ/kg, higher than the latent heat of H2 (~447 kJ/kg), resulting in vaporizing the liquid 

or heating the already cooled part. 

 

The equilibrium constants of the ortho-para conversion of H2 in the ideal gas state are 

independent of pressure. Accordingly, pressure does not appreciably change the ortho-

para ratio under equilibrium conditions. Although the lowest rotation levels of the ortho 

and para varieties differ, ΔE (internal energy change) for the reaction is zero.  

3.   Research Methods 

In recent times, most studies related to H2 liquefaction are theoretical, i.e., modeling and 

simulation. The fact that the properties of spin isomers of H2 differ, especially those 

related to temperature. Estimation of thermodynamic properties is at the core of process 

design, either modeling or simulation. Simulation is preferred because of the availability 

of more reliable components database and precise thermodynamic models. Peng-

Robinson is the most widely used model for H2 liquefaction processes; however, recent 

studies have preferred the modified version of the original Benedict-Webb-Rubin 

equation of state. At present, simulating such a reactive exchanger with the catalyst 

filled in the H2 side of the exchanger is not possible in commercial simulation software. 

2019 
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To mimic the actual scenario, a reactor is installed right after the exchanger in 

simulation. 

Another important aspect is related to the kinetics of the OPC reaction. Although there 

are many experimental studies about the kinetics of this conversion, very few are related 

to kinetic modeling, and even fewer are in the form acceptable to simulation software. 

Therefore, the most widely used approach is to utilize a conversion reactor. The overall 

percent conversion is calculated using the equilibrium data reported in the literature 

(Harkness & Deming, 1932; Scott et al., 1964; Woolley et al., 1948), as presented in 

Figure 2 by using the following correlation.  

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =  𝐶𝑜 + 𝐶1 × 𝑇 + 𝐶2 × 𝑇2 (2)
where Co, C1, and C2 are conversion coefficients, and T is the H2 temperature in Kelvin. 

 

Figure 2 Change in equilibrium p-H2 concentration with temperature (Harkness & Deming, 1932; 

Woolley et al., 1948) 

4. Further Discussion 

Aspen Hysys® has been used in this study which uses Eq. (2) to calculate the percent 

total conversion. Depending on the process configuration and the number of reactors 

used, the values reported in the literature vary. The values calculated for the conversion 

coefficients of each reactor in our recent contribution (Qyyum et al., 2021) are 

presented in Table 1 as an example. The conversion coefficients were obtained via 

fitting such that the p-H2 concnetraion and temperature at each reactor’s outlet 

coincided with the reported data. A similar approach was adopted by Ghorbani et al. 

(2019), Hammad & Dincer (2018), and Sadaghiani & Mehrpooya (2017) to name a few. 

The problem with this approach is that the operating conditions, especially temperature, 

have to be fixed at the reactor outlet; otherwise, the coefficients must be calculated time 

and again. Also, the heat of conversion is not entirely reflected in the reactor outlet 

stream leading to errors in the SEC and exergy efficiency calculations. A more 

appropriate way is to use the equilibrium H2 data so that the temperature dependency 

and heat of conversion are accounted for. 

Another aspect is the mode of operation for these reactors. The commercial processes 

use liquid nitrogen/hydrogen baths to carry out the OPC in an isothermal environment, 

while adiabatic reactors are also used in between. The current process schemes do not 
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consider this very important factor. The conceptual studies' specific energy and exergy 

calculations err by approximately 20 %, to say the least. The temperature thresholds for 

each exchanger/reactor shall not remain the same once an adiabatic reactor is 

considered, whose impact on the overall energy scenario is challenging to comprehend 

in the simulation environment.  

Table 1 Coefficients for percentage conversion to be used in the conversion reactor model in 

Aspen Hysys® (Qyyum et al., 2021) 

Reactor ID Conversion Reactor Coefficients 

 Co C1 C2 

R-1 66.12 −0.4125 1.168×10-3 

R-2 85.35 −0.3325 1.118×10-2 

5. Conclusions 

The present study has considered a brief analysis of OPC in the broader context of H2 

liquefaction. The limitations of the current simulation approaches have been 

highlighted, ranging from property estimation techniques to the use of conversion 

reactors. The mode of operation of these reactors results in incorrect energy 

consumption estimates. Therefore, a more thorough analytical analysis may pave the 

way to develop an understanding of the complex H2 liquefaction process, which not 

only saves energy but also help solve the process design issues. 
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Abstract 

To evaluate risks and characterise the responses of a rainwater harvesting system under 

different rainfall types, this paper presents a model agnostic evaluation framework where 

a k-means clustering approach is supplemented with a statistical Partial Least Squares 

model. Four response modes were identified for a studied system. Using these response 

modes, a higher risk of system overflow was found in 4.5% of simulated scenarios with 

inadequate water supplies found in 48.2% scenarios. The rainfall distribution in time was 

found to be crucial in determining the response mode of the system, with sporadic high 

intensity events or consistent, high total volume events allowing the system to operate in 

a response mode corresponding to lower system stresses, but with reduced provision of 

rainwater.  

Keywords: Rainwater harvesting and detention; Environmental Systems; Modelling, 

Analysis and Simulation 

1. Introduction 

Rainwater harvesting (RWH) systems have shown considerable promise as an alternative 

or addition to existing urban water management systems as a strategy for ensuring long-

term sustainability. Acting as a temporary detention system and a secondary water source, 

an RWH system facilitates achieving long-term sustainability by reducing stresses in 

centralised wastewater management systems, improving efficiencies in local water reuse, 

and minimizing the need for potable water supply.  

In the current climate of increasing pressures on urban water supply, however, the 

adoption rates for RWH systems have been relatively low. Cities require assurances of 

the long-term effectiveness and sustainability of new infrastructural investment, but the 

process of evidencing the efficiency of RWH systems can be complex and time 

consuming. Modelling these systems provides researchers and system managers a cost-

effective method of analysis that would otherwise be capital intensive. Model accuracy is 

therefore a key challenge in the implementation of RWH systems.  

In addressing these barriers, much of the existing research has focused on showcasing the 

effectiveness of RWH systems operating under an extensive list of climatic conditions 

(Jing et al., 2018), demand scenarios (Nnaji et al., 2017) and operational strategies (Soh 

et al., 2020). With the intention of ensuring model accuracy or improving the accessibility 

of modelling methods to non-researchers, a plethora of modelling and tank design 

approaches have been developed around the world. Quinn et al. (2021) studied how best 

to characterise and evaluate the performance of RWH systems in terms of meeting both 

the objectives of supplying water and in stormwater management. In comparing model 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50337-7 
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outputs with empirical data, Ward et al. (2012) showed that detailed methods provided 

the best approximation of real RWH performance, but require detailed, long-term data to 

achieve their full potential. This is complicated by the fact that RWH systems are sensitive 

towards their local environments and in-depth modelling and evaluation is typically 

required for each implementation, which can become impractical for water managers 

around the world. In this paper, a model agnostic statistical framework is presented for 

evaluating system risk and performance as a practical strategy for evidencing the long-

term sustainability and efficiency of RWH systems.  

2. Methods 

To map RWH system behaviors with rainfall types and characteristics, system response 

modes were derived from k-means clustering of performance indicators. This was 

coupled with a Partial Least Squares (PLS) model which relates the rainfall statistical 

markers with their corresponding system performance indicators in latent space as a fast 

and holistic method for evidencing RWH system performance and sustainability.  

2.1. System Modelling  

A digital twin which utilised mass balances for modelling storage tanks and orifice flow 

equations for flows between tanks within the system was previously developed for a 

three-tank urban RWH system (Soh et al., 2020). With historical rainfall data available at 

five-minute intervals, the rainfall volumes were uniformly disaggregated to match the 

one-second time resolution used in the digital twin model.  

Using historical rainfall data divided into 24-hour windows, 1496 samples of simulated 

system behaviors were recorded with a focus on the system’s ability in controlling water 

quantities under a passive operational model. The performance indicators were developed 

accordingly with the purposes of maximizing the water availability provided by the RWH 

system, protecting against surface inundation, and the prospects of doing so with minimal 

spatial costs. More specifically, these are: 

- Harvested Volumes: Total volume of water collected at the end of the 

simulation, preferably maximized to establish the water availability levels 

achievable by the system.  

- Unused Capacities: Tank capacities that have not been used throughout entire 

simulation period, if possible, maximized to determine the minimal tank sizes 

required to handle different rainfall patterns. 

- Overflow: Maximum amount of water in a single one-second timestep that 

overflows from the system, which should be minimized to ensure that excess 

water is adequately removed from the urban catchment in the maintenance of the 

health and safety objectives of implementing a RWH system.  

- Maximum Discharge Rates: Discharge rates out of the system into the larger 

wastewater network, measuring stresses the system may provide to its 

counterparts downstream and should be minimized. 

2.2. K-means Clustering 

The k-means clustering works to separate the system responses into groups of equal 

variances through minimizing the within-cluster-sum-of-squares, in turn identifying the 

main response modes of the RWH system. The number of significantly different response 

modes is determined through the optimal number of clusters for a k-means algorithm, 

established empirically using the Python Scikit-Learn library (Pedregosa et al., 2012) and 

selecting the number of clusters that demonstrated the highest average silhouette score.  
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Table 1: List of rainfall statistical markers used in PLS model.  

Marker Description Representation 

Maximum observed 

rain rate 

Highest volume of water observed in a single 

timestep in the timeseries.  

Volume, 

Intensity 

Rain-only mean Mean of all non-zero timesteps in the timeseries Volume, 

Intensity 

Rain-only standard 

deviation 

Standard deviation of all non-zero timesteps in 

rainfall timeseries 

Volume, 

Intensity 

Non-zero timesteps Number of wet timesteps in the timeseries Duration, 

Distribution 

Maximum 

continuous rainfall  

Maximum number of continuous timesteps with 

non-zero rainfall in the timeseries. 

Duration, 

Distribution 

Adjusted 

precipitation 

concentration index 

(PCI)  

Measures the spread of rainfall within the 

timeseries. Defined as a function of timeseries 

with 𝑁 timesteps with mean 𝜇 and standard 

deviation 𝜎:  

𝑃𝐶𝐼 =
1

𝑁
[1 + (

𝜎

𝜇
)
2

] × 100(%) 

Duration, 

Distribution 

2.3. PLS Model  

The PLS model works to relate model inputs with its outputs though their latent spaces 

and was built using the Python toolbox PyPhi (García-Muñoz, 2019). As the PLS is a 

projection-based method, the selection of input variables should be independent. From 

the set of rainfall timeseries data, a set of statistical markers, presented in Table 1, were 

extracted such that the volumes, intensities, duration, and distribution of rainfall in a 

single 24-hour timeseries is represented as much as possible.  

2.4. Supplementing clustering results with PLS scores 

Scores, or projections of the statistical markers into latent space, provided by the PLS 

model were coupled with the results derived from the k-means clustering. With each score 

labelled by their corresponding cluster label, clusters in the latent space, as well as their 

corresponding driving factors can be identified. The relative positions between input 

samples in latent space highlights the differences in the original input variables for these 

samples. This can be used to indicate the properties that change between two given sample 

points, and by extension, used to identify the rainfall properties that distinguish two given 

response modes. 

3. Results and discussion 

3.1. Clustering and the classification of response modes 

Through the clustering of the performance indicators, four main response modes for the 

system were identified. Boxplots visualising the distribution of the performance 

indicators in each cluster were used to characterise each response mode, where:  

- Cluster 0 contains system responses that have low water availability, but a 

smaller tank would suffice and has minimal discharge rates for high integrability.  

- Cluster 1 represents system behaviors that demonstrate high water availability 

and discharge rates, but without utilizing much of the existing tank capacity.  

- Cluster 2 responses show low discharge rates out of the system, with high water 

availability and little need for a large tank capacity.  

- Cluster 3 includes responses that have the highest discharge rates and water 

availability out of all the response modes. However, this is also accompanied by 

the need for a larger tank capacity.  
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Figure 1: Projection coefficients used in PLS model for (a) input vectors onto latent variable 1, 

(b) output vectors onto latent variable 1, (c) input vectors for latent variable 2, and (d) output 

vectors for latent variable 2.  

An analysis of the rainfall profiles contained in each cluster showed that rainfall volume 

is a significant driver of the response modes of the system. This follows with the rainfall 

profiles in Cluster 3 with the highest rainfall peaks, and profiles in Cluster 0 containing 

rainfall data with low intensities and volumes. Both clusters have sub-optimal 

performance, where Cluster 3 demonstrates a risk of overflow occurring, and Cluster 0 

providing low water yields. The cluster sizes for these modes quantified the risk of 

undesirable system performances, with 4.5% and 48.2% of the total rainfall scenarios 

demonstrating possible overflow and low water availability respectively. The responses 

in Clusters 1 and 2 are much more desirable, and the rainfall characteristics distinguishing 

between these response modes and the sub-optimal modes would be identified alongside 

the statistical PLS model. 

 

Figure 2: Score scatter of rainfall markers in latent space and main variable shifts along axes. 



   

3.2. PLS model and the identification of main system driving forces 

The PLS model identified two main driving forces in the RWH system, which are 

represented by the two latent variables found to best represent the input and output 

vectors. The latent variables were found to be able to explain the variation in 87.5% of 

the input, and 59.3% of the output. Whilst this study focuses on characterizing the impact 

of rainfall on the system performance, the behavior of a RWH system is expected to also 

be highly dependent on its internal design and is assumed, in this case, to account for the 

other 40.7% of variation observed in the outputs. Figure 1 shows the projection 

coefficients derived from the PLS model for both latent variables in the input and output 

vectors. The first input latent variable has coefficients for all inputs variables except the 

PCI marker positively correlated with each other and hence it is associated generally with 

the input rainfall volumes. The second input latent variable is associated with the rainfall 

duration and distribution, demonstrating that longer rainfall events are typically 

correlated with lower rainfall volumes and intensity.  

In examining the relationship between the input and output variables in latent space, the 

model suggests that a higher rainfall volume, regardless of its distribution in time, is 

positively correlated with a higher discharge rate and improved water availability. Higher 

rainfall volumes also tend to require a larger tank, as observed in the first latent variable, 

the dimension associated with the overall rainfall volumes. Coefficient values in the 

second output latent variable are very low, hence correlations shown between the input 

and output vectors in this dimension are not significant.   

3.3. Distinguishing rainfall properties between response modes  

The input latent variables were plotted in latent space and coupled with response mode 

labels derived from the k-means clustering discussed in Section 3.1. Figure 2 shows the 

input variables represented in latent space and the associated changes in input variables 

in each axis direction. There are clear distinctions between each response mode in the 

input latent variable space. With Cluster 3 lying mostly within the high rainfall volume 

quarters and Cluster 0 in the low rainfall quarters, this confirms the initial analysis about 

rainfall volumes playing a key role in influencing the system’s response mode.  

For a given value for the second latent variable, the extreme values of the first latent 

variable typically belong to a response mode different from that of the central values, 

giving a parabolic structure to the clusters. In conjunction with the loadings plot shown 

in Figure 1(a), these extreme values in the first latent variables would correspond to either, 

in the negative direction, rainfall with more consistent and high rainfall volumes, or in 

the positive direction, more unevenly distributed rainfall patterns.  

Rainfall days either with consistent but low intensity rainfall delivering a high total 

rainfall volume, or sporadic but high-intensity rainfall delivering lower total rainfall 

volumes would, therefore, drive the system towards a response mode with lower system 

stresses. This is characterised by smaller tank capacities, better integrability with its 

downstream systems, but accompanied by a reduced ability in ensuring water availability. 

This is evident in how the samples belonging to Cluster 2, which is associated with lower 

discharge rates and water availability than in Cluster 1, wraps the input latent space 

samples belonging that cluster in the second latent variable space. 

4. Conclusions 

The coupling of the k-means clustering method with a statistical PLS model successfully 

identified specific rainfall features that distinguishes between the response modes of the 

Model agnostic framework for analysing rainwater harvesting
 system behaviors   
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RWH system in evaluation. For the given case study, the consistency in the delivery of 

the rainfall input is key in determining its response mode. Uniform rainfall rates that 

contribute to a high total rainfall volume, or sporadically intense rainfall would lead the 

system towards a response mode with lower water availability, but with lower capacity 

requirements and improved integrability with downstream systems.  

This framework for evaluating the performance of a given RWH system also 

characterised the risks of the system responding sub-optimally. Under passive operation, 

the three-tank RWH system examined in this work has been found to underperform in 

52.7% of the simulated scenarios. With the inclusion of design and or control parameters, 

their associated impacts can also be evaluated to ensure that the response modes for a 

RWH design is adequately within the desirable performance bounds. In understanding 

the rainfall characteristics that drive the system from one response to another, the 

framework can be used to assess future risks and hence the long-term sustainability of the 

system using predicted changes to rainfall runoff characteristics. With this information, 

necessary precautions that target the root changes can be easily designed into the system.  
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Abstract 

Energy consumption can be a great environmental burden with heavy greenhouse gas 

emissions. Renewable energy, negative emission technologies, and waste-to-energy 

technologies are promising methods to assist in transitioning the energy- and carbon-

intensive current energy systems towards low-carbon systems, mitigating emissions, 

contributing to carbon neutrality targets, and even achieving negative emissions. The 

availability of renewable resources is temporally uncertain and geographically different. 

Besides, the optimization and the conflicting economic and environmental trade-off of 

such systems have not yet been fully investigated in the literature. This study aims to 

provide a versatile framework for the assessment and sizing of renewable and negative 

emission technologies for global regions. The study also sheds light on the economic 

viability and carbon mitigation/reduction potential achievable by the combination of 

renewable energy and negative emission technologies regionally and globally. 

Keywords: Hybrid renewable energy system, Negative emission, Design, Optimization, 

Analysis. 

1. Introduction 

Throughout history, we have gone through the energy transition from human and animal 

power to steam and from steam to electricity. The evolution of electricity has brought us 

tremendous economic prosperity and shocking changes in our daily lives, from the way 

we live to the way we think. However, while we enjoy an improved quality of life and 

convenience, we also pay a huge price for burning fossil fuels, rich reserves of carbon 

that can be stored well underground for thousands of years without human extraction. 

The world of fossil fuels has brought with it a dramatic increase in greenhouse gases in 

the atmosphere and the associated problem of climate change. 

 

Figure 1 shows the emissions of the six major carbon emitters globally. Until the mid-

20th century, the United States and Europe dominated the world's major carbon 

emissions. Emissions from the rest of the world began to rise significantly from the 

second half of the 20th century, with major increases in Asia, particularly China. Since 

2006, China has surpassed the United States as the world's largest emitter of carbon 

dioxide. The main reasons can be attributed to the country's rapid industrialization, 

urbanization, and reliance on major fossil fuels such as coal. However, in terms of per 

capita greenhouse gas emissions, the United States., Russia, and Europe continue to be 

the highest per capita emitters. But since 2000, the per capita carbon emissions in the 

United States has started to fall, which is against the climb and stabilization of China's 

carbon emissions around the same period.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50338-9 
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    Fig. 1 Greenhouse gas emissions of the top six emitters around the world (Andrew, 

2020; Hannah Ritchie; Max Roser, 2020). 

 

Having experienced previous energy transitions, today, in the first half of the 21st 

century, we are about to witness another energy transition: from a fossil fuel-dependent 

energy system to a low-carbon, renewable, sustainable energy system. There is a 

growing awareness of the drawbacks and dilemmas of producing energy from fossil 

fuels, air pollution, greenhouse gas emissions and depletion, and the more difficult 

extraction that comes with it. Initiated by non-governmental organizations, the IPCC 

helped set the goal of carbon emissions, a goal of limiting global warming to well below 

2° C, preferably 1.5° C, compared to pre-industrial levels. To achieve this goal, many 

countries set up their targets to peak their domestic greenhouse gas emissions in order to 

achieve a carbon-neutral world by the middle of the century. 

 

Since 2015, 193 countries have submitted their climate commitments. At least 50 of 

these countries have set net-zero emission targets (Members of the Carbon Neutrality 

Coalition, 2021; Darby and Gerretsen, 2021; Wallach, 2021). Table 1 lists the carbon 

neutrality targets for several countries, including the major carbon-emitting economies 

such as China, the U nited States, the European U nion, and Japan (ranked by annual 

carbon emissions). In addition to China' s neutrality target, the U nited States has also 

proposed a statement of intent to achieve net-zero emissions by 2050 and 100% clean 

electricity by 2035. The governments of South Africa and Chile have also expressed 

their policy position of achieving net-zero emissions by 2050. The EU , Japan, South 

Korea, Canada, and Brazil have established explicit legislation or submitted written 

commitments to the U nited Nations to become carbon neutral in the coming decades. 

 

Table 1 Net-zero carbon emissions goals set by different countries. 

Country Target date for carbon neutrality Commitment 

China 2060 Statement of Intent 

U nited States 2050 Statement of Intent 

EU  2050 Submitted to the U nited Nations 

Japan 2050 Law 

Korea 2050 Submitted to the U nited Nations 

Canada 2050 Law 

Brazil 2060 Submitted to the U nited Nations 

South Africa 2050 Policy Position 

Chile 2050 Policy Position 
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G lobal assessment and optimiz ation of renewable energy and negative
 emission technologies

  

 

Under the common vision of humanity to reduce carbon emissions, renewable energy 

and negative emission technologies are promising technologies in the blueprint of low-

carbon transition of energy systems (Li et al., 2019). However, hybrid renewable energy 

systems combined with negative emission technologies, which have a synthetic effect 

and promising potential in building low-carbon energy systems, are still under-explored. 

Therefore, here we develop a versatile framework for the assessment and scaling of 

renewable and negative emission technologies in global regions, and to elucidate  

the economic feasibility and carbon reduction potential of these technologies. 

2. Methodology 

The study is carried out through data collection, modeling, and optimization based on 

the modeling method in Li et al. (2019), which is summarized in Figure 2. The inputs 

for the optimization model include meteorological, biomass, land area, economic, and 

social data for each of the countries. The coordinates for cities are obtained from 

ArcG IS online (2021). The models for renewable energy include solar PV, onshore 

wind, gasification, incineration, and pyrolysis. Biomass resources available for waste-

to-energy conversion include horticultural wastes and wood wastes. The economic 

performance of the system is evaluated by the net present value. The environmental 

performance is quantified by the equivalent CO 2 emission. Either or both of them can be 

used as the objective function of the optimization. The constraints of technology 

placement include the resource limit for power generation, the requirement of demand 

satisfaction, and the design of operating constraints for the specific technologies. It is 

interesting to see what the technology planning would be like if the optimization is done 

to maximize each country’s own benefit and the case maximizing for the global benefit 

as a whole. Therefore, we are carrying out the scenario analysis for three different 

scenarios: the case for maximized economic performance for each country, the case for 

maximized economic performance for the world as a whole, and the case for minimized 

greenhouse gas emissions globally.  

 

Optimization 

Objective(s):  
Economic (net present value) and/or Environment (greenhouse 
gas emissions) 

Scenario 
Maximize each country’s benefit vs Maximize for Global benefit 

Policy and strategy discussion 
Challenges and suggestion 

Constraint 
Generation/Source (resources for power generation) 
Design and operational constraints (land, construction material 
(rare metal), technical operation, transportation, and 
transmission) 
Consumption/Sink (electricity demand, biochar sink) 

Model 
 
Renewable energy 

Negative emission 
technologies 

Data 
 
- Meteorology data 
- Biomass resource 
- Demand 
- Costs and other social   
economic data 

Fig. 2 Methodological framework. 
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3. Results and Discussion 

We first calculate the maximum technology capacity achievable around the world 

without considering any constraints to have an overview of the resource potential by 

technology and by region. Table 2 summarizes the maximum potential of technology 

capacity sorted by power generation method. 

 

Table 2. The maximum potential of technology capacity by power generation method 

(kW) 

 Solar Wind Combustion Gasification Pyrolysis 

Capacity 4.99×1013 7.08×1012 1.11×107 9.51×106 6.73×106 

Percentage over 

total available 

potential 

88% 12% ~ 0% ~ 0% ~ 0% 

 

It can be found that the magnitudes of solar and wind availability are much higher than 

those for biomass conversion methods including combustion, gasification, and 

pyrolysis. Besides, the maximum total energy generation potential by the technologies 

by country is shown in Figure 3. It can be found that Russia, French Southern 

Territories, Chile, Bolivia, and the United States have the most abundant (mainly solar) 

energy resource for the technologies considered. 

 

 
Figure 3. The maximum potential of renewable generation by country. 
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With this basis, we carried out the optimization by maximizing the case for maximized 

economic performance for each country (Scenario 1), maximizing the economic 

performance for the world as a whole (Scenario 2), and minimizing the greenhouse gas 

emissions globally (Scenario 3). The optimized results are provided in Table 3. It was 

found that maximizing the economic performance for countries and regions individually 

and optimizing globally as a whole result in almost the same economic and 

environmental performance. Moreover, minimizing the environmental performance as 

the objective function could result in an overall negative greenhouse gas emission, but it 

may lead to a dramatic increase in cost compared to the optimal NPV scenario. For the 

cases of maximizing the economic benefit, it was found that almost all regions, except 

15 of them, are economically preferable for the utilization of the considered 

technologies no matter it is optimized for each country (Scenario 1) or globally 

(Scenario 2). Solar energy is the most selected technology for most regions in these 

cases. On the other hand, fourteen regions have no technology selected when the 

greenhouse gas emission is minimized as an environmental objective mainly due to the 

limited biomass resources.  

 

Table 3. Result for different optimization scenarios. 

 

Scenario 1: 

Maximum 

economic 

performance for 

each country 

Scenario 2: 

Maximum 

economic 

performance 

globally 

Scenario 3: 

Minimum 

environmental 

performance 

globally 

Net present 

value 
2.15×1014 2.18×1014 -3.4×1010 

Greenhouse 

gas emissions 
1.11×1012 1.11×1012 -3.7×1010 

 

 

4. Conclusion 

This work presents the economic assessment and the potential for carbon reduction via 

renewable energy and negative emission technologies for countries around the world. 

The geographical diversification of renewable resources and system design was 

observed in global analysis. The result shows that except for 15 places, almost all 

countries and regions around the world were decided to be profitable locations for the 

proposed system when net present value is maximized. Negative emission was possible 

to be achieved globally if greenhouse gas emission was minimized, but it may lead to a 

dramatic increase in cost compared to the optimal NPV scenario. The methodology 

framework was demonstrated to be versatile and conveniently applicable to study the 

feasibility of the proposed renewable and negative emission technologies in multiple 

regions. In future studies, the impact of grid integration of renewables, a higher-

precision analysis accounting for the temporal-spatial variation of various factors can be 

carried out to provide more insights.  

Global assessment and optimization of renewable energy and negative
 emission technologies
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Abstract 

In energy system models, computational tractability is often maintained by adopting a 

simplified temporal and spatial representation in a deterministic model formulation i.e., 

neglecting uncertainty. However, such simplifications have been shown to impact the 

optimal result. To address the question of how to prioritize the limited computational 

resources, the trade-off between spatial resolution and uncertainty is assessed by applying 

a novel method based on global sensitivity analysis to a peer-reviewed heat 

decarbonization model. For all output variables apart from the total system and fuel cost, 

spatial resolution is ranks amongst the five most important model inputs. It is the most 

relevant factor for investment decisions on network capacities. For the total fuel 

consumption and emissions, spatial resolution turns out to be more relevant than the fuel 

prices themselves. Compared across all outputs, the analysis suggests the impact of spatial 

resolution is comparable the impact of heat demand levels and the discount rate.  

 

Keywords: Spatial Resolution, Uncertainty, Mixed-integer Linear Program, Energy 

System Model, Global Sensitivity Analysis 

1. Introduction 

Energy system models help to explore different decarbonization pathways to reach net 

zero by 2050. Given the time horizon and scope, these models are often large and rely on 

long-term forecasts of input parameters. Computational tractability is maintained by 

adopting a simplified temporal and spatial representation of the system as well as a 

“deterministic” model formulation (i.e., neglecting uncertainty). However, the 

shortcomings of these approaches have been shown, notably in power systems 

applications: At low temporal resolutions, the dispatchable generation and storage 

capacities are underestimated whereas the renewable generation capacity is overestimated 

due to the smoothed production and demand profiles. This impact is especially 

pronounced for systems with high shares of intermittent and non-dispatchable renewables 

(Pfenninger, 2017). While the impact of temporal resolution and suitable aggregation 

methods have already been reviewed, the literature on the impact of spatial resolution is 

more limited and less conclusive. In power systems, the impact of spatial resolution on 

the total system cost is small compared to the changes in generation and flexibility 

technologies. Hörsch and Brown (2017) observe an increased investment in transmission 

capacity and a decrease in solar PV with increased spatial resolution for Europe, while 

Krishnan and Cole (2016) report the opposite effect for the US. In Jalil-Vega and Hawkes 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50339-0 
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(2018a), the averaging of heat demand densities at lower spatial resolution leads to an 

underestimation of district heating potential for local authorities (LA) with heterogenous 

demand levels in the UK. Global sensitivity analysis (GSA) has been applied to national 

energy system models to quantify the impact of uncertainty of model inputs (input 

parameters) (Pye et al., 2015; Moret et al., 2017). Economic parameters such as fuel prices 

and investment cost of technologies have commonly been identified as most relevant. 

Overall, these recent studies leave the modelling community with the question of how to 

prioritize computational resources: including uncertainty or increasing spatial/temporal 

resolution? 

To our knowledge, this paper is the first to compare the impact of spatial resolution and 

uncertainty of input parameters. A novel methodology is applied to a case study in 

literature to assess this trade-off over a wide range of output variables. The fundamental 

novelty is that spatial resolution is considered as an uncertain input parameter in a GSA 

allowing to rank its importance relative to other uncertain input parameters. 

2. Methodology 

2.1. Novelty  

GSA methods allow to quantify the impact of input parameters on one or more model 

outputs (Saltelli et al., 2008), where impact is defined as the ability of an input parameter 

to significantly alter a given output of interest when varied from its nominal value that 

corresponds to its most likely realization. Modelling choices such as spatial resolution are 

not commonly referred to as ‘input parameters’ and have therefore never been considered 

in GSA studies. In this work, we propose using GSA methods in a novel way that allows 

to assess the trade-off between spatial resolution and uncertainty in energy system models 

within the same methodological framework. 

 

 
Figure 1: A summary of the three steps (1, 3, 4) involved in a conventional GSA 

(top) with the addition of spatial resolution (2) as an uncertain input parameter 

with discrete uniform distribution (bottom). In the case study, three distinct 

levels of spatial resolution (N=3) are modelled, having equal probability of 1/3. 

 

Our proposed modified GSA method is illustrated in Figure 1. In conventional GSA 

studies, the uncertainty distributions p(θ) of the input parameters θ serve as inputs to the 

GSA. In our novel approach, the spatial resolution is included as an additional “uncertain” 

parameter (φ) characterized by a discrete uniform distribution p(φ). The finite number of 

spatial resolution levels are characterized by a numerical value 1, 2, …, N with N being 

total number of different resolutions considered in the analysis. Each level of resolution 

has equal probability 1/N. This modification allows us to consider spatial resolution 

alongside the usual input parameters in the GSA, hence assessing its relative impact with 
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respect to uncertainty in model inputs. In the following, spatial resolution and input 

parameters will collectively be referred to as input factors. 

2.2. Global Sensitivity Analysis 

The modified Morris Method is applied to obtain a qualitative ranking over a large set of 

input factors. To determine the elementary effect (EE) of each input factor on the outputs 

of interest, the input space is discretized into a p-level grid and systematically sampled 

using r trajectories. At each step of the trajectory, one of the k input factors is varied 

changing its value by ∆ with ∆=p/(2(p-1)) (Saltelli et al., 2008). To avoid the 

computational burden of oversampling, the enhanced Sampling for Uniformity (eSU) 

strategy is applied (Chitale et al., 2017). The EE of input factor θi on output variable Yj in 

trajectory m, EEmij, is subsequently calculated as the ratio between the change in the input 

factor and the consequent change in the output variable, as shown in Eq. (1). 

𝐸𝐸𝑚𝑖𝑗 =
𝛿𝑌𝑗

∆
 

 

Campolongo et al. (2007) have shown that μ*
ij, the mean of the distribution of the absolute 

values of EEmij, is a good proxy to the total effect sensitivity index, that is normally 

determined using computationally expensive, variance-based methods. To compare the 

impact on multiple output variables of varying magnitudes and units, a similar approach 

to Sin and Gernaey (2009) is chosen by scaling μ*
ij by σj, the standard deviation of the 

output variable Yj:  

2.3. Case Study 

The method is applied to a spatially resolved, mixed-integer linear model for urban energy 

systems (Jalil-Vega and Hawkes, 2018b), which was previously used to study the impact 

of spatial resolution on the district heating uptake in six LAs with varying rural-urban 

character (Jalil-Vega and Hawkes, 2018a). The LA of Winchester is chosen and modelled 

at LA (1 node), middle layer super output area (MSOA, 10 nodes) and lower layer super 

output area (LSOA, 49 nodes) level as shown in Fig. 1. With increasing spatial resolution, 

the initial network capacity between and within cells, the heat and electricity demand and 

the distance between cells become more resolved. The domestic heat, gas and electricity 

supply infrastructure are explicitly modelled. The design and operation of the heat supply 

system minimizing the total system cost is determined from today until 2050. The same 

nomenclature as in Jalil-Vega and Hawkes (2018b) is used. 

Apart from the lifetime of technology and network, all model parameters presented in 

Jalil-Vega and Hawkes (2018b) are considered as uncertain: Fuel prices (CostE/CostG), 

capital cost of technologies (CostC
tech), technological performance (ηThtech /COPtech /ηEtech), 

capital cost of intranodal network capacity (CostND
E/G/H), capital cost of internodal 

network capacity (CostNT
E/G/H), operation and maintenance cost (CostM

tech), losses in heat 

networks (LossT), discount rate (r), electricity and heat demand (DemE/DemH). The 

uncertainty ranges, R%, summarized in Table 1 are determined based on UK specific data 

where possible (Yliruka et al., in preparation). For all input parameters, a uniform 

distribution is assumed.  
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Table 1: Uncertainty ranges, R%, for the input parameters in Jalil-Vega and Hawkes (2018b) 

(Yliruka et al., in preparation).  
Parameter R% [%]  Parameter R% [%] 

CostC
B/Erad/HXT [-40, 42]  CostE [-13, 15] 

CostC
ASHP [-31, 49]  CostG [-38, 0] 

CostC
GSHP [-40, 44]  CostCO2 [-50, 50] 

CostC
CHP [-11, 9]  DemE [-0.4, 15] 

CostC
PV [-57, 76]  DemH [-39, 6] 

ηThB/Erad/HXT [-0.2, 0.4]  CostNT
E/G/H [-39.3, 39.3] 

COPASHP [-14, 14]  CostND
E/G/H [-39.3, 39.3] 

COPGSHP [-11, 14]  CostM
tech [-49.2, 35.7] 

ηECHP [-10, 13]  LossT [-2, 2] 

ηEPV [-14, 17]  r [-81, 4] 

3. Results and Discussion 

 
Figure 2: The impact of each input parameter on a selected subset of output 

variables is indicated by the shading in the heat map. The inputs and outputs are 

grouped by boxes and categorized by vertical lines. The horizontal line separates 

the network related outputs.  

 

The results are based on r=24, p=4 for each uncertain input parameter and p=3 for the 

spatial resolution. The impact of the different input factors on a selection of output 

variables are summarized in Fig. 2. The fuel consumptions, emissions, technology and 

network capacities are summed over the multi-year time horizon. The scaling by σj in Eq. 

2 also allows to compare the qualitative impact across all output variables. The darker the 

column, the more relevant is the parameter across multiple output variables.  

The degree of spatial resolution is by far the most important factor on the installed 

capacity of all internodal networks (ICNE/G/H). This ranking holds true even if the large 
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change in ICNE/G/H between LA and MSOA level is excluded. Spatial resolution also 

remains the most important factor for the intranodal gas and electricity network capacity 

(NLNE/G). However, in the case of heat networks (NLNH), the investment cost of the 

pipelines and the discount rate are more relevant. While for gas and electricity networks 

the initial network needs to be reinforced, the heat network has to be built from scratch. 

Therefore, its deployment is limited by the high upfront cost that is sensitive to the capital 

cost of the network and the discount rate. The general observation that the network design 

is the most sensitive output variable to the choice of spatial resolution agrees with Hörsch 

and Brown’s (2017) observations in power system models.  

For the other output variables presented in Fig. 2, the impact of spatial resolution is less 

conclusive. The total system cost (TOTALCOSTS), capital cost (CPT) and fuel cost (FE) 

are dominated by the discount rate. Here, the level of spatial resolution becomes 

irrelevant. Garcia-Gusano et al. (2016) have previously discussed the decisive role of the 

discount rate on the system cost in long-term energy system models. Out of all heat 

technologies, the installed capacity of heat exchangers (NCHHEX) is most sensitive to the 

choice of spatial resolution. Its impact is comparable to the heat demand and heat network 

investment cost. However, like NLNH, NCHHEX is the most sensitive to the discount rate. 

For the installed capacity of boilers (NCHB) and ASHPs (NCHASHP), the investment cost 

of the technology itself is most important.  

 

 
Figure 3: The spatial resolution ranks third (dark grey) with respect to the total 

emissions, electricity and natural gas consumption. 

 

The impact of spatial resolution on the fuel consumption (FUELTOT, ELECTOT) and CO2 

emissions (CO2) has not yet been discussed in the literature. As shown in Fig. 3, spatial 

resolution has a higher impact than the fuel prices. As the emissions are mostly caused 

by the natural gas consumption, both output variables are most sensitive to the heat 

demand and carbon tax. For ELECTOT, the demand levels for both heat and electricity are 

the most important. The high rank of spatial resolution indicates that the split in fuel 

consumption is governed by the installed network capacities that are a highly dependent 

on the level of spatial resolution. The choice in heat technology is secondary and 

subsequently determined by the relative capital cost. As the ranking can vary for different 

R% (Moret et al., 2017), these findings should be confirmed for other R% of the fuel prices. 

Spatial resolution ranks amongst the five most impactful input factors for all output 

variables apart from the total system and fuel cost. As shown previously, spatial resolution 

is the most relevant for the network capacities. Studying for the first time its impact on 

the total fuel consumption, spatial resolution turns out to be more relevant than the 

uncertainty in fuel prices. Overall, spatial resolution is found to be comparable to the 

discount rate and heat demand levels. 

The Trade-Off between Spatial Resolution and Uncertainty in Energy

 System Modelling  
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4. Conclusions 

Neglecting uncertainties of input parameters and temporal/spatial aggregation have been 

shown to impact the optimal solution of energy system models, leaving the modelling 

community with the question of how to prioritize the limited computational resources. To 

guide this decision, this paper compares for the first time the impact of spatial resolution 

and uncertain input parameters across a range of design and operational variables of a 

peer-reviewed heat decarbonization model.  

The choice of spatial resolution is the most relevant for the design of the networks 

whereas a single node system is well-suited to estimate the total system cost and capacity 

of heat technologies. The rankings for the total system cost and network variables agree 

with previous literature which serves as a verification of the method. For the first time, 

the impact of spatial resolution on the fuel consumption and emission levels is assessed 

and identified as relevant, ranking third after demand levels and carbon tax.  

The novel, GSA-based framework can help prioritize the allocation of limited 

computational resources either on spatially detailed deterministic models or stochastic 

models with coarser spatial resolution in the early stages of the model development.  
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Abstract

Agricultural residues are excellent feedstock for lignocellulosic biorefineries. However,
the land allocated to various crops in a region can vary annually, thus impacting the feed-
stock availability for biorefineries. This work provides an optimization framework that
considers uncertainty in land allocation for designing a biorefinery system that is resilient
to such changes. A recently proposed decomposition-based approach is utilized to per-
form stochastic optimization, and the resulting design was compared to a deterministic
design that considered mean land allocation. Lignocellulosic ethanol production for the
state of Maharashtra, India, was taken as a case study, and the performances of both de-
signs were evaluated on a set of 100 random land allocation instances. The resilient design
had a smarter feedstock procurement strategy which resulted in a significant decrease in
variation of feedstock procurement and transportation expenses. As a result, the variation
in ethanol cost was 4% for the resilient design, as compared to 11% for the deterministic
design.

Keywords: Stochastic optimization, large-scale optimization, uncertain feedstock
availability, second generation biorefinery.

1. Introduction

The production of ethanol in India is expected to ramp up significantly to meet the tar-
get of 20% blending with gasoline by the year 2025, with significant contribution from
second generation biorefineries. The feedstock for these biorefineries are to be primarily
lignocellulosic biomass in the form of agricultural residues. A systems based approach
is needed to design such production systems to address challenges of distributed biomass
availability, multiple feedstock types, seasonality of feedstock, and the low maturity of the
processing technologies (Daoutidis et al., 2013; Ng and Maravelias, 2017). Additionally,
the uncertainty in demand, raw material price, and conversions pose further challenges to
decision makers (Gong et al., 2016; Guo et al., 2022).

For an agricultural residue based biorefinery system, the residue availability is directly
affected by the agricultural land allocation of the region, which in turn is governed by
various external factors. This work presents a stochastic optimization based approach for
designing a system of biorefineries under uncertain agricultural land allocation. The model
is applied to a case study of Maharashtra, India, and the performance of the resilient design
obtained from stochastic optimization is compared to a deterministic design.
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Figure 1: Schematic representation of the biorefinery system.

2. Problem formulation

The supply chain and process synthesis model for the biorefinery system from Punnathanam
and Shastri (2021) is adopted in this work and schematically shown in Figure 2. This
model considers multiple types of agricultural residue as feedstock, seasonal feedstock
availability, biomass storage at biorefineries, multiple feedstock source locations, and mul-
tiple ethanol-gasoline blending sites. Additionally, the model considers multiple biorefin-
ery location options, with the allowance of selection of one or more locations for setting
up biorefineries. The transportation of feedstock from source to biorefineries and ethanol
from biorefineries to blending sites is via trucks and tankers, respectively. The biorefinery
configuration is fixed based on previous studies and is reported in Section 4.. The model
is formulated as a large mixed integer linear programming problem (MILP) and is given
as follows:

min z =
∑
l∈L

(
cTC
l + cVO

l + cFO
l

)
(1)

subject to Biorefinery processing constraints at location l ∀l ∈ L (2)∑
l∈L

fproch,b,l,t ≤ Fh,b,t ∀h ∈ H, b ∈ B, t ∈ T (3)∑
l∈L

eprod
l,m,t ≥ Dm ∀m ∈M, t ∈ T (4)

The objective is to minimize to total annualized cost (TAC) of the system, which is the
sum of the capital and operating expenses. The two primary sets of constraints reflect
the availability constraints on the feedstock and the minimum demand for ethanol that
needs to be met at each blending site by all the biorefineries. The constraints reflecting the
conversion of biomass to ethanol at biorefinery l are grouped together under “Biorefinery
processing constraints at location l”, and are taken from Vikash and Shastri (2019). The
binary variables for the model are the selection of biorefinery locations and the selection of
biomass to be processed at each biorefinery at each time period. The key continuous vari-
ables are biomass procurement and ethanol distribution at each biorefinery, the capacities
of the equipment within each biorefinery, and the biomass storage at each biorefinery. The
mean value of the random variable can be utilized in this formulation to obtain a determin-
istic design for the biorefinery system. Here, design refers to the selection of biorefinery
locations, capacities of equipment within each biorefinery, and the feedstock procurement
plan. For the deterministic design case, the feedstock procurement plan is identical to the
actual feedstock procurement in the solution to the optimization problem.

2042



Designing a Resilient Biorefinery System under Uncertain Agricultural
Land Allocation

3. Stochastic optimization

While the deterministic design is generated considering the mean value of the random vari-
able, the resilient design is generated by considering a set of random instances. The goal
of the resulting stochastic optimization problem is to obtain the optimal biorefinery design
that minimizes the expected TAC considering all the random instances. This optimization
is formulated as follows:

min z̄ =E(z) =

∑
s∈S z′s
NS

(5)

subject to Biorefinery processing constraints at location l

for instance s ∀l ∈ L, s ∈ S (6)

z′s =
∑
l∈L

(
c′

TC
l,s + c′

VO
l,s + c′

FO
l,s

)
∀s ∈ S (7)∑

l∈L

f ′
proc
h,b,l,t,s ≤ Fh,b,t ∀h ∈ H, b ∈ B, t ∈ T, s ∈ S (8)∑

l∈L

e′
prod
l,m,t,s ≥ Dm ∀m ∈M, t ∈ T, s ∈ S (9)

The objective function of TAC from the model presented in Section 2. has been replaced
with the expected TAC, which is the average TAC across all instances assuming all in-
stances have identical probabilities. All constraints have an additional index s ∈ S to
reflect the set of random instances. Similarly, all variables except for the design variables
have an additional index s ∈ S. The design variables, being common for all instances, do
not have this additional index. Each instance considered within the stochastic optimiza-
tion framework has a corresponding feedstock procurement variable. The feedstock pro-
curement plan, however, is a design variable and common for all instances. The positive
difference between the instance specific feedstock procurement and the feedstock procure-
ment plan is the quantity of feedstock that would be procured on short notice. Feedstock
procured in this manner is termed as short-term procurement, and is more expensive. This
is taken into account as part of the stochastic optimization formulation.

Depending on the number of random instances considered, the stochastic problem can
potentially be very big. For the case study in consideration, the stochastic problem consid-
ering 10 random instances has 140,297 constraints, 420,354 variables, and 19,899 binary
variables, and was not solvable in a reasonable time on an INTEL® i7-4770 3.40GHz CPU
with 4GB RAM using the CPLEX® 12 MILP solver. Hence, the decomposition based
approach presented in Punnathanam and Shastri (2020) was employed in this work. This
method employs Dantzig-Wolfe decomposition (DWD) to simplify the original MILP such
that it can be solved using the CPLEX® solver. The solution method involves the following
steps: first, the deterministic optimization problem was decomposed to be solved within a
DWD framework, where each sub-problem represents the constraints corresponding to a
single biorefinery location. Next, the mean value of the random variable was used to solve
the problem up to a specified termination criteria using DWD. Here, sub-problems and the
master problem are iteratively solved; the sub-problem solutions are integer feasible solu-
tions for each biorefinery and the mater problem assigns weights to the solutions obtained

2043



Varun Punnathanam and Yogendra Shastri

Table 1: Types of feedstock in the form of agricultural residues and their prices ($/ton).

Cotton stalk Sugarcane bagasse Rice straw Wheat stalk Sorghum Stalk

6.7 53.3 10.4 9.5 7.2

from the sub-problems. DWD stage is terminated when the change in objective value of
the master problem over iterations is below a specified threshold. On termination, based
on the weights assigned to the sub-problem solutions by the master problem at the final
iteration, certain binary selections corresponding to biorefinery location and biomass to be
processed are rejected. This heuristic drastically simplifies the original MILP. The result-
ing simplified problem can be solved in the stochastic optimization framework to obtain
the resilient design for the biorefinery system. As a result of the DWD-assisted simplifi-
cation step, the final simplified problem had half the original number of constraints and
variables, and 92% fewer binary variables, and could be solved in 12 hours. However, due
to the heuristic which was employed for simplification, the optimality of the final solution
is not guaranteed.

4. Case study details

The presented model is applied for the case study of ethanol production for Maharashtra,
India. Maharashtra is an agriculturally intensive state with a large variety of crops under
cultivation. The feedstock for biorefineries are assumed to be residues from five promi-
nent crops; cotton, wheat, sugarcane, sorghum, and rice. The residues and their costs are
provided in Table 1. These feedstocks are available only in specific months each year,
and only 10% of the residue generated in farms are available for biorefineries as the rest
are consumed within the farms for various purposes. Feedstock procured in short term is
assumed to be twice as expensive as its nominal price. The major towns of 33 districts in
the state act as collection sites from which feedstock can be distributed to biorefineries.
These 33 locations also act as potential biorefinery locations. The processing configura-
tion within each biorefinery is as follows: hammer milling for size reduction followed
by dilute acid pretreatment, washing and detoxification, bioconversion via SSCF, and pu-
rification by conventional and extractive distillation. This configuration was found to be
optimal for this case study Punnathanam and Shastri (2021). Ethanol blending sites are
assumed to be located in 35 districts in the state. The demand for ethanol is calculated
as the quantity of ethanol required to meet a 10% blending target at each district. The
resulting total ethanol demand for the state was 42.47 million litres per month. Additional
details on the case study is available in Punnathanam and Shastri (2021).

The land allocated towards the cultivation of a specific crop directly impacts the quantity
of the corresponding crop residue available in that region. The allocation of agricultural
land to various crops in the different districts of Maharashtra changes every year based on
numerous external factors and hence is considered as an uncertain parameter in this work.
The mean land allocated towards each crop in each district between 2010 to 2018 was
utilized for the deterministic optimization problem presented in Section 2. and the DWD
stage in the solution method presented in Section 3.. Random land allocation instances are
generated by identifying the lower and upper bounds on land allocated towards each crop
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Table 2: Comparison of the feedstock procurement plan recommended by the deterministic
and resilient designs (’00 million kg).

Design Cotton
stalk

Sugarcane
bagasse

Rice
straw

Wheat
stalk

Sorghum
stalk Total

Deterministic 634 210 190 446 507 1,988
Resilient 772 147 251 585 578 2,334

Figure 2: Frequency chart representing the performance of the deterministic and resilient
designs over 100 random land allocation instances.

in each district between 2010 and 2018, and sampling from uniform distributions between
these bounds. Note that each district and crop has a unique lower and upper bound. Ad-
ditionally, a lower and upper bound on the total agricultural land allocated at each district
was determined from historical data as well, and instances where the total land allocated
was outside these bounds were scaled appropriately. For stochastic optimization, increas-
ing the number of random instances can improve the design but significantly increase the
computational time required for optimization. Based on this computational restriction,
10 random instances were considered for stochastic optimization. Similarly, a set of 100
random instances were generated for evaluating the performance of the deterministic and
resilient biorefinery system designs. For a fair comparison, the total expense allocated for
the feedstock procurement plan is enforced to be identical for both designs.

5. Results and discussion

The deterministic and resilient designs recommended similar locations for setting up biore-
fineries; with the deterministic design recommending 11 and the resilient design recom-
mending 10 biorefineries. The feedstock procurement plans for both designs are presented
in Table 2. The resilient design planned for the procurement of significantly higher quan-
tities of cotton, sorghum, rice, and wheat based biomass, while the deterministic design
planned for a higher quantity of sugarcane bagasse. Note that sugarcane bagasse is a much
more expensive feedstock as compared to the others and that both designs had identical
feedstock procurement plan expenses. Hence, the total quantity of feedstock planned by
the resilient design was 17.4% higher than the deterministic design. As a result, the re-
silient design was better equipped to handle the uncertainty in feedstock availability.

Figure 2 presents the performance of both designs on the set of 100 random land allocation
instances in the form of a frequency chart. At the lower end, the deterministic design was
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observed to perform marginally better; the lowest ethanol costs obtained by both designs
varied by 0.5%. However, at the higher end, the resilient design performed significantly
better than the mean design; the highest ethanol cost obtained by the resilient design was
6% lower than the deterministic design. Moreover, the variation in cost over 100 instances
was 4.2% for the resilient design as compared to 10.7% for the deterministic design. The
difference in costs between the designs was primarily due to the differences in operating
expenses, in particular, the feedstock procurement and transportation expenses.

6. Conclusions

This work presents a stochastic optimization framework to generate a biorefinery system
design that is resilient to changes in feedstock availability caused by annual changes in
agricultural land allocation. The model was applied to a case study of ethanol production
in the state of Maharashtra, India. The resilient design obtained from stochastic optimiza-
tion was compared to a deterministic design obtained by considering mean land allocation.
The performances of both designs were evaluated on a set of 100 random land allocation
instances. The feedstock procurement plan for the resilient design took into consideration
the uncertainty in feedstock availability. Hence, the variation in ethanol cost for the re-
silient design was 61% lesser as compared to the deterministic design. This work can be
extended to consider uncertainties in other parameters, such as the composition of feed-
stock and the yield at various processing stages.
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Abstract  

The worldwide consumption of crustaceans, mainly crabs and shrimp, has increased 

significantly over the last decades. Noteworthy is that this waste inherently contains high-

value-added compounds, such as astaxanthin. Hence, it is economic- and environmentally 

beneficial to extract astaxanthin effectively and sustainably from seafood production 

wastes and thrive towards a circular economy. 

Therefore, the objective of this work is three-fold: (i) to propose a novel integrated 

process for the extraction of astaxanthin-oleoresin (AXT-oleoresin) from crab shell 

wastes; (ii) to assess the environmental performance of this new process at an industrial 

scale in Portugal; and, (iii) to identify latent production and environmental bottlenecks as 

well as provide suggestions for process and/or model re-design.  

A process environmental and human health impact must become an essential 

consideration when designing new processes. Henceforth, aiming at a more sustainable 

process development and production, by applying LCA at the early stage of process 

development, we aim to identify critical issues early on, then to re-design, and reassess. 

Hence, this study concludes that the side-by-side application of LCA modelling and 

experimental process development is the best proactive approach for designing new 

processes and strategies as early as at the experimental level.  

Keywords: LCA, astaxanthin, oleoresin, circular economy 

1. Introduction  

More than 6 million tons of crustacean shell waste is produced worldwide per year 

(Rodrigues et al., 2020). Astaxanthin (AXT), a lipid-soluble carotenoid from the 

xanthophyll family, is among other high-value compounds present in this waste. It has 

the leading antioxidant activity compared to other antioxidants (e.g., lycopene, vitamins 

E and A). Other natural sources of AXT are Haematococcus pluvialis (highest yield) and 

the yeast Xanthophyllomyces dendrorhous (Rodrigues et al., 2020; Sajna et al., 2015). 

