
C Code Generation Applied to Nonlinear Model Predictive Control for
an Artificial Pancreas*

Dimitri Boiroux1,2 and John Bagterp Jørgensen1

Abstract— This paper presents a method to generate C code
from MATLAB code applied to a nonlinear model predictive
control (NMPC) algorithm. The C code generation uses the
MATLAB Coder Toolbox. It can drastically reduce the time
required for development compared to a manual porting of
code from MATLAB to C, while ensuring a reliable and fairly
optimized code. We present an application of code generation to
the numerical solution of nonlinear optimal control problems
(OCP). The OCP uses a sequential quadratic programming
algorithm with multiple shooting and sensitivity computation.
We consider the problem of glucose regulation for people with
type 1 diabetes as a case study. The average computation time
when using generated C code is 0.21 s (MATLAB: 1.5 s),
and the maximum computation time when using generated C
code is 0.97 s (MATLAB: 5.7 s). Compared to the MATLAB
implementation, generated C code can run in average more
than 7 times faster.

I. INTRODUCTION

In optimal control, the underlying optimization problem is
usually constrained by the dynamics of a system described by
nonlinear ordinary differential equations (ODEs), differential
algebraic equations (DAEs), or even partial differential equa-
tions (PDEs). Nonlinear model predictive control (NMPC) is
a receding horizon control technology that repeatedly solves
open-loop nonlinear optimal control problems (OCPs). At
every sample, it implements the computed optimal input
associated to the current time period. Research groups are
investigating a large number of potential applications of
NMPC, spanning from real-time applications that need to
be implemented on an embedded device where the OCP
has to be solved within milliseconds [1]–[3], to very large-
scale applications requiring high performance computing,
for instance for oil recovery [4]–[6]. Numerous software
tools using code generation for solving nonlinear OCPs have
been considered. The ACADO toolkit is an open-source
software for control and nonlinear optimization [7]. CasADI
is a symbolic package capable of C code generation [8].
JModelica.org is a tool for large-scale dynamic optimization
problems [9]. CVXGEN generates a custom C code to solve
convex optimization problems [10].

MATLAB provides a user-friendly and simple environ-
ment useful for prototyping and software development. How-
ever, its code usually runs slower than compiled code and

* This work has been funded by the Danish Diabetes Academy supported
by the Novo Nordisk Foundation.

1Dimitri Boiroux and John Bagterp Jørgensen are with the Department
of Applied Mathematics and Computer Science, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark {dibo,jbjo}@dtu.dk

2Dimitri Boiroux is with the Danish Diabetes Academy, DK-5000 Odense
C, Denmark

Fig. 1. The artificial pancreas.

cannot be ported to all architectures. Conversely, C is a pro-
gramming language used in a large number of applications,
but the development of optimized and reliable C code is a
time-consuming task.

In this paper, we present a new method for solving
nonlinear OCPs arising in NMPC using the MATLAB Coder
toolbox. The MATLAB Coder toolbox does not require
any knowledge in C programming and only requires minor
adaptations of the MATLAB code. The generated code is
tailored to a specific OCP, such that the routines and the
memory allocation are optimized. We provide comprehensive
guidelines to generate a C code from MATLAB using the
MATLAB Coder toolbox.

We present the problem of closed-loop control of blood
glucose in people with type 1 diabetes, also referred as the
artificial pancreas (AP), as a case study. The AP comprises
a glucose sensor measuring glucose levels frequently, a
control algorithm, and an insulin pump. It has the potential
to improve the quality of life and reduce the burden of
insulin therapy management. MPC and NMPC-based control
algorithms are among the most popular for the design of
the AP [11]–[14]. For this application, the control algorithm
has to be implemented on a mobile platform, such as a
smartphone, or even on a chip. Fig. 1 illustrates the AP.

The paper is structured as follows. Section II states the
continuous-time OCP and presents a numerically tractable
discrete-time approximation. Section III outlines the se-
quential quadratic program (SQP) algorithm. Section IV
demonstrates the capabilities of the MATLAB Coder toolbox

2017 21st International Conference on Process Control (PC)
June 6–9, 2017, Štrbské Pleso, Slovakia

978-1-5386-4011-1/17/$31.00 c©2017 IEEE 327

and provides the required steps to obtained a compiled C
code from MATLAB. Section V presents the application
to the diabetes problem and highlights the difference in
running time between MATLAB and the generated C code. A
summary of the main contributions of the paper is provided
in Section VI.

