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Abstract—We show a simple adaptive linear MPC is suitable
to simultaneously control flow rates and pressures in hydraulic
processes over wide operating ranges. The predictive controller
is adaptive in that the nonlinear process model is re-linearized
whenever setpoint changes occur. While its implementation is
hardly more complicated than for linear MPC and no addi-
tional signals or observers are required, the adaptive controller
improves the performance considerably. We apply the proposed
approach to the simultaneous flow rate and pressure control for
a side-channel pump, and compare it to standard linear MPC
and multivariate PID control by applying all three methods to a
laboratory setup. As a side-effect, the paper contains a nonlinear
model of a side-channel pump and process that is suitable as a
benchmark for other control concepts. In contrast to centrifugal
pumps, models of this type are not available in the literature for
side-channel pumps to the knowledge of the authors.

I. INTRODUCTION

The problem of simultaneous control of pressure and flow

in a hydraulic process arises in a variety of applications. An

example is found in reverse osmosis (RO) units for seawater

desalination or raw water purification. These processes pose

a challenging control problem due to the strong coupling be-

tween the controlled variables and the inherent nonlinearities.

Two control loops with independently tuned controllers are

likely to show poor performance, or even fail, as both con-

trollers strongly disturb each other. Model predictive control

is an obvious alternative, since it can be applied to multi-

input-multi-output (MIMO) processes by design, and since it

naturally can cope with constraints. Linear MPC, however, is

not an obvious choice, as hydraulic processes are nonlinear

systems that typically have to be run at varying operating

points. However, since hydraulic systems are often run at

varying steady states, but after all at steady state most of

the time, a nonlinear MPC setup appears to be unreasonably

complex. Similar arguments apply to linear MPC with time-

variant models (see, e.g., Falcone (2008), Drews (2009) and

Henriksen (2010) for successful applications).

We therefore propose to use a nonlinear process model and

adaptive linear MPC, where ’adaptive’ here refers to the simple

idea of re-computing the linearized process model whenever a

setpoint change occurs. We will apply this idea to a laboratory

setup with a side-channel pump, which incidentally may serve

as a model system for a typical RO unit process (see Fig. 1

and e.g. Gambier (2006)).

The proposed adaptive controller, a linear MPC, and two

PI/PID controllers are applied to a laboratory setup, which

is described in Sec. II. Section III describes the nonlinear

plant model, which is parametrized for the specific laboratory

setup in Sec. III-D. We outline our MPC approach and tune

PI/PID controllers for comparison in Sec. IV. Results and a

comparison of the controllers are given in Sec. V.

II. PROCESS DESCRIPTION

The considered class of hydraulic processes consists of a

feedwater pump with variable speed drive, a pressure control

valve and sensors for pressure and flow rate. The objective
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Fig. 1. Typical RO unit setup (left) and test setup (right)

is to simultaneously control pressure and flow rate with a

controller that is suitable for a wide range of setpoints. Figure

1 depicts a sample RO unit setup in the left diagram (cf.

e.g. Gambier (2006)). The right diagram depicts the subsitute

test setup that we used for evaluation. The two controlled

variables are the pressure p and the flow rate q, both on

the feedwater side, immediately downstream of the feedwater

pump. Process inputs are the feedwater pump speed n and

the control valve setting v. The secondary flow in the test

setup (Fig. 1 right) is used to simulate the semipermeable

membrane, i.e. the freshwater output, and acts as disturbance

to the control. Because the considered process requires high

pressures at relatively low flow rates, centrifugal pumps are

not well suited. We use a side-channel pump instead, as it

features high pressure outputs and a steep pressure to flow

characteristic (cf. Fig. 4(a) in Sec. III-D). Details on the control

hardware in the laboratory setup are given in Sec. III-D.
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III. NONLINEAR MODELLING

The process model includes nonlinear dynamic pump and

process characteristics as well as models of the sensing equip-

ment, combined to a model in a Hammerstein-like structure.

The model consists of four parts: a feedwater pump, an

actuated control valve, a pressure sensor and a flow rate sensor.

