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Abstract—In this paper, anisotropy-based control problem with
regional pole assignment for descriptor systems is investigated.
The purpose is to find a state-feedback control law, which guar-
antees desirable disturbance attenuation level from stochastic
input with unknown covariance to controllable output of the
closed-loop system, and ensures, that all finite eigenvalues of
the closed-loop system belong to the given region inside the
unit disk. The proposed control design procedure is based on
solving convex optimization problem with strict constraints. The
numerical effectiveness is illustrated by numerical example.

I. INTRODUCTION

The problem of pole placement for linear descriptor systems
is discussed in different works, i.e. [1]–[3]. Pole placement is
a well-known technique for shaping desired transient perfor-
mance. The exact pole placement problem deals with design-
ing of a state-feedback control law, that provides desired exact
finite eigenvalues of the closed-loop system [1]. However, sen-
sitivity to parametric uncertainties and impossibility to apply
the additional quality criteria are substantial disadvantages of
this approach.

These disadvantages can be overcome by using regional
pole assignment technique. In this case, finite eigenvalues of
the closed-loop system are supposed to belong to some convex
region inside the unit disk on the complex plane. The most
useful LMI region is described by the interior of the circle
inside the unit disk with given center and radius [2], [3]. In
continuous and discrete time cases, there are some results on
control of descriptor systems with regional pole placement
including additional H2 and H∞criteria [4]–[7]. While pole
placement control provides transient response performance,
this additional criteria provide guaranteed disturbance atten-
uation level of the closed-loop system.

In this paper we deal with anisotropic norm of closed-loop
descriptor system as an additional criterion. In anisotropy-
based control theory, the system is considered to be affected
by a random disturbance with unknown covariance. According
to [8] the a-anisotropic norm of a system is a particular case
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of the stochastic norm and is defined as the supremum of the
ratio of the root mean square value of the system output to
that of the input over all stationary Gaussian inputs with the
mean anisotropy upper-bounded by a nonnegative parameter a.
For the absolutely continuously distributed Gaussian random
vector the anisotropy is defined as a difference between
the differential entropy of the Gaussian random vector with
zero mean and constant diagonal covariance matrix and the
differential entropy of this vector, and can be considered as
a measure of distinction between the covariance matrix of a
random vector and the identity matrix; see [8]. Moreover, the
scaled H2 and H∞ norms of a system are the limiting cases
of the a-anisotropic norm for a→ 0 and a→∞ respectively.

The aim of this paper is to solve anisotropy-based control
problem with regional pole placement for discrete-time de-
scriptor systems. The solution of this problem makes possible
to find a state-feedback control law such that closed-loop
system is admissible, its transient response satisfy the desired
performance, and the anisotropic gain from input disturbance
to the controllable output does not exceed specified level.

The paper is organized as follows. In section II, problem
statement is proposed. Section III provides necessary back-
ground on the descriptor systems and anisotropy-based control
theory. Main results and a numerical example are presented in
sections IV and V respectively.

Notations. The following notations will be used throughout
the paper. R and C denote real and complex sets respectively;
In is an identity (n × n) matrix; ZT is transpose of matrix
Z; sym(Z) = Z + ZT; Z∗ is the Hermitian conjugate of the
matrix Z = [zij ] ∈ Cm×n: Z∗ = [z∗ji] ∈ Cn×m.

II. PROBLEM STATEMENT

Consider the following discrete-time descriptor system:

Edx(k + 1) = Adx(k) +Bwdw(k) +Budu(k), (1)
z(k) = Cdx(k) +Dwdw(k) (2)

where x(k) ∈ Rn is the state, w(k) ∈ Rm1 , z(k) ∈ Rp is an
observable output, u(k) ∈ Rm2 is a control sequence, Ed, Ad,
Bwd, Bud, Cd, Dwd are constant real matrices of appropriate
dimensions; rank (Ed) = r < n.
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The behavior of discrete-time descriptor systems is radically
different from the behavior of standard ones. Unlike standard
systems, the regularity of descriptor system is required as it
provides the existence and uniqueness of system’s solution.

Definition 1: The system (1) is called regular if

∃λ 6= 0 : det(λEd −Ad) 6= 0.

In the paper, system (1)–(2) is assumed to be regular. If not,
several regularization techniques can be found in [9], [10].

