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Abstract—This paper investigates output synchronization of 

heterogeneous linear time-invariant systems. Agents distribu-

tively communicate measured outputs and synchronize on regu-

lated outputs. Necessary structure of single-agents' drift dynam-

ics is used. Relations between single-agent dynamics, measured 

outputs and regulated outputs are investigated. Cooperative sta-

bility conditions reduce to requirements depending separately on 

single-agents’ structure and interconnecting graph topology, al-

lowing for a distributed control design. Sufficient condition is 

given based on coordinate transformations which reveal the ef-

fects of distributed control on single-agents. It is shown that 

identical subsystem state synchronization and robustness to in-

terconnections guarantee regulated output synchronization.   

Keywords—output synchronization; heterogeneous multi-

agent systems; distributed control; output regulation 

I. INTRODUCTION 

The last two decades have witnessed an increasing interest 
in multi-agent cooperative systems, [2][4][6][7][10][16]. Ear-
ly work, [2][6][7][10], refers to consensus without a leader 
where the asymptotic consensus state depends on precise ini-
tial conditions. By adding a command generator leader that 
pins to a group of agents one can obtain synchronization to a 
reference trajectory for all initial conditions; this is termed 
pinning control [13][16][19][20]. For identical agents neces-
sary and sufficient conditions for state synchronization are 
given by the master stability function [9][13][22] and the re-
lated concept of a synchronizing region [9][13][14][16][22], 
guaranteeing local stability. Global results are obtained by 
contraction analysis, i.e. incremental stability approaches 
[5][8][11][22], or Lyapunov methods, [18][21][34]. 

For heterogeneous agents passivity, [1][35][36], and inter-
nal model principle (IMP), [17][25], are used for output syn-
chronization. The work in [17] introduces identical local ref-
erence generators that synchronize; thus producing a common 
output reference for each agent to track. This results in a hier-
archical structure of augmented single-agents. The internal 
model principle is shown to be necessary and sufficient for 
output synchronization in linear heterogeneous multi-agent 
systems. The use of identical distributed reference generators 
that synchronize stems from [12], where the same approach is 
applied to identical linear time-invariant (LTI) agent state 
synchronization. Similar construction is found in [29]. Recent 
work [25] extends this to nonlinear systems. The passivity 

based approach in [36] touches on the necessary conditions 
involving the IMP from [17]; however, assuming passivity 
additionally restricts the single-agents. On the other hand, pa-
pers on distributed output regulation [27]-[30][33] propose 
local dynamic regulators, under fixed distributed feedback, 
thereby also imposing a priori structure on the resulting aug-
mented single-agent drift dynamics and distributed control. 
The no-loop assumption on communication graphs is assumed 
in [27][31]. Looking at the seminal paper [2], one finds a sim-
ilar structure; estimator or dynamic regulator augmenting the 
original single-agent systems. The subsequent development of 
cooperative control for identical agents, suggested by the syn-
chronizing region, removes special such assumptions on sin-
gle-agents. This line is pursued for heterogeneous agents in 
[31], albeit with the no-loop assumption.   