The individual model parts are combined to the process model

as shown in Fig. 2. We will outline the mathematical modelling

pump valve
flow

sensor

pressure

sensor

(1),(2) (7),(6) (10)

(9)

Fig. 2. Combined nonlinear dynamic plant model. Numbers refer to equations
stated in the text.

of each part separately in the remainder of Sec. III. The

parametrization of the models is discussed in Sec. III-D.

A. Model of the side-channel pump

Due to the complex geometry of the side-channel pump,

modelling requires more parameters than typically needed

for centrifugal pumps. Literature on side-channel pumps is

not as comprehensive as for centrifugal pumps. However,

some publications can be found in the German literature (e.g.

Grabow (1996), Surek (1997)). We follow Surek (1997) in

modelling the pressure-to-flow relation by

p(n, q, pin) =
kp,1 · n ·

(

1− q

qmax(n)

)m

kp,2
−kp,3 ·q+pin , (1)

where

kp,1 = ρ · π · 30−1 · γ0 · ro ·Asc · (r
4
o − r4i )

kp,2 = rm · r2sc ·

(

π ·
(
r2o − r2m

)
−

sb · zb
sinβb

· (ro − rm)

)

kp,3 = ζ ·
ρ

2
· αsc ·

(
2 · π · r2sc

)
−1

(2)

and rm = 0.5 · (ro + ri). In (1), qmax(n) is short for
qmax(n) = qdes · n · n−1

des with qdes being the maximal flow
rate at design speed ndes. The parameters γ0, m and ζ depend
on the specific rotational speed nq, a dimensionless number
that characterizes the geometric pump and impeller design
(see. e.g. Gulich (2007) p. 82). Surek (1997) published a
diagram that shows the graphs of the functions γ0(nq), m(nq)
and ζ(nq). We derived the following polynomials from this
diagram:

m(nq) = −4.6339 · 10−5
· n

6
q + 0.00167 · n

5
q − 0.02364 · n

4
q

+0.16126 · n
3
q − 0.511 · n

2
q + 0.7553 · nq − 0.3485

γ0(nq) =
1

5

(

795.4 · e
−2.415·nq + 2.049 · e

−0.221·nq
)

(3)

ζ(nq) =
1

5

(

−4 · 10−5
· n

6
q + 0.00158 · n

5
q − 0.0246 · n

4
q

+0.1886 · n
3
q − 0.6907 · n

2
q + 0.751 · nq + 1.425

)

The remaining parameters from (1) and (2) are given in Sec.

III-D.

B. Valve and pipe models

We use an actuated control valve to simulate the freshwater

outflow. The valve is modelled in a first order Hammerstein-

like structure to account for the effects of fluid inertia. The

nonlinear static part is described by the pressure loss equation

(e.g. Gulich (2007), p. 5)

p∆(ζv, q) = ζv ·
ρ

2
·

(
q

Av

)2

, (4)

where the valve coefficient ζv and the valve cross section Av

depend on the valve opening. We substitute (4) by

p∆(q, v) = kv(v) · q
2 (5)

and measure kv(v) for the real valve (see Sec. III-D). We

anticipate kv(v) can be approximated by a piecewise affine

function

kv(v) =
v − vf(i− 1) · (kv,f(i)− kv,f(i− 1))

vf(i)− vf(i − 1)
+ kv,f(i− 1) ,

(6)

where vf(i) and kv,f(i) hold the i-th measured data point (see

Fig. 4(b) for the data points and the resulting function). The

fluid inertia is accounted for with a first order lag Tiq̇(t) =
−q(t) + u(t) (see. e.g. Gulich (2007), p. 4), where the input

u(t) is given by (5) solved for q:

q̇(t) =
1

Ti

(

−q(t) +
√

∆p(t) · kv(v(t))−1
)

(7)

C. Sensor models

Sensing equipment may introduce dominant time constants,

in particular in fast pressure control loops, which can signif-

icantly reduce control quality when ignored in the controller

design. Moreover, pressure and flow rate sensors are typically

connected to a process control system (PCS), which may

introduce deadtimes due to computation and communication.

However, the time constants of the sensing equipment and

the PCS cycle times are independent of the operating point.

