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Abstract—Model predictive control has proven to be a promis-
ing platform for complex systems management and energy
efficiency improvement in a large number of applications, par-
ticulary prominent in building climate or smart grids control.
Interoperation of those systems often turns out to be of a
nonlinear nature. The paper proposes a modular coordination
mechanism between building zones comfort control and building
microgrid energy flows control based on nonlinear model predic-
tive control. The modularity of coordination implies technology
separation with interaction through consumption profiles and
equivalent prices, where nonlinearity occurs in electricity-heat
energy conversion. A method based on sensitivity analysis is ex-
ploited and put to parametric formulation to tackle the problem
of high computational complexity. The nonlinearity is addressed
by choosing the convergence of the local optimum towards the
microgrid global optimum in the direction of the lowest cost
function values. Iterative approach between zone and microgrid
level nonlinear problem finally results in the cost-optimal zone
level operation. Results show the ability of the proposed approach
to cope with system nonlinearities and illustrate how introduction
of a central chiller unit characteristic rises the overall cost benefit
of the system.

Index Terms—Buildings energy management, Chiller charac-
teristic, Sensitivity analysis, Nonlinear hierarchical MPC.

I. INTRODUCTION

Buildings and microgrids are complex systems consisted of
many subsystems responsible for maintaining safe and steady
operation, which are also different in dynamics, energy levels,
protocols, maintenance services etc. Rather than having one
large control structure to handle all the tasks, it is more natural
to segregate it into subunits in a hierarchical or distributed
way [1], [2], [3]. In addition, many of those subsystems can
be entrusted to optimization methods, and many of them al-
ready have such algorithms implemented. If more subsystems
operate in an optimal way and are coordinated, the larger is
the mutual gain together with overall economic balance of
the whole system. Retaining the subsystem independency and
modularity is also crucial from the implementation perspective
with the aim of minimal on-site modifications and intercon-
nection of different technologies by scarce communication
signals. This finally reflects to significant cost reduction since
the equipment integration and required expert staff knowledge
is identified as the most pronounced contributor of implemen-
tation expenses [4].

Model predictive control (MPC) is recognized as a promis-
ing platform for energy management in buildings and smart
grids with an ability of comprehending more and more

subsystems together. Interoperation of the systems is often
a very complex problem and issues such as nonlinearities
or integer variables occur frequently. Examples of recent
contributors in general control theory and distributed control
are in topological approach of robust hierarchical control [1]
and solvers efficiency increase with decentralized active-set
method [5] for systems with communication delays or in
distributed alternating direction method of multipliers [6]. In
[7], problem partitioning topics are examined where subsys-
tems interoperation is equivalently included in the problem
optimisation cost.

In building zone and microgrid control the energy-optimal
and the cost-optimal operation is expected to be in reasonable
proximity for the case of building consumption control with
coordinated grid power profile optimisation [8], [9]. Among
the nonlinear problem handling algorithms, sensitivity analysis
is utilized here as a suitable approach. Fundamentals of
distributed control and sensitivity analysis were introduced
already in the 1970s [10] and the approach is further elaborated
in [11]. Some recent examples in the sensitivity analysis
algorithm application to nonlinear systems can be found in
[12] and [13], applied to biological processes.

This paper utilizes the existing sensitivity analysis theory
from [11] and places it in the parametric optimisation form
where shifting towards the price optimum within a critical re-
gion (CR) is trivial in complexity and time requirements. With
the main goal of major mutual cost saving opportunities, we
apply the proposed method for system interoperation through
predicted energy consumption and corresponding prices of the
building with integrated microgrid. The two subsystems are
coupled through nonlinear characteristics of energy efficiency
ratio (EER) of a central chiller unit as a cooling efficiency
measure that states how much electrical power is needed for
supplying the required thermal power. Building zone control
acts as a lower hierarchy level (LHL) where its control variable
is introduced as a parametric disturbance in the microgrid
control that acts as a higher hierarchy level (HHL) problem.
Transformation of the zone energy-optimal control to micro-
grid cost-optimal control is performed via parametric problem
value function.