Descriptor systems may also have noncausal behavior. It
means that the current state may depend on future values of
the input signal. Obviously, this undesired property should not
appear in the closed-loop system. Causality can be checked by
the following expression. The system (1) is causal if

deg det(zEd −Ad) = rankEd.

Stability of the descriptor system is defined in Lyapunov
sense, i.e. descriptor system (1) is called stable if

ρ(Ed, Ad) = max |λ|λ∈{z| det(zEd−Ad)=0} < 1.

In other words, system (1) is stable if all finite eigenvalues
of matrix pencil (zEd −Ad) lie inside the unit circle.

Definition 2: Regular, stable, and causal descriptor system
is called admissible.

So, control of discrete-time descriptor system consists of
stabilization and causalization procedures.

Definition 3: Consider the region on the complex plane,
defined by

D = {z ∈ C : d+ 2bRe(z) + c|z|2 < 0}. (3)

The pair (Ed, Ad) is called D–admissible if it is admissible
and its finite eigenvalues lie inside region D.

We assume that
1) the whole state vector is observable;
2) p 6 m1;
3) rankEd = rank [ Ed Bwd ];
4) rankEd = rank [ ET

d CT
d ];

5) system (1) is causally controllable;
6) system (1) is stabilizable.
In our problem w(k) is supposed to be a random stationary

sequence with known mean anisotropy level A(W ) 6 a (a >
0). The concept of mean anisotropy is discussed below.

The transfer function of unforced system (1)–(2) is defined
as P (z) = Cd(zEd −Ad)−1Bwd +Dwd, z ∈ C.

The problem considered in this paper is formulated as
follows.

Problem 1. For system (1)–(2) and given scalar numbers
a and γ the problem is to find a state-feedback control law

u(k) = Fdx(k), (4)

such that the closed-loop system

Edx(k + 1) = (Ad +BudFd)x(k) +Bwdw(k), (5)
z(k) = Cdx(k) +Dwdw(k) (6)

with transfer function
Pcl(z) = Cd(zEd −Ad −BudFd)−1Bwd +Dwd

1) is D-admissible;
2) its a-anisotropic norm (system’s gain from the input

disturbance to the controllable output) satisfies the con-
dition

|||Pcl(z)|||a < γ.

In other words, anisotropy-based suboptimal control prob-
lem with pole placement constraints is to find state-feedback
control law, such that closed-loop system is stable, causal,
its transient response satisfies desirable requirements, and its
disturbance attenuation level of the stochastic input signal is
bounded by γ.

III. BACKGROUND

In this section, we provide some preliminary material on
descriptor systems [1], [11], anisotropy-based control the-
ory [12], [13], and D-admissibility conditions [2].

A. Descriptor systems

In this section, we recall some basics of descriptor systems
theory necessary for the following investigation, which were
not mentioned above.

System (1)–(2) is assumed to be regular. It means that there
exist two nonsingular matrices W and V such that WEdV =
diag(Ir, 0).

Consider the following change of variables

V
−1
x(k) =

[
x1(k)
x2(k)

]
(7)

where x1(k) ∈ Rr and x2(k) ∈ Rn−r.
By left multiplying the system (1)–(2) on the matrix W

and using the change of variables (7), one can rewrite the
system (1)–(2) in the form [1]

x1(k + 1) = A11x1(k) +A12x2(k) +Bw1w(k) +Bu1u(k),

0 = A21x1(k) +A22x2(k) +Bw2w(k) +Bu2u(k),

y(k) = C1x1(k) + C2x2(k) +Dww(k)

where

WAdV =

[
A11 A12

A21 A22

]
, WBud =

[
Bu1
Bu2

]
,

WBwd =

[
Bw1

Bw2

]
, CdV =

[
C1 C2

]
. (8)

Matrices W and V can be obtained using singular value
decomposition (SVD)

Ed = U diag(S, 0)HT.

Here U and H are real orthogonal matrices, S is a diagonal
(r× r)-matrix, it is formed by nonzero singular values of the
matrix Ed

W = diag(S−1, In−r)U
T, V = H.

Hereinafter we use the following notations:
E = WEdV = diag(Ir, 0), A = WAdV , Bu = WBud,
Bw = WBwd, C = CdV , Dw = Dwd.
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Note that the system is causal if det(A22) 6= 0, and stable
if ρ(A11 −A12A

−1
22 A21) < 1 [11].

The following lemma, introduced in [2], will be useful
below.

