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Abstract—Dual control is a technique that solves the trade-
off between using the input signal for the excitation of the
system excitation signal (probing actions) and controlling it,
which results in a better estimation of the unknown parameters
and therefore in a better (tracking or economic) performance.
In this paper we present a dual control approach for multi-
stage robust NMPC where the uncertainty is represented as a
tree of possible realizations. The proposed approach achieves
implicit dual control actions by considering the future reduction
of the ranges of the uncertainties due to control actions and
measurements. The region of the uncertainties is described by
the covariance of the parameter estimates. The proposed scheme
does not require a priori knowledge on the relative importance
of the probing action compared to the optimal operation of
the system, as employed in other approaches. Simulation results
obtained for a semi-batch reactor case study show the advantages
of dual NMPC over robust (multi-stage) NMPC and adaptive
robust NMPC, where the scenario tree is updated whenever a
new measurement information is available.

I. INTRODUCTION

Linear model predictive control (MPC) is widely used in the
process industries because of its ability to handle multivariate
systems with constraints. It uses a linear model to predict
the future evolution of the system and solves an open-loop
optimization problem over a finite horizon at each sampling
time. Only the control input that is obtained for the first
sampling period is applied to the system. At the next sampling
time, the optimization problem is reinitialized based on the
information available from the system and solved again, thus
providing feedback [1]. If the system exhibits nonlinear behav-
ior, a nonlinear model can be used in the optimization problem
and the resulting control scheme is known as nonlinear model
predictive control (NMPC).

One of the major challenges for the wide-spread use of
NMPC is the handling of uncertain behaviour of the real
plant. Several NMPC approaches have been presented in
the last years that address this problem, commonly known
as robust NMPC. The min-max approach [2] performs the
optimization for the worst-case realization of the uncertainity
from a given uncertainty set. The tube-based methods [3],
[4] solve the nominal control problem and also include an
ancillary controller that makes sure that the evolution of the

real system stays in a tube that is centered around the nominal
solution. The multi-stage NMPC [5] approach, which models
the uncertainties by a tree of discrete scenarios and applies
multi-stage optimization strategies, represents a promising
strategy for NMPC-based control of systems under uncertainty
because it takes into account the presence of feedback in the
future but formulates the optimization problem as an open-
loop optimization. An inherent disadvantage of all these robust
schemes is that they result in conservatism when compared to
the case where perfect information (without uncertainty) about
the system is available because they need to provide cautious
control commands to avoid violations of constraints or unsta-
ble closed-loop behaviour. The scenario-tree representation of
the multi-stage NMPC makes it possible to adapt the future
control inputs to the observations. This means that the future
control actions act as recourse variables without assuming a
fixed feedback structure in contrast to [2] which can improve
the performance significantly as shown in [6]. We follow the
multi-stage approach in this work.

The measurement information that is available in the fu-
ture can be incorporated to improve the knowledge about
the system, thereby reducing the conservatism of the robust
approaches. This is known as adaptive control [7]. To obtain
measurements that provide useful information, it is often
necessary to excite the system, which can in turn decrease
the performance of the closed-loop system. This poses a chal-
lenging optimization problem that was discussed for the first
time under the name of dual control by Feldbaum [8]. Dual
control has two contradictory goals: applying probing inputs
(excitation signals) that maximize the information obtained
from the measurements of the uncertain system and applying
inputs that optimize the closed-loop performance.

The rigorous solution of the dual control problem based
on dynamic programming is usually intractable [7], therefore
different approximations have been proposed in the literature
to solve the dual control problem. These are classified into
explicit and implicit dual control methods [9]. The objective
function used in the explicit methods consists of two terms.
The first term represents the control performance whereas the
second term represents the reward for the increased infor-
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mation with respect to the future control performance [10].
The drawback of this approach is that the relative importance
of the two terms must be chosen a priori. The implicit
dual control methods try to solve the original problem by
introducing several approximations. For a review on the dual-
control methods the reader is referred to [9].

