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Abstract—PieceWise Affine (PWA) models are used to approx-
imate general nonlinear dynamics with an arbitrary precision.
PWA model can be employed for a constrained optimal controller
synthesis, whereas the complexity of the controller is in a
large part determined with a complexity of the model. Among
the prominent methods for a PWA system identification is the
clustering-based identification, which is originally designed for
identification of systems with a Multiple-Input Single-Output
(MISO) structure. When applied for the Multiple-Input Multiple-
Output (MIMO) system identification, previously used clustering-
based approach implied independent estimation of PWA maps
for each of the outputs, whereas the MIMO PWA model was
constructed by merging the polyhedral partitions and parameters
of each MISO model. PWA model obtained with the respective
approach often contained a significant number of submodels,
thus aggravating the controller design process. In this paper
we propose a multivariate linear regression approach for the
identification of a MIMO PWA model based on the clustering
technique. The presented approach is a systematic extension and
fully exploits all benefits of the clustering-based identification.
The proposed approach is validated on a coupled MIMO system
identification problem.

I. INTRODUCTION

PieceWise Affine (PWA) systems are defined with a set of
affine submodels and convex regions that associate current
state of the system with the corresponding affine submodel.
PWA model identification is a challenging task since it in-
volves simultaneous identification of regions in the regressor
space and parameters of associated affine submodels. Algo-
rithms that make the state of the art in the piecewise affine
system identification are algebraic, Bayesian, bounded-error
and clustering-based method [1].

Among the established methods for the piecewise affine
identification, the clustering-based technique has shown to be
robust to the effect of the measurement noise, but requires a
priori knowledge about the model orders for the considered
system. The method as presented in [2] requires the user to
specify the number of submodels and number of points per
local dataset which is used to estimate the local parameters of
the model. Each local dataset is parameterised as a feature
vector, which is afterwards used in the data classification.
In [3] authors present a statistical clustering technique that
employs consistent Akaike’s Information Criterion (AIC) and
the Minimum Description Length (MDL) criterion in order
to estimate the number of submodels. The survey about the
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piecewise affine system identification and its applications can
be found in [4].

Clustering-based identification is originally designed for
the systems with MISO structure. However, systems that are
used for the optimal controller synthesis are often of MIMO
structure and require MIMO PWA map identification. With
that aim, natural extension of the clustering based technique
is presented in this paper. The proposed approach is suitable
for the identification of a MIMO PWA model.

The paper is organized as follows. In Section II, PWA
identification problem in a general form is presented. In the
following section, steps of the clustering-based identification
procedure are described and application of the K-means++
algorithm [5] is proposed in order to improve the results of the
feature vector clustering phase. In the same Section, feature
vector transformation is introduced to reduce or completely
omit partitioning in arbitrary dimensions of regressor vectors,
e.g. when certain system variables are known to map linearly
with respect to the system output. In Section IV, extension of
the clustering-based procedure suitable for the MIMO PWA
system identification is presented. Section V presents the
results of the proposed approach on the coupled MIMO system
identification problem.

II. PROBLEM DESCRIPTION

Assume that a dataset of N input-output data
& = {(xi,yi)}}L, is collected, where input vector z is
drawn from the bounded multi-dimensional domain 2~ C R"
and output vector y € R™ is generated according to a PWA
model,

yi = F(x;) + &4, (1)

where €; € R™ is the noise vector sampled from the multi-
variate Gaussian distribution, whereas E[e;ei] = 0, Vi # j.
The PieceWise Affine map F' is in the general case defined
with the equation

91|:Ti| lfTE%l,
F(z) = : @
T .
93[1] if v € 25,



where 6 is the parameter matrix of appropriate dimensions
and %Z; is the j-th region of the input regressor domain 2
which consists of disjoint convex sets, i.e. 2 = U;_;Z;
ZiNZ; =0,Yi#j.

In case of MIMO PWARX systems, inputs form regression
vectors that are sampled in equidistant time instants

Ty = [y(l),k:—l s YD) k—nga o - Y(m)k—1 - Y(m) k—ng.m
T
ol ]
3)

where k is the discrete-time instant, y ) is the h-th output,
u € R is the input vector of the model, n, and n; are
model orders, whereas dimension of the regressor vector is
n=7y . Ng;+r-nyi=1...,m.