Lemma 1: [2] Let D be a disc centered around the origin
and of radius ω, i.e. d = −ω2, b = 0, and c = 1. The pair
(Ed, Ad) has g poles inside D and (n − g) poles outside D
if and only if there exist X = XT ∈ Rn×n with g positive,
(n− g) negative, and 0 zero eigenvalues satisfying inequality

−ω2EdXE
T
d +AdXA

T
d < 0. (9)

Lemma 1 provides a procedure for checking D–
admissibility of the system (1)–(2). This lemma will be used
in future in order to ensure that all finite eigenvalues belong
to the selected region D.

B. Mean anisotropy of the sequence and anisotropic norm of
the system

In problem statement, it has been mentioned that the
systems affected by exogenous disturbance with nonnegative
mean anisotropy level a. This section provides brief introduc-
tion on anisotropy of signals and anisotropic norm of systems.
Full information on the anisotropy-based robust performance
analysis developed originally in [12], [13] can be found in
more detail in [14], [15].

Let W = {w(k)}k∈Z be a stationary sequence of square-
integrable random m1-dimensional vectors. The sequence W
can be generated from the Gaussian white noise sequence
V with zero mean and identity covariance matrix by an
admissible shaping filter with a transfer function G(z) =
CG(zEG − AG)−1BG + DG. Mean anisotropy of the signal
is Kullback-Leibler information divergence from probability
density function (p.d.f.) of the signal to p.d.f. of the Gaussian
white noise sequence.

Mean anisotropy of the sequence can be defined by the
filter’s parameters, using the expression

A(W ) = − 1

4π

∫ π

−π
ln det

m1S(ω)

‖G(z)‖22
dω

where S(ω) = Ĝ(ω)Ĝ∗(ω), (−π 6 ω 6 π), Ĝ(ω) =
liml→1G(leiω) is a boundary value of the transfer function
G(z), and ‖G(z)‖2 is H2 norm of shaping filter G(z) defined
by the expression

‖G‖2 =

(
1

2π

∫ 2π

0

tr
(
G∗(eiω)G(eiω)

)
dω

) 1
2

.

Remark 1: Since the probability law of the sequence W
is completely determined by the shaping filter G(z), the
alternative notation A(G) is also used instead of A(W ).

Mean anisotropy of the signal characterizes its “spectral
color”, i.e. the difference between the signal and the Gaussian
white noise sequence. If A(W ) = 0, then the signal is the
Gaussian white noise sequence. If A(W )→∞, the signal is
a determinate sequence. For more information, see [12], [16].

Let Z = PW be an output of the linear discrete-time
descriptor system P ∈ H∞p×m1 with a transfer function P (z),

which is analytic in the identity circle |z| < 1, P (z) has a finite
H∞-norm, i.e.

‖P (z)‖∞ = sup
ω∈[0,2π]

σmax
(
P (eiω)

)
<∞

where σmax
(
P (eiω)

)
is the maximum singular value of the

transfer function P (z).
Definition 4: For a given constant value a > 0 a-anisotropic

norm of the system P is defined as

|||P (z)|||a = sup {‖P (z)G(z)‖2/‖G(z)‖2 : G(z) ∈ Ga} ,
(10)

i.e. the maximum value of the system’s gain with respect to
the class of shaping filters

Ga =
{
G(z) ∈ H2

m1×m1 : A(G) 6 a
}
.

So, a-anisotropic norm |||P (z)|||a describes the stochastic
gain of the system P with respect to the random input
sequence W with mean anisotropy a > 0.

Definition 4 sets a maximum value of anisotropic gain of
the system. In practical applications, it is enough to check
the condition |||P (z)|||a 6 γ for given scalar γ > 0 and
known mean anisotropy level of the input disturbance a > 0.
The following lemma allows to check a-anisotropic norm
boundedness using set of convex constraints [17].

Theorem 1: [17] Suppose that

rankEd = rank [ Ed Bwd ].