In this paper, we focus on implicit dual control using robust
multi-stage NMPC in the presence of constant, but uncertain,
model parameters. A dual-control scheme using a multi-
stage MPC and Ensemble Kalman filter for a linear model
was proposed in [11]. This method considers the predictions
obtained along the scenarios as the future measurements and
updates the covariance matrix of the Ensemble Kalman filter
and thus achieves a dual action. A drawback of this method is
that if the initial covariance is large, then none of the predicted
future confidence regions obtained along the scenarios might
include the true values of the uncertain parameters. In [12] we
proposed an implicit dual control formulation by taking into
account the future reduction of the uncertainty provided by the
future probing actions. This method assumes that the least-
squares estimate of the uncertain parameters stays constant
along the prediction horizon.

The new method proposed in this work computes the future
reduction of the uncertainty in the model parameters along the
prediction horizon by computing the future parameter covari-
ance matrix using an approximate estimate of the uncertain
parameters along the prediction horizon. This eliminates the
assumption that the least-squares estimate remains constant
along the prediction horizon as in [12]. The range of the
future uncertainty is computed such that the true value of the
uncertain parameters is enclosed in the scenario tree over the
prediction horizon.

The remainder of the paper is structured as follows. Sec-
tion II describes the multi-stage NMPC approach. Section III
presents an adaptive robust NMPC scheme and Section IV
presents the proposed dual robust NMPC method based on
the multi-stage approach with implicit consideration of the
future reduction of the uncertainty. Section V discusses the
results obtained using different robust NMPC approaches for
a chosen case study. The paper is concluded in Section VI.

II. MULTI-STAGE ROBUST NMPC

Multi-stage NMPC [5] is a robust NMPC strategy that
describes the evolution of the uncertainty by discrete scenarios
as shown in Fig. 1. Each branch of the tree represents a
realization of the uncertainties that are considered. The main
advantage of such a formulation is that it can be explicitly
considered that the new information will be available in the
future and that the future control inputs can be adjusted
accordingly. This significantly improves the performance of
robust NMPC in comparison to traditional open-loop min-max
approaches [6].

The multi-stage optimization problem is rigorously valid
only for uncertainties that can assume a finite number of
values. For the general nonlinear and continuous case, this
formulation does not guarantee robust constraint satisfaction
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Fig. 1: Scenario tree representation of the uncertainty evolution
for multi-stage NMPC.

for the values of the uncertainty that are not explicitly included
in the scenario tree. Nonetheless, very often a scenario tree
generated using the combinations of the maximum, minimum
and nominal values of the uncertainty provides very good re-
sults [5]. A rigorous guarantee of robust constraint satisfaction
of the multi-stage approach can be obtained by combining it
with reachability analysis [13].

The decisions taken at a given node in the scenario tree must
be the same because the future realizations of the uncertainties
are not known (e.g. in Fig. 1 u1

0 = u2
0 = u3

0;u
1
1 =

u2
1 = u3

1;. . . ). This can be enforced via the so-called non-
anticipativity constraints.

A. Formulation of multi-stage robust NMPC
We assume a discrete-time uncertain nonlinear model of the

system under control that can be written as:

xj
k+1 = f(x

p(j)
k ,uj

k,d
j
k). (1)

The nx-dimensional state vector (xj
k+1) at stage k+1 and po-

sition (realization) j in the tree is obtained as a function of the
parent state (x

p(j)
k ) in the tree, the nu-dimensional control in-

put uj
k and the realization of the uncertainty which is denoted

by the nd-dimensional vector dj
k. The tree has s branches

that leave each node, given by d
j−s⌊ j

s ⌋
k ∈ {d1

k,d
2
k, . . . ,d

s
k}

which represents one of the possible combinations of the a
priori given minimum, nominal and maximum values of the
uncertain parameters. In order to avoid the exponential growth
of the tree, we assume that the uncertainty remains constant
after a certain point in time called the robust horizon (Nr)
until the end of the prediction horizon Np. To simplify the
notation, the set of occurring indices (j, k) in a given node of
the tree is denoted by I , and all states and control inputs that
belong to the i-th scenario are denoted by Xi and U i.

