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Abstract—The wave-based control system has a potential to
become effective method of vibration-damping controller design.
The only design requirement of this method is to absorb the
returning wave by the actuator. Stability or performance of the
overall system is not included in the design specifications and the
approach does not provide it in general. The advantage of this
approach is that it does not need sensors along the entire length
of system and it can simultaneously control position and damps
vibration. On the other hand, this method is relatively young
and there are many areas of research that have to be explored.
This paper brings the stability analysis of wave based control
for homogeneous chains. The paper also presents some remarks
that extend obtained result for distributed systems.

Index Terms—wave-based control, active damping of vibra-
tions, cantilevered beam, control of distributed systems, identifi-
cation of parameters of distributed systems

I. INTRODUCTION

Although the vibration damping problem occurs in many
applications, especially the development of robotics needs
to master the control of flexible structures where vibrations
are undesirable. There are many active and passive methods
of suppressing the vibration [1],[2],[3],[4], but simple and
effective approach how to design control system to suppress
vibrations is still an open task. Approach designed by W.J.
O'Connor and D. Lang in [5] has potential to become such
an approach.

O'Connor and Lang designed new technique to control the
lumped flexible structures. Their approach includes actuator
that is able to send mechanical waves into system and
simultaneously absorb waves coming back from the system.
The approach is called Wave-Based Control (WBC). In order
to decompose mechanical vibrations of the system to outgoing
and returning waves, O'Connor and Lang presented the wave
transfer function (WTF). Loop of wave transfer functions
became a new way of modelling the flexible structures. [6].

This paper brings a brief description of the standard
WBC approach in the section III. Section IV demonstrates
convenient way to decompose the real structures. Smaller
decomposed parts are used for modelling of the complex
flexible structure. The way how to estimate required
parameters of the controlled system is described in the

section V. Alternative form of the wave based control is
derived in section VI and it is used for analysis of the stability
of the control loop. Several other approximations of real
WTF are introduced and the approximations are compared.
Section VII describes the way to control distributed systems.
Necessary formulas are derived and analysed. Section VIII
deals with application of the WBC into the real flexible
distributed structure. Derived methods are used and results
are presented.

II. WAVE BASED CONTROL

Wave-based control uses the assumption that position of
every point of the system can be described by superposition
of two waves going in opposite directions and the system can
be described by the loop of WTFs. Through the knowledge
of this WTFs, the motion of the system can be decomposed
to these two components, outgoing wave and returning wave,
by using only one sensor. The controller is also designed
to make the decomposition and force the actuator to do the
move, that simultaneously absorb the returning wave and
launch the outgoing wave, that moves the system to the
desired position.

Main advantages of this method include the need of only
one sensor, high speed of obtaining the desired values and
it is proximity to time-optimal control, high robustness
against external disturbances and parameter ignorance [7].
Nevertheless stability and performance of the control are not
design requirements. Only design requirement is to absorb
returning wave by actuator. The stability is not guaranteed in
general and stability analysis has to be performed after the
controller has been designed.

There are another scientific papers on this topic [8],[9],[10]
however, most of them does not give the results in the
real-world application but only in terms of the computer
simulations.
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Fig. 1: Modelled system

III. STANDARD APPROACH TO WBC

Standard approach to WBC designed by O'Connor in [11]
will be derived in this section. First of all, the WTF is derived
on homogeneous infinite-infinite (fig. 2) mass-spring-damper
string. The WBC can be used also for inhomogenous systems.
However the WTF has to be derived using different approach.
Let's consider the homogeneous system in this section.
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Fig. 2: Infinite-infinite mass-spring-damper system

Let's suppose that:

G =
Xi+1

Xi
, (1)

where G is WTF between two masses whose position in s
domain are Xi+1, respective Xi. s is the complex variable.
Differential equation describing move of every tangible point
is then:

ẍi =
k

m
(xi+1 − 2xi + xi−1) +

b

m
(ẋi+1 − 2ẋi + ẋi−1), (2)

where xi, ẋi, ẍi is position, velocity and acceleration of i-th
mass, k is the stiffness coefficient of springs, b is the damping
coefficient of dampers and m is the mass of tangible points.

