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Abstract— A dynamic real-time optimization (D-RTO) 

methodology has been developed and applied to a batch reactor 

where polymer grafting reactions take place. The objective is to 

determine the on-line reactor temperature profile that minimizes 

the batch time while meeting terminal constraints on the overall 

conversion rate and grafting efficiency. The methodology 

combines a constrained dynamic optimization method and a 

moving horizon state estimator within a closed-loop control. The 

results show very good performances in terms of state estimation, 

constraints fulfillment and computation load.  
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I.  INTRODUCTION  

Real-time optimization (RTO) has emerged as an essential 
technology for optimal process operation in the chemical 
industry. It is a closed-loop optimizer based on a steady-state 
model. The most common RTO method used in industrial 
applications is the two-step approach. It consists of solving two 
optimization problems: the first one is a parameter estimation 
to update the model, and the second one is the resolution of an 
optimization problem to minimize the cost function, using the 
updated model to find new improved operating points [1]. 
Thus, as the number of iterations increases, the model becomes 
more accurate. Another interesting RTO method is the modifier 
adaptation approach that modifies, at each iteration, the 
optimization problem in order to match the real-plant to the 
Karush−Kuhn−Tucker (KKT) point, upon convergence. It is 
noteworthy that RTO has demonstrated its performance in 
many industrial applications, but has also shown its limitations 
for processes with frequent transitions and long transient 
dynamics. Recent advances have transformed the steady-state 
RTO to dynamic real-time optimization (D-RTO) based on a 
dynamic process model, hence allowing the performance 
indices evaluation with higher frequency [2]. Furthermore, D-
RTO makes use of the online available measurements to 
maximize a process performance index while meeting 
environmental and operating constraints. On the other hand one 
of the most interesting features of D-RTO is the use of a more 
general cost function that represents the process economics 
rather than the tracking error [3]. This is referred to as 
economic model predictive control (eMPC) [4-6]. In the 
present paper, a D-RTO methodology has been developed and 
applied to a grafting polymerization batch reactor. The 
objective is to minimize the batch period subjected to some 

terminal industrial specifications (i.e. conversion rate and 
grafting efficiency) with the reactor temperature and batch 
period as decision variables. 

II. DYNAMIC REAL-TIME OPTIMIZATION APPROACH 

The D-RTO approach consists in coupling an on-line 

dynamic optimization method with a moving horizon estimator 

(MHE) in a closed loop control as presented in Figure 1.  

 

Fig. 1. Block-diagram of the D-RTO approach 

A. On-line dynamic optimization 

The on-line dynamic optimization block consists of an 
optimization problem where the objective function is optimized 
(maximized or minimized) under different constraints. The 
problem is solved using the control vector parametrization 
(CVP) method [7] which is based on the approximation of 
decision variables by means of piece-wise constant functions 
over the optimization horizon. The resulting approximated 
optimization problem is a nonlinear programming problem 
(NLP) which is solved using a gradient-based optimization 
method (e.g. SQP). The gradients of the objective function and 
constraints with respect to the decision variables are computed 
by means of the method of sensitivities. 

B. Real Process 

The process is a batch reactor where polymer grafting 
reactions take place. The objective is to value the used ground 
tire rubber (GTR) [8]. The latter results from grounding of the 
rubber part of used tires which retain excellent elasticity. The 
idea is to take advantage of its elasticity to toughen brittle 
polymers such as polystyrene upon incorporating GTR into 
them. The kinetic scheme and reaction rates as well as reactor 
design equations are detailed in [8]. 
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The resulting process model may be written in the 
following general form of nonlinear ordinary differential 
equations (ODEs): 

  ̇ = �ሺ , ሻ   with     ሺ0ሻݑ =  ଴     and   � = ℎሺ  ሻ 

where  ,  ,and � are the vectors of states, decision variables ݑ
and process outputs, respectively. The model consists of 20 
ODEs involving 24 unknown parameters which are previously 
estimated from experimental measurements [8]. 

The real process is represented by the set of nonlinear dynamic 
equations (1). 

C. Estimation block 

 The estimation block is a moving horizon estimator 

(MHE) necessary to compute an estimate    of the current state 

x that cannot be measured directly on the process [9, 10] and 

possibly an estimate    of the disturbances [11]. It is then used 

for our model-based optimizer implemented within the D-

RTO loop. The estimation can be done using the input and 

measurement variables ݑ and � respectively. 
The MHE provides an estimation of the states and unknown 

parameters (if any) of the nonlinear process model by 
minimizing a cost function over the receding horizon of fixed 
length He. The cost function used is a measure of the distance 
between the output from the real process and the output of the 
model over some time horizon preceding the time instant at 
which the state estimates and unknown parameters are 
required. The results of the observer are then sent to the 
dynamic optimizer to re-evaluate the input optimal profiles. 

D. Trigger block 

 The trigger block acts like a switch in order to run the 
optimization when requested. The switching process can be 
based on a time criterion (predefined switching frequency) or 
on the disturbance dynamics. 