II. PROBLEM FORMULATION

We consider the bound constrained continuous-time OCP

min
[x(t),u(t)]

tf
t0

φ =

∫ tf

t0

g(x(t), u(t))dt+h(x(tf)), (1a)

s.t. x(t0) = x0, (1b)
ẋ(t) = f(x(t), u(t), d(t)), t ∈ [t0, tf], (1c)
umin ≤ u(t) ≤ umax, t ∈ [t0, tf], (1d)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu are
the manipulated inputs, and d(t) ∈ Rnd are known dis-
turbances. ẋ(t) = f(x(t), u(t), d(t)) represents the model
equations. The initial time, t0, and the final time, tf , are
fixed parameters. The initial state, x0, is a known parameter
in (1). The inputs are bound constrained and must be in the
interval u(t) ∈ [umin, umax]. The objective function is stated
with a stage cost term, g(x(t), u(t)), and a cost-to-go term,
h(x(tf)).

A. Zero-order hold parametrization

In general, the continuous-time bound constrained problem
(1) is not tractable and is solved numerically by discretization
using a zero-order hold (ZOH) parametrization of the manip-
ulated variables, u(t), and the known disturbance variables,
d(t). We sample the time interval, [t0, tf], into N equidistant
intervals each of length Ts. Let N = {0, 1, ..., N − 1} and
tk = t0 +kTs for k ∈ N . The ZOH parametrization on u(t)
and d(t) yields

u(t) = uk, tk ≤ t < tk+1, k ∈ N , (2a)
d(t) = dk, tk ≤ t < tk+1, k ∈ N . (2b)

Using this ZOH restriction on the inputs, the bound con-
strained continuous-time Bolza problem (1) may be ex-
pressed as

min
{xk+1,uk}N−1

k=0

φ =

N−1∑

k=0

Gk(xk, uk, dk) + h(xN), (3a)

s.t. bk := Fk(xk, uk, dk)− xk+1 = 0, k ∈ N , (3b)
umin ≤ uk ≤ umax, k ∈ N . (3c)

The discrete-time state transition function is
Fk(xk, uk, dk) ={x(tk+1) : ẋ(t) = f(x(t), uk, dk),

x(tk) = xk},
(4)

and the discrete time stage cost is

Gk(xk, uk, dk) =

{∫ tk+1

tk

g(x(t), uk)dt :

ẋ(t) = f(x(t), uk, dk), x(tk) = xk} .
(5)

III. THE SEQUENTIAL QUADRATIC PROGRAM
ALGORITHM

In this section, we describe a multiple-shooting based
SQP algorithm [15]–[18]. The SQP algorithm is used for
the numerical solution of (1). The quadratic sub-problems
arising in the SQP algorithm are efficiently solved using
Riccati iterations [19]–[22]. We use a fourth order Runge-
Kutta scheme with fixed stepsize for numerical solution of
the differential equation model and for computation of the
sensitivities.

A. SQP algorithm

We define the parameter vector, p, as

p =
[
u′0 x′1 u′1 x′2 . . . x′N−1 u′N−1 x′N

]′
, (6)

and the disturbance vector as

d =
[
d′0 d′1 . . . d′N−1

]′
. (7)

We can formulate the discrete-time dynamics as

b(p) = b(p, x0, d)

=

F0(x0, u0, d0)− x1

F1(x1, u1, d1)− x2

...
FN−1(xN−1, uN−1, dN−1)− xN

 .

(8)

The objective function is

φ(p) = φ(p, x0, d) =
N−1∑

k=0

Gk(xk, uk,d) + h(xN). (9)

Let c(p) denote the bound constraints, i.e.

c(p) =

u0 − umin

u1 − umin

...
uN−1 − umin

umax − u0

umax − u1

...
umax − uN−1

. (10)

Using these notations, we can reformulate the discrete-time
Bolza problem (3) as a constrained optimization problem in
standard form

min
p

φ = φ(p), (11a)

s.t. b(p) = 0, (11b)
c(p) ≥ 0. (11c)

The Lagrangian of (11) is

L(p, y, z) = φ(p)− y′b(p)− z′c(p). (12)

328

The nonlinear problem (11) can be solved iteratively using
a SQP algorithm. In each iteration, (11) is locally approxi-
mated by the quadratic program (QP)

min
∆p

1

2
∆p′W k∆p+∇pφ′(pk)∆p, (13a)

s.t.
[
∇pb(pk)

]′
∆p = −b(pk), (13b)

[
∇pc(pk)

]′
∆p ≥ −c(pk), (13c)

where W k is an approximation of the Hessian of the La-
grangian. It is obtained by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [23].