After Laplace's transformation:

s2 Xi =
k

m
(G− 2 +G−1)Xi +

b

m
s (G− 2 +G−1))Xi. (3)

By solving eq. (3) we can see that G has two possible
solutions:

Ga = 1 +
1

2

m

k + bs
s2 − 1

2

√
m

k + bs
s

√
4 +

2m

k + bs
s2, (4)

and

Gb = 1 +
1

2

m

k + bs
s2 +

1

2

√
m

k + bs
s

√
4 +

2m

k + bs
s2. (5)

Two possible solutions of (3) give us two possible directions
of the spreading of waves. Nevertheless only solution (4) is
causal and corresponds with outgoing wave. By application of
boundary conditions we can create the model of the system
as WTFs loops.
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Fig. 3: Wave model of the system

Let's suppose that the displacement of every mass is given
by the superposition of two waves Ai and Bi, where Ai is the
outgoing wave and Bi is the returning wave.

Xi = Ai +Bi. (6)

Considering that, it is a fact that

Ai+1 = Ga Ai, (7)

Bi+1 = Gb Bi, (8)

and

Ga = G−1b . (9)

Then left boundary condition is

X0 = A0 +B0,

thus

A0 = X0 −B0 (10)

and right boundary condition for the free end

Xn = Xn+1

An +Bn = An+1 +Bn+1

An +Bn = Ga An +G−1a Bn

Bn = Ga An. (11)

Left boundary condition can be considered as a negative
feedback. Then we are getting the loop of transfer functions
that models the examined system. Model of n-mass-spring-
damper system is shown in the fig. 3.

Transfer function from x0 to xj derived from the wave
model is the same one as the transfer function obtained by
the standard way.

Fj,0 =
Xj

X0
=
Gj (1 +G2(n−j)+1)

1 +G2n+1
(12)

is the transfer function derived from the wave model and

F̂j,0 = C (sI −A)−1 B (13)

is the transfer function derived by standard way. A is dynamic
matrix, B is the input matrix and C is output matrix of the
system. Then

Fj,0 − F̂j,0 = 0 (14)
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Moreover this model suggests how to design the wave de-
composer. WTF is transcendent and it is necessary to find its
approximation Ĝ. Decomposer is in the fig. 4.
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Fig. 4: Wave decomposer

Considering the fact that the static gain of each WTF in loop
is equal to one, returning wave must have the same amplitude
as the launching wave. This feature can be used to achieve the
desired state. If the launching wave has half the amplitude of
desired state we can add the returning wave to input values and
get the other half of desired state together with the vibration
damping.
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Fig. 5: Wave based control

IV. MODELLING AND CONTROL OF REAL SYSTEMS

Wave based control uses only one sensor located in the
first mass point in the lumped system case. If the system
is distributed, the sensor has to be colocated within the
actuator-system interface. But that is not always possible.

It can be solved by using the so-called virtual spring.
Force of a real spring is given as k0(x1 − x0). Actuator
can be used to realise this force by using the position of
actuator as x1 and desired position as x0. We can call the
stiffness of the virtual spring k0 and it can be set as necessary.

Nevertheless, WBC requires some amount of knowledge
about the controlled system. A model of real systems that
is not fully rigid, it is not always easy to obtain, because
the system can contain some unknown parameters and his
structure can be very complex. One approach to this problem
is to decompose the system to smaller subsystems that can be
modelled more easily. Naturally some systems that consist of
more rigid and less rigid parts, can by simplified to masses
and springs. [12] But generally, distributed systems like
cantilevered beam can be also modelled this way.

The beam, with length L0, mass M , stiffness K and
damping B can be modelled like a string of tangible points
linked by intangible springs and dampers. The system can be

decomposed to n parts that have lengths l0 = L0

n , masses
m = M

n , stiffnesses k = Kn and dampings b = Bn . The parts
can be simplified to tangible points with masses m, linked by
springs with stiffnesses k, natural lengths l0, and dampers with
dampings b. In case that n has infinite values, we will obtain
the exact description of the beam. The approximation of the
beam is shown in fig. 6.
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Fig. 6: Aproximation of beam

Although, there are many, less or more accurate, approaches
to modelling of flexible structures [13] [14]. The one described
above is sufficient and as we shall see later useful for the
WBC purposes.

V. PARAMETER IDENTIFICATION

Setting the wave based controller in every form depends
on knowledge of the exact WTF or the parameters of the
system respectively. Mass, stiffness and damping especially.
Generally we do not know all these parameters. For simplicity
we consider homogeneous systems. It is necessary to identify
them. It depends on the type of system. We distinguish:

A. Parameter identification of lumped system

In case of we have to cope with unknown system that
consists of n masses linked by springs with stiffnesses k
and dampers with dampings b, there is a possibility to find
parameter ωn =

√
k

m+bs from the amplitude frequency
response between x0 and x1. To get an easy example, let's
assume that b = 0.