The paper is organized as follows. Problem definition is set
in Section II with LHL and HHL optimal problem formulation
and chiller nonlinearity. Section III presents the sensitivity
analysis applied through parametric MPC for shifting the lo-
cally optimal LHL solution to globally optimal HHL solution.
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Section IV presents a simulation scenario and provides results.
Conclusions are given in Section V.

II. PROBLEM DEFINITION

A. Linear problem

In the following, superscripts l and h denote LHL and
HHL variables, respectively. Bold notation is used to denote
variables stacked over the prediction horizon of N . Considered
LHL and HHL problems are defined as:

J l∗(xl0) := min
ul

hl>ul + f l + J l
′
(ul, x

l
0),

s.t.

{
xl = Alxl0 +Blul +Dldl

Glul ≤ wl ,
(1)

and
Jh∗(xh0 ,θ

h) := min
uh

hh>uh + fh>θh

s.t.

{
xh = Ahxh0 +Bhuh

Ghuh ≤ wh +Ehθh
,

(2)

where xl = Alxl0 + Blul + Dldl describes building ther-
modynamic behavior, with zones temperature information
incorporated within vector xl ∈ Rnxl , uncontrollable dis-
turbances affecting the building (outdoor temperature, solar
irradiance, etc.) denoted with dl ∈ Rnd and thermal energy
inputs into each of nul controllable zones denoted with
ul ∈ Rnul . Matrices Al, Bl and Dl are of appropriate
dimensions. Microgrid dynamic is defined with the equation
xh = Ahxh0 + Bhuh where xh ∈ Rnxh is a storages state
of charge (SoC) vector, uh ∈ Rnuh is a vector of energies
exchanged between the microgrid and the storage systems,
and Ah and Bh are corresponding model matrices. Vectors
hl ∈ Rnxl , hh ∈ Rnxh , f l ∈ R1 and fh ∈ Rnθ are
appropriately chosen vectors to impel the desired building and
microgrid behavior while respecting the constraints defined
with Gl ∈ Rncl×nul , Gh ∈ Rnch×nuh , wl ∈ Rncl , wh ∈ Rnch

and Eh ∈ Rnch×nθ . Symbols nx ∈ N, nu ∈ N, nc ∈ N,
nθ ∈ N denote the number of states, inputs, constraints and
parameters, respectively. The J l

′
part in LHL cost function

is given to emphasize the setpoint tracking part of the cost
[14]. Higher level (2) is formed as parametric problem with
parameter θhk ∈ Rnθ chosen as the sum of all optimal ul∗k
vector elements j for a certain discrete time step k:

qlk =
nul∑

j=1

ul∗j,k = 1θu
l∗
k , (3a)

θh :=
1

EER
ql, (3b)

with block diagonal matrix 1θ ∈ R1×nul .
Problem from (1) corresponds to building zone energy-

optimal control elaborated in [14]. Problem from (2) corre-
sponds to building microgrid energy flows optimisation elab-
orated in [15] and further extended here to interoperate with
LHL via parametric formulation. The hierarchical coordination
of the two problems is elaborated in details in [16] by using
a constant EER.

Original algorithm for multiparametric MPC was proposed
in [17] and we utilize it here for hierarchical coordination
with a distinction that only a single region is determined at
one step and no additional partitioning of the parameter space
is performed. For convenience, some of the main points of
the corresponding results are concisely given in the sequel.
The parametric formulation implies finding CRs in which
operations on parameter-space sets are trivial.