Since the nonlinearities of the process have been covered by

the previously described pump and valve characteristics, it

suffices to model the sensors with linear, time invariant models

with constant deadtimes. Based on observations of the sensor

dynamics we choose a second order plus deadtime system

ÿ(t) + a2ẏ(t) + a1y(t) = b1u̇(t− TD) + a1u(t− TD) (8)

and apply an identification method proposed by Wang (2001),

which is based on step responses. Details on the parametriza-

tion are given in the following Sec. III-D.

D. Application to the test bench

We will focus on the application of the models to the

specific process already sketched in Sec. II from here on.

The test setup consists of a FLOWSERVE/SIHI AKH 1201

side-channel pump, attached to a variable speed controlled

induction motor with inverter. The discharge port is fitted with
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Fig. 3. Hardware layout of the plant simulator and FLOWSERVE/SIHI AKH
1201 side-channel pump

a pressure sensor; a flow rate sensor is fitted downstream. A

standard industrial PCS is used to handle sensor and actuator

signals. The control algorithms are executed on a PC running

MATLAB / SIMULINK that is connected to the PCS via OPC1

using the Simulink OPC toolbox. Figure 3 shows the side-

channel pump and the laboratory process layout.

1) Identification of pump and valve models: .The param-

eters of the pump model (1), in particular the radii ro, ri
and rsc, depend on the actual pump design and are typically

not published. This also holds for the blade thickness sb, the

blade angle βb, the blade count zb, the circumferential angle of

the side-channel αsc and the side-channel surface area Asc. In

order to determine these parameters without disassembling the

pump, we measured the head to flow relation (with the head

defined by h = (p− pin) · (ρ · g)
−1) for four different speeds

n, and fitted the unknown parameters using a brute-force

optimization. We included the constraints ri·r
−1
o ∈ [0.35, 0.45]
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Fig. 4. (a)Verification of the pump model (1) at speeds (from bottom to top)
n = 1100 min−1, n = 1300 min−1, n = 1450 min−1, n = 1800 min−1;
(b) Valve characteristics (6) with value pairs (vf , kv,f).

and rsc · r−1
o ∈ [0.15, 0.35] to ensure compliance with the

geometry of the actual pump. The parametrized pump model

is compared to the measured data in Fig. 4(a), which confirms

a sufficient model quality. The resulting parameters are given

in Table I. The piecewise affine valve characteristic (6) was

parametrized with the data points shown in Fig. 4(b). The fluid

inertia is very low due to the short pipings. We estimated the

corresponding time constant in (7) to Ti = 0.1 s.
2) Identification of the sensor models: .The identification

of the sensor models (8) was performed on the basis of a

1OPC: OLE (Object Linking and Embedding) for Process Control.

TABLE I
PUMP MODEL PARAMETERS

param. value unit param. value unit

ρ 1000 kg/m3 sb 0.005 m
ro 0.07 m zb 18
ri 0.0245 m βb 90 ◦

rsc 0.0227 m αsc 200 ◦

Asc 8.0942e-4 m2 qdes 0.0018 m3/s

nq 8.5 ndes 1450 min−1

step response measurement. Applying the method proposed

by Wang (2001) yields the pressure sensor transfer function

0 2 4 6
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0.5
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measured data
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(a)

0 5 10
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0.5

1
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Fig. 5. Pressure (a) and flow rate sensor (b) step responses

Gs,p(s) =
12.09 · e−1.5·s

s2 + 7.928 · s+ 12.09
(9)

and the flow rate sensor transfer function

Gs,q(s) =
(0.4776 · s+ 0.3723) · e−3·s

s2 + 1.096 · s+ 0.3723
, (10)

that represent the measured responses sufficiently precise for

our purposes (cf. Fig. 5).

3) Linearized process model: .While the proposed adaptive

MPC and the state observer depend on the nonlinear model,

a linear model is required for the linear MPC and the PID

controller tuning. We choose the steady state operating point

v0 = 8.5 % , n0 = 1450 min−1 ,

q0 = 2.05 · 10−4 m3/s , p0 = 2.58 · 105 Pa
(11)

for the linearization.