The frequency ωn can be identified directly from the am-
plitude frequency response. The frequency ωn is equal to the
frequency of the (n

3 + 2
3 ) − th resonance mode of the real

system. ωn corresponds to the resonance mode only if the
n mod 3 = 1. Otherwise the (n

3 + 2
3 ) is not an integer. Thus

the frequency ωn is located between two resonance modes
and the exact location can not be found. Then there is a
possibility to use the fact that the last n-th resonance mode
of the system is located on the frequency that is equal or less
than 2ωn. For higher n is the frequency of the last resonance
mode closer to 2ωn. With sufficient precision of the control
purposes we can use ωn = ω(n)

2 for the n > 4, where ω(n) is
the frequency of n-th resonance mode. The fig. 7 shows the
amplitude frequency response of the 10-mass-spring system
with ωn = 2rad/s
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Fig. 7: Frequence responose of 10-mass-springs system with
ωn = 2

B. Parameter identification of distributed system

The last resonance mode can not be determined if the
system is distributed, because the distributed system can
contain infinite amount of resonance modes. Moreover if the
system is damped, it can be very complicated to differentiate
individual modes, but the first few modes are significant and
distinguishable. Let's suppose that the system is approximated
by n tangible points linked by springs and dampers. For
higher n the first few modes of approximation will be closer
to first few modes of real system. [15]

To determine the parameters of real distributed system
Sysreal we need to measure the amplitude frequency response
of the system between the required position and measured
position of actuator. Also we have to choose the structure
of the system Sysapprox, that approximates the real system
Sysreal. For example the approximation of real system by the
system with n masses without dampings can be described as

ẋ = Ax+Bmu; y = Cx, (15)

where

A =

[
An×n

11 An×n
12

An×n
21 An×n

22

]
; B2n×1

m =




b1
b2
...
b2n


 ;

C1×2n =
[
1 0 · · · 0

]
;

An×n
21 = ω2

n




−(1 + κ) 1 0 · · · 0 0
1 −2 1 · · · 0 0

0 1 −2
. . . 0 0

...
...

. . . . . . 1 0
0 0 0 1 −2 1
0 0 0 0 1 −1




;

bi = 0 ∀i 6= n+ 1; bn+1 = ω2
nκ;

An×n
11 and An×n

22 are zero matrices, An×n
21 is identity matrix,

ωn =
√

k
m and κ = k0

k are variable parameters of the
Sysapprox.

By setting the ωn and κ we are changing the frequency
response of the Sysapprox and it can reach the colocation of
the first few modes of the Sysapprox and Sysreal. Usually

we choose a low n to avoid the complexity of the system
and calculations. In case of low n colocation only the first
mode is sufficient. If we can measure mass of the real system
M , then we can calculate K. Parameter B determines the
steepness of the amplitude frequency response. Assuming the
B = 0 in control law has no significant effect on control. The
comparison of frequency responses of the real system and the
Sysapprox is shown in the fig. 8.
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Fig. 8: Frequence response comparation of real and compara-
tive system

VI. ANALYSIS OF STABILITY AND ALTERNATIVE
FEEDBACK FORM OF WBC
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Fig. 9: Alternative form of WBC

System in the fig. 5 can be redrawn like in the fig. 9. In
this form it is easy to obtain transfer function of the opened
loop L and closed loop CL.

L = − Ĝ

1− Ĝ2
(F1,0 − Ĝ), (16)

and

CL = −F1,0(1− Ĝ2)

1− F1,0Ĝ
. (17)
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The feedback in the fig. 9 might be considered as a feedback
controller Cf that is given as

Cf = − Ĝ

1− Ĝ2
(1− F−11,0 Ĝ), (18)

If the Ĝ is given as a second order transfer function
the relative order of the Cf equals two. However Cf is
limited by the system dynamics. Moreover absolute order
of Cf is too high. Controller in this form is not applicable
even if we know all parameters of Ĝ because of the high order.

However the structure in the fig. 9 is favourable for stability
analysis of the control loop. The transfer function of opened
loop allows us to make Nyquist stability analysis. It gives
us first tool for tuning parameters of the Ĝ. We can tune
one or more parameters to obtain desired shape of frequency
response of the opened loop.