This paper brings a sufficient condition for general LTI 
systems to synchronize over one set of outputs, regulated 
outputs, while communicating some other set of outputs, 
measured outputs. This allows achieving synchronization of a 
larger set of outputs while communicating fewer signals, 
thereby possibly reducing the communication burden. Set like 
this the problem includes state synchronization of identical 
agents by using either state [14][16][19] or output-feedback 
[3], and the output synchronization (regulation) of heteroge-
neous agents [1][18][27]-[31]. Our approach does not use ob-
servers nor dynamic compensators, in contrast to [17][33] 
[35]. All single-agent control loops, bringing systems to the 
required form, by e.g. classical eigenvalue-eigenvector 
placement, are assumed closed, in line with [31]. Focus is in-
stead on distributed control, required structure of single-agent 
systems and their interactions. The main contribution is a suf-
ficient condition for regulated output synchronization. A nov-
el stabilization scheme is introduced based on identical sys-
tem state-synchronization, [15]. A coordinate transformation 
is used, related to the necessary structure of single-agents, re-
vealing how a general measured output distributed feedback 
affects and interconnects different parts of single-agent sys-
tems. This novel cooperative stabilization approach treats in-
terconnections of single-agents, induced by a general meas-
ured output distributed feedback, both as cooperatively stabi-
lizing controls and as detrimental disturbances. This approach 
removes the no-loop requirement on graph topology, [27][31], 
and requires no a priori imposed, specially constructed, sin-
gle-agent drift dynamics. It however leads to additional con-
straints on distributed control.  
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The outline of the paper is as follows; Section II gives 
graph preliminaries and notation. Section III presents the sys-
tem and defines the control problem. Section IV restates nec-
essary conditions, familiar from the literature for specially 
constructed systems, in a geometrical language applicable to 
our general settings. It sheds light on required geometrical 
structure of the total multi-agent system as well as of the sin-
gle-agents. Section V brings sufficient conditions guarantee-
ing regulated output synchronization. Coordinate transfor-
mations are used, inspired by Section IV, together with 
known identical agent state synchronization results, to design 
controls for regulated output synchronization. Conclusions are 
given in Section VI.   

II. GRAPH THEORY AND NOTATIONAL CONVENTIONS 

Consider a graph, ( , ) , with a nonempty finite set of N 

nodes, 
1

{ , , }
N

v v , and a set of edges   . Directed 

graphs are considered, and information propagates through 

the graph along the edges. Two nodes ,
j k

v v  connected by an 

edge ( , )
j k

v v   are termed parent node 
k

v  and child node 

j
v , i.e. the edge leaves the parent node and connects into the 

child node.  Denote the adjacency matrix as  
ij

E e  with 

0
ij

e   if ( , )
i j

v v   and 0
ij

e   otherwise. Note that diago-

nal elements satisfy 0
ii

e  . The set of neighbors of node vi is 

{ : ( , ) }
i j i j

v v v  , i.e. set of nodes with arcs connecting into 

vi.  Define the in-degree matrix as a diagonal matrix, 

1
( )

N
H diag h h , with 

i ijj
h e , the (weighted) in-

degree of node i . Define the graph Laplacian matrix as 
L H E  , which has all row sums equal to zero.  A directed 
path is a sequence of edges joining two nodes. A graph is said 
to be strongly connected if any two nodes can be joined by a 
directed path. Node is termed isolated if it has no incoming 
edges. Hence in strongly connected graphs there are no isolat-
ed nodes. A directed tree is a subgraph having a single isolat-
ed node v0, such that all other nodes except v0 have only one 
parent and are joined to v0 by a directed path. Node v0 is 
called a root node. A graph is said to contain a directed span-
ning tree if there exists a directed tree containing every node 
in . The Laplacian matrix L has a simple zero eigenvalue iff 
its directed graph contains a spanning tree. A graph is said to 
be reducible if its Laplacian matrix is cogredient, i.e. can be 
transformed, to the block triangular form 

 
11 12

22
0

T
L L

T LT
L


 
  

, (1) 

where T  is a permutation matrix. If the graph is not reducible 
it is said to be irreducible. A directed graph is irreducible if 

and only if it is strongly connected.  The symbol 1
N

 stands 

for the vector  1...1
T N . 

III. SYSTEM DESCRIPTION AND THE CONTROL PROB-

LEM 

Let the multi-agent system be comprised of N agents 

 , , .
i i i i i i i i i i i

x A x B u y C x z D x     (2) 

Agents are assumed heterogeneous with i

i

n
x  , 

p

i
y  , 

i

q
z  , i

i

m
u  . Matrices ,

i i
C D  are assumed to have full 

row rank, implying no redundant outputs. It is also taken that 

the 
i

y -output vector, as a linear function on single-agent 

state-space i
n

, is linearly independent of the measured 
i

z -

outputs.  When present, the leader is given as 

 
0 0 0 0 0 0 0 0 0

, , .x A x y C x z D x     (3) 

with 
0

p
y  , 

0

q
z  .  Control goal is to reach regulated y-

output consensus asymptotically, 0i jy y   as t  , 

by communicating measured z-outputs. With an isolated lead-
er the control goal is asymptotic output reference tracking, 

0 0iy y   as t  .   