Definition 1 Critical region is a subset of all the parameters
θ for which a certain basis is optimal for problem (2), i.e.,
the same set A of constraints is active. We denote K as
a polyhedral set K ⊆ Rs of parameters K , {θh ∈
Rs|GhCRθ

h ≤ whCR} and K∗ ⊆ K as region of parameters
θh ∈ K such that (2) yields Jh∗. Critical region for (2) formed
with θh0 is then defined as:

CRA , {θh ∈ K|A(θh) = A(θh0 )}. (4)

Contrary to set A, nonactive constraints belong to disjoint set
NA, and A∪NA = C holds, where C , {1, . . . ,m} is set of
constraint indices. Constraints are therefore parted as:

Gh
Au

h∗(θ) = wh
A +EhAθ

h, (5)

Gh
NAu

h∗(θ) < wh
NA +EhNAθ

h, (6)

By using the local optimum ul∗ of the LHL problem
and correlating with HHL by (3), a HHL problem solution
yields the critical region CR(θh) and corresponding affine
descriptions uh∗(θh) and Jh∗(θh):

uh∗(θh) = (GA)−1EA

︸ ︷︷ ︸
D

θh + (GA)−1wA

︸ ︷︷ ︸
g

, θh ∈ CR. (7)

Jh∗(θh) =
(
hhD> + fh

)
︸ ︷︷ ︸

rh

θh + hh>g. (8)

The active critical region CR(θh) is defined with:

Gh
CRθ

h ≤ wh
CR, (9)

where

Gh
CR = Gh

NAD−EhNA,

wh
CR = wh

NA −Gh
NAg.

For imposing a coordination between the two levels, weight-
ing vector hl is simply chosen as hl = 1

EERr
h in (1), and the

problem (1) is augmented by an additional set of constraints
from (9), transformed to the LHL by (3) [16].

B. Nonlinear problem

In the particular case of application in buildings, required
thermal and electric power are related by EER in the cooling
season and its equivalent, the so-called coefficient of perfor-
mance (COP), in the heating season. Both are dependent on
the operating point (the electrical equivalent θh of the required
thermal energy ql) and outside air temperature T0, as shown
in Fig. 1 for a specific chiller used in our case study.
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Fig. 1. Chiller EER characteristic with respect to outside temperature To and
partial electrical load θh/θhnom for chiller TRANE RTAC HE.

Figure 1 also shows highly nonlinear characteristic of the
EER(To, θ

h), which is expressed as a look-up table from the
manufacturers data sheet. When observing a chiller with a
sampling time large enough to disregard its dynamics, the
look-up table from Fig. 1 is justified to be tied with thermal
partial load EER(To, q

l) ≈ EER(To, θ
h). The two levels,

HHL and LHL, are now related by EER(To, q
l), which leads

to nonlinear problem formulation of the higher level:

Jh = hh>uh + fh>θh(ql),

s.t.





θh(ql) = 1
EER(To,ql)

1θq
l

xh = Ahxh0 +Bhuh

Ghuh ≤ wh +Ehθh
,

(10)

and lower level:

J l = hl>(θh)ul + f l> + J l
′
(ul, xl0),

s.t.





xl = Alxl0 +Blul +Dldl

Glul ≤ wl

θh(ql) ∈ CRε

.
(11)

The problem from (11) is harder to handle and minimization
of a value function over the critical region CRε, i.e., the
linearized space, is not straightforward as in (8). Furthermore,
the EER(To, q

l) is presented as a look-up table and is not
possible to be explicitly used in the problem formulation.
In the sequel, we present a method based on sensitivity
analysis of the value function that iteratively improves the
local LHL optimum ul∗ towards the global optimum ul∗∗ and
corresponding uh∗∗ defined with the minimum of the HHL
cost function.