The first order Karush-Kuhn-Tucker (KKT) conditions of
the constrained nonlinear optimization problem (11) are

∇pL(p, y, z) = ∇pφ(p)−∇pb(p)y −∇pc(p)z = 0, (14a)
b(p) = 0, (14b)
c(p) ≥ 0, (14c)
z ≥ 0, (14d)
ci(p) = 0 ∨ zi = 0 ∀i. (14e)

These conditions are used to test the convergence of the SQP
algorithm.

B. Gradient computation

The most time consuming computations in the SQP algo-
rithm are the computation of the objective function φ(p),
the derivatives of the objective function ∇pφ(p), the dy-
namics b(p), and the sensitivities, ∇pb(p). b(p) and φ(p)
are computed by evaluation of (4) and (5), respectively.
Consequently, the equality constraints and their sensitivities
with respect to states and inputs are

bk = Fk(xk, uk, dk)− xk+1, (15a)
∇xk

bk = ∇xk
Fk(xk, uk, dk) = Sxk

(tk+1)′ = A′k, (15b)
∇uk

bk = ∇uk
Fk(xk, uk, dk) = Suk

(tk+1)′ = B′k, (15c)
∇xk+1

bk = −I, (15d)

where x(tk+1) = F (xk, uk, dk), and the sensitivities (15b-
(15c)) follow the systems of ordinary differential equations

ẋ(t) = f(x(t), uk, dk), (16a)

Ṡxk
(t) =

(
∂f

∂x
(x(t), uk, dk)

)
Sxk

(t), (16b)

Ṡuk
(t) =

(
∂f

∂x
(x(t), uk, dk)

)
Suk

(t)

+

(
∂f

∂u
(x(t), uk, dk)

)
, (16c)

with the initial conditions x(tk) = xk, Sxk
(tk) = I , and

Suk
(tk) = 0. The stage cost and the associated derivatives

are computed as

Gk = Gk(xk, uk, dk) =

∫ tk+1

tk

g(x(t), uk, dk)dt, (17a)

qk = ∇xkGk =

∫ tk+1

tk

(
∂g

∂x
(x(t), uk, dk)

)
Sxk (t)dt, (17b)

rk = ∇ukGk =

∫ tk+1

tk

[(
∂g

∂x
(x(t), uk, dk)

)
Suk (t)

+

(
∂g

∂u
(x(t), uk, dk)

)]
dt. (17c)

The derivatives ∇xk
bk and ∇xk

Gk are computed for
{xk}N−1

k=1 and k ∈ N . These derivatives are not computed for
x0 as x0 /∈ p, i.e. x0 is a fixed parameter of the optimization
problem but not a decision variable. The derivatives ∇uk

bk
and ∇uk

Gk are computed for k ∈ N . The derivatives with
respect to xN are

∇xN
bN−1 = −I, (18a)
pN = ∇xN

φ = ∇xN
h(xN). (18b)

Therefore, the gradients of the equality constraints bk with
respect to the parameter vector p can be written as

∇pb =

B0

−I A1

B1

−I A2

B2

−I
. . .

AN−1

BN−1

−I

. (19)

C. Numerical integration

In this paper, we use the classical explicit Runge Kutta
solver of order 4 to numerically compute the system state
transition (4), the stage cost (5), the sensitivities (15b-15c),
as well as the stage cost derivatives (17b-17c). Given the
state values xn at time tn, the solution at the next step xn+1

is given by

X1 = xn, (20a)

X2 = xn +
1

2
hf(t1, X1), (20b)

X3 = xn +
1

2
hf(t2, X2), (20c)

X4 = xn + hf(t3, X3), (20d)

xn+1 = xn +
1

3
h

(
1

2
f1 + f2 + f3 +

1

2
f4

)
, (20e)

where h = tn+1 − tn is a fixed step size. The times where

internal stages are computed are t1 = tn, t2 = t3 = tn+
1

2
h

and t4 = tn + h = tn+1. Let fi = f(ti, Xi), i = 1, 2, 3, 4,
be the function evaluations at times ti.

