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Abstract—Frequent and accurate concentration estimates
are important for the on-line control and optimization
of chemical reaction systems. Such estimates can be ob-
tained using state estimation methods that fuse frequent
(fast) delay-free on-line measurements with infrequent
(slow) delayed laboratory measurements. In this paper, we
demonstrate how several recent advances made in state
estimation can be combined in an on-line recursive state
estimation framework by imposing knowledge-based and
measurement-based constraints on the state estimates of
multi-rate concentration measurements with time-varying
time delays. This framework is illustrated using a simulated
example for a bacterial batch fermentation of recombinant
l. lactis. It is shown that an extent-based formulation gives
more accurate estimates than a conventional concentration-
based formulation.

I. INTRODUCTION

Chemical and biochemical reactions are used in the
chemical and pharmaceutical industries to convert feed
materials into marketable products. Control and on-line
optimization require frequent and accurate estimates of
concentrations of various key analytes. State estimation
techniques utilize measurements of different variables
and generate accurate estimates of the process states
by enforcing consistency with a known but inaccurate
process model [1].
The dynamics of reaction systems are in general de-
scribed by nonlinear differential or differential-algebraic
equations. For these processes, on-line measurements
such as temperature, pressure, and absorbance spectra
of the reacting mixture are made frequently, and are
available almost immediately. On the other hand, concen-
tration measurements are obtained using laboratory in-
struments such as gas and liquid chromatographs, and are
generally available infrequently and with a considerable
delay after the samples are taken. The concentrations are
all nonnegative and, depending on the type of reactions,
they may also increase or decrease monotonically. It is
very useful to take into account all these features in
developing a state estimator for such reaction systems.
Several state estimators have been reported for nonlinear
dynamic systems, among which the Extended Kalman
Filter (EKF) is probably the most widely used because of

its recursive nature and ease of implementation. Different
approaches have been developed to include a variety of
multi-rate sampling scenarios. Multi-rate Kalman filter
for linear systems was documented by Raghvan et al. [2]
and Li et al. [3]. Its application for a reactive distillation
system has been shown by Valluru et al. [4]. Tatiraju et
al. [5] considered multi-rate state and parameter estima-
tion for a nonlinear system. However, the EKF inability
to include algebraic constraints often makes it unrealistic
in practice. To incorporate constraints, one can use a
receding-horizon nonlinear Kalman filter (RNK) [6],
which is computational simple and includes a prediction
and a correction steps as in Kalman filter.
Time delays that occur in the measurements have been
handled in chemical systems either by providing a
procedure to fuse slow measurements or through state
augmentation. Gudi et al. [7] applied multi-rate estima-
tion techniques that include delayed measurements to a
fermentation reactor. Gopalkrishnan et al. [8] provided a
detailed review of multi-rate estimation problem in the
context of Extended Kalman filter (EKF).
The aforementioned advances in state estimation for
nonlinear dynamical processes have been made as sep-
arate extensions to recursive estimators. The integration
of all these features in a recursive state estimation
strategy has not been explored or illustrated using an
appropriate process. The objective of this paper is there-
fore to formulate a constrained multi-rate filtering and
estimation problem incorporating delayed and infrequent
measurements. Although, moving horizon estimators [9]
can also be used to integrate these features, this work
considers a recursive state estimation framework that
leads to a computationally efficient option well suited
to on-line applications.
Chemical reaction systems are often modeled from first
principles through material and energy balance equations
and are written as highly coupled ordinary differential
equations (ODE) in terms of concentrations and tem-
peratures. An alternative representation of the system in
terms of vessel extents, proposed by Amrhein et al. [10]
and subsequently reformulated by Rodrigues et al. [11],
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can transform the equations into a form that can be easily
analyzed. The extent-based formulation, which is shown
to be more advantageous for imposing shape constraints,
is chosen in this work
This paper is organized as follows. Section 2 provides
a generic description of reaction systems represented in
terms of both numbers of moles and extents. In Section
3, the shape properties of the state variables are investi-
gated. Section 4 discusses the types of measurements
that are commonly encountered in chemical reaction
systems. In Section 5, the RNK problem is reformulated
to handle delayed measurements. Section 6 compares the
performance of the new estimator via a case study, while
Section 7 concludes the paper.

