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Abstract— Industrial facilities show an increasing need for
continuous measurement and monitoring a large number of
process variables due to strict product quality requirements,
environmental laws and for advanced process control
application. On-line analyzers typically suffer from long
measurement delays not desirable in continuous control.
Suitable alternative are soft sensors and inferential control.

In this paper the development of soft sensor models for the
estimation of light reformate benzene content is carried out.
Linear dynamical autoregressive model with external inputs
(ARX), autoregressive moving average model with exogenous
inputs (ARMAX) and Box-Jenkins (BJ) models are developed.
For the regression vector optimization usually performed by
trial and error, Genetic Algorithm (GA) and Simulated
Annealing (SA) methods have been applied.

The results indicate that the GA and SA as global
optimization methods are suitable for the regressor order
estimation of linear dynamical models with multiple inputs.
Based on developed soft sensors, it is possible to apply
advanced process control schemes.

Keywords—soft sensors; system identification; genetic
algorithm; simulated annealing; fractionation reformate unit

I. INTRODUCTION

In refineries, chemical and petrochemical plants it is
necessary to continuously monitor the product properties as
they may greatly influence to the final product quality.
Companies are required to respect environmental laws with
strict product specifications and pollutant emissions.

Those product properties are mainly measured by on-
line analyzers which are often under maintenance and can
have a long processing time (e.g. gas chromatographs). This
can cause a significant measurement delay which reduces
the efficiency of dedicated process control logic. On the
other hand, laboratory analyses are infrequent and time-
consuming. This problem can be solved with the application
of soft sensors and inferential control logic. The soft sensing
technique utilizes continuously measured process variables
to predict the product quality variable applying certain
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modelling approaches, such as first principle modeling,
statistical modeling, artificial intelligence modeling, etc.
Soft sensors can work in parallel with real sensors
(analyzers) keeping control loops to work fast and properly
and to guarantee product specification without undertaking
conservative production policies [1], [2].

Different model structures can be used to model real
plant problems. In the case of industrial processes, due to
their complexity, the development of first principles models
can be very complex and time-consuming resulting with a
large number of unknown parameters. However, large
amounts of stored measured data suggest the application of
empirical models. Jiao, Li, Shen and Sun [3] solved large-
time delay problem with predictive control method based on
the extended Kalman filter model which estimates the coal
outlet mass flow of the coal mill. Ansari and Bawardi [4]
developed various inferential models for the refinery
product qualities, such as light naphtha 95% point, diesel
flash point of hydrocracker fractionators and reformate
octane numbers. Tham, Montague, Morris and Lant [5]
presented two adaptive estimators for inferring process
outputs for a feedback control that are subject to large
measurement delays.

Typical industrial soft sensor applications have
parametric polynomial structures like linear autoregressive
models with external inputs (FIR, ARX, OE and BJ) or
autoregressive moving average model with exogenous
inputs and their nonlinear versions.

Zhang, Tao and Gao [6] proposed usage of an improved
genetic algorithm for the optimization of ARX Takagi-
Sugeno fuzzy model. The model accuracy is compared with
a BJ gas furnace model showing good results. Muddu and
Patwardhan [7] developed adaptive model predictive control
scheme based on ARX model which was validated by
experimental studies on a heater-mixer setup. Muddu,
Narang and Patwardhan [8] developed ARX model for
novel model predictive control scheme. The efficacy of
algorithm was demonstrated by simulation studies on a
staged distillation column and by experimental evaluations
on a laboratory scale packed bed distillation column.



The procedure of soft sensor design includes: selection
of historical data from the plant database, data pre-
processing (outlier detection, data filtering, removing drifts,
etc.), model structure and regressor selection, model
estimation and model validation [9]. Here, the emphasis is
given to regressor selection, as choosing the optimal model
structure can be crucial for soft sensor performance [10].

To develop dynamical polynomial models, the model
order i.e. the number of coefficients for each polynomial of
model structure and time delays, must be predefined.
Akaike’s information criterion [11], [12] and the minimum
description length criterion [13] are some of the classical
methods for linear polynomial model order selection. For
nonlinear polynomial model order determination Lipschitz
method [14] is mostly used. Due to application complexity
of existing model order selection methods the common used
method is trial-and-error or the approximation is based on
the plant operator’s experience. This paper proposes using
genetic and SA algorithms for model order estimation.

In Chen, Worden, Peng and Leungc [15] ARX and
NARX model coefficients and time delays were optimized
using GA on the simulated dynamic system.

Typical soft sensor application areas, as shown in
Fortuna, Rizzo, Sinatra and Xibilia [15], are the measuring
equipment replacement, monitoring and process control as
well as fault-detection and diagnostics.