The optimization problem that is solved at each sampling
time in the multi-stage NMPC approach reads as:

min
xj

k,u
j
k,∀(j,k)∈I

N∑

i=1

ωiJi(Xi,U i), (2a)
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subject to:

xj
k+1 = f(x

p(j)
k ,uj

k,d
j
k), ∀ (j, k + 1) ∈ I, (2b)

g(xj
k+1,u

j
k) ≤ 0 , ∀ (j, k + 1) ∈ I, (2c)

uj
k = ul

k if xp(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (2d)

where N is the number of scenarios, ωi and Ji are the weights
and the costs of each scenario resp., which are defined as:

Ji(.) :=

Np−1∑

k=0

L(xj
k+1,u

j
k), ∀x

j
k+1 ∈ Xi,u

j
k ∈ U i, (3)

with L(xj
k+1,u

j
k) being the stage cost. g(xj

k+1,u
j
k) denotes

the constraint functions, which have to be satisfied at each
node in the tree and (2d) denotes the non-anticipativity con-
straints. The approach presented in [14], can be used to enforce
the stability of the multi-stage NMPC but this issue is not
considered in this paper.

III. ADAPTIVE ROBUST NMPC

Adaptive control is based on the idea that if some infor-
mation about the system (e.g. in the form of measurements)
is available, then it can be used to improve the closed-loop
performance of the controller. The measurement information
can be used to obtain an estimate of the uncertain parame-
ters (d̂Nm

) e.g. using least-squares estimation (LSE), where
Nm stands for the number of past measurements. A confidence
region for the parameter estimate can be obtained using the
Fisher information matrix (FIM) if we assume that information
on the measurement noise is white Gaussian noise [15]

Fd
0,Nm

:= (Pd
0,Nm

)−1 ≈
Nm∑

k=0

sTkQsk, (4)

where Pd
0,Nm

gives an upper bound on the parameter covari-
ance matrix of the parameter vector d using measurements
from time 0 to Nm, Fd

0,Nm
represents the FIM, Q is the

inverse of the covariance matrix of the measurement noise,
and sk represents the matrix of the sensitivities of the outputs
w.r.t. the parameters.

The FIM can be used to obtain the confidence region which
is centered at the least-squares estimate of the parameter vector
(d̂Nm

) and is given by

(d− d̂Nm
)TFd

0,Nm
(d− d̂Nm

) ≤ nd F
α
dist(nd, Nm − nd)︸ ︷︷ ︸

Fs

, (5)

where Fdist is a quantile of the Fisher distribution, and α
stands for the desired confidence level (normally 95% or
99%). Lower (dNm

) and upper (dNm
) bounds on the uncer-

tain parameters can be obtained from the previously known
bounds on the uncertain parameters (dNm−1,dNm−1) and the
projection of the confidence region on the parameter axes:

dNm
:= max

(
dNm−1, d̂Nm

− diag
1
2 (FsP

d̂Nm

0,Nm
)
)
, (6a)

dNm
:= min

(
dNm−1, d̂Nm

+ diag
1
2 (FsP

d̂Nm

0,Nm
)
)
, (6b)

where the operator diag(·) returns a vector of the diagonal
elements of a matrix. The max and min operators prevent the
overestimation of the bounds because the uncertain parameters
are assumed to be constant. The scenario tree can be updated
based on the lower bound (dNm

), the nominal value (d̂Nm
)

and the upper bound (dNm
) and then the updated problem (2)

can be solved at the next sampling time.
Adaptive robust NMPC can considerably improve the per-

formance of robust multi-stage NMPC as the width of the
scenario tree (with respect to the values of the uncertainties
that are considered) narrows down based on the available
information [16]. However, it is not a dual approach as it
does not take into account explicitly that probing actions can
improve the estimation accuracy thus resulting in a further
improvement in the performance.