The local neighborhood errors in measured z-outputs are  

 
01

( ) ( )
N

zi ij j i i ij
e z z g z z


    ,  (4) 

where 0
i

g   are the pinning gains with 0
i

g   for a small 

percentage of nodes having direct access to the leader, (3). If 
there is no isolated leader (4) takes the form  

 
1

( )
N

zi ij j ij
e z z


  .  (5) 

In the form of total state-space vectors 

1

1 1 1
.. , .. ..,

N
T T TiT T T T Np T T Nqi

N N N

n
x x x y y y zz z                ,  

the total local neighborhood error vector (4) reads   

 
0

( ) ( )
z q

L G I z z      ,  (6) 

where 
1

( ... ) 0
N

G diag g g   is a diagonal matrix of pinning 

gains and 
0 0 0

...
Nq

TT T
z z z    , while (5) reads 

 
z q

L I z    .  (7) 

In this paper the leader (3), when present, is by convention 
included with the other agents (2) in an augmented graph as 
an isolated root of a spanning tree. Thus, the local neighbor-
hood error signal in this case takes the form of (5) or (7) as 
well, with an augmented graph adjacency matrix and Laplaci-
an.  The distributed feedback is then formed from (4) or (5) as 

 
i i zi

u K  ,  (8) 

where the feedback gains iK  are designed later. Note howev-

er that, different from [17], z-consensus at this point is not re-
quired.  The closed-loop system with controls (8) is then  

 1
( ),

.

N

i i i i i ij j j i ij

i i i

x A x B K e D x D x

y C x


  


  (9) 

Special instances of system (9) are studied as state consensus 

of identical agents, ,
i

A A ,
i

B B  
i

K K , communicating 

their states, 
i n

D I  [12][14][19], or outputs, 
i

D C  [3], and 
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the output consensus of heterogeneous agents with outputs 

communicated, 
i iD C  [17][27][28][30][31]. This paper 

aims at revealing relations between the y-, z-outputs ( , )
i i

C D  

and system's structural properties ( , )
i i

A B  that are necessary 

and sufficient for y-output synchronization. 

IV. NECESSARY CONDITIONS FOR OUTPUT SYNCHRO-

NIZATION 

This section restates the necessary conditions for special sys-
tems, appearing in [17], in general geometrical terms applica-
ble to our settings. Assumptions on single-agent systems and 
their interconnections, under which the presented conditions 
are indeed necessary, are highlighted and motivated.  For y-
consensus in the total state-space,  

 1

1

: k

N

kk

N
n

k

n



  

, (10) 

there must exist an invariant subspace of the closed-loop sys-

tem (9) where , ,
i j

y y i j  ; the target invariant subspace. 

Due to linearity 0x    is a trivial invariant subspace of 
(9). Assume a nontrivial invariant subspace of (9) spanned by 
columns of matrix  , spancol  . Then   satisfies the in-

variance condition, 

 
*

A X   ,  (11) 

and the y-consensus condition  

 
*

1
C R  ,  (12) 

where 
1 1

1
N

R R  , for some matrix 
1

R , [17]. The shorthand 

starred symbols in (11), (12) stand for 

 
*

1 1 1

*
( ... ) ( ... )( )

N N N q
A diag A A diag B K B K L I D   ,  (13) 

* *

1 1
( ... ), ( ... )

N N
C diag C C D diag D D  . 

The system matrix X  in (11), describing dynamics on the 
target invariant subspace, spancol  , does not have any sta-

ble poles for those imply trivial consensus, [17]. Take the di-
mension of the target invariant subspace (11) to be 

0 min
i i

l n  , whence X  is an l l  matrix. Expanding (11) 

with respect to the block structure of
*

A , (13), one has 

1 11 1 1 1 12 1 1 2 1 1 1 1 1

21 2 2 1 2 22 2 2 2 2 2 2 2 2

1 1

,

N

N N

N N

N N N NN N N N N N

A l B K D l B K D l B K D

l B K D A l B K D l B K D
X

l B K D A l B K D

    

    


   

     
     
     
     
     
     

 