PWA regression problem refers to reconstructing a PWA
map F', which includes both partitioning of the input domain in
s disjoint submodels 27, ..., Z; and identifying parameters
over respective submodels 61, . .., 0;.

III. CLUSTERING-BASED IDENTIFICATION OF PIECEWISE
AFFINE SYSTEMS

Clustering-based identification [2] is presented for the fol-
lowing scenario:

i) dimension of the system output vector m is 1 — suitable

for MISO identification;

ii) the number of submodels s is provided;

iii) in the identification of PWARX models, model orders n,
and ny are fixed and known a priori.

The main steps of the clustering-based identification are
briefly discussed in the sequel. The notation which is used for
the description of the clustering-based procedure is defined
as follows. For MISO identification we consider the one-
dimensional output z = ), which is the h-th output of
the MIMO model. Likewise, local datasets formed with one-
dimensional ouput z are denoted with (), etc. For more
details regarding the clustering-based identification algorithm
refer to [2], [6]. The main steps of the algorithm are sum-
marised in the following subsections.

A. Local Regression

Local Datasets (LDs) (),;, @ = 1,..., N are built. Every
LD %(3),; contains a datapoint (z(i), 2(7)) and ¢ — 1 distinct
datapoints (Z, Z) nearest according to the euclidean metrics,

(i) = 2I|* < |la(d) - 2|)*,  ¥(Z,2) € Fwy \ Clnyi- @)

For each LD %y, ; the affine model is identified by employing
the least squares method,

H(th)‘,i = ((I);F(I)i)_lq)jzcg(h),m 5
T
D = [pr12--- 0]

where ¢; = [z 1] T, {2;}¢_, are regressor vectors and 26y s
is the vector of outputs contained in LD () ;. Parameter
¢ should be properly tuned in order to avoid outliers in the
parameter vectors Q(th) € R™. Outliers are primarily a conse-
quence of mixed LDs. In the clustering-based identification,
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term mixed LDs refers to the local datasets containing output
values generated by more than one submodel. Accordingly,
local datasets containing only data points generated by one
submodel are referred to as pure. In order to achieve good
validation results, the ratio between mixed and pure LDs must
be kept low.

B. Feature vectors construction
Each LD is parameterized as a feature vector {y),; =
LS \T ., T
(055 07 m,

K3
of regression vectors contained in a LD %(3) ;,

mi:l Z z, 1=1,...

C
(2,2)EC (), i

+
] ,Vi=1,..., N, where m; is the mean value

N (6)

In order to include confidence levels in the identification
process, feature vectors are approximated with the realisation
of Gaussian random vectors with mean &; and variance

Vim: O
Rny,i = [ (0) 0, } ) (7
where V() ; is the empirical covariance matrix of the param-

eter vector O(L,g ; 171,

Z%h),i(l - (I)i(q)z-‘l—q)i)ilq)z—’r)z(g(h),i
c—(n+1)

where [ is the identity matrix of suitable dimension and @); is
the scatter matrix of the regression vectors in the LD %3, ;,

0= Y

(z,2)€EC ().

(@ ®,)7", (8)

Vv(h),i =

(a:—mi)(x—mi)-r. 9)

Moreover, scalar measure of the feature vector &; confidence
level is determined by employing

1
\/(27T)2"+1 det(R(h)’i) .

C. Clustering the feature vectors

(10)

If the identification problem is well posed, a PWA model
with s submodels will result with s clusters of points in
the feature vector space. Consequently, feature vectors are
partitioned into s disjoint clusters {.%}5_; that minimise
the cost functional quantifying displacement of the feature
vectors from the identified centers of the clusters, whereas the
centers of the clusters are optimised by employing a suitable
algorithm. In [2] authors propose a variation of the batch
K-means algorithm that exploits measures of confidence levels
to reduce negative effects of outliers in the clustering process.
Respective algorithm is computationally efficient but can be
trapped in local minima in the case of a bad clustering centers
initialisation whereas various algorithms have been proposed
which guarantee optimality of the clustering procedure [6],
[8].