Although there are many challenges when competing with synthetic AXT production, 
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natural AXT has been approved as food coloring agent and to be used in the formulation 

of cosmetics and nutraceuticals (Rodrigues et al., 2020; Sajna et al., 2015). 

Therefore, to transition to a circular economy emphasizing the conversion of waste into 

value, in this work, we propose a novel process for the extraction and production of 

astaxanthin-oleoresin (AXT-oleoresin) from crab shell wastes. Astaxanthin (AXT) is 

isolated from the shells using a menthol:myristic acid-based deep eutectic solvent as an 

alternative to conventional approaches. This leads to a bioactive extract, AXT-oleoresin, 

with combined solute and solvent properties that can find potential applications as a 

functional ingredient and as a natural preservative in the pharmaceutical, nutraceutical, 

or cosmetic/personal care industries (Rodrigues et al., 2020). Furthermore, to ensure 

sustainable progress, LCA is applied at the early stage of process development to identify 

critical issues early on, then to re-design, and reassess. 

2. Methodology 

The objective of this work is three-fold: (i) to propose a novel integrated process for the 

extraction and production of astaxanthin-oleoresin (AXT-oleoresin) from crab shell 

wastes; (ii) to assess the environmental performance of this new process at an industrial 

scale in Portugal; and, (iii) to identify latent production and environmental bottlenecks as 

well as provide recommendations for process and/or model re-design. To this end, the 

methodology illustrated in Figure 1 is implemented, which implies applying the LCA 

framework in a stepwise manner. 

 
Figure 1: Methodology outline. 

The LCA was performed following the ISO 14040 and 14044 guidelines (ISO 2006a,b). 

SimaPro vs.9.1 (Pré Consultants 2020) was the software used. Consequential modelling 

was used in the inventory analysis as described in (Weidema et al., 2009). 

2.1. Goal and scope  

As previously stated, the goal of the LCA study is two-fold; (i) to assess the 

environmental performance of the novel AXT-oleoresin production process in Portugal 

at industrial scale; and, (ii) to identify latent production/environmental bottlenecks and 

provide suggestions for process re-design. Figure 2 shows the product system for the 

overall production of AXT-oleoresin. LCA is performed with cradle-to-gate boundaries. 

The functional unit requires an additional 1 kg of AXT-oleoresin at the production 

facility’s gate. It is important to note that the cut-off criteria are applied to the crab shell 

wastes according to the ILCD handbook (JRC-IES, 2010): the environmental impacts 

related to the production of crab shells are not included in the model. It is assumed that 

the crab fishery industry is responsible and accounts for all impacts related to the 

production and transport of crab shell wastes.  

Furthermore, as presented in Figure 2, two critical aspects of consequential modelling 

have been employed: (a) the marginal use of crab shell wastes is identified as being 
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composting (Muñoz et al., 2018) (identification of marginal suppliers), and (b) the 

process by-product rich in minerals is assumed to substitute mineral fertilizer in the 

market (product substitution).  

The life cycle impact assessment method chosen is the one identified by the International 

Life Cycle Data (ILCD) handbook, at the midpoint level.  

2.1.1. Production process: production of astaxanthin-oleoresin (AXT-oleoresin) 

The first step involves the drying and milling of the raw materials since the efficiency of 

the subsequent extraction process may be influenced by the moisture content and/or 

particle size. The dried and milled residue is then directed to the extraction step, in which 

AXT is extracted from the shells using a menthol:myristic acid (ME:MA,8:1) deep 

eutectic solvent (DES). The AXT-rich extract is separated from the solid residue by 

filtration, which leads to the final product and a by-product stream. The final product is 

the AXT-oleoresin, which is composed of DES and AXT-rich extract. The by-product 

stream is rich in minerals and proteins.  

Due to the novelty of the proposed production process, it has only been developed and 

tested at the lab scale. Therefore, in this work, the experimental results have been 

appropriately scaled up (Piccinno et al., 2016) in order to reflect a credible industrial scale 

(see Section 3). 

 
Figure 2: Product system for the production of AXT-oleoresin. System boundaries: cradle-to-gate. 

2.2. Life Cycle Inventory 

We believe a credible scenario to be the production of AXT-oleoresin that fulfills 50% of 

the forecasted amount of natural AXT to be consumed in 2021 in Europe (corresponding 

to approx. 6.9 tons) ("Global Natural Astaxanthin Market insights"). We assume that the 

natural AXT is produced/consumed in the form of AXT-oleoresin. Therefore, the 

hypothetical plant’s production capacity is approximately 6.9 tons of AXT-oleoresin. The 

foreground data was obtained by applying appropriate scale-up factors (Piccinno et al., 

2016) to the experimental results of the process described in Section 2.1. As previously 

stated, the tasks in the background system were modelled with the consequential version 

of the ecoinvent database v.3.1 (ecoinvent Centre 2016). The life cycle inventory and 

details concerning primary data sources and assumptions are presented in Table 1. 
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Table 1: Life cycle inventory of the industrial production of AXT-oleoresin from crab shell waste.   
Exchanges Unit Amount LCI data 

Output of 

products/services:  

  

AXT-oleoresin ton 6.9 
Reference flow. Yearly production of AXT-oleoresin 
(AXT + ME:MA) 

Avoided products:    

Mineral Fertilizer ton 1.85 

Displaced production of mineral fertilizer: disrupted 

production of mineral fertilizer through traditional 
routes. Composition approx. Minerals (65%), Protein 

(21%), Chitin (11%). 

Ecoinvent dataset: Lime fertilizer, from sugar 
production, at plant/ES Mass 

Assumption: it is assumed that the by-product stream is 

directly used and replaces mineral fertilizer. 

Brown crab waste 

composting and soil 

application  

ton 3.73 

Avoided composting of crab shell wastes and use of 
compost. Amount of crab shell waste used. Model 

developed in this work based on brown crab shell 

composition and the modelling strategy proposed in 
(Muñoz et al., 2018) and references within. 

Input of 

products/services: 
   

Crab shell waste ton 3.73 
Inflow of waste. Applied cut-off criterion, no 
environmental impacts associated.   

Menthol (ME) ton 6.25 

Ecoinvent dataset: Cyclohexanol {RER}| market for 

cyclohexanol | Conseq, U 
Assumption: production of cyclohexanol used as proxy 

for the production of Menthol. (Kendall et al., 2011a) 

Myristic acid (MA) ton 1.14 

Ecoinvent dataset: Crude palm kernel oil (incl. LUC 
incl. peat emissions), at producer/GLO 

Assumption: production of myristic acid from palm 

kernel oil. 1.14 ton of MA result in 8.90 ton of palm 
kernel oil. Based on the content of fatty acids in the oil 

(82%) and the content of myristic acid within the fatty 

acids (15.7%). (Tambun et al., 2019) 

Heating energy MJ 6.76E+03 
Ecoinvent dataset: Heat, from steam, in chemical 
industry {RER}| market for heat, from steam in 

chemical industry | Conseq, U 

Electricity MWh 3.49E-02 
Ecoinvent dataset: Electricity, medium voltage {PT}| 
market for | Conseq, U 

Assumption: production plant to be located in Portugal. 

Emissions to air: direct emissions from composting and use of the compost. 

Wastewater 

treatment:  
ton 1.88 

Ecoinvent dataset: Wastewater, average (waste 

treatment) {RoW}| treatment of, capacity 5E9l/year | 

Conseq, U 

3. Results & Discussion 

Figure 3 shows the life cycle impact assessment results (LCIA) and the relative 

contribution of the different activities in producing AXT-oleoresin in Portugal, from 

cradle-to-gate. To simplify the interpretation of results, only nine categories are selected 

out of sixteen reported in ILCD. Due to space constraints, the numerical values are 

omitted here. The LCIA shows credits (savings, negatives values in Figure 3) for several 

impact categories. This is especially noticeable in the categories: Acidification (AC), 

Terrestrial eutrophication (EUTT), Marine eutrophication (EUTM), and water 

use/depletion (WD). The water savings are associated with the avoided traditional mineral 

fertilizer production (water-intensive) since mineral fertilizer (minerals-rich side stream) 

is a by-product of AXT-oleoresin production. The savings in AC, EUTT, and EUTM are 



mostly related to the fact that, as previously mentioned, the crab shell wastes are being 

diverted from the composting activity and subsequent use of compost. The use of compost 

usually leaves behind excessive amounts of nutrients in the soil (e.g., nitrogen and 

phosphorus), which can be leached into lakes, streams, and coastal waters and thus lead 

to a gradual increase in nutrient concentration (terrestrial and marine eutrophication). 

Additionally, commonly the same nutrients also cause soil acidification by changing the 

soil pH levels. Moreover, there are also some minor credits in the Climate Change (CC), 

Particulate Matter (PM), and Photochemical ozone formation (POF) categories of impact 

due to avoided air emissions of small amounts of, for example, nitrous oxide gas.  
 

 
Figure 3: Impact assessment results for extraction and production of AXT-oleoresin from crab shell 

wastes in Portugal by activity (characterization values, per kg of AXT-oleoresin). Climate change 

(CC), Human toxicity, non-cancer effects (HTNCE), Particulate matter (PM), Photochemical ozone formation 
(POF), Acidification (AC), Terrestrial eutrophication (EUTT), Marine eutrophication (EUTM), Water resource 

depletion (WD) and Mineral, Fossil & Ren resource depletion (MFRRD).  

Figure 3 also illustrates the effect of other activities in the LCIA results. The production 

and use of menthol (ME) and myristic acid (MA) play a crucial role; they are the most 

environmentally damaging activities in all impact categories. Thus, they are critical 

process hotspots. In this study, MA is produced from palm kernel oil, which 

affects/disrupts the palm oil kernel market, thus leading to increased extraction and 

associated environmental impacts. This is further aggravated by the low MA to oil yield. 

The production of cyclohexanol was taken as a proxy for ME production (Kendall et al., 

2011b) due to the lack of information. This also implies a lack of accuracy and the 

propagation of uncertainty to the results. The production of cyclohexanol is based on the 

hydrogenation of benzene (resource intensive). Henceforth, this is in line with, for 

example, the results obtained for the Mineral, Fossil & Renewable resource depletion 

(MFRRD) category. However, it is important to note that the AXT-oleoresin production 

process's energy needs are somewhat irrelevant among the other contributors. Besides, 

the process does not consume freshwater. Therefore, this is a positive indication that if 

improving the critical process points (ME and MA models), the process has a good 

probability of improving its environmental performance. For example, the production of 

MA from nutmeg butter and coconut oil will be investigated (model improvement). 

Although both ME and MA have been identified as the process' critical points, replacing 

these solvents is not in question at this point. Both solvents were chosen due to their 

properties for producing a bioactive extract for the potential formulation of cosmetics and 
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nutraceuticals.  Henceforth, to overcome the described process limitations and hotspots, 

the overall recommendations are to (i) test if smaller quantities of solvents will have the 

same properties for the formulation of the bioactive extract, (ii) have a dialogue with the 

solvent producer in order to find a greener source, and/or (iii) attempt to synthesize the 

solvents in-house and reassess the process's environmental performance. 

4. Conclusions  

To the best of our knowledge, we have presented the first model of the cradle-to-gate 

LCA for the novel production of natural AXT-oleoresin from crab shell wastes using 

DES. Primary data was obtained by scaling up experimental results. Furthermore, this 

study addresses process evaluation using consequential modelling principles and thus 

performs a prospective and proactive assessment rather than retroactive. The production 

of the DES components, ME and MA, was identified as process hotspots, which in fact 

translates into targets for model improvement. Noteworthy is that the energy and water 

consumption of the AXT-oleoresin production process seems to be immaterial when 

comparing to the remaining contributors. This is a reasonable indication that the process 

has a good environmental performance. As previously stated, replacing ME and MA is 

not an option at this point since both solvents were chosen due to their properties for 

producing a bioactive extract for the potential formulation of cosmetics/nutraceuticals.  

Therefore, the overall recommendation is to re-evaluate the solvent needs and its raw 

materials, potentially synthesize them in-house, and finally reassess the process's 

environmental performance. This study concludes that the side-by-side application of 

LCA modelling and experimental process development is the best proactive approach for 

designing new processes and strategies as early as at the experimental level. 
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Abstract 
In oil refineries, water is used for many different purposes and a substantial amount of 
wastewater is generated. The traditional wastewater treatment process in oil refineries is 
comprised of primary and secondary treatment, and the treated water is discharged to 
water bodies. By recycling the treated water, water withdrawal from the environment can 
be reduced. Additionally, the organic sulfur, organic nitrogen, and other organic 
compounds may not be fully removed by biological treatment. For the treatment of these 
organics and for the recycling of wastewater from oil refineries, a wastewater treatment 
system for oil refineries has been proposed. The proposed process consists of 1) primary 
and secondary treatment 2) the removal of remaining organic sulfur and nitrogen using 
hydrogen, and 3) the removal of remaining organics by photocatalysis. To realize the 
proposed system, the removal of organic sulfur using hydrogen by simulation and 
photochemical reactions by experiments were studied. The removal of organic sulfur 
using hydrogen was analyzed using oil refinery plant data. The results showed that 
organic sulfur and nitrogen were removed in the process, and the conversion ratio highly 
depended on the chemical structure of the components. For the experiment, as a 
representative of the remaining organic compound in the wastewater from the oil refinery, 
phenol was chosen. In the experiment, the decomposition of phenol using UV and TiO2 

was investigated. The results showed that phenol was successfully decomposed. From the 
results of the investigations, this process shows promise to improve the treatment of 
industrial wastewater and contribute to the conservation of water resources. 

Keywords: Water Treatment, Photocatalyst, Environmental Systems, Process Design 

1. Introduction 
Globally, there is a rise in the demand for freshwater resulting from the growing world 
population and industrialization. In fact, the global demand for water has been increasing 
by 1 % per year (UNESCO, 2020). For sustainable development and the well-being of 
the global ecosystem, it is necessary that water usage is reduced, that water is properly 
treated, and that water is recycled. Wastewater is generated from the agricultural sector, 
the industrial sector, and the domestic sector.  

The contaminants present in industrial wastewater vary from industry to industry. In the 
case of the petroleum industry, most processes in oil refineries use water, so large 
amounts of wastewater are generated. For example, 0.60 – 0.71 L of water is used to 
produce 1 L of gasoline (Sun et al., 2018). To reduce the environmental impact of the 
discharge of wastewater and to reduce the water withdrawal of the petroleum industry, 
the treated wastewater can be recycled to use in the oil refinery or other industries. For 
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Decomposition of Organic Compounds in Water from Oil Refineries  

After primary treatment to remove the oils and sediments and secondary treatment to 
remove some of the organic compounds, organic sulfur, organic nitrogen, and other 
organic compounds may remain in the water. This is because wastewater from oil 
refineries contains a high concentration of refractory organics which are difficult to 
remove by biological treatment, and it may show higher COD values even after primary 
and secondary treatment (Diya’uddeen et al., 2011). 

To treat the remaining contaminants in the water for recycling, two additional processes 
were added. The first process is to treat the remaining organic sulfur and organic nitrogen 
using hydrogen. In an oil refinery, desulfurization processes such as residue 
desulfurization (RDS) use hydrogen to upgrade residual fuel by removing contaminants, 
by converting them into lighter products, and by promoting hydrogenation (Marafi et al., 
2006). Like the RDS process, the remaining organic sulfur and organic nitrogen may be 
removed using hydrogen. After the removal of organic sulfur and organic nitrogen, the 
remaining contaminants are further removed through photocatalysis with TiO2 as the 
catalyst. TiO2 was chosen as the catalyst for its ability to oxidize organic pollutants, 
chemical stability, and nontoxicity (Nakata and Fujishima, 2012). Depending on the 
necessary quality of the water needed for the industrial processes, the water can be 
recycled back to the oil refinery instead of going through the full cycle. Additionally, the 
process is safe for the environment as it does not require the use of flocculants or other 
chemical agents. The energy usage of the process can be further reduced by using sunlight 
as the light source for the photocatalyst process. 

3. Methods 
The removal of organic sulfur, organic nitrogen, and other organic compounds was 
explored through simulation. The treatment of the remaining organic contaminants was 
evaluated through experiments using phenol as a representative and TiO2 as the 
photocatalyst. 

3.1. The removal of organic sulfur, organic nitrogen, and other organic compounds using 
hydrogen 

The data of the components of the feed and product data from the RDS process was used 
to calculate the overall conversion ratio of the organic sulfur and nitrogen. The conversion 
ratio was calculated as shown in Eq.(1). 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝐹𝑒𝑒𝑑	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  (1) 

By understanding the reaction in the process using hydrogen, the effectiveness of the 
process can be evaluated, and the potential products from the reaction can be known. 

3.2. The treatment of phenol through photocatalysis 

Phenol (purity 99 %, FUJIFILM Wako Pure Chemical Corporation) was used as the 
representative for the organic compound. It was dissolved in Milli-Q water so that the 
concentration was 50 mg/L. Aeroxide TiO2 P 25 (specific surface area 53 m2/g, NIPPON 
AEROSIL CO., LTD.) was used as the photocatalyst, and it was added to the phenol 
solution so that the TiO2 dosage was 1 g/L. A 300 mL Pyrex beaker (diameter 77 mm and 
height 110 mm) was used as the vessel. The vessel was filled with 200 mL of the mixture 
of TiO2 and phenol solution. After filling the vessel, it was covered with a quartz lid 
(thickness 3 mm). A 4 W UV lamp with the main wavelength at 365 nm (model LUV-4, 
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AS ONE Corporation) was placed directly on top of the quartz lid. The experiments were 
conducted at room temperature. 

The samples were taken from the vessel using syringes, and they were filtered using PES 
syringe filters of pore size 0.1 µm to remove TiO2 particles. The absorbance of the 
samples was measured with a UV-vis spectrophotometer (model ASUV-1100, AS ONE 
Corporation) at 270 nm which is the absorbance peak of phenol. The phenol removal was 
calculated by the following equation: 

𝑃ℎ𝑒𝑛𝑜𝑙	𝑟𝑒𝑚𝑜𝑣𝑎𝑙	(%) =
𝐶! − 𝐶"
𝐶!

× 100 (2) 

where C0 and Ct are the concentrations of phenol at time 0 and at time t respectively. 

4. Results and Discussion 
4.1. The overall conversion ratio of the organic sulfur and organic nitrogen 

Table 1 shows the conversion ratio by using hydrogen for organic sulfur and organic 
nitrogen present in the feed and product data. Depending on the structure of the 
component, the conversion ratio varies. Oil B was a heavier oil compared to Oil A, and 
the conversion ratio for Oil B was less than that of Oil A. In both oils, there is remaining 
organic sulfur and organic nitrogen which needs further treatment. Additionally, the 
process consumes a large amount of hydrogen. Further investigation is needed to increase 
the efficiency of this process to reduce hydrogen consumption. 
Table 1: The conversion ratio by hydrogen treatment is shown. 

Name Conversion ratio of molecule with at 
least one sulfur atom 

Conversion ratio of molecule with at 
least one nitrogen atom 

Oil A 0.655 0.141 

Oil B 0.575 0.084 

4.2. The removal of phenol by photocatalysis 
Figure 2 shows the comparison of the removal of using UV only versus using UV and 
TiO2 as the photocatalyst. For UV photolysis alone, only 0.14 % of phenol was removed 
after 180 min. The result that phenol is difficult to degrade through direct photolysis is 
consistent with that of Lin et al. (2011).  For UV+TiO2 photocatalysis, 8.4 % of the phenol 
was removed after 180 min. With the presence of the TiO2 photocatalyst, phenol which 
is the representative organic can be removed. However, the rate of removal is slow under 
the experimental conditions. The removal rate may be improved by increasing the light 
intensity, by optimizing TiO2 dosage. 

For the photocatalytic process, it is necessary to consider the recovery of the TiO2 catalyst. 
One way is to use a TiO2 photocatalytic membrane reactor which combines photocatalytic 
oxidation and membrane filtration (Leong et al., 2014). In this way, the TiO2 can be 
recovered. Additionally, sunlight may be used as the light source to reduce energy 
consumption. 

Figure 3 shows the possible mechanism of the removal of the organic compounds using 
the TiO2 membrane. By irradiating the TiO2 membrane with UV light, water may be 
converted into H+ ions and OH radicals (Sobczyński et al., 2004). Additionally, through 

2056 S. Kato and Y. Kansha



P14)-O).&(&)%*)+*!"#$%&4*Q)-O)8%7.*&%*R$(1"*+")-*!&2*S1+&%1"&1.! !

-#*('%(*#$)#'(-9.%$"*+#.8(#$'5-"%9#9$13$/"0*#-'(#9$13&(.(&2#1%"('-&%B(0#%".$#,-.('#-"0#
QF!6#

#
J')8"%+ ;K+ T#672"'*#(+ #,+ -.%+ 7.%(#3+ "%6#E23+ 8*'()+ UH+ 7.#-#35*'*+ #(35+ E%"*8*+ UH=L'O#+
7.#-#$2-235*'*G+

#
J')8"%+AK+L.%+*$.%62-'$+#,+7.#-#$2-235-'$+-"%2-6%(-+#,+#")2('$+$#(-26'(2(-*+'(+M2*-%M2-%"G!

?*!@-,'9/#0-,(
<#*2*.(1#,-*#3'$3$*(0# .$# '(929&(# .8(#,-*.(,-.('# )'$1#-"#$%&# '()%"('26#78(#3'$3$*(0#
3'$9(**# 9$"*%*.*# $)# >?# 3'%1-'2# .'(-.1(".+# @?# *(9$"0-'2# .'(-.1(".+# A?# .'(-.1(".# $)#
'(1-%"%"5# $'5-"%9# "%.'$5("+# $'5-"%9# */&)/'+# -"0# $.8('# $'5-"%9*# 42# 820'$5("+# -"0# f?#
.'(-.1(".# $)# .8(# '(1-%"%"5# $'5-"%9*# 42# 38$.$9-.-&2*%*# ,%.8# 7%F!# -*# .8(# 9-.-&2*.6# 7$#
(;-&/-.(# .8(# .'(-.1(".#/*%"5#820'$5("+#*%1/&-.%$"#,-*#9$"0/9.(06#78(#'(*/&.*#*8$,(0#
.8-.# -&.8$/58# .8(# 3'$9(**# 9-"# .'(-.# *$1(# $)# .8(# 9$".-1%"-".*+# )/'.8('# .'(-.1(".# %*#
"(9(**-'2# .$# '(1$;(# .8(# '(1-%"%"5# 9$".-1%"-".*6# 7$# (;-&/-.(# .8(# .'(-.1(".# /*%"5#
38$.$9-.-&2*%*+# (C3('%1(".*# ,('(# 9$"0/9.(06# 78(# '(*/&.*# *8$,(0# .8-.# 38("$&+# -#
'(3'(*(".-.%;(# $)# -# '()'-9.$'2# $'5-"%9# 9-"# 4(# '(1$;(06# L(3("0%"5# $"# .8(# 0(1-"0(0#
`/-&%.2#$)#.8(#,-.('+#.8(#,-.('#1-2#4(#'(929&(0#4-9Z#.$#.8(#$%&#'()%"('2#-"0#.8(#%"0/*.'%-&#
9$11/"%.2#.$#'(0/9(#.8(#,-.('#,%.80'-,-&#)'$1#.8(#(";%'$"1(".6#78(#3'$3$*(0#3'$9(**#
%*#3'$1%*%"5#.$#'(0/9(#.8(#-1$/".#$)#,-.('#,%.80'-,-&+#-"0#%.#%*#-#5'(("#3'$9(**#.8-.#0$(*#
"$.#'(`/%'(#.8(#/*(#$)#.$C%9#98(1%9-&*6#

2057 



 

References 
Diya’uddeen B.H., Daud W.M.A.W., Abdul Aziz A.R., 2011, Treatment technologies for 

petroleum refinery effluents: A review, Process Safety and Environmental Protection, 89 (2), 
95–105. 

Leong S., Razmjou A., Wang K., Hapgood K., Zhang X., Wang H., 2014, TiO2 based 
photocatalytic membranes: A review, Journal of Membrane Science, 472, 167–184. 

Lin S.H., Chiou C.H., Chang C.K., Juang R.S., 2011, Photocatalytic degradation of phenol on 
different phases of TiO2 particles in aqueous suspensions under UV irradiation, Journal of 
Environmental Management, 92 (12), 3098–3104. 

Marafi A., Hauser A., Stanislaus A., 2006, Atmospheric Residue Desulfurization Process for 
Residual Oil Upgrading: An Investigation of the Effect of Catalyst Type and Operating 
Severity on Product Oil Quality, Energy & Fuels, 20 (3), 1145–1149. 

Miklos D.B., Remy C., Jekel M., Linden K.G., Drewes J.E., Hübner U., 2018, Evaluation of 
advanced oxidation processes for water and wastewater treatment – A critical review, Water 
Research, 139, 118–131. 

Nakata K., Fujishima A., 2012, TiO2 photocatalysis: Design and applications, Journal of 
Photochemistry and Photobiology C: Photochemistry Reviews, 13 (3), 169–189. 

Oller I., Malato S., Sánchez-Pérez J.A., 2011, Combination of Advanced Oxidation Processes and 
biological treatments for wastewater decontamination—A review, Science of The Total 
Environment, 409 (20), 4141–4166. 

Sobczyński A., Duczmal Ł., Zmudziński W., 2004, Phenol destruction by photocatalysis on TiO2: 
an attempt to solve the reaction mechanism, Journal of Molecular Catalysis A: Chemical, 213 
(2), 225–230. 

Sun P., Elgowainy A., Wang M., Han J., Henderson R.J., 2018, Estimation of U.S. refinery water 
consumption and allocation to refinery products, Fuel, 221, 542–557. 

UNESCO, UN-Water, 2020, United Nations World Water Development Report 2020: Water and 
Climate Change, UNESCO, Paris, France. 

WWAP (United Nations World Water Assessment Programme), 2017, The United Nations World 
Water Development Report 2017. Wastewater: The Untapped Resource, UNESCO, Paris 
France. 

 

 

 

2058 S. Kato and Y. Kansha



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Energy Harvesting Wireless Sensors Using 

Magnetic Phase Transition 

Yasuki Kanshaa, Masanori Ishizukab 

aOraganization for Programs on Environmental Sciences, Graduate School of Arts and 

Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku Tokyo 153-8902, Japan 
bCollaborative Research Center for Energy Engineering, Institute of Industrial Science, 

The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan 

kansha@global.c.u-tokyo.ac.jp 

Abstract 

In this research we proposed energy harvesting data acquisition sensors using the 

magnetic phase transition resulting from changes in temperature, and electromagnetic 

induction resulting from changes in magnetic flux. The proposed system can provide 
wireless temperature or velocity sensors that directly measure electromotive forces 

generated by a solenoid following Faraday's law without any additional energy input. Our 

proposed energy harvesting sensors have the potential to contribute significantly to the 

development of CPS in the near future. 

Keywords: Wireless sensors; Energy harvesting; Cyber-physical systems 

1. Introduction 

The Japanese government has proposed ‘Society 5.0’, under which, not only industry, but 

society itself will be changed by information and communication technology (ICT) and 

the internet of things (IoT) to allow sustainable development. In the energy related field, 

dig data such as climate and environmental information and energy usage in communities 

will be acquired and analysed by Artificial Intelligence (AI). Furthermore, energy will 

supply following the analysed data for providing a stable energy supply etc. (Cabinet 

Office in Japan).  

To deploy cyber-physical systems (CPS) and the IoT in society, it is necessary to develop 

overall security systems (Alguliyev et al., 2018), efficient information and 

communication technologies (ICT) including data transfer systems in the network, and 

acquisition systems, such as sensors and actuators (Patil and Fiems, 2018). It is also 

important to find new energy sources to connect and transfer digital data to the cloud and 

to develop intelligent decision/control systems (Shen et al., 2019) and learning algorithms 

(Zhang et al., 2018) for rational operation of the overall networks, incorporating the use 

of artificial intelligence.  

In meeting the requirements of energy for CPS, the term ‘energy harvesting’ is commonly 

used. Energy harvesting involves electric power generation for online operation of sensor 

and electric devices from currently unused low level energies such as vibrations, radio 
frequencies, light and low temperature heat, into electricity. Piezoelectric elements and 

antennae are common devices used for converting vibrations or radio frequencies into 

electricity (Wang et al., 2018). Photovoltaics is also a familiar way of converting light 

into electricity to supply CPS (Gunduz and Jayaweera, 2018). Thermoelectric elements 

based on the Seebeck effect are also commonly used to convert heat into electricity (Ando 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50343-2 
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Junior et al., 2018). However, the energy efficiency of many of these energy harvesting 

technologies is still low, and much research is focused on increasing their efficiency. In 

fact, the thermos-electric device generate the electric power by p- and n-type 

semiconductors. However, it is well-known that the efficiency of this device is so low 

due to \small entropy change by electron or hole transfer (Chen and William, 1996) 

On the contrary, much recent research has focused on the possibility of combining energy 

harvesting and sensors, including wearable sensors for human information (Myers et al., 

2017) and wireless sensors for environmental information (Babayo et al., 2017). These 
sensors called energy harvesting sensors directly sense the measured target without any 

additional energy conversion, leading to increase overall energy efficiency of CPS. Thus, 

the energy harvesting sensors are expected as a key technology for propagation of a CPS 

(Kausar et al., 2014). 

2. Energy harvesting using magnetic phase transition and sensors 

Kansha et al. (2018) proposed an energy harvesting system from sub-ambient heat sources, 

such as exhaust heat from refrigerators or coolers, that uses magnetic phase transition 

integrated with electromagnetic induction. In this system, a magnetic material such as 

gadolinium is cooled by a sub-ambient temperature heat to below the Curie temperature 

(292 K for gadolinium). The material becomes ferromagnetic. It is placed near a solenoid 

as shown in Figure 1 a) and heated by a high temperature heat to its Curie temperature. 

The material is demagnetized, becoming paramagnetic, and the magnetic flux from the 
material that passes through the solenoid decreases as the temperature increases. An 

electromotive force is generated in the solenoid following Faraday's law of induction; 

𝜀 = −𝑁
𝑑𝛷

𝑑𝑡
 (1) 

where ε is the electromotive force, N is the number of turns on the solenoid, Φ represents 

the magnetic flux, and t is time. 

Figure 1 b) shows a schematic image of the thermodynamic cycle in temperature-entropy 

diagram of the series of action. The theoretical thermodynamic cycle of this system 

transitions to a closed trilateral cycle suitable for sensible heat recovery to generate 

electric power.  

 

 Figure 1: Thermodynamic cycle of the proposed power generation system. 
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A study of the adiabatic temperature change due to the magnetic phase transition during 

magnetization of gadolinium from 0 T to 1 T indicates that the change is almost linear 

from 270 K to the Curie temperature (292 K) and from the Curie temperature to 320 K at 

a peak of 292 K as shown in Figure 2. Furthermore, the adiabatic efficiency of 

magnetization/demagnetization changes of gadolinium was examined about 0.92 (Kotani 

et al., 2013). From these aspects, the change in entropy at the magnetic phase transition 

around the Curie temperature may have a linear relationship with the temperature.  

Thus, observing the flux changes for magnetic materials at different temperatures could 
allow it to be used as a temperature sensor integrated with energy harvesting around the 

Curie temperature, without requiring any additional energy instead of thermocouples. 

 

Figure 2: Adiabatic temperature change when gadolinium is magnetized from 0 T to 1 T 

(Kotani et al., 2013). 

3. Experimental procedure and set-up 

To examine the possibility of energy harvesting sensors, the relationship between the 

temperature of a magnetic material and the change in its magnetic flux was investigated 

by measuring the electromotive force. Gadolinium was selected as the magnetic material 

because of its Curie temperature. 

Before measuring the electromotive forces, a gadolinium nugget (2.73 g) was left at each 

temperature for more than 30 mins until the nugget temperature became constant. The 

maximum magnetic flux, which the gadolinium nugget creates, was about 25 mT 

measured by a gauss meter (HMMT-6J04-VF, Lake Shore Cryotronics Inc.). 

Using the following experimental set-up shown in Figure 3, the electromotive forces 

generated by Faraday's law of induction were monitored at four different temperatures 

(256, 280, 292, 296 K) by an oscilloscope (InfiniiVision DSO-X 2002A, Agilent 

Technologies Inc.). A permanent magnet (275 mT) was positioned at the edge of a 

solenoid with 500 coils of iron wire. 

Using the gauss meter, the magnetic flux density at the other end of the solenoid, the 
nearest point to the gadolinium, was 19 mT. The gadolinium nugget, which had a 

magnetic flux density of 0 mT without the magnetic field, was fixed to the end of a 40-

mm arm, which was rotated horizontally by a motor (rotation speed: 545 degree/s). The 
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gadolinium was passed over the solenoid. The minimum distance from the gadolinium to 

the solenoid was 3 mm. Thus, the magnetic flux through the solenoid changed with the 

position of the gadolinium. It is noted that the magnetic flux was changed by heat transfer 

to the magnetic materials to use the proposed system as an ambient temperature sensor. 

However, this change might be too sensitive to examine in the experiments. Therefore, 

the gadolinium was forced to move by motor for changing the distance to the solenoid at 

the constant temperature in order to sense the targeted temperature in this experiment. 

The electromotive force produced by electromagnetic induction and the current were 

measured by the oscilloscope with a shunt resistance of 4.7 Ω. 

 

Figure 3: Adiabatic temperature change when gadolinium is magnetized from 0 T to 1 T. 

4. Experimental results 

The large electromotive forces generated are shown in Figure 4 at the Curie temperature 

(292 K). The grey trace shows the raw data and the black line is the 10-ms moving average. 

The figures show positive and negative peaks. A positive peak was created when the 

gadolinium came close to the solenoid and the negative peak was created when the 

gadolinium passed. To determine the relationship between temperature and the generated 

electromotive force, the amplitude of the electromotive force was measured. Table 1 lists 

the amplitude of the electromotive force generated as a moving average at each 

temperature. From this table, it can be understood that the maximum power output is 

distributed following the temperature. Thus, the proposed system has a possibility to use 

it as a temperature sensor with calibration.  

Table 1. Relationship between temperature and amplitude of electromotive forces. 

 

Figure 5 shows a comparison of the 10-ms moving averages of the electromotive forces 

generated for several motor rotation speeds (182, 363, and 545 degree/s) at 292 K; the 

Temperature [K] 256 280 292 296

minimum value of electromotive force [mV] -0.182 -0.466 -0.505 -0.228

maximum value of electromotive force [mV] 0.023 0.239 0.267 -0.018

amplitude of electromotive force1) [mV] 0.102 0.352 0.386 0.105

maximum power ouput2) [nW] 1.8 28.2 34.7 2.4

 1)
 amptitude = (maximum - minimum)/2

2) power output = V2/R



   

amplitudes were 0.188, 0.309, and 0.386 and the intervals between the peaks (53.5, 40.5 

and 31.5 ms) changed following the rotational speed of the gadolinium. The amplitudes 

are linearly increase with rotation speeds. Therefore, it can be worked as a velocity sensor. 

 

Figure 4: Generated electromotive force at 292 K during one cycle. 

 

Figure 5: Moving average of generated electromotive force at 292 K by different rotation 

speeds. 
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5. Conclusion 

This paper proposes designs for energy harvesting temperature and velocity sensors. By 

integrating magnetic phase transition with electromagnetic induction, these sensors can 
sense without needing any additional energy, leading to an increase in the energy 

efficiency of CPS. Furthermore, as the sensor itself is not attached to a receiver, it 

functions as a wireless sensor. Our proposed energy harvesting sensors have the potential 

to contribute significantly to the development of CPS in the near future. 
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Abstract 
Wastewater from electroplating industry is composed of heavy metals. Adsorption is an 
effective method treating this type of hazardous wastewater. Many works studied 
adsorption of single metal ion however industrial wastewater is always multicomponent 
system. As a consequence, this work aimed to study the competitive adsorption of 
copper, nickel, and chromium ions onto amine functionalized SBA-15. It was found that 
adsorption capacity increased with an increase of pH. Moreover, removal efficiency of 
metal ion decreased when initial metal concentration increased. To represent the 
adsorption data, Langmuir, Freundlich, extended Langmuir, and modified competitive 
Langmuir models were selected. Their SSEs (Sum of squared errors) were 98.58, 
118.40, 165.84, and 156.18, respectively.  

Keywords: competitive adsorption, heavy metals, multicomponent isotherms, SBA-15. 

1. Introduction 
Electroplating is one of finishing steps used to improve mechanical and chemical 
properties of products. It also gives an attractive surface. However, wastewater from 
electroplating process is always comprised of heavy metals such as copper, nickel, and 
chromium. These heavy metals are harmful to human and can accumulate in 
ecosystems. Adsorption is one of the promising techniques treating wastewater 
containing heavy metals. As a consequence, many researches aimed to develop novel 
adsorbents having high adsorption capacities.  

SBA-15 was chosen in this work because it has large surface area and easy to modify its 
surface. If any functional groups containing N, O, S, or P atom is incorporated onto 
adsorbent surface, the removal efficiency of metal ions is improved (Maleki, 2016). 
Therefore adsorption of copper, nickel, and chromium ions onto amine functionalized 
SBA-15 was studied in this work.  

Most works in literature reported the adsorption of single heavy metal ion while 
industrial wastewater is generally composed of several heavy metal ions. The adsorption 
of a component may be affected by the other component (Girish, 2017). Therefore, the 
study of multicomponent adsorption is necessary. Isotherm models are used to predict 
the adsorption behaviour. Langmuir, Freundlich, extended Langmuir, and modified 
competitive Langmuir isotherm models were chosen in this study.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50344-4 
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2. Materials and methods 
2.1. Materials 

TEOS (Tetraethyl orthosilicate), Pluronic P123, toluene, ethanol, APTES 
(Aminopropyltriethoxysilane), and hydrochloric acid were purchased from Sigma 
Aldrich or Merck. They were used as received.  

2.2. Synthesis of SBA-15 

SBA-15 was synthesized by using the method of Naik et al. (2011). Briefly, 6.64 g of 
Pluronic P123, 13.5 mL of HCl solution, and 202 mL of deionized water was mixed 
together. Next, 13.86 g of TEOS was dropped into the mixture. After aging at 90 °C for 
24 h, the solid obtained was filtered and washed with deionized water. Then, the solid 
was dried and calcined at 550 °C for 3 h.  

2.3. Preparation of amine functionalized SBA-15 

The method of Parida and Rath (2009) was used to graft amino functional group onto 
the surface of SBA-15. In brief, 2.0 g of SBA-15 was mixed with 60 mL of toluene. 
Next, 1.2 mL of APTES was dropped into the mixture. After reflux for 8 h, the solid 
was washed with ethanol and deionized water, respectively. Then it was dried at room 
temperature for 12 h.  

2.4. Batch adsorption studies 

In general, 100 mg of adsorbent was added into 50 mL of heavy metal solution. The 
mixture was shaken at 105 rpm for 48 h. After vacuum filtration, the metal 
concentration was determined by atomic absorption spectroscopy (AAS). The 
adsorption capacity was calculated by Eq. (1). 

qe=
(Ci-Ce)V

m
 (1) 

qe is the adsorption capacity at equilibrium; Ci is the initial metal concentration; Ce is 
the metal concentration at equilibrium; V is the volume of metal solution; m is the mass 
of adsorbent. For the calculation of removal efficiency, Eq. (2) was used. 

Removal efficiency =
(Ci-Ce)

Ci
×100 % (2) 

3. Results and discussion 
3.1. Effect of pH 

To study the effect of pH, the experiments were conducted at pH 2 – 5. It was found that 
the amount of nickel ion adsorbed by amine functionalized SBA-15 was very low as 
shown in Figure 1. The nickel adsorption was suppressed by copper and chromium ions, 
suggesting antagonistic interaction. This effect was also found in the adsorption of 
nickel in the presence of copper when using olive stones as adsorbent (Girish, 2018). 
Moreover, adsorption of copper and chromium ions increased with an increase of pH. 
This may be caused by competition with hydrogen ion at low pH (Sertsing et al., 2018).  
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Figure 1. Effect of pH on adsorption capacity of copper, nickel, and chromium ions in 
multicomponent adsorption.  

3.2. Effect of initial metal concentration 

The effect of initial metal concentration was studied at pH 5. The results were illustrated 
as Figure 2. When initial metal concentration increased, the removal efficiency of metal 
ion decreased. This phenomenon was also found in single metal adsorption (Pornchuti 
et al., 2020). By fixing the amount of adsorbent, the number of adsorption site was 
limited. That was why the reduction of the removal efficiency occurred. 

 
Figure 2. Effect of initial metal concentration on removal efficiency of metal ion in 
multicomponent adsorption.  

To treat wastewater containing copper, nickel, and chromium ions by amine 
functionalized SBA-15, at least two adsorption columns are required. The first one is 
used to adsorb copper and chromium ions. The other one is used to remove nickel ion. 
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When copper and chromium ions are removed, nickel ion can be adsorbed in the second 
adsorption column.   

3.3. Mathematical modeling 

Langmuir and Freundlich isotherms were used widespread for adsorption of single 
component. There were some works using these models representing experimental data 
of multicomponent adsorption such as the work of Qi and Pichler (2017). Due to their 
simplicity, both models were chosen in this work. Langmuir isotherm is expressed as 
Eq. (3).  

qe,i=
qm,ibL,iCe,i

1+bL,iCe,i
 (3) 

qe,i is the adsorption capacity at equilibrium for component i; qm,i is the maximum 
adsorption capacity for component i; bL,i is the Langmuir constant for component i; Ce,i 
is the metal concentration at equilibrium for component i. Freundlich isotherm is 
expressed as Eq. (4). 

qe,i=KF,iCe,i

1 ni�  (4) 

KF,i is the Freundlich constant for component i; ni is the adsorption intensity for 
component i. Isotherm parameters of both models can be determined from the linearized 
forms of each model and listed in Table 1. Since the amount of adsorbed nickel was 
very low, the experimental data of nickel was excluded from the models. 
Table 1. Adsorption isotherm parameters. 

Adsorption isotherm parameters Cu Cr 
Langmuir isotherm 

qm,i 
bL,i 

 
50.2513 
0.0511 

 
43.8597 
0.0407 

Freundlich isotherm 
KF,i 
ni 

 
18.4204 
5.7438 

 
16.7687 
6.2972 

Extended Langmuir isotherm 
qm,i 
bL,i 

 
111.7629 
0.0249 

 
76.2243 
0.0284 

Modified competitive Langmuir isotherm 
qm,i 
bL,i 
ηL,i 

 
78.1250 
0.0230 
1.0174 

 
163.9344 
0.0268 
3.2165 

 

The extended Langmuir isotherm is developed for multicomponent adsorption. This 
model can be represented as Eq. (5). 

qe,i=
qm,ibL,iCe,i

1+∑ �bL,jCe,j�N
j=1

 (5) 
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N is the total number of ions in the solution. The evaluation of parameters can be 
achieved by minimization of the error in non-linear regression analysis. The parameters 
of this model were listed in Table 1. In case of Modified competitive Langmuir 
isotherm, the interaction factor (ηL,i) is included to explain the competitive effect 
between the individual components. This model can be expressed as Eq. (6). 

qe,i=
qm,ibL,i�Ce,i ηL,i� �

1+∑ �bL,j �Ce,j ηL,j� ��N
j=1

 (6) 

All parameters in this model except the interaction factor, was determined from 
experimental data of single component adsorption. The interaction factor was evaluated 
from experimental data of multicomponent system by minimization of the error in non-
linear regression analysis. The parameters were summarized in Table 1. 

 
Figure 3. Comparison of experimental and predicted adsorption capacities. 
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The predicted data of adsorption capacity from each model were compared with the 
experimental data in Figure 3. The SSEs of Langmuir, Freundlich, extended Langmuir, 
and modified competitive Langmuir models were 98.58, 118.40, 165.84, and 156.18, 
respectively. Langmuir model was better than Freundlich model. Anyway, application 
of both models is limit. In addition, they do not include the effect of other components. 
When other metal concentrations were changed, the adsorption capacity was not altered 
as shown in Eq. (3) and (4). As a result, the adsorption behavior could not be described. 

Since wastewater is always composed of various metal ions, the multicomponent 
models are useful for the design of adsorption column. The effect of other components 
is included in multicomponent adsorption models. Extended Langmuir isotherm and 
modified competitive Langmuir isotherm were developed for multicomponent 
adsorption. Modified competitive Langmuir model gave better result because it includes 
interaction factor which showed the competitive effect of metal ions (Girish, 2017). 

4. Conclusions 
Our study showed that there were interactions between metal ions during adsorption 
process. The adsorption affinities of metal ions depend on pH. The efficiency of metal 
removal decreased when initial metal concentration increased. Although SSEs of 
Langmuir and Freundlich models were better than those of multicomponent adsorption 
models, the application of single component model was limit.  
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Abstract 

Coatings have become ubiquitous in modern manufacturing processes as the mechanical 

improvements or the new properties that they offer bring a lot of added value in the 

processes in which they are used. Coatings offer interesting challenges in terms of 

environmental and economic assessment as the deposition process and the use phase of 

the coating are often decoupled, although both need to be considered for a proper 

evaluation. 

In this paper, the impact of the choices made during the deposition process will be 

demonstrated through a case study about TiAlN coatings for machining applications. Two 

deposition techniques are evaluated: Magnetron Sputtering in Direct Current (DC-MS) 

and in Hi-Powered Impulse (HiPIMS) regime. While coatings deposited with the HiPIMS 

technology are costlier and have a higher carbon impact, their increased coating life 

compensates that higher cost. Inclusion of the impact and costs of other aspects such as 

the steel substrate production would further increase the benefits of using HiPIMS. 

Keywords: Environmental Assessment, Economic Assessment, Machining, TiAlN, 

HiPIMS 

1. Introduction 

Machining is an important part of many modern supply chains, for the automotive or 

electronical industries for example. Global market for machining is estimated to have 

reached a worth of $341.91 bn in 2019 in which China is the biggest shareholder [1]. In 

just the machining sector, the global market for cutting tools reached a size of $34.42 bn 

[2]. Due to the impact of that sector, finding ways to increase the performance of the 

machining process would be of great importance. One of the ways the machining process 

can be improved is, for example, by using coatings to improve the mechanical properties 

and the durability of the cutting tools. In the present paper, a method for economic and 

environmental joint assessment for different coating technologies will be presented to 

evaluate feasibility of the HiPIMS technology for TiAlN coatings. 

2. Goal and scope 

The goal of the present work is is to compare Ti0.5Al0.5N coatings deposited by HiPIMS 

(Hi-Powered Impulse Magnetron Sputtering) and by DC-MS (Direct Current Magnetron 

Sputtering) on cutting tools. The motivations are that previous works have shown that 

using HiPIMS to deposit TiAlN has the capacity to greatly extend the tool life time under 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50345-6 
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cutting conditions (75 vs 50 minutes) [3]. That result combined with the fact that HiPIMS, 

while having interesting properties, tends to be costlier due to lower deposition rates and 

higher investment costs [4], make up an interesting trade-off between cost and 

performance to study in the use phase. The target public for this work is mostly the 

scientific community interested in either joint economic and ecological assessment, 

HiPIMS and cutting tools technology. The functional unit (FU) is an 8 mm X 8 cm high-

speed steel (HSS) tool coated by 4µm Ti0.5Al0.5N coatings sputtered by DC-MS or 

HiPIMS. 

This study will take into account the extraction phase for all materials and the coating 

phase. Instead of a full Life Cycle Analysis, the study will focus on CO2 emissions only 

because they are the main environmental impact linked to cutting and to the present 

coating technologies as their main difference is electricity consumption. This is also a 

way to streamline data acquisition. 

3. Data collection and inventory 

Several subprocesses are necessary to assess the cost and impacts of the coating process. 

Those are: production of the TiAlN target, gas production and the deposition process 

itself. 

Target production itself is comprised of several different phases: Metal extraction, 

melting, powderization, annealing, compaction and sintering. To assess the energy 

consumption of those phases, the calculation of Kruzhanov is used [5]. The generic data 

provided in [5] is used for all phases except for metal extraction where emission factors 

(EF) from [6] are used for the CO2 emitted for aluminium and titanium production. The 

energy requirements are shown in Table 1. 

Table 1: Energy requirements of TiAlN target production 

 Powder 

production 

Compaction Sintering Total  

Energy requirement 

(kWh per kg) 

1.32 1 4 6.32   

 

Because the target’s production country is unspecified, the EF of the energy production 

is taken as the global average: 475 gCO2/kWh [7]. Cost of target is assumed to be of 400 

€/kg based on prices of partners. 

The deposition process itself must also be evaluated, which takes place in a vacuum 

chamber. A representation of the chamber is given in Figure 1. The chamber is assumed 

to be octagonal and to be able to accommodate 5 rows of 5 tools on each of its sides. The 

substrate holder is able to rotate and to heat the tools to 450°C. A thickness of 4 µm and 

a deposition rate of 1.8 µm/h for HiPIMS are assumed [4]. The only difference for the 

two technologies is that a deposition rate of twice the one for HiPIMS, i.e. 3.6 µm/h, is 

assumed for DC-MS [3]. No material losses are assumed as a first approximation as the 

impact of TiAlN is negligible in the results. 
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Figure 1: Representation of the deposition chamber for DC-MS and HiPIMS 

The details for chamber operation are given in Table 2 for calculation of energy and gas 

consumption through deposition time. 

Table 2: Energy consumption and time requirements of the deposition phase 

subprocesses of HiPIMS and DC-MS 

 Power (W) Time (Min) Source 

Heating 2000 30 [3] 

Etching 120000 30 [3] 

Deposition 120000 HiPIMS: 133.3 

DC-MS: 66.7 

[3] 

Cooling 2000 20 [8] 

Grinding 1000 10 [8] 

Loading/Unloading - 20 [8] 

Pumping 8000 continuous [8] 

 

Coating is assumed to take place in Belgium, the EF for the energy production is then of 

174 gCO2/kWh [9]. Based on invoices, cost of nitrogen is assumed to be 0.332 $/kg. Cost 

of argon is assumed to be 0.976 $/kg. A dollar-euro conversion rate of 1.18 $/€ is used 

for all of the present work. The EF for argon is considered to be 0.385 kgCO2/m³ [10]. As 

for nitrogen, the energy needed for air separation is 243 kWh/t of nitrogen [11] and global 

average EF for the energy used in the separation process is considered. A consumption of 

400 sccm of Ar is assumed during the heating, etching and deposition phases as well as a 

consumption 400 sccm of N2 during the deposition phase. 

4. Cost and environmental assessment 

The first goal is to differentiate the costs and impacts of DC-MS and HiPIMS for the 

different steps of coatings production. 

4.1 Gas production 

Following the assumptions made in section 3.2, consumption, cost and emissions of the 

gases used in the deposition process for a batch of 200 tools are summarized in Table 3. 
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Table 3: Gas consumption, costs and related CO2 emissions per batch 

 HiPIMS DC-MS 

 Ar N Ar N 

Gas consumption (g) 131.5 64.2 86.1 32.1 

Total Gas cost (€) 0.11 <0.02 0.08 <0.01 

Gas CO2 emissions (g CO2) 29.8 7.7 19.5 3.8 

 

4.2 Target production 

Using a TiAlN density of 4.8 g/cm³, a coating of 38.6 mg is deposited on every tool, from 

which 28.1 mg comes from the sputtered target and 10.5 mg comes from nitrogen. 

Following assumptions from section 3, 62.4 gCO2 are emitted for target production per 

batch for both DC-MS and HiPIMS. Every batch induces a cost of 2.24 € of target 

consumption. 

4.3 Electricity consumption 

The electricity consumption for the coating process is summarized in Table 4. 

Table 4: Electricity consumption of the deposition subprocesses 

 Subprocess HIPIMS MS 

Heating (kWh/batch) 5.00 5.00 

Etching (kWh/batch) 65.00 65.00 

Deposition (kWh/batch) 297.78 148.89 

Cooling (kWh/batch) 0.67 0.67 

Grinding (kWh/batch) 0.17 0.17 

Total (kWh/batch) 368.61 219.72 

Total (kWh/tool) 1.84 1.10 

 

Most of the energy is used in the deposition and the etching phase due to the area of 

targets in those types of MS installations. Using the Belgian EF, 64 138.3 gCO2 and 

38 231.7 gCO2 are emitted per batch for HiPIMS and DC-MS respectively. Using a cost 

of 0.0807 €/kWh, electricity costs per batch are 29.7 € and 17.7 € for HiPIMS and DC-

MS respectively. 

4.4 Labor, maintenance and annuities 

The final metrics to evaluate the costs of each technology are labor, maintenance and 

annuities costs. In order to assess those aspects per coating produced, it is necessary to 

establish working parameters. 

For maintenance, the annual costs are assumed to be 2% of the equipment costs each year. 

For annuities, a time of return on investment of 5 years is assumed, while inflation is 

neglected as a first approximation. For labor, each installation is assumed to work 300 

days a year with 2 shifts of 8 hours every day. A single operator per shift with a hourly 
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salary cost of 40 € is assumed to be assigned to the installation. Due to the longer time 

per batch for the HiPIMS process, the annuity cost per FU will be higher. 

4.5 Summary 

Using the previously stated costs and assumptions, costs and CO2 emissions per FU can 

be worked out. The total costs per FU are shown in Figure 2. They amount to 2.36 € per 

HiPIMS coating and 1.67 € per DC-MS coating. 

 

Figure 2: Cost breakdown of the coatings for DC-MS and HiPIMS 

Most of the costs are related to labor and annuities. This is due to the relatively high 

investment cost of the installations. For HiPIMS, that investment cost is higher, and the 

cost per coating is exacerbated by HiPIMS’ lower productivity.  

CO2 emissions for each technology are presented in Figure 3. Electricity production is 

overwhelmingly responsible for CO2 emissions for both technologies. This is mainly due 

to the large amount of energy required for coating compared to the amount of material 

deposited. Due to the lower deposition rate of the HiPIMS technology, the amount of CO2 

emitted by this technology compared to DC-MS is noticeably higher (320.7 gCO2 vs 

191.2 gCO2). 