Primary application of the soft sensors developed in this
case study is its incorporation into closed-loop control, with
the aim to achieve more stable control leading to better and
more stable product quality. In this work ARX, ARMAX
and BJ models were considered.

II. THEORY - SOFT SENSOR MODEL STRUCTURES AND
OPTIMIZATION ALGORITHMS

In a large number of industrial processes nonlinearity is
slightly expressed and time variability is slow enough, so it
is possible to use linear and time-invariant process models
[16]. One of the commonly used linear dynamic process
models which contains noise model is the ARX model:

$0)=[1-A(g) ]y (k)+ 2B (@ (k—nk) (1)

where A(q) =1+ A ¢! + A g2+ ...+ Ang™ is the
polynomial matrix by ¢! of dimensions n(y)*xn(y).

Bi(g) = Bii + Bi2 q'l + Bi3 q'2 + ...+ Bi,nbic]'nbi+1 is the
polynomial matrix by ¢! of dimensions n(y)*n(u). na is the
number of past process output samples. nb is the number of
past process input samples and nk is the time delay for the i-
th input expressed with the number of samples.

Autoregressive Moving Average with exogenous inputs
model (ARMAX) extends the ARX structure by providing
more flexibility for modeling noise using the moving
average of a white noise. ARMAX model predictor in
developed form is the following:
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where C(q) =1+ Ci g + Co g + ... + Cye g™ is the
polynomial matrix by ¢! of dimensions n(y)xn(e). nc is the
number of past white noise samples and e(k) is the
prediction error.

ARMAX model is used when disturbances have a
significant impact on the model output.
Box-Jenkins (BJ) model provides independent

parameterization for the dynamics and the noise using
rational polynomial functions. Predictor of BJ model:

ﬁ(k)=§Bi<q)ui(k—nki>+[I ~ F(q) ]9, (k)
+[ C(q) - IJe(k)Jr[I - D(q) ]es(k)

where F(q) =1+ F; ¢g'+F, g2+ ... + For g™ and

D) =1+ Dy g'+ Dy g2+ ... + Dua g™ is the
polynomial matrix by ¢! of dimensions n(y)xn(es). es(k) is
the past simulated prediction error. yy(k) is the simulated
process output (or output of OE model), i.e. process output
without disturbance model. nf is the number of past model
output samples and nd is the number of past simulated
prediction error samples.

3

BJ model is usually used when the noise does not enter
at the input, but is primary a process disturbance [17].

After choosing an appropriate model structure, model
orders are estimated by GA and SA optimization techniques.

The process of evolution in GA begins from an initial
chromosomes population consisted of randomly generated
individuals (initial solutions). In each algorithm’s iteration,
the fitness function of each individual is evaluated. Further
on, multiple individuals are stochastically selected from the
current population according to their fitness function and
afterword’s recombined and mutated (modified). The new
created population is then used in the next generation of the
algorithm. The algorithm evolves toward better solutions
and usually stops when a maximum number of iterations
have been produced or a satisfactory objective function level
has been reached [18].

SA algorithm has taken inspiration from annealing in
metallurgy where it involves heating and controlled cooling
of a material to increase the size of its crystals and reduce
their defects. The state of some physical system at some
temperature can be expressed with the value of the objective
function which needs to be minimized. The goal is to bring
the system to a state with the minimum possible energy
using Boltzmann probability. In each algorithm’s iteration,
new nearby state as a random displacement from the current
states of the system is generated. If the new state has a lower
energy than the current, the transition is accepted. As long
as the temperature is reduced the chance of accepting worse
solutions is smaller. After a certain decreasing point, the



temperature is raised again in order to restart the search and
move out from the local minimum [19].

III. PROCESS DESCRIPTION

Fractionation reformate plant raw material is a mixture
of catalytic reformed naphtha and benzene fractions. The
flowrate is controlled by FC-001 and temperature by TC-
001 as shown on Fig 1. Since the boiling points of the
benzene fraction, light and heavy reformate naphtha are
very close, one part of the benzene will be separated as top
and the rest as bottom column product. Light reformate
flows to the reflux drum V-1 where it is separated as top
column product. Top column temperature TC-002 is
controlled in cascade with the pumparound flowrate FC-
002. Column pressure is controlled by the control valve at
the outlet top column stream. Bottom column temperature
TC-018 is controlled with the furnace H-1 inlet fuel gas
flowrate FC-009.
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Fig. 1. Fractionation light reformate plan

Desired top product composition is determined by
column top temperature. Inlet column temperature, flowrate
and bottom column temperature can influence column
temperature profile as well as the product composition.

For estimation of benzene content in light reformate
following five variables have been chosen as input
variables: column inlet stream temperature, TC-001; column
bottom temperature, TC-018; column temperature, TC-003;
column pressure, PI-009 and pumparound flowrate, FC-002.