IV. DUAL ROBUST NMPC

Dual robust NMPC aims at striking a balance between the
optimizing control inputs and the probing actions by predicting
the impact of the probing actions on the optimal cost. The
scenario-tree formulation perfectly fits this purpose because it
allows us to treat the uncertainty as being reduced in the future
in a straightforward manner. The proposed dual robust NMPC
updates the scenario tree along the prediction horizon based
on estimates of the confidence region of the future parameter
estimations.

A major obstacle for the computation of the future bounds
on the uncertain parameters is that the future measurements
and the corresponding future parameter estimates are not
known. This issue was resolved in [12] by assuming that
the least-squares estimate, obtained using all the available
measurements, remains constant along the prediction hori-
zon. A more accurate, yet still approximate, approach is to
embed the nonlinear least-squares estimation problem into
the prediction by enforcing the optimality conditions of the
parameter estimation problem via constraints. This results in a
computationally very expensive problem, therefore we propose
an alternative, computationally less expensive, estimation of
the uncertain parameters in the future which can be embedded
in the predictions.

A. Approximation of the future parameter uncertainties

The basic idea behind our approach is to subdivide the range
of the uncertainties in the future into intervals according to
which the future control inputs can be adapted. In the approx-
imation, we use an approximate computation of the optimal
parameter estimate in the situation where the estimation based
on the available measurements, d̂Nm

as well as an estimation
at time Nm+k, d̂F , which is based on the information from
Nm to Nm+k are available. Then the nonlinear estimation
problem to compute the optimal parameter estimate at time
Nm+k can be approximated [17] as:

min
d̂Nm+k

[d̂Nm+k − d̂Nm
]TF

d̂Nm

0,Nm
[d̂Nm+k − d̂Nm

] +

[d̂Nm+k − d̂F ]
TFd̂F

Nm,Nm+k[d̂Nm+k − d̂F ], (7)
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Fig. 2: Illustration of the scenario-tree update at stage k = 1
for one uncertain parameter.

where F
d̂Nm

0,Nm
, gives the contribution of the past measurements

gathered until the current time point, analogically to the arrival
cost of moving horizon estimator [1], and Fd̂F

Nm,Nm+k gives
an estimate of the contribution of the future measurements
from the current time point until the kth step in the prediction
horizon. The optimal solution of the unconstrained quadratic
optimization problem (7) is:

d̂Nm+k(d̂F ) :=
(
F

d̂Nm

0,Nm
+ Fd̂F

Nm,Nm+k

)−1

F
d̂Nm

0,Nm
d̂Nm

+

(
F

d̂Nm

0,Nm
+ Fd̂F

Nm,Nm+k

)−1

Fd̂F

Nm,Nm+kd̂F . (8)

Note that d̂F is an unknown quantity here, and that d̂Nm+k
is

a function of d̂F .

B. Scenario-tree update along the prediction horizon

The scenario tree of the dual robust NMPC is built assuming
that the future parameter estimates d̂F take the nominal, lower
and upper bound values of the uncertain parameters. For an
estimate based on the future information at node (j, k) in the
scenario tree, d̂Nm+k(d

j
k) gives the approximate parameter

estimate that will be obtained at the node (j, k). The lower and
upper bounds on the uncertain parameters at node (j, k) can
be obtained from Eq. (6) using the Fisher information matrix
F

d̂Nm+k(d
j
k)

0,Nm+k , where d̂Nm+k(d
j
k) is obtained from Eq. (8) but

these bounds cannot be used to update the uncertainty bounds
in the scenario tree because there might be a case where none
of the bounds obtained at time k include the true value of
the uncertain parameter as illustrated in Fig 2a. The blue line
indicates the projected confidence regions that were obtained
from the past measurements for one parameter, the dashed
black lines indicate the predicted future confidence regions
obtained and the red square indicates the true parameters. It
can be seen that none of the predicted confidence regions
encloses the true value of the uncertain parameter. This has
to be avoided by over-approximating the predicted lower and
upper bounds of the uncertain parameters. The box approx-
imation of the past confidence region is split into s regions
and each region (Dj

