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Abstract—In the last few years, variable engine valve control
has attracted a lot of attention because of its ability to reduce
pumping losses and increase torque performance over a wider
speed and load range. Variable valve timing also allows control of
internal exhaust gas recirculation, thus improving fuel economy
and reducing NOx emissions. One of the most important issues
in this context is to track suitable variable (optimized in terms
of engine speed and load) motion profiles for the intake and
exhaust valves. This can be achieved using dedicated actuators
for the valves instead of a traditional camshaft. This contribution
considers a new kind of actuator for this purpose and its
control for motion tracking in the context of camless systems.
However, this paper’s main intention is to introduce a method
of generating variable engine valve trajectories that are based
on Gaussian curves and exemplarily provide the reader with
information on how to exploit their favorable mathematical
properties for control design purposes. As a demonstration of this
kind of curve’s variability, a delay-compensating phase-adaptive
feedforward action is derived from a linear model description
of the actuator. Simulations show the effectiveness of a simple
heuristic delay-estimation algorithm in combination with the
mentioned feedforward action.

Index Terms—Engine applications, servo hydraulic systems,
trajectory generation

I. INTRODUCTION

Conventional valve actuators with camshafts often have no
variability of the valve trajectory. It is the same in all speed
and load ranges. Implementation of the Miller or Atkinson
Cycle could achieve improvements in fuel consumption and
exhaust emission. This approach, however, would lead to a
power reduction as well. Therefore, by charging the filling
phase of the cylinder via a compressor or a turbocharger,
the power reduction in comparison with conventional internal
combustion engines could be compensated. This compromise
can be circumvented with a variable valve timing and stroke as
proposed in this contribution. Fig. 1 shows the full potential
variability of the engine valve trajectory. While the general
properties of the curve are always the same (closed - open -
closed), there are different parameters relevant to the applica-
tion. These are mainly the maximum valve lift, the opening
duration and the opening timing. Of course, the general
shape of the curve must be considered as well, since it is
implicitly defined by the (traditionally fixed) camshaft profile.
In dependence of engine speed and load, these parameters

must be changed in an optimal way to achieve the goals
of reduction in fuel consumption, a cleaner combustion and
more power. Full variability can be achieved by employing

Fig. 1. Classification of the variable parameters of the valve trajectory

actuators instead of the traditional camshaft. If these can be
controlled to track user-defined trajectories, all parameters can
be changed. These are usually electromagnetic actuators or
combinations with pneumatic or hydraulic servo-systems. The
presented actuator consists of a piezo-electric actuator with a
hydraulic displacement amplifier, driving a servo valve that is
in turn driving one or more double-acting hydraulic cylinders.
This architecture combines the advantages of piezo actuators
(speed and precision) with those of hydraulic systems (high
power and compactness of the actuator itself). The actuator
can be seen as two decoupled subsystems:

• Piezo actuator with hydraulic displacement amplifier
– input signals: input voltage of the piezo actuator
– output signal: position of the valve spool

• Servo valve and hydraulic cylinder with the engine valve
– input signal: position of the valve spool
– output signal: position of the engine valve.

Obviously, retroactive effects caused by the hydraulic sub-
system, which are acting on the valve spool position, are
not considered in the overall model as the authors deem
them negligible in satisfying accuracy, based on experimental
experience. In [1], an optimization-based polynomial trajectory
generation algorithm for variable valve control in camless
combustion engines is presented. However, in practical ap-
plications, schemes with as few parameters as possible are
helpful. [2] gives an overview of different analytic expressions
of elementary trajectories, e.g. in an exponential form. Using
Gaussian bell curve-like trajectories like those in [3], [4], the
number of parameters to achieve full variability can be reduced
to three.
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The paper is structured in the following way. Section II gives
some details on the modeling of the proposed actuator, which
is divided in two decoupled subsystems. Section III explains
how the Gaussian trajectories are generated using analytically
evaluated equations. The simple heuristic time delay estima-
tion algorithm that was developed in [5] is described in section
IV. Section V shows how to deploy the phase correction in the
trajectory generation to yield an adaptive feedforward action.
Simulations and a conclusion close the paper.

II. DESCRIPTION OF THE WHOLE SYSTEM AND SOME
SPECIFICATIONS

The actuator described in the previous section is modeled
as three submodels: The double-acting hydraulic cylinder (see
Fig. 3), the hydraulic displacement amplifier (which is shown
in Fig. 2) and a five milliseconds time delay of the signal x2(t)
(the valve spool position) between the two former parts, repre-
senting the (so far, unmodeled) hysteresis caused by friction.
The cylinder is modeled in a linearized form and described by
simple differential equations while the displacement amplifier
model is modeled in a SISO state space form. As detailed in
[6], the corresponding state space parameters are:

ẋ(t) =Ax(t) +BVz(t), y(t) =Cx(t), (1)
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[
x2(t)
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]
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 ,C2 =