The pump model (1) yields two constants when linearized,

describing the reaction of p to a change in q and n:

kp,q =
kp,1 ·m · ndes · n0 ·

(

1− ndes·q0
n0·qdes

)m−1

−kp,2 · qdes
− 2 · kp,3 · q0

(12)

kp,n =
kp,1 · n0 ·

(
qdes·n0−q0·ndes

qdes·n0

)m

kp,2 · (qdes · n0 − q0 · ndes)

· (2 · qdes · n0 + (m+ 2) · q0 · ndes)

(13)

Linearizing the valve equations (6) and (7) yields two linear

first order differential equations, describing the flow reaction to

a change in v and p. It is convenient to state these equations as
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their equivalent transfer funtions for our purposes. The transfer

functions read

Gv,v(s) =
∆q(s)

∆v(s)
= Gi(s) ·

−p0 · kv(v0)
−2

2 ·
√

p0 · kv(v0)−1
·
dkv(v)

dv

∣
∣
∣
∣
OP

︸ ︷︷ ︸

kv,v

(14)

and

Gv,p(s) =
∆q(s)

∆p(s)
= Gi(s) ·

(

2 · kv,0 ·
√

p0 · kv(v0)−1
)
−1

︸ ︷︷ ︸

kv,p

,

(15)

where Gi(s) = (Tis+ 1)
−1

. Note that the expression
dkv(v)

dv
is negative over the valve operating range (see Fig. 4(b)), so

that (14) shows correct physical behaviour (i.e. opening the

valve leads to higher flow rate). Figure 6 outlines the linear

Fig. 6. Linearized model scheme

model scheme. The linearized model is transformed into a

discrete-time state-space representation

x(k + 1) = A(OP) · x(k) +B(OP) · u(k)

y(k) = C · x(k) , (16)

with the state vector

x = (xq,1, . . . , xq,8, xp,1, . . . , xp,5, xi)
T

that contains the states of the flow rate (xq,i with i =
1, . . . , 8), of the pressure sensor models (xp,i with i =
1, . . . , 5), and of the flow inertia model (state xi). Eight

states xq,i and five states xp,i result because of the dead

times, which are integer multiples of the discretization time

Td = 0.5 s in both cases. The input vector u = (v, n)
T

holds valve position and pump speed, the output vector

y = (q, p)T holds the feedwater flow rate and the feedwater

(pump discharge) pressure. The abbreviation OP in (16) is

meant to indicate that the matrices are evaluated at the

steady state that corresponds to (11) for linear MPC and

PI/PID control, and at various steady states for the adaptive

MPC approach detailed in Sec. IV. Note that (16) could be

transformed to a time-variant model by substituting OP =
OP(k) = v(k), n(k), q(k), p(k) =

(
u(k) x8(k) x13(k)

)

into A(OP), B(OP), C(OP) and denoting the resulting

matrices A(k), B(k), C(k), respectively2.

2We avoid this notation, because we are not using the time-variant model.
In contrast, (16) is used with time-invariant matrices that correspond to the
steady state operating point (11) in the reference linear MPC implementation,
the observer, and PID tuning, and the matrices in (16) are adjusted whenever
the setpoint changes in the adaptive MPC proposed here.

To compose the matrices in (16), the sensor models (10) and

(9) are transformed into discrete-time state-space models with

matrices (As,q, bs,q, cs,q) and (As,p, bs,p, cs,p), respectively,

by using standard methods. The flow inertia model contains

the ∆q feedback loop as depicted in Fig. 6 and reads

ẋ(t) =
(
T−1
i (kp,q · kv,p − 1)

)
x(t) + T−1

i u(t) (17)

The discretization of (17) yields the (scalar) state-space ma-
trices ai, bi and ci. The three linear models are combined to
yield the matrices

A(OP) =































As,q 0

(

ci(OP)
0

)

cs,q 0 0
8×5 0

0 I
5×6

0

As,p 0

(

kp,q(n0, q0) · ci(OP)
0

)

0
5×8

cs,p 0 0

0 I
2×3

0

0
1×8

0
1×5 ai(OP)































,

B(OP) =











0
8×1

0
8×1

0 kp,n(n0, q0) · bs,p

0
4×1

0
4×1

kv,v(v0, p0) · bi(OP) kv,p(v0, p0) · kp,n(n0, q0) · bi(OP)











,

C =

(

0
2×7

(

1
0

)

0
2×4

(

0
1

)

0
2×1

)

, (18)

with Ii×j =

{

0 if i 6= j

1 if i = j
and 0 being a zero matrix

of appropriate dimension where not explicitly stated. The

abbreviation OP is understood as in (16).