k−1) is allocated to a scenario as shown in

Fig 2b. The center of the confidence region (d̂
j

Nm+k, LB and

d̂
j

Nm+k, UB) that is used to obtain the lower and upper bounds
on the uncertain parameters at the node (j, k) are given by

d̂
j

Nm+k, LB = d̂Nm+k(d̃LB), d̂
j

Nm+k, UB = d̂Nm+k(d̃UB), (9)

where d̃LB and d̃UB represent the parameter inside the region
(Dj

k−1) which gives the maximum perimeter of the box
approximation of confidence region obtained at the node (j, k),
and are given by

arg min
d̃LB, d̃UB∈Dj

k−1

1T d̂Nm+k(d̃LB)− 1T d̂Nm+k(d̃UB) (10)

where 1 is a vector of 1 of the length nd. The scenario tree
of the dual NMPC is updated using the new nominal value,
lower and upper bounds of the uncertain parameters along
the prediction horizon until k < Nr − 1. An example of this
procedure is shown in Fig. 2c.

V. CASE STUDY

The exothermic semi-batch reactor benchmark problem
from [18] is adapted to illustrate the advantages of the pro-
posed approach via simulation studies. The chemical reaction
that takes place in the reactor is given by A + B → C.
The nonlinear dynamics of the volume of the reactor (V ),
the concentration of the reactant A (CA), reactant B (CB)
and product C (CC) can be obtained from [18], in addition to
this we also consider the dynamics of the temperature of the
reactor (T ) and the jacket (TJ) and is given by

Ṫ =
u

V
(Tin − T )− αU(T − TJ)

ρV cp
− KcAcBH

ρcp
, (11)

ṪJ =
Q̇K + αU(T − TJ)

ρVJcp
, (12)

where U(= 0.027 + 0.022V ) denotes the surface area
of the reactor that is covered by the reaction mix-
ture, VJ(= 2.22L) denotes the volume of the jacket and
α(= 534384 JK−1h−1m−2) denotes the heat-transfer coef-
ficient between the reactor and the jacket. The true value
of the reaction rate constant (K = 1.11× 10−7 Lmol−1h−1)
and the reaction enthalpy (H = −327 Jmol−1) are con-
sidered to be uncertain (±40% w.r.t. their nominal val-
ues chosen as 1.21× 10−7 Lmol−1 h−1 and −355 Jmol−1

resp.). The feed rate (u ∈ [0, 35]Lh−1) and the cool-
ing capacity (Q̇K ∈ [−9, 0]× 106 J h−1) act as control in-
puts. Tin(= 300K) and cB in(= 2.75mol L−1) represent the
temperature and the concentration of reactant B entering
into reactor. The initial conditions of the states are given
by x0 = (V0, CA,0, CB,0, T0, TJ,0)

T = (3, 2, 0, 325, 325)T ,
the measured quantities are given by y = (cA, cB , T, TJ)

T

and the corresponding standard deviations of the measurement
noise are given by (0.01, 0.01, 0.1, 0.1)T .

The control task is to maximize the amount of product C
that is produced along the prediction horizon while respecting
the constraint on the reactor temperature (322K ≤ T ≤
326K) and volume of the reactor (V ≤ 7L). The nonlinear
optimization problem was implemented using CasADi [19]
and Ipopt [20] as explained in [12].
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A. Simulation results

Simulations were carried out using the three different robust
NMPC strategies for the case study described above. In all
these cases a scenario tree is generated that considers all possi-
ble combinations of the maximum, minimum and nominal val-
ues of the uncertain parameters with a robust horizon Nr = 3
and a prediction horizon Np = 5. All the scenarios in the
scenario tree are equally weighted (ωi = 1/N). The sampling
time of the NMPC is chosen as 0.05 h. The simulations are
carried until 0.5 h. The confidence level used for bounding
the confidence region is chosen as 95%. Simulation analysis
showed that the objective function to maximize the mass of
product C (nC) produced along the prediction horizon provides
the best results for the control task in hand.