 

Figure 3: Total CO2 emissions for DC-MS and HiPIMS technologies 
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 5. Conclusions 

In summary, HiPIMS coatings have a 41% increased cost and a 68% increase in CO2 

emissions compared to their DC-MS counterpart. However, with tool lifetimes of 75 

minutes and 50 minutes for HiPIMS and DC respectively, one can reasonably justify the 

choice of HiPIMS coatings, at least in terms of costs. Indeed, the tool lifetime is 

increased by 50% for HiPIMS, while its costs only increases by 41%, making this 

choice a priori advantageous especially as a longer tool lifetime will also reduce the 

downtimes of the machining process and thus improve its cost efficiency. Further work 

will include the use phase in the analysis as well as technical data in order to verify 

these assumptions. Finally, further perspectives will also consider the cost of the HSS 

tool substrate and the CO2 emissions linked to its production. Despite a lower 

productivity of HiPIMS, these elements will also presumably benefit the HiPIMS 

technology due to the longer tool lifetime it allows. 
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Abstract 
In this paper, we present a data-driven approach to predicting polymer dosages for 
industrial decanters based on upstream production data. First, a data extraction algorithm 
using on-line sensors is developed to identify when the operational mode is changed with 
a 99 % accuracy. Next, an investigation of process delays in the collected data is carried 
out by analysing partial autocorrelation matrix eigenvalues upon which is it concluded to 
transform the data by summarising the data by batch and including lagged summaries to 
account for a time delay of 2 hours. Finally, a random forest forecasting model is trained 
capable of learning structured information from the lagged summaries producing decent 
predictions for both low and high polymer dosages (RMSE 14.89). The proposed 
approach could potentially save operators 3-6 hours a day. 

Keywords: Control; Operation; Forecasting; Environmental Systems; 

1. Introduction 
Decanters are widely used in the biotech industry to carry out solid-liquid separations. 
Achieving adequate separation in the decanters reduces the amount of energy, and 
therefore money, required to treat the reject water in the waterline, however this is at the 
cost of adding chemicals to the decanters. At the current point in time, it is deemed 
unfeasible to control the settings of the decanters based on a cost-benefit analysis due to 
the complexity of accounting for savings in the waterline, so the problem is reduced to 
achieving decent separation with the necessary operational conditions as determined by 
the operators. Running decanters with a highly variable feed composition in a satisfactory 
manner is a task for operators who manually carry out flocculation tests to estimate the 
proper chemical dosage at a given point in time. This procedure is labour intensive and 
cumbersome. It also has a strong time component i.e delay between the result of the 
flocculation essay and the need of deciding for a dosage strategy. In order to circumvent 
this limitation, we developed a mathematical model based on on-line sensor data to 
estimate dosing of polymer based on upstream process information. The proposed 
methodology is tested at case study largest industrial wastewater treatment plant in 
Northern Europe. 
 

2. Methods 
2.1. Plant description 
The plant has a hall with decanters that treat approximately 200 m3/h of biomass and 
waste activated sludge with operation around the clock. The stream that goes into the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50346-8 
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decanter hall comes from one of two storage tanks that are operated in a semi-continuous 
manner, and the biomass in the storage tanks consists of inactivated biomass from the 
upstream biotechnological production as well as waste activated sludge from the 
waterline at the plant. Apart from storing material, the storage tanks also buffer the flow 
to the decanter hall allowing for smoother operation, and a regular emptying pattern, 
whereas the filling pattern is dictated by upstream production. There are approximately 
4-6 batches going through the decanter hall every day. The decanters are controlled by 
operators who adjust the polymer dosage, among other settings, depending on the biomass 
and sludge that is being treated for each batch. The operators judge the quality of the 
separation by looking at the reject water from the decanters with a visual test, and then 
decide to change the polymer dosage, among other settings, accordingly. A conceptual 
illustration of the plant is provided in Figure 1. 
 

 
Figure 1 – Conceptual illustration of the plant. Biomass and waste activated sludge are inactivated 
and stored in two storage tanks that semi-continously feed into a hall with centrifugal decanters. 
The upstream information is used to produce operational condition forecasts to assist operators in 
controlling the decanters. 

 
2.2. Data availability 
The plant is equipped with online sensors of pH, temperature, tank volumes, flowrate 
among others, and historic data from the sensors is available from an online database. 
Historic time-series data from the 1st of July to 31st of December 2020 were extracted 
from the online database with a resolution of 15-minute averages. Categorical information 
such as production codes were 15-minute medians. In total 302 variables from the plant 
were selected for analysis. The data retrieved from the online database is ordered by time 
of observation, however the plant contains several unit operations with residence times 
larger than the 15-minute averages for which data is obtained, and hence comparing 
upstream variables with downstream variables at the same time should exhibit poor 
correlation unless the variables being compared are severely autocorrelated.  
 
2.4. Batch data-extraction algorithm  
A custom algorithm is developed to automatically identify when a batch begins when the 
other tank starts to empty (see Figure 2). In this way, a batch change is identified by 
checking that the tank volume is above approx. 50 %, and that the gradient of that volume 
is negative, and that the gradient is larger than 0.5 % as to prevent identifying a batch 
change time when operation is stopped due to sensor noise (approx. 0.1 %). 
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Figure 2 – Algorithm for detection of batch changes for the semi-continuous tank system. 
Identified batch changes are marked with a vertical red line.   
 
 
2.3. Partial autocorrelation matrix (PACM) 
The partial autocorrelation matrix (PACM) is used to study process delays due to unit 
operations. Due to the semi continuous operation of the tanks, a large delay is expected 
that correlates the upstream data with the downstream data at a lag corresponding to the 
residence time in the storage tanks. Summarising The PACM is constructed by 
calculating the partial correlation matrix for lagged versions of the dataset, and the 
eigenvalues for each matrix. Next, the obtained PACM is compared to the eigenvalues of 
the matrix at prior and future lags where large and small eigenvalues indicate overall good 
and correlation between the variables and their lagged states respectively (Vanhatalo et 
al., 2017).   
 
2.5. Predictive method  
Random forests are widely regarded as a good off-the-shelf regression model for 
structured data, such as the data presented herein (Hastie et al., 2017). The random forest 
(RF) algorithm is used to construct a forecast model that predicts the operator decided 
polymer dosage for a batch based on the upstream information obtained while the batch 
is in storage. The first 80 % of the batch observations are used as training data to decide 
which hyper-parameters to utilize, and the final 20 % of the batch observations are used 
to evaluate the model performance by recursively refitting the model and predicting the 
next batch polymer dosage.  

3. Results 
3.1. Analysis of batch data 
The proposed algorithm identified batch changes with a 99% accuracy. In total 869 
batches were analyzed for the 6-month period. The target objective of the forecast model 
is the polymer dosage after the operators have evaluated and changed the operational 
conditions, implying that the mean for a batch averages out the conditions before and 
after the operators have done their job, so to have a more accurate estimate of the polymer 
dosage a zero-excluded median is calculated for the decanters in the hall, since this 
removes idle machines or machines that exhibit irregular behaviour. The zero-excluded 
median is calculated after rounding the dosages to nearest base 5 as this is the typical 
magnitude of change that the operators will apply and the final value for a batch is 
considered as the suggested dosage from the side of the operators. In table 1 the initial 
polymer dosage, final polymer dosage and percentage of batches with new conditions is 
shown for all the identified batches. A batch is deemed to have new conditions if the 
calculated starting median differs from the final one. The statistics are shown for all three 
shifts in Table 1. The afternoon shift appears to utilize less polymer and change their 
operational conditions more frequently than the morning and night shift.  
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Table 1- Initial polymer dosage, final polymer dosage and % of batches optimized. 

 Morning Shift Afternoon Shift Night Shift 
Initial polymer dosage 49.6  45.8  46.3  
Final polymer dosage 47.4 45.5  50.2  
Batches w. new conditions 79.5 % 92.4 % 81.2 % 

 
4.2. Assessment of process delays 
In Figure 3 the largest absolute eigenvalue for the partial autocorrelation matrix (PACM) 
as a function of lag is shown for the untreated data on the left, and for batch summarised 
data on the right for the first two months of data (Vanhatalo et al., 2017). The PACM 
eigenvalues for the untreated data display a high correlation between the variables at delay 
20, which could correspond to the process delay caused by the storage tanks that feed the 
decanter hall.  

 
Figure 3 – Largest absolute eigenvalues for the PACM at different lags before and after batch 
summarization left and right respectively. 

The summarised data is calculated by averaging all values for a given batch time, and the 
lag corresponds to moving the starting and end point of the batch by one timestep, to 
check if different variables should be summarised by different time indices to account for 
delays occurring before the semicontinuous storage tanks. An illustration is provided in 
Figure 4. The eigenvalues past lag 8 appear to stabilize, so for the forecasting model these 
lagged summaries will be included when developing the forecasting model, effectively 
accounting for the past 2 hours. 
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Figure 4 – Batch summarization illustration. For each identified batch the mean is calculated for 
each variable, and for each lagged version of the variables.  

4.3. Random forest  
4.3.1. Model training 
The sci-kit learn library is used to carry out the hyper-parameter optimization and train 
the models (Pedregosa et al., 2011). The hyper-parameter optimization is carried out by 
building 500 random forests with 1024 trees where the complexity parameter, maximum 
number of features and maximum depth are drawn from the uniform distributions U(0.2, 
0.8), U{1, 2700} and U{1,10} for each random forest respectively. The random forest 
with the best performance has complexity parameter, maximum number of features and 
maximum depth values of 0.23, 105 and 9 respectively. 
 
4.3.2. Model predictions 
For each observation in the test set the model is refit on all prior data to produce the 
forecasts. The root mean square error (RMSE) on the test set is 14.89 whereas using a 
naïve guess such as the mean of polymer dosage results in an RMSE of 18.44 and the RF 
algorithm thus successfully learns structured information, however considering that the 
average polymer dosage is between 45-50 the RMSE is still considered as high. In Figure 
5 two residual plots are shown. The left one shows the residuals of the model on the test 
set as a function of time, and the right one shows the residuals as a function of the model 
prediction. Each residual is shown with a dot, if the batch conditions are new compared 
to the previous conditions, and a cross, if the batch conditions are old corresponding to 
unchanged conditions from the last batch.  

 
Figure 5 – Model residuals a function of date on the left, and as a function of predicted polymer 
dosage on the right. A dot represents a batch with new operational conditions, and a cross old 
operational conditions compared to that of the previous batch. 
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4.3.3. Discussion 
From the left plot in Figure 5 there does not appear to be an increasing trend in the model 
residuals indicating that there is no systematic error in the model, and that the model can 
predict both low and high polymer dosages. The batches that utilize old conditions have 
a lower residual on average, which could correspond to batches where the operators deem 
the performance of the decanters sufficient, and therefor keep the old operational 
conditions. The forecasting model could therefore be applied in situations where the old 
conditions are insufficient to generate a starting point for the operators. For each batch 
where the model provides an adequate estimate 1-2 hours of time could potentially be 
saved for the operators allowing them to perform other crucial tasks. Upon investigating 
the random forests feature importance it becomes evident that the tree utilizes primarily 
flow rates, and information about time to make predictions, and that information related 
to upstream product information, pH and temperature are not utilized as much.  Models 
that inherently utilize time as information can be impractical since they often do not 
convey implications of physical phenomena, however for systems with temporal patterns 
they can provide a significant boost in forecasting accuracy. As a means of comparison, 
a naïve forecast where the prediction for each value is the prior value yields a RMSE of 
17.43 which is 17.06 % larger than that of the RF model. Random forests are considered 
as a good off-the-shelf data mining procedure, and here they also achieve moderate 
success encouraging further data collection and investigation of more sophisticated and 
time-consuming forecasting methods such as neural network approaches. One inherent 
drawback of predicting the actions of operators is that the operation could change 
depending on the operators working a shift and including the operator schedule could lead 
to a better forecasting model and provide a method for evaluating operator performance 
through data-engineered key performance indicators. The framework presented herein 
can also be utilized for predicting other operational conditions, and transferred to other 
plants with similar plant layouts, or for predicting decanter failure. 
 

4. Conclusion 
This study demonstrates performance analysis of an industrial-scale process using plant-
wide operational data. With proper data treatment, data analysis, feature selection and 
data-driven modelling it was possible to make an automated algorithm to handle complex 
datasets for prediction purposes and later optimization and control. We propose that it 
could save operators between 3-6 hours of work every day, leaving room to carry out 
other important tasks at the plant, however further model development and following 
verification is required to increase the accuracy of the forecasts. 
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Abstract 

In this study a set of mathematical tools are developed and assembled together to assess 
and predict mass and volumetric flows in industrial water treatment systems (iWTS). The 
proposed approach is constructed upon a set of data reconciliation methods, influent 
fractionation routines and process simulations models (and model interfaces) to balance, 
analyse, reproduce and forecast the behaviour of different compounds within treatment 
facilities. The proposed approach is tested on full-scale data collected after a five week 
measuring campaign at the largest iWTS in Northern Europe. Results show that the 
proposed approach is capable to predict the occurrence, transformation and fate of COD, 
N, P, S and multiple metals (Na, K, Ca, Mg and Al). 

Keywords: Data reconciliation, Mass balancing, Model simulation, Process systems 
engineering, Scenario analysis, Wastewater 

1. Introduction 

Industrial wastewaters have very diverse dynamics (compared to urban wastewater), 
which is a result of different production schemes/schedules within the factory. Variable 
pH, influent biodegradability, non-standard COD/N and COD/P ratios might challenge 
traditional biological processes. In some cases, high loads decrease methane/biogas 
production (and potential energy recovery). This reduction is attributed to two factors: 1) 
loss of electron equivalents due to the presence of sulfate reducing bacteria; and, 2) 
decrease of acetoclastic and hydrogenotrophic methanogenesis due to sulfide inhibition. 
Metals and some inorganic/organic compounds can inhibit microbial growth and/or have 
severe toxicity effects. The high content of cations and anions promotes the formation of 
precipitates at different locations in the reactor (granules, pipes), which can have 
detrimental (decrease of methanogenic activity) or catastrophic (cementation) effects on 
reactor performance (Feldman et al., 2017). Hence, mathematical models describing 
iWTS should include all these (hostile) phenomena in order to produce reliable 
predictions. 
The objective of this study is to present a set of mathematical tools to assess and predict 
mass and volumetric flows in iWTS. The study presents the following novelties: 1) The 
results of a 5 week sampling campaign at the largest iWTS Norther Europe; 2) A 
reconciled mass balance analysis showing the occurrence, transformation and fate of 
traditional (COD, N, P & S) but also non-traditional (Na, K, Ca, Mg, Al) compounds; 
and, 3) A customized/calibrated model library describing multiple technologies treating 
different types of waste streams (liquid, solid). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50347-X 
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This work goes beyond  state of the art by presenting a modelling approach: 1) dealing 
with extremely concentrated streams (2,5 M PE in 10,000 m3/day); 2) modifying the 
existing mathematical model structures to adapt to the harsh industrial conditions; and, 3) 
extending the quantity of monitored compounds up to 10 (Q, traditional and non-
traditional compounds) + pH +  VSS/TSS ratio; 4) presenting for a first time an integrated 
plant-wide model dealing with a large industrial iWTS at this level of detail. 

2. Methods 

2.1 Plant description and measuring campaign 
Figure 1 shows a schematics + detailed description of the case study. Influent flow may 
be treated anaerobically (PAT & AGSR) or aerobically (ASR, SEC, FLOT) or both. 
Biogas goes through a cleaning process (SCRUBB, REAC & SET) before being 
introduced to a gas motor for energy (electricity / heat) recovery purposes. Reject water 
from biomass dewatering can be sent to either the PAT & AGSR or the ASR, SEC, FLOT 
section (both is also an option). The output of PAT & AGSR is sent to the ASR. 
A five week measuring campaign was conducted. Samples were taken from 11 locations 
within the plant: 3 influent streams (PWW2, 3 & 4), after PRIM (PRIMover), after PA 
(PATliq), after AGSR (AGSRliq), after ASR (ASRliq), after SEC (SECeff, SECRASS & 
SECWAS) and after dewatering (DEWunder, DEWover). Additional one day samples were 
taken to characterize: primary underflow (PRIMunder) and the output of the inactivation 
tank (ITliq1, ITliq2).  Measurements involved the determination of: TSS, VSS, COD, TN, 
TP and TS and multiple metals (Al, Ca, Mg, Na and K), in both unfiltered and filtered 
samples. The analysis also includes the quantification of nitrates (NOx). 

 
Figure 1. Flow diagram, measuring points, defined sub-systems and mass balances of the iWTS under study: 
1-5 process waste water (PWW1-5), 6 - effluent buffer tank (BTliq), 7-8 –primary clarifier (PRIM) overflow and 
underflow (PRIMunder, PRIMover) 9- by pass activated sludge reactor (ASR) to pre-acidification tank (PAT) 
(ASRbypass), 10 – PAT effluent (PATliq), 11 – NaOH addition to the anaerobic granular sludge reactor 
(AGSR)(NaOHAGSR), 12 – AGSR effluent (AGSRliq), 13 – AGSR biogas (untreated) (AGSRgas), 14 – AGSR 
biogas (treated) (BDSgas), 15 – S recovered (BDSSolid), 16 – input AER, 17 – Poly-aluminum chloride (PAX) 
addition to ASR (PAXASR), 18 – effluent ASR (ASRliq), 19-20 – PAX and Polymer addition to secondary settler 
(SEC) (PAXSEC, PolySEC), 21-23 – SEC effluent, recirculation and waste flow (SECeff, SECRASS, SECWAS), 24-
26 – PAX and polymer addition to flotation (FLOT) (PAXFLOT, PolyFLOT), 26-28 – flotation streams (FLOTover, 
iWTSeff, FLOTunder), 29 – spent biomass stream (SBM), 30 – lime addition to inactivation tanks (IT) (CaOIT), 
31-32 – IT outputs (ITliq1, ITliq2), 33-34 – PAX and Polymer addition to dewatering (DEW) (PAXDEW, PolyDEW), 
35-36 – dewatering under (cake) and overflow (reject water) (DEWunder, DEWover) 
2.3 Mass balancing and data reconciliation 
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A five step methodology is used to reconcile the data obtained during the measuring 
campaign (Puig et al., 2008, Behami et al., 2019): 1) definition of the identity matrix; 2) 
curation, processing, cleansing and data analysis; 3) estimation of the missing fluxes; 4) 
calculation of optimal flows using Lagrange multipliers; and, 5) new data set quality 
verification.  
2.4. Influent fractionation 
Influent fractionation is based on earlier work (Feldman et al., 2017; Monje et al., 2021). 
Essentially, ADM states were estimated by assuming: 1) degree of COD biodegradability 
(DBIO) in both CODsol and CODpart; 2) degree of acidification (DACID) in CODs; 3) fraction 
of ethanol (DETOH). Hence, it is possible to determine SI, XI, Sac and SETOH. Once this is 
established, Xli, Xprot and Saa are quantified using P and N content of the aforementioned 
compounds. Since the influent wastewater originates from the fermentation industry, 
sugars (Ssu = 0) and carbohydrates (Xch = 0) should not be present (consumed upstream). 
The quantity of P not associated with organics is assumed to be inorganic and precipitated 
(mainly calcium phosphate) (XCa-P). Any remaining particulate calcium and magnesium 
will be assumed to be calcium carbonate (XCaCO3). The influent inorganics (XISS0) are 
determined using the TSS/VSS ratio minus the quantity of precipitates. 
2.5. Main mathematical models   
The main model is based on: (1) a biological model; (2) a physico-chemical model; and, 
(3) model interfaces. The biological models (BM) comprise an anaerobic digestion model 
(ADM) and an activated sludge model (ASM). The ADM is used to describe influent 
conditions, BT, PRIM, PA, AGSR, IT and DW, while the ASM describes the ASR, SEC, 
and FLOT units. The physico-chemical model (PCM) includes an aqueous phase + 
precipitation model and a gas transfer model. Finally, the model interfaces include an 
ADM/ASM/ADM interface and PCM/ADM/ASM interface. The ADM/ASM is 
incorporated before the AS unit and the ASM/ADM after the SEC. The outputs of the 
ASM/ADM at each integration step are used as inputs for the PCM module to estimate 
pH, ion speciation/pairing, precipitation potential and stripping. A comprehensive 
description of these models can be found elsewhere (Feldman et al., 2017; Flores-Alsina 
et al., 2019). 

3. Results 

3.1. Reconciled mass balances 
Result of reconciled mass balances revealed that the effluent of the iWTS under study 
(iWTSeff) contains the largest Q fraction (95 %). The dewatered cake (DEWunder) and IT 
liquor (ITliq2) only account for a marginal contribution (<5 %). About 32 % of the 
incoming COD is captured in the anaerobic granular sludge reactor (AGSRgas) and then 
potentially converted into electricity and heat. The remaining COD is lost in intermediate 
operations (BTgas, PATgas) (12 %), burned aerobically/anoxically in the activated sludge 
section (ASRgas) (23 %), part of the effluent (iWTSeff) (1 %) or trucked to an external 
biogas facility as sludge cake (32 %) (ITliq2, DEWunder). Regarding N, 65 % is removed in 
the activated sludge section via nitrification/denitrification (ASRgas). A significant part of 
N ends up being part of the bio-solids to be disposed (ITliq2, DEWunder) (33 %) while a 
small fraction leaves with the effluent (iWTSeff) (2 %). The analysis of P, Ca, Mg and Al 
reveals that these compounds are basically accumulated in the bio-solids (ITliq2, 
DEWunder) (> 70 %) as precipitates. Contrary to that, Na, K and S remain soluble and 
leave via the liquid stream (iWTSeff) (> 70 %). It is important to mention that 11 % of S 
is converted to H2S in the anaerobic granular sludge reactor (AGSRgas,) and then captured 
in a desulfurization tower. Next, it is re-oxidized again to S0 and introduced (BSD) in the 
biological reactor. 
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Figure 2. Contribution to influent and effluent loads of the different streams. For each reconciled magnitude 
(Q, COD, N, P, S, Na, K, Ca, Mg, Al), pie charts represent influent and effluent compositions, respectively. 

3.2. Influent fractionation 
The results of the influent fractionation are illustrated in Figure 3. Four examples are 
presented: 1) process wastewater 2, 3 & 4 (PWW 2, 3, 4); and, 2) the spent biomass stream 
(SBM). Indeed, Figure 3 depicts the proportions of the different model states (both 
soluble and particulate) in form of a stack bar adding up to 100 % of the particulate or 
soluble fraction of each reconciled major component (COD, N, P & Ca). In all PWW 
streams, CODsol and CODpart is mainly composed of fatty acids (Sfa) and lipids (Xli), 
whereas SBM mainly contains amino acids (Saa) and proteins (Xpro). The remaining 
fraction is allocated to non-biodegradable organics (Si, Xi) and VFAs (Sac). With respect 
to N (soluble), PWW3 and PWW4 have a large contribution of nitrate, which comes from 
the use of nitric acid for cleaning equipment. The remaining N is linked to ammonia 
(SNHx) and amino acids (Saa). Particulate N is (almost) entirely allocated to Xprot. All the 
soluble P is assumed to be phosphate (SPO4). The particulate fraction is allocated to lipids 
(Xli) and calcium precipitates (XCa-P). PWW2, 4 and SBM have an important contribution 
of precipitates, which is also confirmed by their lower VSS/TSS ratios. In contrast, P in 
PWW3 is mainly linked to organics (Xli). In both, N and P cases, a small fraction is 
associated with organic inert material (SI and XI). Ca has a soluble (SCa+2) and a particulate 
fraction in the form of carbonates (XCaCO3) and phosphates (XCa-P). In the vast majority of 
cases, calcium carbonate is assumed to be the major component, but a small fraction is 
linked to phosphates depending on the availability of inorganic (particulate) P (see 
PWW2,4 and SBM). A special case is PWW3 where the low content of inorganic material 
is in the form of phosphates.  

  
Figure 3. Fractionation of PWW2, 3, 4 and SBM streams: COD, N, P and Ca. 
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A similar approach is used for Mg i.e. the soluble part is SMg+2 and the particulate form is 
magnesium carbonate (XMgCO3). For the sake of simplicity, the soluble fraction of S is 
associated to sulfate (SSOx), while the particulate fraction is assumed to be sulfur mineral 
(XS0). With respect to the remaining compounds (see Fig 4): 1) K and N are assumed to 
be only soluble and present in ionic form (SNa+ and SK+); 2) Al is assumed to be only in 
particulate form (XAlOH). The pH values were adjusted by modifying the Cl concentration. 
A pool of undefined particulates is used to calibrate the VSS/TSS ratio.  

3.3. Computer simulations 
3.3.1. Buffer tank (BT) + primary clarifier (PRIM) 
CODsol/CODpart values are the result of hydrolysis, acidogenesis and H2 stripping. N and 
P transformations include hydrolysis and uptake/release during biomass growth/decay. 
Specifically, for N the model considers dissimilatory nitrate reduction to ammonium (see 
TN, NHX and NOx). Precipitation of P is assumed to happen (justified with the high 
alkalinity of PWW2). The other studied compounds are assumed to be non-reactive (S, 
Mg, K, Al). In PRIM, a fraction of all compounds with a particulate fraction (COD, N, P, 
Ca, Mg, Al) is removed. The model also reflects well the hydraulic balance (see Q values), 
weak acid chemistry (see pH values) and the differences in settling velocities between 
organics and inorganics (see VSS/TSS values) (see Figure 4 & 5) 
3.3.2. Pre-acidification tank (PAT) 
The model predicts a reduction of CODsol and an increase of the CODpart as result of the 
acidogenic activity. The first is due to hydrogen formation (and subsequently stripping). 
The second is the result of biomass production/growth. The models also suggest a change 
in the composition of CODsol (~60 % is acidified) which would explain the lower pH 
experimental values (well predicted by the model too). Both, plant data and simulation 
values, show total denitrification NOx (~ 0 g/m3) (see Figure 5). Since TN values do not 
seem to change, DNRA was again the main mechanism. No further reactions were 
assumed for the other compounds (see Figure 4 & 5). 
3.3.3. Anaerobic granular sludge reactor (AGSR) 

The proposed approach is capable to reproduce COD values (soluble/particulate) 
resulting from the methanogenic microorganisms (see Figure 4). In addition, it also 
predicts the S removal by sulfate reducing bacteria (see Figure 4). No further reactions 
e.g. precipitation were assumed to occur. The pH and VSS/TSS predictions match well 
with plant data (see Figure 4 & 5) 

 
Figure 4. Steady state model predictions (red crosses) and reconciled measurements mean and standard 

deviation (black circles and whiskers) for several plant locations (see labels in X-axis). A: volumetric flow 
rate; B: TCOD; C: TN; D: TP; E: TS; F: TNa; G: TK; H: TCa; I: TMg; J: TAl. Deviation between 

measurements and simulations = 10 % 
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Figure 5. Steady state model predictions (red crosses) and reconciled measurements mean and standard 
deviation (black circles and whiskers) for several plant locations (see labels in X-axis). A, CODpart; B, 

CODsol; C, NH4+; D, NO3-; E, TPpart; F, TPsol; G, TCapart; H, TCasol; I, TMpart; J, TMgsol/TSS ratio. K, 
pH; L, VSS/TSS ratio. Deviation between measurements and simulations = 12 % 

3.3.4. Activated sludge reactor (ASR) + secondary clarifier (SEC) + flotation (FLOT) 
Simulations results show that both biological reactor + secondary settler model describe 
COD, N and P removal (the latter due to precipitation with Al). Another important aspect 
predicted by the model is the VSS/TSS ratio, including the effect of the particulate Ca 
compound arriving via reject water on the VSS/TSS ratio. The latter leads to an increase 
of the biomass operational mixed liquor suspended solids (MLSS) concentration in the 
reactor to achieve enough nitrification capacity (see Figure 4 & 5) 
3.3.5. Inactivation tank (IT) + dewatering unit (DEW) 
The model predicts three types of behaviour: 1) heavily hydrolysed; 2) precipitated; and, 
3) unaltered. The dewatering module can reproduce the measuring data, i.e. soluble 
compounds were concentrated in the reject water stream, while particulate compounds 
exited the system via the IT liquor or the cake (see Figure 4 & 5). 

4. Conclusion 

This study demonstrates that the proposed approach is capable for the main streams in the 
iWTS to reproduce neutralization, volatile fatty acid production, particulate removal and 
nitrate denitrification in the first units of the flow diagram (buffer tank, primary clarifier, 
pre-acidification tank). It also correctly predicts biogas composition and COD recovery 
in form of electricity and heat in the anaerobic granular sludge reactor. Lastly, biological 
and chemical N and P removal processes in the activated sludge and the quality of bio-
solids after inactivation/dewatering (reject water /cake) are predicted by the model. 
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Abstract 

In this work, we address the challenges associated with decarbonizing electricity grids 

through a decentralized integration scheme of individual fossil power plants with energy 

storage and flexible CO2 capture. To this end, we develop a technology design and 

downselection framework and demonstrate a prototype tool called THESEUS (TecHno-

Economic framework for Systematic Energy storage Utilization and downSelection) 

which enables an extensive techno-economic analysis of integrating fossil power plants 

with several candidate energy storage technologies which include cryogenic, molten-salt, 

compressed air, and batteries. The core of THESEUS is a large-scale mixed integer 

nonlinear programming (MINLP)-based optimization that determines an optimal 

selection and combination of energy storage technologies for minimizing the cost of 

meeting the grid electricity demand. We demonstrate THESEUS through a case study for 

reducing the fossil power plant cycling and minimizing carbon emissions while satisfying 

sharp spikes in energy demands. 

Keywords: Energy Storage, Simultaneous Design and Operation, Downselection. 

1. Introduction 

As the global energy demand increases, there is a push to adopt sustainable renewable 

energy sources. However, the seamless integration of clean renewable energy with 

electricity grids requires measures to address the challenges arising from its inherent 

intermittency. Conventional measures include the cycling of the fossil-based generating 

units and the installation of large-scale energy storage. While power plant cycling reduces 

its efficiency and leads to thermal and mechanical stresses in critical plant components, 

grid-scale energy storage is cost-intensive with only a limited number of suitable 

technologies. These integration challenges make it difficult for renewables to completely 

replace the dispatchable fossil generators from electricity grids. CO2 capture presents a 

promising solution to decarbonize fossil-based power generation, but its large-scale 

deployment is limited by its high energy requirement and cost (Hasan et al., 2012).  

To address the challenges associated with the decarbonization technologies, we propose 

that the operational synergies between them can be leveraged through their localized 

integration with individual fossil power plants to achieve low-cost as well as reliable clean 

energy systems. To this end, we study a decentralized power generation system 

comprising of a natural gas combined cycle (NGCC) power plant integrated with co-

located CO2 capture and energy storage facilities.  The benefits include the ability to meet 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50348-1 
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demand spikes without increased 

cycling of the power plant. 

Furthermore, along with reducing 

plant emissions by up to 90%, CO2 

capture also acts as a form of ‘indirect 

storage’ to counter renewable 

intermittency (Zantye et al., 2021). 

 

The integrated system is depicted in 

Figure 1 where it is connected to the 

electricity grid and is required to 

satisfy the time-varying electricity 

demand. The net demand is 

considered to incorporate the 

variability of renewable energy and is 

given by the total grid demand less the 

renewable generation. Four candidate 

storage technologies are considered 

for the storage block: mechanical 

energy storage through compressed 

air energy storage (CAES), thermal energy storage using cryogenic and molten salt-based 

high temperature storage (CES and HTTS, respectively), and electrochemical energy 

storage in the form of sodium sulfur (NaS) battery systems. For the CO2 capture system, 

storage of the solvent enables time-varying operation of the energy-intensive solvent 

regeneration step and enables the flexible operation of the capture system. The power 

generated by the NGCC plant is used to meet the grid demand. A portion of this can also 

be used for CO2 capture or stored in the energy storage for cases when the net demand is 

low from excess renewable availability. On the other hand, if the power plant output is 

insufficient to meet the grid demand, the energy stored in the storage system can be 

discharged to provide the required electricity.  

The economic viability of this integration is influenced by the high investment cost of the 

energy storage and CO2 capture systems. The candidate storage technologies also exhibit 

trade-offs between the various factors such as lifetime, efficiency and cost. It is crucial to 

determine the overall dynamic operation of the different systems to cost-effectively 

ensure that the time-varying grid demand is met while accommodating variable 

renewable energy. To consider these trade-offs and determine if it is profitable to invest 

in the integrated system under the spatio-temporal variability of electricity markets and 

renewable availability, we develop a mathematical programming-based simultaneous 

design and scheduling framework. This framework forms the back-end of our user-

friendly software program: THESEUS (TecHno-Economic framework for Systematic 

Energy storage Utilization and downSelection). THESEUS enables the user to evaluate 

and compare the different energy storage alternatives for various demand profiles, region 

specific factors, and power plant types and conditions. Section 2 in this article presents 

the THESEUS program and the back-end optimization formulation. Section 3 depicts the 

framework demonstration to determine system design and operation for a case 

incorporating a sharp demand spike. 

Figure 1: Integrated system schematic. 
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2. THESEUS Framework 

The overall framework is depicted in Figure 2.  From the user interface, the user can input 

the power plant parameters such as the cost parameters, ramping limits, nominal capacity 

and minimum load factor. The user can also input several region-specific parameters 

including the cost of electricity, ambient conditions, as well as specify a time-varying 

electricity demand profile to be met by the system. These inputs are combined with the 

power plant models and the technology models for the various direct and indirect storage 

systems in the back-end. Our mathematical programming-based optimization formulation 

which accounts for the trade-offs between system costs and flexibility comprises the 

unifying element connecting the different modules in an overall decision framework. 

Here, the problem statement is as follows: given a time-varying net electricity demand 

profile, determine the optimal storage technology, size and operation to integrate 

decentralized energy storage with existing fossil power plants for minimizing the overall 

system cost of meeting the demand. The general formulation of the optimization 

framework is given below: 

min 𝑇𝐶 = ∑ (𝐶𝑖
𝑆,𝑖𝑣 + 𝐶𝑖

𝑆,𝑜𝑓
+ ∑(𝐶𝑖,𝑡

𝑆,𝑜𝑣 + 𝐶𝑖,𝑡
𝐹𝑃,𝑜𝑣)

𝑁𝑇

𝑡=1

+ 𝐶𝑡
𝐹𝑃,𝑟𝑐 + 𝐶𝑜𝑠 + 𝐶𝑢𝑠

𝑁𝐼

𝑖=1

+ 𝐶𝑐𝑜2) 

(1) 

𝑃𝑡
𝑑𝑒𝑚 = ∑ 𝑃𝑖,𝑡

𝑆

𝑖

+ 𝑃𝑡
𝐹𝑃 − 𝑃𝑡

𝑜𝑠 + 𝑃𝑡
𝑢𝑠 − 𝑃𝑡

𝑐𝑜2 
 (2) 

|𝑃𝑡+1
𝐹𝑃 − 𝑃𝑡

𝐹𝑃| ≤ 𝑟𝑜𝐹𝑃𝑃𝐹𝑃,𝑛𝑜𝑚Δ𝑡 ∀𝑡 ∈ 𝑇 \ {𝑁𝑇 + 1} (3) 

𝑃𝐹𝑃,𝑛𝑜𝑚𝑙𝑓𝐹𝑃,𝑚𝑖𝑛 ≤ 𝑃𝑡
𝐹𝑃 ≤ 𝑃𝐹𝑃,𝑛𝑜𝑚 ∀𝑡 ∈ 𝑇  (4) 

𝐶𝑡
𝑜𝑣,𝐹𝑃 = 𝑐4 𝑃𝑡

𝐹𝑃𝜂𝐹𝑃,𝑛𝑜𝑚/𝜂𝑡
𝐹𝑃 ∀𝑡 ∈ 𝑇 (5) 

𝐶𝑡
𝐹𝑃,𝑟𝑐 = 𝑐5|𝑃𝑡+1

𝐹𝑃 − 𝑃𝑡
𝐹𝑃| ∀𝑡 ∈ 𝑇 \ {𝑁𝑇 + 1}  (6) 

𝑃𝑖,𝑡
𝑆 = 𝑓1𝑖(𝑠𝑖,𝑡, 𝑙𝑖,𝑡, 𝑧𝑖,𝑡

𝑏 , 𝑥𝑖) ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (7) 

Figure 2: THESEUS software framework for energy storage and CO2 capture (indirect 

storage) technology downselection. 
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𝐸𝑖,𝑡 = 𝑓2𝑖(𝑠𝑖,𝑡) ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (8) 

−𝑧𝑖,𝑡
𝐶 𝑃𝑖,𝑡

𝑆 ≤ 𝑦𝑖𝑃𝑖
𝑚𝑎𝑥,𝐶

 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (9) 

𝑧𝑖,𝑡
𝐷 𝑃𝑖,𝑡

𝑆 ≤ 𝑦𝑖𝑃𝑖
𝑚𝑎𝑥,𝐷

 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (10) 

𝐸𝑖,𝑡+1 = 𝐸𝑖,𝑡 − (𝜂𝑖
𝑆𝑧𝑖,𝑡

𝐶 + 𝑧𝑖,𝑡
𝐷 )𝑃𝑖,𝑡

𝑆 Δ𝑡 ∀𝑡 ∈ 𝑇 \ {𝑁𝑇 + 1}, ∀𝑖 ∈ 𝐼 (11) 

𝐸𝑖,𝑡=𝑁𝑇+1 = 𝐸𝑖,𝑡=1 ∀𝑖 ∈ 𝐼 (12) 

𝑧𝑖,𝑡
𝑖𝑑𝑙𝑒 + 𝑧𝑖,𝑡

𝐶 + 𝑧𝑖,𝑡
𝐷 = 1 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (13) 

0 ≤ 𝑥𝑖 ≤ 𝐸𝑖
𝑚𝑎𝑥𝑦𝑖  ∀𝑖 ∈ 𝐼 (14) 

0 ≤ 𝐸𝑖,𝑡 ≤ 𝑥𝑖  ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (15) 

𝐶𝑖
𝑆,𝑖𝑣 = 𝑐1𝑖(𝑥𝑖)𝐶𝑅𝐹𝑖 𝑇/8760 ∀𝑖 ∈ 𝐼 (16) 

𝐶𝑖
𝑆,𝑜𝑓

= 𝑐2𝑖  (𝑃𝑖
𝑚𝑎𝑥,𝐷) 𝑇/8760 ∀𝑖 ∈ 𝐼 (17) 

𝐶𝑖,𝑡
𝑆,𝑜𝑣 = 𝑐3𝑖(𝑃𝑖,𝑡

𝑆 ) ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼 (18) 

The set 𝑡 ∈ 𝑇 = {1, 2, … , 𝑁𝑇, 𝑁𝑇 + 1} denotes the set of time periods in the scheduling 

horizon, while the candidate storage technology set is given by: 𝐼 =
{𝑐𝑒𝑠, ℎ𝑡𝑡𝑠, 𝑐𝑎𝑒𝑠, 𝑛𝑎𝑠}. The time resolution is denoted by Δ𝑡, with 𝑇 representing the time 

horizon length (in hrs). The optimization design decisions comprise of the selection 𝑦𝑖 , 

energy capacity 𝑥𝑖, design discharging and charging power 𝑃𝑖
𝑚𝑎𝑥,𝐷

and 𝑃𝑖
𝑚𝑎𝑥,𝐶

 

respectively of storage technology 𝑖. The operational decisions for technology 𝑖 includes 

the manipulating/flow variable 𝑙𝑖,𝑡. In addition, the state of operation 𝑧𝑖,𝑡
𝑖𝑑𝑙𝑒 , 𝑧𝑖,𝑡

𝐶 , 𝑧𝑖,𝑡
𝐷  i.e. if 

the technology is in the idle, charging or discharging state comprises the operational 

storage decisions. The power output from the power plant at time 𝑡, 𝑃𝑡
𝐹𝑃 , is the plant-level 

operational decision. Here, the cost minimization objective given by Eq.(1) represents the 

sum of the storage investment cost 𝐶𝑖
𝑆,𝑖𝑣

, fixed operating cost 𝐶𝑖
𝑆,𝑜𝑓

, variable operating 

cost 𝐶𝑖,𝑡
𝑆,𝑜𝑣

, the fossil power plant operating cost 𝐶𝑖,𝑡
𝐹𝑃,𝑜𝑣

, plant cycling cost 𝐶𝑡
𝐹𝑃,𝑟𝑐

, the 

electricity oversupply penalty 𝐶𝑜𝑠, the undersupply penalty 𝐶𝑢𝑠, and the cost of CO2 

capture 𝐶𝑐𝑜2. The optimization constraints consist of the following 3 categories: the grid-

level constraints, the power plant model and energy storage model. 

Eq.(2) represents the grid-level constraints and denotes the overall energy balance. Here, 

𝑃𝑡
𝑑𝑒𝑚 ,  𝑃𝑖,𝑡

𝑆 ,  𝑃𝑡
𝑜𝑠 and 𝑃𝑡

𝑢𝑠 denote the grid power demand, power output from the storage, 

electricity oversupply and undersupply at time 𝑡, respectively.  𝑃𝑖,𝑡
𝑆  is positive when the 

storage is discharging and negative when charging. Eqs.(3)-(6) represent the power plant 

model. Here, 𝑟𝑜𝐹𝑃 , 𝑃𝐹𝑃,𝑛𝑜𝑚, 𝑙𝑓𝐹𝑃,𝑚𝑖𝑛 , 𝜂𝐹𝑃,𝑛𝑜𝑚, 𝑐4 and 𝑐5 are constants representing the 

unit ramping rate of the power plant (%/MW.hr), nominal plant capacity (MW), minimum 

load factor (%), base-load efficiency (%), unit operational cost ($/MW.hr) and the unit 

cycling cost ($/MW.hr) respectively. Eqs.(7)-(8) represent the technology-specific 

models for the storage power 𝑃𝑖,𝑡
𝑆  and the storage energy capacity 𝐸𝑖,𝑡 in terms of the 

storage state variable 𝑠𝑖,𝑡, storage flow variable 𝑙𝑖,𝑡, storage operational state 𝑧𝑖,𝑡
𝑏 , and 

storage design 𝑥𝑖. Eqs.(9)-(15) represent the general operational model of each storage 

technology, while Eqs.(16)-(18) denote the general cost models. For these equations, 𝜂𝑖
𝑆 

and 𝐸𝑖
𝑚𝑎𝑥  denote the storage efficiency and maximum possible energy capacity, while 

𝑐1𝑖 , 𝑐2𝑖 and 𝑐3𝑖 are constants denoting the unit storage investment, fixed operating and 



   
variable operating costs respectively. The operational and cost models of the CO2 capture 

system are adapted from Zantye et al., 2021. 

3. Results and D iscussion 

We demonstrate THESEUS for an NGCC power plant of 641 MW nominal capacity to 

study if it is beneficial for the plant to invest in a co-located energy storage facility and/or 

a CO2 capture system. We consider a scheduling time discretization of 5 minutes over a 

time horizon of one day and a net demand profile with a sharp spike in the evening hours. 

Furthermore, we consider a futuristic carbon pricing scenario with a CO2 tax of $ 80/ton 

and a selling price of $ 35/ton. This scenario is found to be one of the economically viable 

cases to provide enough incentive for investment in carbon reduction technologies 

(Zantye et al., 2021).   

THESEUS reports the optimal solution for the NGCC plant to invest in energy storage 

comprised of CES, HTTS and CAES technologies and a CO2 capture system to minimize 

      

   

Figure 3: Optimal operational profiles for (a) the integrated system including power 

plant, CO2 capture and energy storage, (b) CO2 emission and capture. 

Figure 4: Optimal storage operational profiles for (a) CES technology, (b) HTTS 

technology, (c) CAES storage system. 
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the overall cost. The optimal storage integration size for CES is 100 MW/71 MWh, HTTS 

is 217 MW/386 MWh, and CAES is 242 MW/66 MWh. The optimal operational profile 

of the integrated system is demonstrated in Figure 3a. The operation of the CO2 capture 

system is shown in Figure 3b. We observe that during periods of troughs in the net 

demand curve, the power plant produces additional power than the grid demand to charge 

energy in storage systems and in CO2 capture. The stored energy is then discharged by 

the storage system to meet the demand spike during hours 17-22. From Figure 3b, we can 

see that the high CO2 price ensures that the capture system is operating almost throughout 

the day, with the cumulative capture of 89%. The capture system also enables the 

decreased cycling and increased base-load operation of the power plant and reduces the 

overall cycling by 24% compared to a case without CO2 capture. The optimal operational 

profiles for the selected CES, HTTS and CAES are shown in Figure 4. We find that the 

storage technologies slowly charge to their maximum capacities when excess energy is 

available during the day and are discharged almost instantaneously in the evening when 

the demand spike occurs. Among the three technologies, HTTS has the highest installed 

energy capacity with the lowest levelized cost of storage (LCOS) of $149/MWh. The 

LCOS for CAES is $302/MWh and CES is $345/MWh. 

4. Conclusions 

A decentralized integration schematic of energy storage and CO2 capture systems with 

individual fossil power plants is proposed to address the challenges associated with power 

plant cycling and large-scale energy storage while accommodating variable renewable 

energy. The THESEUS framework can systematically determine both the integration and 

dynamic operational decisions. By extensively modelling the interactions between the 

system components in an overall optimization-based decision framework, THESEUS 

enables the user to evaluate the different integration alternatives, compare the costs and 

visualize the system operation. Demonstration of THESEUS for an NGCC plant under a 

futuristic carbon pricing scenario shows that the integration of both CO2 capture and 

energy storage is optimal to reduce the power plant cycling by 24%, reduce emissions by 

nearly 90%, and meet a sharp demand spike. CO2 capture is shown to act as an effective 

indirect energy storage system and enables increased base-load operation of the power 

plant under renewable integration. 

5. Acknowledgements 

The authors gratefully acknowledge support from U.S. Department of Energy (Grant 

number DE-FE0031771). 

References 

M. M. F. Hasan, R. C. Baliban, J. A. Elia, C. A. Floudas, 2012. Modeling, simulation, and 

optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 

1. Chemical absorption and membrane processes. Industrial & Engineering Chemistry 

Research 51 (48), 15642–15664. 

M. S. Zantye, A. Arora, M. M. F. Hasan, 2021. Optimal integration of renewables, flexible carbon 

capture, and energy storage for reducing CO2 emissions from fossil power plants. In: 

Computer Aided Chemical Engineering. Vol. 50. Elsevier, pp. 1535-1540. 

M. S. Zantye, A. Arora, M. M. F. Hasan, 2021. Renewable-integrated flexible carbon capture: A 

synergistic path forward to clean energy future”, Energy & Environmental Science, 14, 

3986 - 4008. 



Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 

June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Integration of experimental study and computer-

aided design: A case study in thermal energy 

storage 

Shoma Fujiia*, Yuichiro Kanematsub, Yasunori Kikuchiabc 

aInstitute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 

Tokyo, 113-8654, Japan 
bPresidential Endowed Chair for “Platinum Society”, The University of Tokyo, 7-3-1 

Hongo, Bunkyo-ku Tokyo, 113-8656, Japan 
cDepartment of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, 

Bunkyo-ku Tokyo, 113-8656, Japan 

shoma.fujii@ifi.u-tokyo.ac.jp 

Abstract 

The integration of experimental studies and computer-aided design strengths the 

coupling of the interfaces between different research scales. Using the mobile thermal 

energy storage system as a case study, we demonstrated the connection from the small 

scale of the material-level to the system-level researches. A full-scale conceptual design 

was carried out by numerical analysis including material properties that was validated 

by experiments, and the relationship between design parameters and performance 

indicators was summarized. By utilizing sensitivity and regression analysis using design 

parameters, inventory data that can be easily used in process flow models and system 

evaluations was generated. In addition, system hot spots were extracted from the system 

evaluation, and the summarized relationship between the design parameters and 

performance indicators provided feedback on the requirements for proceeding to the 

real site demonstration. 

Keywords: Interdisciplinary approach, Life cycle assessment, Techno-economic 

analysis. 

1. Introduction 

To achieve a sustainable society, the time to adoption of emerging technologies must be 

minimized. To facilitate the adoption of technologies, the connectivity of interfaces 

between different research areas, and between scales from the material to the system 

level needs to be further enhanced. For example, integrated simulations of agricultural 

and industrial processes have made it possible to study the generation of by-products 

from different cultivars and the introduction of technologies to exploit them (Ohara et 

al., 2019; Ouchida et al., 2017). As for differences in scale, for example, in thermal 

energy storage technology, there were cases where bench-scale experiments (Nonnen et 

al., 2016) and numerical analysis (Mette et al., 2014a) were conducted based on 

material-level analysis (Mette et al., 2014b). However, now that lifecycle thinking is 

strongly required, it is necessary to consider new technological developments, 

combinations of mature technologies, and changes in socioeconomic and environmental 

conditions in design. This requires not only modeling of material properties, design of 

equipment incorporating material-level research, and process flow of the plant, but also 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50349-3 
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seamless integration of future system-level analysis such as life cycle assessment and 

techno-economic analysis in computer-aided design. 

In this study, the integration of experimental studies and computer-aided design is 

demonstrated through a case study of a thermal energy storage system (Fujii et al., 

2019) that can charge unused heat from the industrial waste heat and renewable 

resources, shift the heat in time or space, and release the stored heat according to the 

heat demand. 

2. Material and Methodology 

A mobile thermal energy storage (m-TES) system based on the water vapor 

ad/desorption cycle of zeolites can eliminate the spatial and temporal mismatch between 

unused heat generation and heat demand. Zeolites generate heat (heat of adsorption) 

when they capture water vapor (= heat discharging). The adsorbed water can be released 

by adding dry and heated air at the location of unused heat generation (=heat charging). 

The heat-charged zeolite can be packed in containers and transported by truck to 

surrounding heat demand areas. We studied the implementation of a m-TES system 

between a sugar mill and a food processing factory in Japan. Sugar mills usually burn 

sugarcane bagasse as fuel to generate steam for their demand. However, sugarcane 

bagasse is generated more than what is needed, therefore, more bagasse than necessary 

is burned in the bagasse boiler, emitting unused heat with a temperature of around 

200 °C. On the other hand, the surrounding food processing factories consume fossil 

fuels for process steam generation. Industrial symbiosis of heat through m-TES systems 

has the potential for effective utilization of unused heat derived from biomass. 

Scenario analysis, which considers various socioeconomic and environmental 

conditions and their combination with other technologies, plays an important role in the 

design of system. However, when conducting system-level analysis, inventory data 

extracted from lab-scale experimental results have large errors with real data. For 

example, in the case of a cylindrical packed bed reactor, the proportion of heat leakage 

from outside the walls to the total heat balance of the reactor is larger in a laboratory 

system with a smaller diameter than in a full-scale reactor. In this example, the 

inventory data extracted from the experimental results will underestimate the heat 

recovery efficiency. Therefore, it is necessary to predict the full-scale performance 

utilizing an experimentally validated numerical model and use the inventory data 

calculated from that simulation. However, it is difficult for researchers in system-level 

analysis and planners to build numerical simulation models and calculate inventories 

because it requires specialized skills in the target technology. In addition, when 

estimating the effects of horizontal deployment, combination with other technologies, 

and introduction under various socioeconomic and environment conditions, it takes an 

enormous amount of computational load and time to perform detailed numerical 

simulations at the reactor level for each condition. Using the development of the m-TES 

system as a case study, we extracted the essentials for the integration of experimental 

study and computer-aided system design, including experiments of material properties 

and their integration into numerical analysis, conceptual design of devices, 

demonstration experiments, and full-scale performance prediction by numerical analysis. 



Integration of experimental study and computer-aided design: A case study in 

thermal energy storage   

3. Case study in thermal energy storage 

3.1. Experimentally validated computer-aided design 

The requirements for the m-TES system were to be able to retrofit a heat charging 

system into the sugar mill and to be able to charge a large amount of heat continuously 

at the heat charging site, and to be able to generate process steam continuously at the 

heat discharging site, which had not been achieved so far. To meet these requirements, a 

zeolite moving bed reactor was adopted for both the heat charging (named heat charger) 

and discharging devices (named zeolite boiler). For the zeolite boiler, it was 

experimentally demonstrated that pressurized steam could be supplied continuously by 

adopting an indirect heat exchange process (Fujii et al., 2021). For the heat charger, a 

counter-current contact type moving bed was adopted, and it was demonstrated that 

continuous heat charging was possible (Arimoto et al., 2019). To incorporate the 

adsorption equilibrium, kinetics, and heat transfer model of the zeolite into the 

numerical analysis, a separate series of packed-bed tests were conducted. The developed 

numerical analysis was found to be able to simulate the temperature distribution in the 

packed bed, which can be used to predict the full-scale performance and optimize the 

design parameters. However, these numerical analyses require a lot of computational 

loads, and we also found that it is difficult to implement numerical analysis in both the 

process flow model of the plant, and all of the calculations for each case of life cycle 

assessment and techno-economic analysis as the system-level analysis. 

3.2. Seamless connection to system-level analysis utilizing experimental data 

The above simulation of the device for each condition of the scenario analysis takes a 

lot of computational load and time. Therefore, it is necessary for researchers of 

individual technologies to clarify the relationship between input parameters and output 

results (performance and required auxiliary power) in advance by sensitivity analysis of 

input parameters using the constructed numerical model. In addition, regression analysis 

of the input parameters and output results can reduce the computational load and time 

for system-level analysis. When researchers of individual technologies are studying and 

demonstrating concepts of new materials and devices, they can correctly reflect the 

information of the technology in the system-level analysis by conducting even 

regression analysis on a full-scale basis, instead of taking the laboratory-level results as 

the final result. In this way, researchers and system planners working on future system-

level analysis can predict system performance based on experimentally validated 

numerical simulations while utilizing appropriate inventory data, seamlessly linking 

laboratory and future system predictions. 