For given scalar values a > 0 and γ > 0 the unforced
system (1)–(2) with a transfer function P (z) ∈ H∞p×m1 is
admissible and its a-anisotropic norm is bounded by γ, i.e.

|||P (z)|||a < γ

if there exist matrices L ∈ Rr×r, L > 0, Q ∈ Rr×r, R ∈
Rr×(n−r), S ∈ R(n−r)×(n−r), scalar values η > γ2 such that

η − (e−2a det(ηIm1
−BT

wΘBw −DT
wDw))1/m1 < γ2, (11)




Φ11 ΓA ΓBw ΦT
41 0

ATΓT Φ22 ΠBw ATΓT ΦT
52

BT
wΓT BT

wΠT −γ2Im1 BT
wΓT ΦT

53

Φ41 ΓA ΓBw −Q−QT 0
0 Φ52 Φ53 0 −Ip



< 0

(12)
where

Φ11 = − 1
2Q− 1

2Q
T, Φ22 = ΠA+ATΠT −Θ,

Φ41 = L−Q− 1
2Q

T, Φ52 = C + αCΠA,
Φ53 = Dw + αCΠBw,

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Γ =

[
Q R

]
.

A scalar α > 0 is selected sufficiency large.
In theorem 1, a scalar value α is supposed to be sufficiency

large and is selected by designer. It follows from the theorem
that calculation of a-anisotropic norm of descriptor system
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(1)–(2) is formulated as convex optimization problem as
follows

find: min γ2 on the set L,Q,R, S, η.

In this case we can calculate a-anisotropic norm of descrip-
tor system (1)–(2) with a given precision.

IV. MAIN RESULT

In this section, we obtain main results of the paper.
Firstly, we derive conditions to check D-admissibility and
a-anisotropic norm boundedness of the unforced descriptor
system (1)–(2). Secondly, we obtain a control law which
makes closed-loop system D-admissible with given bounded
a-anisotropic norm.

In this section, we consider an admissible unforced sys-
tem (1)–(2). The problem is to check its a-anisotropic norm
boundedness and D-admissibility.

Theorem 2: Suppose that

rankEd = rank [ Ed Bwd ].

For given scalar values γ > 0, 0 < ω < 1, and a > 0 a-
anisotropic norm of the system is bounded by the value γ,
i.e. |||P (z)|||a < γ, and the system P is D-admissible with
radius ω, if there exist matrices L ∈ Rr×r, L > 0, Q ∈ Rr×r,
R ∈ Rr×(n−r), S ∈ R(n−r)×(n−r), X = XT ∈ Rn×n, and
scalar value η > γ2, satisfying inequalities (11), (12), and

[
−ω2X 0

0 X

]
+ sym

([
A
−E

]
G∆

)
< 0 (13)

with
G =

[
Q R
RT S

]
, (14)

and
∆ =

[
0 0 Ir 0
0 In−r 0 0

]
, (15)

A scalar α > 0 is supposed to be sufficiency large.
Proof: The proof of a-anisotropic norm boundedness can

be found in [17]. Now we need to prove (13), that guarantees,
that all finite eigenvalues lie inside D-region.

If the unforced system (1)–(2) is D-admissible, then in-
equality (9) holds true for some matrix X .

Left and right multiplying (9) by W and W
T

respectively,
we get

−ω2WEdXE
T
dW

T
+WAdXA

T
dW

T
< 0. (16)

Let X = V XV
T

. It is possible because of V is nonsingular.
Taking into account this notation, inequality (16) can be
represented as

−ω2EXET +AXAT < 0. (17)

Noting that pair (E,A) is admissible, hence, A22 is invert-
ible. Introduce matrices:

W =

[
Ir −A12A

−1
22

0 In−r

]
, V =

[
Ir 0

−A−122 A21 A−122

]
,

Defining X̂ = VXVT
and by left and right multiplying (17)

on W and W respectively, we get

− ω2

[
Ir 0
0 0

]
X̂

[
Ir 0
0 0

]
+

+

[
Â 0
0 In−r

]
X̂

[
ÂT 0
0 In−r

]
< 0 (18)

with Â = A11 −A12A
−1
22 A21.

Let X̂ be divided as X̂ =

[
X̂11 X̂12

X̂T
12 X̂22

]
, X̂11 ∈ Rr×r.

It follows from (18) that X̂11 > 0. The expression (18) is
is equivalent to

−ω2X̂11 + ÂX̂11Â
T < 0, (19)

X̂22 < 0. (20)

We are interested in inequality (19). This inequality is strict,
hence, there exist a sufficiently small µ such that

−ω2X̂11 + ÂX̂11Â
T + µω2A12A

T
12 < 0. (21)

Introduce the next matrices

Y =

[
0 0 Ir 0
0 In−r 0 0

]T
,

Z =

[
AT

11 AT
21 −Ir 0

AT
12 In−r 0 0

]
.