329

D. Interior point algorithm
We use a structured primal-dual interior point algorithm

for the solution of the constrained QP (13). We implement
the centering step correction proposed by Mehrotra [24]. We
use a Riccati recursion to compute the Newton iterations in
the primal-dual interior point algorithm [19], [20], [25] . This
factorization can be used to compute the optimal variation in
the manipulated variables ∆uk, the optimal change in states
variables ∆xk+1, and the Lagrange multipliers yk−1. For
most problems, Riccati recursion-based solvers are consid-
ered as the most computationally efficient method to solve
the linear quadratic (LQ) sub-problem arising in the interior
point method [26].

IV. C CODE GENERATION
Since version R2011a, MATLAB contains a toolbox for

C code generation [27], [28]. Before that date, several
code generation tools in C or Fortran have been developed
for control applications [29], [30]. The C code generation
creates either a MATLAB executable (mex) version of the
code, a dynamic library (dll), a stand-alone C library or
an executable. The C code can be ported to a number of
platforms, such as embedded systems, smartphones, or can
be used for high performance computing. The source code is
also editable and can for instance be integrated in an existing
code. The C code generation consists of the four following
steps

1) Implement the SQP-based control algorithm as de-
scribed in Section III.

2) Include the model and the sensitivity functions also
detailed in Section III.

3) Generate the C code from MATLAB command line or
via the dedicated graphical user interface.

4) Compile the C code.
We configured the coder for further optimization by

deactivating the responsiveness to CTRL+C and graphics
refreshing, removing runtime checks and disabling dynamic
runtime memory sizing, since these features are not required
in our case [31, Section 8.2.4].

A. Example of generated C code
Listing 1 shows an example of generated C code for the

matrix-matrix multiplication C = AB, assuming that A and
B are 5 × 5 matrices. Setting the type (double precision
floating point numbers) and the sizes of A and B (5 times
5) is done by adding the following four lines
a s s e r t (i s a (A, ’ d o u b l e ’)) ;
a s s e r t (i s a (B , ’ d o u b l e ’)) ;
a s s e r t (a l l (s i z e (A) ==[5 5])) ;
a s s e r t (a l l (s i z e (B) ==[5 5])) ;

at the beginning of the MATLAB function. In this case, the
C code generator chooses to use nested for loops.

Listing 2 shows an example of generated C code for the
matrix-matrix multiplication C = AB, assuming that A and
B are 1000× 1000 matrices. Similarly, we declare the types
and sizes of A and B in the MATLAB function by adding
the lines

Listing 1. Small-scale matrix-matrix multiplication
vo id matmul t (c o n s t r e a l T A[2 5] , c o n s t r e a l T

B[2 5] , r e a l T C [2 5])
{

i n t 3 2 T i 0 ;
i n t 3 2 T i 1 ;
i n t 3 2 T i 2 ;

f o r (i 0 = 0 ; i 0 < 5 ; i 0 ++) {
f o r (i 1 = 0 ; i 1 < 5 ; i 1 ++) {

C[i 0 + 5 ∗ i 1] = 0 . 0 ;
f o r (i 2 = 0 ; i 2 < 5 ; i 2 ++) {

C[i 0 +5∗ i 1]+=A[i 0 +5∗ i 2]∗B[i 2 +5∗ i 1] ;
}

}
}

}

Listing 2. Large-scale matrix-matrix multiplication
vo id matmul t (c o n s t r e a l T A[1 0 0 0 0 0 0] , c o n s t

r e a l T B[1 0 0 0 0 0 0] , r e a l T C[1 0 0 0 0 0 0])
{

r e a l T a l p h a 1 ;
r e a l T b e t a 1 ;
c h a r T TRANSB;
c h a r T TRANSA;
p t r d i f f t m t ;
p t r d i f f t n t ;
p t r d i f f t k t ;
p t r d i f f t l d a t ;
p t r d i f f t l d b t ;
p t r d i f f t l d c t ;

a l p h a 1 = 1 . 0 ;
b e t a 1 = 0 . 0 ;
TRANSB = ’N’ ;
TRANSA = ’N’ ;
memset(&C[0] , 0 , 1 0 0 0 0 0 0U∗ s i z e o f (r e a l T)) ;
m t = (p t r d i f f t) 1000 ;
n t = (p t r d i f f t) 1000 ;
k t = (p t r d i f f t) 1000 ;
l d a t = (p t r d i f f t) 1000 ;
l d b t = (p t r d i f f t) 1000 ;
l d c t = (p t r d i f f t) 1000 ;
dgemm(&TRANSA, &TRANSB, &m t , &n t , &k t , &

a lpha1 , &A[0] , &l d a t , &B [0] ,
&l d b t , &be ta1 , &C [0] , &l d c t) ;