Figure 1 shows the schematic of the zeolite boiler and the relationship between design 

parameters and performance as an example. The zeolite boiler uses a moving bed and 

indirect heat exchange system. The heat charged zeolite is supplied from the top of the 

zeolite boiler, and the steam generated by the existing boiler is injected into the zeolite 

boiler. The zeolite adsorbs the injected steam and generates adsorption heat. The 

adsorption heat raises the temperature of the zeolite bed, and this heat is transferred to 

the feed water that is introduced from the bottom to the heat exchanger to produce 

pressurized steam for the process. The full-scale performance was predicted using 

numerical analysis, and the relationship between the design parameters and the 

performance was summarized by conducting sensitivity analysis with the design 

parameters. As an example, Figure 2 shows the sensitivity analysis for the initial water 

uptake on zeolite for the zeolite boiler. The lower the water uptake at input, the higher 
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the heat storage density, and thus the higher the fuel saving effect at the same scale. All 

point data are the result of optimizing other parameters to maximize the fuel saving 

based on the established design methodology using numerical analysis. The results 

show that the performance can be linearized with respect to scale at each initial water 

uptake, and this linear relationship was used in the system evaluation without going 

through complex numerical analysis. The same method was applied to other design 

parameters of the zeolite boiler and the heat charger, and the results were reflected in 

the process flow of the sugar mill and the heat demand for life cycle assessment and 

techno-economic analysis.  

3.3. Research flow of integrating experimental study and system-level analysis 

From the case of m-TES system, the integration of experimental study and computer-

aided system design can be achieved by following procedure. 

Material-level 

-Testing the material properties and heat transfer characteristics 
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Component-level 

-Developing a numerical model that incorporates the material level information, and 

validate the model by demonstration tests 

-Designing a full-scale equipment utilizing the validated numerical model, and 

predicting the performance, summarizing the relationship between design parameters 

and performance, and creating the regression data by sensitivity analysis 

System-level 

-Reflecting regression data in the process flow model of the plant 

-Conducting system-level analysis such as life cycle assessment and techno-economic 

analysis utilizing inventory data obtained from the regression data. 

-Identifying hot spots based on the results of the system-level analysis and feed them 

back to the target of technology in the reverse order above. 

These are summarized in Figure 3. By creating this research flow, when a new material 

or device design is devised, the effect can be immediately evaluated from the system 

perspective by computer-aided system design, and it can also be used for scenario 

analysis in combinations of multiple technologies and various socioeconomic and 

environmental conditions. 

4. Conclusions 

In this study, a m-TES system with a zeolite water vapor ad/desorption cycle was used 

as a case study to extract the essentials for the integration of experimental studies and 

computer-aided system design. Using experimentally validated numerical analysis, 

sensitivity analysis, and regression analysis with design parameters of the equipment, 

computer-aided design (numerical analysis, process flow modelling, and future system-

level analysis including environmental and socioeconomic parameters) can be 
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integrated with experimental studies, and each scale from material-level to system-level 

can be consistently linked. 
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Abstract 

The design and implementation of renewable-based energy systems in various regions 
are increasingly necessitated. However, the data required are diverse and distributed 
across multiple ministries and local governments, and it often takes a considerable 
amount of time and efforts just to collect the basic data. Many studies regarding 
simulations of system designs for various resources and regions have been conducted, 
but they are not always reusable. In this study, we propose a design support toolbox 
integrated with databases for renewable-based regional energy systems, and the status of 
the development is introduced. 

Keywords: Life cycle assessment, Open data, Decarbonization. 

1. Introduction 

Under the strong global demand for decarbonisation, there is an urgent need for action 
plans at national and local level. In Japan, though many municipalities have declared 
their carbon neutral by 2050, most of them do not have the clear plans of technology 
implementation. Renewable energy is the key technology for the decarbonization. The 
introduction of solar and wind power has been progressing, but because of their 
variability, energy storage and energy carriers are becoming increasingly important 
(Sinsel et al., 2020). Biomass can be stored as the state of fuel, but there are difficulties 
in design of supply chain and whole energy system (Zahraee et al., 2020). Toward the 
achievement of carbon neutral, complicated design for the combination of these 
technologies will be required. Many energy system analysis tools have been developed 
for various spatial and temporal targets (Ringkjøb et al, 2018), but very few of them can 
consider such emerging technologies.  

In this study, a design support toolbox for renewable-based regional energy systems is 
proposed. Case studies of designing regional energy system were carried out to clarify 
the problems and barriers in design procedure. The requirement of the support toolbox 
is defined through building activity model and the data model of the system design. The 
status of tool development is also introduced. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50350-X 
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2. Case studies of designing renewable-based regional energy systems 

To clarify the problems and barriers in designing renewable-based regional energy 
systems, we had been carried out some case studies of design and evaluation of them. A 
case of designing combined cooling, heating, and power system using local woody 
biomass toward sustainable forestry (Kanematsu et al., 2017a) was analysed. As shown 
in Figure 1, the design and evaluation procedure mainly consist of “Data collection”, 
“Alternative generation”, “Simulation”, and “Evaluation”. Data collection was required 
for identify and quantify the local resources and energy demand. In the alternative 
generation, the system flow diagrams are drawn, similar to the process flow diagrams 
for chemical processes, for multiple alternatives. To enable the simulation of material 
and energy balances, simulation modules were developed for the elemental technologies, 
e.g., power plant, district heating and cooling system, wood chipping machine, transport, 
and so on. Estimations for hourly variations in energy demand of each consumer based 
on a published knowledge was also required for executing simulation considering 
supply-demand balance. As the system evaluation, life cycle assessment (LCA) was 
carried out using the simulation results as inventory data. As another case study, 
industrial symbiosis around sugar mill using the excess heat and bagasse (Kikuchi et al., 
2016) was also carried out, and the case had the similar structure. 

We identified the problems that such design and evaluation could be carried out as 
research activity, but it was time consuming, labour intensive and requires specialized 
knowledge and its application. In order to achieve rapid social implementation, it needs 
to be possible to implement it in different multiple areas in a shorter time. Just as 
process simulators and chemical databases have contributed to speeding up and saving 
labour in chemical process design, tools such as simulators and integrated databases will 
be essential for rapid design of regional energy system. 
 

 
Figure 1 Overview of the case study of designing combined cooling, heating, and power system 

using regional woody biomass (compiled from Kanematsu et al., 2017a) 
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3. Requirement definition of the design support toolbox 

Activity model and data model were built to define the requirements of the design 
support toolbox for renewable-based regional energy systems by re-analysing the 
abovementioned case studies. 

3.1. Activity model 

The designing procedure was visualized by activity model in order to clarify how we 
should support what activities. IDEF0 functional modelling method was employed for 
expressing the activity model. In IDEF0 method, an activity is represented by a box and 
information is represented by four types of concepts (Input, Output, Control and 
Mechanism), each of which is represented by an arrow with a different direction toward 
the activity box. The activities were expressed from the viewpoint of the designing 
working group as in Figure 2. The main designing tasks consists of [Examine present 
system], [Generate alternatives], [Simulate flows in alternatives] and [Evaluate 
alternatives]. Draft of proposals are created from these designing tasks, and it will be 
reviewed among the decision makers in the [Review proposals] activity. 

In this activity modelling, we especially focused on the Mechanisms, which enable the 
execution of the activities including tools, human resources, and datasets. We identified 
the tools that should be developed in order to carry out activities with less time and 
effort. The required functions of these tools were identified by carefully examining the 
Input, Output and Control of each activity. 

 

Figure 2 IDEF0 activity model: the activity of “Propose the design of renewable-based regional 
energy systems” (modified from Kanematsu et al., 2017b) 

The concept, data integration, and 
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3.2. Data model for flow simulation 

A data model was also built to clarify the types of data required and the linkages 
between them in executing the simulation. The step of simulation was focused because 
it was revealed to be the central activity in the design procedure from the viewpoint of 
data processing. Data model can also be used as the conceptual design diagram of 
required database for the simulator. UML class diagram was applied for expressing the 
data model as shown in Figure 3. The flame of “Participant” means the entities which 
will participate in the regional energy system to be developed, e.g., resource providers, 
energy suppliers, local industries, consumers, and so on. The participant is described as 
“Prosumer” because it can be both of consumer and producer of resources. Participant 
can be simply expressed which produces output from input via conversion devices. For 
example, sugar mill produces raw sugar, bagasse, molasses, heat, power, and other by-
products from sugarcane via sugar milling processes includes in-house cogeneration 
system. In actual simulation, multiple modules that functionalize the participants are 
connected to each other, and the energy and material balance can be calculated. 

3.3. The function of design support toolbox 

The required functions of design support toolbox were identified and defined through 
the re-analysis of the activity and data models. We have developed the concept of the 
toolbox as in Figure 4. The toolbox consists of the tools that support the respective 
activities and the databases linked with these tools. 

 

Figure 3  Data model for the simulation of renewable-based regional energy system 
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Figure 4 The concept of the design support toolbox for renewable-based regional energy systems 

4. Development of modules in the toolbox 

4.1. Data integration and visualization of resources and demands 

A web-based application that enables the semi-automation of collection, analysis, and 
visualization of scattered data sources for regional resources was developed as a 
prototype. Open data originally organized by different ministries were integrated, such 
as renewable energy potential and the installation status of renewables under the Feed-
in-Tariff scheme. An algorithm to estimate the energy demand for each municipality is 
also developed and will be combined to this application. 

4.2. Matching between resources and technologies 

A matching system integrated with technology database is conceptually designed under 
the cooperation with an association of engineering enterprises. The system can search 
conversion technologies that can produce value-added products from the local resources 
that found in the stage of data collection. This system can connect the novel 
technologies and local players that have not been known each other well. 

4.3. Simulation of the material and energy balances 

By applying the developed woody biomass simulator to other area, the time required 
was reduced by a factor of 20 compared to the first case. Additionally, we developed 
and are combining the simulators for thermal energy storage (TES) and transportation 
with zeolite (Fujii et al., 2019) and the technologies for massive installation of variable 
renewable energy such as battery-assisted solar-derived hydrogen production (Kikuchi 
et al., 2019, Sako et al., 2020) and wind-TES (Yamaki et al., 2020). 

4.4. Environmental and socio-economic evaluations 

Once the material and energy flows in the region with future installation of the new 
technologies could be calculated by the simulator, evaluations become executable by 
combining them with the data for evaluations such as life cycle inventory databases or 
input-output table available from national or local government. The integration 
mechanism of these data is under development. 

Design support toolbox for renewable-based regional energy systems;  
simulator development   The concept, data integration, and 
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5. Conclusions 

The required functions of design support toolbox for renewable-based regional energy 
systems were defined through activity and data modelling, and part of them are 
developed. Because the workload of the development and continuous update will be 
huge, we are starting the investigation of the scheme for co-creation of this toolbox 
which involves technology developers, local industries, and system integrators. By co-
creating this toolbox, co-creation of regional systems can be strongly supported. 
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Abstract 

Circular economy is an approach to develop economy without giving harms to the 

social and environment. It uses ‘cradle-to-cradle’ concept which design out pollution 

and waste while keeping materials and products in loop for as long as possible. This 

economy concept which is also in line with several SDG goals such as ecosystem 

restoration, responsible consumption, as well as climate action makes it more 

preferrable than the old ‘cradle-to-grave’ concept. There are a lot of circular economy 

actions that can be adopted by the industry as an effort in shifting towards circular 

economy. Therefore, a systematic framework to aids the industry in selecting 

appropriate circular economy actions is needed. In this paper, a framework for selection 

of circular economy actions is proposed by considering its environmental and economic 

impact. This framework integrates Total Circularity Index (TCI) and integrated carbon 

accounting and mitigation framework (INCAM) to assess the environmental impact of 

the actions. The practicability of the framework is illustrated through a relevant palm oil 

mill case study. The results show that the application of this framework enables the 

industry to select circular economy actions that is appropriate to its environmental and 

economic status. 

Keywords: circular economy, carbon mitigation, sustainability, decision-making 

framework  

1. Introduction 

The world is currently facing climate change where the temperature rises leading to 

other consequences such as melting of glaciers and more frequent occurrence of natural 

disaster. Based on The Sustainable Development Goals Report 2020 released by United 

Nations (2020), 2019 was the second warmest year on record and the global temperature 

are projected to rises to 3.2 °C by 2100. The rises in Earth’s temperature are due to the 

increasing amount of greenhouse gases emission and according to data by Climate 

Watch (2021), global greenhouse gases emission gradually increases each year, and it 

reaches 48.94 Gt CO2e in 2018.  

Numerous efforts have been made to tackle climate change at various level. Paris 

Agreement which is a legally binding agreement that was adopted by many countries in 

2015 is one of the efforts done to fight climate change at global level. This agreement 
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aims to limit the global warming at 1.5 °C and many countries have pledged to reduce 

their greenhouse gases emission through their nationally determined contributions 

(NDCs) to achieve this target. Apart from that, utilization of renewable energy and 

energy efficiency program are also part of the efforts done to tackle climate change 

since more than 50 % of the global greenhouse gases emission comes from energy 

sector (Climate Watch, 2021).  

In addition, shifting towards circular economy can also be one of the ways to tackle 

climate change. Circular economy is an approach that uses ‘cradle-to-cradle’ concept 

which aims to decouple economic growth from consumption of finite resources. It is 

built to design out waste and pollution and elongate the life cycle of products and 

materials while regenerating natural system. Therefore, circular economy can help 

reduce the greenhouse gases emission by eliminating its sources (waste, pollution, and 

manufacturing process) and providing more carbon sinks. This statement can be proven 

through a study by Ramboll et al. (2020) that shows 61% of GHG emissions across 

European Union can be reduced by implementing circular economy actions (CE 

actions). Research done by Ellen MacArthur Foundation (2019) also discussed the role 

of circular economy in tackling climate change.   

There are numerous CE actions that can be applied in an economic system ranging from 

utilization of renewable resources to reuse or recycling of materials and products. 

Therefore, a methodology to select suitable circular economy actions is required to 

assist the industry in decision-making process. A study conducted by Ramboll et al. 

(2020) has proposed a method to select and assess circular economy actions and its 

impact on climate change mitigation. A generic methodology to quantify the potential 

CO2 emission reduction was developed by integrating the life cycle analysis (LCA) and 

material flow modelling. The methodology is designed to be applicable to all economic 

sectors. However, this methodology can be challenging for some users as it requires 

knowledge and experiences in LCA and material flow modelling. Moreover, uncertainty 

and biodiversity in LCA also makes it more challenging as LCA studies depend on 

assumptions and scenarios.  

The aim of this study is to propose an easy and systematic framework for the industry to 

select suitable circular economy actions by considering its economic and environmental 

impacts. This paper integrates the Total Circularity Index (TCI) and integrated carbon 

accounting and mitigation framework (INCAM) to assess the environmental impacts of 

the circular economy actions. The methodology proposed enables the industry to find 

the hot spots for carbon emissions in their plant or organization as well as selecting 

befitting circular economy actions based on its economic and environmental impacts.  

2. Circular Economy Actions Selection Framework 

According to the framework for selection of CE actions shown in Figure 1, the selection 

of CE actions is made based on three criteria which are the emission reduction, its 

circularity as well as the payback period. There are three main steps in this framework 

which are: (i) identifying the hot spots for GHG emissions, (ii) proposing possible CE 

actions, (iii) evaluating and ranking of CE actions. To identify hot spots for GHG 

emissions, an integrated carbon accounting and mitigation (INCAM) framework by 

Hashim et al. (2015) will be applied. Based on INCAM, the methodology to identify hot 

spots include defining Carbon Accounting Centre (CAC), developing carbon checklist, 

and calculating carbon emission index (CEI) and carbon emission profile (%) of each 

CAC. CAC with the highest carbon emission profile will be the hot spots.  
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Figure 1: Framework for Selection of Circular Economy Actions 

After the hot spots have been identified, total circularity index (TCI) of the hot spots 

will be calculated. TCI is an indicator to measure the circularity of a process route 

which consider both material and energy aspects. Circular Material Use (CMU) is used 

to calculate the circularity of the material by dividing the product produced through 

secondary materials with the total demand of the products. On the other hand, energy 

aspects will be measured through Circular Exergy Use (CEU) which is the amount of 

secondary exergy produced over the exergy demand. CMU and CEU will be multiplied 

by its respective weightage before being added up to get TCI. The TCI value will be 

between 0 and 1 with the latter represents full circularity of the process route. CE 

actions is then proposed accordingly. 

CEI, TCI and payback period of each CE actions proposed will be estimated. Then, CE 

actions with higher CEI than CEIi, which is the baseline, will be eliminated from the 

options. The CEI, TCI, and payback period of the remaining CE actions will be scored 
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based on scoring scales. The weighted scores of each criterion are then calculated by 

multiplying the scores with its respective weightage which are set according to its 

importance. The weighted scores of each criterion will be summed up to get the total 

weighted scores which will be used to rank the CE actions proposed. The priority of the 

CE actions is set from highest to lowest total weighted scores. 

3. Case Study 

The effectiveness of this framework is demonstrated through a palm oil mill case study. 

The mill processes 120 t fresh fruit bunch (FFB) per hour into crude palm oil (CPO). 

The overall process of this mill can be divided into several sections which are palm oil 

extraction, oil recovery, kernel recovery, effluent treatment, and boiler. 

3.1. Identify Hot Spots Through INCAM 

The whole process is break into five CACs, (i) oil palm extraction, (ii) oil recovery, (iii) 

kernel recovery, (iv) effluent treatment, (v) boiler. Each CAC have several sub-CACs. 

The source of emission of each CAC is identified and the monthly 

generation/consumption of relevant carbon performance indicator (CPI) of each CAC 

has been collected. The monthly emission, carbon emission profile, and CEI of each 

CAC has been calculated. Figure 2 and Figure 3 show the carbon emission profile of 

each CAC and each CPI respectively. From the analysis, the top three carbon emission 

are from electricity, fuel consumption and wastewater with CPI of 68 %, 28 % and 3 % 

respectively. The highest emission is in CAC 5 which is the boiler followed by CAC 2, 

palm oil extraction section, which has a lot of equipment that consumes electricity. 
 

 

Figure 2: Carbon Emission Profile of each CAC 

 

Figure 3: Carbon Emission Profile of each CPI 
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3.2. Propose CE Actions and Priority Ranking 

Before proposing CE actions, TCI of the palm oil is calculated in order to identify any 

circularity actions that has been implemented in the mill. In this case study, the demand 

for product and exergy used in CMU and CEU calculation is the amount of product and 

exergy demand by the palm oil mill and its plantation. The total exergy demand is 3086 

GJ/month.  From the calculation, the CMU, CEU and TCI of the palm oil mill is all 0. 

This means that there is no circular action has been implemented in the mill. After 

measuring the circularity of the mill, CE actions to reduce carbon emissions are 

proposed according to the hot spots identified earlier. The CE actions proposed will 

focus on reducing electricity and fuel consumption as well as reducing emissions from 

effluent and boiler. There are three CE actions proposed which are electricity generation 

using biogas from POME, change boiler fuel from diesel to biogas, and production of 

fertilizer from POME. The contributions - CEI, TCI and payback period of all CE 

actions proposed has been estimated and summarized in Table 1. Since all actions 

proposed has lower CEI than the baseline CEI, all actions proposed will be considered 

for implementation.  

The contributions of each CE actions are scored based on scoring scales. For this case 

study, the weightage for emission reduction, TCI and payback period has been set at 

0.4, 0.2, and 0.4 respectively. This is because the mill wants to prioritize reducing 

emission with low costs. Table 2 shows the priority rank of the CE actions according to 

the total weighted scores. From the analysis, it shows that production of fertilizer from 

POME should be implemented first since it has the highest total weighted scores 

compared to other options. This option can reduce 13,325 kgCO2e/month and improves 

the TCI of the mill by 50 %. It also has the lowest payback period which is 0.84 years. 

The second highest ranking is to change boiler fuel from diesel to biogas which has 

average scores in all criteria. The third priority is to generate electricity using biogas 

from POME. Although this option can reduce the most carbon emissions, 309,725 

kgCO2e/month, it requires high payback period which is 7.64 years and has the lowest 

TCI improvement which makes it less favorable. 

Table 1: CEI, TCI and payback period of CE actions proposed 

CE Actions 
Emission (kgCO2e/month) 

Total Circularity 

Index  
Payback 

Period 

(year)  Baseline After Reduction Before After 

Biogas from 

POME to 

generate 

energy 

437,462.46 

127,737.43 309,725.03 

0 

0.23 7.64 

Change 

boiler fuel to 

biogas 

(POME) 

313,850.36 123,612.10 0.27 1.71 

POME to 

fertilizer 
424,137.43 13,325.03 0.50 0.84 
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Table 2: Scores and priority ranking for CE actions proposed 

CE 

Actions 

Scores 

Priority 

Ranking Emission 

Reduction 

Weighted 
Score 

(0.4) 

TCI 
Weighted 

Score 

(0.2) 

Payback 

Period 

Weighted 
Score 

(0.4) 

Total 

Weighted 

Scores 

Biogas 

from 
POME to 

generate 

energy 

4 1.6 2 0.4 2 0.8 2.8 2 

Change 
boiler fuel 

to biogas 

(POME) 

2 0.8 2 0.4 4 1.6 2.8 2 

POME to 

fertilizer 
1 0.4 3 0.6 5 2.0 3 1 

 

4. Conclusions 

In this paper, a framework to select circular economy actions has been proposed. This 

framework aims to ease the decision maker to choose which CE actions to be prioritized 

and implemented by considering the emission reduction, circularity, and the payback 

period. The practicality of this framework has been demonstrated through a palm oil 

mill case study and the result shows that this framework is able to guide decision-maker 

in choosing mitigation actions that can improve carbon performance, circularity, and 

economy. Improvement that can be made for this framework is by considering other 

constraints in the selection process such as the reduction target and financial budget. 
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Abstract 

To solve environmental problems, the development of alternative energy sources is 

becoming more and more important. Hydrogen is a very high potential energy carrier 

because it has a higher energy density compared to other energy carriers and clean in use. 

This study proposes a novel hydrogen production process that combines a biomass 

gasifier and a fuel-assisted solid oxide electrolysis cell (SOFEC). The syngas fed to the 

anode of SOFEC for fuel-assisted electrolysis is formed by gasification of biomass. The 

advantages of combining these two systems are that the operating temperatures are similar 

to each other, which reduces energy waste, and that part of the electrical energy used in 

electrolysis is replaced by the chemical energy of the fuel, which significantly reduces 

the demand for external power supply during electrolysis. In addition, the thermal energy 

of the high-temperature flow from the exhaust of SOFEC can be used to preheat the feed. 

In this study, we consider the effect of gasifier operating parameters, including 

gasification temperature, dried biomass moisture, and equivalence ratio on system. The 

results show that there is a positive effect on the system when the gasification temperature 

and the moisture content of the biomass are higher; With different gasifier operating 

conditions, the efficiency of the system is highest when the equivalence ratio is between 

0.15 and 0.25, mainly depending on the amount of syngas production from the gasifier. 

Keywords: Hydrogen production, Gasifier, Fuel-assisted solid oxide electrolysis cell, 

System simulation. 

1. Introduction 

Since the industrial revolution, fossil fuel combustion has been the main method of energy 

generation, contributing the largest proportion of global energy demand. However, fossil 

fuels are non-renewable resources, making them more and more scarce in the future and 

bound to face problems such as energy depletion, and greenhouse gas emissions from 

fossil fuel use already have a serious impact on global warming and air pollution. 

Therefore, governments are actively looking for alternative energy sources.  Considering 

the economic growth and energy demand, as well as the environmental issues, the 

research on renewable energy and its storage has been increasing rapidly in recent years. 

Although producing hydrogen through fossil fuels is the most efficient and economical 

way to produce hydrogen, the production results in greenhouse gas emissions that cause 

environmental pollution. Therefore, the generated hydrogen cannot be regarded as green 

hydrogen. Hydrogen production through renewable energy is the way to produce green 

hydrogen, and in the medium term, the solid oxide electrolysis cell is the most potential 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50352-3 
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solution for the development of green hydrogen production technology. Therefore, this 

study proposes a hydrogen production system using syngas generated from biomass 

gasifier to assist the solid oxide electrolysis cell, replacing part of the electrical energy in 

electrolysis with chemical energy from syngas and thus reducing the electrical energy 

demand in the electrolysis of hydrogen. In this study, the impact of the operating 

parameters of the gasifier on the system efficiency is investigated. 

2. Models of Gasifier and Fuel-Assisted Solid Oxide Electrolysis Cell 

2.1. Gasifier model 

When fresh biomass enters the gasifier for gasification reaction, the process is divided 

into drying zone, decomposition zone, gasification zone, and sepearation zone. These 

sections are realized through different modules in Aspen Plus® , as the model shown in 

Figure 1. First, the biomass source will enter the RStoic reactor and dry the biomass with 

the temperature set at 150°C as the drying temperature. After drying, the moisture content 

of biomass will decrease and become dry biomass and then enter the RYield reactor to 

simulate the pyrolysis of biomass in which the reaction temperature is set at 550°C. After 

the pyrolysis reaction, biomass will enter the gasification reactor (Rgibbs) in the form of 

elements, and additional air will be used as the gasification agent. The reacted syngas will 

be separated from ash and carbon through SEPARATE unit to simulate the ash and syngas 

separation section of the gasifier, and H2O-SEP is used to separate the water from the 

biomass to calculate the dry basis of biomass syngas (Tavares et al., 2020). 
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CONV DECOMP GASIFIER
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CALCULATOR
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Figure 1 Gasifier Model in Aspen Plus® . 

2.2. SOFEC model 

The actual voltage of an electrolysis cell during electrolysis is expressed by the equivalent 

voltage added to its irreversible loss. Voltage is the most important parameter that affects 

the performance of electrolytic cells. Therefore, the amount of polarization will affect the 

power consumption of the entire electrolytic cell : 

OCV

SOFEC SOFEC act ohm concV V η η η     (1) 

Because the electrochemical reactions in the SOFEC cathode and anode are opposite 

reactions,  there is no standard potentials of electrochemical reactions in the calculation 

of open-circuit potential, but the quotient of the component concentrations is retained 

according to the Nernst equation. The equilibrium voltage is as shown in Eq.(2) where R 

is the ideal gas constant (8.314 J/mole K), T is the operating temperature (K), and PH2,ca, 

PH2O,ca, PH2,an, PH2O,an  are the surface partial pressure of each component at the inlet of the 

cathode and anode sides, respectively (Salzano et al., 1985). 
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For the calculation of the actual voltage in the electrolysis, the actual voltage is greater 

than the equilibrium voltage due to the irreversible loss. The irreversible losses in 

electrolysis are activation polarization, ohmic polarization, and concentration polarization. 

The activation polarization is given by Butler-Volmer equation as: (Yahya et al., 2018) 
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 (4) 

Here, i can be cathode or anode, and J and J0,i represent the current density and exchange 

current density, respectively. The ohmic polarization is given by: (Ferguson et al., 1996) 

an ele ca
ohm

an ele ca

d d d
J
 
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 


  

 (6) 

where d and σ are the thickness and conductivity, respectively. The concentration 

polarizations in the SOFEC anode and cathode can be calculated by 
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    
   
   

 (7) 

The power input or output to the SOFEC stack is given in Eq.(8), and the current can be 

calculated according to Faraday's law, which means that for every mole of water vapor 

electrolyzed, two moles of electrons are generated 

SOFEC SOFECP IV  (8) 

,2 steam consumedI F n  ,stetet aeae mama consnsn umededensns  (9) 

3. Integrated System process description 
The process system created by Aspen Plus consists of two main subsystems, the biomass 

gasifier and the SOFEC. The SOFEC system can be divided into a cathode and an anode 

side. At the cathode side of the SOFEC, the electrolysis reaction of steam is carried out. 

Fresh feed water is pressurized and heated to generate steam through an evaporator. The 

electrolysis temperature of the SOFEC is set to 800°C. In order to avoid the breakage of 

the SOFEC structure and the formation of oxidizing conditions, the steam is heated to a 

higher temperature through the heat exchanger and mixed with the partial recirculation 

of cathode exit stream before entering the cathode. The cathode outlet stream contains 

hydrogen and unreacted steam, so the water is removed from the stream by condensation 

and the pure hydrogen is separated as the hydrogen product of the system. 
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The anode side is mainly used for fuel-assisted electrolysis reaction, where the fuel source 

is the syngas generated by the gasifier. Firstly, the solid biomass is converted into syngas 

through a gasifier. In order to increase the amount of hydrogen in the syngas and to avoid 

carbon deposition on the surface of the SOFEC anode, the syngas will be passed through 

the reformer for the steam reforming reaction before entering the SOFEC anode side. The 

reformed fuel is heated through heat exchange and then entering the anode for the O2- 

reduction reaction, while the unreacted fuel at the anode exit will enter the afterburner for 

combustion. The burned streams contain a large amount of heat enaegy that can be used 

to preheat the inlet streams of the SOFEC system, and at the end the excess heat is used 

for heat recovery applications. 
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Figure 2 Gasifier-SOFEC integration system. 

4. Results and Discussions 

4.1. Effect of equivalence ratio on the system 

Figure 3 shows the effect of changing the gasification equivalence ratio on the system 

efficiency. When the equivalence ratio is at 0.2, the total system efficiency is the highest 

at each operating steam utilization, and when the biomass gasifier equivalence ratio 

exceeds 0.2, the system efficiency decreases as the equivalence ratio increases because 

the flow rate of the syngas produced at an equivalence ratio of 0.2 is the highest, thus 

allowing the system to electrolyze more steam on the cathode side.  
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Figure 3 Effect of gasifier equivalent ratio on system efficiency (a)Total efficiency (b)Hydrogen 

production efficiency (c)Thermal efficiency. 
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The total efficiency decreases as the SOFEC steam utilization increases. The highest 

overall efficiency is 72.70% at a SOFEC steam utilization of 0.1 and a gasifier 

equivalence ratio of 0.2. As the steam utilization gradually increases, the hydrogen 

production efficiency gradually increases, while the thermal efficiency gradually 

decreases. At an equivalence ratio of 0.2 and an SOFEC steam utilization rate of 0.9, the 

maximum hydrogen production efficiency of the system is about 44.99%. Because the 

amount of syngas consumed in the electrochemical reaction is less when the SOFEC 

steam utilization is small, the amount of unused fuel at the anode outlet is higher and 

more fuel is burned in the afterburner, resulting in a large amount of heat that can be 

recovered at the outlet. 

4.2. Effect of gasification temperature on the system 

Figure 4 show shows the effect of gasification temperature on system efficiency, the 

maximum total efficiency occurs at the gasifier temperature of 900°C and SOFEC 

electrolysis rate of 0.1, which is about 68.67%, while the total efficiency is much lower 

than other operating temperatures when the gasifier is operated at 600°C. In the hydrogen 

production efficiency, it can be seen that when the temperature of the biomass gasifier is 

operated at 600°C, the efficiency decreases by about 10% compared to other temperatures. 

At other temperatures, the hydrogen production efficiencies of the three almost overlap. 

The main difference is in thermal efficiency because the carbon conversion rate of the 

gasifier is low at the gasification temperature of 600°C, resulting in less syngas 

production in the gasifier, which reduces the amount of fuel that can be assisted, making 

the amount of steam that can be electrolyzed in the cathode lower. 
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Figure 4 Effect of gasification temperature on system efficiency: (a) Total efficiency (b) 

Hydrogen production efficiency (c) Thermal efficiency. 

4.3. Effect of different gasifier operating conditions on system efficiency 

According to the previous analysis, changes in the operating parameters of the gasifier 

will affect the overall efficiency of the system. The higher the production of syngas in the 

gasifier, the higher the overall efficiency of the integrated system. By varying the 

moisture content of the biomass after drying, the highest efficiency of the gasifier occurs 

at moisture contents of 5%, 9% and 15% with equivalent ratios of 0.25, 0.2 and 0.15, 

respectively. From Figure 5, the maximum efficiency of the system at 800°C occurred at 

15% biomass moisture content and 0.15 equivalents, with a maximum total efficiency of 

75.42% for SOFEC operated at 0.1 steam utilization. The maximum hydrogen production 

efficiency was 46.97% at a steam utilization of 0.9. From the results, it can be confirmed 

that when the biomass gasifier operates at maximum efficiency, the integrated system 

also has the highest efficiency. 
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Figure 5 System efficiency under different gasification conditions: (a) Total efficiency (b) 

Hydrogen production and Thermal efficiency. 

5. Conclusions 

In the study, the effects of operating parameters of the gasifier on the overall efficiency and specific 

energy consumption of the gasifier-SOFEC integrated system were analyzed, and it can be learned 

that the key parameters of the gasifier are the equivalence ratio of the gasification agent and the 

gasification temperature, while the impact of the moisture content of the biomass drying on the 

system efficiency and specific energy consumption is not obvious. When the gasification 

temperature is higher than 700°C, the effect on system efficiency is reduced. When the syngas 

production from the gasifier is higher, the efficiency of the integrated system increases, mainly 

because the higher syngas production enables more water vapor to be electrolyzed, resulting in 

higher hydrogen production. Therefore, from the final results, the highest efficiency of the system 

was achieved when the gasification temperature was operated at 800C, the water content of the 

biomass was 15%, and the equivalence ratio was 0.15. The total efficiency was 75.42% under the 

SOFEC steam utilization of 0.1, and the maximum hydrogen production efficiency was 46.97% 

under the steam utilziation of 0.9. 
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ABSTRACT 

 
The process design and material charactrization for a futuristic plasma-based 
pyrolysis/gasification for waste to energy is presented. The direct current as the source of 
thermal energy and the plasma-based reactor were designed. The plastic solid waste was 
analyze for pyrolytic, functional groups and morphological properties. Pyrolysis results 
using thermogravimetric analysis showed increase in thermal energy in the system with 
increasing heat rate and one major degradation peak was observed between 400-550 oC. 
There was no observed difference in functional groups between raw plastic solid waste and 
its ash. The structural morphologies of the plastic ash sample showed uniform rough 
surfaces. The physicochemical results of high volatile matter, low moisture and oxygen 
content revealved the ease of pyrolysis and postullate for quality products out of the 
futuristic plasma-based pyrolysis/gasification process.    
 
Keywords: Municipal solid waste; Control; Operation; Characterization 
 
1. Introduction 

Solid wastes constitute a significant fraction of waste in the environment. The 
world generates 2.01 billion tonnes of municipal solid waste annually and this amount is 
expected to increase to 3.40 billion tonnes by 2050, and is double the population growth 
rate [1]. In addition, over at least 33 percent of that is extremely conservatively not 
managed in an environmentally safe manner [2]. Proper management and recycling of 
large amounts of solid waste are necessary to reduce its environment burdens and to 
minimize risks to human health [3, 4]. Sustainable and safe solid waste management is an 
under tapped field with great potential for energy production [5, 6].  Proper utilization of 
solid waste for conversion into energy and valuable products currently face various 
challenges such as heterogeneous nature of the waste, large moisture content, low calorific 
value, making it industrially undesirable [7-9]. Although appreciable amount of research 
in the field has been carried out on the conversion of solid waste to energy, there is still 
lack of comprehensive and efficient conversion methods in literature. Conventional 
conversion technologies of waste-to-energy (WTE) include biological (such as 
fermentation, anaerobic digestion and etc), thermochemical processes (such as 
incineration, pyrolysis, hydrothermal oxidation, and gasification) [10, 11]. These 
technologies enjoy several advantages such as biogas from biological process produce 
huge amounts of CH4 and CO2 with high energy value (1 m3 of biogas was reported to be 
equivalent to 21 MJ of energy, and it could generate 2.04 kW h of electricity considering 
the 35% of generation efficiency [12]. Furthermore, Incinerators can reduce the volume of 
solid wastes up to 80–85%, and thus, significantly reduce the necessary volume for 
disposal. Also, biofuels from processes such as pyrolysis/gasification are positive 
indicators of good approach for WTE [13]. However, there setbacks in these technological 
advances such as pollution challenges from components like nitrogen, hydrogen sulfide 
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and oxygen embedded in the waste [14, 15]. In addition, the heterogeneous nature of most 
solid wastes makes energy recovery, product yields and quality difficult [16]. With the 
improvement in air emission control systems and commitment from policy makes to 
enforce more strict environmental regulatory rules that significantly decreasing potential 
human health effects, more research on efficient processes for solid waste conversion to 
WTE and oil is gaining more attention.  

 
The overall goal was to contribute to the solution of this challenge, we proposed 

the integration of DC/Microwave driven Inductively Coupled Atmospheric pressure 
thermal Plasma (RF/M-ICAP) to provide energy from municipal solid waste for 
transportation systems such as: trains, ships, garbage trucks etc. The proposed system 
includes new MICAP torch and reactor chamber design to produce highly efficient plasma 
jet suitable to process any waste type for different applications. MICAP, not only applied to 
reduce the volume of solid waste, but also to produce fuel from plastic and electricity 
through a process called pyrolysis and gasification. The suggested process has a potential to 
provide solution for waste-to-energy within transportation infrastructures, with reduced 
waste volume and increase clean energy generation while reducing emissions of trips 
resulting from extra transportation trips of waste transfer. Engineering designs are proposed 
for the target mobile waste-to-energy to be integrated with transportation infrastructures 
and develop discharge mechanisms of produced clean fuel and electricity in distributed 
stations based on demand profiles and generation capacities. This paper introduces novel 
design of modular chamber torches and waste characteristics with innovative features to 
maximize energy efficiency and minimize losses while improving the waste conversion to 
energy with minimum losses. Intelligent control systems will be developed to control 
plasma torch, chamber, and the associated energy systems. 

 
2. Materials and Methods 
2.1. Materials and chemicals 

The shredded plastic MSW (average particle size <1mm) were obtained from 
industrial partner (Pro-flange, ON, Canada). The samples were air dried, separated 
according to their uniform compositions prior to the physicochemical characterization. The 
ultimate analysis was analyzed in external laboratory ( Biotron Experimental Climate 
Change Research Centre at Western University in London, Ontario, Canada). The 
proximate analysis were determined on site in triplicates according to ASTM D3173 
(inherent moisture content), ASTM D3174 (ash), ASTM D3175 (volatile matter),  ASTM 
D3172-07a (Fixed carbon) and bulky density according to the reference method [17].  

The torches and reactor designs were designed using solid works and COMSOL 
simualtor.  
2.2. Waste characterization 
2.2.1 Thermogravimetric analysis 

The samples were subjected to thermogravimetric analysis (TGA) to investigate 
their pyrolytic properties of the waste material. In all experimental runs, 8±2 mg of the 
sample was placed on a platinum thermobalance crucible and loaded to the TGA analyser 
(Q50 series, TA instrument). The samples were equilibrated at 30 oC for 5 minutes before 
heating to 800 oC at heating rates of 10, 20, 30 and 40 °C/min under continuous inert N2 
flow at 20 mL/min. The results of thermal decomposition were continuously recorded as a 
change in weight as a function of temperature and time.  

2.2.2 Fourier Transform Infra-red spectroscopy (FTIR) analysis 
The ATR-FTIR spectroscopic analysis was performed to investigate the possible 

structural alteration between the samples before and after pyrolysis. Plastic samples before 
and after pyrolysis were pressed uniformly against a diamond surface by a fixed sample 
holder anvil, spectra were observed using a Bruker optics vertex system with inbuilt 
diamond-germanium ATR single reflection crystal. Spectra were obtained over a range of 
400 and 4000 cm-1 with 34 average numbers of scans and spectral resolution of 4 cm-1.   
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 2.2.3 Scanning electron microscope (SEM) analysis  
A FlexSEM1000 Scanning Electron Microscope (SEM) operated at 5 kV; spot size 

of 40 was used to image the char sample. To improve conductivity and quality of image, 
samples were coated with Au/C using a vacuum sputter coater.   

 
 

2.3 Thermal source design  
The torch design featured different major parts that aid in simulation to provide 

optimum conditions for the pyrolysis and gasification of the waste. 
 

3. Results and Discussion 
3.1 Waste characterization 

The material characteristics are presented in Table 1. The low moisture content is 
important in lowering the energy requirements often needed to offset the inherent high 
moisture content in many MSW. This makes the waste under investigation a economically a 
good candidate for production of valuable products and electricity. In addition, the high 
volatile matter and low fixed carbon is an indication of the ease for combustion of this type 
of plastic waste, thus economical viability of the process. The ultimate analysis results 
show high hydrogen to carbon ratio (0.17) with low oxygen content, hence an anticipation 
of good quality products with less oxygenated fractionates.  

 
Table 1: Material physicochemical charateristics 

Proximate analysis (wt.%) 

Moisture content Ash content Volatile matter Fixed carbon 

 

Bulky density 

(Kg/m3) 

0.13 ± 0.02 0.79 ± 0.01 86.8 ± 0.4 12.28 ± 0.1 84.43 ± 1.5 

Ultimate analysis (wt.%) 

C H N S O 

85.44 14.34 0.02 <MRL 0.22 

MRL: method reporting limit 

The TGA results in Figure 1 revealed the possible isothermal conversion (α) of the 
waste to be > 90 wt.% at all tested heating rates. Morever, the increase in the heating rate 
shifted the TA curves towards higher temeperature side, an indication of increase in thermal 
energy to the system with increasing heating rate. The differential thermograms showed one 
major degradation peak, a postullation of a single component under thermal pyrolysis. 
Pyrolysis/gasification of this category of waste is poised to be successful across different 
heating rates and product distribution will be easy to understand given the DTG degradation 
that suggests similarity in degradation chemistry of the material under pyrolysis.  
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Figure 1: TGA and DTG curves for mixture of plastic waste at heating rates of 10, 

20, 30 and 40 oC/min. 

 
The study of the functional groups in Figure 2 shows characteristic similarity 

between the raw waste and its ash with minimal changes in the functional groups but rather 
more spectral intensity for the ash. These results prove the known phenomena about the 
material being a thermoplastic. The major vibrations between 2900-2800 cm-1 were 
assigned to the C-H and CH2 bond vibrations characteristic to hydrocarbons present in most 
plastic waste. The absorption bands below 2000 cm-1 were associated with the stretching of 
the C=C, C-H, C-O, symetric and asymetric CH2 bonds inherent in the aromatic ring of 
plastic polymer and the aliphatic structural makeup of the plastic [18, 19]. It is worthy to 
note that the absence of absorption at wave number around 3500 cm-1 a region 
characterstic of O-H bond vibration proves low existance of water molecule bonds as 
already seen from the low moisture content measurements.  

 

Figure 2: FTIR measurements of raw plastic sample and its ash after pyroysis at 800 
oC. 

 

The morphological studies following pyrolysis of the plastic MSW samples in 
Figure 3 revealed agglomerates with majorly rough surfaces and a few smooth surfaces 
observed X5 and X10 magnification. The micrographs depicts a good thermal interaction 
with the plastic waste’s polymer matrix.   
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Figure 3: Plastic ash SEM images at different magnifications. 

3.1  Thermal source design 

Figure 4 represents the design for the DC torch and the plasma-based reactor for 
the futuristic process for production of renewable environmentally safe energy from waste.

 

 

Figure 4: DC torch and plasma-based reactor drawings. 

4. CONCLUSION 

The conceptual design and charaterization of the plastic municipal solid waste provides a 
deeper understanding and new approach to waste management in an environmentally and 
economically friendly manner. The low moisture content and ash content combined with 
high voltility of the waste and H-C ratio signifies a potential ease of the futuristic plasma-
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based pyrolysis/gasification process both in terms of energy requirements and reactor 
configuration.   
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Abstract 

The application of Industry 4.0 related technologies has enabled the development of 

digital twins to model and mirror the physical systems in a virtual construct. Despite the 

successful adoption of digital twins in other industries, a complete digital twin framework 

is yet to be developed for continuous pharmaceutical manufacturing processes. 

Challenges related to the specific industry include the integration of multi-scale 

information ranging from powder properties to process flowsheets, and the need of model 

adaptability to capture changes in operation. In this work, hybrid multizonal compartment 

models and hybrid adaptive models are developed to address such challenges. The 

computationally efficient and self-adaptive hybrid modelling strategies can aid the 

developing of digital twin for continuous pharmaceutical manufacturing.  

Keywords: Hybrid modelling; Digital twin; Pharma 4.0; Continuous pharmaceutical 

manufacturing; multi-zonal compartment modelling. 

1. Introduction  

Industry 4.0 revolution has been catalysed by the advances in digitization, cyber-

infrastructure, artificial intelligence, and Internet of Things. In pharmaceutical industry, 

this digitalization move is popularly named as Pharma 4.0, and it is incentivized by 

increasing market competition, along with the encouragement from regulatory agencies 

to develop agile, flexible, and robust manufacturing lines (O'Connor et al., 2016, Chen et 

al., 2020). Pharma 4.0 technologies enable the development of a digital twin, which can 

be defined as an integrated digitized framework consisting of virtual and physical 

components, with a seamless connection between the two (Chen et al., 2020). In 

continuous pharmaceutical manufacturing, although some efforts have been made to 

create data integration framework and various types of models, a fully integrated digital 

twin that allows for real-time process monitoring, control, and optimization is still in its 

infancy. From a modelling perspective, multi-scale models that can characterize powder 

properties and describe process flows need to be integrated, which is a challenging task. 

Furthermore, models developed are required to adapt to process changes, instead of being 

static. These challenges are bottlenecks in development of a digital twin for continuous 

pharmaceutical manufacturing.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50354-7 
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We propose the use of hybrid modelling strategies to address some of these issues. In 

general, hybrid models can be considered as a combination of data-driven and white-box 

(mechanistic) models (Zendehboudi et al., 2018). The modelling components can be 

arranged in a serial, parallel, or combined manner (Chen and Ierapetritou, 2020). This 

modelling strategy provides a unique way to combine known mechanistic knowledge 

with data. In this work, a novel two-stage solution approach based on hybrid modelling 

strategies is proposed. The first stage addresses the challenge of multi-scale models by 

utilizing hybrid multi-zonal compartmentalization method, which is discussed in Section 

2. The second stage focuses on the hybrid adaptive model framework, as discussed in 

Section 3. The two stages, when integrated, would be a central part of a computationally 

efficient and self-adaptive digital twin for continuous pharmaceutical manufacturing.   

2. Hybrid Multi-zonal Compartmentalization  

Multi-zonal compartmentalization methodology is a computationally efficient approach 

used to model complex systems (Jourdan et al., 2019). Compartmentalization 

methodology aims at combining systemic (unit operation) and local (particle) level 

information using multi-scale models and has been applied for complex process 

operations, such as biologics (Delafosse et al., 2014) Here, the systemic information 

obtained from mechanistic models is combined with local process information obtained 

from high-fidelity simulations such as computational fluid dynamics (CFD) or discrete 

element modelling (DEM). The detailed local information is compressed by dividing the 

simulation domain into compartments based on the process variables of interest, such that 

each compartment has process variables within user-defined limits based on the degree 

of scrutiny required for modelling the system.  

In this paper, compartmentalization methodology is used to develop a predictive model 

for continuous powder blender (Bhalode and Ierapetritou, 2021). The process models 

developed in literature for blenders lack understanding and prediction of powder mixing 

within the systems and systemic models do not capture this level of detail (Vanarase and 

Muzzio, 2011). Important for assuring drug product quality, it is crucial to develop 

predictive models that incorporate local information concerning powder mixing (Lee et 

al., 2015). The details of the developed compartment model for continuous powder 

blender are described in Figure 1 where, the blender is broken down into periodic sections 

and a section is simulated using DEM. To demonstrate the proposed strategy, two types 

of spherical particles with 1 mm particle size are added to the section, to ensure reasonable 

computational times of DEM simulation, and can be easily extended for more particle 

types. The simulation is performed with an Intel Xeon E5-2650 v4 2.2GHz processor and 

128 GB RAM using EDEM 2021 (Altair Solutions, Michigan, USA), leading to a total 

computation time of 8 hrs with 4 CPU cores. The simulated section is then divided into 

10 equal slices along the X axis for ease of computation and each slice is further divided 

into 20x20 grids along Y and Z axes for post-processing. Average particle velocities along 

all directions (𝑣) are extracted for all grids, and the grids are compartmentalized into 

zones where 𝑣 is positive, negative, zero, and zone with no particles. Using these zones, 

radial compartment maps are developed for all slices, and these maps are overlaid on top 

of each other (Bhalode and Ierapetritou 2021). Using the overlaid radial map, 

interconnection flowrates are determined based on the interfacial area and the velocities 

of the respective compartments, converting the compartment map into an inter-connected 

network of compartments. A similar approach is adopted along the axial direction to 

develop network of compartments based on interconnection flow rates between the 
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compartments. The axial network is eventually combined with the radial to obtain the 

overall the multizonal compartment model for the periodic section. This model thus 

incorporates systemic as well as local level information, allowing detailed assessment of 

powder flow. 

 

Figure 1: Zones developed along axial and radial direction for the periodic section  

Following the model development, validation is performed along both radial and axial 

directions. For validation along the radial direction, the degree of powder mixing is 

compared between the compartment model and the DEM simulation. For comparison, a 

mixing index – relative standard deviation (RSD) is used to obtain the time at which the 

system has reached 95% of the total mixing in the system (T95). T95 is evaluated for 

different RPMs and shown in Table 1 along with the absolute relative error. Validation 

along the axial direction is performed by comparing the axial flow using residence time 

distribution (RTD) profiles, as shown in Figure 2, where similar RTD profiles are 

obtained using DEM and compartment models. Thus, compartment model provides 

accurate prediction of powder flow compared to the computationally intensive DEM 

simulation, along with significant time savings (in order of 1-2 mins) Lastly, the 

compartment model can be extended to model the entire length of continuous blender by 

connecting periodic sections, as shown in Figure 3.  

Table 1. 𝑇95 mixing times for radial validation of DEM compared to Compartment model 

 

 

Figure 2. Axial validation performed using residence time distribution profiles. 

3. Hybrid Adaptive Modelling  

As mentioned in Section 1, the development of hybrid models involves the combination 

of data-driven and mechanistic models. Given the structure of hybrid models, some parts 

are data-driven and typically trained on defined sets of historical data. Therefore, the 

Blade speed 𝑇95 (DEM) 𝑇95 (Compartment model) Absolute relative error 

50 RPM 14.812 14.548 0.018 

75 RPM 12.366 12.129 0.019 

100 RPM 8.911 9.268 0.040 
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resulting hybrid models are often time-invariant and can only reflect the system for the 

range of operational conditions, environmental variables, equipment status, and material 

properties covered in the training set (Gama et al., 2014), leading to a challenge related 

to model updates. Although the hybrid models may accurately describe the current state 

of a system, the process can shift slowly due to changes in the features mentioned above. 

These informed or uninformed changes can impact the performance of a process and, 

eventually, the critical quality attributes of a product leading to decline of model 

prediction accuracy (Gama et al., 2014). Appropriate model update strategies thus need 

to be established to resolve this issue.  

 

Figure 3. Compartment model extended for the entire continuous powder blender  

The proposed framework for hybrid adaptive modelling is shown in Figure 4. Using 

historical data with adequate model selection criteria, an initial data-driven sub-model 

can be built and integrated into an appropriate hybrid model structure. Prediction results 

from the hybrid model are compared with plant outputs in a continuous manner. Based 

on defined criteria, the adaptive algorithm determines if an update on the hybrid model is 

required, and carries out the necessary steps to retrain the model. The overall 

computational time depends on the selection of model training and adaptive algorithms.  

 

Figure 4. Hybrid adaptive modelling framework.   

Two adaptive modelling algorithms are applied. The moving window method with fixed 

window size, as depicted in Figure 5(a), refers to a blind adaptation technique where the 

model is adapted using a fixed number of most recent data points, regardless if a change 

is observed (Gama et al., 2014). As new samples are streamed in, the window slides to 

include the newest samples and forgets the older ones. This strategy also implies that 



model update is always required. The adaptive windowing method, as shown in Figure 

5(b), is an informed adaptation technique (Gama et al., 2014), which includes a change 

detection component and an adaptive algorithm. The number of data points included in a 

window grows until a significant change is detected. The detection algorithm splits the 

window into two sub-windows in all possible permutations and compares the means. 

When the difference of two means is larger than a defined tolerance, a process change is 

detected, and the points before such change (i.e., the ones in the first sub-window) are 

discarded. Both approaches can be integrated into different data-driven modelling 

methodologies to enable model updates, but the adaptive windowing can be more 

computationally expensive because of the change detection algorithm.  

 

Figure 5. Schematic of (a) moving window with fixed window size, and (b) the adaptive 

windowing method. 

Both algorithms are tested on a continuous pharmaceutical manufacturing line via direct

compaction route. Such process is explained in (Wang et al., 2017). The baseline models 

are neural networks with the combined structure, detailed in (Chen and Ierapetritou 2020).  

A case study of sudden and patterned process change is developed, for which the hybrid

adaptive modelling framework experiences an uninformed change of excipient bulk 

density from the nominal 400 kg/m3 to 520 kg/m3 (and back for the patterned change), 

with other variables remaining unaffected. The impacts of the change onto tablet weight 

are monitored, and the results are shown in Figure 6.  

 

Figure 6. Comparison of results for between simulated output, hybrid adaptive model predictions 

based on moving window and adaptive windowing for (a) sudden, and (b) patterned change. 

The hybrid adaptive models can follow the changes in process, and the adaptive 

windowing technique outperforms moving window. This observation is expected as the 

change detection algorithm in adaptive windowing makes it very sensitive to this type of 

sudden changes, resulting in a faster response.  

Hybrid Modelling Strategies for Continuous Pharmaceutical Manufacturing

  within Digital Twin Framework
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4. Conclusions 

The proposed article focuses on utilizing hybrid modelling strategies to address the 

challenges associated with developing a digital twin for pharmaceutical manufacturing. 

