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Abstract—The paper aims at synthesis of an adaptive 

controller of the distillate output flow rate of a binary distillation 

column. The disturbance of the process is the change of 

concentration of the inlet compound. The Adaptive Critic Design 

(ACD) approach was applied to predict on time the future effect 

of disturbance and to adapt the distillate output flow rate in 

order to prevent deviations from the desired distillate 

concentration. The key element of ACD – the critic – is a fast 

trainable recurrent neural network named Echo state network 

(ESN). The simulation investigations demonstrated that the 

proposed adaptive control scheme outperforms a classical non-

adaptive controller with respect to the settling time and the 

reaction delay. 

Keywords—adaptive control; Adaptive Critic Design; Echo state 

network; binary distillation column 

I.  INTRODUCTION 

Distillation or fractioning columns are essential aggregates 
in many chemical industries [1]. They separate a liquid 
mixture of many compounds into its components called 
fractions based on the differences in individual component 
volatilities. The models describing these processes are good 
test cases for nonlinear process control. 

In present study we adopted a nonlinear model [2] of such 
a plant (binary distillation column) in order to test our 
intelligent approach for adaptive control design, namely 
Adaptive Critic Design (ACD) [3]. Its aim is to train a 
predictor (called adaptive critic) of the future effect of the 
current input disturbance to the process state and to generate 
proper control actions preventing undesirable changes of the 
process output. The main difference with Model Predictive 
Control (MPC) and other approaches from the classical 
control theory is that ACD doesn’t need complete information 

about all process state variables or a model or an observer of 
the plant. Instead it relays on a simplified signal in the form 
“good/bad” process condition. The control actions in reaction 
to such prediction are generated as attempt to minimize the 
future “bad” signal or to maximize future “good” signal 
solving dynamic programming task in forward manner. 

The rest of the paper is organized as follows: next section 
presents the used technique – ACD and the recurrent neural 
network (Echo state network, or briefly ESN) in the role of 
adaptive critic element; section III presents the plant and the 
aims of its control; the simulation results are given in section 
IV; finally concluding remarks and plans for the future work 
finish the paper. 

II. ADAPTIVE CRITIC DESIGN AND ECHO STATE NETWORK 

CRITIC 

A. ACD approach 

ACD [3] is considered as a method that approximates 
dynamic programming [4, 5] in an attempt to overcome its 
“curse of dimensionality”. Its roots are in the biologically 
motivated “learning from experience” approach also known as 
Reinforcement Learning (RL) [6]. The neural networks (NN) 
are usually adopted as basic building elements in ACD due to 
their ability to learn from examples. So the ACD is also called 
“neuro-dynamic programming”. 

The basic scheme of ACD for process control is presented 
on Fig. 1. Its key elements are the “critic” – predictor of future 
outcomes or utility U(k) that has to be optimized; and the 
“actor” – controller that generates actions a(k). It is supposed 
that only part of the plant state variables (vector x(k)) are 
measurable. 
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Fig. 1. Adaptive Critic Design for process control. 

 

The main “trick” of the method is in training of the critic 
NN to predict future values of the utility function resulting 
from current actions (that is in fact approximation of the 
Bellman equation):  
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Here the parameter  [0, 1) is discount factor. Training of 
the critic NN is done according to the proposed in [7] 
algorithm that minimizes the “temporal difference (TD) error:  

       1 kJkUkJkTDerror   

It is motivated from the brain ability to learn how to 
predict future outcomes on the basis of previous experience 
without awaiting the final results from the current actions.  

Then, having well trained critic, the actor (controller) is 
adjusted so as to minimize/maximize critic predictions by 
gradient descent algorithm using backpropagation of critic 
output according to the chain rule for derivatives calculation 
[8]. 

The dashed lines on Fig.1 represent the propagation of the 
training signals for the critic and the actor respectively. 