Adapted K-means++ algorithm for the clustering centers
initialisation. Algorithms that guarantee optimality of the
clustering procedure exploit measure of a distance between



the sets of data within the dataset and require parameters
which do not include the desired number of clusters. On the
contrary, K-means allows specifying the desired number of
clusters, whereas its optimality depends upon the clustering
centers initialisation. In order to improve initialisation step of
the K-means, here we adapt the K-means++ algorithm [5],
which is defined as follows. Let D(&;) denote the shortest
distance from a data point &; to the closest center we have
already chosen. The iterations of the dataset center selection
are performed with the following steps of the initialisation
algorithm:

1) take one center c;, chosen uniformly at random from the
clustering dataset,

2) take new center c;, whereas each data point & in the
clustering dataset has the following probability to be drawn

(wiD(&))*
Dim1,. N (wiD(fi))27
3)if j<s,j=7+1and go to 2.
Transformation of the feature vectors for the discriminatory
clustering. K-means clustering results with data clusters that
minimise cumulative distance between the appurtenant feature
vectors and center of the cluster. Note that the feature vector
is comprised of the parameter vector and the mean of the
regressors contained in a LD. In the specific identification
scenarios, it may be useful to discriminate partitioning with
respect to the spread of points in arbitrary dimensions, e.g.
when mode switching does not occur with respect to certain
variables of the system. Accordingly, one can employ the
transformation of the regressor means m,; comprised in the
feature vectors prior the identification process,

pi = (11)

.....

m), = T (m;)m;, (12)

where T'(m;) is an arbitrary transformation matrix.

D. Estimation of the submodel parameters

Since there is a bijective map between the i-th pair (x;, 2;)
and its feature vector &;, data points {(z;,2;)}}Y, can be
classified in s data clusters {Z(;) ;}3_; according to

(:r,i,zi) S @(h),ﬁ if & € f(h)d. (13)

The j-th parameter vector 6,y ; is then obtained by employing
the weighted least squares algorithm over the data in the set
D(n),;» Whereas the weights are chosen according to (10).

E. Estimation of the submodel regions

Region estimation problem consists in finding complete
polyhedral partition of the regressor set (), i.e. without
“holes”. The convex polyhedral regions Z() ;. j = 1,...,s,
are found by solving a multicategory classification problem,
a Multi-category Robust Linear Program (MRLP) [6] in
particular. Clustered regressors are bounded with separating
hyperplanes between clusters which are selected so as to min-
imize the cost function associated with misclasified regressors,
using a single Linear Program (LP). Since there are large

406

\ Z

2@
22,1 2(1.2)
Z(2,2)

Fig. 1. Merging MISO partitions 21y and 22 into single MIMO partition
Z 9]

memory requirements for solving respective LP which limits
its applicability for larger dataset of regressors, a simplified
problem is proposed in [9] to estimate the borders of the
submodels.

IV. PWA IDENTIFICATION OF MIMO MODELS

Approach for the identification of a MIMO PWARX
model [10] has been proposed in [9]. It is based on identifying
m PWARX MISO models, one for each of the outputs which
are finally merged in a single PWARX MIMO model as
depicted in Fig. 1. While the discussed method is a natural way
to extend the PWA MISO identification as described in [2] for
the case of the PWA MIMO identification, it does not fully
exploit the structure of the problem defined in Section II. The
application of the respective approach for the identification of
the wind turbine MIMO model is reported in [11].

In case of the MIMO PWA system identification, notice
that the recognition criteria for each of the submodel regions is
the parameter matrix 6; which is concatenated of /m parameter
vectors, one for each of the outputs. It is reasonable to perform
data classification in the extended space of feature vectors,
containing parameter vectors for all of m outputs.

The benefits of the proposed approach are as follows. The
approach enables user to select the number of submodels that
form the identified PWA MIMO model. In the previously used
approach [9] user would define the number of submodels
for each of the PWA MISO models, whereas the resulting
number of regions was ultimatively determined by merging the
identified MISO partitions into the single MIMO partition [9].
Moreover, the classification phase is expected to perform better
when the considered number of attributes is larger. In the
proposed approach the feature vector has (s — 1)(n + 1) more
attributes compared to the previously used approach. Further-
more, the proposed approach may alleviate the region over-
generation effect that could be observed with the previously
used approach.