[
1 0

]
,

where A1 is the surface of the piezo-side piston and A2 that on
the servo valve side. The hydraulic cylinder (driving the input
and exhaust valves) is depicted in Fig. 3 and can be modelled
in the following way, as described in [7]. In general, it is
a nonlinear system [8]. However, for constant pressures, the
volumetric flow into and out of the cylinder Qth(t) can be
approximated to be proportional to the length of the opening
slit that equals x2(t)− x2:

Qth(t) = (x2(t)− x2(t)) ·KSP , (2)

where the model parameter KSP described in [6] is used. It
includes hydraulic fluid density, tank pressure, system pressure
of the hydraulic aggregate as well as some parameters of
the 4/3 way servo valve. As described in [6], the differential
equations describing the valve motion are linearized and
simplified using several approximations:

ẏ(t) = KHQth (3)

Fig. 2. Hydraulic displacement amplifier (equivalent linear mechanical model)

Fig. 3. Double-acting hydraulic cylinder and the servo valve

Here, KH is a constant model parameter, depending on the
steady-state behavior of the hydraulic cylinder.

III. REALISATION OF THE VARIABLE TRAJECTORIES

The desired engine valve trajectory is chosen as a Gaussian

yd(t) = H · e−(mt+a
b )

2

, (4)

which has favourable properties and belongs to the class of
C∞ functions. The expression mt + a denotes a periodic
and resettable ramp function covering the range −360◦ (crank
angle) to 360◦. The ramp mt, with m = n · 360◦

60s (where n is
the engine speed in RPM and must be kept constant within a
period) is implemented in dSpace as a resettable integrator:

∫
n · 360

◦

60s
dt, (5)

that is set to 0 as soon as it reaches 720◦, implementing a
crank angle as typical for four-stroke engines (see Fig. 4). The
constant a has a value of −360◦, so the numerator maintains
in [−360◦, 360◦], yielding the characteristic bell curve yd.

To increase the valve opening duration, one can simply
freeze the crank angle in implementation, achieving a be-
haviour like that shown in Fig. 5, resulting in a change of the
valve profile like depicted in Fig. 6. The constant b = 65◦

is a parameter that controls the aperture of the Gaussian,
different manifestations can be seen in Fig. 7. The parameter
is proportional to the full time width of the valve curve
at a height of H

2 with a factor of m
2
√
ln 2

. Here, H = 10
mm denotes the maximum valve lift. The main advantage of
this symbolic approach function is its infinite differentiability
which is beneficial for calculating the time derivatives of the
desired trajectory for use in the control structure, e.g., the first
time derivative

ẏd(t) = −2m
mt+ a

b2
·H · e−(mt+a

b )
2

︸ ︷︷ ︸
yd(t)

. (6)
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Fig. 4. Graphical presentation of the automatically resettable ramp function
used in the Gaussian, in the case of 8000 min−1

Fig. 5. Holding the ramp function at 360 ◦ results in a prolonged opening
duration of the valve at the peak position
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Fig. 6. Demonstration of the consequence of holding the ramp function at
360 ◦
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Fig. 7. Valve trajectory with different parameters for the opening time

Fig. 8 shows the shape of the generated trajectory in the worst
case of n = 8000 RPM as well as the relevant region of its
frequency spectrum. Here, frequency components larger than
500 Hz can be neglected in good accuracy. A Fourier analysis
like this can be helpful when using approximations in order
to simplify a linear model, which is often necessary to invert
the system to design a feedforward action. A simple Bode
plot of the original and the simplified model, in combination
with the trajectory’s spectrum, will tell if the simplification
is acceptable. In this paper, however, the subsystem model in
question (the hydraulic displacement amplifier) is differentially
flat (see section V), so no further model order reductions
are necessary and the feedforward action design exploits the
flatness property.

Fig. 8. Desired valve trajectory and its frequency content (FFT) at ne =
8000 RPM
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IV. REALISATION OF A VARIABLE PHASE SHIFTING
CONTROL BASED STRATEGY

The time delay, which is caused by an unmodeled hysteresis
related to friction, must be determined to allow for heuristic
phase compensation. For this purpose, the algorithm first
presented in [5] that can be seen in Fig. 9, is used. It is based
on a comparison of the current valve lift with the reference
signal. The time that passes between the reference trajectory
reaching a specified threshold, and the obtained one reaching
it, too, is determined by using an integrator, very similarly
to the ramp generation in section III. The resulting time is
multiplied by a factor of −6◦ · n, with n being the speed
of the engine, to yield the phase correction c in degrees (in
analogy to the crank angle). The implementation which can
be seen in in Fig. 9 results from (5). The phase calculation
algorithm is activated when an Enable Bit (see Fig. 9) is set to
true. A reasonable calculation-starting condition to be chosen
is yd ≤ 1 mm ∧ y ≤ 1 mm to ensure that the whole phase
difference is captured and not only a fraction of it. The result
is the necessary phase correction (hence the negative sign) in
degrees. The phase correction is added to the periodical ramp,
resulting in mt + c, which maintains inside the crank angle
interval [0◦, 720◦] (see next section).