}

a s s e r t (i s a (A, ’ d ou b l e ’)) ;
a s s e r t (i s a (B , ’ d ou b l e ’)) ;
a s s e r t (a l l (s i z e (A) ==[1000 1 0 0 0])) ;
a s s e r t (a l l (s i z e (B) ==[1000 1 0 0 0])) ;

at the beginning of the MATLAB function. Since it is now
a large-scale problem, the BLAS level 3 routine dgemm is
more efficient to perform the matrix-matrix multiplication,
and therefore is preferred to the nested for loops.

Since the generated code is tailored for the specific OCP
to solve, the MATLAB Coder Toolbox optimizes the choice
of the routines and the memory usage to a specific problem.

330

Fig. 2. The asymmetric cost function.

V. NUMERICAL RESULTS

The simulations are performed using MATLAB R2016a
installed on a Dell Latitude E6540 (Intel Core i7-4800MQ
processor, 16 Gb RAM). We use the compiler gcc version
6.2.0 on Linux Mint 17.3 to compile the generated C code.

The sampling time is Ts = 5 minutes. We use a
continuous-discrete extended Kalman filter for state estima-
tion at each sample [32], [33].

The objective of the insulin administration is to compen-
sate glucose excursions caused by meals and variations in
endogenous glucose production and utilization. We use a
penalty function defined as

g(G(t)) =
1

2

(
G(t)− Ḡ

)2
+

κ

2
max {0, GL −G(t)}2.

(21)

G(t) is the blood glucose concentration, Ḡ = 5 mmol/L
is the target value for the blood glucose concentration,
GL = 4 mmol/L is a lower acceptable limit on the glucose
concentration. The weight κ is used to heavily penalize
hypoglycemia. Fig. 2 illustrates the penalty function used
in the simulations.

The objective function used in the simulations is

φ̃ =

∫ tf

t0

g(x(t), u(t))dt+
η

2

N−1∑

k=0

‖∆uk‖22, (22)

where ∆uk = uk − uk−1. This objective function has no
cost-to-go function, i.e. h(x(tf)) = 0, and contains a reg-
ularization term, η

2

∑N−1
k=0 ‖∆uk‖22. The objective function

(22) can be brought into the standard form (3a) using state
augmentation formulated by [34].

A. Simulation results

We use the Medtronic Virtual Patient (MVP) model [35]
and the developed multiple shooting SQP algorithm for (1)
to compute the optimal insulin administration profiles for
people with type 1 diabetes. We run a MATLAB and a
generated C version of the multiple shooting SQP algorithm.

Fig. 3 shows the glucose, insulin and meal profiles, as well
as the CPU time for each time sample. We assume that the

Fig. 3. First panel (top): Blood glucose trace. Second panel: Meals. Third
panel: Insulin infusion rate trace. Fourth panel (bottom): CPU time for
MATLAB and C code.

patient has three meals: a 75g carbohydrates (CHO) breakfast
at 6AM, a 100g CHO lunch at 12PM and a 75g CHO dinner
at 6PM. The meals are not anticipated, ie. they are announced
to the MPC only at mealtimes. The average computation
time when using generated C code is 0.21 s, versus 1.5 s
for the MATLAB code, and the maximum computation time
when using generated C code is 0.97 s, versus 5.7 s for
the MATLAB code. Thus, the generated C code provides in
average a speedup of more than 7 times compared to the
MATLAB implementation.

B. Discussion

MATLAB uses a number of optimized built-in functions,
so it is not guaranteed that the generated code will provide
any speedup if the initial code heavily relies on these built-
in functions. In our OCP, the numerical integration routine
for computation of the model dynamics, the objective func-
tion and the sensitivities represent the main computational
workload in the local SQP algorithm, which accounts for
approximately 70% of the total CPU time. Since it has
a large number of function evaluations, it will benefit the
most from code generation. Conversely, the interior point
algorithm represents uses almost all the remaining CPU time.

The purpose of this paper is to compare the MATLAB im-
plementation with the generated C code. Further optimization
of the code can be obtained by using warm starts [1], [36].
Nevertheless, these optimizations would not benefit during

331

mealtimes due to the high disturbance level caused by the
meal.