III. HIERARCHICAL COORDINATION

A. Linear parametric coordination

When considering linear problems (e.g. constant or only
temperature-dependent EER), the coordination between the
two levels is performed by choosing the θh = 1

EER(To)
ql∗

and hl(θh) = 1
EER(To)

rh that act as an interface between the
two levels. The θh holds an information of LHL consumption
profiles and feedback is provided by hl as a consumption

price profile. If the LHL problem is solved with obtained hl,
and then the HHL is solved with this new information, the
local optima (ul∗,uh∗) are shifted towards the global optima
(ul∗∗,uh∗∗). This is trivial for affine control law and value
function within the active CR. To ensure this, the LHL is
augmented to include the active CR boundaries from (9) as
additional set of constraints. If the LHL solution is on the
activated CR boundary, the solution is to be found in the
adjacent CR and the procedure is iteratively repeated until
the LHL constraints are triggered or an adjacent CR is non-
existent. The procedure is presented in Fig. 2. The global
optima

(
ul∗∗(M),u

h∗∗
(M)

)
are obtained in M iterations. For a one-

year simulation with hourly sampling time on this particular
application, the solution was obtained in M = 1 iteration for
92% of cases as shown in [16] (together with more details
about the approach). In a receding horizon approach, the global
optimum ul∗∗0,(M) is further passed as a set of references to
the lower level controllers (e.g., fan coil controllers) [18], and
uh∗∗0,(M) to storage power converter controllers [19]. The lower
level controllers operate in real-time closed loops with much
slower sampling times.

Higher hierarchy level

Lower hierarchy level

Initialization

min hhuh

uh
+ f hθh

to HHL 
subsystem

to LHL
subsystem

s.t.
Ghuh ≤ wh+Ehθh{ xh= Ahx0+Bhuhh

u0,(M) 
h**

u0,(M) 
l**

r h
(m)

s.t.{ xl= Alx0+Blul+Dldll

Glul ≤ wl

ul ≤ wCR,(m-1)

θh  :   =(m)

min
ul

+ f lh l
(m-1)u

l

GCR,(m)
h ,wCR,(m)

h

GCR,(m-1)
h

hl     =1(0)

GCR,(0)
h ,wCR,(0)={}h

m=1,...,M

h

(m)ql*

Fig. 2. Iterative hierarchical coordination for linear system.

B. Coordination based on sensitivity analysis

With a nonlinear parametric problem, it is not possible to
obtain critical regions and explicit affine laws for Jh∗ and
uh∗, and approach with minimization of a value function is
not applicable. In general representation, sensitivity function
represents the sensitivity of state or cost function to (small)
variations in model parameter. The partial derivative of the cost
function Jh∗ with respect to the parameter vector elements
ql+ in the given point ql∗, so-called the sensitivity vector, is
defined by:

σ(m) =
∂Jh∗(m)

∂ql+(m)

∣∣∣∣∣
ql∗
(m−1)

, (12)

with dimensions of σ(m) ∈ RN where m is the iteration index.
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Different approaches are possible for determining the sen-
sitivity functions. Here we opt for iterative approach with
scattering large number of points around the initial solution
and choosing the one with the smallest value of cost function.
The points are chosen by a small deviation of ε around the
initial solution ql0:

ql+jε,k = ql0,k ± ε ∀jε,∀k, (13)

where jε is the index of scattered points and k is the prediction
time instant. For the particular case of building optimization,
i are microgrid storages, jε = 1, 2, and k = 0, . . . , N − 1.

The sensitivity analysis starts with solving (11) to obtain ul∗jε
and then scattering the points to obtain ql+. The optimization
problem from (10) is further solved with ql+jε,k for each jε
and k, yielding jεN different HHL optimum costs Jh+∗. A
hyperplane is now constructed through obtained (ql+,Jh+∗)
points, together with the starting point (ql, Jh∗). Since there
are more points then needed (2N +1 total) to uniquely define
a hyperplane, the least squares approach is used in order to
obtain the best fit as weighted combination of all the points:

[
a+

b+

]
=
(
φ>φ

)−1
φ>Jh+∗, (14)

where φ = [1 ql+] and σi = a+.
The LHL cost from (10) is rewritten to include the so-called

linearised partial goal-interaction operator according to [11]:

min
ql

J l+ = min
ql

a+>ql + J l(ul, xl0),

s.t.