Hybrid multi-zonal compartment models are developed to integrate multi-scale 

information concerning powder flow properties and operation mechanics within the 

developed process model, demonstrated for continuous powder blender. Hybrid adaptive 

modelling framework is developed to facilitate model updates with process changes or 

newly acquired data, showcased with a case of mid-process change. The resulting hybrid 

and adaptive model can be used as an online predictive model in a fully integrated digital 

twin. The two strategies can be further integrated together to move towards an integrated 

digital twin in continuous pharmaceutical manufacturing.   
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Abstract 

The pharmaceutical industry has seen more interest in shifting from traditional fully batch 
operation to continuous manufacturing. With these shifts in mind and the adoption of 
industry 4.0 standards, digital tools are required to ensure critical medicines can be 
manufactured with quality guarantees. PharmaPy is one such tool that can create a digital 
twin of a pharmaceutical manufacturing process and enable the digital design of 
optimized manufacturing routes. This new tool has particular strengths in modelling 
batch, continuous and hybrid manufacturing systems. PharmaPy is shown throughout this 
work to be capable of digitally addressing quality-by-design (QbD) through design space 
identification for processes containing a variety of operating modes. 

Keywords: design space, pharmaceutical manufacturing, process systems engineering, 
hybrid processing 

1. Introduction 

The development and transition of pharmaceutical manufacturing from predominantly 
batch processing to end-to-end continuous or hybrid operation mode has been prompted 
by benefits such as operational robustness, consistency of product quality and, potentially, 
lower environmental impact (Içten et al. 2020). However, these benefits typically are not 
trivial to identify during the process design phase, especially for hybrid, dynamic process 
systems. 

Traditionally, a process operating region must be identified in which process inputs 
correspond to outputs that meet product quality constraints, also known as the design 
space. In pharmaceutical manufacturing, the Food and Drug Administration (FDA) 
launched the now well-known quality-by-design (QbD) paradigm (FDA, 2004), 
promoting process development of optimal manufacturing pathways through design 
space analysis with process robustness and quality assurance in mind. 

With the widespread adoption of the QbD approach, a numerical tool that handles the 
simulation of end-to-end batch, hybrid, or end-to-end continuous systems, as well as 
laying the groundwork for in silico design space identification and other process system 
analysis, is desirable. Recently, we have developed a simulation platform, PharmaPy 
(Casas-Orozco et al. 2021a), structured as an object-oriented tool based on a set of robust 
declarative representations (Marquardt 1992), which offers a rich suite of first-principles, 
dynamic models for drug substance manufacturing. In addition to the process model 
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library and unit operation simulation capabilities, PharmaPy allows the creation of digital 
twins by offering both parameter estimation and statistical analysis capabilities for 
uncertainty quantification and propagation. 

The numerical capabilities of PharmaPy regarding process simulation, parameter 
estimation and uncertainty quantification make the tool useful in determining the design 
space for a fixed pharmaceutical flowsheet or set of candidate flowsheets, thus facilitating 
the analysis of the combined effect of operational variables (flowrates, inlet compositions, 
etc.) and parametric uncertainty (e.g., kinetics and transport phenomena) (Bano et al. 
2019; Laky et al. 2019). The evaluation of the design space under uncertainty makes the 
mapping of feasible operating regions more comprehensive and provides a valuable tool 
for process validation from a regulatory perspective. 

In this work, a two-reactor process flowsheet for the synthesis of a low volume/high value 
active pharmaceutical ingredient (API) is presented as a case study to demonstrate the 
simulation/design-space generation framework. Different flowsheets resulting from the 
combination of reactor operating modes (batch and continuous) for a pilot scale 
production plant are evaluated in terms of waste generation (unreacted reagents) and API 
productivity. To account for uncertainty, parameter estimation was performed on one 
reaction system using PharmaPy to identify variance/covariance information regarding 
model parameters for reaction kinetics. Using this model uncertainty, probabilistic design 
spaces, representing feasible regions for process operation, are generated via adaptive 
sampling combined with appropriate uncertainty propagation strategies. Specifically, the 
probabilistic design space for a continuous process, a plug flow reactor (PFR) followed 
by a continuous stirred tank reactor (CSTR), is compared with that from a semibatch 
reactor to demonstrate the benefits in terms of probability of adhering to critical quality 
attributes of an API reaction product mixture. 

2. Methodology 

To perform probabilistic design space analysis, model parameters must have a tangible 
uncertainty representation to infer confidence that some chosen operating point will 
guarantee that all critical quality attributes (CQAs) are maintained. For this purpose, 
PharmaPy was used to fit experimental spectral data in a sequential manner. First, a 
multivariate, Principal Component Regression (PCR) calibration model was gathered to 
compute species concentrations during experiments. Real-time IR spectra were then 
gathered during several experiments at varying temperatures and molar ratios between 
reactants, which allowed to capture temperature dependence of the reaction parameters 
for a set of representative molar concentrations. Finally, experimental data were 
bootstrapped (Chernick, 2008) to generate the nominal values and parametric uncertainty 
of those reaction kinetics parameters. The parameter estimation results were first shown 
in Casas-Orozco et. al. (2021b). 

Uncertainty is a key component of generating probabilistic design spaces. Generation of 
the probabilistic design space is as follows. First, the desired or proposed continuous 
operating region is transformed into a discrete counterpart by dividing each operating 
parameter range into equally-spaced increments, generating a finite number of operating 
points. Then, for each operating point, the model parameters are sampled 100 times. For 
each of these random samples, the PharmaPy model of the process is simulated.  

Once the simulation has finished, the resulting state variables can be used to evaluate the 
set of CQAs. If all CQAs are met, (i.e. all critical quality constraints are less than zero), 
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this sample is marked as successful. The number of those samples that are successful at a 
given operating point are tallied and once those 100 samples finish, the probability that 
the current operating point provides output at acceptable quality is the number of 
successful samples divided by the number of samples run. Performing this analysis for 
the complete set of discretized operating conditions and interpolating the results provides 
a digital representation of the probabilistic design space of the given process. After 
analysis is complete, review of the probabilistic design space can lead to operating 
conditions that guarantee quality with a quantitative confidence. 

3. Case Study 

For this analysis, in-house data on the synthesis of Lomustine was used. Lomustine is an 
API used to treat brain cancer and has been a compound of interest while developing an 
end-to-end optimal pharmaceutical modelling framework using PharmaPy. Lomustine 
synthesis is generated through two synthesis steps: 

    CHA + ISOCN 
k1
→  INT   (1) 

         INT + TBN 
k2
→  Lom + TBOH  (2) 

Where CHA is cyclohexylamine, ISOCN is 1-Chloro-2-isocyanate, INT is the lomustine 
intermediate 1-(2-Chloroethyl)-3-cyclohexylurea, TBN is tert-Butyl nitrite, Lom is 
Lomustine, and TBOH is tert-Butyl alcohol. For this work, the form of reaction kinetics 
that were fit followed the standard Arrhenius rate law shown in Eq. (3). 

  𝑘௜  =  𝐴௜𝑒𝑥𝑝 ൬
ିாೌ,೔

ோ
 ∗  ቀ

ଵ

்
ቁ൰  (3) 

Experiments have shown that the relative speed which reaction 1 occurs is sufficiently 
fast and thus can be modelled accordingly by setting low activation energy Ea,1 and high 
preexponential factor A1. Parameters for the second reaction were estimated for varying 
temperatures as previously mentioned. The nominal parameter values for preexponential 
factors Ai and activation energies Ea,i are shown below in Eq. (4). 

{𝐴ଵ, 𝐴ଶ} = ቄ2.1 
௅

௠௢௟∗௦
, 1.877 ∗ 10଻  

௅

௠௢௟∗௦
ቅ  ;   ൛𝐸௔,ଵ, 𝐸௔,ଶൟ =

ቄ2.0 
௞௃

௠௢௟
, 52.52 

௞௃

௠௢௟
ቅ  

(4) 

The reaction 2 parameters were transformed to exhibit improved numerical behaviour 
from the standard Arrhenius rate law such that the log of a reference preexponential factor 
at temperature Tref and activation energy were fit from experimental data. This 
transformation is shown below in Eq. (5). 

  𝑙𝑛(𝑘ଶ) = 𝑙𝑛(𝐴ଶ,௥௘௙) −
𝐸௔,ଶ

𝑅
 ቆ

1

𝑇
−

1

𝑇௥௘௙
ቇ (5) 

Using this transformation, uncertainty in parameters A2,ref and Ea,2 were evaluated through 
bootstrapping and are shown as covariance matrix Σ below in Eq. (6). 

  𝛴 =  ൤ 9.797 ∗ 10ିହ −1.176 ∗ 10ିଷ

−1.176 ∗ 10ିଷ 4.839 ∗ 10ିଵ ൨  (6) 

of an active pharmaceutical ingredient using PharmaPy 
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Using these reaction kinetics, two processing routes were explored, described below in 
Figure 1: Schematic of both process alternatives for the productions of Lomustine. On the 
left, the continuous flowsheet with two unit operations. On the right, the one-pot 
semibatch reaction. The first is a continuous reaction train using a PFR followed by a 
CSTR. Under normal operation, optimal design for the continuous reactors is a PFR 
volume of approximately 695 mL with a flowrate of 16.66 L/h (Laky et al., 2021). The 
CSTR volume is set at 20 L to ensure high residence time to achieve adequate conversion 
of intermediate to Lomustine. A schematic of the continuous process is shown below.  

Also shown is the second processing route, a semibatch reactor. Here an initial loading 
of CHA and ISOCN are set to react for a small amount of time (approximately 30 
minutes). Then, pure TBN is added over the course of 15 minutes. The system continues 
reacting until a total batch time of 4 hours is reached. It is known that Lomustine is 
unstable above 40 °C. Thus, all reactors begin at 25 °C and are heated to 35 °C to increase 
reaction rate while mitigating thermal degradation of the API. Throughout this work, both 
processes were modelled using PharmaPy. 

 

Figure 1: Schematic of both process alternatives for the productions of Lomustine. On the left, the 
continuous flowsheet with two unit operations. On the right, the one-pot semibatch reaction. 

There were two operating parameters explored in this work. First is the inlet concentration 
or initial concentration of CHA and ISOCN in the first reactor, shown as Cin in Figure 1: 
Schematic of both process alternatives for the productions of Lomustine. On the left, the 
continuous flowsheet with two unit operations. On the right, the one-pot semibatch 
reaction. Second is the concentration of TBN for the second reaction step, shown as CTBN. 
For this study, the concentration of CHA and ISOCN were fed or initialized in an 
equimolar ratio. Inlet concentration Cin has bounds from 0.04 M to 0.08 M and CTBN from 
0.06 M to 0.12 M. Both operating parameters were discretized with 11 points for a total 
of 121 total discrete operating points over the design space. 

Purification of Lomustine using crystallization is the next processing step. With this in 
mind, CQAs can be defined as below: 

CLom - αCLom,Sat  ≤ 0  (7) 

CCHA + CISOCN + CINT + CTBN - CLom ≤ 0  (8) 

4.0CINT - CLom ≤ 0  (9) 
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Eq. (7), ensures that no premature crystallization of Lomustine occurs. Eq. (8), ensures 
that all reagents are sufficiently converted to Lomustine. Eq. (9), ensures that the 
intermediate, which is known to crystallize, adequately converts to Lomustine. 

4. Results 

Using the processes and discretization schemes described above, 100 samples at each 
operating point were taken in the model parameter space, and the probabilistic design 
spaces were generated. These resulting design spaces are shown below in Figure 2: 
Contour plot of the probabilistic design space generated for both operating modes. 
Contours represented by confidence that an operating point adheres to CQAs as a fraction 
of 1.0 where lighter tones represent higher confidence of feasibility.. 

 

Figure 2: Contour plot of the probabilistic design space generated for both operating modes. 
Contours represented by confidence that an operating point adheres to CQAs as a fraction of 1.0 
where lighter tones represent higher confidence of feasibility. 

Generation of the design space for the continuous process took 243 minutes, whereas the 
semibatch design space took about 46 minutes (Macbook Pro 2016, 2.6 GHz Quad-Core 
i7 processor, 16GB 2133 MHz LPDDR3 RAM). The difference in simulation time for 
the continuous case results from the numerical solution of PDE models versus ODE 
models in the semibatch case. From the figure, the semibatch operating mode provides a 
much wider range of feasible operation than the continuous case. Nearly half of the 
explored operating space results in feasible operation, whereas only a small region is 
feasible in the continuous case. 

The discrepancy in probabilistic design space between the two designs highlights the 
advantage of the high conversion of batch systems. In the continuous case, limitations on 
the residence time and volume of the CSTR lead to lower overall conversion. The 
integration of two unit operations with their individual design spaces, also leads to a 
smaller overall feasible design space for the integrated process. If lower flowrates were 
possible, the residence time of the CSTR could increase and lead a larger feasible 
operating region. The results indicate that while continuous integrated processes present 
numerous advantages compared to batch or semibatch systems, the overall robust design 
space for these tend to be smaller, and the implementation of suitable control systems can 
be critical to keep the process within the robust operating space. 
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5. Conclusions 

In this work, PharmaPy was used to generate probabilistic design spaces of API synthesis 
routes using statistical sampling of experimentally determined uncertainty in the relevant 
model parameters. PharmaPy has strengths in easily modelling varying operational 
modes, from fully batch, to hybrid, to fully continuous operation. Using these strengths, 
the synthesis of a cancer drug API, Lomustine, was analysed for both continuous and 
semibatch operation. It was found that in the case of batch processing, when reaction time 
is long enough, conversion of raw materials to the API allows for a larger feasible 
operating space than in the continuous case. Also, these design spaces consider no control 
action, and likewise the feasibility region of the continuous manufacturing process will 
necessarily increase when control action is implemented. 

Overall, PharmaPy is an emerging tool in leveraging digital twins and digital analysis in 
the pharmaceutical manufacturing space. It can be seamlessly called in many relevant 
digital process analysis techniques, such as those facilitating QbD and QbC. This is just 
one example highlighting these capabilities. 
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Abstract 
Monoclonal antibodies (mAbs) are essential as drug substances and are getting increased 
attention from industry and academia. In order to improve mAb production efficiency, 
optimising the process is necessary. Optimising the cell cultivation step where mAbs are 
produced by host cells is especially important due to its influence on cost and time. 
Adequate process models are essential to perform the needed simulations. This work aims 
to propose a new modelling approach that avoids the failures of previously developed 
kinetic models with new cell lines. A new hybrid modelling approach is introduced, which 
combines a mechanistic module with a data-driven one to account for cell phases and 
varying environmental conditions. The developed hybrid approach was tailored for a 
newly developed Chinese Hamster Ovary (CHO) cell line (CHO-MK 9E-1). The hybrid 
approach gave a higher accuracy in the depiction of lactate and glucose concentrations 
compared to the mechanistic model alone. Insights are gained through analysing the 
results of the data-driven module. Such insights can be used as feedback in an opportunity 
to develop more versatile mechanistic models. 

Keywords: Cell culture; Chinese hamster ovary (CHO) cells; Hybrid modelling; 
Principal component analysis; Biopharmaceutical production 

1. Introduction 
Monoclonal antibodies (mAbs) are essential as an active pharmaceutical ingredient. They 
are produced using Chinese Hamster Ovary (CHO) cells through the process shown in 
Figure 1. Process models are necessary to perform simulations for process optimisation 
and reduce the number of required experiments. In particular, models for the cell 
cultivations are required due to the high contribution of this step to the overall production 
cost and time (Yang et al., 2019). 

Many efforts have been made to develop a kinetic cultivation model that represents the 
cultivation phenomena well. The recent works are well summarised by Tang et al. (2020). 
One of the latest works is done by Badr et al. (2021), and the proposed Monod-type-based 
model is validated with both the most common cell line (CHO-K1) and a newly 
established cell line (CHO-MK CL1001) cultivation. 

However, despite of the efforts of many researchers in this field, developing a versatile 
kinetic model has been a challenge due to the complexity of the cell cultivation 
phenomena and variations in the cell lines. For example, previous models were not 
successful in depicting lactate concentrations for a new cell line (CHO-MK 9E-1). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50356-0 
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Figure 1: A monoclonal antibody (mAb) production process flow and cultivation 
phenomena. 

This cell line is known to have a faster metabolism and is accordingly sensitive to lactate 
concentrations, which affects other aspects of cell viability and growth. 

To overcome the challenge of needing to describe the impact of behaviour at different 
cell phases and environmental conditions, a hybrid modelling approach is introduced in 
this work. In this hybrid approach, a mechanistic module involving kinetic models of cell 
metabolism is combined with a data-driven one. Mechanistic models are easier to 
interpret but require a comprehensive understanding of the underlying mechanisms. On 
the other hand, data-driven models are easy to develop and apply even when the 
underlying mechanisms are not fully understood. However, they require a high volume 
of experimental data for model development and are more difficult to interpret or 
extrapolate. Hybrid modelling approaches aim to combine the advantages of both 
modelling techniques (Hong et al., 2018). The applications of hybrid modelling in 
pharmaceutical bioprocesses are well summarised by Narayanan et al. (2019). 

This work proposes a new hybrid modelling approach that drastically improved the lactate 
modelling accuracy of CHO-MK 9E-1. A discussion is provided for the insights gained 
from the data-driven module to help improve the mechanistic understanding of the 
underlying phenomena. The developed model can subsequently be further exploited to 
achieve a better description of cell death and subsequent impurity generation, such as host 
cell proteins (HCP) and DNA.  

2. Methodology 
2.1. Experimental Data 

Experimental data for model validation was obtained from the Kobe GMP consolidated 
lab of Manufacturing Technology Association of Biologics. Two cultivation modes were 
represented: the fed-batch mode, where nutrients continue to be fed to the cells throughout 
the operation, and the perfusion mode, where nutrients are continuously fed to the reactor 
and outlet streams are constantly removed to achieve continuous operations. Data from 
four experiments are used in this work: two experiments of CHO-MK 9E-1 cell in fed-
batch mode (a 50 L stirred tank and a 2 L glass vessel, respectively); one experiment of 
CHO-K1 cell in fed-batch mode (a 50 L stirred tank); one experiment of CHO-MK 
CL1001 in perfusion mode (a 2 L glass vessel).  
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2.2. Cultivation Model 

In this study, a hybrid modelling approach was introduced to improve the accuracy of 
lactate concentration modelling. The mechanistic module involved a kinetic model for 
fundamental cell metabolism. The model developed by Badr et al. (2021) was used in this 
work (Eqs.(1)-(7)). Badr et al. (2021) validated the model with the same experimental 
data of CHO-K1 cell in fed-batch mode and CHO-MK CL1001 in perfusion mode.  
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� (7) 

where, 𝑋𝑋V is the viable cell density. 𝑉𝑉 is the solution volume inside bioreactor. 𝐹𝐹bleed, 
𝐹𝐹harvest , 𝐹𝐹in , and 𝐹𝐹suppl  are flow rates of bleeding, harvesting, feeding, and 
supplementary glucose solution feeding respectively. 𝑃𝑃 , [GLC] , and [LAC]  represent 
concentrations of mAb, glucose (GLC), and lactate (LAC), respectively. 𝑐𝑐in and 𝑐𝑐suppl 
are glucose concentrations in the feeding media and supplementary glucose solution. 
respectively. 𝜇𝜇 and 𝜇𝜇𝑑𝑑 are cell growth and death rates. 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑘𝑘𝑑𝑑 are their maximum 
values. 𝑄𝑄𝑃𝑃  is the specific mAb production rate. 𝑌𝑌 is the yield coefficient. 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔  is the 
glucose consumption coefficient for cell maintenance. 𝐾𝐾 is Monod parameter. 

The mechanistic module is followed by a data-driven one based on principal component 
analysis followed by linear regression (PCR), where LAC and GLC concentrations are 
calculated according to Eq. (8). 

�𝑌𝑌𝑗𝑗� = �𝑎𝑎𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ 𝐶𝐶 (8) 

where �𝑌𝑌𝑗𝑗� represents the concentration of component 𝑗𝑗 representing in this work (LCA 
or GLC). 𝑃𝑃𝑃𝑃𝑖𝑖  represents the ith principal component derived from the principal 
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Figure 2: Outline of the hybrid modelling flow. * represents updated calculation results. 

component analysis, 𝑎𝑎𝑖𝑖 represents the coefficient of ith principal component, 𝑁𝑁 represents 
the appropriate number of principal components, and 𝐶𝐶 is a constant. 

Figure 2 shows how the two modules are combined in the hybrid approach. After fitting 
the kinetic model to the experimental data, the model parameters are obtained with initial 
predictions of viable cell density, and mAb, GLC, and LAC concentrations. These 
concentrations along with the estimated Monod parameters are fed as input to the data-
driven module. Experimental conditions not included in the mechanistic model are also 
added to the data-driven module (e.g. dissolved oxygen (DO), pH, Temperature). The 
model input also includes time and information about the cell line and operating mode. 
The data-driven module then gives updated LAC and GLC concentrations as an output. 
These concentrations are fed back to the kinetic model to update the values of fitted 
parameters and obtain updated VCD and mAb values.   

3. Results and Discussion 
3.1. Cell Cultivation Modelling Results 

Figure 3 shows part of the results of applying the model to predict concentrations in one 
experiment (CHO-MK 9E-1 in fed-batch mode with a 50L stirred tank). Lactate 
concentrations were better predicted by the hybrid model compared to the kinetic model 
alone. Other concentration profiles (GLC, viable cell, and mAb) were also well predicted. 
Similar results were obtained when using the model with each of the other experiments 
in the training set, with the hybrid model outperforming the kinetic model. A leave-one-
out-cross-validation is also carried out to confirm model stability. 

There is still a gap in viable cell toward the end of cultivation even though LAC modelling 
was improved. It might be interpreted as a need to further modify Eqs.(6) and (7), which 
define the effect of GLC and LAC on cell growth rate and death rate. 

3.2. Insights from PCA loading trends 

Figure 4 shows the cumulative explained variance ratio by each principal component (PC) 
and the categorised variable composition of each PC. With 9 PCs, the cumulative 
explained ratio reached 0.96. In order to make it easier to see the overall trend, the input 
variables were categorised into four groups: cell line and measurement factors; cell 
metabolism factors; environmental factors; operating factors.  

In the case of 𝑃𝑃𝑃𝑃2  and 𝑃𝑃𝑃𝑃3 , cell metabolism factors were the dominant ones. This 
indicates that such factors have a relatively high influence on the variance of lactate 

Kinetic model

(Fundamental cell metabolism)

Data-driven model

(Updated GLC and LAC)

Kinetic model

(Fundamental cell metabolism)

GLC*, LAC*

Viable cell, mAb,

GLC, LAC

Viable cell*, mAb*

Experimental 

data



 

profiles. They also indicate different cell behaviour at different operating conditions of 
each experiment despite using similar cell lines. For example, incorporating an additional 
mechanistic model describing lactate consumption by the cells, it might be possible to 
further describe the complex behaviour of lactate metabolism. The variables in this 
category are the outputs of the kinetic model. The data-driven module thus uses both 
experimental data and such initial kinetic parameters to close the gap between the 
experimental data and calculated results of the kinetic model.  

Figure 3: Modelling results of CHO-MK 9E-1 in fed-batch mode (a 50L stirred tank), 
showing (a) GLC concentration, (b) LAC concentration, (c) viable cell density, and (d) 
mAb concentration. The accuracy of the hybrid model are as follows: (a) GLC (R2=0.961), 
(b) LAC (R2=0.863), (c) viable cell (R2=0.851), and (d) mAb (R2=0.942) 

Figure 4: Cumulative explained variance ratio and categorised variable composition of each PC. 
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On the other hand, the ratio of environmental factors toward latter PCs becomes relatively 
larger along with cell metabolism factors. Here, by looking into the details of PC loadings, 
some possible relationships could be observed, such as between cell growth or death rate 
and DO or pH. This kind of insight could tell us the critical factors which have not been 
considered in the kinetic model yet. Utilising such feedback in kinetic model development 
might contribute to deeper mechanistic understanding towards obtaining more versatile 
kinetic models. 

4. Conclusions 
This work presents a new hybrid modelling approach for cell metabolism. The approach 
worked well with experimental data of different tested cell lines, including CHO-MK 9E-
1, especially to achieve higher LAC modelling accuracy (R2=0.863). Also, opportunities 
to utilise the insights obtained from the data-driven modelling part for further 
development of kinetic models were presented. Analysing the biological meaning of PC 
loading compositions and providing feedback to kinetic model development might 
contribute to a deeper understanding of cell cultivation phenomena. Experiments to 
further confirm the validity of the modelling approach with further cell lines and 
experimental conditions are still required. Additionally, exploration of different data-
driven approaches is still required to enhance the modelling versatility and performance. 
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Abstract 

This work explores the application of a novel tri-linear regression methodology known 
as Shifted Covariates REgression Analysis for Multi-way data (SCREAM) to predict 
the quality of a fed-batch process. The SCREAM model shows promise as it is the only 
known multilinear regression tool that can directly handle three-way data arrays of 
different lengths. Thus, it provides an alternative modelling tool that does not require 
complicated time warping methods as a preprocessing step. The model was tested on a 
simulated  fed-batch dataset based on industrial simulation of penicillin production. 
Variations were intentionally included in the simulations to create uneven data arrays. 
The SCREAM model outperforms traditional staples of multivariate models like NPLS 
and UPLS when warping is not considered and thus shows promise for application in 
fed-batch processes. 
 
Keywords: Fed-Batch, Multimodal Modelling, PLS, Multivariate analysis 

1. Introduction 

The biochemical industry readily uses fed-batch processes for the production of various 
chemicals and pharmaceuticals. It is common in the industry to utilize a recipe driven 
approach, where operations are not adjusted to accommodate the variations in feed or 
initial blending of the batch. Biochemical processes by their very nature will introduce 
batch-to-batch variations if the system is not very tightly controlled. Knowledge of how 
the system variations may affect the final batch yield or quality can be vital for proper 
recovery of the final product. Most industries monitor key process parameters 
throughout the process, resulting in large amount of data. This has given rise to 
assumption free modelling (Westad et al, 2015). Data driven approaches can be utilized 
to establish correlations between captured data and the process quality. 

For most data-driven regression methods, it is required that the data is available as two-
dimensional matrix. However, batch data consisting of 𝐾 batches is a three-way dataset 
𝑿(𝐼 𝑥 𝐽 𝑥 𝐾) where each batch is measured on 𝐼 process variables at 𝐽 time points, while 
quality variables may be measured only after the conclusion of the batch. For a 
regression type problem, the most common method of modelling three-way array is to 
reshape the 3-way array into a 2-D matrix in a process known as unfolding. If 
preserving the batch mode, the resulting matrix will be 𝑿(𝐾𝑥𝐼𝐽). The most common 
multivariate analysis is to use Partial Least Squares (PLS) on the unfolded matrix, the 
overall process is referred to as UPLS (Wold et al, 1987). There also exist tri-linear 
models that work directly with 3-way arrays. They are useful if one expects the 
multilinear structure to affect the overall system variation. For regression purposes the 
easiest one to use would be the multilinear PLS or NPLS (Bro, 1996). Direct trilinear 
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models are more strict than working with unfolded data and thus usually do not 
necessarily perform better when looking at prediction errors. They are still useful as 
they preserve the multi-linear structure and have more interpretative properties. 

However, unfolding the matrix or utilizing NPLS requires that the lengths of the batch 
data matrix (𝐼 𝑥 𝐽) be consistent across all batches. Variations of batch operation and 
initial blend will create uneven data with shifts and shape changes, where different 
events or peaks in data take place at different times. The simplest way to handle uneven 
lengths of batches is to identify the shortest runtime of a batch and remove excess time 
points from all others, a process known as cut-to-shortest. In case of severe shifts or 
variation in batch length, it is possible to synchronize the data structure in a process 
known as time warping (Gonzáles-Martinéz et al, 2018).  

Alternatively, the Shifted Covariates REgression Analysis for Multi-way data 
(SCREAM) method (Marini and Bro, 2013) can be used. This method is the multi-
modal version of the Principal Covariates Regression (PovR), but it utilizes a Parallel 
Factor Analysis 2 (PARAFAC2) decomposition method (Kiers 1991) instead of the 
two-way equivalent Principal Component Analysis (PCA). PARAFAC2 is a 
decomposition method that allows for shifts and uneven lengths in a single mode. This 
makes SCREAM an interesting candidate for modelling batches as it can directly model 
the data without unfolding the three-way structure and requires no time warping as a 
preprocessing step. 

2. Materials and Methods 

2.1. SCREAM Model 

The SCREAM model utilizes a PARAFAC2 fitting algorithm based on an Alternating 
Least Squares approach. PARAFAC2 models are expressed as 

𝑿௞ = 𝑨𝑫௞𝑩௞
் + 𝑬௞                𝑘 = 1, … 𝐾                                (1) 

Here 𝑿௞  is a single slab of the entire three-way structure 𝑿 , or in this case the data from 
a single batch. For a PARAFAC2 model with F components, the matrix 𝑨 is a matrix 
(𝐼 𝑥 𝐹) of loadings in the 𝐼 direction. For batch data, this is usually the variable 
loadings. 𝑫௞ is a diagonal matrix (𝐼 𝑥 𝐹) containing the 𝑘’th row of the matrix 
𝐂(𝐾 𝑥 𝐹) which contains the loadings in the 𝐾 or batch direction. 𝐂 is similar to a score 
matrix in ordinary 2-way PCA. Finally, 𝑩௞  is the loadings in the 𝐽 direction or the time 
point direction. Generally, 𝑩௞  hold the loadings where the shifts happen. Finally, 𝑬௞  
contains the residuals. PARAFAC2 models are made unique by the constraint that the 
cross-product of each 𝑩௞ is the same i.e. 𝑩௞𝑩௞

் = 𝑯 for all 𝑘 = 1, … 𝐾. The standard 
PARAFAC does not have a unique loading matrix in the 𝐽 direction for each slab 𝑿௞ but 
rather uses a single 𝑩 for the entire three-way structure. Different 𝑩௞ loadings allow 
PARAFAC2 to directly model three-way arrays of batch data of different lengths but 
also makes it more flexible when handling shifts in batch data. 
Fitting a PARAFAC2 model is the least squares minimization of the following loss 
function 

∑ ||(𝑿௞ − 𝑨𝑫௞𝑩௞
்)||ଶ௄

௞ୀଵ                                                (2) 
Note that 𝐂 is a 2D matrix and a direct multi-linear regression onto 𝐘 is possible. This 
would be the multimodal equivalent to Principal Component Regression (PCR). 
However, there is no guarantee that the score matrix 𝐂 is predictive of 𝐘 as it is 
attempting to summarizing the entire 𝑿 array. Thus, changes in 𝑿 that may have no 
significance on the output 𝐘, will still affect the 𝐂 matrix.  
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For prediction purposes it is sought to seek a score matrix 𝐂 that is relevant for 
predicting 𝐘. For a single dependent variable y, it is achieved by minimizing the 
following 

||𝒚 − 𝑪𝒓||ଶ                                                            (3) 
where r is a vector of regression coefficients. Making a predictive model that is relevant 
for both 𝑿 and 𝒚 requires the minimization of both equations (2) and (3). This is the 
same setup as in the two-way Principal Covariate Regression (PCovR) where a 
weighing parameter 𝛼 0 ≤ 𝛼 ≤ 1 is introduced. This parameter controls to what 
degree the fitting should summarize 𝑿 or predict 𝒚. The SCREAM model is then fitted 
by minimizing the following 
 

𝛼 ∑ ||(𝑿௞ − 𝑨𝑫௞𝑩௞
்)||ଶ + (1 − 𝛼)||𝒚 − 𝑪𝒓||ଶ௄

௞ୀଵ                                 (4) 
The PARAFAC2 direct fitting algorithm (Kiers et al 1999) is utilized to solve this 
minimization problem while maintaining the uniqueness constraint.  
This modelling techniques has two hyperparameters that must be selected, the number 
of factors 𝐹 and the value of the weighing parameter 𝛼. Improper selection of these 
parameters leads to models that do not predict or overfit on 𝒚. For most practical 
applications, optimization of the hyperparameters is done via cross-validation. A 
common method is minimizing the Root Mean Square Error of Cross-Validation. 
 

2.2. Preprocessing 

Preprocessing is important for any multivariate or multi-modal methods. Centering 
removes constant offsets in the data, while the obvious reason for scaling is to adjust for 
scale differences between variables measured in different units. Since the goal is for the 
model to capture the variations between different batches, the centering will be across 
the batch mode. This is done by computing a separate mean for the measured variable 
for each time point across batches and then subtracting the mean from each 
measurement. 
Scaling is performed on the centered data. There are three types of scaling for three-way 
data. Column scaling, single-slab scaling, and double-slab scaling. This study will 
utilize the single-slab scaling technique as it has shown better performance in regression 
modeling of batch data. (Mears et al, 2016). For single-slab scaling all time points for a 
single variable are scaled to unit root-mean-square. 
 

3. Case Study: Industrial Simulation of Penicillin Fermentation 

Exploring the applicability of the SCREAM method for modelling batch fermentations 
a dataset is needed. For this purpose, the industrial simulation model (Birol et al, 2002s) 
is used for simulating an industrial fed-batch fermentation for the production of 
penicillin. 100 batches are simulated with a recipe driven approach given in Table 1, 
Batch-to-batch variations are created by varying the initial conditions of biomass and 
glucose in each batch, the total runtime of each batch is also varied, as well as the time 
to start the feed. For simplification variables that are controlled such as pH and 
Temperature are not simulated but a random Gaussian noise is added around the set 
point for each time index. 
In the generated dataset, a total of 11 process variables are assumed to be monitored 
continuously on each batch which will be utilized for multi-modal modelling. The 
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collection of the 11 process variables at equal timepoint distances of one hour will 
create the three-way array 𝑿. 
 

Table 1 Recipe used in the fed-batch simulation for penicillin production 

Recipe Setup Value Potential variations 
Initial Biomass 0.5 g/L ±0.05 g/L 
Initial Glucose 40 g/L ±2 g/L 
Initial Volume 100 m3 ±100 L 
Feed Rate Set Point 200 L/h ±1 L/h 
Feed Glucose Concentration 600 g/L ±10 g/L 
Agitation Maintain kla of 400 h-1 ±1 on kla 
Aeration 1200 m3/h ±20 m3/h 
Temperature Set Point 298 K ±0.05 K 
pH Set Point 5 ±0.01 
Fermentation Duration 400 h ±10 h 
Feed Start Time 50 h ±4 h 
 
The quality variable 𝒚 of interest is the total harvested Penicillin at the end of the batch. 
Figure 1 shows the batch-to-batch variation of penicillin harvest. Because of the 
variation in runtime of up to 20 hours, the three-way array 𝑿 is uneven which is 
common in industrial batch processes. 
 

4. Results and Discussions 

The SCREAM model was built to predict the penicillin harvest based on monitored 
variables. Because the data is simulated the data there are observable effects of tank 
geometry or start time of batches, thus the partition into modelling and test set is done 
randomly. 30 Batches are held over for testing while the model is built on 70 batches. 
Utilizing a 10-fold venetian blinds cross validation it is found that setting F=5 and 𝛼 =
0.3 provided a decent regression without overfitting. 

Model predictions are shown in Figure 2 where predicted harvest from SCREAM model  
and measured harvest from the simulation are reported. The Root Mean Square Error of 
the test set was calculated to be 13.01 which results in a less than 5% absolute error 
when predicting the harvest of new batches. 

For comparison the traditional three-way NPLS model is built as well as the most 
common type of multivariate model UPLS for batch data. To make the batches even for 
these types of models the cut-to-shortest time warping method is used. The performance 
of these models is shown in Table 3. Both NPLS and UPLS started overfitting the data 
with 3 components but with only 1 component it failed to establish any correlation 
between process data and penicillin harvest, thus 2 components were used for building 
the models. 
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Figure 1 Batch-To-Batch variations in the penicillin harvest of the simulated dataset 

However, SCREAM outperforms both when looking at the test set. This may be due to 
NPLS being too strict to handle the shifts, but unlikely as the UPLS is more flexible but 
has the same problems when predicting the penicillin harvest. The most likely issue is 
that the data at the end of the batch contains crucial information for establishing the 
correlations which is missing with a cut-to-shortest time warping. Dynamic Time 
Warping (DTW) or Correlation Optimized Warping (COW) may improve the 
performance of both UPLS or NPLS models but are difficult and time-consuming 
methods to employ. However, SCREAM models do not require these treatments and 
thus are able to predict the test-batches with more accuracy. 

 

Table 2: Comparison of different regression models on the simulated dataset. 

Model Type RMSE (Calibration Set) RMSE (Test Set) 

SCREAM 11.23 13.01 

NPLS  6.98 17.61 

UPLS  7.82 18.00 

5. Conclusions 

A regression method that can directly model uneven batch data was tested on a 
simulated industrial fed-batch dataset. The SCREAM model was developed as a 
modification to Multivariate covariate regression, which allows it to handle shifts in 
dataset and uneven three-way matrices. The fed-batch simulation is based on an 
industrial model and disturbances were introduced in the recipe to create the variations 
in runtime and shifts the data, which is common in industry. The SCREAM model 
outperforms both NPLS and UPLS when used on the data when complex warping 
techniques are not utilized with no overfit and little bias. There is even room for 
improvement by utilizing non-derivative optimization method for the model 
hyperparameters, it may well be possible to find a set of hyperparameters that 
outperforms the model reported here.  
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Figure 2: Predicted Penicillin harvest from the SCREAM model vs the actual simulated value. 

Further work will be analysing the loadings and diagnostics of the model to see if the 
model can identify the key variables and time points of an industrial fermentation to 
extract information without access to the original simulation. Overall, the SCREAM 
model technique is a promising alternative  in the modelling fed-batch systems. 
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Abstract 
Active control strategies play a vital role in modern pharmaceutical manufacturing. 
Automation and digitalization are revolutionizing the pharmaceutical industry and are 
particularly important in the shift from batch operations to continuous operation. Active 
control strategies provide real-time corrective actions when departures from quality 
targets are detected or even predicted. Under the concept of Quality-by-Control (QbC), a 
three-level hierarchical control structure can be applied to achieve effective setpoint 
tracking and disturbance rejection in the tablet manufacturing process through the 
development and implementation of a moving horizon estimation-based nonlinear model 
predictive control (MHE-NMPC) framework. When MHE is coupled with NMPC, 
historical data in the past time window together with real-time data from the sensor 
network enable model parameter updating and control. The adaptive model in the NMPC 
strategy compensates for process uncertainties, further reducing plant-model mismatch 
effects. The frequency and constraints of parameter updating in the MHE window should 
be determined cautiously to maintain control robustness when sensor measurements are 
degraded or unavailable. The practical applicability of the proposed MHE-NMPC 
framework is demonstrated via using a commercial scale tablet press, Natoli NP-400, to 
control tablet properties, where the nonlinear mechanistic models used in the framework 
can predict the essential powder properties and provide physical interpretations. 

Keywords: pharmaceutical manufacturing; continuous manufacturing; process control; 
nonlinear model predictive control; moving horizon estimation. 

1. Introduction 
Several factors currently drive the transition of the pharmaceutical manufacturing 
industry from batch to continuous process operation. These include potential 
improvement in both product quality homogeneity and process controllability. Quality 
control traditionally followed a Quality-by-Testing (QbT) approach, wherein product 
quality was tested at the end of each batch processing step. However, with improved 
product and process understanding, a Quality-by-Design (QbD) approach was adopted to 
enable systematic design of the operating space using mechanistic models. More recently, 
there has been a desire to adopt a Quality-by-Control (QbC) approach, wherein 
quantitative and predictive understanding can be leveraged for active process control and 
aid robust process design and operation, thereby enabling smart manufacturing (Su et al., 
2019). 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50358-4 
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An important part of any real-time process monitoring and control strategy is the ability 
to identify and manage the impact of plant-model mismatch (PMM). PMM can arise in 
the continuous manufacture of oral solid dosage for numerous reasons, e.g., disturbances 
that affect critical material attributes (CMAs) such as the bulk density can be introduced 
during the feeder refill step (Destro et al., 2021). As this can result in a deviation in the 
critical quality attributes (CQAs), PMM needs to be identified and handled appropriately. 
Several approaches have been developed in order to identify and assess the impact of 
PMM, e.g., based on mutual-information (Chen et al., 2013) or autocovariance (Wang et 
al., 2017). Stringent regulations placed by regulatory bodies make it essential to track 
CQAs and CMAs online, but they may be unmeasurable in practice as process analytical 
technology (PAT) sensing methods may not be available to track these states or 
parameters, e.g., bulk density. Therefore, this work proposes the use of an on-line, real-
time parameter estimation approaches to accurately track model parameters online, to 
guide operating decisions. It is important to note that most work in the continuous 
manufacturing domain utilize linear model predictive control (MPC) strategies, that are 
derived from the linearization of the nonlinear system and may not be adequate for 
nonlinear process models and unit operations such as the rotary tablet press (Ierapetritou 
et al., 2016). 

A recent in-silico study by (Huang et al., 2021) demonstrated that a combined MHE-
NMPC framework could satisfy the dual requirement of efficient estimation and control. 
Unfortunately, there are no case studies in the literature that demonstrate the application 
of the proposed framework to real data from a continuous pharmaceutical manufacturing 
process. Therefore, the primary objective of this work is to validate the practical 
applicability of the proposed framework using a Natoli NP-400 rotary tablet press. 

2. Methodology 
The moving horizon estimation-based nonlinear model predictive framework (MHE-
NMPC) aims to satisfy the dual requirement of estimation and control, by combining the 
effective estimation capabilities of MHE with the control performance provided by 
NMPC. Given a nonlinear state-space model: 

𝑥̇𝑥 = 𝑔𝑔(𝑥𝑥,𝑢𝑢,𝜃𝜃,𝑤𝑤)         (1) 

𝑦𝑦 = 𝑙𝑙(𝑥𝑥,𝑢𝑢,𝜃𝜃, 𝑣𝑣)          (2) 

where 𝑥𝑥, 𝑢𝑢, 𝜃𝜃, and 𝑦𝑦 are vectors that represent the state variables, input variables, model 
parameters, and measurements, respectively. Process and measurement noise are denoted 
by 𝑤𝑤 and 𝑣𝑣, respectively. In this work, the model is described by a set of explicit algebraic 
equations with no differential states, and 𝑓𝑓 and ℎ will represent these algebraic equations. 
MHE can then be formulated as follows (López-Negrete and Biegler, 2012): 

min
𝜃𝜃�𝑘𝑘

 𝐽𝐽 = ∑ (𝜖𝜖𝑡𝑡)𝑇𝑇𝑊𝑊𝐸𝐸  𝜖𝜖𝑡𝑡 + �𝜃𝜃�𝑘𝑘 − 𝜃𝜃�𝑘𝑘−1�
𝑇𝑇𝑊𝑊𝜃𝜃�𝜃𝜃�𝑘𝑘 − 𝜃𝜃�𝑘𝑘−1�𝑘𝑘

𝑡𝑡=𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝       (3a) 

subject to 

𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗+1 = 𝑓𝑓 �𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 ,𝑢𝑢𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗,𝜃𝜃�𝑘𝑘� (3b) 

𝑦𝑦�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 = ℎ(𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗) (3c) 

𝜖𝜖𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 = 𝑦𝑦𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 − 𝑦𝑦�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 (3d) 
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𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗+1 ∈ 𝕏𝕏, 𝜖𝜖𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗 ∈ Ω𝜖𝜖 , 𝜃𝜃�𝑘𝑘 ∈ Ω𝜃𝜃 (3e) 

𝑗𝑗 = 0, 1, … ,𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (3f) 

where 𝜃𝜃�𝑘𝑘 are estimated uncertain parameters, bounded in compact set Ω𝜃𝜃. 𝑦𝑦𝑡𝑡 and 𝑢𝑢𝑡𝑡 are 
measurements of output and input variables at time t, respectively; 𝑦𝑦�𝑡𝑡  and 𝑥𝑥�𝑡𝑡  are 
estimated output and state values, respectively; 𝜀𝜀𝑡𝑡 are output disturbances, bounded in 
compact set Ω𝜖𝜖 ; and 𝑊𝑊𝐸𝐸  and 𝑊𝑊𝜃𝜃  are weighting matrices. Once the MHE optimization 
problem is solved at time t = k, the estimated state 𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1|𝑡𝑡=𝑘𝑘 is chosen as the initial 
state value for the next time step t = k + 1, i.e., 𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1|𝑡𝑡=𝑘𝑘+1 = 𝑥𝑥�𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1|𝑡𝑡=𝑘𝑘 . 

This study utilizes the median of the error distribution in the past time window to 
represent output disturbances 𝜁𝜁𝑘𝑘 at time 𝑡𝑡 = 𝑘𝑘, i.e.,  

𝜁𝜁𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝜖𝜖𝑘𝑘−𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗�,    for 𝑗𝑗 = 0, 1, … ,𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (4) 

The NMPC framework at time 𝑡𝑡 = 𝑘𝑘 is defined as follows: 

min
Δ𝑢𝑢𝑡𝑡

𝐽𝐽 = ∑ (𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑠𝑠)𝑇𝑇  𝑊𝑊𝑦𝑦�𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑠𝑠𝑠𝑠� + ∑ (Δ𝑢𝑢𝑡𝑡𝑇𝑇𝑊𝑊Δ𝑢𝑢Δ𝑢𝑢𝑡𝑡)
𝑘𝑘+𝑁𝑁𝑐𝑐−1
𝑡𝑡=𝑘𝑘

𝑘𝑘+𝑁𝑁𝑝𝑝
𝑡𝑡=𝑘𝑘    (5a) 

subject to 

𝑥𝑥�𝑘𝑘+𝑗𝑗+1 = 𝑓𝑓�𝑥𝑥�𝑘𝑘+𝑗𝑗 ,𝑢𝑢�𝑘𝑘+𝑗𝑗 ,𝜃𝜃�𝑘𝑘� (5b) 

𝑦𝑦�𝑘𝑘+𝑗𝑗 = ℎ�𝑥𝑥�𝑘𝑘+𝑗𝑗� + 𝜁𝜁𝑘𝑘 (5c) 

Δ𝑢𝑢𝑘𝑘+𝑗𝑗 = 𝑢𝑢�𝑘𝑘+𝑗𝑗+1 − 𝑢𝑢�𝑘𝑘+𝑗𝑗 (5d) 

𝑥𝑥�𝑘𝑘+𝑗𝑗 ∈ 𝕏𝕏, 𝑢𝑢�𝑘𝑘+𝑗𝑗 ∈ 𝕌𝕌, Δ𝑢𝑢𝑘𝑘+𝑗𝑗 ∈ ΩΔu (5e) 

𝑗𝑗 = 0, 1, … ,𝑁𝑁𝑝𝑝 − 1 (5f) 

where 𝑁𝑁𝑐𝑐 is the length of the control time window, and 𝑦𝑦𝑠𝑠𝑠𝑠 are the setpoints of the output 
variables. 𝑊𝑊𝑦𝑦 and 𝑊𝑊∆𝑢𝑢 are weighting matrices. Control movements ∆𝑢𝑢 are constrained in 
compact set ΩΔ𝑢𝑢 . A detailed discussion of the MHE-NMPC framework including its 
computational feasibility is provided in (Huang et al., 2021). 

3. Case Study 
3.1. Tablet press model 
The tablet press is responsible for the formation of solid tablets via mechanical 
compression. The weight of a convex tablet W and the tablet production rate 𝑚̇𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are 
given by the following relationships (Huang et al., 2021): 

𝑊𝑊 = 𝜌𝜌𝑏𝑏𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �1 − 𝜉𝜉1
𝑛𝑛𝑇𝑇
𝑛𝑛𝐹𝐹

+ 𝜉𝜉2
𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐷𝐷
�  (6) 

𝑚̇𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑊𝑊𝑛𝑛𝑇𝑇𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (7) 

where D, 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝜌𝜌𝑏𝑏, 𝑛𝑛𝑇𝑇, and 𝑛𝑛𝐹𝐹, are the diameter of the die, volume of the die cavity, 
dosing position, powder bulk density, turret speed, and feed frame speed, respectively. 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 refers to the number of stations in the tablet press. 𝜉𝜉1 and 𝜉𝜉2 are empirical model 
parameters that are estimated from experimental data. The volume of the die cavity for 
the D-type tooling is provided by (Huang et al., 2021).  
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The pre-compression force ܨ𝑝𝑝𝑐𝑐 and the main compression force ܨ𝑝𝑝𝑢𝑢𝑛𝑛𝑐𝑐ℎ can be computed 
as follows: 

𝑝𝑝𝑐𝑐ܨ = గ𝐷𝐷మ

ସ𝑡𝑡
ቂ ఘ𝑝𝑝𝑐𝑐−ఘ𝑐𝑐
ఘ𝑝𝑝𝑐𝑐(𝑝𝑝−1)+ఘ𝑐𝑐

ቃ  (8 ) 

𝜌𝜌𝑝𝑝𝑐𝑐 = ௐ
௏𝑝𝑝𝑐𝑐ఘ𝑝𝑝

  (9) 

𝑝𝑝𝑢𝑢𝑛𝑛𝑐𝑐ℎܨ = గ𝐷𝐷మ

ସ𝑡𝑡
ቂ ఘ𝑓𝑓೙ష೏𝑓𝑓೐−ఘ𝑐𝑐
ఘ𝑓𝑓೙ష೏𝑓𝑓೐(𝑝𝑝−1)+ఘ𝑐𝑐

ቃ  (10) 

𝜌𝜌𝑓𝑓𝑛𝑛−ௗ𝑓𝑓𝑡𝑡 = ௐ
௏𝑓𝑓೙ష೏𝑓𝑓೐ఘ𝑝𝑝

  (11) 

where parameters a and b are Kawakita constants, which represent the maximum degree 
of compression and the reciprocal of the pressure applied to attain this degree of 
compression, respectively. 𝜌𝜌𝑝𝑝𝑐𝑐  and 𝜌𝜌𝑓𝑓𝑛𝑛−ௗ𝑓𝑓𝑡𝑡  are the pre-compression and in-die relative 
densities, respectively. 𝜌𝜌𝑝𝑝 refers to the true density of the powder. The pre-compression 
volume, 𝑉𝑉𝑝𝑝𝑐𝑐, and in-die volume 𝑉𝑉𝑓𝑓𝑛𝑛−ௗ𝑓𝑓𝑡𝑡  are provided by (Huang et al., 2021). 

3 .2. Applying MHE to tablet press:  Comparison of fix ed model and adaptive model 
To investigate state estimation and parameter updating, an experiment was performed via 
open-loop control. Setpoint changes of input variables were introduced to the tablet press, 
and corresponding measurements of output variables and model predictions are recorded 
and shown in F igure 1 (a) with fixed model parameters and F igure 1 (b) with adaptive 
model parameters.  
 

 
F igure 1. Real-time monitoring of PMM when uncertain parameters are (a) fixed or (b) adaptive 

with (c) error distribution of estimated output variables. 

In this study, since the mathematical model is represented by a set of explicit algebraic 
equations the MHE only updates two uncertain parameters: (1) the bulk density (𝜌𝜌𝑡𝑡𝑢𝑢𝑡𝑡𝑘𝑘), 



to compensate for the effects of disturbance on the estimated value of the tablet weight, 
which further affects estimated values of pre-compression force, main compression force, 
and the production rate, and (2) the critical relative density (𝜌𝜌𝑐𝑐) to provide flexibility to 
estimate the pre-compression and main compression forces more accurately in the 
adaptive model compared to the case of only bulk density being updated. The adaptive 
model predicts output variables more accurately compared to the fixed model. 
 
To quantify model accuracy and precision, error distributions of the estimated output 
variables are provided in F igure 1 (c), where the probability density functions (pdf) of the 
error distributions are rescaled (meaning that the area under the density curve is not 1). 
O nce MHE is applied to update the bulk and critical relative densities, the absolute values 
of the median error and error spans of all output estimations are significantly reduced, as 
shown in F igure 1 (c). However, an exception is found in pre-compression force, whose 
error span is reduced from 0.75  kN to 0.37 kN, while median error is increased from 0.07 
kN to 0.22 kN. Since pre-compression force and main compression force share the same 
model parameters as shown in Equation (8 -11), there exists the need to establish a 
compromise between the accuracy of these two output variables. 
 
3 .3 . Ex perimental verification of MHE-NMPC 
Control profiles for a representative experimental run of the 4 input variables, 4 output 
variables, and 2 uncertain model parameters are shown in F igure 2 (a), (b), and (c), 
respectively. O ffsets in the output variables are observed as open-loop control is applied 
at the start of operation (highlighted in red). When the MHE-NMPC algorithm is 
implemented from t =  200 s, offset free control is achieved. Additional setpoint changes 
are introduced for the tablet weight at t =  600 s, 8 00 s, 15 00 s, the main compression force 
at t =  1100 s, and the production rate at t =  1000 s. 

 
F igure 2. MHE-NMPC control performance of the tablet press with (a) input variables, (b) output 

variables, and (c) uncertain parameters. 
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All results of setpoint tracking are satisfactory as shown in Figure 2 (b). During the 
experimental run, an internal alarm stopped the tablet press twice at t = 820 s and t = 1160 
s (highlighted in yellow) forcing the turret speed to drop to 0 rpm. The machine stop 
prevents the distributed control system (DCS) from collecting in-house tablet weight and 
production rate measurements, where the time delay can be attributed to the 10 s moving 
average window. The strength of the MHE-NMPC algorithm can once again be noted, as 
offset-free control is quickly achieved once the tablet press resumes operation. As the 
uncertain parameters are updated in real-time as shown in Figure 2 (c), the mismatch can 
be mitigated as presented in Figure 2 (b). While mismatch for pre-compression force 
cannot be completely mitigated, as it shares the same parameters as the main compression 
force, the disturbance term used in controller model described in Equation 5c still 
guarantees offset-free control of the pre-compression force. 