VI. CONCLUSION
In this paper, we presented a simple way to generate C

code from Matlab with application to MPC. The generated
C code combines the convenient development of MATLAB
and the efficiency and portability of C code. It provides
a convenient and efficient solution for the design and the
implementation of optimal control algorithms, for instance
to embedded systems. Moreover, the code is tailored to
the problem size and can be used to solve small scale as
well as large scale OCPs. An application to a case study
(the blood glucose regulation in people with T1D) shows a
significant speedup between the Matlab implementation and
the generated C code.

REFERENCES

[1] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and
F. Allgöwer, “Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations,”
Journal of Process Control, vol. 12, no. 4, pp. 577–585, 2002.

[2] H. Ferreau, G. Lorini, and M. Diehl, “Fast nonlinear model predictive
control of gasoline engines,” in 2006 IEEE Conference on Computer
Aided Control System Design, 2006, pp. 2754–2759.

[3] M. Vukov, S. Gros, G. Horn, G. Frison, K. Geebelen, J. B. Jørgensen,
J. Swevers, and M. Diehl, “Real-time nonlinear MPC and MHE for
a large-scale mechatronic application,” Control Engineering Practice,
vol. 45, pp. 64–78, 2015.

[4] P. Meum, P. Tøndel, J.-M. Godhavn, O. M. Aamo, et al., “Optimization
of smart well production through nonlinear model predictive control,”
in Intelligent Energy Conference and Exhibition. Society of Petroleum
Engineers, 2008.

[5] A. Capolei, C. Völcker, J. Frydendall, and J. B. Jørgensen, “Oil
reservoir production optimization using single shooting and ESDIRK
methods,” IFAC Proceedings Volumes, vol. 45, no. 8, pp. 286–291,
2012.

[6] B. Foss, “Process control in conventional oil and gas fieldschallenges
and opportunities,” Control Engineering Practice, vol. 20, no. 10, pp.
1058–1064, 2012.

[7] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear MPC in the microsecond range,”
Automatica, vol. 47, no. 10, pp. 2279–2285, 2011.

[8] J. Andersson, J. Åkesson, and M. Diehl, “CasADi: A symbolic
package for automatic differentiation and optimal control,” in Recent
Advances in Algorithmic Differentiation. Springer, 2012, pp. 297–
307.

[9] D. P. Word, J. Kang, J. Åkesson, and C. D. Laird, “Efficient parallel
solution of large-scale nonlinear dynamic optimization problems,”
Computational Optimization and Applications, vol. 59, no. 3, pp. 667–
688, 2014.

[10] J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optimization and Engineering, vol. 13,
no. 1, pp. 1–27, 2012.

[11] R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-
Benedetti, M. O. Federici, T. R. Pieber, H. C. Schaller, L. Schaupp,
T. Vering, and M. E. Wilinska, “Nonlinear model predictive control of
glucose concentration in subjects with type 1 diabetes,” Physiological
Measurement, vol. 25, pp. 905–920, 2004.

[12] C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao,
and B. P. Kovatchev, “Diabetes: Models, signals, and control,” IEEE
Reviews in Biomedical Engineering, vol. 2, pp. 54–96, 2009.

[13] D. Boiroux, D. A. Finan, N. K. Poulsen, H. Madsen, and J. B.
Jørgensen, “Implications and limitations of ideal insulin administration
for people with type 1 diabetes,” in UKACC International Conference
on Control 2010, 2010, pp. 156 – 161.

[14] S. Schaller, J. Lippert, L. Schaupp, T. Pieber, A. Schuppert, and
T. Eissing, “Robust PBPK/PD based model predictive control of blood
glucose,” IEEE Transactions on Biomedical Engineering, vol. 63,
no. 7, pp. 1492 – 1504, 2014.

[15] H. Bock and K. Plitt, “A multiple shooting method for direct solution
of optimal control problems,” in Proc. of the IFAC 9th World Congress,
Budapest, Hungary, 1984, pp. 242–247.

[16] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder, “An
efficient multiple shooting based reduced SQP strategy for large-scale
dynamic process optimization (part I and II).” Computers & Chemical
Engineering, vol. 27, no. 2, pp. 157–174, 2003.

[17] M. Diehl, J. Ferreau, and N. Haverbeke, “Efficient numerical methods
for nonlinear MPC and moving horizon estimation,” in Nonlinear
Model Predictive Control. Towards New Challenging Applications.
Berlin, Germany: Springer, 2009, pp. 391–417.