{
Glul ≤ wl

ql − ql0 ≤ ε
,

(15)

where J l is used from (11) as an initial value function cost
before sensitivity analysis and ql0 = ql∗(m−1) as a previous
iteration optimal solution.

When the constraints Glul ≤ wl are hit, the solution is
obtained. Otherwise, the solution is passed to the HHL and
problems are iteratively solved. The approach is based on the
premises that globally-optimal solution is near the local one
and the optimal solution is reached within small number of
iterations. When the premise is compromised, the approach
results in large number of iterations and time requirements.

Once the globally optimal solution is found in M iterations,
microgrid power converter price optimal control signals are
uh∗∗ = uh∗∗(M) and fan coil price optimal control signals ul∗∗ =
ul∗∗(M). The method for sensitivity analysis is geometrically
represented in Fig. 3 and the whole coordination algorithm
is given in Algorithm 1. Figure 3 shows algorithm steps in
2-dimensional space. The method iteratively scatters points,
chooses the one with the minimum cost and evolves along the
hyperplane value function until the zone level constraints are
reached.

IV. SIMULATION RESULTS

Simulations are performed on a case study of one build-
ing floor at the University of Zagreb Faculty of Electrical
Engineering and Computing consisting of 23 zones equipped

q l
0

q =q

ql+
j

Iteration  MJ h+*
j

J l+

- qhqh+ ≤ εJ l+

ql*

- qhqh+ ≤ ε

zone level
constraintsql**

J l+

...a   θ    b+
= 0

h

ε

ε

l l*
0 (m-1)

Iteration  m

q l
0

q l
0

+T  ̶ 

q l
0

q l
0

Iterations m,...,M-1

Fig. 3. Geometric representation of sensitivity analysis steps minimization of
the value function.

Algorithm 1 Nonlinear parametric coordination with sensitiv-
ity analysis
1. Obtain the ul∗ as the lower level locally-optimal solution

from (11) and calculate ql0 from (3);
2. Select points in the vicinity of solution ql0: obtain ql+ from

(13);
3. Obtain θh+(ql+) from (10);
4. Solve jεN number of HHL problems from (10) for each

given vector θh+(ql+) and obtain value function optimums
Jh+∗;

5. Construct a hyperplane over 2N + 1 points of Jh+∗ by
using (14);

6. Shift the solution towards the global optimum by solving
the (15) to obtain ql0,(m+1) := ql∗;

7. Repeat from Step 2 until LHL constraints Glul ≤ wl from
(15) are activated;

8. Solve (10) with ql∗(M) to obtain uh∗(M)

9. Pass obtained global optimum ul∗∗(M) = ul∗(M) and uh∗∗M =

uh∗(M) to inner control loops and proceed to the next time
instant k.
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with fan coils. The zone level problem is formed as a trade-
off between temperature setpoint tracking and a cost for
energy consumption with 23 control inputs and building model
consisted of 391 states. More details can be found in [14] or
[16]. Microgrid level consists of 1.5 kW photovoltaic array,
2 kW wind turbine, lead-acid batteries of 10 kWh capacity
and fuel-cell hydrogen storage of 2.5 kWh capacity. The
zone level is included in the microgrid as a controllable
load and nonlinear hierarchical optimisation is imposed to
obtain the price-optimal solution. The two levels are connected
with TRANE RTAC HE chiller characteristics from Fig. 1.
Simulations are performed and compared for the case of linear
problems for both levels with constant EER and nonlinear
problems with load-dependent EER, both with imposed hi-
erarchical coordination between the levels. An exemplary one
day of cooling period (June 1, 2014) is chosen with semi-
clouded weather and real volatile market prices obtained from
European Power Exchange portal. Sampling time of 1 h is
chosen to meet the availability of weather forecast.