Given that the polyhedral partition 2" of a MIMO PWA
model is formed by intersecting the independently identified



polyhedral partitions of MISO PWA models Z(1),..., Z(m)
and some bordering constraints of the respective partitions
coincide, the resulting partition 2~ is expected to contain the
redundantly generated regions. It is a direct consequence of a
non-ideal polyhedral partition estimation. If any of the com-
mon bordering constraints alters in the identification process,
merging of the appurtenant partitions will result with region
over-generation.

According to the discussion from above, we propose the
clustering procedure that employs the feature vectors com-
prising the parameters of all submodels,

+
0hys 0o o 06 }

0; = Ry (14)

Thus, a MIMO PWA map can be optimised in order to obtain
the best approximation of nonlinearities for the specified num-
ber of regions s. Systematic framework for the identification
of multiple-output linear systems is the multivariate linear
regression [12], [13].

Likewise to the clustering-based identification scheme [2],
authors in [3] perform the clustering in the space of regressors
and multi-dimensional outputs. The advantage of their identifi-
cation method, besides the ability to estimate MIMO PWARX
models, is that the number of submodels can be estimated
based on the information criteria such as CAIC and MDL.
The approach that we propose has all stages of the clustering-
based procedure [2], whereas some of them are reformulated
to allow the identification of MIMO PWA systems.

A. Clustering-based identification procedure for MIMO mod-
els

To account for the PWA identification that is suitable
for the identification of MIMO systems, the clustering-based
procedure which is described in III is altered in the following.

Local regression. LDs are formed to contain input-output
pairs (x(k),y(k)) likewise the discussion in Section III. For
each LD %; all submodel parameters are identified employing
the least squares method,

005 = (®] ©) ' y) 4,
: (15)
Oy i = (2 )7 0y 4,
where y1,) ¢, is a vector containing all h-th outputs of the
local dataset &; and ®; is defined as in (5).
Feature vectors construction. Feature vectors are con-

structed of all submodel parameters and of the regressor vector
mean m;,

.
&= [OFS)T O - (055 )T m] |

Extended confidence matrix of the FV &; is in the multivariate
case given with

(16)

((I);F(I)i)71 ®Y 0

R; = { 0 0; } 7)
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where the operation ® is the Kronecker product [12] and the
estimate of X is given with

o Y, (I = (0] ©;) ' 0] )ye,
c—(n+1)
where y, € R°*" contains the outputs of the model belong-
ing to the local dataset ;.

Scalar measure of the feature vector &; confidence level is
determined with

) (18)

1
\/(27T)(m+1)n+m det (R;)
where wy, is the peak of the multivariate Gaussian distribution
with covariance R;.
Clustering of the feature vectors and estimation of the

submodel parameters is conducted likewise the discussion in
Section III.

wy = ; (19)

V. EXAMPLE: IDENTIFICATION OF A PWARX MIMO
MODEL

In order to validate the proposed extension of a clustering-
based algorithm [2] suitable for the MIMO PWARX model
identification, the test example of a coupled PWA system is
constructed as depicted in Fig. 2. G and G, are first order
discrete transfer functions, K15  and Ko1 ) are gains, all of
them varying with the decision parameter of mode switching
A,

k=1 > 0.5,
k-1 > 0.5,
Jk—1 < 057
J—1 < 0.5.

].7 if Ya),k—1 > 057 Y2
2, if yy,k—1 < 0.5, Yo
3, if yyk—1 < 0.5, yeo
4, if Ya),k—1 > 0.5, Y2

(20)

—_ O O =

Fig. 2. Block diagram of the test example.