IV. MODEL PREDICTIVE CONTROL WITH ON-LINE

LINEARIZATION

We use a standard linear MPC approach as given e.g. in

Maciejowski (2002). The cost function

J(k) =

Hp∑

j=Hw

||ẽ(k + j|k)||2Q +

Hu−1∑

j=0

||δũ(k + j|k)||2R (19)

is to be minimized in every time step, while only the first

element of the resulting optimal input trajectory is applied

to the plant. In (19), ẽ(k) = w(k) − ỹ(k) is the predicted

control error, δũ is the predicted input variation per sample

and Q and R are weighting matrices for control error and

input variation, respectively. The minimization is subject to

the process dynamics (16) and the constraints

(
5, 600

)T
≤ u(k) ≤

(
17, 1800

)T

Td ·
(
−1, −50

)T
≤ δu(k) ≤ Td ·

(
1, 50

)T

(
0, 0

)T
≤ y(k) ≤

(
4 · 10−4, 1 · 107

)T
.(20)

The constraints (20) reflect the feasible process boundaries

and ensure that pump and valve are operated in their defined

operating ranges (cf. Fig. 4(a) and 4(b)). A dead-beat observer

is used to estimate the full state vector from the measurements:

x̂(k + 1) = (A(OP)−L(OP) ·C) · x̂(k) +B(OP) · u(k)

+L(OP) · y(k) ,
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using the same state space model as the controller. The tuning

of the MPC is performed manually. We choose the weigthing

matrices as follows:

Q =

(
1 · 1010 0

0 0.01

)

R =

(
0.01 0
0 0.01

)

.

The entries in Q consider the physical units of q and p and

therefore differ in several orders of magnitude. The flow rate is

weighted approx. 1000 times more strongly than the pressure,

as we received best results with this tuning. We choose the

horizon lengths to Hp = 50, Hw = 20 and Hu = 10, again,

as these settings showed best results during the tests.

A. Adaptive MPC

We briefly mentioned in Sec. III-D the matrices A(OP),
B(OP) stated in (18) can be interpreted as time-variant

matrices A(k), B(k) by substituting OP = OP(k) =
(
u(k) x8(k) x13(k)

)
. Using the resulting time-variant sys-

tem x(k + 1) = A(k)x(k) +B(k)u(k) essentially results in

an MPC with linearizations along trajectories (see e.g. Falcone

(2008), Drews (2009) and Henriksen (2010)). In contrast,

we here re-calculate the matrices (18) only if the setpoint

w = (q, p) changes, which results in a setpoint-adapted linear

MPC. Note this is considerably simpler for two reasons. For

one, a linear MPC implementation can obviously be used after

minor extensions. Secondly, no measurements of y, x or u are

required, but the adapted matrices only depend on the desired

new setpoint w (see Fig. 7), which is known and does not

need to be measured or estimated.

MPC

observer

loop 0,5s

lineariza!on

changed?

yes

no
solve (1) for

solve (2) for

linearize (3)

and (4)

Fig. 7. MPC and linearization interaction

B. MIMO PID controller for comparison

An analysis of the relative gain array Λ (e.g. Skogestad

(2007), p. 82) of the process at the nonimal OP (11) yields

Λ = K · inv(K)T =

(
0.894 0.106
0.106 0.894

)

, (21)

with K being the steady state gain matrix of the process. Λ
reveals that a diagonal pairing of the in- and outputs is optimal.