Fig. 3 shows the results obtained using multi-stage NMPC,
adaptive robust NMPC and dual robust NMPC for the case
when the reaction rate is 10% smaller and the reaction
enthalpy is 10% larger than the nominal value. The optimal
operation is to feed as much as possible while respecting
the constraints. It can be seen from the figure that a very
small amount of reactant B (u) is fed into the reactor when
using multi-stage NMPC because of the tight specification of
the reactor temperature (T ). The amount of reactant fed into
the reactor can be increased with the help of adaptive robust
NMPC because the scenario tree of the multi-stage NMPC is
continuously updated, when better estimates of the uncertain
parameters has been obtained.

The amount of feed fed into the reactor can be further
improved with the help of dual robust NMPC. The dual robust
NMPC is aware of the fact that the future inputs will improve
the estimations of the uncertain parameters, which reduces the
conservativeness (back-off from the temperature constraint)
and this effect of the future inputs is taken into account
in their optimization. This can be seen from Fig. 4 which
shows the confidence regions of the estimated parameters
obtained at time 0.25 h using the adaptive robust and the
dual robust NMPC. The parameters are scaled such that they
vary between 0 to 1 within their bounds. It can be seen
from the figure that the confidence region obtained using
the dual robust multi-stage NMPC is substantially smaller
than the confidence region obtained using the adaptive robust
multi-stage NMPC. The reduction of the uncertainty along the
prediction horizon is illustrated in Fig. 5, which shows the
predicted box approximation of the confidence region (dashed
rectangles) obtained at time k = 1 for the scenarios built using
the lower bound on the reaction rate and the nominal value, the
lower, and upper bounds on the reaction enthalpy (filled dots)
as explained in Sec. IV-B. Similarly, the confidence regions
for the other scenarios (not shown in the figure) were obtained
such that the union of the predicted confidence regions covers
the entire past confidence ellipse. It can be seen from the figure
that the new nominal parameters (squares) that are used in the
updated scenarios move towards the past confidence region
because the dual NMPC takes the influence of both the past
and the future measurements into account as mentioned in
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Sec. IV-A. The scenario tree is adapted using the predicted
confidence regions along the prediction horizon. This results
in less conservative control inputs and thus in an improved
performance. The performance gain of the dual robust NMPC
relative to the adaptive robust NMPC is ≈15%.

In order to evaluate the performance of the dual NMPC,
the simulations were repeated for 100 random realizations of
the uncertain parameters. Fig. 6 shows a histogram plot of
the number of moles of product C produced by the different
robust NMPC strategies. It shows that adaptive robust multi-
stage NMPC outperforms robust multi-stage NMPC whereas
dual multi-stage NMPC outperforms the adaptive robust multi-
stage NMPC. The price to pay for the increased performance is
a higher computational effort. The multi-stage NMPC and the
adaptive robust multi-stage NMPC can be solved in 5 s and 7 s
per step on the average while dual robust NMPC takes around
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120 s per step because of the simultaneous computation of
sensitivities and future confidence regions. The proposed dual
NMPC does not consider that the LSE remains constant along
the prediction horizon as in [12] and the union of the predicted
future confidence region obtained along the prediction horizon
covers the entire current confidence region in contrast to [11],
hence it results in a controller that is robust w.r.t. estimation
errors.

VI. CONCLUSION

This paper proposes a dual robust NMPC scheme that
is based on the multi-stage formulation which reduces the
conservatism of the robust control actions since it considers
that the future control inputs can be adapted according to the
future observations and also considers the future reduction of
the uncertainty. A priori knowledge on the relative importance
of the probing actions on the control goal is not required.
The proposed dual NMPC makes sure that the entire current
confidence region is enclosed along the prediction horizon
resulting in a robust controller when compared to other ap-
proaches. It was applied to a simulated semi-batch reactor and
the simulation results show the advantages of the proposed
method over other robust NMPC strategies.

In our future work, we will investigate guaranteed parameter
estimation methods to identify the bounds on the uncertain

parameters [21] instead of relying on the approach based on
approximation of the covariance matrix using the FIM.
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