Equivalent MIMO PWARX model of the system described
with the block diagram in Fig. 2 is defined with the following
equations

09 0 01 0 .
0 06 0 04 % iA=L
07 0 03 0 .
B 015 0.6 0 04 % TA=2 on
Y= 07 -02 03 0 H 3
015 08 0 02" =%
09 —02 01 0 .
0 08 0 o02|%ifA=4



where the regressor vector zy is defined with
T
ok = [yg-1, up1] (22)

Regressor vectors are randomly distributed within the regres-
sor set domain Z". 2 has a shape of a hyperbox with each
variable contained within the interval (0,1). By exploiting
the a priori knowledge that the model switching is induced
solely due to the output variables, means my, are transformed
prior the clustering procedure by employing the transformation
matrix:

1000} 23)

T:{0100

The total number of regressor vectors that are used for the
identification is N = 8000. In order to check the efficiency of
the proposed algorithm for the identification of MIMO PWA
systems, we compared its performance with the performance
obtained by employing the algorithm in [9]. Mean square
prediction errors of the identified PWA models for different
values of identification parameters and signal-to-noise ratio
(SNR) equal to 30 dB are summarised in Table I and Table II.
SNR is determined by computing the ratio of the output
measurement sum of squares to that of noise in decibels.

Table I shows results obtained by employing the algorithm
published in [9], whereas the results for the herein proposed
algorithm are shown in Table II. Since the algorithm in [9]
does not allow specifying the number of regions for the PWA
MIMO model, the results were obtained by considering three
different scenarios for the number of regions comprised by
each of the identified MISO PWA model partitions, denoted
with a, b and c in the superscript of the number of submodels
in Table II. In the scenario a we used 2 submodels to identify
each of the MISO PWA model partitions. In the scenarios b
and c we used 4 and 6 submodels for the identification of each
MISO PWA partition, respectively. Final number of submodels
is obtained by merging the identified MISO PWA partitions,
as discussed in Section IV. According to the obtained results,
the proposed algorithm achieves performance comparable to
the previously used algorithm [9] by employing a significantly
lower number of submodels.

TABLE I
RESULTS OF MIMO PWARX IDENTIFICATION [9] WITH RESPECT TO THE
SIZE OF LDS ¢ AND NUMBER OF SUBMODELS s, SNR= 30 DB

C
12 14 16 18
4% [ 1.09e-3 | 8.15¢-4
120 - 4.08¢-4 - -
140 | 3.52¢-4 - - -
15° -
S 16b _
19° B
20° | 2.83¢-4 B
21° - .
23° B B B

2.59e-4

Generally, the validation error of the model with respect to
the value of the parameter c is closely related to the number
of mixed LDs that enter the classification process. Given that
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TABLE II
RESULTS OF THE PROPOSED MIMO PWARX IDENTIFICATION WITH
RESPECT TO THE SIZE OF LDS ¢ AND NUMBER OF SUBMODELS s,

SNR= 30 DB
c
12 14 16 18
2 | 1.43e-3 | 1.09e-3 | 0.99e-3 | 1.11e-3
s | 4] 339%-4 | 3.7le-4 | 3.73e-4 | 4.04e-4
6 | 3.94e-4 | 3.89e-4 | 4.15¢e-4 | 4.92e-4

the parameter c is fixed, the number of mixed LDs, hence the
validation error, should be the smallest when the number of
submodels used in the PWA model identification matches the
real number of system modes. Regarding the results in Table II,
in the scenario with the number of submodels set to s = 2 is
the clustering algorithm unable to classify the data according
to given submodels irrespective of the used parameter c. The
smallest approximation error is achieved with ¢ = 12 and
s = 4. Respective parameters result with the smallest number
of mixed LDs in the clustering-based procedure.

VI. CONCLUSION

Systematic approach to the MIMO PWA model identifi-
cation is of crucial importance in a model-based controller
synthesis for a large number of processes. The approach
proposed here for the identification of PWA MIMO models
exploits all benefits of the clustering-based identification [2].
Besides, K-means++ algorithm enhanced with the confidence
level of the feature vectors is incorporated for the purpose of
the clustering centers initialisation, resulting with the improved
classification of the identification data. Moreover, the feature
vector transformation is introduced in order to control the
partitioning with respect to the arbitrary dimensions of the sys-
tem, which is of particular importance when mode switching
does not occur with respect to certain variables. The proposed
extension is validated on an illustrative example. The results
show the effectiveness of the approach.
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