II. SYSTEM DESCRIPTION

A. Mole balance equations

Considering a homogeneous chemical reaction system
with S species, R reactions, p inlets and one outlet
stream. The corresponding mole balance equations can
be written as:

ṅ(t) = NT rv(t) +Winuin(t)− ω(t)n(t) n(0) = n0, (1)

where n is the S-dimensional vector of numbers of
moles, rv = V r with V being the volume of the
reactor and r the R-dimensional vector of reaction rates,
N is the R × S stoichiometric matrix, uin is the p-
dimensional vector of inlet mass flowrates, ω = uout(t)

m(t)
is the inverse residence time with the mass m and the
outlet mass flowrate uout, Win is the S × p matrix of
inlet compositions, and n0 is the S-dimensional vector
of initial conditions.
The mass m can be computed from either the knowledge
of the numbers of moles n as m(t) = 1TSMwn(t), where
Mw is the S-dimensional diagonal matrix of molecular
weights or by integrating the continuity equation ṁ(t) =
1Tp uin(t)− uout(t) with m(0) = m0.
The molar concentrations can be computed from the
numbers of moles as c(t) = n(t)

V (t) , while the reaction
rates r(t) are typically expressed as nonlinear functions
of c(t) and the reactor temperature T (t).
The S mole balance equations are often redundant since
the system variability is governed by the independent
reactions and the inlet and outlet flows, with d := R +
p + 1. Then, there exist q = S − d invariants that are
equal to zero [11]:

P+n(t) = 0q, (2)

where the columns of the S×q matrix P describe the left
null space of the matrix [NT Win n0]. The superscript
+ indicates pseudo-inversion.
Using (2), Eq. (1) can be written as:

ṅ1(t) = NT
1 rv(t) +Win,1uin(t)− ω(t)n1(t) n1(0) = n1,0 (3)

n2(t) = −P2P
+
1 n1(t), (4)

where n1 is the d-dimensional vector of independent
species, n2 the q-dimensional vector of dependent
species, N1 the corresponding R × d stoichiometric
submatrix, Win,1 the d× p submatrix of inlet composi-
tions, n1,0 the d-dimensional vector of initial conditions,
P1 the d × q submatrix of P corresponding to the
independent species, and P2 the q × q submatrix of P
corresponding to the dependent species. Note that the set
of independent species are chosen such that the rank of
the matrix [NT

1 Win,1 n1,0] = d.

B. Alternative representation in terms of extents
The reaction system can alternatively be written in terms
of extents through the linear transformation [11]:

x(t) = T1n1(t) = [NT
1 Win,1 n10]

−1n1(t) (5)

The resulting dynamic model in terms of extents reads:

ẋr(t) = rv(t)− ω(t)xr(t), xr(0) = 0R (6)
ẋin(t) = uin(t)− ω(t)xin(t), xin(0) = 0p (7)

ẋic = −ω(t)xic(t), xic(0) = 1, (8)

where xr are the R reaction extents, xin the p extents
of inlet, and xic the extent of initial conditions. The
numbers of moles can be reconstructed as:

n(t) = NTxr(t) +Winxin(t) + n0xic (9)

III. MEASUREMENTS

The measurements can be categorized as fast and slow
depending on the associated sampling frequency. Let
h represent the smallest sampling interval. The fast
measurements, yf ∈ Rrf , are available at the sampling
instants {tk = kh; k = 0, 1, 2, ...}, whereas the slow
measurements, ys ∈ Rrs , are available with the constant
delay θ at the sampling instants {tk = bkh+θ; b ∈ N+}.
The sampling scheme is illustrated in Figure 1.

bh

θ=2h

Fig. 1. Fast and slow sampling with corresponding measurement
availability.