4. Conclusions 
Real-time process monitoring and control are essential to enable continuous operation of 
modern pharmaceutical manufacturing processes. The MHE-NMPC framework 
demonstrates satisfactory control performance and parameter updating in the rotary tablet 
press to handle plant-model mismatch (PMM). Future work will include sensor fusion 
studies to incorporate at-line measurements with long sampling time to the framework. 
Accurate estimation is required to enable the control of critical quality attributes such as 
tensile strength, which need to be predicted from soft sensors due to limited availability 
of real-time measurements because of the destructive nature of the testing methods used. 
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Abstract 

A novel method was developed that allows the rolling theory of granular solids 

(Johanson, 1965) to predict the ribbon density accurately. In this study, a gray-box 

model of roller compaction process was developed based on the rolling theory of 

granular solids to demonstrate a practical application of the accurate and descriptive 

roller compaction model for process development. A placebo formulation composed of 

mannitol, microcrystalline cellulose, and magnesium stearate was used to generate 26 

samples of roller compaction experiment. Compressibility factor and elastic recovery 

rate were predicted using regression models to consider the dependence on material 

attribute and process parameter (PP). The gray-box model composed of the modified 

rolling theory proposed by Reynolds et al. (2010) and the complemental regression 

models showed a better prediction performance compared to the white-box model 

reported by Reynolds et al. The root mean square error of cross validation of the ribbon 

density in white-box and gray-box models were 0.07 g/cc and 0.04 g/cc, respectively. 

With the gray-box model the effect of PP on the ribbon density and mass throughput 

was visualized, which is beneficial to identify the target and the acceptable ranges of PP 

for manufacturing. 

Keywords: Dry granulation, Modeling and Simulation, Ribbon density, Control 

strategy. 

1. Introduction 

The granulation process is a critical process that impacts the quality of pharmaceutical 

products such as the dissolution and the uniformity of active ingredient content of 

tablets, capsules, powder filled bottles, etc. Roller compaction is a dry granulation 

processes for producing granules from powder blends. In roller compaction powder 

blends are continuously compressed by the two counter-rotating rolls and subsequently 

the generated ribbons are milled to obtain the granules. In general, ribbon density is 

considered as a critical material attribute (CMA), i.e., a factor of drug product quality 

and therefore it needs to be controlled via process parameter (PP) such as roll force, roll 

speed, and roll gap. The pressure on the powder blends in the roller compactor directly 

correlates to the ribbon density. Due to the difficulty in direct pressure measurement, 

process models that use the measurable PP to predict process outputs are needed to 

control the drug product quality. 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50359-6 
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Johanson (1965) developed the rolling theory of granular solids, which correlates the 

powder compaction in roller compaction process with the raw material properties and 

the PP. In the rolling theory, the space in between the rolls are divided into three 

different regions, i.e., the slip region, the nip region, and the release region. A sketch of 

the three different regions are provided in Figure 1a. In the slip region, powder blends 

slip along with the rotation of rolls whereas in the nip region, the powders are trapped 

by the rolls and move at the same speed as the roll surface, which results in the 

compaction of the powders to form roller compacted ribbons. In the release region, the 

ribbons show elastic recovery due to the release from compaction force by the rolls. The 

nip angle 𝛼 is the transition angle from slip to nip region. 

  

Figure 1 (a) Sketch of the three different regions in roller compaction. (b) Scatter plot of 

experimental runs with different PP setting. 

 

The maximum pressure at the minimum separation of rolls, which is defined as roll gap, 

is estimated from the pressure distribution equation as a function of roll angle. The 

output parameters such as ribbon density and mass throughput are calculated based on 

the estimated maximum pressure. Due to the difficulty in measuring the required pre-

consolidation pressure, limited works have been reported with focus on the practical 

application of the rolling theory for process understanding and control. Reynolds et al. 

(2010) proposed a modified rolling theory as a practical compromise with an 

assumption that the pre-consolidation pressure is 1 MPa. Based on this assumption, the 

pre-consolidation density and the compressibility factor are considered constant 

regardless of the PP, and were estimated from uniaxial experiments to predict ribbon 

density and mass throughput. While their approach provided accurate prediction of 

ribbon density, it has a limitation in predicting ribbon density accurately because their 

approach does not consider the effect of the PP on the pre-consolidation pressure. As 

presented by Reynolds et al., the pre-consolidation density and compressibility factor 

are different between the uniaxial measurement and the roller compaction process, 

which indicates that the pre-consolidation density and compressibility factor depend on 

the PP. Besides, the rolling theory and the variations do not consider the elastic 

recovery of the ribbons in release region even though the ribbon thickness is larger than 

the roll gap as reported in previous studies (Shi and Sprockel, 2016; Souihi et al., 2013). 

Since the off-line ribbon density measurement uses samples collected from release 

region, the relationship between the PP and the elastic recovery rate should be 

considered for higher prediction accuracy. 

Gray-box model is one of the practical solutions to complement prediction performance 

of theoretical models with the use of data while keeping the theoretical structure 

(a) (b) 



Gray-box modelling of pharmaceutical roller compaction process  

(Ahmad et al., 2020). The gray-box model is expected to present a higher 

interpretability compared to the black-box model, i.e., data-driven model. The gray-box 

models have been successfully applied to chemical and pharmaceutical processes (Van 

sprang et al., 2005; Ahmad et al., 2020). However, application of the gray-box model to 

the roller compaction process is not reported so far. In this study, a gray-box model was 

demonstrated on the rolling theory for the first time to show its practical applicability to 

the process development and control strategy setting. 

2. Materials and Methods 

A placebo formulation composed of Pearlitol 100SD as mannitol (Roquette, France), 

Ceolus UF-711 as microcrystalline cellulose (Asahi Kasei, Japan), and HyQual 5712 as 

magnesium stearate (Mallinckrodt, USA) in a weight ratio percentage of 79:20:1 was 

used for this study. A 5-L V-blender was used to manufacture the powder blends for 

roller compaction in 2-kg/batch scale. A roller compactor FP90 (Freund Turbo 

corporation, Japan) that have a roll diameter of 90 mm and a roll width of 30 mm with 

the textured roll surface was used for producing ribbons. 26 runs of roller compaction 

experiments were performed using two different lots of powder blends. Figure 1b shows 

the scatter plot of experimental runs with different PP setting. 

2.1. Physical testing of powder blends and ribbons 

The bulk and tapped density of powder blends were measured using a graduated 

cylinder. A quantity of the powder blends was poured to a graduated cylinder. The net 

weight of the material and the bulk volume were recorded. The tapped volumes were 

recorded using a tapping apparatus SZ-02 (Rinkan Kogyo Co., Ltd., Japan). The flow 

properties of the powder blends were measured using FT4 powder rheometer (Freeman 

Technology, UK). A 25 mm vessel in diameter was used to assess effective angle of 

internal friction (EAIF) and wall friction angle (WFA). The ribbon density was 

measured using GeoPyc 1365 and AccuPyc 1340 (Micrometrics, USA). A sample 

chamber with an internal diameter of 25.4 mm was used for GeoPyc 1365. The ribbon 

thickness was measured immediately after the sampling of ribbons during experiments 

using thickness gauge. 

2.2. The modified rolling theory of granular solids and the gray-box model 

The rolling theory of granular solids modelled the stress gradient in the slip and the nip 

region along with the roll angle 𝜃 as shown in Eq.(1) and Eq.(2). 

(
𝑑𝜎

𝑑𝜃
)
𝑠𝑙𝑖𝑝

=
4𝜎((π 2⁄ ) − 𝜃 − 𝑣) tan 𝛿

𝐷 2⁄ (1 + 𝑆 𝐷⁄ − cos 𝜃) (cot (((𝜃 + 𝑣 + (π 2⁄ )) 2⁄ ) − 𝑢) − cot(((𝜃 + 𝑣 + π 2⁄ ) 2⁄ ) + 𝑢))
 (1) 

(
𝑑𝜎

𝑑𝜃
)
𝑛𝑖𝑝

=
𝐾𝜎𝜃(2 cos 𝜃 − 1 − 𝑆/𝐷) tan 𝜃

(𝐷 2⁄ )((1 + 𝑆/𝐷 − cos 𝜃) cos 𝜃)
 (2) 

where 

𝑣 = (π − sin−1 (
sin𝜑

sin 𝛿
) − 𝜑) 2⁄  (3) 

𝑢 = (π 4⁄ ) − (𝛿 2⁄ ) (4) 
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𝐾 is compressibility factor, 𝛿 is EAIF, ∅ is WFA, 𝑆 is roll gap, and 𝐷 is roll diameter. 

The nip angle 𝛼 at which the pressure gradients for the slip and nip regions were equal 

is determined by equating Eq.(1) and Eq.(2). In the Reynolds’ modified rolling theory, 

the pressure distribution between the rolls was used to relate the roll force 𝑅f, which is a 

common and a measurable PP with the peak pressure 𝑃max  applied at the minimum 

separation of rolls as given in Eq.(5) and Eq.(6). 

𝑅f =
𝑃max𝑊𝐷𝐹

2
 (5) 

where 

𝐹 = ∫ [
𝑆/𝐷

(1 + 𝑆/𝐷 − cos 𝜃) cos 𝜃
]
𝐾

cos 𝜃 𝑑𝜃
𝜃=𝛼(𝛿,∅,𝐾)

𝜃=0

 (6) 

The Eq.(5) and Eq.(6) represent a relationship between PP (𝑅f, 𝑆), geometric parameters 

(𝐷, roll width 𝑊), and material properties of powder blends (𝛿, ∅, and 𝐾). Furthermore, 

the relationship between the material density and 𝑃max was defined in Eq.(7) based on 

the assumption that the pre-consolidation pressure 𝑃0 equals 1 MPa. 

𝛾R = 𝛾0(
𝑃max
𝑃0

)
1
𝐾  (7) 

where 𝛾R is relative ribbon density, 𝛾0 is relative pre-consolidation blend density. 

The elastic recovery rate 𝛽 is defined as a ratio of ribbon thickness to roll gap. In the 

proposed gray-box model, 𝐾  and 𝛽  are assumed to be PP and material attribute 

dependent to capture unconsidered relationship in the modified rolling theory. The pre-

consolidation density was assumed equal to bulk tapped density 𝜌0 to provide further 

practicability. Utilizing regression models for 𝐾 and 𝛽 the ribbon density 𝜌𝑅 and mass 

throughput 𝑀R were calculated based on the Eq.(8) and Eq.(9). 

(8) 

(9) 

where 𝑁  is roll speed. Gaussian process regression (GPR) was used as a regression 

method to cope with nonlinearity. In the regression analysis, material attributes of 

powder blends (bulk loose density, bulk tapped density, EAIF, WFA) and PP (roll force, 

roll gap, roll speed) were used as input parameters to predict 𝐾 and 𝛽. The input and 

output parameters were centered by subtracting mean values and scaled by dividing by 

sample standard deviation (SD), which is a so-called auto-scaling. In the regression 

analysis, root mean squared errors of cross validation (RMSECV) and coefficient of 

determination (R2) for the ribbon density in leave-one-out cross validation (LOOCV) 

was used to show the validity of the gray-box model. The RMSECV and R2 for the 

white-box model according to the Reynolds’ modified rolling theory were also 

evaluated using the mean 𝐾  and 𝛽  in the calibration set in LOOCV to compare the 

prediction performance. 

𝜌R = 𝜌0(𝑃max)
1 𝐾⁄ 𝛽⁄  

𝑀R = π𝐷𝑁𝑊𝑆𝜌0(𝑃max)
1 𝐾⁄  



  

3. Results 

Figure 2 shows the prediction performances of the white-box and gray-box models in 

LOOCV. The gray-box model improved prediction accuracy of the white-box model in 

terms of the RMSECV (0.07 g/cc for white-box model and 0.04 g/cc for gray-box 

model) and R2 values (0.19 for white-box model and 0.54 for gray-box model). With 

the consideration of the sampling error in normal process variation, the prediction 

performance of the gray-box model for the ribbon density was practically sufficient for 

process development. The lower prediction accuracy in the white-box model could be 

derived from variations of the 𝐾 and 𝛽 in the calibration set. The RSD% of the 𝐾 and 𝛽 

in the calibration set were 11.1% and 12.8%, respectively. 

 

Figure 2 Scatter plot of measured and predicted ribbon density 

 

To understand the relationship between the input and output parameters captured in the 

gray-box model, the effect of PP on the ribbon density and mass throughput was 

visualized into the contour plot as a function of roll gap and roll speed, see Figure 3a. 

The contour plot suggested that roll gap had a positive impact on both ribbon density 

and mass throughput. On the other hand, roll speed affected mass throughput only and 

had little impact on ribbon density. Same analysis can be performed to observe the 

effect of roll force on ribbon density and mass throughput. The reliability of the 

estimated impacts was also visualized using the normalized SD of the GPR prediction 

as shown in Figure 3b. The color progression from white to black represents the SD of 

the expected values in GPR, i.e., the predicted values of 𝐾 and 𝛽. The highest SD is 

represented with black and color tones become closer to white as the SD decreases. In 

principle, the expected values with high SD in GPR prediction suggested that there are 

few data points in the calibration dataset around the predicting points and therefore the 

prediction is less reliable. Therefore, the PP with the higher SD of predicted 𝐾 and 𝛽 

suggested that the predicted impacts are less reliable and will need additional 

experiments to clarify its actual responses. The threshold of SD to adopt the expected 

values and the gray-box model outputs would be determined considering actual variance 

of the observed data. These estimations provide a clear view on the control of PP to 

achieve target outputs and will be a justification for the future experiments. 
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Figure 3 (a) Contour plots of the predicted ribbon density (solid line, g/cc) and mass throughput 

(dotted line, g/min). (b) Contour plot of the SD of the expected values in GPR. The color 

progression from white to black represents the SD of the expected values. 

 

Overall, the applicability of the gray-box model for the roller compaction process was 

demonstrated. The gray-box model showed a higher prediction accuracy at the observed 

data points compared to the white-box model. A robust estimate of the effect of PP on 

the process outputs was presented by accounting for the SD of the expected value in the 

GPR model introduced in the gray-box model. In conclusion, the proposed gray-box 

model provides excellent applicability to the roller compaction process development. 

4. Conclusions 

The gray-box model composed of the rolling theory of granular solids for roller 

compaction process and the complemental regression models was presented to achieve 

high prediction accuracy and interpretability. The approach was found to provide 

reliable predictions for the process outputs such as ribbon density and mass throughput 

based on the material attributes, PP, and the geometric parameters. With the gray-box 

model the criticality of the PP were successfully visualized together with the reliability 

of prediction by means of the SD of the expected values, which would contribute to the 

process development activities such as risk assessment and design space setting. 
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Abstract 

The pharmaceutical industry is under constant pressure to deliver its products quickly 

and effectively while minimising development costs and pursuing green pharmaceutical 

manufacturing methods. Given the many considerations in process development, a 

model-based method that takes multiple performance metrics into account is proposed 

for early process development. Several key performance indicators are identified, 

namely  environmental footprint, cost, and conversion, selectivity, and yield. We 

employ multi-objective optimisation to assess the trade-offs between capital cost as one 

objective, and selectivity or conversion as a second objective, while exploring the 
interdependencies between all performance indicators. The approach is applied to two 

multiphasic reactions, each occurring in a 6-stage cascade CSTR: the hydrogenation of 

4-Isobutylacetophenone (4-IBAP) to 1-(4-Isobutylphenyl)ethanol (4-IBPE) and the 

carbonylation of 4-IBPE to Ibuprofen (IBP).  

Keywords: pharmaceutical process development, continuous manufacturing, multi-

objective optimisation, Ibuprofen. 

1. Introduction 

The pharmaceutical industry faces increasing pressure to reduce development costs and 

time, and to meet increasingly stringent environmental regulations (Montes et al. 2017). 

Process Systems Engineering methods can help to improve process design/performance, 

enhance process understanding, and select optimal processing materials and operating 

conditions while exploring trade-offs between conflicting performance objectives. 
However, they have not yet been fully deployed for process development within the 

pharmaceutical and fine chemicals industries (Papadakis et al. 2018). 

 

The complexity of the relationships between key process performance indicators (KPIs) 

such as feasibility, productivity, economics and environmental impact make it essential 

to adopt a holistic approach to process design. These KPIs are strongly linked to 

process-wide decisions such as process structure, unit size, operating conditions and 

even to molecular-level decisions (Adjiman et al. 2014). Pharmaceutical process 

development is a complex activity involving multiple pharmaceutically relevant 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50360-2 
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objectives that need to be satisfied (Nicolaou and Brown, 2013). The coupling of 

process modelling with multi-objective optimisation allows for the quantification of 

process metrics that are of interest to pharmaceutical manufacturing, and the evaluation 

of trade-offs between conflicting KPIs. The use of model-based approaches to process 

development is especially relevant in continuous manufacturing, an increasingly 

important area, given the potential technical and economic benefits of implementing 

flow technology (McWilliams et al. 2018). 

 
In this work, several relevant KPIs are identified and their use within a multi-objective 

design framework that can be employed in early-stage process development is explored. 

The approach is illustrated on the modelling and multi-objective optimisation of two 

multiphase reactors involved in the production of Ibuprofen via the Hoechst pathway 

(Elango et al. 1991), with a focus on moving to continuous production. Case Study 1 

consists of a catalytic hydrogenation reactor to convert 4-Isobutylacetophenone (4-

IBAP) to 1-(4-Isobutylphenyl)ethanol (4-IBPE), while Case Study 2 is focused on a 

homogeneous carbonylation reactor for the subsequent production of Ibuprofen (IBP).  

2. Methodology 

The methodology can be summarized as follows. First, a set of KPIs is defined and a 

reactor configuration is chosen. Next, a conceptual process model is developed using 

kinetic rate and gas solubility equations obtained from the literature or experimental 

investigations. Finally, a multi-objective optimisation problem involving KPIs as 

objectives and constraints is formulated and solved.  

 

2.1. Selected KPIs and process configuration 

For the optimal design of pharmaceutical processes, it is important to identify, quantify, 

and assess the interdependencies between pharmaceutically relevant KPIs. In this work, 

the KPIs of interest include the capital cost CR ($) of the reactor system, the reaction 

selectivity S, the overall conversion X of raw materials, the yield Y of the 

pharmaceutical compound, and the Environmental factor (E-factor), defined as the mass 

ratio of waste product to desired product, and used to quantify environmental footprint. 

Mathematical expressions of these KPIs for Case Study 1 are shown in Table 1, where 

the expression of CR is obtained from Douglas  (1988). All symbols are defined in Table 

2, where species j includes IBAP, IBPE, IBEB, H2O and oligomers. Furthermore, the 
successful implementation of continuous flow technology for multiphase reactions 

requires efficient phase mixing and long residence times. While tubular reactors 

equipped with static mixers offer these features, they necessitate high volumetric flow 

rates which may be incompatible with slow reactions. Chapman et al. (2017) developed 

a multistage continuous-stirred tank reactor (CSTR) suitable for multiphasic reaction 

systems. Additionally, employing multiple CSTRs in series enhances system 

performance, minimising the total reactor volume required to achieve a specific 

conversion. Accordingly, a multi-stage cascade CSTR configuration is chosen for the 

studied multiphasic reactions. A schematic of such cascade reactor system with 𝑁 

reactors in series is shown in Figure 3.   
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2.2. Conceptual process model 

A model of the cascade reactor system is developed to give a best case assessment of its 

performance. At this early stage of design, mass transfer limitations are neglected and 

thermodynamic equilibrium is assumed. The reactors are treated as isothermal. 

 

2.2.1. Obtaining kinetic rate and gas solubility equations 

Kinetic data for the hydrogenation of 4-IBAP over Pd/SiO2 catalyst in n-decane as the 

solvent, following the scheme in Figure 1, are taken from Thakar et al. (2007). The 

solubility of hydrogen in the liquid phase is estimated using the Henry’s law constant of 

Trinh et al. (2015). Kinetic and thermodynamic data for the carbonylation step in 

butanone (Figure 2) are taken from Seayad et al. (2003). 

 

 

Figure 1 Reaction Scheme of the Catalytic Hydrogenation of 4-IBAP 

 

The carbonylation of 4-IBPE is achieved using a homogeneous palladium complex 
catalyst dissolved in a water/butanone solvent mixture, as follows: 

 

 

Figure 2 Reaction Scheme of the Homogeneous Carbonylation of 4-IBPE 

 

2.2.2. Deriving flow reactor material balance equations of all reaction species 

The hydrogenation system is modelled as a series of 6 triphasic CSTRs with side-stream 

addition of pure hydrogen. Similarly, the carbonylation reactor is modelled as a series of 

6 biphasic CSTRs with side-stream addition of pure carbon monoxide. The steady-state 

material balance equations of all reaction species are then derived for each case study. 

 

 

 

Figure 3 Gas-Liquid Cascade CSTR System 
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2.3.   Formulating and solving the multi-objective reactor optimisation problems   

For Case Study 1, the objectives of the optimisation problem are minimising cascade 

reactor capital cost and maximising overall conversion. For Case Study 2, the objectives 

are minimising reactor cost and maximising selectivity for all X ≥ 90%. The 

optimisation problems are solved using the 𝜀-constraint method of Haimes et al. (1971). 

The second objective of Case Study 1 is transformed into a constraint, lower-bounding 

conversion by a series of 𝜀 values ranging between 50% and 98%. Similarly, the second 

objective of Case Study 2 is transformed into a constraint, lower-bounding selectivity 

by a series of 𝜀 values ranging between 70% and 98%. The identified KPIs are reported 

for every solution. Bounds on decision variables are imposed based on the experimental 

conditions of the corresponding kinetic study. The formulated problem is nonlinear and 

is solved using the CONOPT solver in the GAMS software, version 25.0.3. The 

formulation for carbonylation is similar, with the 𝜀-constraint imposed on selectivity. 
 

Table 1 Reactor KPIs for the Hydrogenation Case Study 

KPI Mathematical Expression  
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2 2
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Table 2 Nomenclature for the hydrogenation case study 

Symbol Description Units 

𝑀&𝑆 Marshall and Swift equipment index dimensionless 

𝐹𝑚 Material correction factor dimensionless 

𝑃𝐻2 Inlet hydrogen pressure MPa 

𝑉𝑇 Total reactor volume m3 

𝐹𝐼𝐵𝐴𝑃
1  Inlet molar flow rate of IBAP to first reactor  kmol/sec 

𝐹𝑗
𝑁+1 Outlet molar flow rate of species 𝑗 from reactor 𝑁 kmol/sec 

M. H. Muhieddine et al. 



𝑚̇𝑛−𝑑𝑒𝑐𝑎𝑛𝑒 Mass flowrate of n-decane  kg/s 

𝑚̇𝐻2,𝐿
𝑁+1 Outlet mass flowrate of dissolved H2 from reactor 𝑁  kg/s 

𝑚̇𝑗
𝑁+1 Outlet mass flowrate of species 𝑗 from reactor 𝑁  kg/s 

𝐹𝐺
𝑖  Inlet molar flow rate of gas stream to reactor 𝑖  kmol/sec 

𝐹𝐿
𝑖 Inlet molar flow rate of liquid stream to reactor 𝑖 kmol/sec 

 

3. Results and discussion 

The variation of normalised cascade reactor capital cost and other reactor performance 

metrics is shown for the two case studies (Figure 4) for different values of . The 

hydrogenation reaction mechanism involves three reactions, with 4-IBPE being 
hydrogenated upon its formation to produce 4-isobutylethylbenzene (4-IBEB) and water 

side products. Furthermore, the condensation of 4-IBAP produces oligomers as 

additional side products. This explains the decrease in 4-IBPE selectivity with 

increasing 4-IBAP conversion. The reaction yield increases across a wide range of 

conversions, but this trend is reversed at higher conversions where the concentration of 

side products exceeds that of 4-IBPE. On the other hand, the E-factor generally 

decreases with conversion due to the consumption of reacting materials, but increases at 

higher conversions due to side product formation and the reduction in the concentration 

of 4-IBPE. The carbonylation mechanism also involves three reactions, with IBP being 

produced in the third reaction. Once again non-monotonic behaviour is observed for the 

E-factor as a function of conversion, whereas selectivity and conversion are now found 
to follow the same trends. Generating performance metric plots such as those in Figure 

4 can assist pharmaceutical manufacturers in understanding the trade-off and synergies 

that exist for a given reaction route, and make it possible to consider alternatives across 

a range of criteria.     

        

 

Figure 4 Trade-offs between KPIs for the hydrogenation (left) and carbonylation (right) case 
studies, shown as parallel coordinate plots. The two objectives are shown as the first two 
(leftmost) coordinates in both cases.  

4. Conclusions 

We have presented a set of KPIs for the assessment of process designs at the early stage, 

namely reactor capital cost, selectivity, E-factor, conversion, and yield. These can be 

used within a multi-objective optimisation framework to assess the trade-offs between 

different performance metrics, hence enabling more informed decisions on possible 

routes for pharmaceutical process design. This approach was illustrated by investigating 
two continuous multiphase reactors involved in Ibuprofen synthesis. The approach is 

currently being extended to include separation processes.  

Multi-objective optimisation for early-stage pharmaceutical
 process development
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Abstract  
Vaccine production platform technologies have played a crucial role in rapidly 

developing and manufacturing vaccines during the COVID-19 pandemic. The role of 

disease agnostic platform technologies, such as the adenovirus-vectored (AVV), 

messenger RNA (mRNA), and the newer self-amplifying RNA (saRNA) vaccine 

platforms is expected to further increase in the future. Here we present modelling tools 

that can be used to aid the rapid development and mass-production of vaccines produced 

with these platform technologies. The impact of key design and operational uncertainties 

on the productivity and cost performance of these vaccine platforms is evaluated using 

techno-economic modelling and variance-based global sensitivity analysis. Furthermore, 

the use of the quality by digital design framework and techno-economic modelling for 

supporting the rapid development and improving the performance of these vaccine 

production technologies is also illustrated.  

Keywords: techno-economic modelling; Quality by Design (QbD) modelling; process 

development; RNA vaccine production. 

1. Introduction 
Process Systems Engineering tools have a lot to offer and are not applied to their full 

potential in vaccine and biopharmaceutical product-process development, and during 

production process operation. Over the past decades, substantial progress has been made 

in the field of computational modelling and mechanistic, dynamic, machine learning and 

hybrid models have been successfully implemented in various manufacturing fields, 

outside of vaccine and biopharmaceutical manufacturing. These digital tools have been 

used to create a digital replica (or digital twins) of the manufacturing process. Vaccine 

and biopharmaceutical production are lagging behind in digitalisation, because vaccines 

and biopharmaceuticals are conventionally produced using cell-based processes that, due 

to their inherent complexity and variability, have been challenging to model. In addition, 

vaccine manufacturing is highly regulated, and improvements are not implemented 

rapidly to avoid the risk of negatively impacting product quality, safety, and efficacy. 

Modelling of complex biological systems, digitalisation, real-time monitoring, process 

control, automation, and knowledge-rich regulatory submissions are hindered by the lack 
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of real-time or near-real-time hardware sensors for measuring vaccine and 

biopharmaceutical quality attributes. This is because several critical quality attributes 

(CQAs) and parameters are difficult, time-consuming, or expensive to measure or 

estimate in real-time, drastically limiting the information available for developing 

computational models. To overcome these limitations, software sensors are being 

developed.  

To our knowledge, the quality of vaccines is currently assured without taking advantage 

of digitalisation and is currently tested after every production batch. Batches that fail to 

yield the product quality specifications are discarded, wasting valuable resources. Quality 

assurance could be improved by real-time product quality monitoring and by using 

model-predictive control. Assuring product quality with such digital tools would fit 

perfectly into the QbD framework (CMC-Vaccines Working Group, 2012). The use of 

the QbD framework is supported by regulatory authorities for systematic co-development 

of the vaccine product, vaccine production processes and of the process control strategies, 

based on sound science and quality risk management (ICH Expert Working Group, 2009). 

As far as we know, a full QbD framework has not been implemented for this purpose. 

The QbD framework combined with digital tools is also referred to as the Quality by 

Digital Design (QbDD) framework and this has the potential to replace quality by testing 

with assuring product quality by the design and operation of the production process. 

Besides QbD modelling, techno-economic modelling also offers a valuable tool for 

assessing the productivity and cost profile of the holistic production process (Ferreira and 

Petrides, 2021; Ferreira et al., 2021; Kis et al., 2021a, 2021b, 2020; Pereira Chilima et al., 

2020). Moreover, this process-cost modelling approach also helps to identify the 

production bottlenecks, and then de-bottlenecking approaches are evaluated to increase 

process performance. Techno-economic modelling is also used to evaluate various 

scenarios, for example different downstream configurations, at different production 

scales to identify the process configuration that leads to maximum productivity and 

lowest cost (Kis et al., 2021a, 2021b, 2020). Additionally, uncertainty and sensitivity 

analysis is performed combined with techno-economic modelling, to identify how the co-

variation of many uncertainties would impact production throughputs and resource 

requirements (Kis et al., 2021b).  

In this work, we showcase the use of the QbDD framework together with techno-

economic modelling to guide the development and operation of new vaccine production 

platform technologies, such as the messenger RNA (mRNA), self-amplifying RNA 

(saRNA) and adenoviral vectored (AVV) vaccine platforms. 

2. The AVV, mRNA and saRNA vaccine production platform technologies 
The AVV production process was modelled based on the manufacturing of the 

replication-deficient chimpanzee adenovirus-vectored (ChAdOx1) vaccine which was 

co-developed by Oxford University and AstraZeneca plc (Kis et al., 2021b). The 

ChAdOx1 production process starts with preparing the HEK293 cell seed train and the 

adenovirus inoculum seed train. For this, the HEK293 cells are cultured at increasing 

volumes until the culture amounts required for the production bioreactor (commonly at 

2000 L working volume) scale are obtained. These cells are then infected with the 

adenovirus which was genetically modified to express the SARS-CoV-2 spike protein. 

Following virus replication in HEK293 cells in the bioreactor, the virus culture and cell 

culture enter the downstream purification, whereby cells are initially lysed then the larger 
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impurities are removed using microfiltration. Next, tangential flow 

ultrafiltration/diafiltration is carried out, followed by an ion-exchange chromatography 

step. After this, the adenoviral vector solution is sterile filtered, and the buffer can be 

exchanged for the formulation buffer, using tangential flow ultrafiltration/diafiltration. 

Subsequently, the adenovirus vaccine drug substance (active ingredient) is formulated 

and filled into vials or other containers, often at a different facility / location (Kis et al., 

2021b). 

The mRNA and saRNA vaccines (collectively referred to as RNA vaccines) are 

synthesised using the T7 RNA polymerase based on a DNA template in the in vitro 

transcription reaction, which is usually completed in 2 hours, substantially faster than 

AVV production (Kis et al., 2021b). Following RNA synthesis, the plasmid DNA is 

digested using the DNAse I endonuclease enzyme. Next, the RNA is purified out of the 

reaction mix using a series of conventional filtration- and chromatography-based unit 

operations (Kis et al., 2021a, 2020). These can include tangential flow ultrafiltration and 

diafiltration combined with one or two of the following chromatography techniques: ion-

exchange, reverse-phase, oligo dT affinity, hydroxyapatite, hydrophobic interaction, 

multimodal hydrogen bonding and anion exchange, cellulose-based, and multimodal 

core-beads. After the RNA is purified out of the enzymatic reaction mix, the RNA is 

encapsulated in lipid nanoparticles. For this, the four lipid components contained in an 

ethanol stream are mixed with the RNA contained in an aqueous stream (e.g. in citric acid 

buffer). The mixing of the lipids with RNA can be achieved using a mixing device based 

on: microfluidics, T-junction, impingement jet, vortex, or pressurised stainless-steel 

tanks. Following formulation, the solution is sterile filtered and shipped to the fill-to-

finish site for filling into glass vials or other containers (Kis et al., 2021b). 

3. Techno-economic modelling of the AVV, mRNA and saRNA platforms 
Rapid and global response to pandemics by mass vaccination is currently limited by the 

rate at which vaccine doses can be manufactured on a global scale. Here techno-

economic modelling is presented for the AVV, mRNA and saRNA vaccine production 

platform technologies that were deployed during the COVID-19 pandemic. Unlike 

AVV and mRNA vaccines, several of which were approved by the regulatory 

authorities, the saRNA platform is not yet deployed at commercial scale for vaccines, 

with saRNA vaccines still undergoing clinical development. Herein, a combination of 

techno-economic modeling and variance-based global sensitivity analysis (GSA) is 

applied. This quantifies the performance of each platform in terms of their productivity 

and resource requirements, subject to key design and operational uncertainties, cf. 

Figure 1. GSA was carried out by interfacing SobolGSA with SuperPro Designer via 

MatLab and Excel Visual Basic for Applications (VBA). For GSA, 10,000 simulations 

were performed for each of the three platform technologies. For these simulations, 

model inputs were quasi-randomly sampled from a seven dimensional input space using 

Sobol sequences, as previously described (Kis et al., 2021b). These seven model inputs 

are: the scale of the production process, batch failure rate, titre/yield in the production 

bioreactor, cost of raw materials, cost of labour, drug substance amount per dose and 

cost of quality control (Kis et al., 2021b).  

Cost and productivity results from the techno-economic modelling and GSA are shown 

below in Figure 2. The ranges and probability distributions of the number of drug 

substances and finished drug product doses that can be produced based on a one billion 

USD investment in operating expenses (OpEx) for the three platform technologies are 
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shown in the violin plots in Figure 2A. A one billion USD investment in OpEx will 

produce a median of 2.66 (IQR=2.44-2.83) billion AVV drug product doses, a median 

of 0.95 (IQR=0.74-123) billion mRNA drug product doses and a median of 2.48 

(IQR=2.36-2.58) billion saRNA drug product doses. OpEx includes the annualised 

capital costs, however it is worth noting that investment in facilities must be made 

upfront, because constructing, equipping, validating and starting up production can take 

several years. The ranges and probability distribution of the cost per dose for the drug 

substance and finished drug product for the three platform technologies is shown in 

Figure 2B. The drug product manufacturing cost per dose is 0.38 (IQR=0.35-0.41), 1.05 

(IQR=0.81-1.35), 0.4 (IQR=0.38-0.42) for AVV, mRNA and saRNA vaccines, 

respectively.  
 

 
Figure 1. A computational framework for uncertainty quantification for AVV, mRNA and saRNA 

production. The uncertainty is propagated from the inputs via the model to the outputs. In addition, the 

sensitivity of the model output key performance indicators (KPIs) is attributed to the individual inputs, to 

determine the degree to which individual inputs impact the output KPIs. Modified from (Kis et al., 2021b). 

 

Figure 2. Cost distributions associated with AVV, mRNA and saRNA vaccine production. A. Violin 

plots showing the distribution of the estimated number of doses produced based on a 1 billion USD 
investment in operating expenses (OpEx). The OpEx contains the annualised facility costs. B. Violin 

plots showing the distribution of cost per dose values for AVV, mRNA and saRNA vaccine production. 

C. Doughnut charts showing the distribution of OpEx, the annualised capital costs are included in the 

facility-dependent costs. 
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In the centre of all the violin plots, box and whisker plots are shown with the median 

values indicated by the white dots; the 25th and 75th percentiles with the top and bottom 

of the boxes; and minimum and maximum values, excluding outliers, with the ends of 

the whiskers. The width of the violin plots represents the probability distributions. 

Figure 2C shows the breakdown of the annual production costs for the baseline 

scenarios (c.f. (Kis et al., 2021b)) for these three vaccine platform production 

technologies. Fixed costs dominate the AVV production costs, whereas mRNA and 

saRNA vaccines production is driven by variable costs. This implies that maintaining 

surge capacity based on the RNA platform will be more cost effective than based on the 

AVV platform. Fill-and-finish was modelled with 10-dose vials for AVV vaccines and 

5-dose vials for mRNA and saRNA vaccines. 

4. Integration of QbD and techno-economic modeling with the RNA 
platform 
The mRNA vaccine production platform technology has been proven clinically successful 

during the COVID-19 pandemic. The cell-free nature and consequently the relative 

simplicity (compared to cell-based vaccine production) makes the RNA platform 

technology ideal for digitalisation and advanced automation with the QbDD framework. 

The integration of the QbDD framework with the RNA platform will accelerate product-

process development, enhance production rates and production volumes, reduce costs, 

and assure high product quality. Moreover, the RNA vaccine production platform and the 

QbDD framework will form a powerful synergy as both tools are disease agnostic. This 

synergy will use prior platform knowledge, experimental data, clinical data, quality risk 

management and digital tools to accelerate product and process development. This will 

also accelerate and streamline the regulatory approval process based on knowledge-rich 

regulatory submissions and demonstrated product knowledge and process understanding.  

 

Figure 3. Integration of techno-economic and QbDD modelling with the RNA vaccine production process. 
Abbreviations: QbDD - Quality by Digital Design, QTPP - Quality Target Product Profile, CQAs – product 

Critical Quality Attributes for safety and efficacy, CPP - Critical Process Parameters, NOR - Normal 

Operating Range, within the design space. 

The product specifications will be based on product performance instead of batch history, 

and the focus will shift from reproducibility to process-product robustness (Kis et al., 

2020; van de Berg et al., 2021). In addition, the QbDD framework and the digital tools 
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will be used to automate RNA vaccine manufacturing, building quality into the design 

and operation of the process. These features of the QbDD framework will also support 

scale-up and technology transfer. In addition, techno-economic modelling will guide cost-

reduction, de-bottlenecking and improved process performance. The interplay between 

the RNA vaccine platform technology, the QbDD framework and techno-economic 

modelling is shown above in Figure 3. 

5. Conclusions 
In conclusion, on top of having surge vaccine manufacturing capacity available for future 

outbreaks, modelling tools such as those presented here can further accelerate vaccine 

development and improve the performance of the vaccine manufacturing processes. The 

combination of vaccine platform technologies and these disease-agnostic modelling tools 

provides a powerful approach for rapid-response vaccine deployment against currently 

known and unknown diseases. 
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Abstract 

Recently, pharmaceutical manufacturing has been aimed at incorporating more efficient 

production systems for easy scale-up, higher quality and lesser usage of solvent, and 

observation of the operation state. A continuous manufacturing system can enable a 

system design that maintains the desired process conditions, with suitable devices and 

measurements. The process systems engineering (PSE) approach is very helpful for the 

visualization of the operation state, and the compensation of system features of process 

dynamics and disturbances. The investigated design space provides valuable information 

regarding the process and control strategy. The combination of steady-state data sets 

among control, process, and objective variables can visualize the range of the allowable 

operation zone, and desired objective control state. The proposed value function 

trajectory is an attractive method for designing tracking control as a multivariable 

function of the Hamiltonian, which connects the consistent approach of the design of 

process equipment, structure, and quality control.  

Keywords: Process Design and Control, Continuous, Design Space, Optimization. 

1. Introduction 

Lee (2015) stated the kinds of features of continuous manufacturing, such as small 

footprints, short supply chain, stable operation with good monitoring, combination of 

processes with no-stop handling, easy scale-up, new synthetic routes, safe operation, and 

efficient high-throughput production. The understanding of the process features in the 

early design stage is a way to achieve agility, flexibility, and robustness of continuous 

manufacturing. Myerson (2014) listed the needs of technologies for innovating 

manufacturing systems: comprehension of process steady-state and dynamics, design of 

monitoring and control systems, development of systems integration, and data analysis to 

understand the design space, considering disturbances, nonlinearities, constraints, and 

uncertainties. It was an effective approach for reducing various operational risks. Diab 

(2020) described examples of visualization for certain active pharmaceutical ingredients 

and unit operations, under the consideration of structuring a continuous process. This 

method was highly attractive for both process design and operation philosophy.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50362-6 
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To realize a continuous pharmaceutical manufacturing system, the comprehension of 

material and reaction properties, a priori knowledge of transport phenomena, and the 

innovation of devices and instruments must be closely integrated based on proven 

experimental data. Such basic data should be transferred to the control design and 

operational support through system design.  

In this study, a novel design concept of using the steady-state calculation was proposed. 

To understand process characteristics, the design space was determined according to the 

process design and operational philosophy. In this process, the objective control state and 

possible operational zone could be defined by introducing a value function as the potential 

energy of the system characteristics. Through the implementation of this approach, The 

Hamiltonian expression combining the potential energy as the value function, and the 

kinetic energy as the process dynamics, could be derived from the case study on steady-

state calculation, which consequently resulted in the structuring of a feedback control 

system. 

2. Process control with a priori knowledge 

The issues of control and process optimization are strongly influenced by the chemistry, 

process, control, and operation. Plutschack et al. (2018) illustrated the types of heat and 

mass transport measurements, and the numerous examples of instruments related to 

various chemistries. The comprehension of system features in the wide range of materials 

and process attributes was achieved, a process design was conducted using mathematical 

modelling and simulation. Larsson (2000) reviewed the plantwide control that imposed 

structural design: selection of controlled variables, manipulated variables, measurements, 

control configuration, and type of controller were the issues of determination. They 

strongly depended on the process structure, followed by the degrees of freedom; therefore, 

the focus was on the process-oriented approach. Shalifzadeh (2013) summarized the 

integration approach for process design and control. The traditional approach for process 

design and control is sequential, that is, the control design is only conducted for rigid 

manufacturing systems. The decision-making of system design between process and 

control, and the competition between efficiency and controllability are the main issues 

from the perspective of the designer and planner. The proposed method of trajectory 

tracking control was aimed at combining the acquisition of process a priori knowledge, 

and the design of control structure, like the simultaneous approach. The objective control 

state, and surrounding allowable operation zone were achieved as the dimensional 

reduction information through the constitution of the design space. To incorporate such a 

priori knowledge into a feedback control system, a data bank that included the value 

function and process state relationship, was implemented by the Hamiltonian. They were 

extracted from the steady-state simulation model for using a process model in an 

environment of low computational cost, and an easy-to-handle mathematical model. 

3. Reactor Simulation Model  

The reaction process plays a major role in the pharmaceutical and chemical industries. 

Over-reaction and by-product generation are the conventional problems of organic 

synthesis reaction. The following first-principle model is provided to illustrate the 

proposed approach:  
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Figure 1: Synthesis route and temperature dependence of the three kinetic constants 

3.1. Constraints of the reaction system 

1) Reaction paths 

The following three reaction paths were provided to consider the typical non-linearity 

of the organic synthesis route, as shown in Figure 1. 

A) The second-order reaction of two raw materials for generating the main product. 

r� � k�������	                            (1) 

B) The second-order reaction of the main product and one of the raw materials for 

generating the by-product of over-reaction. 

r
 � k�	��	��                           (2) 

C) The first-order reaction of one of the raw materials for generating the impurity. 

r� � k�
���                             (3) 

2) Kinetic constants 

Three kinetic constants whose characteristics were dependent on the temperature 

change, are shown in Figure 1. 

3.2. Reactor configuration, size and flow condition 

1) Reactor configuration 

A typical plug flow reactor, with a jacket to handle the liquid-phase reactants, was 

considered as the test bed for this study (Figure 2). The temperature of the jacket 

colorant was assumed to be 40 ℃, and UA = 200 W/m2-K. 

2) Size 

Internal diameter = 30 mm, Length = 500 mm were assumed. 

 
Figure 2: Typical plug flow reactor with inlet heat exchanger and colorant jacket for 

temperature control  

Table 1: Study range of volume flow, molar concentration and temperature 

Volume Flow Rate [mL/min.] Molar Concentration [mol/m3] Temp. [℃] 

u��  u�	  C�� C�	 x���
 

50~500 50~500 100~500 100~500 20~100 

Manufacturing System
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Figure 3: Typical trends of reactants and products 

3) Flow balance 

The following ranges (Table 1) of volume flow, molar concentration, and 

temperature were assumed. 

3.3. Typical trends of reactants and products 

Figure 3 shows an example of the simulation results. The inlet flow condition and 

temperature set-point strongly affected the resultant by-product and impurities. 

4. Design Space  

4.1. Determination of value function 

To consider the non-linear constrains of reactants, the following value function, V was 

employed to design the objective control state. Therein, ψ� is the weight factor, ξ� is the 

conversion of substrates, ξ� is the product yield, ξ�  is the impurity in mol%, with an upper 

limit of 0.01 mol%, and z� is the assumed target production rate, in kg/h. 

V � ψ� ξ� ! 1.0%& ' ψ&(ξ� ! 1.0)
&

' ψ*ξ� ' ψ+(z� ! 2.0)
&
                        (4) 

In case, ξ� is higher than the assumed upper limit of 0.01 mol%, ψ* becomes zero. Then, 

the optimized value function becomes zero under the corresponding control variables, 

u�-./ , and state variables, x�-./. 

4.2. Comprehension of wide-range process attributes 

The overall comprehension of the possible process variable changes during plant 

operation was investigated. By changing the control variables listed in Table 1, followed 

by the state variables, the corresponding reactant results could be achieved through the 

simulation case studies. Figure 4 shows the results of the value function with respect to 

residence time, and inlet temperature. Quick conversion, and less generation of the by-

product and impurity occurred under the high-temperature feed condition, and 

subsequently, the value function was low.  

4.3. Robust design space against process disturbances 

The design space was further investigated based on the comprehension of the overall 

process features. Figure 5 shows the enlarged versions of the candidate zones (1), and (2), 

shown in Figure 4. It was found that the candidate zone (2) had a wider zone of low-value 

function. If a disturbance regarding two process variables occurs, candidate zone (2) 

would be expected in the robust control state. 
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Figure 4: Wide-range three-dimensional plot of the value function 

 
Figure 5: Narrow-range three-dimensional plot of the value function 

 
Figure 6: Trajectory of the value function and the allowable operation state 

5. Trajectory Tracking Control 

5.1. Determination of value function trajectory 

The value function was affected not only by the residence time and inlet temperature, but 

also the feed flow and concentration change. To consider such a multivariable effect on 

the value function, the x-y axes of the candidate zone (2) in Figure 5 were transformed to 

the principle components, PC-1 and PC-2; and the results are shown in Figure 6. 

Design of Value Function Trajectory for State of Control in Continuous 

   Manufacturing System
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The operation range of low-value function is clearly expressed in Figure 6, with the group 

of minimum values as optimized line in the design space, and the allowable operation 

range could be designed as the multivariable zone around the value function trajectory. 

5.2. Proposed control 

The trajectory and the surrounding allowable zone were considered as the potential 

function, and its features were quadratic. Ortega (2002) utilized passivity-based control 

to design robust controllers for the Euler-Lagrange equations of motion. This 

consideration were applied to the Hamiltonian function, described by the following 

equation: 

H � V° ' V ' F                                                        (5) 

where, V° is the value function at the optimal condition, V is the relationship between the 

value function, control, and process state variables, and F is the consideration of the 

dynamic state equation. The stepwise change, and sensitivity of the data set among the 

control, process state, and value function, could be translated to each coefficient matrix. 

It showed that the consequence of work flow to achieve the design space could be utilized 

for the effective design of multivariable control structures.  

6. Conclusions 

Using the reactor simulation model, the design space was considered, and the trajectory 

of the value function and the allowable operation zone were determined. The designed 

control space with the trajectory of the value function could be transformed into a 

multivariable feedback controller based on the Hamiltonian concept. To design a control 

system incorporating experimental and a priori knowledge of engineering, the proposed 

design, that is, a design-directed approach, is useful for combining the good 

corroborations of the process and the control design. The different functions of the cross-

sectional departments, throughout the stages of research and development of commercial 

operation, could be interactively connected by utilizing fundamental knowledge of 

mathematical modelling.  
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Abstract 

Model-based optimization of cocrystallization processes involves the simultaneous 

identification of the optimal coformer and solvent types and the process operating 

conditions, which should suppress the formation of undesirable solid-state forms. New 

methods are needed for such optimization tasks. This work presents a computational 

framework for the optimal selection of coformers, solvents, and operating conditions for 

a cocrystallization process of a drug with low aqueous solubility. The method considers 

a cocrystal product that meets a specified target for solubility enhancement, which 

enhances product functionality. The proposed framework is demonstrated for the model 

drug carbamazepine. An optimization problem is formulated and solved with the 

proposed strategy, which illustrates its effectiveness for the optimization of 

cocrystallization processes with constraints on the pharmaceutical product performance. 

Keywords: Cocrystallization, solvent selection, integrated product and process design, 

process optimization, PC-SAFT. 

1. Introduction 

Many active pharmaceutical ingredients (APIs) are orally administered as crystalline 

solids due to the various advantages they possess over other types of dosage forms. 

However, a low aqueous solubility can seriously limit the bioavailability of such an 

API. Pharmaceutical cocrystals (CCs) are solid-state forms that can improve the 

dissolution rate of APIs. They are formed when a neutrally charged API is crystallized 

with a neutrally charged coformer (CF). Cocrystals have a well-defined API:CF 

stoichiometric ratio in the crystal lattice and they can quickly dissolve into their 

molecular forms due to the non-covalent bonds. 

Solution crystallization is a common strategy for industrial cocrystal synthesis (Lange & 

Sadowski, 2015). Solvents typically play a crucial role in any crystallization process. 

Thus, the solvent selection is a key decision. In general, systematic approaches for 

integrated solvent and process optimization have been reported for crystallization-based 

processes, for example, for the case of anti-solvent crystallization processes with 

recycles (Wang & Lakerveld, 2018). These problems are challenged by the strong 

interdependence between solvent selection and process operating conditions. 

Optimization of cocrystallization processes is uniquely challenging because the CF type 

plays a pivotal role in dictating the process and product performance. As cocrystallizing 

systems have the potential to form multiple solid-state forms, i.e., at least the pure API, 

pure CF, and the desired cocrystal, the choice of CFs, solvents, and operating conditions 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50363-8 
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should facilitate the formation of the desired cocrystal, while suppressing the formation 

of other solid forms to obtain a product with a high purity. Furthermore, in the case of a 

pharmaceutical cocrystal, the degree to which the aqueous solubility may be enhanced 

for a given API is determined by the CF type. Therefore, the CF selection may not only 

affect the process performance but also the product efficacy. Although substantial work 

has been reported on related topics such as cocrystal discovery (e.g., (ter Horst et al., 

2009)), optimization approaches for cocrystallization processes involving simultaneous 

CF, solvent, and operating condition identification have not been reported. 

The objective of this work is to develop a thermodynamics-based optimization 

framework to select CFs, solvents, and operating conditions for cocrystallization 

processes to minimize the process operating costs and maximize the solubility 

enhancement of the final cocrystal form. Our optimization framework is based on the 

perturbed-chain statistical associating fluid theory (PC-SAFT) (Gross & Sadowski, 

2001), which can model cocrystallizing mixtures well (Lange & Sadowski, 2015). 

Carbamazepine (CBZ) is selected as the model API along with eight of its CFs (glutaric 

acid, nicotinamide, saccharin, salicylic acid, oxalic acid, malonic acid, succinic acid, 4-

aminobenzoic acid). CBZ is a solubility/dissolution rate-limited API. 

2. Approach 

2.1. Process Model Development 

The model of the process (see Figure 1) consists of material balances (omitted here for 

brevity) and equilibrium relations with activity coefficients obtained from the PC-

SAFT. The PC-SAFT provides a means of calculating the residual Helmholtz free 

energy of a mixture based on hard-chain, dispersion, and association interactions, which 

can serve as the basis to determine other thermodynamic properties like activity 

coefficients (Gross & Sadowski, 2001, 2002). In this work, all the compounds involved 

in the process, i.e., the API, the CF, and the solvent, are characterized by five 

parameters as in Gross & Sadowski, 2002: segment number (m), segment diameter (σ), 

dispersion energy parameter (ε), association energy (εAB), and association volume (κAB). 

The list of 48 solvents and their PC-SAFT pure component parameters considered in 

this work are obtained from our previous work (Wang & Lakerveld, 2018). Pure 

component parameters of the API and the eight CFs are estimated from solubility data 

reported in the literature, which is a standard procedure for estimating PC-SAFT 

parameters of solid compounds and omitted here for brevity. 

The solubility of a pure compound is calculated according to: 

 

Figure 1: The proposed single-stage crystallization process configuration. The CF type, 

CF feed flow rate, solvent type, and the solvent flow rates in stream S1 and stream S2 

are the free variables to be optimized. 
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where xsat, γsat, m

fH , and Tm are the mole fraction, activity coefficient, enthalpy of 

fusion, and the melting temperature, respectively. R and T are the universal gas constant 

and the temperature, respectively. 

 

The following inequality constraints are applied to ensure that both the API and the CF 

are fed to the process in fully dissolved form and do not crystallize in their pure forms: 
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The solubility of a cocrystal is expressed as a solubility product (Good & Rodríguez-

Hornedo, 2009) as follows: 

( ) ( ), 3 , 3 , 3 , 3

a b

API S API S CF S CF S spx x K  =  (3) 

where a and b are the stoichiometric coefficients of the API and the CF in the cocrystal 

lattice, and Ksp is the solubility product. 

2.2. Cocrystal Solubility Advantage 

The potential solubility enhancement of cocrystals is often quantified by the cocrystal 

solubility advantage (SA), which can be defined as the ratio of the maximum API 

concentration due to cocrystal dissolution over the solubility of the pure API (Good & 

Rodríguez-Hornedo, 2009). The SA for a given API is primarily determined by the CF 

type. The pH of the dissolution medium is critical when calculating the SA for ionizable 

API/CFs. In this work, a pH of 2.5 is adopted for SA calculations, which represents the 

stomach pH. The extents of ionization of the CFs are determined using their ka values 

reported in the literature. The ionization of the API (CBZ) is neglected (Good & 

Rodríguez-Hornedo, 2009). 

The following expressions are aided to calculate the SA for a monoprotic weak acid-CF 

(HA), 

,tot CF HA A
x x x −= + , 

,API tot CFbx ax= , 3[ ][ ]

[ ]
a

A H O
k

HA

− +

= , ( ) ( )
a b

API API HA HA spx x K  =  (4) 

Note that only the nonionized portion of the CF contributes to the solubility product. In 

case the CF is a base, a similar approach is followed with the ka value of the conjugate 

acid. 