One can check that

KerY =

[
Ir 0 0 0
0 0 0 In−r

]T
,

KerZ =

[
Ir −A12 Â 0
0 0 0 In−r

]T
.

Under (21) the following inequalities hold true
{

KerYΥKerYT < 0,
KerZTΥKerZ < 0

(22)

with

Υ =




−ω2X̂11 −µω2A12 0 0
−µω2AT

12 −µω2In−r 0 0

0 0 X̂11 0
0 0 0 −µIn−r


 .

By Projection Lemma [18] there exist a matrix G such that

Υ + sym(ZTGYT) < 0 (23)

or



−ω2X̂11 0 0 0
0 −µω2In−r 0 0

0 0 X̂11 0
0 0 0 −µIn−r


+

+ sym

(
ZT

([
0 0
0 −µω2In−r

]
+ G

)
YT

)
< 0. (24)
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Denote

G =

[
0 0
0 −µω2In−r

]
+ G

and

X =

[
X11 X12

XT
12 X22

]
=

[
−ω2X̂11 0

0 −µω2In−r

]
.

Then, (24) can be rewritten as
[
−ω2X 0

0 X

]
+ ZTGYT + YGZ < 0. (25)

By choosing G as (14) and substituting it into (25) we get
(13). Note that D-admissibility is stronger than admissibility
property for ω < 1. Taking into account that (12) guarantees
admissibility of the system, selection (14) does not contradict
(12).

Finally, we need to prove that G is invertible. If G is not
invertible, there exists a nonzero vector c =

[
c1 c2

]
such

that Gc = 0. Let c1 ∈ Rr. Then left and right multiplication
of (25) on

[
0 c2 c1 0

]
and its transpose respectively

yields −c2X22c
T
2 + c1X11c

T
1 < 0 which is impossible since

X11 > 0 and X22 < 0.

Remark 2: It must be noted that strict LMI are used all along
the paper. Indeed, many conditions in the literature involve
non strict inequalities such as ETXE > 0, which are known
to lead to numeric complications. Although these constraints
can be transformed into strict inequalities by the use of
additional developments [19], straightforwardly established
strict inequalities which avoid those developments are here
preferred. Therefore, LMI processes are more accurate.

While solving problem 1, we need to apply theorem 2 to
the closed-loop system (5)–(6). Direct implementation of the
conditions of theorem 2 to the system (1)–(2), closed by the
control law in the form (4), leads to nonlinear terms for which
implementation of inequality (12) as LMI is not possible.

To solve the control problem a better way is to deal with
system dual to (5)–(6). A state-space representation of closed-
loop dual system is

ETx′(k + 1) = (A+BuF )Tx′(k) + CTw′(k), (26)
z′(k) = BT

wx
′(k) +DT

ww
′(k), (27)

It’s obvious that H2 and H∞norms of the closed-loop system
coincide with the same ones of dual system (26)–(27). Being
a semi-norm, a-anisotropic norm doesn’t satisfy this property.
However, in the case of p 6 m1 the design specification is
satisfied. To show this fact we recall that a-anisotropic norm
of the admissible system is convex and monotonic function
over a. In addition, when a = 0 we get

|||Pcl(z)|||0 =
‖Pcl‖2√
m1

6 ‖Pcl‖2√
p

= |||P dualcl (z)|||0. (28)

It should be pointed out that |||Pcl(z)|||a = |||P dualcl (z)|||a
when p = m1.

Introduce the following linear change of variables
[
Q R
0 S

]
FT = Z. (29)

The expression (29) implies that
[
Q R

]
FT =

[
Ir 0

]
Z and

[
0 0
0 S

]
FT =

[
0 0
0 In−r

]
Z.

Theorem 3: For a given scalar values γ > 0, 0 < ω < 1,
and mean anisotropy level a > 0 the control design problem
is solvable if there exist scalars η > γ2, ε1 > 0, ε2 > 0
and matrices X = XT ∈ Rn×n, Q ∈ Rr×r, R ∈ Rr×(n−r),
S ∈ R(n−r)×(n−r), L ∈ Rr×r, L > 0, and Z ∈ Rn×m2 such
that

η − (e−2a det(ηIp − CΘCT −DwD
T
w)))1/p < γ2, (30)

[
−ω2X 0

0 X

]
+

+ sym

(([
A
−E

]
GT +

[
Bu
0

]
ZT

)
∆

)
< 0, (31)