For linear problems scenario, a constant EER = 4.17 is
chosen as a mean value of the variable EER and nonlinear
scenario. Figure 5 shows comparison of zone temperatures for
a selected 8th individual zone (office) with presented linear and
nonlinear parametric hierarchical MPC approaches. Since the
EER is dependent on the weather conditions, nonlinear case
results in higher zone temperature dynamics over time due
to different efficiencies and corresponding costs. The setpoint
of 24◦C is chosen with allowed deviation of ±0.5◦C outside
which a high penalty is applied. The temperature setpoint
tracking is imposed during working hours, from 7:00 to 18:00,
as a tradeoff between desired comfort level and energy savings
with equal weights inside the 24± 0.5 ◦C interval.

Figure 4 irradiance on the chosen room, which is located
on the south side of the building, together with the outside
temperature and energy market prices. Energy efficiency ratio
is also shown for linear and nonlinear case, dependent on the
outside conditions and current load. For EER calculation, the
rated power is scaled by factor of 12 to adjust the curve for a
single building floor.

Figure 5 shows comparison of presented nonlinear and
linear hierarchical approaches. It may be observed how chiller
characteristics are exploited for costs-saving opportunity that
outweigh the trajectory tracking part of the criterion for the
nonlinear scenario case. Thermal energy with negative sign
depicts cooling regime. The figure also shows how the time
period 13:00-14:00 is exploited to meet the lowest price of
electricity, a bit lower outside temperature and, most impor-
tant, to avoid the low value of EER.

Comparison of energy exchanged with the grid is shown
in Fig. 6 and exploitation of variable EER is evident here as
well. Additional cost savings of about 6% are obtained for the
one-day simulation and are expected to rise with the longer
period of simulations. Costs are calculated by multiplying the
electricity price and energy exchanged with the grid during
one hour period. In [16], we showed that coordinated zone
and microgrid levels may contribute up to about 123% in

cost savings (23% of revenue) with a constant EER and linear
problem. Here, additional 6% is added for a simple one-day
observed case.

Evolution of HHL cost function, i.e., the global criterion, is
presented in Fig. 7 with chosen ε = 10 W of electrical power.

Ir
ra

di
an

ce
 / 

W
/m

2

0

100

200

T
em

pe
ra

tu
re

 / 
°C

10

15

20

Time / h

0:00 6:00 18:00 0:0012:00

0:00 6:00 18:00 0:0012:00

0:00 6:00 18:00 0:0012:00

0.015

0.02

0.025

0.03

E
E

R

3.8

4

4.2

4.4

Linear
Nonlinear

0:00 6:00 18:00 0:0012:00

Fig. 4. Outside weather and market conditions.

Z
on

e 
te

m
pe

ra
tu

re
 / 

°C

23

23.5

24

24.5

South zone No. 8

Linear
Nonlinear

Time / h

T
he

rm
al

 e
ne

rg
y 

/k
W

h

-1

-0.5

0
Linear
Nonlinear

0:00 6:00 18:00 0:0012:00

0:00 6:00 18:00 0:0012:00

Fig. 5. Zone temperature comparison for linear approach and nonlinear with
sensitivity analysis.

V. CONCLUSION

The paper presented a method for coordination between
coupled hierarchy levels with included nonlinearity via para-
metric formulation of the optimization problem and applied
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sensitivity analysis. An iterative approach is exploited for
shifting between local optimum of the hierarchy levels to
the global system optimum. A mathematical basis is set for
what we expect to become a contributive way for joining
different hierarchical levels with nonlinear characteristics for
this particular application. Results show that the introduction
of chiller efficiency improved the overall cost benefit of the
system. Future work will be directed to method validation
realistic scenarios and configurations of the Faculty building
with 23 offices and integrated 48 V microgrid. Future work
will also be focused on introducing the central chiller and
medium transport dynamics as an additional level of the
hierarchical problem.
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[15] M. Gulin, M. Vašak, M. Baotić, ”Analysis of microgrid power flow
optimization with consideration of residual storages state”, in Proc. of
the 2015 European Control Conference, pp. 3126–3131, 2015.
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