(14) 

where 
ij

l  are components of the graph or augmented graph 

Laplacian matrix, yielding coupled Francis equations, [26], 

 ( )
i ii i i i i ij i i j j ij

A l B K D e B K D X     ,  (15) 

 
1i i

C R  . (16) 

Assumption 1. Distributed control (8) vanishes on the target 
invariant subspace in , spancol  ,  

 
1

( ) 0
N

ji ij j j i i
K e D D


    , i .  (17) 

If the distributed control did not vanish on the target invar-
iant subspace it would necessarily take part in determining 
that set. Then the target invariant subspace would depend on 
the exact communication topology, hence would not be robust 
to changes of topology. Assumption 1 is robustly satisfied, for 

any choice of 
i

K s, via z-consensus, but that is not necessary 

for the following developments. 

Definition 1. Given a Cartesian product of N identical sets 

, 
N

, the diagonal has the form ( , , ..., )x x x  for all x . 

Diagonal thus defined is homeomorphic to a single set . 

The following result reduces the invariant subspace struc-
ture of total system (9) to that of single-agent systems. 

Lemma 1. Under Assumption 1 there exist invariant subspac-

es for single-agent drift dynamics 
i

A ,  

 
i i i

A X   , (18) 

 
1i i

C R  , (19) 

and the target invariant subspace, spancol  , is a diagonal in 

the Cartesian product of all these single-agent drift dynamics 
invariant subspaces.   

Proof: Under Assumption 1 (14) reduces to 

1
( ... )

N
diag A A X   . Each agent hence has an invariant 

subspace in its state-space in
, spanned by columns of 

i
 ; 

i i i
x   , 

l

i
  , where 

i
  satisfies the invariance and y-

consensus conditions (18), (19). The target invariant subspace 

given as 
i i

x   , i , corresponds then to ,
i

i   .    

Specific structure imposed on 
i

A  matrices, such as explic-

itly incorporating an m-copy model of X  by a hierarchical 

construction, leads to specially structured solutions 
i

 , 

[27][29][30]. Single-agent passivity, as used in [36], leads to 
a similar structure, albeit necessarily with a stable X . Here 
we do not make any such special assumptions.  

Remark 1. If Assumption 1 is satisfied by z-consensus; 

, ( , )
i j

z z i j   if 
i i

x   , i , 

 
1

( ) 0
N

ij j j i ij
e D D


    , i ,  (20) 

then one has similarly to (12) also 
*

2
D R  , where 

2 2
1

N
R R  . The spancol

i
  in that case also satisfies   

 
2i i

D R  . (21) 

Remark 2. Under (18), (19) and (21) the invariant subspaces 
(18) of single-agents are all parameterized by the same num-
ber of coordinates, and on all those subspaces the drift dy-
namics is described by X . Each single-agent state-space thus 
embeds a copy of the same, shared, invariant subspace. This 
is called system intersection in [31], but its structure is not 
revealed there. By Lemma 1 the target invariant subspace is 
also an embedding of the shared invariant subspace in . 
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Proposition 1. For each single-agent there are l  linearly in-
dependent scalar outputs that reach consensus on the target 
invariant subspace.   

Proof:  The relation 
1i i

C R   is a nonhomogeneous linear 

equation for 
i

C . 
i

  has full column rank, i.e. l  linearly in-

dependent columns, so a particular solution exists, 

 
1

1
( )

T T

i i i i
C R

    . (22) 

Since 
1

R  has l  columns one can write up to l  linearly inde-

pendent rows, and each such row in (22) gives one scalar out-

put, i.e. one row of 
i

C . With l  linearly independent rows 
1

R  

is nonsingular, which by regularity of 
T

i i
   implies the rows 

of 
i

C  thus constructed are linearly independent.   

The choice of outputs in Proposition 1 is of course not 

unique. Moreover, not all l  linearly independent scalar out-
puts need to be communicated for cooperative control; the 
measured outputs should suffice.   