The available measurements are as follows:
• At the fast sampling instants, tk = kh:

yf (tk) = Cfx(tk) + νf (tk) (10)

• At the slow sampling instants, tk = bkh+ θ:
[
yf (tk)
ys(tk)

]
=

[
Cf 0rf×d

0rs×d Cs

] [
x(tk)

x(tk − θ)

]
+

[
νf (tk)

νs(tk − θ)

]
,

(11)
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where Cf and Cs are the fast and slow measurement
matrices, respectively. We assume that, at the slow
sampling instants, the fast and slow measurements are
available simultaneously.
The measurement noises are modeled as zero-mean
white-noise processes with Gaussian distribution, that

is, νf (tk) ∼ N (0rf ,Rf ) and
[

νf (tk)
νs(tk − θ)

]
∼

N (0rf+rs ,

[
Rf 0rf×rs

0rs×rf Rs

]
).

For the sake of simplicity, the approach is presented
here for the case of regular sampling and constant
measurement delay. However, the approach can easily
be modified to apply to irregularly sampled systems with
time-varying delays.

IV. STATE CONSTRAINTS

The constraints for the state estimation problem are
either known a priori or inferred from measurements.
These constraints are discussed next.

A. Knowledge-based constraints

Knowledge-based constraints express physical consider-
ations and are derived from first principles [12]:
• All numbers of moles are nonnegative. Furthermore,

the invariant relationships call for P+n(tk) = 0q .
• The number of moles of a non-added non-produced

species that is only involved in irreversible reactions
is nonincreasing. Similarly, the number of moles of
a non-removed non-consumed species that is only
involved in irreversible reactions is nondecreasing.

• In a batch or semi-batch reactor, the extents of irre-
versible reactions are (i) nonnegative nondecreasing
functions, and (ii) concave (convex) functions if
the corresponding reaction rates are nonnegative
nonincreasing (nondecreasing).

B. Measurement-based constraints

Even for cases where knowledge-based shape constraints
cannot be formulated a priori, certain shape constraints
exist and can be derived from measurements [12]. The
computational procedure is as follows:

(1) Evaluate analytically the expressions of the first and
second derivatives for the extents (6)–(8), that is,
ẋj(x) and ẍj(x), j = 1, . . . , d, using the kinetic
rate expressions r(x).

(2) Compute the experimental extents x̃ = T1ñ1 using
the measured numbers of moles ñ1.

(3) Using the analytical expressions obtained in Step (1),
compute the numerical values of the first and second
derivatives for each extent.

(4) For the window T of size m, impose convex-
ity/concavity constraints based on the estimated sec-
ond derivatives (using tolerance δ2 > 0):

• if ẍj > δ2 in T, then xj is convex in T,
• if ẍj < −δ2 in T, then xj is concave in T,
• otherwise, no second-order shape constraints

can be imposed in T; the presence of first-order
shape constraints can be investigated based on
the estimated first derivatives (using tolerance
δ1 > 0):
– if ẋj > δ1 in T, then xj is monotonically

increasing in T,
– if ẋj < −δ1 in T, then xj is monotonically

decreasing in T,
– otherwise, no shape constraints can be im-

posed.

V. STATE ESTIMATION

The state estimation problem is formulated as a RNK
filter for which constraints on the state variables can
easily be imposed. The uncertainties in the kinetic
models and measurement equations are modeled as
additive Gaussian random variables.

The system representation in terms of n1 reads:

ṅ1(t) = NT
1 rv(t) +Win,1uin(t)− ω(t)n1(t) +wn1(t)

n1(0) = n10, (12)

where wn1 ∼ N (0d,Qn1) is a zero-mean Gaussian
random variable with covariance matrix Qn1.

The system representation in terms of extents becomes:

ẋr(t) = rv(t)− ω(t)xr(t) +wr(t), xr(0) = 0R (13)
ẋin(t) = uin(t)− ω(t)xin(t) +win(t), xin(0) = 0p (14)
ẋic(t) = −ω(t)xic(t) + wic(t), xic(0) = 1 (15)

with wr(t) ∼ N (0R,Qr), win(t) ∼ N (0p,Qin) and
wic(t) ∼ N (0, Qic).

Receding-horizon nonlinear Kalman filter

The RNK filter implementation is briefly discussed next.
For the sake of brevity, the estimator is only formulated
in terms of extents.