Numerous theoretical developments in this field during the 
last thirty years led to variety of adaptive and optimal control 
approaches [9]. In most cases the critic is trained off-line since 
it needs rich collection of data from several process runs 
exploiting possible work regimes of the plant. In some works 
[10] combination of off-line and on-line learning is also 
considered but for the true on-line applications very fast 
training algorithms are needed [11]. Moreover, for highly non-
linear environments, such as industrial plants, usage of 
recurrent NN models so the on-line learning algorithms 
become additionally complicated. 

In search of fast trainable NN architectures in [12-14] a 
recently developed class of Recurrent NN (RNNs) called Echo 
state network (ESN) [15] was adopted. The ESN incorporates 
a dynamic randomly generated reservoir of neurons and a fast 
trainable redout layer so that its on-line adaptation is possible 
via Recursive Least Squares (RLS) method [15]. Besides, the 
ESN structure facilitates the calculation of the needed 
derivatives [14]. 

B. Echo state network critic 

ESNs belong to the group of RNNs included in the so 
called “reservoir computing” approaches [16]. Their basic 
structure is shown on Fig. 2. 

 

Fig. 2. Echo state network structure. 

The ESN output vector for the current time instant k out(k) 
(it will be J(k) or a(k) in the case of critic or action network 
respectively) is usually a linear function of its input in(k) and 
the current reservoir state R(k): 

      




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fout is usually the identity function. The only trainable 

matrix Wout has size of nout(nin + nR), where nout, nin and nR 
are the sizes of the corresponding output, input and reservoir 
state vectors. 
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The neurons in the reservoir have simple sigmoid 
activation function fres (usually it is hyperbolic tangent) that 
depends on both input and previous reservoir state as follows: 

     




  1kRresWkininWresfkR  

Here Win is ninnR matrix of input weights while Wres is 

nRnR matrix containing all recurrent connections in the 
reservoir. Both of them are randomly generated and are not 
trainable. There were developed different approaches for 
production of proper reservoir matrices [16]. Here we used the 
proposed in [17] approach called intrinsic plasticity (IP). It 
suggests initial adjustment of these matrices motivated by the 
aim to increase the entropy at the reservoir output. The 
training of the output matrix in present work was done by the 
RLS algorithm [15]. 

III.  PROBLEM FORMULATION 

A. Distillation column 

The scheme of an industrial distillation installation is 
presented on Fig. 3. 

It consist of a binary distillation column that separates the 
feed substance with concentration xF entering the column with 
feed flow rate F into two main fractions: a target distillate 
product (the lightest product with lowest boiling temperature) 
with output concentration xD and output flow rate FD and a 
bottom product (the heaviest product with the highest boiling 
temperature) with concentration xB and output flow rate FB. In 
order to achieve better separation of the two substances such 
installations in industry have also reflux channels that return a 
part from both products on the top of the column. For this aim 
the liquid bottom product goes through the steam reboiler and 
evaporates while the upper product has to be cooled in the 
condenser reflux drum.  

There are several control loops that ensure maintenance of 
the liquid levels of all vessels as well as desired concentrations 
of the output products.  

Usually the control aims at achievement of desired 
concentrations of the two products (distillate and bottom). 
Since the input liquid that has to be separated usually comes 
from a previous stage of production, its concentration could 
vary in dependence on the conditions in previous installations. 
So it could be considered as the main cause of disturbance to 
the distillation process.  

Hence the main aim of the adaptive control should be to 
react on time to this measurable disturbance in order to 
prevent undesirable changes of the output products 
concentrations. 

B. ACD for binary distillation column 

Following the main control aims of such installation, we 
define the following adaptive control problem to be solved: 
maintain the distillate concentration as close as possible to its 

set point xDset point suppressing disturbances in the input 
concentration xF. Hence the utility that has to be minimized is: 
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1
1.0

errorif

errorif

errorif

kU  

Here 1 and 2 determine the allowed interval for the error 
(it was +/-0.1% from the nominal state). Note that we don’t 
need to account for exact error but only for its deviation from 
the allowed region.  

Here we chose to adapt only controller for distillate output 
flow rate and to keep material balance in the column 
maintaining prescribed reflux ratio rr=const. as follows: 

 k
D

Frr
reflux

F *  

Since the critic in this case must be action dependent, its 
inputs are only the control action FD and the disturbance xF.  