[18] D. Boiroux, D. A. Finan, N. K. Poulsen, H. Madsen, and J. B.
Jørgensen, “Nonlinear model predictive control for an artificial β-
cell,” in Recent Advances in Optimization and its Applications in
Engineering. Springer, 2010, pp. 299 – 308.

[19] C. V. Rao, S. Wright, and J. B. Rawlings, “Application of interior-
point methods to model predictive control,” Journal of Optimization
Theory and Applications, vol. 99, no. 3, pp. 723 – 757, 1998.

[20] J. B. Jørgensen, J. B. Rawlings, and S. B. Jørgensen, “Numerical
methods for large-scale moving horizon estimation and control,” in
Proceedings of the 7th International Symposium on Dynamics and
Control Process Systems (DYCOPS), 2004.

[21] J. B. Jørgensen, “Moving horizon estimation and control,” Ph.D. dis-
sertation, Department of Chemical Engineering, Technical University
of Denmark, 2005.

[22] J. B. Jørgensen, G. Frison, N. F. Gade-Nielsen, and B. Damman,
“Numerical methods for solution of the extended linear quadratic
control problem,” in IFAC Conference on Nonlinear Model Predictive
Control 2012 (NMPC 2012), 2012, pp. 187–193.

[23] J. Nocedal and S. J. Wright, Numerical Optimization. New York,
USA: Springer, 2006.

[24] S. Mehrotra, “On the implementation of a primal-dual interior point
method,” SIAM Journal of Optimization, vol. 2, no. 4, pp. 575–601,
1992.

[25] D. Boiroux, “Model predictive control algorithms for pen and pump
insulin administration,” Ph.D. dissertation, Department of Informatics
and Mathematical Modeling, Technical University of Denmark, 2012.

[26] G. Frison and J. B. Jørgensen, “Efficient implementation of the Riccati
recursion for solving linear-quadratic control problems,” in 2013 IEEE
International Conference on Control Applications (CCA), 2013, pp.
1117–1122.

[27] “R2011a - Updates to the MATLAB and Simulink product families,”
http://www.mathworks.com/products/new products/release2011a.html,
[Online; accessed 14-September-2016].

[28] H. Zarrinkoub, Understanding LTE with MATLAB: From Mathemat-
ical Modeling to Simulation and Prototyping. John Wiley & Sons,
Ltd, 2014.

[29] L. Baresi, M. Mauri, A. Monti, and M. Pezzè, “PLCTools: design,
formal validation, and code generation for programmable controllers,”
in 2000 IEEE International Conference on Systems, Man, and Cyber-
netics, vol. 4, 2000, pp. 2437–2442.

[30] R. Bucher and S. Balemi, “Rapid controller prototyping with mat-
lab/simulink and linux,” Control Engineering Practice, vol. 14, no. 2,
pp. 185–192, 2006.

[31] Y. M. Altman, Accelerating MATLAB Performance: 1001 tips to speed
up MATLAB programs. CRC Press, 2014.

[32] J. B. Jørgensen, M. R. Kristensen, P. G. Thomsen, and H. Madsen, “A
numerically robust ESDIRK-based implementation of the continuous-
discrete extended Kalman filter,” in European Control Conference
2007. Kos, Greece: ECC 2007, 2007.

[33] D. Boiroux, D. A. Finan, N. K. Poulsen, H. Madsen, and J. B.
Jørgensen, “Meal estimation in nonlinear model predictive control for
type 1 diabetes,” in Symposium on Nonlinear Control Systems 2010
(NOLCOS 2010), 2010, pp. 1052 – 1057.

[34] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory
and Design. Madison, Wisconsin, USA: Nob Hill Publishing, 2009.

[35] S. S. Kanderian, S. Weinzimer, G. Voskanyan, and G. M. Steil, “Iden-
tification of intraday metabolic profiles during closed-loop glucose
control in individuals with type 1 diabetes,” Journal of Diabetes
Science and Technology, vol. 3, no. 5, pp. 1047 – 1057, 2009.

[36] L. E. Sokoler, A. Skajaa, G. Frison, R. Halvgaard, and J. B. Jørgensen,
“A warm-started homogeneous and self-dual interior-point method for
linear economic model predictive control,” in 52nd IEEE Conference
on Decision and Control, 2013, pp. 3677–3683.

332