III. FORMULATION OF THE OPTIMIZATION PROBLEM 

The dynamic optimization problem of the polymerization 
reactor considered here may be formulated as  

 ݉�݊θ,��   � =  (2)  �ݐ

Subject to  ̇ = �ሺ , �ሻ  (3)  ሺݐ�ሻ = (�ݐ)�ܩ (4)  �   ൒ 0.75  (5)

(�ݐ)�  ൒ 0.95  (6) � ൑ �௠��  (7) 

 

where � = (�ଵ, �ଶ, … , �௡�)�
 is the vector of time-independent 

parameters used to approximate the reactor temperature by 

means of piece-wise constant functions and x  the vector of 

state variables. ܩ� and � are the measured process outputs 

and are the polymer grafting efficiency and the monomer 

conversion rate respectively. ሺ�௠��ሻ� = �௠��  is the 

temperature upper bound.  

The gradients of the objective function and constraints 

with respect to piece-wise constant functions are computed 

through the integration of sensitivities at each iteration of the 

optimizer. The sensitivities are defined as 

 

ሻݐሺݏ                      = ��ሺ�ሻ��                     (8) 

                     ṡ = ���� ݏ + ����    (9) 

ሻ�ݐሺݏ                        =0         (10) 

 

Note that they are integrated from ݐ� to ݐ� at each iteration. 

A. D-RTO implementation 

The D-RTO loop proceeds as follows. Starting from the 
real process to which the optimal decision variables are applied 
at a sampling time ݐ�, the outputs as well as inputs are used to 
estimate, over an estimation horizon He,  the state vector   � 
that will be used as the initial condition for the next 
optimization at the sampling time ݐ�+ଵ. The corresponding 
initial condition for the sensitivities is always taken equal to 
zero. 

The prediction horizon ܪ� starts at the trigger time and 

ends always at ݐ�.  The control horizon ܪ�  specifies the number 

of piece-wise constant functions of the decision variable to be 
computed in order to minimize the performance index. Once 
the optimal decision variables are computed, only the first 
piece-wise constant value is applied to the process. When the 
optimization process is not triggered, the last values of the 
decision variables are applied to the process. 

It is noteworthy that the state estimation does not need to be 
known at every sampling time, it may be carried out 
periodically with a predefined frequency Ep depending on the 
disturbance dynamics. 

IV. RESULTS AND DISCUSSION 

The details of the process model equations as well as the 

values of the parameters � are given in [8]. The on-line 

optimization parameters are summarized in Table 1.  

Figures 2-4 present some of D-RTO results obtained. 

TABLE I.  ON-LINE OPTIMIZATION PARAMETERS 

Parameter Value 

Control horizon 3 �ܪ 

Trigger frequency 100 min 

Estimation frequency Ep 3 min �௠��  150°C 

Initial value of  9 �ݐ hours 

Initial value of  � 100°C 

Sampling period t 3 min 

Estimation horizon He 3 
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Fig. 2. Time-varying profile of overall conversion rate 

 

Fig. 3. Time-varying profile of grafting efficiency 

 

Fig. 4. Optimal profile of reactor temperature 

 

Figures 2 and 3 show the time-varying process outputs, i.e. 

conversion rate and grafting efficiency respectively, with three 

different profiles. The ”true” profile (in red) is given by 
integration of the process model equations (1), the estimated 

profile (in blue) and the “measured” profile (in green). The 

“measured” profiles are obtained by adding 5% noise to the 
“true” ones. The resulting optimal-time profile of the decision 

variable, i.e. temperature, is presented in Figure 4. The 

computed optimal value of the performance index, i.e. batch 

period ݐ�, is equal to 7.2 hours and is substantially reduced 

compared to its initial value, i.e. 9 hours. 

By analyzing the results, it can be seen that the terminal 

inequality constraints on both process outputs are satisfied. On 

the other hand, the small difference between the “true” and 
“estimated” values shows that the estimator achieves very 
good performances. 

The temperature profile exhibits a regular increase in order 

to fulfill the required monomer conversion rate and grafting 

efficiency. This shape of optimal temperature is meaningful 

since at constant temperature, the conversion rate increases 

with time whereas the grafting efficiency decreases. Therefore 

the temperature should increase in order to achieve the desired 

conversion rate but not too much in order to guarantee the 

specified terminal value of grafting efficiency. 

 

V. CONCLUSION 

A dynamic real-time optimization approach was developed 

for optimal control of a batch polymerization reactor where a 

grafting reaction takes place.  It consists of a combination of a 

constrained shrinking horizon dynamic optimization method 

and a moving horizon state estimator within a closed-loop 

control. The process model used was previously developed, 

identified and validated with experimental measurements. The 

results show very good performances in terms of state 

estimation, constraints fulfillment and computation load. The 

stability of the computed optimal decision variables is not an 

issue since the process studied is of the batch type and the 

shrinking optimization horizon covers the whole operational 

time. However the likely process disturbance should be 

accounted for in the control loop prior to any experimental 

implementation which will be the next step of the work.   
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