A. RNK with only fast measurements

The following shorthand notations are introduced.
The right-hand side of Eqs. (13)–(15) are denoted as
fr(.), fin(.) and fic(.) and are assembled in the vector
f . The block-diagonal matrix Q represents the error
covariance matrix of the modeled extents:

x =



xr

xin

xic


 f =



fr
fin
fic


 w =



wr

win

wic


Q =



Qr 0 0
0 Qin 0
0 0 Qic




We discuss next the prediction and update steps.
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1) Prediction step: At time instant tk we
define a fixed lag augmented state vector
xTk = [xTk−m+1,x

T
k−m+2, ..x

T
k ]
T for the prediction

window Tk of size m. Given the smoothed
estimates x̂tk−m|tk−1

and the corresponding error
covariance Ptk−m|tk−1

, the open loop estimates of
the xTk is obtained by appropriately integrating
the nonlinear state evolution equations (13)-(15).
These are assembled in the md-dimensional vector as
x̂Tk|tk−1

:= [x̂Ttk−m+1|tk−1
x̂Ttk−m+2|tk−1

... x̂Ttk|tk−1
]T .

The error covariance matrix for the vector x̂Tk|tk−1
,

PTk|tk−1
, is computed using the state model linearized

around these smoothed estimates. For this, the d× d Ja-
cobian matrix is used to approximate the process around
this linearized trajectory. Using the notation Atk−m+j

=
exp{ dfdx |x̂tk−m+j |tk−1

.h} and the linear discrete state
equations written recursively in terms of xtk−m and the
noise terms wti , i = k −m+ 1, k −m+ 2, ..., k, the
augmented state vector can be equivalently expressed as:

xTk = ATk

[
xTtk−m wT

tk−m+1
. . wT

tk

]T

with the md× (m+ 1)d matrix

ATk
:=




Atk−m Id .. 0

Atk−m+1
Atk−m Atk−m+1

.. 0

.. .. .. ..∏k−1
i=k−mAti

∏k−1
i=k−m+1 Ati

... Id




Since the noise in the states is uncorrelated with the
state predictions, the error covariance matrix PTk|tk−1

for the states xTk is given as E((xTk− x̂Tk|tk−1
)(xTk−

x̂Tk|tk−1
)T :

PTk|tk−1
= ATk



Ptk−m|tk−1

0 0 .. 0
0 Q 0 .. 0
.. .. .. .. ..
0 0 0 .. Q


AT

Tk

(16)

2) Update step: Consider the a priori state es-
timates x̂Tk , the error terms ζ := xTk −
x̂Tk|tk−1

, the mrf fast output measurements yf,Tk :=
[yTf,tk−m+1

yTf,tk−m+2
.... yTf,tk ]

T , and α := yf,Tk −
Cf,Tk xTk . Then, the a posteriori estimate x̂Tk|tk can
be computed as the solution to the following constrained
weighted least-squares problem:

x̂Tk|tk := argmin
xT

ζT P−1Tk|tk−1
ζ +αT R−1f,Tk α (17)

s.t. C(xtk−m+i
) ≤ 0 ∀i = 1, ...,m (18)

xtk−m+i
≥ 0, (19)

where Rf,Tk is the mrf × mrf measurement noise
covariance matrix. The function C(.) represents the shape

constraints applicable to the corresponding time window.
The a posteriori covariance matrix PTk|tk is computed
as follows [6]:

KTk = PTk|tk−1
CT

f,Tk (Cf,TkPTk|tk−1
CT

f,Tk +Rf,Tk )
−1

(20)
PTk|tk = (Imd −KTkCf,Tk )PTk|tk−1

(21)

Although the update step for PTk|tk does not strictly
hold for constrained estimates, this step is retained
because it is indicative of the quality of the estimates
[6]. The prediction-update steps are repeated for the
next time window from tk−m+1 to tk+1 as illustrated
in Figure (2). x̂tk−m+1|tk required for the next window
is obtained from the first d elements of x̂Tk|tk , while
Ptk−m+1|tk is obtained from the first d × d block of
PTk|tk .