V. SUFFICIENT CONDITION FOR OUTPUT SYNCHRONI-

ZATION 

This section brings the main results of the paper. Assuming a 
solution of (15) and (16) exists and satisfies Assumption 1, a 
sufficient condition for asymptotic stability of the target in-
variant subspace is given. A coordinate transformation is used 
that clearly reveals how the distributed z-output signal affects 
and interconnects the single-agent systems. 

Each single-agent drift dynamics 
i

A , under Assumption 1, 

(17), necessarily has an invariant subspace, spancol
i

 , 

where 
i

  satisfies (18), (19) and (21). Supplement the col-

umns of 
i

  by those of 
i

  to form a basis of the single-

agent state-space in
. Then in such basis, one has the trans-

formed state, ( , )
T T T

i i i
x   , 

   i

i i i

i

x



  

 
  

,  (23) 

with (18) generally leading to 

    
0

i

i i i i i

i

X F
A

A
   

 
  

  (24) 

Therefore, in ,
i i
   coordinates the drift dynamics is  

 
0

i

ii i

X Fd

Adt

 

 

    
        

.  (25) 

The roles of transformed coordinates ,   are evident from 

(25); the 
i

 s parameterize the subspace spancol
i

 , and 
i

 s 

are the remaining coordinates on i
n

. Namely 0
i

   is the 

single-agent shared invariant subspace, spancol
i

 ; 

0
i

   0, ( )
i i i

X    . This corresponds to the system 

intersection in [31].   

The closed-loop dynamics of (9) in the coordinates 

( , )
i i
   then equals 

 

   1

1 2 1 21

2

0

( ),
N

i

ii

ij ij j
j ii

i

i

X Fd

Adt

B
K e D D D D

B

 

 

 

 



 

    
        

     
         


 (26) 

where  

      11

1 2

2

, ::
i i i i i ii

i

B
B D D D

B


     

 
  

,  (27) 

are given by the transformation (23). Assuming (21), 

1 2
,

i i i
D D R i    , one writes  

 
1 2 1

1 2 21

( )

( ),

N

N

i i i i ij j i i ij

i i ij j j i ij

X B K R e F

B K e D D

    

 




   

 




 (28) 

 
2 2 21

2 2 1

( )

( ).

N

N

i i i i i ij j j i ij

i i ij j ij

A B K e D D

B K R e

   

 




  

 




 (29) 

Lemma 2. Let in (28) and (29) 0, ,
i j

i j     as 

t  , and 0,
i

i    as t  . Then y-consensus is as-

ymptotically achieved.   

Proof: It follows from the set-up of the system that 

, ,
i j

i j   , 0,
i

i    imply 
i i i

x   , hence 
1i i i i i

y C R     

1 j j j j j
R C y     . Transform (23) used to obtain (28) 

preserves asymptotic partial stability, [23], hence conver-
gence of transformed states to the transformed target set is 
therefore equivalent to convergence of original state to the 

original target set.   

Remark 3. (23) reveals how a general measured output dis-
tributed feedback affects and interconnects different subsys-

tems of each agent. Condition (21) brings the distributed 
i

  

dynamics in (28) close to the familiar form of identical agent 
cooperative state synchronization, [3][15]. If (21) were not 

assumed the 
i

  dynamics in (28) would resemble that of het-

erogeneous agents, i.e. coordinate transformation would re-
duce the original problem to a version thereof. The form of 
dynamics in (28) and (29), motivates the following.   

Theorem 1. Let the graph contain a spanning tree. Let the 

columns of 
i

  span the stable invariant subspace of 
i

A . Let 

i
K s cooperatively stabilize the system 

 
1 2 1

( )
N

i i i i ij j ij
X B K R e   


   .  (30) 

Let all iA  be asymptotically stable.  Then for 
2i i i

D D   

sufficiently small and convergence rate for 
i

A  dynamics suf-

ficiently fast, y-consensus is asymptotically achieved.  
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Proof: The transformed system (28) and (29) appears as an 
interconnected system with nominal systems taken as  

 
1 2 1

( )
N

i i i i ij j ij
X B K R e   


   ,  (31) 

 
2 2 21

( )
N

i i i i i ij j j i ij
A B K e D D   


   . (32) 

Under cooperative stability of (30), via a spanning tree, there 
exists a Lyapunov function  