Fig. 9. Block diagram of the phase correction algorithm

V. PHASE-ADAPTIVE FEEDFORWARD CONTROL

Exploiting the infinite differentiability of (4), a flatness-
based feedforward action of the hydraulic cylinder can be
derived. In the last decade, a large number of papers on
control applications using flatness-based control techniques
was published. Trajectory tracking and feedforward control
are simple if the output to be controlled is flat. Flatness-based
control has already been used to address soft landing problems,
see [9] and [10]. A dynamical system is differentially flat
if it is possible to find a set of outputs (the number of
output variables is equal to the number of inputs) that allow
for an algebraic parametrisation of all state variables and all
input variables using those flat outputs and their derivatives.
Considering a system with n state variables x ∈ Rn, and m
inputs u ∈ Rm, the system is differentially flat, see [11], if
the outputs y = y(x,u, u̇, . . . ,u(p)) ∈ Rm and their time
derivatives algebraically define both the states and the inputs
according to

x = x(y, ẏ, . . . ,y(q)), u = u(y, ẏ, . . . ,y(q+1)). (7)

Introducing a phase correction c, the desired trajectory is
generated as:

yd(t, c) = H · e−(mt+a+c
b )

2

, (8)

and its derivative, expressed with a time and phase dependent
function c1 is:

ẏd(t, c) = c1(t, c)yd(t) = −2m
mt+ a+ c

b2
yd(t) (9)

while the corresponding acceleration is

ÿd(t, c) = c2(t, c)yd(t) =
2m2(2(mt+ a+ c)2 − b2)

b4
yd(t).

(10)
In order to obtain a feedforward action, eqs. (2,3) are inverted.
With the practical design choice of x̄2 = 0, the flat feedfor-
ward action on the cylinder part of the system results as

x2,d(t, c) =
ẏd(t, c)

KHKSP
⇒ ẋ2,d(t, c) =

ÿd(t, c)

KHKSP
. (11)

Exploiting the multiplicative properties of eqs. (9) and (10):

ẋ2,d(t, c) =
c2(t, c)

c1(t, c)
x2,d(t, c) =

− m(2(mt+ a+ c)2 − b2)

b2(mt+ a+ c)
x2,d(t, c). (12)

Now, the model of the subsystem corresponding to the dis-
placement amplifier, (1), can be inverted after a Forward
Euler discretization, using sampling time Ts, and inserting
the calculated phase-corrected desired values for x2 and its
derivative:

Vz(n− 1) = pinv(B)T−1
S (x2(n)− (I+ATS)x2(n− 1)) ,

(13)
where pinv(B) = (BTB)−1(B)T and the necessary approx-
imation Vz(n) = Vz(n− 1). It is to be noticed that (BTB) is
just a scalar in this SISO case.

VI. SIMULATION RESULTS

Fig. 10 shows the simulation results in the case of minimum
speed (of the considered motor cycle engine) of 2000 RPM,
which can be considered as the worst case since friction
hysteresis delay-like effects are most prevalent at the low-
est speed. The seemingly arbitrary choice of a 5 ms delay
corresponds to the real friction effects seen in experiments
(concurrent measurements will be published soon). The final
value of the calculated phase correction angle in this case is
−57.94◦. Actually the introduced 5 ms delay corresponds to
− 360◦

60 ·n·t = −6◦ ·2000 1
s ·5 ms = −60◦. This 3.4 % deviation

from the true value is, in the authors’ opinion, negligible. It
corresponds to a remaining 0.17 ms time lag which is very
small compared to the trajectory period of 60 ms at 2000 RPM.
As demonstrated in Fig. 10, satisfying tracking of both the
position and the velocity of the valve is achieved, together with
a soft landing. In fact, guaranteeing a soft landing prolongs
the life of the actuator and reduces acoustic noise, thus it is
usually an important requirement in actuator control design.
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Fig. 10. Valve position, velocity and crank angle correction at 2000 RPM

Please note that the first, uncompensated, cycle is is used to
calculate the necessary phase correction as described above.
The PI controller that is necessary to feedback-control the
valve position is activated at t = 50 ms, thus the relatively
small offset, that is due to an inherently imperfect model
inversion done in eq. (13), is corrected.

VII. CONCLUSION

To summarize, the paper presents a simple yet effective
way to generate engine valve trajectories. Gaussian trajectories
have the following favorable properties:

• Infinite differentiability, which greatly helps when work-
ing with flatness-based approaches,

• Low number of parameters, in this case only three,
• Parameters that are defined in analogy to traditional

engines with a camshaft (crank angle, etc.) and can be
changed freely, and a

• Rapid decline towards high frequencies in the signal spec-
trum, which entails fewer bandwidth-related challenges
for model simplifications.

Of course, they are suitable for other areas as well, e.g.∫
yd(t)dt for robotic motion planning like in [2]. The proposed

actuator, that can be used to achieve fully variable combustion
engine valve control, is modelled, including a time delay to
be compensated, and controlled to track the valve trajectory.
The adopted models are linearizations of the nonlinear models
described in [8], [7]. These simplified models have shown
to be sufficient for position control purposes in the speed
ranges relevant for combustion engines, since the very fast oil
pressure dynamics (which is the main challenge when dealing
with nonlinear models) can be neglected.
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