tk tk tk+1tk-m+3tk-m+1 tk-m+3tk-m+1

Fig. 2. Prediction window for RNK filter

B. RNK with fast and slow measurements

The sample augmentation method [8] is used to include
the delayed slow measurements into the RNK filter
formulation. The md-dimensional state vector over the
window Tk is extended to also include a d-dimensional
state xτ , where τ is the time instant at which the
slow measurement sample is taken. This new state can
be interpreted as an ephemeral state with no dynamics
and initial condition equal to its filtered estimate at τ ,
that is, dxτ

dt = 0, xτ (0) = x̂τ |τ . For each subsequent
window, the open loop estimate of xτ would be given
by the smoothed estimate from the previous instance.
The (m+1)d-dimensional extended augmented fixed lag
state vector is defined as

xaTk = [xTTk xTτ ]
T ,

which can also be similarly expressed in terms of xtk−m
and the noise terms wi, i = tk−m+1, tk−m+2, ..., tk as:

xaTk = Aa
Tk

[
xTtk−m wT

tk−m+1
. . wT

tk
xTτ
]T

with the (m+ 1)d× (m+ 1)d matrix

A
a
Tk

:=




Atk−m Id .. 0 0

Atk−m+1
Atk−m Atk−m+1

.. 0 0

.. .. .. .. ..∏k−1
i=k−mAti

∏k−1
i=k−m+1 Ati

... Id 0

0 0 ... 0 Id




The error covariance matrix for xaTk at the slow sampling
instant tk = τ is initialized as Pτ |tk = Ptk|tk and
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Pτ,tk−m|tk = Ptk,tk−m|tk . The latter representing the
cross covariance between the estimates at τ and tk−m.
The error covariance matrix for the augmented state at
any time tk before measurement arrival is computed as
in Eq. (16):

P
a
Tk|tk−1

= A
a
Tk




Ptk−m|tk−1
0 0 Pτ,tk−m|tk−1

0 Q .. 0
0 0 Q 0
.. .. .. ..

Pτ,tk−m|tk−1
0 0 Pτ|tk−1



A
aT

Tk

(22)

The state augmentation ceases as soon as all the mea-
surements pertaining to the augmented states has been
recieved. The update step follows as in RNK with
only fast measurement with modified model matrices as
described in section III.

VI. SIMULATED CASE STUDY

The application of the RNK framework is illustrated
on a simulated batch fermentation reactor [13]. There
are two reactions, corresponding to the biomass growth
and the death phase, and four species, namely glucose
(G), biomass (X), hyaluronic acid (HA), and lactic
acid (LA). The temperature and pH are controlled at
constant values, and the initial glucose and biomass
concentrations are 40 g/L and 0.05 g/L, respectively. The
dynamic model reads:

dX

dt
= (µ−ms)X (23)

dG

dt
= − 1

Yx|s
µX (24)

dLA
dt

= (αLAµ+ βLA)X (25)

dHA

dt
= (αHAµ+ βHA)X (26)

The specific growth rate µ is a function of the concen-
trations of all the species of interest

µ =
µmaxG

(Ks +G+ G2

Ki
)(1 + LA

KLA
)(1 + HA

KHA
)
, (27)

where all the concentrations are in g/L. The model has
11 parameters, µmax, ms ,Yx|s, αLA, βLA, αHA, βHA,
Ks, Ki, KLA and KHA. The parameters used for this
study are based on Badle [13].
The system of reactions can be reformulated in terms of
the two extents of reaction xr = [xT1 xT2 ]

T as
dx1
dt

= µX (28)

dx2
dt

= X (29)

V




X
G
LA
HA


 =




1 −ms

− 1
Ys

0

αLA βLA
αHA βHA



[
x1
x2

]
+ V




X0

G0

LA0

HA0




TABLE I
DELAYS ASSOCIATED WITH THE OFF-LINE MEASUREMENTS

Species Glucose Biomass Lactate Hyaluronic
acid

θ (min) 12 12 30 30

n = VNTxr + n0 (30)