For example let the controlled system have parameters M =
10, K = 0.3, B = 0.01. By comparison of the frequency
responses, we can choose the best approximation of WTF of
the system (4). Ĝ1 is derived from continued fractions, Ĝ2 is
the approximation of WTF designed by O’Connor in [11] and
Ĝ3 is derived from Pade approximation of (4). Then

Ĝ1 =
bs+ k

(b+m)s2 + (2b+ k)s+ 2k
, (19)

Ĝ2 =
k
m

s2 +
√

k
ms+ k

m

, (20)

Ĝ3 =
4k

(2m− 2b
√

m
k )s2 + 4k

√
m
k s+ 4k

. (21)

Comparison of systems controlled within these approximations
of (4) is shown in the fig. 10. By this way, we can tune
unknown parameters of arbitrary structure of Ĝ.

To analyse pole and zero placement the transfer function of
closed system can be used. Nevertheless the pole placement
method designed for Ĝ is not suitable. Ĝ reaches orders too
high.

VII. CONTROL OF DISTRIBUTED SYSTEMS

To obtain the best approximation of the controlled system,
we need to decompose it to the infinite amount of tangible
points. Then it is necessary to cope with the limit terms. The
transfer function F̄1,0 of the distributed system is

F̄1,0 = lim
n→∞

F1,0 = 1. (22)

Transfer function ¯̂
G, if we substitute Ĝ by any approximation

above or the exact WTF is
¯̂
G = lim

n→∞
Ĝ = 1. (23)

Fig. 10: Comparison of details of the Nyquist plots for n-mass-
spring-damper systems cotrolled by controller with different
approximations of WTF

Nevertheless C̄f is different for various Ĝ. Using Cf feed-
back for control purposes, it is possible to consider exact WTF
without the loss of generality, because we do not implement
Ĝ individually but we implement complex Cf . Then Cf has
form

Cf = − G2n

1 +G2n+1
(24)

and for desired limit form is given as

C̄f = lim
n→∞

Cf = − e
−2s

√
M

Bs+K

1 + e
−2s

√
M

Bs+K

. (25)

After factoring e−2s
√

M
K out of the (25) and making the

approximation of the residue we can consider this controller
to produce the transport delay in series with lowpass filter.
C̄f the whole can be approximated as well.

Let's consider system with parameters M = 10, K = 0.3,
B = 0.01 and apply the ˆ̄Cf approximation of C̄f to this
system.

ˆ̄Cf =
−0.8152s− 0.2848

18.27s3 + 9.522s2 + 1.659s+ 0.5697
(26)

It is a Pade approximation of (25). We can analyse the stability
of control loop after using the (26) controller on system
approximated by n-tangible points. Results are in the fig. 11.

It is obvious that ˆ̄Cf in the (26) form is valid for
distributed systems and the stability of loop rises with more
exact approximation of the controlled system. On the other
hand, the lower is the n value in the loop, the more unstable
it might be. Moreover other and more precise approximation
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Fig. 11: Nyquist plots of n-mass-spring-damper approximation
of real system controlled by Cf

of C̄f that can be also stable for approximations of controlled
systems with lower n values might be found.

VIII. RESULTS OF APPLICATION OF WBC TO
CANTILEVERED BEAM

The method of identification of the parameters of distributed
systems and wave-based feedback control procedure presented
above in sections V and VII were applied to a small
cantilevered beam. The frequency responses were measured
first. The model with 5 masses linked by springs and dampers
designed to be the best approximation of the model of
cantilevered beam. Comparison of the frequency responses of
the real model and comparising model is in the fig. 8.

Estimated parameters M , K and B were used to set
controller ˆ̄Cf . The response of the loop with a 4π rad/s
sloped ramp and final value 2π as the input controlled by
ˆ̄Cf is in the fig. 12.
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Fig. 12: Declination response of cantilevered beam to ramp
with slope 4π rad/s

IX. CONCLUSION

The WBC is an established stable and robust method for
vibration control of chains consisting of lumped subsystems.

However, if properly modified, the method is also applicable
to distributed systems, i.e. systems descripted by partial
differential equations (PDE). To design WBC of such
systems, the model in the form of a chain consisting of
lumped subsystems is neccesary. Such model is obtained by
method of discretization of PDE. For aproximative model the
WBC is then designed and resulted control low is converted
with the limit process for the case that n goes to infinity.
This paper aims on the application of WBC to model of
distributed system. Parameters of the system are generally
unknown. Necessary methods were developed and then
applied. Structural parameters identification method referred
in chapter V was used for the estimation of small cantilevered
beam parameters. Controller ˆ̄Cf was used for control of the
beam. Results are presented in ch. VIII.
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