The actor (controller) determines the current output 
distillate flow rate via gradient descent as follows: 

       
 k

D
F

kJ
kJk

D
Fk

D
F




1  

thus minimizing J2(k)/2. Here  is parameter taking values 
between 0 and 1 that defines the learning rate. 

IV. RESULTS AND DISCUSSION 

In our simulation experiment we trained the ESN critic off-
line. For this purpose we’ve generated training data set using 
the model from [2] and the corresponding software in Matlab 
[18]. We added a proportional (PI) controller for distillate 
output flow rate to the simulator and imitated the disturbances 
ranging from -1% to 1% deviations from the nominal value of 
input compound concentration. The collected step responses 
of the simulator are shown on Fig. 4, upper plot. The actions 
generated by the PI controller are shown on the lower plot of 
Fig. 4. 

These data were used to train ESN critic iteratively starting 
with zero discount factor and slightly increasing it after each 
iteration. The training algorithm uses RLS and minimizes the 
temporal difference error.  

Fig. 5 presents predictions from the trained critic in 
comparison with the utility function that is in the form of 
reinforcement signal (“good” – zero, “bad” – +/-0.1).  

It is clear that the critic is able to predict “bad” signal (5) 
slightly before the distillate concentration goes outside the 
allowed region that was +/-0.1% around the set point. 
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Figures 6 and 7 represent simulations with trained critic 
and the adaptive controller (7) for disturbance of 1% above 
and below from the nominal value of the inlet flow 
concentration respectively.  

Both figures demonstrated the ability of the trained critic 
(second plot) to predict deviations of the distillate 

concentration (first plot) from its set point right after the 
disturbance (third plot). The last plot on both figures resents 
the control action calculated according to equation (7) that 
compensates the disturbance thus minimizing the output error.  
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Fig. 3. Distillation column control scheme. 
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Fig. 4. Process response (upper plot) to step change disturbances at the 

concentration of input and corresponding PI controller actions (lower plot). 
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Fig. 5. Utility (U) and its prediction from the critic (J). 

Figures 8 and 10 represent a “zoom” of the first 250 time 
steps of the simulated reaction of the plant output to the 
disturbance of +/-1% comparing the PI and ACD controllers. 
It was observed that the transient responses with ACD 
controller were faster and with less over/undershoots. This can 
be explained by the fact that the critic predicts the future 
deviations from the set point right after the disturbance was 
measured at the plant input so the ACD controller reacts at the 
beginning of the disturbance while the PI controller reacts 
after the disturbance effect on the output is detected, i.e. when 
the output error increases (figures 9 and 11). 
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Fig. 6. Reaction of the ACD controller to the increase of inlet concentration. 
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Fig. 7. Reaction of the ACD controller to the decrease of inlet concentration. 
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Fig. 8. Comparison between ACD and P controller for decrease of inlet 

concentration – distilate concentration. 
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Fig. 9. Comparison between ACD and P controller for decrease of inlet 

concentration – distilate output flow rate. 
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Fig. 10. Comparison between ACD and P controller for increase of inlet 

concentration – distilate concentration. 
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Fig. 11. Comparison between ACD and P controller for increase of inlet 

concentration – distilate output flow rate. 

V. CONCLUSIONS 

The conducted initial simulation experiments demonstrated 
that designed adaptive controller outperforms the classical 
controller with respect to settling time, over/undershoots and 
reaction time. Moreover, the ACD needs much less 
information to be designed in comparison with the 
conventional controllers that need detailed model of the plant 
and sophisticated mathematical techniques for their tuning. 

The conducted simulation experiments with +/-1% 
disturbance could be easily extended to bigger changes of the 
inlet flow concentrations. 

The presented simulation investigation is the first step 
towards implementation of ACD controllers into a more 
sophisticated distillation column simulator at the Petroleum-
Gas University in Ploiesti. Next step will be implementation 
of on-line algorithm for training of adaptive critic aimed at 
accounting for variety of real situations with different kind of 
process disturbances. 
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