2.3. Optimization 

In the optimization problem, CF type is characterized by the 10-dimensional vector 
CFp  

whose elements include the five PC-SAFT pure component parameters, and additionally 
m

fH , Tm, and ka of the CF, b/a ratio, and Ksp of the cocrystal. Solvent type is 

characterized by the 5-dimensional vector 
solp , which consists of the five PC-SAFT 
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pure component parameters of the solvent. The CF and solvent selection is formulated 

as: 

   , , , ,,  1,  1,2,3,..., ,  0,1CF CF i CF i CF i CF CF i

i i

y y i n y= =   p p  
(5) 

   , , , ,,  1,  1,2,3,..., ,  0,1sol sol j sol j sol j sol sol j

j j

y y j n y= =   p p  
(6) 

where i and j are the existing CF and solvent candidates, whose choice is represented by 

binary variables yCF,i and ysol,j. nCF and nsol are the total numbers of CF and solvent 

candidates, respectively. The above formulation ensures only one CF and solvent 

candidate each is selected. The normalized production cost (NPC) and the SA at pH 2.5 

represent the process efficiency and the product performance, respectively, where the 

former needs to be minimized and the latter to be maximized. We formulate a 

multiobjective optimization problem as follows: 

( ) ( )
( )

1, 2,

1 2
, , 

4,

, , , ,
min ,  max ( )

, ,

sol S sol p sol cf S sol p sol cf

CF
p sol CF CFS API p sol cf

z z z z

c F z z z F z z z
J J SA z

F z z z

 +
 = =  (P1) 

s.t., process and thermodynamic models, inequality constraints in Eq.(2), Eq.(4), Eq.(5), 

Eq.(6) 

zp, zsol, and zCF stand for the operating conditions (CF feed flow rate and the solvent 

flow rates in stream S1 and S2), solvent type, and CF type, respectively. FS1,sol and 

FS2,sol  are the solvent flow rates in streams S1 and S2, respectively. FS4,API is the API 

flow rate in stream S4 (product stream). The solvent cost is accounted for by a solvent 

cost parameter (csol) of 7.94 USD/L, which is estimated from data from Lab Alley 

(www.laballey.com). The CF cost is neglected as it is consumed in much smaller 

quantities compared to the solvent, and CFs are usually inexpensive chemicals. The 

optimization problem is solved by employing the epsilon-constraint method, where the 

lower bound for the SA (J2) is increased from 0 to 40 to generate cases with different 

product performances, and the NPC (J1) is minimized for each case. 

The resulting optimization problem is an MINLP due to the discrete nature of 

CF/solvent selection and continuous operating conditions, which demands a relaxation 

strategy. The continuous mapping method (Bardow et al., 2010) is a commonly used 

MINLP relaxation strategy for problems involving simultaneous optimization of solvent 

types and operating conditions supported by the PC-SAFT. However, the optimization 

problem in this work is complicated by the simultaneous optimization of the CF type, 

which involves ten CF-related variables. A continuous mapping method may not be the 

most efficient solution strategy when the number of relaxation variables is large 

compared to the number of candidate compounds in the database. An approach similar 

to the traditional branch-and-bound approach is likely more efficient for such a case. 

Therefore, we propose a hybrid algorithm comprising the continuous mapping method 

for optimization of the solvent type and operating conditions and a branch-and-bound-

like strategy for the CF selection. The algorithm involves two steps: 1) the optimization 

problem P1 is solved as an NLP by relaxing all integer variables, i.e., yCF,i in Eq.(5) and 

ysol,j in Eq.(6), to continuous variables, 2) P1 is solved separately for a selected set of CF 

candidates identified from step 1). 

N. P. Mendis and R. Lakerveld



The solution for the relaxed problem in step 1 may not correspond to an existing CF 

candidate, which would be reflected by multiple nonzero values for the relaxed yCF,i. In 

step 2, the optimization problem P1 is solved separately for each CF candidate i for 

which a nonzero yCF,i was found from the relaxed problem solution in step 1. As the CF 

type is fixed in P1 now, the solvent type and operating conditions can be optimized with 

an existing continuous mapping method from the literature (Wang & Lakerveld, 2018). 

Multiple integer solutions, i.e., solutions with an existing CF and solvent candidate, are 

obtained at the end of step 2, from which the optimal integer solution is identified. To 

verify that the integer solution obtained is the true optimal, step 1 is repeated, but 

without those CF candidates that have already been identified previously, i.e., nCF is 

smaller now. If the objective function value of the new relaxed problem has not 

improved compared to the already identified optimal integer solution, the algorithm 

stops, and the identified optimal integer solution is the final solution. Otherwise, step 2 

is repeated to identify more integer solutions, the optimal integer solution is updated, 

and step 1 is repeated again after excluding all the CF candidates already been 

identified. The algorithm stops when the relaxed problem objective function value does 

not improve compared to the already identified optimal integer solution. To solve the 

resulting NLPs, the CONOPT solver (Drud, 1985) was implemented in The General 

Algebraic Modeling System (GAMS Development Corporation). 

3. Results and Discussion 

When no lower bound is set for the SA, the optimal CF-solvent pair is oxalic acid (OA) 

and benzyl alcohol, which allows for the lowest NPC (Integer Solution 1 in Figure 2). 

Both the relaxed and integer solutions remain unchanged as the lower bound on the SA 

is increased from 0 to 6.78, which is consistent with the SA=6.78 for CBZ-OA cocrystal 

under the given conditions. When the lower bound of the SA is increased beyond 6.78, 

the NPC of the relaxed solution gradually increases. All these relaxed solutions 

correspond to the same integer solution (Integer Solution 2 in Figure 2), where 

nicotinamide (NA) and benzyl alcohol are the optimal CF and the optimal solvent type, 

respectively. Even though CBZ-NA cocrystal has a substantially higher SA of 41.72, 

the increase in NPC is substantial for the integer solution, likely because only eight CFs 

are considered in this work, i.e., it appears no CFs with intermediate properties are 

available. The optimal solvent type and required quantity for dissolving the API are the 

same for both optimal solutions. However, the higher total solvent consumption and the 

lower yield from Solution 2 cause an increase in the NPC. Finally, the optimal API:CF 

ratios are 1:1.46 and 1:3.16 for Solution 1 and Solution 2, respectively. This result 

shows that the determination of the optimal ratio at which the API and the CF have to 

be mixed to minimize the NPC is not trivial as it differs from the API:CF stoichiometric 

ratio (1:0.5 for CBZ-OA and 1:1 for CBZ-NA). 

4. Conclusions 

The proposed modeling and optimization framework for cocrystallization processes can 

simultaneously identify optimal CFs, solvent types, and operating conditions while 

considering both process design and product performance. The method can be used to 

balance the complex trade-offs that often exist in crystallization-based processes for the  
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Figure 2: The Pareto fronts of the relaxed and integer solutions of the optimization 

problem (Eq.(P1)). The yield is defined as the fraction of the API in the feed that ends 

up in the cocrystal phase. 

production of pharmaceutical cocrystals. This framework is particularly suitable for the 

early stages of process and product design, where the available experimental data are 

limited, and the identified set of CFs, solvents, and operating conditions can serve as the 

basis to launch an experimental program or more detailed simulations. Additionally, the 

method has the capability to recommend cocrystal property targets for efficient process 

and product design, which can guide future experimental efforts related to cocrystal 

discovery. 
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Abstract 

In this work we present a systematic computer-aided design methodology for identifying 

optimal drug-polymer-water formulations with desired physical and chemical properties 

that are used in the spray drying of drug products. Within the proposed method, the 

UNIFAC model is employed to predict the solubility and miscibility of binary and ternary 

mixtures, whereas the Gordon-Taylor equation is used to estimate the glass transition 

temperature of a wide range of chemical blends. The design methodology is applied to 

the selection of optimal drug-polymer blends that maximize the loading of naproxen, 

while ensuring that stable formulations are designed. Finally, we explore the trade-offs 

between two competing objectives through multiobjective optimization, where the drug 

loading and water-content of API-polymer-water blends are maximized simultaneously. 

A ranked list of optimal solutions (mixtures with different chemicals and compositions) 

that can be used to guide experimental work is obtained by introducing integer cut 

inequalities into the model. 

Keywords: Spray drying dispersion; optimal formulation; solubility; phase stability. 

1. Introduction 

Most of the new chemical entities in the drug discovery pipeline present unfavorable 

solubility properties, which often translates into low intrinsic bioavailability and makes 

the development of solid oral dosage forms challenging (Duarte et al., 2015). Spray-dried 

dispersion (SDD) is an effective technique to address these limitations; it has been 

successfully employed to improve the solubility and bioavailability of poorly soluble 

drugs in pharmaceutical manufacturing. SDD consists of an active pharmaceutical 

ingredient (API), preferably in its amorphous state to increase solubility, dispersed in a 

hydrophilic polymer matrix that stabilizes the amorphous form of the drug. Despite the 

benefits of this strategy, solid dispersions are often thermodynamically metastable, so 

there is a risk that the API may crystallize, leading to low-solubility behavior. To avoid 

such risks, it is important to select suitable API-polymer formulations that meet desired 

properties and ensure high solubility and bioavailability of the drug (Davis and Walker, 

2018). In current industrial practice, heuristic approaches and experimental-based 

workflows are typically employed for pre-screening a small set of commonly used 

polymers for SDD. Such time-consuming and costly procedures can lead to longer 

development timelines and limited innovation. The development of computational 
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methodologies that improve the selection strategies in spray drying formulations and 

reduce the experimental efforts and required resources is therefore highly desirable.  

In recent years, several researchers have developed model-based approaches that focus 

on predicting the phase behavior of given API-polymer systems using common 

thermodynamic tools. Among others, Bansal et al. (2016) and Tian et al. (2013) employed 

Flory-Huggins (F-H) theory to predict the solubility and miscibility of drug-polymer 

blends. Sadowski and co-authors have studied the long-term thermodynamic stability of 

amorphous solid dispersions (ASD) and constructed phase diagrams of binary and ternary 

systems using the perturbed-chain statistical associating fluid theory (PC-SAFT). In 

particular, Prudic et al. (2014) have investigated the impact of copolymer composition on 

the phase behavior of solid dispersions of different drug-polymer blends. Lehmkemper et 

al. (2017a & 2017b) used experimental data and thermodynamic modeling to construct 

binary phase diagrams and explore ASD physical stability for different API-polymer 

systems at various humidity levels. Dohrn et al. (2020 & 2021) studied the impact of 

solvents on the phase separation of ASDs during drying, computing the solubility and 

liquid-liquid phase diagrams of API-polymer-solvent systems using PC-SAFT. 

Despite these recent modeling advances, a limited set of pre-defined blends, with fixed 

ingredients, have been investigated to date. Thus, the selection of suitable polymers that 

can be more effective for stabilizing existing and/or new drugs has not been explored 

systematically or via optimization methods. In this work, we present a systematic 

approach for identifying optimal (i) API-polymer and (ii) API-polymer-water 

formulations that meet desired physicochemical properties and can lead to drug products 

with improved bioavailability. Within the proposed methodology, property-prediction 

models are employed to estimate the solubility, miscibility and glass transition 

temperatures of a wide range of binary and ternary blends. In addition, we exploit 

advanced optimization techniques (Jonuzaj et al., 2016, 2019) to design improved 

formulations that yield high solubility and stability of the drug. As a case study, the design 

approach is applied to the selection of optimal polymers that maximize the drug loading 

of naproxen in different API-polymer and API-polymer-water mixtures, while ensuring 

phase stability and a sufficiently high glass transition temperature of the final blend. The 

proposed optimization model yields a ranked list of diverse high-performing solutions, 

where solid dispersion blends of the API with different polymers, polymer proportions 

and sorbed water content are identified.  

2. Design Methodology 

2.1. Problem definition 

The proposed mathematical model involves the design of optimal API-polymer and API-

polymer-water formulations used in spray drying dispersions. The solid dispersion blends 

to be designed consist of a predefined API, an optimal polymer (𝑝1), and sorbed water 

(when ternary systems are considered). The following set 𝐼 = {API,  𝑝1, 𝐻2𝑂} represents 

all components in the designed blend, where the optimal polymer is selected from a 

predefined set 𝑃 = {1, … , 𝑁𝑝}. Due to limited space, the mixed-integer programming 

problem (MINLP) presented in the next section considers the design of optimal binary 

API-polymer blends; it can be extended to formulating ternary API-polymer-water 

systems as shown in the supplementary information. 
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2.2. MINLP formulation for designing drug-polymer blends  

The following mathematical formulation is derived to identify optimal polymers that 

maximize the drug loading of an API and satisfy pure and mixture property constraints: 

max
𝑤,𝑥,𝑦

   
𝑤𝐴𝑃𝐼

𝑤𝑝1

                                                                                                                       (1) 

 𝑠. 𝑡.     𝑇̆𝑔,𝑚𝑖𝑥 =
𝑤̌𝐴𝑃𝐼𝑇𝑔,𝐴𝑃𝐼+𝐾𝑤̌𝑝1𝑇𝑔,𝑝1

𝑤̌𝐴𝑃𝐼+𝐾𝑤̌𝑝1

≥ 𝑇𝑔
𝐿                                                                    (2) 

           𝐾 =
𝜌𝐴𝑃𝐼𝑇𝑔,𝐴𝑃𝐼

𝜌𝑝1𝑇𝑔,𝑝1

(3) 

𝑤𝐴𝑃𝐼 ≤ 0.95𝑤̌𝐴𝑃𝐼                                                                                                (4)

           
𝜕 𝑙𝑛 𝛾𝐴𝑃𝐼(𝑇,𝑥)

𝜕𝑥𝐴𝑃𝐼
+

1

𝑥𝐴𝑃𝐼
≥ 0                                                                                         (5)

         𝑙𝑛 𝑥̃𝐴𝑃𝐼
𝑒𝑞

+ 𝑙𝑛 𝛾𝐴𝑃𝐼(𝑇, 𝑥̃𝑒𝑞) =
∆𝐻𝑓𝑢𝑠,𝐴𝑃𝐼

𝑅
[

1

𝑇𝑚,𝐴𝑃𝐼
−

1

𝑇
]                                          (6)

𝑤𝑖 =
𝑥𝑖𝑀𝑊𝑖

∑ 𝑥𝑗𝑀𝑊𝑗𝑗∈𝐼
;  𝑤̃𝑖

𝑒𝑞
=

𝑥̃𝑖
𝑒𝑞

𝑀𝑊𝑖

∑ 𝑥̃
𝑗
𝑒𝑞

𝑀𝑊𝑗𝑗∈𝐼
;  𝑖 = 𝐴𝑃𝐼, 𝑝1 (7)

          ∑ 𝑦𝑝1,𝑝
𝑁𝑝

𝑝=1 = 1                                                                                                      (8) 

         𝑥 ∈ [𝑥𝐿, 𝑥𝑈] ⊂ ℝ𝐼;  𝑤 ∈ [𝑤𝐿, 𝑤𝑈] ⊂ ℝ𝐼; 𝑦 ∈ {0,1}𝑞   

The vectors 𝑥 and 𝑤 represent the mole and mass fractions in the designed blend, 

respectively;  𝑤̃ 
𝑒𝑞 and 𝑤̌ represent mass fractions on the solid-liquid and glass transition 

phase boundaries, respectively;  𝑦𝑝1,𝑝 is a binary variable for assigning a polymer 𝑝 from 

the set 𝑃 to the polymer component 𝑝1 in the designed blend. Eq. (1) is the objective 

function, where the ratio of API/polymer is maximized. Eqs. (2)-(8) are property 

constraints for estimating the glass transition temperature, the solid-liquid equilibrium 

and the miscibility of API-polymer blends. A schematic phase diagram of a drug-polymer 

blend is shown in Figure 1, where the blend is designed to be in areas A and B at system 

temperature 𝑇 through eqs. (2)-(7). The glass transition temperature 𝑇̆𝑔,𝑚𝑖𝑥 of a binary 

blend (green curve) is calculated using the Gordon-Taylor equation (Gordon and Taylor, 

1952) given in eqs. (2) & (3), where 𝜌𝑖 and 𝑇𝑔,𝑖 are the density and glass transition 

temperature of component 𝑖, respectively. 𝑇̆𝑔,𝑚𝑖𝑥 is set to be higher than a user-specified 

value 𝑇𝑔
𝐿. To ensure that the API has low molecular mobility and does not undergo rapid 

crystallization in the designed blend, an offset in mass fraction is imposed in eq. (4), so 

that the glass transition temperature of the blend is well below 𝑇̆𝑔,𝑚𝑖𝑥. Through eq. (5), 

the API-polymer blend is miscible at the chosen composition 𝑥 . The solubility 𝑥̃𝐴𝑃𝐼
𝑒𝑞

 is 

calculated in eq. (6), where the API heat of fusion ∆𝐻𝑓𝑢𝑠,𝐴𝑃𝐼 and melting point 𝑇𝑚,𝐴𝑃𝐼 are 

taken from experimental data and 𝑅 is the gas constant. Activity coefficients are 

Figure 1: Schematic phase behavior of an API-

polymer blend (adapted from Lehmkemper et al., 

2017a). The blue curve represents solid-liquid 

equilibrium (SLE), the gray curve is liquid-liquid 

equilibrium (LLE), which may or may not be 

present, and the green curve the glass-transition 

temperature of the blend. In order to ensure the 

stability of the blend at room temperature, the 

desired operating region includes areas A & B. 
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calculated using the UNIFAC model (Fredenslund et al., 1975). The mass fractions of the 

API in the designed blend and at SLE are calculated in eq. (7), where 𝑀𝑊𝑖 is the molar 

mass of component 𝑖. Note that the binary blend can be above or below the SLE curve, 

so 𝑥̃𝑖
𝑒𝑞

 and 𝑤̃𝑖
𝑒𝑞

 could be calculated after the solution of the optimization problem. The 

logic relation presented in eq. (8) ensures only one polymer is selected from the set 𝑃.  

3. Case study: optimal binary and ternary blends for the SSD of naproxen  

3.1. Problem description 

Naproxen (NPX) is a nonsteroidal anti-inflammatory drug commonly used to treat pain 

in joints and muscles. We selected naproxen to demonstrate the design methodology as it 

is a well-studied drug for SDD, and it can be modeled with UNIFAC. The proposed 

systematic methodology is applied to the design of optimal binary (NPX-polymer) and 

ternary (NPX-polymer-water) systems, where problems of increasing complexity are 

formulated and solved. First, a binary NPX-polymer system is considered, where optimal 

polymers are selected from a set of 25 candidates to maximize the drug loading of 

naproxen. The number of monomers (repeated units) in each polymer is allowed to vary 

between 10 and 200 in order to explore a wide range of polymers with different sizes and 

structures. Next, a larger design problem that takes into account a ternary NPX-polymer-

water solid dispersion blend is formulated via multiobjective optimization (MOO), where 

the drug loading and water-content of the ternary mixture are optimized simultaneously. 

Relevant measured naproxen data are included in Table 1 and the optimal solutions 

obtained with the binary and ternary models are discussed in the next section. 

Table 1: Measured naproxen property data and system temperature used in this case study. 

API 
𝑀𝑤𝐴𝑃𝐼 

(g/mol) 

∆𝐻𝑓𝑢𝑠,𝐴𝑃𝐼 

(J/mol) 

𝑇𝑚,𝐴𝑃𝐼 

(K) 

𝑇𝑔,𝐴𝑃𝐼 

(K) 

𝑇  

(K) 

𝑇𝑔
𝐿  

(K) 

Naproxen 230.26 32673.75 427.32 277.15 298.15 338.15 

 

3.2. Results and discussion 

The design formulations are implemented and solved in GAMS version 36.2.0, using 

local and global algorithms. The two MINLP models for designing binary and ternary 

blends for the SDD of naproxen can be found at doi.org/10.5281/zenodo.5637599 and the 

results are given in Table 2 and Figure 2. Some of the solutions reported are global 

solutions obtained with SCIP. Where global optimality is not reached with either SCIP or 

BARON within 1000 s, local solutions obtained with SBB are presented. For cases where 

both SBB and SCIP terminate successfully, the two solvers converge to the same solution 

(triangles in Figure 2), giving confidence in the performance of the local solver. 

The ranked list of optimal solutions presented in Table 2 shows that 

(hydroxypropyl)methyl cellulose p55, methacrylic acid-methyl methacrylate, and 

polyvinylpyrrolidone K30 are promising polymer candidates that yield high loading of 

naproxen in the polymeric carrier. The mass fraction of naproxen (𝑤𝐴𝑃𝐼) in each binary 

mixture is higher than the mass fraction of the API at solid-liquid equilibrium (𝑤̃𝐴𝑃𝐼
𝑒𝑞

), and 

lower than the mass fraction at the glass transition boundary (𝑤̌𝐴𝑃𝐼). In addition, the 

optimization model ensures the designed binary blends are miscible at optimal 

compositions of naproxen and polymer in the mixture, so that phase separation is 



prevented. Thus, the designed API-polymer blends are in the desired phase region, i.e., 

below the solubility and glass transition curve, and outside the immiscible area.  

Table 2: Top 3 optimal solutions of the API-polymer model, including the optimal 

API/polymer ratios;  the mass fraction of API in the designed blend (𝑤𝐴𝑃𝐼);  the SLE mass 

fraction (𝑤̃𝐴𝑃𝐼
𝑒𝑞

);  the mass fraction (𝑤̌𝐴𝑃𝐼) on the reference glass transition curve (𝑇̆𝑔,𝑚𝑖𝑥);  the 

identity of the optimal polymers and the number of the repeated units (𝑁𝑚) in each polymer. 

𝑤𝐴𝑃𝐼/𝑤𝑝1 𝑤𝐴𝑃𝐼 𝑤̃𝐴𝑃𝐼
𝑒𝑞

 𝑤̌𝐴𝑃𝐼 𝑇̆𝑔,𝑚𝑖𝑥(𝑤̌𝐴𝑃𝐼) Polymers 𝑁𝑚 

1.601 0.616 0.001 0.648 338.15 HPMC p55 10 

1.181 0.541 0.001 0.570 338.15 Eudragit L100 11 

1.052 0.513 0.003 0.540 338.15 PVP K30 10 

In the ternary model, the drug/polymer ratio and water content are optimized 

simultaneously via MOO in order to investigate the maximum amount of water that can 

absorbed in the designed blends while maintaining high drug loading. The set of Pareto 

optimum solutions given in Figure 2 is obtained using the ϵ-constraint method, in which 

the water mass fraction is maximized, and the API/polymer ratio is constrained by a given 

lower bound, ϵ. The value of ϵ is 

increased from 0.2 to 2 with a step-

size of 0.2. All Pareto points share 

the same monomer structure, 

HPMC p55, but differ in the 

polymer size and water-polymer 

composition (cf. Table S1 in 

supplementary information). We 

note that the miscibility constraints 

were not included in the 

formulation of the ternary problem. 

Further investigation is required in 

order to ensure there is no phase 

separation of the optimal ternary 

blends designed.  

4. Conclusions 

In this work we have developed a systematic computer-aided methodology for identifying 

optimal formulations for the spray drying of drug products. Within the proposed 

approach, two optimization models were formulated and solved. First, a two-component 

formulation was derived, where optimal API-polymer mixtures that meet desired property 

targets and satisfy given phase boundary conditions, were identified. A ranked list of 

optimal solutions (different binary blends with optimized polymer structure, size and 

compositions) was obtained by introducing integer cut inequalities into the model. Next, 

a ternary API-polymer-water system was formulated via multiobjective optimization, 

where the drug loading and water fraction were optimized simultaneously. Future work 

will focus on validating the modeling results with experimental data (where possible), 

and constructing binary and ternary phase diagrams of the optimal mixtures obtained. In 

addition, the models will be extended to designing API-polymer-solvent blends, taking 

Figure 2: Optimal drug loading and water mass 

fraction when solving the multiobjective optimization 

problem for the ternary API-polymer-water system. 
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into account key process constraints used in spray drying solvent selection, spray solution 

viscosity, spray atomization and final particle size of the solid spray dried particles.  

Finally, the proposed models will be incorporated in a polymer and solvent selection 

workflow for spray drying that can be used to identify better-performing designs in a 

more efficient and systematic way. 
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Abstract 

This work proposes a superstructure-based design approach to optimize an end-to-end 

injectable manufacturing process. At the core of this approach are unit operation models 

for batch and continuous operations and a plant-wide scheduling model that can explicitly 

model the semi-continuous operations of injectable manufacturing to a high level of 

precision. An integrated evaluation model consisting of a Net Present Value (NPV) and 

technology readiness modules is used to identify the optimal flowsheet. This approach 

can simultaneously optimize the design of a given process flowsheet alternative 

consisting of both batch and continuous unit operations considering product parameters, 

process conditions, and market characteristics. The overall approach developed was then 

demonstrated on an end-to-end injectable manufacturing case study with four process 

flowsheet alternatives (batch and continuous operations of compounding and 

lyophilization). Based on the techno-economic analysis, it was shown that the alternative 

with batch compounding and lyophilization was preferred.  

Keywords: Process design; injectable manufacturing; optimization; continuous 

manufacturing; superstructure 

1. Introduction 

Injectables are an effective dosage form for many pharmaceutical products, including 

COVID-19 vaccines (Alharbi, 2021). Injectables are typically manufactured in a 

production line consisting of solution compounding, sterile filtration, filling, 

lyophilization, and inspection unit operations. Currently, these units are operated as batch 

processes. While continuous technologies are being developed for injectable 

manufacturing, they are still in the early stage of conceptualization and research. 

Examples include continuous compounding (Casola et al., 2015) and lyophilization 

(Bockstal et al., 2017). The main driving force for introducing these continuous 

technologies is the promise of reduced manufacturing cost, environmental load, and 

improved process flexibility.  

As a result, in the future, there is the possibility to design an injectable manufacturing 

process where each unit can be operated in either batch or continuous modes. From a 

design perspective, this requires evaluating multiple potential process flowsheet 

alternatives considering multiple operational, design, and economic factors. As such, 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50365-1 
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there is a need to develop decision-support tools that can enable informed decision-

making without entirely relying on empirical knowledge. 

Superstructure optimization is such a decision-support concept. In short, the 

superstructure-based approach evaluates the manufacturing system's overall performance 

rather than focusing on a single unit operation. As a result, this approach can find a 

globally optimal process design (Quaglia et al., 2015). In the chemical industry, 

superstructure based optimization is a commonly used method for determining process 

sequence (Tian et al., 2020). While in pharmaceutical production processes, 

superstructure-based approaches have been used for choosing between batch and 

continuous unit operations in tablet manufacturing (Matsunami et al., 2020). Figure 1 

illustrates a tentative superstructure of the injectable manufacturing process, where 

operation mode and equipment materials choices are listed. The set of process alternatives

that need to be evaluated are all possible choice combinations.  

To accurately evaluate process alternatives generated from a superstructure, there is a 

need for an approach that can explicitly optimize their process design and operations. In 

the context of injectable manufacturing, this requires the development and integration of 

two types of models. One model that can accurately capture the continuous operations 

which are “process-manufacturing systems” where the bulk solution behavior is essential.

Another model that can describe batch operations which are “discrete-manufacturing 

systems” where process operation behavior is essential. In addition, the scheduling of the 

overall manufacturing process is needed as the same production line needs to process 

multiple products while guaranteeing sterility levels. The output of these combined 

models then must be techno-economically evaluated. The rest of this work is organized 

as follows. In section 2, the overall superstructure-based approach is introduced. This is

followed by section 3, where the proposed approach is demonstrated on a case study. 

Finally, in section 4, the conclusions are given.  

2. Methodology 
For process optimization, a model-based approach using superstructure was suggested. 

First, a superstructure covering all possible candidates was created based on literature 

data and discussions with production experts. Figure 1 illustrates the overall 

superstructure and the multiple decision variables that can be considered, such as the 

operation mode (batch vs continuous), equipment material (stainless vs resin), and tasks 

(machine vs operator inspection). In the future, further choices can be added to the 

superstructure.  

Figure 1 Superstructure of injectable manufacturing process 
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Figure 2 displays the overall modeling framework followed to evaluate each process 

flowsheet candidate systematically. The entire model can be divided into three parts: i) 

process flowsheet model, ii) scheduling model, and iii) evaluation model. Through these 

models, the optimal candidate is obtained based on NPV and Technology Readiness 

Level (TRL) evaluation. Due to the level of fidelity of the process flowsheet model, this 

framework can optimize the economic performance of each process alternative identified 

considering multiple design choices, market conditions and process parameters. Hence, 

applying the approach developed with a superstructure-based flowsheet generation 

enables the optimal process alternative and the corresponding process design to be found 

simultaneously. 

2.1. Process flowsheet model 
The objective of the process flowsheet model is to calculate the required equipment size,

the input and output material flows, and the expected unit operation processing time for 

a one-lot production. To carry out this evaluation, the process flowsheet model uses an 

integrated process and discrete production module. The process module explicitly 

considers Active Pharmaceutical Ingredient (API) crystal dissolution and Residence Time 

Distribution (RTD) factors. On the other hand, the discrete module considers lot residue, 

lot disposal, and operational defects which are critical operational factors for discrete

process operations. The scheduling model receives the expected processing time for each 

unit operation for single-lot production from the process flowsheet model.  

2.2. Scheduling model  
The objective of the scheduling model is to evaluate if the production line can meet 

product demand and inventory requirements with the given operational constraints and 

changeover tasks. Suppose a single product is manufactured in a production line. In that

case, the repetition of the lot production can meet the demand and inventory margin if 

there is sufficient time allocated for production. However, when multiple products are 

manufactured in a production line, the production sequence must be optimized to meet 

the constraints and minimize the non-production time. If there is no solution to satisfy the 

constraints, the design alternative is evaluated as unfeasible.  

Figure 2 Framework of the constructed models 
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2.3. Evaluation model 
The evaluation model consists of the NPV module and TRL module. The overall 

objective of these two evaluation modules is to calculate the economic performance of 

the process flowsheet (considering the intricacies of process- and discrete-manufacturing 

systems) and to calculate the overall technology readiness level.  

In the NPV module, NPV is calculated as an economic indicator, as shown in Eq. (1). 

 
(1) 

Investment cost 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  [JPY] and annual cash flow 𝐶𝐹  are calculated by 

considering the following factors: the annual cash flow, material cost, utility cost, labor 

cost, quality control cost, penalty cost, maintenance cost, and inventory cost as well as

the product sales. The process flowsheet model generates information related to 

equipment sizing and material mass per lot. The operational requirement information, e.g., 

the sum of production duration, required space for inventory management, and the 

number of lots for each product, is generated from the scheduling model. In the TRL 

module, the overall process flowsheet is given a score between a TRL of 1 and 9. The 

TRL score is based on the state of progress in research, experiment, and implementation

of each unit operation that is selected. This evaluation is carried out according to the 

guidelines set in Li et al. (2019) and Silk et al. (2020). 

3. Case study 
The proposed approach was then applied to a case study examining four process 

alternatives, as illustrated in figure 3. Each alternative consisted of end-to-end injectable 

manufacturing operations where the operations of the compounding and lyophilization 

units were changed between batch and continuous modes. Following assumptions were 

made during the subsequent analysis: 1) Case study represents a grass-root design, where 

resin equipment and final sterilization were not considered; 2) Three products A, B, and 

C, with fixed demand, were manufactured in one production line. Product A and B is 

liquid products, and C is a freeze-dried product, which needs lyophilization; 3) 

Batch/continuous operation in compounding and lyophilization were examined. 

Inspection with a machine was chosen for liquid products, and inspection with operators 

was chosen for the freeze-dried product; 4) Production of 5 days per week and 24 h per 

day was assumed; 5) The sale period was set as 20 years; 6) The lot size is varied as a 

process design variable, which is shown in Eq. (2). 

 (2) 

𝑁𝑃𝑉 −𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  
𝐶𝐹

 𝑟 𝑛

𝑉   ∈   

Figure 3 Examined alternatives in the case study 

 

Compounding Lyophilization Inspection



Over a half million design alternatives were analyzed for each of the four process 

alternatives. Figure 4 (a) illustrates a violin plot of production times observed for each 

process alternative. Analyzing Figure 4 (a), continuous operations in the lyophilization 

unit resulted in a noticeable reduction in the overall production time, which is in line with 

previous results (Pisano et al., 2019). In comparison, the mode of operation in the 

compounding unit had a minor effect. The design condition of each process alternative 

has a significant influence on the observed production duration. For instance, a good 

process alternative (e.g continuous compounding and lyophilization) can have a longer 

production time than a bad process alternative (e.g batch compounding and 

lyophilization) purely due to design choices. This shows the importance of simultaneous 

process alternatives selection and process design optimization during the decision-

making processes. 

Figure 4 (b) illustrates the NPV of selected design conditions for the four process 

alternatives where the lot size and production sequences were fixed. The production time 

of four alternatives is marked in red in Figure 4 (a). It can be seen that continuous 

lyophilization and batch compounding results in the best outcome. It can also be seen that 

continuous lyophilization choice has a notable positive impact on the NPV. This is mainly 

because of the reduction in labor costs due to the shortened production time. In 

comparison, the introduction of continuous compounding results in a decrease in NPV. 

This is because the cost of investment and initial start-up requirements outweigh other 

benefits. It should be noted that these designs have not been economically optimized by 

considering design factors such as lot size, production sequence, and other market factors. 

Instead, designs with a shorter overall production time were selected.   

From a TRL point of view, batch compounding and lyophilization are tried and tested 

technologies implemented in the industry. Hence, batch compounding and lyophilization 

operations can be awarded a TRL of nine. In contrast, continuous operations are only 

implemented for slurry and liquid, and not for API crystal and water for injection. Hence 

continuous compounding and lyophilization can be awarded a TRL score of three, as only 

the fundamentals are established. 

Overall the fully batch alternative is recommended over other alternatives as 1) the NPV 

of the fully batch alternative is only 10% lower than the most optimal process alternative 

and 2) the significant difference in TRL between batch and continuous operations.  

Figure 4 Evaluation result for (a) total duration for the production and (b) NPV 
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4. Conclusion 

A model-based design approach for the injectable manufacturing process was presented. 

A superstructure was constructed to consider multiple process candidates while process 

and discrete models were developed for each unit operation to optimize the process and 

design conditions for each process candidate. An evaluation model consisting of an NPV 

and TRL analysis was developed to rate each candidate's performance. The approach was 

applied to a case study where batch and continuous compounding/lyophilization 

alternatives were examined. The case study illustrated the importance of simultaneous 

determination of process alternatives and design considering the product, process, market 

characteristics. In this instance, the alternative with batch compounding and continuous 

lyophilization was shown to be economically optimal. However, when considering TRL, 

the fully batch operations was a better alternative. As future work, the economic 

evaluation should be done for all alternatives, including the process parameter and 

production sequences. Model updates are also necessary to evaluate other process 

alternatives and different equipment materials. 
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Abstract 

Autologous cell therapies are based on bespoke, patient-specific manufacturing lines and 

distribution channels. They present a novel category of therapies with unique features that 

impose scale out approaches. Chimeric Antigen Receptor (CAR) T cells are an example of 

such products, the manufacturing of which is based on the patient’s own cells. This 

automatically: (a) creates dependencies between the patient and the supply chain schedules 

and (b) increases the associated costs, as manufacturing lines and distribution nodes are 

exclusive to the production and delivery of a single therapy. The lack of scale up opportunities 

and the tight return times required, dictate the design of agile and responsive distribution 

networks that are eco-efficient. From a modelling perspective, such networks are 

described by a large number of variables and equations, rendering the problem intractable. 

In this work, we present a bi-level decomposition algorithm as means to reduce the 

computational complexity of the original Mixed Integer Linear Programming (MILP) 

model. Optimal solutions for the structure and operation of the supply chain network are 

obtained for demands of up to 5000 therapies per year, in which case the original model 

contains 68 million constraints and 16 million discrete variables. 

Keywords: CAR T cell therapy; supply chain optimisation; MILP; personalised 

medicine; bi-level decomposition. 

1. Introduction 

Chimeric Antigen Receptor (CAR) T cell therapy is a type of immunotherapy, where the 

patient’s own immune system is utilised to recognise and kill cancer cells (Sadelain et al. 

2015). The patient’s T cells are removed from the bloodstream and are genetically 

engineered to express the CAR, rendering them capable of recognising and attacking the 

target tumour cells. CAR T cells can be obtained from the patient’s own blood 

(autologous) or the lymphocytes of another healthy donor (allogeneic). Following the 

success in Phase 1 of clinical trials, the US Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) have approved 5 of these therapies so far (UPMC, 

2021). Currently, there are 6,581 active and ongoing clinical trials regarding CAR T cell 

treatments, with most of them being autologous, while their allogeneic counterpart is 

progressing as well (Caldwell et al. 2021). The relatively high prices of these therapies 

can be partially attributed to the high manufacturing, distribution and product 

administration costs (Spink et al. 2018). Time-intensive manufacturing processes, in-time 

delivery under hospital admission and daily monitoring of the patient for side effects are 

among the factors that increase the cost (Han et al. 2021). Another key challenge of the 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50366-3 
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CAR T cell therapy lifecycle is the minimisation of the turnaround time, which varies 

between 15 and 24 days for the commercially available treatments (Nucleus Biologics, 

2021). The in-time delivery is of utmost importance for the patients as late administration 

may negatively impact the response to treatment. To address these challenges, digital 

tools such as mathematical models and optimisation policies are used to assist the 

decision-making process by coordinating the different tasks and identifying the optimal 

supply chain network structures (Sarkis et al. 2021a). The complexity of the CAR T cell 

supply chain can be easily observed by the product’s lifecycle and autologous nature that 

challenge the identification of an optimal supply chain network (Sarkis et al. 2021b). The 

main steps of a typical CAR T cell therapy lifecycle are: (a) patient identification, (b) 

leukapheresis, (c) manufacturing, (d) Quality Control, (e) therapy administration. 

There have been works in the literature focusing on the optimisation of CAR T cell 

therapies via Mixed Integer Linear Programming (MILP) models (Bernardi et al. 2021; 

Karakostas et al. 2020). The autologous nature of these therapies often results in novel 

supply chain formulations (Papathanasiou et al. 2020), where the MILP problem 

comprises a significantly high number of integer variables. The latter can range from 

600,000 for clinical trial applications to over 16 million for commercial scales of average 

demand. This can render the convergence to global or sometimes even local optimality 

infeasible. Hence, methodologies to enable the solution of large-scale instances are 

required (Erdirik-Dogan and Grossmann, 2008; Terazzas-Moreno and Grossmann, 

2011). In this work, we present a bi-level decomposition algorithm capable of providing 

candidate solutions with respect to the location, number and capacity of manufacturing 

sites, and the most suitable mode of transport. Optimal solutions for the structure and 

operation of the supply chain network are obtained for demands of up to 5000 therapies 

per year under three different time constraint scenarios (17, 18 and 19 days) total return 

time. The latter refers to the total duration of the therapy life cycle, starting from the 

leukapheresis procedure and ending with the delivery of the therapy at the hospital. 

2. Materials and methods 

The model examined in this work is an in-house MILP model that describes the CAR T 

cell supply chain, used for the identification of the optimal supply chain network structure 

for in-time delivery of the therapies (Bernardi et al. 2021). An overview of the model 

formulation is presented in Table 1. The supply chain network includes 4 nodes; namely, 

leukapheresis site, manufacturing site, quality control (QC), and hospital (Figure 1). More 

specifically, a patient is allocated to a specialised leukapheresis site, where T cells are 

isolated from the bloodstream. Subsequently, the leukapheresis material undergoes 

freezing (cryopreservation) and is shipped to the manufacturing site. After the completion 

of the manufacturing process, the final product is tested in the QC site, which is co-located 

with the manufacturing facilities. Finally, the cryopreserved CAR T cell therapy is 

transported to the hospital for administration. 

The objective is to minimize the total cost of the therapies over a long-term planning 

horizon (year quarter), whilst operating the supply chain in the short-term (daily) and 

fulfilling several constraints. The supply chain network’s performance (full space model) 

is assessed for different demand scenarios (200, 500, 1000, 2000, 3000 patients per year) 

generated by an in-house algorithm and different return times (17, 18, and 19 days). The 

model parameters, such as the demand profiles and cost coefficients are assumed to be 

deterministic. The study considers 4 leukapheresis sites and 4 hospitals in the UK and 6 
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manufacturing sites located in the U K  and E urope.  The manufacturing facilities hav e a 

capacity of 4, 10 , or 31 parallel lines, and a forward- looking scenario of a manufacturing 

time of 7  days is considered.  

 
Fig ure 1 .  CA R T cell supply chain network with 4 nodes:  (a) leukapheresis site, (b) manufacturing 

site, (c) Q uality Control, and (d) hospital. The hospital and the leukapheresis centre are collocated

in this case.   

T ab le 1 :  O v erv iew of the model formulation.  

An assessment of the model’s complexity was conducted in order to evaluate the 

capabilities of the full space M I L P  problem.  I n this case, CP L E X  results into global 

optimum solutions in less than an hour for small- scale problems.  H owev er, an increase 

in the number of patients and the planning horiz on, makes the problem computationally 

intractable and leads to CP U  times ov er 10 ,0 0 0 s.  I t is shown that the CA R T cell supply 

chain problem is a problem with complicating constraints, and it is more sensitiv e to an 

increase in the number of therapies rather than an increase in the time horiz on.  The 

bottleneck constraints were identified v ia a model complex ity analysis.  These are the two 

transport constraints (Table 1) based on which the therapy is shipped from the 

leukapheresis site to the manufacturing site and from the manufacturing site to the 

hospital.  H ence, the search space of the detailed model becomes v ery large for 

commercial scale problem instances, mainly because of the penta- dimensional 

transportation v ariables.  The identified complicating constraints are key elements in the 

dev elopment of the bi- lev el decomposition algorithm.  To keep the problem 

computationally tractable for a higher number of therapies, a bi- lev el decomposition 

 Index Mathematical Formulation Description 

Objective function 

 (1) 𝑚𝑖𝑛 𝐶𝑡𝑜𝑡𝑎𝑙  𝑐𝑜𝑠𝑡 = 𝐶𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦  𝑐𝑜𝑛𝑡𝑟𝑜𝑙  Total cost of therapies 

Constraints 

 (2) 𝑇𝑅𝑇𝑝 = 𝑡𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 − 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑈𝑡    Return time of therapy 

 (3) 𝐶𝐴𝑃𝑚 ,𝑡 = 𝐹𝐶𝐴𝑃𝑚 − 𝐼𝑁𝑀𝑝 ,𝑚 ,𝑡
𝑝

 
Capacity constraint 

 (4) 𝑋1𝑐 ,𝑚 ≤ 𝐸1𝑚 ,∀𝑐,𝑚,         𝑋2𝑚 ,ℎ ≤ 𝐸1𝑚 ,∀𝑐,ℎ ,         𝐸1𝑚 ≤ 𝑈𝑀𝑚  Network constraints 

 (5) 

𝐼𝑁𝐶𝑝 ,𝑐 ,𝑡 = 𝑂𝑈𝑇𝐶𝑝 ,𝑐 ,𝑡+𝑇𝐿𝑆 ,  
𝐼𝑁𝑀𝑝 ,𝑚 ,𝑡 = 𝑂𝑈𝑇𝑀𝑝 ,𝑚 ,𝑡+𝑇𝑀𝐹𝐸+𝑇𝑄𝐶  

Sample balances at each 

node (leukapheresis, 

manufacturing) 

 (6) 𝐿𝑆𝑅𝑝 ,𝑐,𝑚 ,𝑗 ,𝑡 = 𝐿𝑆𝐴𝑝 ,𝑐 ,𝑚 ,𝑗 ,𝑡+𝑇𝑇1𝑗 ,          ∀𝑝, 𝑐,𝑚, 𝑗, 𝑡 ,  
 𝐹𝑇𝐷𝑝 ,𝑚 ,ℎ ,𝑗 ,𝑡 = 𝑀𝑆𝑂𝑝 ,𝑚 ,ℎ ,𝑗 ,𝑡+𝑇𝑇2𝑗 , ∀𝑝,𝑚,ℎ, 𝑗, 𝑡 

Transport constraints 
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approach is proposed.  The original detailed model is decomposed into an upper- lev el 

planning and a lower-  lev el scheduling problem in order to decrease the computational 

complex ity and solv e for larger instances of the problem.  

 

Fig ure 2 .  F lowchart for the proposed algorithm.  

F igure 2 presents a flowchart of the proposed bi- lev el decomposition algorithm.  The 

upper- lev el model is a relax ation of the original full space model, and it is responsible for 

strategic planning.  M ore specifically, it chooses the number and the location of the 

manufacturing facilities to be established.  The upper- lev el model is lower- dimensional 

compared to the original and thus the candidate transport modes and hospitals are 

considered fix ed.  The supply chain model for the upper lev el considers the network up 

until the end of manufacturing and all the constraints regarding material flows post 

manufacturing are ignored here.  Conseq uently, the complicating constraint about the 

shipping of the therapy from the manufacturing site to the hospital is eliminated from the 

upper lev el.  A lmost all the v ariables in the upper lev el are identical to the ones in the 

original detailed model, apart from some that are redefined to fit the dimensional changes 

in the upper lev el.  G iv en that the upper lev el is a relax ation of the original model, its 

solution prov ides a lower bound to the lower lev el subproblem.  The lower- lev el model is 

a subproblem of the original detailed scheduling model, as it is solv ed for the subset of 

the manufacturing facilities chosen by the upper lev el.  Specifically, manufacturing sites 

that were predicted not to be established by the upper lev el, are ex cluded from the lower 

lev el.  H ence, the search space of the lower- lev el model is significantly reduced.  The 

lower lev el can choose the same or a subset of the manufacturing sites that were predicted 

in the upper lev el.  The optimal solution of the lower- lev el model becomes the final 

solution of the problem.   

3 .  R esults and discussion 

A ll the models hav e been implemented in P ython 3. 7 . 1 and P yomo 5. 6. 1 and solv ed with 

CP L E X  12. 9 .  A ll computational ex periments were performed in a 24- core X eon E 5- 269 7  

machine with 9 6G B .  H ere we present the results of sev en problem cases of increasing 

siz e.  A ll cases were solv ed using both the bi- lev el decomposition algorithm, as well as 

the full- space model, aiming to assess the capabilities of the former.  The bi- lev el 

algorithm was tested for cases of up to 50 0 0  therapies per year, two different demand 

N .  T r i a n t a f y l l o u  e t  a l .



profiles (A and B) for each case, and different turnaround times (17, 18, and 19 days). It 

should be noted that with the proposed algorithm both subproblems reach global 

optimality. In addition, most of the solutions obtained by the bi-level decomposition 

algorithm are identical to the global optimum solutions of the full space model. 

Specifically, the solutions of the four first cases (200, 500, 1000, and 2000 patients per 

year) are identical to the global optimum solutions of the full space model. In the fifth 

case of 3000 patients per year, the proposed algorithm arrives at a significantly improved 

solution and both subproblems arrive at global optimality. In the last two cases, the full 

space model was unable to provide a solution in contrast to the bi-level algorithm. For 

these cases, both the upper and lower levels arrive at global optimality. Based on the 

above, the first four cases are used to guarantee that the algorithm arrives at global 

optimality, which has been proven from the full space model. Finally, the matches 

between the manufacturing facilities are the same across all solutions. Both the full space 

model and the bi-level algorithm result in the same supply chain network structures. 

Figure 3. Comparison of the full space model and the bi-level decomposition algorithm for an 

increasing number of therapies in (a) the number of constraints, (b) the solution time in CPU 

seconds and (c) the solution time in CPU seconds of the full space model and the upper- and lower- 

level of the proposed algorithm. 

As illustrated in Figure 3a, the proposed approach decreased the total number of 

constraints in the model. Additionally, the computational time reduced by more than 50% 

compared to the full space model (Figure 3b). The advantage of the bi-level algorithm is 

that the two separate subproblems are solved sequentially and thus the computational 

complexity of the one does not impact the other. This is clearly illustrated in Figure 3c, 

where the computational time for the upper- and the lower- level is displayed. For 

example, in the 3000 patients/ year case the CPU time of the full space model is 2335 s, 

while the CPU time of the upper- and lower- level is 644 s and 409 s respectively. The 

algorithm will stop being efficient only when the two subproblems become 

computationally intractable. This leads to the conclusion that the bi-level algorithm can 

provide feasible and optimal solutions for instances higher than 5000 patients/ year. 

4. Conclusions 

In this work, we have addressed the increasing demand in CAR T cell therapies by 

developing a novel bi-level decomposition algorithm. The proposed algorithm is rigorous 

and can provide global optimum solutions in reasonable CPU times, even when the full 

space model provides local or no solutions at all. The original detailed model is 

decomposed into an upper-level planning problem responsible for strategic planning 

decisions and a lower-level scheduling problem. As a result, the computational 

complexity is decreased and solutions for large-scale instances of the problem are 
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obtained. The computational analysis showed that the proposed algorithm has made 

significant improvements over the full space model. The bi-level algorithm can provide 

feasible and optimal solutions for instances of up to 5000 patients/year. Nevertheless, the 

efficiency of the proposed algorithm creates new possibilities to explore, such as an even 

higher number of therapies per year or an increased time horizon.  
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Abstract 

This work proposes an agent-based model for cost-effectiveness analysis in the 

manufacture of allogeneic human induced pluripotent (hiPS) cells in Japan. The agent-

based model was developed that can estimate the disability-adjusted life years (DALYs) 

of each patient and the total required manufacturing cost for allogeneic hiPS cells. The 

DALYs were defined as the effectiveness indicator, while the total required cost for 

manufacturing was applied as the cost indicator. Given the disease, the annual number of 

treated patients, and the treatment mode, the agent-based model can calculate these two 

indicators. The model was applied to analyze allogeneic hiPS cell therapy for two diseases 

that are under clinical studies in Japan. A case study demonstrated that the treatment mode 

would have a significant impact on the cost-effectiveness. 

Keywords: Regenerative medicine, Healthcare, Disability-adjusted life year, Therapeutic 

effect, Kernel density estimation. 

1. Introduction 

Japan is one of the most advanced countries of research and development on allogeneic 

human induced pluripotent stem (hiPS) cells. The cells were first produced at Kyoto 

University (Takahashi et al., 2007), and are one of the most promising sources of 

regenerative medicine products. Along with successful clinical studies, e.g., Parkinson’s 

disease, implementation of allogeneic hiPS cell therapy is in progress. 

Recently in Japan, approval of several products by Pharmaceuticals and Medical Devices 

Agency (PMDA) received public attention, e.g., nivolumab and tisagenlecleucel. This 

was because both the high therapeutic effect and the price set by PDMA (e.g., JPY ca. 

700,000 for nivolumab in 2014, the year of new introduction). In the national health 

insurance system of Japan, generally 70 % of the treatment cost is paid by public health 

system. Further approval of expensive products could lead concerns regarding budget 

deficits. The products based on allogeneic hiPS cells, once marketed, would also be given 

ultra-high prices considering the high therapeutic effects. Therefore, the balance between 

the therapeutic effect and the financial impacts should be considered, in order to pursue 

sustainability of the healthcare system in Japan. However, detailed investigations 

considering the individual patient’s conditions, e.g., age, have yet to be performed. 

Agent-based modeling is useful to deal with complex systems based upon agents, which 

enables consideration of the individual person’s condition. Various topics have been 

analyzed by agent-based models, e.g., emissions trading considering exchange rates by 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50367-5 
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Peng et al. (2019), integrated energy systems planning and operation by Zhang et al. 

(2020), and market acceptance of electric vehicles in China by Huang et al. (2021). 

This work proposes an agent-based model for cost-effectiveness analysis in the 

manufacture of allogeneic hiPS cells in Japan. The agent-based model was developed that 

can quantify the disability-adjusted life years (DALYs) of each patient and the required 

manufacturing cost for allogeneic hiPS cells in Japanese society. The DALYs were 

applied as the effectiveness indicator, while the total required cost was used as the cost 

indicator. Given the disease, the annual number of treated patients, and the treatment 

mode, the agent-based model can evaluate these two indicators. The model was applied 

to analyze allogeneic hiPS cell therapy for two diseases that are in clinical studies in Japan. 

2. Methods 

2.1. Effectiveness indicators of medical treatments 

Generally, there are two indicators used for cost-effectiveness analyses of medical 

treatments: DALYs (Murray and Lopez, 1997) and quality-adjusted life years (QALYs; 

Zeckhauser and Shepard, 1976). DALYs indicate overall disease burden expressed as the 

number of life years lost. The coefficients used for calculating DALYs were provided by 

World Health Organization (World Health Organization, 2004). On the other hand, 

QALYs represent overall health condition expressed as the number of life years 

considering quality of life. The coefficients used for calculating QALYs require to be 

defined by questionnaires for patients. Allogeneic hiPS cell therapy is still in the middle 

of clinical studies, and it is quite difficult to perform questionnaires to patients. Hence, in 

this work DALYs is adopted as the effectiveness indicator. 

2.2. Model overview 

Figure 1 shows an overview of the developed agent-based model. The overall inputs are 

defined as the disease, 𝜃 [–] (e.g., Parkinson’s disease), the annual number of treated 

patients, 𝑁patient
treat  [person year–1], the treatment mode, 𝛾 [–] (e.g., from youngest to oldest), 

and the treatment period, 𝑡treat
final  [year]. The outputs are defined as the total DALYs of all 

patients at the end of the treatment period, 𝐷𝐴𝐿𝑌  [year], and the total required 

manufacturing cost for allogeneic hiPS cells, 𝐶total [JPY]. The output variables of 𝐷𝐴𝐿𝑌 

and 𝐶total are used as the effectiveness indicator and the cost indicator, respectively. 