1
( ) 0

2

T
V P         

whose time-derivative satisfies  

( ) 0
T

V Q         , 

where 
* Nl

      is the synchronization error for an 

irreducible graph with 

1 1

* 1
( )

N N

j jj j j
p p 

 

   , 

where 0
i

p   are elements of the left zero eigenvector of the 

graph Laplacian [37], or 
0     with 

0
  a state of an 

isolated leader, contained in the graph. Under asymptotic sta-

bility of all 
i

A s there exist Lyapunov functions  

1
( ) 0

2

T

i i i i i
V P     

satisfying  

1
( ) ( ) 0

2

T T T T

i i i i i i i i i i i
V A P P A Q         . 

Then for the interconnected nominal system (32) one con-
structs a composite Lyapunov function 

1
( ) ( )

N

i i ii
V d V  


 , 

1
, ..., 0

N
d d  , 

whose time-derivative is  

1 1

1 1

2 2 2

2 2 2 2

( )

1
( ) ( )

2

( ) .

N N

i j

N N

i j

T T T

i i i i i i i i i i i i ij j j i i

T T

i i i i i i i i i i i i i i ij j j

V

d A P P A d PB K e D D

d Q h PB K D d PB K e D

 

    

   

 

 

   

   

 
 

 

 (33) 
Expression (33) leads to an inequality 

   
2 2, 1

2

2 2

1 1

( ) ( ( ) ( ))

1
( ) ... ( ) ...

2

N

i

N T

i ij i i i j i ji j

i i i i i i i

T

N N

iV d Q h PB K D

d e PB K D DS S D

    

      


 

  








 

where 
2 2

( ) ( ),
ii i i i i i i

S Q h PB K D    
2 2

( )
ij ij i i i j

S e PB K D  . S  

is a nonsingular M-matrix for sufficiently small 
2i

D s. Then a 

diagonal matrix 
1

: ( ... ) 0
N

D diag d d   can be found such that 

0
T

DS S D  , [24]. Hence for sufficiently small 
2i

D s the 

origin of (32) is asymptotically stable. The total interconnect-
ed system (28) and (29) can now be written as 

 
A Bd

B Adt

  

 

 

 

    
        

,  (34) 

where the matrices 
1 2

( )( )
N i i

A I X diag B K L R     , 

2 2
( ) ( )( ) ( )

i i i q i
A diag A diag B K L I diag D     are cooperatively 

and asymptotically stable by assumptions of the Theorem and 
(33) respectively. In (34) the off-diagonal blocks are  

1 2
( ) ( )( ) ( )

i i i q i
B diag F diag B K L I diag D    , 

2 2
( )( )

i i
B diag B K L R    . 

Construct a new composite Lyapunov function for (34) as 

1 2
( , ) ( ) ( )V c V c V        . 

with some 
1 2

0, 0c c  . Its time-derivative with (28), (29) is 

1 2

1 1 1 2

( , ) ( ) ( )

( ) ( )( ) ( )( )
T T

i i i q i

V c V c V

c Q c P diag F diag B K L I diag D

   

    

   

   

 

    
 

   
1 1

1 1

2

2 2 2

1
... ( ) ...

2

( )

TT

N N

N N

i j

T

i i i i i ij j i

c DS S D

c d PB K R e

   

  
 

 

  
 

The 
i

  spanning the stable invariant subspace gives 

0,
i

F i  . Such choice is always possible as X  has no strict-

ly stable poles. Then one has 

   
2

2

1 1 1 2

2 1 1 2 2 2

( )

2

1 1 1 2

22

2

( , ) ( ) ( )( ) ( )

1
... ( ) ... ( ) ( )

2

( ) ( ( )( ) ( ))

( )
2

(

T

T

i i q i

T T

N N i i i i

L R

i i q i

T

V c Q c P diag B K L I diag D

c DS S D c diag d PB K L R

c Q c P diag B K L I diag D

c
DS S D c di



    



   

     

     

    

  

 

   

   

   

  

   

2 2

1 2 1 2

( )( )

1
( , ) ' ' ( , )

2

)
i i i i

TT

ag d PB K L R

diag c c S S diag c c



 

 

   



    

 

where 

1 2

2 2

( ) ( ( )( ) ( ))
'

( ( ) ) ( )½ T

i i q i

i i i i

Q P diag B K L I diag D
S

diag d PB K L R DS S D

  

 

 


  

 
  

 

is again a nonsingular M-matrix for sufficiently small 

2i
D , i , and sufficiently large diagonal elements, related to 

convergence rates of nominal systems (31) and (32). This im-

plies existence of 
1 2
, 0c c   guaranteeing 0, 0   , 

[24], hence y-consensus, by Lemma 3.   