We thus choose the first control circuit so that it controls the

flow q by acting on the valve opening v. The second control

circuit is chosen so that it controls the pressure p by acting on

the pump speed n. We compensate the slow system dynamics

in both systems with a controller zero of a realizable PID

controller

C(z) = Kc ·
(z − pc,1) · (z − pc,2)

(z − 1) · (z − pc,f)
,

with zeroes pc,1 and pc,2 and filter constant pc,f . In case

of the flow rate control loop, there is only one real pole,

and pc,2 and pc,f can be set to zero. In the pressure control

loop, the two slowest poles are compensated by pc,1 = 0.357
and pc,2 = 0.053. We choose a filter time constant of

Tf = 0.1 s, which yields pc,f = 0.0067. The second tuning

step involves choosing the controller gain Kc so that desired

control properties are met. We tuned both control loops with

a damping of the dominant pair of poles of approximately 0.5
for a reasonable compromise between speed and robustness.

This yields Kc = 0.004 for the pressure control loop and

Kc = 1.62 · 103 for the flow rate control loop.

V. RESULTS

We compare three control variants: (i) the adaptive MPC

described in Sec. IV, (ii) a standard linear MPC based on the

model (18), linearized at the nominal OP (11) and (iii) the PI /

PID controller described in Sec. IV-B, which is also based on

the model linearized at the nominal OP (11). We measure the

controller performance with the integral abolute control error

(IAE)

IAE =
∑

i

|w(i)− y(i)| (22)

for all time points i. We evaluated a ”nominal” control scenario

with average setpoint changes and a scenario where large

setpoint steps occurs.

A. Nominal operation scenario

The IAE was measured in a long term test with several

moderate setpoint changes to cover different coupling effects

between the two controlled variables. Figure 8 shows the time

series of the evaluation scenario. Stable control is achieved
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Fig. 8. Control quality during nominal operation
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with all three control variants, as evident from Fig. 8. Table II

summarizes the IAE and cost function values. The proposed

adaptive MPC (variant (i)) controls the system slightly more

efficiently than the standard MPC (variant (ii)) and makes

better use of the coupled inputs. This observation is confirmed

by the lower IAE values and a significantly lower cost
∑

k J(k) for variant (i). Both MPC variants very clearly

outperform the decentralized PID control (variant (iii)).

TABLE II
IAE FOR THE SCENARIO FROM FIG. 8

variant IAE for p in % IAE for q in %
∑

k J(k) in %

(i) 83 49.6 24.1

(ii) 87.4 50.1 100

(iii) 100 100 -

B. Large setpoint variation

The advantages of the online linearized MPC become more

obvious when larger variations from the nominal operating

point occur. Figure 9 depicts a time series around a large

setpoint increase in both controlled variables. In this scenario,
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Fig. 9. Control quality with large setpoint step

the standard MPC (variant (ii)) fails as it runs into an undesired

limit cycle when the large setpoint increase at t = 75 s

occurs. The other two variants handle this situation well, while

the online-linearized MPC again outperforms the PID control

significantly. The IAE and cost function values summarized

in Tab. III corroborate this result. The proposed adaptive

TABLE III
IAE FOR THE SCENARIO FROM FIG. 9

variant IAE for p in % IAE for q in %
∑

k J(k) in %

(i) 39.8 49.8 43.1

(ii) 93.3 59.3 100

(iii) 100 100 -

MPC shows best results and is able to minimize the cost

function more efficiently than standard MPC. The IAE is

again significantly reduced in comparison to the PID, but this

time the online-linearized MPC also clearly outperforms the

standard MPC.

VI. CONCLUSION

We applied an adaptive MPC approach that is suited to

control nonlinear hydraulic processes, without being more de-

manding on the computational hardware than standard online

MPC. In contrast to existing online-linearization concepts,

our approach re-linearizes the internal model only when the

control setpoint is changed. It is straightforward to implement

the proposed approach, since standard, linear MPC algorithms

can be reused. We compared the performance of the propsed

controller to a standard, linear MPC and to a PI/PID control on

a by applying them to the simultaneous control of pressure and

flow rate in a side-channel pump. Both MPC variants show a

significantly increased control quality when compared to the

PI/PID control. The proposed adaptive MPC outperforms the

standard MPC whenever large deviations from the original

operating point occur. In fact, linear MPC often fails in this

case.
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