IV. SOFT SENSOR MODEL DEVELOPMENT

Process data from the plant database was collected in the
continuous period of three weeks. According to the process
dynamics sampling interval was set to five minutes. Data
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was preprocessed including missing data and outlier
detection and replacement, data detrending and filtering.

The benzene content (model output) determined by on-
line analyzer is available every twenty minutes. Additional
output data is interpolated using cubic spline. The data set
for the model estimation includes 4500 samples and 1500
independent samples for the model validation.

The soft sensor models are developed in System
Identification Toolbox and Global Optimization Toolbox in
MATLAB.

A.  Optimizing model parameters by genetic algorithm and
simulated annealing
Adjustable model order parameters and their ranges are
chosen based on the process engineers experience as well as
rational model structure complexity, as shown in Table I.

TABLE L MODEL ORDERS OF ARX, ARMAX AND BJ MODEL
Parameter Minimum Maximum
value value

na 1 8

nb 1 8

nk 0 15

nc 1 8

nf 1 5

nd 1 5

TABLE II. GA AND SA OPTIMIZATION PARAMETERS

GA: Population size 50
GA: Number of generation 60
GA: Function evaluation 3000
GA: Selection Stochastic uniform
GA: Crossover Scattered
GA: Mutation Uniform
GA: Mutation probability rate 0.1
GA: Fitness scaling Rank
GA: Number of elite individuals 1
GA: Crossover fraction 0.7
SA: Acceptance function acceptancesa
SA: Annealing function annealingboltz
SA: Initial temperature 300
SA: Function evaluation 3000
SA: Reannealing interval 100
SA: Temperature function temperatureexp
SA: Termination function tolerance le?

The numbers of configurable parameters is 11, 12 and 17
for ARX, ARMAX and BJ model, respectively.




Based on the preliminary tests and rational calculation
time GA and SA parameters are selected and used for model
order evaluation as presented in Table II. The search spaces
for the models are as follows: ARX (8'*8*16° =
2.1990-10'%), ARMAX (8'*85*165*8! = 1.7592:10'%) and BJ
(85*%16°*55*81*5! = 4.2948-10").

B.  Model Evaluation Criteria

Developed models are evaluated based on the following
evaluation criteria: FIT criterion, final prediction error
(FPE) and root mean square error (RMS). The FIT is
calculated according to the following expression:

n

Z(J?l _yi)Z

FIT =| 1 -2

Zn:(yi ~Vm )2

i=1

-100 4)

where y is the measured output, y is the predicted output,
and yn, is the mean of y. FPE is defined as follows:

FPE =V (1 +2d/n) (5)

where V represents the loss function, d is the number of
estimated parameters, and » is the number of values in the
estimation data set. The V' is calculated as follows:
v —det| L e(1.6,)(e(10,))"
e

where 0, represents the estimated parameters and ¢ is
output error [20]. The FPE criterion is a compromise
between model accuracy and model complexity in terms of
the number of estimated parameters [21].

(6)

Preliminary research based on the non-preprocessed data
showed that FIT and FPE are not correlated, but both are
frequently used criteria for model evaluation. Therefore,
they are integrated in the multi-criteria objective function
using the weighted sum method [22]:

Yor = (100 - FIT) + 1000* FPE + 100* RMS  (7)

V. RESULTS AND DISCUSSION

Applying GA and SA algorithm na, nb, nk, nc and nd
were estimated by minimizing the objective function given
by eq. (7). The polynomial coefficients of Bi(gq) and F(q)
were estimated using the MATLAB System Identification
Toolbox.

A.  ARX model results

ARX model evaluation criteria obtained by five runs
using GA and SA for model order estimation are shown in
Table III.

TABLE IIL ARX MODEL EVALUATION CRITERIA
Run 1 2 3 4 5
GA FIT 86.470 87.111 86.541 86.766 86.559
GA FPE 7.63-10° | 7.71-10° | 7.70-10¢ | 7.79-10¢ | 7.64-10°
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GA RMS 0033 | 0032 | 0033 0.032 0.033
GAfitness | cess | 16,056 | 16767 | 16486 | 16743
function, yor

SA FIT 82733 | 83358 | 85481 | 82.901 | 83.617
SA FPE 791-10° | 3.0410° | 7.53-10% | 7.99-10° | 7.67-10%
SA RMS 0042 | 0041 0.036 0.042 0.040
SAfitess | 51508 | 20725 | 18.086 | 21299 | 20407
function, yor

For defined function evaluation number GA in all runs
gives better and less diverse results in comparison with SA,
as is shown in Table III

According to the lowest fitness function the model order
parameters from the 2" run of GA are considered as the
best. Obtained model order parameters are: na = [2]; nb = [8
1475;nk=[055611].