Theorem 1 does not require a priori special single-agents, 
e.g. observers or dynamic compensators, [17][33]; rather it 
relies on general measured output static distributed feedback 
and applies to general single-agents. Moreover, it expresses 

the main design requirements on the 
i

K s. Conditions of The-

orem 1 on single-agents’ structure can be guaranteed by sin-
gle-agent feedback via eigenvalue-eigenvector placement.  

5



Remark 4. The goal in (31) and (32) is cooperative consensus 

in 
i

 , while keeping 
i

  asymptotically stable. In order not to 

reduce (32) to the original problem, the stability of (32) is 
guaranteed on single-agent basis, [24]. Hence the distributed 
control signal takes the cooperatively stabilizing role in (31) 
for  -synchronization, while it is taken as detrimental in (32), 

[24]. The synchronization of identical drift dynamics agents 

(31) is familiar from [15][19]. Different 
1i

B s are treated by 

multi-player games [15], while 
1 1

,
i

B B i   is treated by con-

ventional results [3][16][19]. Hence, designs for identical 
agent state synchronization, satisfying requirements of Theo-
rem 1, [15][34][37], yield heterogeneous agent output syn-

chronization controls. Observability of 
2

( , )X R  is then neces-

sary [3]. This is guaranteed by detectability of ( , )
i i

A D . No 

additional assumptions on graphs, e.g. irreducibility or no-
loop condition [27][31] are needed as those are generally not 
required for identical agent state synchronization.  Detectabil-

ity of ( , )
i i

A D  reveals relations between single-agent invari-

ant subspaces and partitions of single-agent state-spaces into 

slices of indistinguishable points with respect to 
i

D , [32].   

Remark 5. For detectable ( , )
i i

A D  
0

ker

i
n

k

i i i

k

W D A



 , must 

not contain any nontrivial subspace of spancol
i

 , thus 

 spancol 0
i i

W   . One generally has spancol
i i

W  .  A 

special case thereof is afforded by the coincidence 

spancol
i i

W  ; 
2

0,
j j j

D D j    . The coupling between 

(28) and (29) is then unidirectional. A  -cooperative regula-

tor or tracker, (28), synchronizes separately from the  -
dynamics and the  -system ultimately converges to zero, 
similarly to [17][25][29].  Theorem 1, in contrast, allows for 

0
i i

D   small enough, [24]. This goes beyond [17][25], 

which construct hierarchical augmented agents.  

Remark 6. 
i

K s appear in nominal systems both as controls in 

(31) and as  -interconnections in (32), but also as intercon-

nections B , B  in (34). Synchronization of (31) requires 

the controls to exceed a threshold, implying a lower bound on 

i
K s’ magnitude, [18]. But stability of interconnected systems 

implies an upper bound on the magnitude of interactions. The 
distributed controls need to be strong enough to synchronize 
(31), but also weak enough not to destroy the nominal stabil-

ity of invariant subspaces for uncontrolled single-agents
i

A , 

(32). This is a consequence of treating  -interconnections as 
detrimental and is reminiscent of small gain theorems. The 
result of this paper ultimately relies on single-agents’ property 
that their shared dynamics can be synchronized using relative-
ly weak controls. 

VI. CONCLUSIONS 

This paper considers consensus of regulated outputs by 
communicating measured outputs. Emphasis is placed on the 
structure of single-agents. Coordinate transformations clearly 
reveal how the distributed feedback affects heterogeneous 
agents. The resulting design implies a lower and an upper 
bound on feedback gains, but requires no restrictions on the 
graph topology.  
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