For batch operation, xin = 0 and xic = 1 in Eq. (9).
The total batch time for the fermentation is 10 h. The
concentrations of all four species are measured at the fast
and slow sampling rates of 6 and 60 min, respectively.
Absorbance measurements in the reactor represent the
fast measurements, whereas analytical measurements are
used as slow measurements. The measurement delays for
the four species are shown in Table I.
The absorbance measurements are assumed to be cor-
rupted by Gaussian noise with a standard deviation
of 10−3 (about 1% of maximum absorbance) at all
wavelengths. The relationship between absorbance and
concentrations is established through a linear calibration
model obtained via multivariate regression. The corre-
sponding error covariance matrix Rf is dense since
the concentration predictions are affected by noise in
both the spectroscopic measurements and the calibration
model:

Rf =




0.0056 −0.0276 0.0187 0.0005
−0.0276 0.7515 −0.4196 0.0038
0.0187 −0.4196 0.3613 0.0028
0.0005 0.0028 0.0028 0.0001




TABLE II
SHAPE CONSTRAINTS APPLIED TO EXTENTS AND NUMBERS OF

MOLES

For extents For numbers of moles
Nonnegativity of xi(tk),

i = {1, 2}
Nonnegativity of cj(tk),

j = {X,G,LA,HA}
Nondecreasing xi(tk) Nonincreasing cG(tk)

Measurement-based constraints Measurement-based constraints

The shape constraints listed in Table II are imposed.
A window size of 30 min (m = 5) is chosen, which
corresponds to the largest measurement arrival delay. Rs

is assumed to be diagonal, with the diagonal elements
indicating the error variances of the measured species.

Rs =



0.0001 0 0 0

0 0.04 0 0
0 0 0.04 0
0 0 0 0.0001




The process noise covariance matrix Q, which is of
dimension 2×2 as there are only two states in the extent
formulation, is given as:

Q =

[
0.0001 0

0 0.05

]

5

362



A. Results and discussions

The performance of the estimators designed in both
the number of mole and extent domains is compared.
To obtain a dimensionless evaluation criterion, the ratio
of the sum of squared errors to the square of the
concentration range is computed for each species. Tables
IV and III list the estimation performance in terms of
numbers of moles and extents, respectively.
A significant improvement is observed when shape
constraints are applied. This is more pronounced in
the extent-based formulation thanks to the additional
constraints that are present in that domain. Performance
is further increased by including slow measurements and
working in the extent domain.

TABLE III
RATIO OF SUM OF THE SQUARED ERRORS TO THE SQUARE OF THE

CONCENTRATION RANGE USING FAST AND SLOW MEASUREMENTS IN THE

EXTENT DOMAIN

Fast State estimation
measurements Unconstrained Constrained

Fast only Fast+Slow Fast only Fast+Slow
Biomass 0.0320 0.0071 0.0050 0.0006 0.0005
Glucose 0.0347 0.0081 0.0024 0.0002 0.0001
Lactic acid 0.0787 0.0491 0.0291 0.0003 0.0003
HA 0.0349 0.0082 0.0024 0.0001 0.0001

TABLE IV
RATIO OF SUM OF THE SQUARED ERRORS TO THE SQUARE OF THE

CONCENTRATION RANGE USING FAST AND SLOW MEASUREMENTS IN THE

NUMBER OF MOLES DOMAIN

Fast State estimation
measurements Unconstrained Constrained

Fast only Fast+Slow Fast only Fast+Slow
Biomass 0.0320 0.0071 0.0050 0.0033 0.0031
Glucose 0.0347 0.0081 0.0024 0.0012 0.0010
Lactic acid 0.0787 0.0491 0.0291 0.0023 0.0018
HA 0.0349 0.0082 0.0024 0.0012 0.0012

VII. CONCLUSION

The paper presents the formulation of a multi-rate con-
strained state estimator that incorporates infrequent and
delayed measurements. The estimator is designed using
state-space representations in terms of both numbers of
moles and extents of reactions. The formulation can be
extended to cases where the delay is not fixed but varies

with time. A comparison is made between the estimates
obtained using stand-alone fast measurements and those
obtained through a combination of both fast and slow
measurements. The constrained multi-rate state estimator
outperforms the unconstrained one in both the number of
moles and extent domains. The extent-based formulation
provides better estimates due to the additional constraints
that can be enforced.
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