Fig. 2 and Fig. 3 show the comparison between
predicted and measured output for the validation data set.
One can notice very good matching between the model and
measured data for both of the ARX models.

ARX model residual distribution obtained by GA
algorithm shows that 87.6 % of all residuals lie in the range
of +0.05 vol. %. The same distribution for SA algorithm
shows 78 % of all residuals lie in the same range.
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Fig. 2. Comparison between measured data and ARX model using GA
algorithm.
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Fig. 3. Comparison between measured data and ARX model using SA
algorithm.




B.  ARMAX model results

ARMAX model evaluation criteria for the validation
data set using GA and SA are shown in Table IV.

TABLE IV. ARMAX MODEL EVALUATION CRITERIA
Run 1 2 3 4 5
GA FIT 85344 | 86.143 | 85708 | 85578 | 85971
GA FPE 1.9810° | 1.9510% | 1.92:10% | 2.02:10¢ | 2.03-10%
GA RMS 0.036 0.034 0.035 0.035 0.034
GA fitness 18252 | 17257 | 17.798 17.960 17.471
function, yor
SA FIT 84.631 | 83286 | 82998 | 79.074 | 84.871
SA FPE 1.89-10° | 1.87-10° | 1.92:10% | 1.73-10° | 1.88-10°
SA RMS 0.038 0.041 0.042 0.051 0.037
SA fitness 19.138 | 20813 | 21172 | 26.058 18.840
function, yor

GA results of ARMAX model are more consistent in all
runs compared with corresponding SA results. Comparing
the results of ARMAX and ARX models using the SA it can
be seen that ARMAX results show more variability.
ARMAX model parameters for GA in 2™ run are: na = [2];
nb=[73444];nc=[6];nk=[3 545 11]. It can be noticed
that the ARMAX model has somewhat smaller model order
compared to the ARX model with the similar model
evaluation criteria values.

From Fig. 4 and Fig. 5 and statistical evaluation criteria
from Table IV it can be seen that the ARMAX model
follows very well process data. For the ARMAX model
obtained by GA algorithm, 88.3 % of all residuals lie in the
range of +0.05 vol. % while with SA algorithm 62 % of all

residuals lie in the same range.
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Fig. 4. Comparison between measured and ARMAX model using GA
algorithm.
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Fig. 5. Comparison between measured and ARMAX model using SA
algorithm.

C. BJ Model results

Due to the real plant process complexity and frequent
occurrence of the process disturbances BJ model is
developed. BJ evaluation criteria are presented in Table V.

TABLE V. BJ MODEL EVALUATION CRITERIA
Run 1 2 3 4 5
GA FIT 89.199 | 88.890 | 88.920 | 88.809 | 89.453
GA FPE 1.08:10° | 2.1010° | 52610° | 1.0510° | 1.85-10°
GA RMS 0.027 0.027 0.027 0.027 0.026
GA fitness 13.460 | 13.854 | 13.849 13.945 13.151
function, yor
SA FIT 88.948 | 89.408 | 88.602 | 89.009 | 85510
SA FPE 239105 | 7.89-10° | 4.9810° | 8.70-10° | 6.73-10*
SA RMS 0.027 0.026 0.028 0.027 0.036
SAfitness | 13005 | 13268 | 14243 | 13772 | 18715
function, yor

For the best BJ model order parameters are: nb =[2 1 2
31 ;nc=4;nd=4;nf=[21231];nk=[1421289].

Fig. 6 and 7 display the comparison between BJ model
data and the measured data. As can be seen from Table VII
and Fig. 6 BJ model shows the best performances among the
developed models since it included disturbance dynamics.
BJ residual distribution achieved by GA, shows that 93.5 %
of all residuals lie in the range of +0.05 vol.% while the
model obtained by SA shows that 74.3 % of all residuals lie
in the same range.
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Fig. 6. Comparison between measured and BJ model output data using
GA algorithm.
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Fig. 7. Comparison between measured and BJ model using SA algorithm.

VI. CONCLUSION

Our results show that all developed models should be
suitable for application in advanced process control strategy.
In addition, the focus of this investigation was on
application of GA and SA model order optimization which
speeds up and facilitates soft sensor development procedure.
For smaller search spaces (ARX and ARMAX model) and
larger search spaces (BJ model) GA approach gives better
estimation of input-output polynomial models in comparison
with SA approach. The best overall model performance is
achieved by BJ model.

Keeping in mind that the optimal model for industrial
implementation is the simplest one with relatively small
prediction error, ARX model is good choice for on-site
implementation in advanced process control schemes.
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