 
Figure 1.  Model overview. 
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2.3. Data pre-processing 

Generally, the data of patient’s age is collected as discreate data. For example, the 

patient’s age data in Japan is collected in five-year increments. However, continuous data 

of patient’s age is needed for DALY estimation. Thus, the discrete data of patient’s age 

is converted into continuous data as follows: 

𝐷age(𝑌) =
1

𝑁patient
initial ℎ

∑ 𝐾

𝑁patient
initial

𝑖=1

(
𝑌 − 𝑌𝑖

ℎ
) (1)  

𝐾(𝑥) =
1

√2𝜋
exp (−

𝑥2

2
) (2)  

where 𝐷 [–] is the distribution, 𝑌 [year] is the patient age, 𝑁patient
initial  [person] is the initial 

number of patients, ℎ [–] is the smoothing parameter, and 𝐾 [–] is the kernel function. 

2.4. Treatment model 

Figure 2 shows the details of the treatment model. The inputs of the model are defined as 

the untreated patients on Day (𝑡 − 1) and the new untreated patients on Day 𝑡 . The 

treatment model is classified into reorder and cure models. In the reorder model, all 

untreated patients on Day 𝑡 are sorted in the order of treatment. In the cure model, a fixed 

number of untreated patients based on the annual number of treated patients, 𝑁patient
treat , is 

treated. Moreover, the treatment model is defined, based on the following assumptions. 

• For diseases causing sudden death, it occurs with a probability of 𝛽 [–]. 

• The effect of treatment is 100%. 

• The required time to manufacture allogeneic hiPS cells can be ignored. 

2.5. DALY model 

The DALYs of a patient 𝑖, 𝐷𝐴𝐿𝑌𝑖 [year], and the total DALYs are estimated as follows 

(Murray and Lopez, 1997): 

𝐷𝐴𝐿𝑌𝑖 = 𝑌𝐿𝐿𝑖 + 𝑌𝐿𝐷𝑖  (3)  

𝑌𝐿𝐿𝑖 = ∫ 𝛼
𝑌life

𝑌dead
𝑖

d𝑌 (4)  

𝑌𝐿𝐷𝑖 = ∫ 𝛼𝐷𝑊
𝑌cure

𝑖

𝑌sick
𝑖

d𝑌 (5)  

𝐷𝐴𝐿𝑌 = ∑ 𝐷𝐴𝐿𝑌𝑖

𝑁patient
final

𝑖=1

 (6)  
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where 𝑌𝑌𝐿 [year] is the years of life lost, 𝑌life [year] is the average life span, 𝑌dead [year] 

is the age of death, 𝛼 [–] is the disability adjusted life year weight, 𝑌𝐿𝐷 [year] is the years 

lost due to disability, 𝑌cure [year] is the age of complete recovery, 𝑌sick [year] is the age 

of onset, 𝑊 [–] is the disability weight, and 𝑁patient
final  [person] is the final number of all 

patients including completely cured patients. 

2.6. Cost model 

The total required manufacturing cost of allogeneic hiPS cells, 𝐶total, is calculated using 

the following equations: 

𝐶total = 𝐶const + 𝐶man + 𝐶trans (7)  

where 𝐶const [JPY] is the cost for construction, 𝐶man [JPY] is the cost for manufacturing, 

and 𝐶trans [JPY] is the cost for transportation. The value used in the calculation of 𝐶man 

were defined with reference to Sugiyama et al. (2020). 

3. Results and discussion 

3.1. Data pre-processing 

Figure 3 shows the relationship between the patient age, 𝑌, and the probability density, 𝜑 

[–], for the two diseases in Japan. For both diseases, the parks of the probability density 

are around 80 years old. 

3.2. Case study: Investigation of treatment mode 

The impact of the treatment mode on the cost-effectiveness of allogenic hiPS cell therapy 

for the two diseases was investigated in this section. For the cost-effectiveness analysis, 

the total required manufacturing cost of allogenic hiPS cells per one DALY, 𝐶total
DALY [JPY 

year–1], was defined as the evaluation indicator of cost-effectiveness, as shown in the 

following equations: 

𝐶total
DALY =

𝐶total

∆𝐷𝐴𝐿𝑌
     (𝑁patient

treat ≥ 1) (8)  

 
Figure 2.  Details of the treatment model. 



An agent-based model for cost-effectiveness analysis in the manufacture of  

allogeneic human induced pluripotent cells in J apan

   

∆𝐷𝐴𝐿𝑌 = −{𝐷𝐴𝐿𝑌(𝑁patient
treat ) − 𝐷𝐴𝐿𝑌(0)} (9)  

where ∆𝐷𝐴𝐿𝑌  [year] is the disability-adjusted life years that can be reduced by the 

treatment. The optimization problem was formulated as the following equation: 

min 𝐶total
DALY(𝛾, 𝑁patient

treat ) (10)  

subject to 

𝛾 ∈ { From youngest to oldest, From oldest to youngest}  

𝑁patient
treat  ≤ 6.0×103 

𝜃 ∈ {Ischemic cardiomyopathy, Parkinson’s disease}  

 

Figure 4 shows the relationship between 𝑁patient
treat , 𝐶total

DALY, 𝛾, and 𝜃. For both diseases, in 

the range where 𝑁patient
treat  was small, the values of 𝐶total

DALY differed greatly depending on 

the treatment mode. On the other hand, in the range where 𝑁patient
treat  was large, the 

 
F igure 3.  Distribution of the patient age. 

 
F igure 4.  Impact of the treatment mode and the number of treated patients on the 

cost-effectiveness for (a) ischemic cardiomyopathy and (b) Parkinson’s disease. 
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difference in the values of 𝐶total
DALY was small. Thus, in the range where 𝑁patient

treat  was small, 

the treatment mode needs to be discussed carefully. Moreover, in the range where 𝑁patient
treat  

is small, 𝐶total
DALY  decreases as 𝑁patient

treat  increases because the construction cost per one 

patient decreases. On the other hand, in the range where 𝑁patient
treat  is large, 𝐶total

DALY increases 

as 𝑁patient
treat  increases because the overproduction of hiPS cells happens. Hence, careful 

selection of 𝑁patient
treat  should be needed considering the situation of the disease.  

4. Conclusions and outlook 

In this work, we presented an agent-based model for cost-effectiveness analysis in the 

manufacture of allogeneic hiPS cells in Japan. The agent-based model was developed that 

can quantify the DALYs and the total required manufacturing cost of allogeneic hiPS 

cells. The case study showed that the treatment mode needs to be discussed carefully 

when the number of annual treated patients is small. In the field of computer-aided 

process engineering, cell therapy related studies are becoming relevant, e.g., Moschou et 

al. (2020) and Hayashi et al. (2020). Further model-based studies in this area are 

encouraged. 
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Abstract 

In the wake of the COVID-19 pandemic, hospitals worldwide have been overwhelmed 

and deprived of valuable resources such as bed capacities, medical equipment, personal 

protection equipment (PPE) stocks, and personnel. These factors imposed unforeseen 

challenges in the healthcare treatment systems. Mitigating inefficiencies by learning from 

COVID-19 is necessary to be better prepared to save lives and conserve resources. The 

main goal of this study is the development of an optimized healthcare treatment network 

by using predicted epidemiology curves to determine influxes of patients and bed 

capacities in a hospital facility for both in-patient (IP) wards (oxygen outlets) and 

intensive care units (ICU). Our model considers flows of patients by distinguishing them 

in terms of medical severity for their optimal allocation in an existing or installed 

healthcare facility treated as batch-lines (batch-processes in lines) with time-varying 

yields of a number of patients per day of treatment. Considering the hospital’s admission 

and discharge of patients from 2020’s 1st wave of COVID-19 in Qatar, we determine the 

bed space availability at any given future date for a hospital facility. This enables the 

prescription of engineered solutions to increase the capacity, responsiveness, and 

preparedness of healthcare systems infrastructure and management.  

Keywords: Healthcare systems, supply chain resilience, optimization, COVID-19. 

1. Introduction 

The rapid spread of COVID-19 cases demonstrated the challenges of containing a 

pandemic whilst providing adequate care (Murthy et al., 2020). Design and operational 

inefficiencies are among the biggest reasons healthcare systems fail to minimize death 

rates and spreads of pandemics. Given the inevitable occurrence of future pandemics, 

healthcare systems must predict the growth and spread of the virus, implement strategies 

to contain it, and prepare their facilities and resources accordingly.  

Several works address predictions on epidemiology curves (Santosh, 2020; Jewell et al., 

2020) and their respective effects on resources such as personal protective equipment 

(PPE) (Tosh et al., 2014). Stübinger and Schneider (2020) propose a forecast of the future 

COVID-19 spread by addressing identified lead-lag effects using dynamic time warping 

from batch process monitoring and analysis. Garbey et al. (2020) use data obtained from 

the French Government during COVID-19 in a computational model to anticipate the 

patient load of each care unit, and the amount of PPE required by these units, as well as 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50368-7 



 B. C. Menezes et al. 2210 

other key parameters that measure the performance of a healthcare system. Goodarzian 

et al. (2021) introduce a sustainable-resilience healthcare network for handling COVID-

19 pandemic using meta-heuristics for allocation of medicine, resources, and staff 

throughout the supply chain elements considering capacities and flows among 

warehouses, distribution centers, pharmacies, hospitals, etc. 

The proposition of this work is to develop prescriptive analytics for the optimal healthcare 

treatment systems in the planning, scheduling, and coordination of the disease treatment 

networks. With the utilization of the epidemiology curves, decisions can be made to 

determine optimal bed capacities needed during the COVID-19 pandemic, enabling the 

design and operation for a resilient medical supply chain to the COVID-19 pandemic.   

2. Problem statement 

The epidemiology data obtained for this study provide a daily prediction of positive cases 
from February 1st to May 31st, 2021 in Qatar. From the total number of suspected cases, it 
is assumed that 1% ends up in to the national healthcare systems’ triage facility. We 
develop a mixed-integer linear programming (MILP) model for 120 days as time-horizon 
with 1-day time-step, in which 30% of the suspected patients at the triage result in negative 
diagnostic, and the remaining 70% result in positive. Among the admitted in hospital, 70% 
of the patients went as an in-patient (IP) and 30% in an intensive care unit (ICU). The 
model considers actual distributions (in terms of medical severity) of approximately 7,800 
patients admitted into a hospital from March 2020 for one year, including the daily inflows 
and outflows of patients among the facility networks. It also considers the hospital’s 
capacity as 335 IP and 230 ICU beds, with initial occupancies of 30% for each. The field 
hospital to be opened has a capacity of 160 IP and 80 ICU beds. 

For the design and operation optimization of healthcare treatment systems, the network in 
Figure 1 shows a flowsheet of existing and future facilities and connections constructed in 
the unit-operation-port-state superstructure (UOPSS) from Kelly (2005) built-in in the 
Industrial Modeling and Programming Language (IMPL) (Kelly and Menezes, 2019). The 
shapes are considered as: a) unit-operations 𝑚 for sources and sinks (), tanks or 
inventories (∆), batch-processes (

p
) and b) the connectivity involving arrows (→), inlet-

port 𝑖 (◯) and outlet-port 𝑗. Unit-operations and arrows are modeled by binary 𝑦 and 
continuous 𝑥 variables and the ports as yields of patients. 

 

Figure 1. Base flowsheet of the healthcare system. 
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The model includes predicted yields of patient step-downs (from ICU to IP – meaning the 
patients’ medical status improved), patient step-ups (from IP to ICU – meaning the 
patients’ medical status deteriorated), patient admission yields, patient discharge yields, 
death yields, and transfer yields. The maximum batch-time is 21 days (which captures 
approximately 85 to 90% of hospitalized patients’ lengths of stay), although there are time-
varying yields from the actual distribution of patients in- and out-fluxes both IP and ICU 
wards from the observed cases. The 1- to 20-days yields and their connections are not 
represented in Figure 1 for simplicity.  

3. Mathematical modeling 

The objective function in Eq.(1) maximizes the pre-treatment of the suspected cases in the 
triage emergency room (ER), where 𝑥𝑗,𝑖,𝑡 represent number of cases for flows from the 

outlet port set 𝑗 to inlet set 𝑖 at time 𝑡. The variable 𝑥ℎ𝑚,𝑡 defines batch-processes’ or 

hospital-units’ holdups and pools of bed capacity in the model. All flows and holdups are 
governed by semi-continuous constraints of the shapes to themselves, such as 𝑥̅𝑗,𝑖,𝑡

𝐿  𝑦𝑗,𝑖,𝑡 ≤

𝑥𝑗,𝑖,𝑡 ≤ 𝑥̅𝑗,𝑖,𝑡
𝑈  𝑦𝑗,𝑖,𝑡 ∀ (𝑗, 𝑖) ∈ 𝐽𝐼, 𝑡. The sets 𝐼 and 𝐽 represent in- and out-ports, respectively, 

while the set 𝐽𝐼 defines connecting patient flows between out- and in-ports. For the batch-
processes (triage and hospitals), the holdup 𝑥ℎ𝑚,𝑡 is taken when they are starting up 

(𝑧𝑢𝑚,𝑡=1) constrained by the respective bounds of the hospital facility capacities. The 

UOPSS formulation in Eq.(2) establishes that the holdup or inventory level bounds (𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  

and 𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈 ) of the hospital facilities respect the sum of the flows arriving in and leaving 

from ports (in- and out-ports) whenever the respective startup variable 𝑧𝑠𝑢𝑚,𝑡 is active. The 

sets 𝑀𝐵𝐴𝑇𝐶𝐻 include triage-ER, IP, and ICU facilities and 𝑀𝑃𝑂𝑂𝐿 the IP/ICU bed’s pools. In 
the indices in the summations from Eq.(1) to (5), the subsets of the 𝐼, 𝐽, and 𝐽𝐼 follow the 
flowsheet in Figure 1. For 𝑥𝑗,𝑖,𝑡 , 𝑥ℎ𝑚,𝑡 ≥ 0; 𝑦𝑗,𝑖,𝑡 , 𝑦𝑚,𝑡 = {0,1}; 𝑧𝑠𝑢𝑚,𝑡 = (0,1): 

  𝑀𝑎𝑥 𝑍 = ∑ ∑ 𝑥𝑗,𝑖,𝑡

𝐽𝐼𝑆𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑𝑡

 (1) 

𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  𝑧𝑠𝑢𝑚,𝑡 ≤ ∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼

≤ 𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈  𝑧𝑠𝑢𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝐵𝐴𝑇𝐶𝐻 , 𝑡 (2) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗∈𝐽𝑢𝑝

=  𝑥ℎ𝑚,𝑡   ∀ (𝑖, 𝑚) ∈ 𝑀𝐵𝐴𝑇𝐶𝐻 , 𝑡 (3) 

𝑥𝑗,𝑖∈𝐼𝑑𝑜,𝑡+𝑑𝑒𝑙𝑎𝑦 = 𝑟̅𝑗,𝑡+𝑑𝑒𝑙𝑎𝑦 𝑥ℎ𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝐵𝐴𝑇𝐶𝐻, 𝑡 (4) 

𝑥ℎ𝑚,𝑡 = 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝∈𝐽

 − ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜∈𝐼

  ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑃𝑂𝑂𝐿, 𝑡 (5) 

𝑦𝑚𝑢𝑝,𝑡 + 𝑦𝑚,𝑡 ≥ 2𝑦𝑗𝑢𝑝,𝑖,𝑡   ∀ (𝑚𝑢𝑝, 𝑗𝑢𝑝, 𝑖, 𝑚), 𝑡 (6) 

∑ 𝑧𝑠𝑢𝑚′,𝑡𝑡

𝑡𝑡<𝑡

+ 𝑦𝑚,𝑡 ≤ 𝑦𝑗,𝑖,𝑡  ∀ (𝑚′, 𝑗, 𝑖, 𝑚), 𝑡 (7) 

𝑦𝑚,𝑡 − 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 = 0  ∀ 𝑚 ∈ 𝑀𝐵𝐴𝑇𝐶𝐻 , 𝑡 (8) 

𝑦𝑚,𝑡 + 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 − 𝑧𝑠𝑑𝑚,𝑡  − 2𝑧𝑠𝑤𝑚,𝑡 = 0 ∀ 𝑚 ∈ 𝑀𝐵𝐴𝑇𝐶𝐻 , 𝑡 (9) 

𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 + 𝑧𝑠𝑤𝑚,𝑡 ≤ 1 ∀ 𝑚 ∈ 𝑀𝐵𝐴𝑇𝐶𝐻 , 𝑡 (10) 
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Equations (3) and (4) are related to the modeling of hospitals as batch-processes and in a 
special case called batch-lines. This is applied in Menezes et al. (2020) for livestock 
planning to determine the initial procreation of the animal batches, in which there is no 
accumulation of amounts of batches at each time step, as in Eq.(3). Instead, balances of 
batch amounts at a single time-window and the delaying and yield of amounts leaving the 
facility are modeled, as in Eq.(4). In the hospital facilities, new batches of patients arrive 
in the Triage-ER, Hospital IP, and Hospital ICU every day. The unit-operations’ inventory 
or holdup quantity balance of pools are determined in Eq.(5) for both IP and ICU bed 
capacities. These constraints manage the availability of beds (holdup) to be utilized in the 
hospitals by controlling the a) inlet flow, when patients are dispatched outside the system 
or change their status to step-up or step-down; and b) the outlet flow, when the beds are 
needed in the hospital facilities. 

Equations (5) and (6) represent the constraints for the structural transitions that allow the 

setup 𝑦𝑚,𝑡 or startup 𝑧𝑠𝑢𝑚,𝑡 of connected out-port-states 𝑗 and in-port-states 𝑖 unit-

operations. When the setup of unit-operations 𝑚 and 𝑚′ is equal to the unitary in Eq.(6), 

by implication, the setup variable the arrow stream 𝑦𝑗,𝑖,𝑡 between the neighbor unit-

operations must be true. In Eq.(7), addressing the hospital facilities as batch-processes, 

as the setup variable of 𝑚′ is changed by the summation of the startups. These logic valid 

cuts reduce the tree search in branch-and-bound methods. The temporal transition in 

Equations (8) and (9) control the operations for semi-continuous blenders from Kelly and 

Zyngier (2007). The binary variable 𝑦𝑚,𝑡 manages the start-up (𝑧𝑠𝑢𝑚,𝑡) switch-over 

(𝑧𝑠𝑤𝑚,𝑡) and shut-down variables (𝑧𝑠𝑑𝑚,𝑡), which are relaxed in the interval [0,1]. 

Equation (10) guarantees the integrality of the relaxed variables.  

4. Results 

The optimization for the proposed MILP in Figure 1 for 120 days as time-horizon with 1-

day time-step is solved in 63 seconds with GUROBI 9.1.1 and 256 seconds with CPLEX 

20.1.0 both at 1.0% of MILP relaxation gap using an Intel Core i7 machine at 3.4 GHz (8 

threads) with 64 GB of RAM. There are 68,721 constraints for 23,765 continuous 

variables and 15,248 binary variables in the problem. The results in Figure 2 show that 

the existing facility’s IP capacity could not sustain the surge of patients caused by the 

new strain of COVID-19 (initiated on day 63), which triggered the opening of the new 

field hospital by day 85.  

 
Figure 2. Design and operation of the IP facility. 



Based on Figure 2, the existing hospital was only able to sustain the increase in patients 
for exactly 21 days (day 84), where the number of In-Patient admissions was 47 patients 
per day. From day 85 onwards, both facilities simultaneously received patients, which 
relieved the pressure on the existing facility and made the design feasible. Days 98, 101, 
and 119 demonstrate how the new field hospital’s capacity helped sustain the operation 
when the main existing facility’s capacity depleted. By the end of the time horizon, there 
were still 51 vacant IP beds in the field hospital (i.e., new facility). The lines in the plot are 
symmetrical as each facility worked hand in hand to handle the influx of patients. 

Figure 3 demonstrates how the opening of 80 more ICU beds aided in sustaining the 
hospitalization of patients on days 83, 92, and onwards. The phenomenon observed from 
days 92 to 107, where the capacity of the field hospital remains zero, is illustrated in Figure 
4. 

 

Figure 3. Design and operation of the ICU facility. 

Figure 4 explains why the Field Hospital ICU capacity curve remains flat at zero from day 
92 to 107, in which the capacity pool freeing up (by people being discharged) is occupied 
by other patients at the same rate. This phenomenon shows extreme efficiency since 
utilizes the limit opened capacity available, although it does not consider real-world factors 
such as the disinfection or preparation of ICU space. 

 

Figure 4. Pool of patients in and out causing the capacity to remain flat at zero. 
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5. Conclusions 

It was evident from the events of COVID-19 that our world is interconnected in a way 

that virus outbreaks in a region can easily spread and cause impacts in a global sphere. 

Protecting the lives of humans entails that we must have a proper number of resources 

allocated in a timely and efficient manner. This work demonstrates how to be better 

prepared by designing and operating a healthcare treatment network with different 

facilities as the triage-ER, in-patient (IP), and intensive care unit (ICU) wards. The 

predicted epidemiology curves and the time-varying yields of the distribution of patients 

throughout the network served as inputs for the modeling and solving of batch-lines of 

patients interconnected among the facilities and their outlets. With such proposition, 

availability of bed capacities has been determined along the time-horizon, and 

installations of new field facilities for IP and ICU were necessary to handle the increased 

number of moderate and severe patients. Future work can implement procurement 

planning to ensure continuous availability of PPE and medical equipment; model staff 

scheduling models to ensure that no sick person is left unattended; design entire health 

system networks to ensure fully and optimal utilization of bed space; provide better 

utilization of quarantine and hotel facilities; and develop more accurate epidemiology 

curves to provide more reliable predictions for the potential of strains of viruses in further 

pandemic events.   
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Abstract 

With a high demand for monoclonal Antibodies (mAbs) in the current biopharmaceutical 

market, there is a need to improve overall process productivity while maintaining product 

quality. This work introduces three case studies that apply process systems engineering 

(PSE) methods including flowsheet modeling, mechanistic modeling, and process 

optimization to provide strategies on production mode selection, process prediction, and 

operating design space determination. These approaches can be utilized in process 

development and ultimately improve the productivity during biopharmaceutical 

manufacturing.  

Keywords: Process simulation; Dynamic modeling; Biopharmaceutical manufacturing 

1. Introduction 
MAbs is one of the most promising therapeutic products with its wide applications in 

cancers, infections, and autoimmune disorders treatment. It has been reported that the 

growth rate of mAb market ranges between 7.2 and 18.3% since 2016 and would reach 

$130-200 billion in the year 2022 (Grilo and Mantalaris, 2019). Most of mAbs belong to 

IgG class which contains two regions: antigen-binding (Fab) and crystallizable regions 

(Fc). Protein glycosylation in Fc region affects protein stability and efficacy (Xu et al. 

2011, Zheng et al., 2011). Thus, maintaining operating conditions within a feasible region 

to ensure the required level of glycosylation is also critical and challenging in mAb 

production. Process systems engineering (PSE) methods such as process simulation, 

sensitivity analysis, and process optimization allow early-stage process design, system 

analysis, and process improvement, which has great potential to address the above 

challenges.  

In this work, flowsheet modeling is used as a process decision-making tool to evaluate 

cost-effectiveness of fully integrated continuous operation over the conventional batch 

operation. Then mechanistic and surrogate models are used to capture nonlinear 

bioreactor dynamics under different operating conditions. The models are able to 

correlate operating parameters with productivity and quality. Furthermore, feasibility 

analysis is applied to process model to determine the design space for desired protein 

production and drug quality.  

http://dx.doi.org/10.1016/B978-0-323-85159-6.50369-9 
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2. Flowsheet modeling and techno-economic analysis 
In this case study, fed-batch and continuous mAb production lines are designed to 

evaluate the benefits of continuous operations. Different analysis approaches including 

deterministic cost analysis, and sensitivity analysis are used to discover the possibilities 

and challenges of continuous applications in biopharmaceutical manufacturing. 

2.1. Process Description   

Biopharmaceutical manufacturing for mAbs production includes inoculation, cell culture 

protein production, clarification, primary capture, polishing, and final formulation steps. 

The inoculation is a series of cell culture passages that contain test tubes, T flasks, shake 

flasks, and seed culture bioreactor. Fed-batch bioreactor and perfusion bioreactor are used 

as production bioreactors for batch process and continuous process, respectively.  After 

production in batch operating mode, proteins are purified by centrifuge followed by 

microfilters, dead-end filters, Protein A chromatography, acid-based virus inactivation 

tanks, AEX chromatography, nano filter, ultrafiltration, and diafiltration. For continuous 

process, tangential filtration is used to harvest protein and send it to filters and periodic 

counter-current (PCC) protein A column for primary capture. Two virus inactivation 

tanks and AEX chromatography work alternatively to achieve continuous virus 

inactivation. For the final formulation staged single-pass tangential flow filtration and 

counter-current staged diafiltration are used for buffer exchange and protein 

concentration.   

2.2. Simulation software and techno-economic analysis 

SuperPro Designer (Intelligen, Scotch Plains, NJ) is a recipe-driven simulator that can be 

used to simulate both batch and continuous biopharmaceutical manufacturing. Material 

balances and process scheduling can be captured through the whole process. Process 

analysis including economic analysis with breakdown cost categories, throughput 

analysis, and sensitivity analysis are used to evaluate the two operating modes under 

different scales and process operating parameters.  

Economic analysis is performed using SuperPro Designer with customer inputted 

equipment and material costs. The costs are referenced from literature and online vendor 

resources. The calculation includes capital investment and operating costs. The capital 

investment is based on equipment expenditure. The installation, piping, insulation costs 

are calculated based on the equipment cost. The operating cost contains material, 

consumables, utilities, labor-depended, quality control and quality assurance, and facility 

cost. Cost of goods per gram (COG/g) is used to represent cost per unit of production.  

2.3. Results  

Two integrated lines, one with batch operating mode and another with continuous 

operating mode are simulated. The base case scenario is adjusted to 620 kg/yr production 

rate and the selling price of mAb is assumed at $20/mg. The result shows that upstream 

takes the highest percent of the overall cost in both operating modes. Comparing batch 

and continuous processes, the overall capital cost in the fed-batch process is $165 million, 

which is 2 times higher than that of the continuous process. The operating cost of fed-

batch and continuous processes are $61 million/yr, and $32 million/yr, respectively.  

Figure 1 clearly shows that the main benefit of the continuous process stems from the 

capital cost investment and facility dependent cost, mainly due to smaller footprint of the 

continuous process. The consumables cost is also reduced due to resin cost savings in the 

PCC process.  
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Figure 1 Cost of goods analysis between fed-batch and continuous 

Sensitivity analysis is used to further investigate the impact of throughput and upstream 

parameters on the cost-effectiveness of the two operating modes. The manufacturing scale 

changes from 50 kg/yr to 1200 kg/yr as shown in Figure 2. Results show a decreased 

trend of unit operating cost with plant capacity changes, which is mainly attributed to the 

cost savings of labor dependent cost. The continuous process is more cost-effective than 

the batch process through the whole range of capacity. Similar results are also found whe 

titer changes as shown in Figure 3, where titer varies from 1.5 g/L to 5.5 g/L.  

 

Figure 2 Manufacturing scales change vs. COG/g 

 

Figure 3 Upstream titer vs operating cost 

3. Predictive modeling of cell culture and protein glycosylation processes  
From the previous case study, it has been found that the upstream bioreactor takes the 

highest percentage of the overall cost and is usually identified as a bottleneck of the 

overall process production. In this section experimental data are used to develop a 

mechanistic model to understand cell culture and protein glycosylation process in order 

to improve production and achieve target product quality.  

3.1. Background 

In mAbs production, the protein glycosylation process is a post-translation modification 

process that affects product potency and efficacy. Operating conditions such as 

temperature, pH, and metabolites concentrations all affect glycosylation. To understand 

the effect of temperature on the glycosylation process, Chinese hamster ovary (CHO)-K1 

cell is first cultured under 37 ℃ and switched to 35 ℃, 37 ℃ and 39 ℃ on day 4. Different 

metabolite concentrations, protein titer and glycan fractions are measured at different time 

points and used to train a mechanistic model.  

3.2. Equations  

The mechanistic model includes two parts, the cell unstructured model and the structured 

glycosylation model. The unstructured model considers cells as a black box and only 

captures the mass balance of critical components in a bioreactor. Equation (1) represents 

the mass balance of cell density.  
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𝑑(𝑉[𝑋𝑣])

𝑑𝑡
= 𝐹𝑖𝑛 [𝑋𝑣0 ] + 𝜇𝑉[𝑋𝑣] − 𝜇𝑑𝑉[𝑋𝑣] − 𝐹𝑜𝑢𝑡𝑋𝑣  

(1) 

where 𝑋𝑣 is cell density, 𝐹𝑖𝑛,  𝐹𝑜𝑢𝑡 represent feed addition and sampling during the cell 

culture; 𝜇 is cell growth rate, which can be represented by empirical equations correlated 

to other metabolites/nutrients in the solution; and 𝜇𝑑 is cell death rate. The single cell 

model considers Golgi Apparatus, where major glycosylation reaction happens, as a plug 

flow reactor and the mass balance as shown in equation (2).  

𝜕[𝐺𝑚]

𝜕𝑡
= −𝑉1

𝜕[𝐺𝑚]

𝜕𝑧
+ ∑ 𝑣𝑚,𝑛𝑟𝑛

𝐸𝑛𝑧𝑦𝑚𝑒

𝑛
 

(2)  

where 𝐺𝑚 is glycan fractions; 𝑟𝑛 represents kinetic rate for enzyme reaction n;  𝑣𝑚,𝑛 is the 

reaction coefficient of glycan m that catalyzed by enzyme n; 𝑉1  represents the linear 

velocity that protein glycan transfers through the Golgi apparatus. 

3.3. Results  

Least-squares parameter estimation is used to fit the model to experimental data. 

Experimental data and simulation fitting results for product titer and G0 fraction (one of 

the glycan fractions) under different temperatures are shown in Figure 4, and 5. The result 

shows that the mechanistic model is able to capture the general trend of both titer and G0 

fraction and the relative trends under different temperature can also be obtained. Cell 

density, glucose, ammonia concentrations and other glycan fractions can also be captured.  

 

Figure 4 Experimental data and simulation fitting 

results for titer  

 

Figure 5 Experimental data and simulation 

fitting results for G0 fraction 

4. Fed-batch bioreactor modeling and design space identification  
In this case study, dynamic kriging together with a surrogate-based adaptive sampling 

approach is used to capture the effects of temperature and pH on productivity (product 

titer) and product quality (glycan fraction in glycosylation process) and furthermore 

determine the design space for upstream bioreactor operation (Yang and Ierapetritou 

2021).  

4.1. Kriging and dynamic kriging  

As an interpolation method, kriging equation is shown in Equation (3).   

𝑓(xi) = 𝛽𝑓(xi) + 𝜀(xi) (3) 

βf(xi) indicates a known regression model that defines the global trend of the data  𝑓(xi), 

𝛽 is unknown parameter; 𝜀(xi) is a residual term that represents the error at location xi 

O. Yang and M. Ierapetritou



which is usually normally distributed with zero mean and variance 𝜎2. Dynamic kriging 

is a modification of kriging model as shown in equation (4).  

𝑓(x𝑘
i ) = 𝛽𝑓(x𝑘

i , 𝑓(x𝑘−1
i )  ) + 𝜀(xi, 𝑓(x𝑘−1

i )) (4) 

The dynamic system is first discretized into different time points k, and the kriging model 

is used as an autoregressive model that collects the predicted results 𝑓(x𝑘−1
i ) from the 

previous time point (k-1) and combines with the state variables or control input x𝑘
i  to 

estimate the future time point 𝑓(x𝑘
i )(Hernandez and Grover 2010). In this work, both 

models are built using DACE toolbox in MATLAB. 

4.2.  Feasibility analysis  

Feasibility function is defined in equation (5). 

𝜑(𝑥) = max
𝑗∈𝐽

gi(𝑥) (5) 

where gi(𝑥) represent different constraints including productivity and product quality, x 

includes temperature, pH and other operating parameters which are total operating time, 

initial conditions of cell density, glucose and mAb concentrations. Initial sample points 

can be generated by space filing sampling and a feasible region (𝜑(𝑥) < 0) can be obtained 

by calculating the feasibility function as shown in Equation (5). Adaptive sampling 

method is used to improve the accuracy of the feasible boundary by maximizing the 

modified EI function, shown in equation (6). The new sample points that are close to the 

boundary of the feasible region are used to update the kriging model.  

𝐸𝐼𝑓𝑒𝑎𝑠(𝑥) = 𝑠̂(𝑥)𝜙 (−
𝑦̂(𝑥)

𝑠̂(𝑥)
) = 𝑠̂(𝑥)

1

√2𝜋
𝑒

−0.5(
𝑦̂(𝑥)2

𝑠̂(𝑥)2 )
 

(6) 

Standard error 𝑠̂(𝑥) can be obtained from kriging prediction at location x, and 𝑦̂(𝑥) is the

predicted value. The detailed explanation of the modified EI function can be found in 

(Boukouvala and Ierapetritou 2014). 

4.3. R esults  

The mechanistic model for mAbs production outlined in Section 3 is first used to generate 

training datasets to build kriging models. A two-level full factorial design is applied to 

generate data under different temperature and pH. Viable cell density, glucose 

concentration, protein titer and glycan fractions are obtained. The prediction from 

dynamic kriging and regular kriging are compared in Figure 6. Dynamic kriging provides 

higher prediction accuracy than regular kriging, because dynamic kriging considers more 

sample points (the previous time points) and correlations during the model prediction.    

            

Figure 6 Comparison between dynamic kriging and regular kriging 
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Figure 7 Prediction of glycan fraction using 

dynamic kriging 

 

Figure 8 Design space obtained from adaptive 

sampling. 

Input parameters (temperature and pH) together with viable cell concentration, protein 

titers, and glycan fractions at (t−1) time points are used to predict the glycan fractions at 

time t. Figure 7 provides the prediction of one of the glycan fractions from dynamic 

kriging which shows that dynamic kriging is able to predict the dynamic trend of glycan 

fractions with high accuracy. Feasibility analysis is used to ensure high product titer while 

maintaining glycan fractions within the required range. Figure 8 shows the contour plot 

for feasibility function values under different pH and temperatures. The feasible operating 

region is demonstrated inside the zero line.  

5. Conclusions 
This work shows the application of process modeling and system analysis methods on the 

improvement of biopharmaceutical manufacturing process. Three approaches are 

provided, including flowsheet simulation and single unit operation modeling and 

optimization. Flowsheet modeling is applied to process design and integrated process 

evaluation. Mechanistic modeling is used to correlate process parameters with cell growth 

and critical product quality attributes. A framework is built to improve process 

understanding as well as finding an optimum design space to satisfy required productivity 

and quality. For the future work, the mechanic model can be integrated to the flowsheet 

model to obtain an end-to-end biopharmaceutical manufacturing simulation system. 

Operation of single unit and integrated line can be optimized by adaptive sampling and 

surrogate based optimization. Validating and training the model with real data would 

further improve the robustness and reliability of the model.  
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Abstract 

Cardiovascular diseases (CVDs) are the number one cause of death worldwide. Mass 

production of engineered heart tissue using differentiation of human-induced pluripotent 

stem cells (hiPSCs) can substitute a large number of the lost heart muscle cells in patients 

with CVDs. However, the scale-up of the differentiation systems for heart tissue, i.e., 

cardiomyocyte (CM), production is challenging because many parameters affect the 

process. Machine learning (ML) techniques can be employed to identify critical process 

parameters for differentiation systems and build models to elucidate the impact of these 

parameters on process outcomes. Here, we present a ML model to predict CM content on 

day 10 of the differentiation. Phase-contrast images of microspheroid tissues on 

differentiation day 5 are the inputs of the ML model, and the output is CM content on 10 

of differentiation, classified as either sufficient and insufficient. Support vector machines 

are used as the classifier models. We utilized feature extraction and selection methods. 

The best classifier had an accuracy of 77% in predicting the sufficient CM content class. 

Keywords: cardiac differentiation, machine learning, support vector machines 

1. Introduction 

Heart muscle cells (cardiomyocytes (CMs)) are one of the least regenerative cells in the 

body. Cardiovascular diseases (CVDs) can lead to heart failure and loss of in the order of 

billion CMs (Kempf et al., 2016). Few viable treatments are present for patients with 

CVD and post-heart attack problems. Production of CMs via differentiation from human-

induced pluripotent stem cells (hiPSCs) may contribute to developing and testing 

therapeutics for CVDs, e.g., in fields such as drug monitoring and cell therapy (Denning 

et al., 2016). Mass production of CMs and their implementation in cell therapy of CVD 

patients is another potential application of hiPSC-derived CMs (hiPSC-CMs).  

The production of CMs by differentiation of hiPSCs in a 3D platform is a complex, 

expensive process, and a high number of parameters impact the system performance 

(Gaspari et al., 2018). The 3D platforms are promising for the scale-up of CM production, 

and identifying critical process parameters and their optimal ranges for 3D platforms is 

the first step towards scale-up. More specifically, distinguishing an unsuccessful batch 

from a successful one at an earlier time point of the differentiation would significantly 

reduce the expense and time required for CM production. 

In recent years, machine learning (ML) techniques have been successfully used to study 

complex systems where fundamental understanding is limited. These techniques use 

http://dx.doi.org/10.1016/B978-0-323-85159-6.50370-5 
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information from data sets to infer the relationships between process parameters (inputs) 

and outcomes (outputs). With the progress in ML algorithms and computational power, 

many studies exploited the information contained in images to build models to study 

different systems, such as quantification of CM contraction using image correlation 

analysis (Kamgoué et al., 2009) and plant disease detection (Vishnoi et al., 2021).  

This study investigates the ability to classify CM content on day 10 of hiPSC-laden 

microspheroid differentiation using images taken on day 5. The CM content is defined as 

the percentage of the cells which are CMs on the specific differentiation day. We 

hypothesize that the phase-contrast images of the cells taken during differentiation 

include information regarding differentiation progress and that a classifier model can 

capture this information to distinguish batches with sufficient CM content from those 

with insufficient. Support vector machines are trained using different extracted feature 

sets of the phase-contrast images to predict the CM content class. The best model had an 

accuracy of 77% and an MCC of 0.53.  

2. Methods and Materials 

2.1. Experiments 

HiPSCs were encapsulated within PEG-fibrinogen (PF) by using a novel microfluidic 

system (Tian and Lipke, 2020) in microspheroids with different sizes and axial ratios 

(AR). After culturing the hiPSC-laden microspheroids in E8 or mTeSR-1 media for 3 

days, the CM differentiation is carried out by supplemented CDM3 or RPMI/B27 minus 

insulin with CHIR on day 0 and IWP2 on days 1 and 3, respectively. Fresh CDM3 was 

added on days 3, 5, 7, and fresh RPMI/B27 minus insulin media was added on days 1 and 

5. Following day 7 or 10, the microspheroids were cultured with RPMI/B27 (Gibco), and 

the media was exchanged every 3–4 days. (Figure 1). Phase-contrast images were taken 

throughout the differentiation timeline on days 0, 1, 3, and 5, shown in Figure 1.  

 

Figure 1. Differentiation protocol of hiPSC-laden microspheroids 

2.2. Data Used to Build the Classifier Model 

The initial training data set included 301 phase-contrast images, from day 5 of 

differentiation, with their corresponding CM content on day 10. Images on day 5 were 

used because day 5 is the earliest time point without any external stimuli or changes to 

the system with image availability. Each image contained 496 × 658 pixels. Figure 2 

shows two representative images. The images were augmented to increase the number of 

training data points to improve the model’s generalization. Each image was flipped and 

rotated (180°), increasing the number to 903. 

CM content above 70% on the 10th differentiation day was defined as the Sufficient class, 

and batched with CM content below 70% belonged to the Insufficient class. The data was 

D -3 D 1D 0 D 3 D 5 D 7 D 10

E8 CDM3 RPMI/B27 +

CHIR

mTeSR-1 RPMI/B27 minus insulin RPMI/B27 +

IWP2 IWP2
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split into test and train sets using 20% and 80% of data ratios, respectively. Different 

classifier models were compared based on their performance on the test set. 

 

Figure 2. Representative phase-contrast images of microspheroids on day 5 

2.3. Feature Extraction

The RGB color space features (color features) of the image pixels formed the initial input 

feature set. We used two techniques to extract additional features from the images, 

Histogram of Oriented Gradients (HOGs) (Freeman and Roth, 1994) and texture 

transformations (Haralick et al., 1973). The HOG feature descriptor is used for object 

detection and utilizes the local intensity gradient distributions to identify object edges in 

the images. In the texture transformation method, the grey level co-occurrence matrix

(GLCM) is used to calculate six different statistical attributes to explain the image texture 

patterns. Four different directions, 0°, 90°, 45°, and 135°, were used to calculate the 

GLCM matrices. The six attributes derived from the co-occurrence matrix (Aborisade et 

al., 2014; Haralick et al., 1973) includes  

1) Contrast, which is a measure of the local intensity variations, 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)
𝑗𝑖

 Eq. 1 

2) Dissimilarity, which is a localized measure of distance for a pair of pixels, 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ |𝑖 − 𝑗| 𝑝(𝑖, 𝑗)
𝑗𝑖

 Eq. 2 

3) Angular Second Moment (ASM), which represents the orderliness of each window 

of the image, 

𝐴𝑆𝑀 = ∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗
 Eq. 3 

4) Energy, which is the square root of the ASM,  

𝐸𝑛𝑒𝑟𝑔𝑦 = √𝐴𝑆𝑀 Eq. 4 

5) Homogeneity, which represents the local homogeneity within the image by comparing 

the elements to the diagonal value of the GLCM matrix, and  

2223 
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𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 = ∑ ∑
1

1 + |𝑖 − 𝑗| 2
 𝑝(𝑖, 𝑗)

𝑗𝑖
 Eq. 5 

6) Correlation, which is a measure of the linear correlation between the grey-level values 

of neighbouring pixels. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖 − 𝜇𝑖) (𝑗 − 𝜇𝑗) 𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗

 
𝑗𝑖

 Eq. 6 

In Eqs. (1) – (6), 𝑝(𝑖, 𝑗) is the normalized value of the GLCM matrix element at row 𝑖 and 

column 𝑗, and 𝜇𝑖and 𝜎𝑖 are mean and variance for each row of the GLCM matrix 

components. 

We constructed five feature sets as potential inputs for the classifier model using color 

features, HOG features, and texture transformation features. The first set includes all 

features (color+HOG+texture), the second color and HOG features (color+HOG), the 

third color and texture features (color+texture), the fourth HOG and texture features 

(HOG+texture), and the last one only texture (texture) features. Principal Component 

Analysis (PCA) (Hotelling, 1933) was used to reduce feature set dimensions. PCA uses 

orthogonal transformations to build components with a linear combination of the original 

input features to convert a set of possibly correlated features into uncorrelated ones. The 

principal components (PCs) explaining 95% of the variance in the input data were 

considered as classifier inputs. 

2.4. Classifier Model Construction and Evaluation 

Support Vector Machines (SVMs) (Drucker et al., 2002) were used as the classification 

models. Linear, radial basis function, and second and third-order polynomials, were 

evaluated as potential kernels for the SVMs. Kernel selection and regularization 

parameter tuning were carried out using five-fold cross-validation. Accuracy (Guyon and 

Elisseeff, 2003), recall (Sokolova and Lapalme, 2009), precision (Sokolova and Lapalme, 

2009), and Mathew’s correlation coefficient (MCC) (Matthews, 1975) were the metrics 

used for comparing the performance of the classifiers. 

3. Results and Discussion 

The performance of classification models in predicting the CM content class for the test 

points is shown in Figure 3. Figure 3 includes a plot of the performance metrics of the 

classifiers trained using each feature set. The classifiers were trained using the original 

data set and the augmented data set, and the performance metrics are plotted separately 

for these classifiers. The plots only include performance metrics calculated using the test 

data. Figure 3 reveals that the SVM employing the texture transformation features yielded 

the best performance with an accuracy of 77%, a recall of 92%, a precision of 75%, and 

an MCC of 0.53. The data augmentation improved the classifier model performance for 

the ones employing features other than textures transformations. Because texture features, 

except for those in which the GLCM matrix was calculated in 45° and 135° directions, 

are obtained using global transformations, their values are both rotation and flip invariant. 

As a result, the models that employ texture transformation features perform similarly 

when trained using the original data set or the augmented one.  

The performance of classification models trained using PCs is given in Figure 4. The 

classifiers that employ the texture features had the best performance with an accuracy of 



74% and an MCC of 0.51. The classifier model trained only using HOG and texture 

features for constructing the PCs, eliminating all color features, had the worst 

performance with recall, precision, and MCC of zero. Data augmentation, in general, 

improved the performance of the classifiers that used PCs as input sets. However, the 

performance metrics of the classifier models using PCs as inputs were lower (worse) than 

those of classifier models built using raw texture, color, and HOG features.  

 

Figure 3. Bar plots of SVM classifier performance metrics trained using different feature sets for 

the original data set (solid bars) and augmented data set (dashed bars). 

 

Figure 4. Bar plots of SVM classifier performance metrics trained using PC and different feature 

sets for the original data set (solid bars) and augmented data set (dashed bars). 
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4. Conclusions 

Imaging is commonly used for tracking human induced pluripotent stem cell (hiPSC) 

differentiation. Using image-based classification, we built binary classification models to 

predict Sufficient/Insufficient classes of cardiomyocyte (CM) content in cells 

differentiated from hiPSCs. Feature extraction methods were implemented to identify and 

use the significant features from images to build the classifier. The experimental batched 

with a CM content above 70% was labeled as the Sufficient class, and our classifier was 

able to predict the classes with 77% accuracy. Future work will include consideration of 

mixed data from experimental variables and images and consideration of convolutional 

neural networks as the ML technique to improve the performance of the classifier models. 
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Abstract

In the powder mixing process, it is important to uniformly mix components. Since it
is difficult to directly measure the concentration in the equipment, a statistical model to
predict concentration using NIRS (near infrared spectrum) has been studied in this work.
Statistical models can be divided into two types: those constructed from data obtained by
the in-line sensor (in-line models), and those constructed from data obtained by the off-
line sensor (off-line models). In the off-line data acquisition, the amount of powder used
in the experiment can be reduced, and mixing experiments using actual equipment are not
required. Thus it would be better if data could be collected off-line. In this study, the
prediction accuracies of the two models were compared, and it was found the prediction
accuracy of the model tends to be higher when the data was measured in-line. Off-line
model cannot predict in-line data because the measurement environment of off-line data is
different from that of in-line data. And variable selection was used to improve the in-line
prediction accuracy of the off-line model.

Keywords: NIR, Solid dosage forms, Mixing, PLS, PAT, Off-line, In-line

1. Introduction

In the powder mixing process, it is important to ensure the active pharmaceutical ingredi-
ents (API) and excipients are sufficiently mixed. However, it is difficult to directly mea-
sure API concentration in the mixing equipment. One of the ordinaly method to solve the
problem is to construct a statistical model to predict the API concentration from the near
infrared spectrum (NIRS). Statistical models can be divided into two types: those con-
structed from data obtained by the in-line sensor (in-line models), and those constructed
from data obtained by the off-line sensor (off-line models). In the off-line data acquisition,
the amount of powder and the scale of equipment are smaller than the in-line data acqui-
sition. However, since off-line and in-line data are measured under different conditions,
off-line model cannot accurately predict API concentration. There are many researches
to construct a prediction model for API concentration in the mixing process as shown in
Table 1. However, in previous studies, few studies have compared off-line models with
in-line models.

http://dx.doi.org/10.1016/B978-0-323-85159-6.50371-7 
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Table 1: Prior studies

Number Author Year Sensor type Reference
1 Wee Beng Lee et al. 2019 In-line [W. B. Lee et al. , 2019]
2 Barbara Bakri et al. 2015 In-line [B. Bakri et al. , 2015]
3 Leonel Quinones et al. 2014 In-line [L. Quinones et al. 2014]
4 Yleana M. Colon et al. 2014 In-line [Y. M.Colon et al. , 2014]
5 Aditya U.Vanarase et al. 2013 In-line [A. U.Vanarase et al. , 2010]
6 Otto Scheibelhofer et al. 2013 Off-line [O.Scheibelhofer et al., 2013]
7 Sanghong Kim et al. 2011 Off-line [S. Kim et al. , 2011]
8 Brian M. Zacour et al. 2011 In-line [B. M. Zacour et al.2011]
9 Aditya U.Vanarase et al. 2010 In-line [A. U. Vanarase et al., 2013]

10 Otto Berntsson et al. 2002 Off-line [O. Berntsson et al., 2013]

The prediction accuracy of in-line data tends to be worse because off-line data was taken
using an apparatus different from that of in-line data. In order to quantify the effect of
the data acquisition method on the prediction accuracyand improve the in-line prediction
accuracy of the off-line model, the prediction accuracy of the in-line and the off-lline
models are calcurated and wavelength selection are used in this work.

2. Experimental

Mixing experiments were conducted to mix acetaminophen(normal grade; Iwaki Seiyaku
Co., Ltd) with lactose(Pharmatose 200M; DFE pharma). In the experiment, API and the
excipient were put into the mixer and NIRS were measured through the sapphire window
on a side of the equipment while the mixer was in operation. The equipment used in the
experiment is shown in Figure 1(Powrex; MG-200 mixer). API concentration was changed
from 1% to 40% as shown in Table 2. In the mixing experiment, the center blade rotation
speed r1 and scraper rotation speed r2 (Figure 2) were set to the values in Table 3. The
NIRS are combined with the API concentration calculated from the mass of feed powders.
This data is called in-line data. Since mixing is not completed immediately, the spectra

Table 2: API concentration
Experiment number API concentration [%]

1 1
2 10
3 15
4 20
5 30
6 40

Table 3: Operation condition of the mixer in
each experiment

Number r1 [rpm] r2 [rpm]
1 0 0
2 500 20
3 0 0
4 500 100
5 0 0
6 1500 20
7 0 0
8 1500 100
9 0 0
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measured after 150 seconds from the start of mixing operation were used to construct and
validate the model. Therefore, the data measured in operation condition 1 and the first half
of operation condition 2 were excluded from the analysis.

Figure 1: Powder mixer
Figure 2: Inside the mixer

After the powder was removed from the mixer and NIRS of the powder was measured
off-line, the API concentration of the powder was measured by high performance liquid
chromatography (HPLC). The data which consists of NIRS measured off-line and API
concentration measured by HPLC is called off-line data.

3. Model development and validation

The in-line and off-line data were split into two halves respectively, and one half was used
for model construction and the other for validation. The measurement condition and usage
of the data are shown in Table 4. The prediction models were constructed using partial

Table 4: Data overview
Data number Sensor type Usage

1-1 Off-line Model construction
1-2 Off-line Model validation
2-1 In-line Model construction
2-2 In-line Model validation

least squares (PLS). Standard normal variate was applied to NIRS, and the number of
latent variables in PLS was set from 1 to 5. The models were validated with data 1-2 and
2-2 as shown in Table 5.

Correlation coefficients between absorbance and API concentration were calculated using
data 1-1 and data 2-1 in order to select variables which have similar relationship between
absorbance and API concentration in off-line and in-line. The procedure of variable se-
lection can be divided into two steps. First, To calculate correlation coefficients between
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Table 5: Condition of model construction and validation

Case Model construction Model validation Variable selection
1 1-1 1-2 all variables
2 1-1 2-2 all variables
3 2-1 2-2 all variables
4 1-1 2-2 selected variables

absorbance and API concentration on each wavelength using off-line data. Second, To
select variables whose absolute value of correlation coefficient is greater than a threshold.
The threshold value is 0.98, 0.97, 0.96, 0.93, 0.9, 0.7, 0.5, 0.3, 0.1, 0. The model was con-
structed using a absorbance at the wavelength selected based on the absolute value of the
correlation coefficient between absorbance and API concentration. The result of selected
variables that minimizes MAE is case 4 in Table 5.

The accuracy of the models was evaluated by using the mean absolute error (MAE), where
N is the number of samples in the validation data, yn is the API concentration of the nth
sample, and ŷn is the predicted API concentration for the nth sample.

MAE =
1

N

N∑
n=1

|ŷn − yn| (1)

4. Results

Figure 3 shows MAE obtained through validation for a model constructed using all vari-
ables. When the number of latent variables is 3, the MAE is 0.28%, 2.64% and 0.67%
for the case 1～3, respectively. The minimum MAE was obtained for case1, in which
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Figure 3: Validation result

off-line data was predicted with a model built with offline data. The MAE of case 2 are
significantly larger than those in case 2 and 3.
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In this study, the model construction with variable selection was also conducted. Figure 4
shows the relationship between the threshold used for variable selection and the minimum
MAE of the model built with the chosen variables. The vertical axis is the MAE computed
with the data 2-2, and the horizontal axis is the threshold value of variable selection. In
the variable selection, two threshold values of 0.93 and 0.5 are taken as minima.
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Figure 4: Variable selection result

MAE for the threshold value of 0.93 is smaller than that for the threshold value of 0.5.
By comparing this result with case2, the prediction error reduces from 2.64% to 1.63% by
using the threshold value of 0.93 for limiting the variables used for model building.

In Figure 4, the MAE is smaller when the thershold is between 0.5-0.93. When it is
less than 0.5 the MAE becomes worse because useless input variables are inculded in the
model. When the threshold is larger than 0.93 the MAE becomes worse because important
input variables are not used for the prediction.

5. Conclusions

In this study, the prediction accuracy of the in-line and the off-line models was discussed.
The results showed that there was a large difference in their prediction accuracy. Variable
selection successully reduced improving MAE of the off-line model from 2.64% to 1.63%.
There could be some improvement in prediction accuracy since the best MAE of 1.63%
for the offline model is slightly larger than the MAE of the inline model.

The reason for the difference in prediction accuracy between the two models is that there
are some variables that are noisy in the inline measurements and these variables are adopted
in the off-line model construction.

Prediction of API concentration using NIRS measured off-line and
in-line instruments
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