Λ11 ΛT
21 ΛT

31 ΛT
41 0

Λ21 Λ22 ΛT
32 Λ21 ΛT

52

Λ31 Λ32 −ηIp Λ31 ΛT
53

Λ41 ΛT
21 ΛT

31 −(Q+QT) 0
0 Λ52 Λ53 0 −Im1



< 0 (32)

with
Λ11 = − 1

2Q− 1
2Q

T, Λ21 = AΓT +BuZ
TΩT,

Λ31 = CΓT, Λ41 = L−Q− 1
2Q

T,
Λ22 = ΠAT +AΠT + ΦZBT

u +BuZ
TΦ−Θ,

Λ32 = CΠT, Λ52 = BT
w , Λ53 = DT

w.

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Φ =

[
0 0
0 In−r

]
,

Ω =
[
Ir 0

]
, Γ =

[
Q R

]
.

The gain matrix can be obtained as

Fd = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
V
−1
. (33)

Proof: Taking into account linear change of variables
(29) and substituting it into (13) we get Σ11 and Σ12 in (31)
for the closed-loop system (26)–(27). By analogy, substitution
(29) into (12) gives us Λ21 and Λ22 entries from (32), which
coincide with the conditions of Theorem 2 for the system (26)–
(27). So, according to Theorem 2, the closed-loop system (1)–
(2) is D-admissible, and a-anisotropic norm of its transfer
function is bounded by the given scalar γ.

In addition, as the inequality (32) holds, the Λ11 en-
try implies matrix Q is invertible. The invertibility of S
is guaranteed by (31) (see proof of Theorem 2). So the
feedback gain Fd for the closed-loop system is defined as

F = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
. Note that F = FdV . By

the inverse change of variables we get Fd from (33).
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V. NUMERICAL EXAMPLE

Consider the system with parameters:

Ed =




3 0 2 −5
0 3 −2 2
2 2 0 −2
2 −4 4 −6


 ,

Ad =




4.7 −3.25 −0.7 0
0.8 0.4 −6.4 2.6

1 −1.9 −5.4 2.4
−0.6 −2.7 5.4 −2.8


 ,

Bud =




0
0
1
1


 , Bwd =




3.2 −3.5
2.5 −7.9
3.8 −7.6
−1.2 8.2


 ,

Cd =
[

1 1 0 −1
]
, Dwd =

[
1.2 1.3

]
,

The system, considered in example, is causal, but not stable.
Its finite eigenvalues are λi = {1.2523; 0.5994}, i = 1, 2.

The goal is to design a state-feedback control minimizing
a-anisotropic norm of the closed-loop system, such that finite
eigenvalues of the closed-loop system lie inside a circle with
radius ω = 0.5. We choose mean anisotropy level a = 0.2.

The state-feedback gain is

F
(1)
d =

[
−2.9193 3.4906 −3.8471 2.3996

]
.

One can check that the closed-loop system is admissi-
ble. Its finite eigenvalues are λ

(1)
i = {−0.4744; 0.4997}.

|||P (1)
cl (z)|||a = 4.4558.

Applying anisotropy-based control design procedure with-
out pole placement constraint gives us the following result

F
(2)
d =

[
−6.2855 5.7999 12.8111 −6.0253

]
.

Finite eigenvalues of the closed-loop system are λ
(2)
i =

{0.1443; 0.6134}. |||P (2)
cl (z)|||a = 4.1198.

A solution of pole placement problem without anisotropic
quality criterion [2] is

F
(3)
d =

[
−3.0863 4.6807 −1.8345 1.2492

]
.

Finite eigenvalues of the closed-loop system are λ
(3)
i =

{0.0001; 0.4532}. |||P (3)
cl (z)|||a = 4.9568.

An illustrative example demonstrates an effectiveness of
the developed control design procedure. It is shown that
using one of the criterion may not satisfy the designer’s
requirements. Taking into account both criteria we can achieve
better performance of the closed-loop system while solving
control problems.

VI. CONCLUSION

In this paper a novel design procedure for discrete-time
descriptor systems is derived. The procedure consists of pole
placement control with anisotropic gain constraint. It is shown
that the procedure is numerically effective. The proposed
algorithm allows to reach both desired transient response
performance and disturbance attenuation level of the closed-
loop system. In future, this algorithm can be extended on
a class of uncertain descriptor systems with norm-bounded
uncertainties.
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