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Abstract—The identification procedure specially designed for
an n-link inverted pendulum on a cart is presented. By the
Lagrangian mechanics, the mathematical model of the n-link
inverted pendulum is established initially. To fully model the
system, the standard dynamic parameters which are some al-
gebraic functions of geometric, inertial, and friction parameters
are introduced. Because the dynamic model of the n-link inverted
pendulum is linear with respect to these parameters, the ordinary
and weighted least squares techniques can be applied to esti-
mation their values and the corresponding standard deviations.
Also, the exact algorithms for numerical differentiation used in
the formation of the regression model are described in detail.
Finally, the results from identification of the real triple inverted
pendulum are presented.

I. INTRODUCTION

Since around 1960, the inverted pendulum on a cart is a very

popular physical model living in control laboratories to verify

some control theory or method in automatic control domain.

The main reason for this is that it constitutes an underactuated

system with a nonlinear, unstable and nonminimum-phase

behavior and thus reveals many interesting system-theoretic

properties. The stabilization in the upper position task and

swing-up problem, where the pendulum is moved from the

lower to the upper pendulum configuration, has attracted much

attention [1]–[4]. Both these problems are relatively easy for a

simple pendulum, but become significantly more complex for a

double, triple, or even n-link inverted pendulum (nLIP), n > 3.

Most advanced control schemes formulated in the recent litera-

ture for the nLIP require dynamic models. The model precision

must rapidly grow with the multiplicity of the pendulum. For a

triple pendulum model based stabilization control, it is needed

to know at least the eight model parameters with an accuracy

of about three significant decimal digits, even in the case of a

mere simulation experiment.

Model formulation in terms of equations, in the case of

the nLIP with viscous friction, is a well-studied subject.

For example, Lagrange formalism can be used [5]. Besides

model equations, dynamic model parameters must also be

determined. These parameters are constant and must be iden-

tified to fully model the pendulum. There are three main

methods, applicable to the nLIP, for estimating dynamic model

parameters:

(i) Physical experiments with the isolated links (determi-

nation of the link mass, center-of-mass, and inertia tensor).

This method is very tedious and should be realized before

assembling the pendulum. Note, that this method was used in

a recent paper [1] to identify the parameters of a triple inverted

pendulum.

(ii) Using CAD/CAM to calculate the geometric and inertia

parameters from 3D models. This method is prone to errors

due to the fact that the geometry of the links is complicated to

define precisely, and that certain parts such as bearing, bolts

nuts, and washers are generally neglected.

(iii) Identification based on the input/output behavior of

the system on some motion trajectory and on estimating the

parameter values by minimizing the difference between a

function of the real system variables and its mathematical

model. This method was found to be the best in terms of

ease of experimentation and precision of the obtained values

in the field of robotics [5].

In recent decades, the identification based on the in-

put/output behavior was widely used to enhance the perfor-

mance of robots. The dynamic model of a robot relates the full

motion of its joints - positions, velocities and accelerations -

with the forces or torques being applied to those joints. For

the purposes of control of an inverted pendulum on a card

it is more convenient to consider the cart accelerations as

the input instead the force acting on the cart. Moreover, the

inverted pendulums are underactuated systems with passive

joints. For these reasons, it is necessary to modify the existing

identification procedure considerably. This paper focuses on

this task.

Now, we shortly describe the principle of the identification

procedure developed in this paper. Although being composed

by large expressions, the nLIP dynamic model is linear with

respect to some dynamic parameters, which are some algebraic

functions of geometric, inertial, and friction parameters (from

now on called physical parameters) of pendulum links. The

dynamic parameters can be classified into three groups: fully

identifiable, identifiable in linear combination, and completely

unidentifiable. In order to obtain a unique solution, we have

to introduce some identifiable parameters, which are called

bellow standard dynamic parameters. Note, that the concept of

identifiable parameters was originally introduced in connection

with the identification of dynamic models of robots [5]. It is

noteworthy that we cannot determine all physical parameters

of the nLIP, from any set of identifiable parameters. On

the other hand, standard dynamic parameters uniquely define

the dynamic behavior of the system. The set of standard

dynamic parameters can be estimated by the least square

solution of an overdetermined linear system of equations called

a regression model. The regression model is obtained by a

time equidistant sampling of dynamic model along a proper

trajectory. Therefore, the data matrices of the regression model
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are created from the measured angles of the revolute joints of

the nLIP, its first and second derivatives, and the acceleration

of the cart.

This paper is concerned with the design and experimental

validation of the identification procedure specially designed for

the nLIP. The developed procedure was used to obtain a model

of a real triple inverted pendulum. The resulting model was

successfully used to solve both the problem of swing-up and

stabilization in the upper position. A video that demonstrates

this fact can be found at https://www.youtube.com/watch?v=

SWupnDzynNU, for more details see [6].

II. DYNAMICAL EQUATIONS OF THE MODEL IN THE

PARAMETERS IDENTIFIABLE IN LINEAR COMBINATION

Let us derive the dynamical equations of motion of the n-

link inverted pendulum on a cart using the Lagrange method.

The coordinates in the Euler-Lagrange equations are: y0 posi-

tion of a cart, δi, i = 1, . . . , n, angle of i-th link, with respect

to the vertical axis. Each link of pendulum is characterized

by its five physical parameters: the link mass mi, the link

length li, the relative position ai of center of gravity, i.e.

|Ai−1Ti| = aili, where Ti is the center of gravity of the

i-th link, Ai denotes the i-th revolute joint (see Fig. 1), Ji
denotes the moment of inertia about the axis through the

center of gravity, and bi denotes the coefficient of fluid friction

in the i-th joint, thus the total number of these parameters

is 5n. Unfortunately, these parameters can not be directly

identifiable. In this section we show, that for arbitrary n, we

can introduce the vector of the standard dynamic parameters

θ, which are directly identifiable.
Consider the notations introduced in Fig. 1, and denote the

y-coordinate of the point Ti as Yi, and its z-coordinate as Zi,
ı = 1, 2, . . . , n. Now, it follows

Yi =

i
∑

j=1

lj sin δj + aili sin δi + y0

Zi =

i
∑

j=1

lj cos δj + aili cos δi.
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Figure 1. Model of n−link inverted pendulum on a cart.

For potential energy V and kinetic energy T of the nLIP
we obtain

V =

n
∑

k=1

mkgZk

T =

n
∑

k=1

1

2

{

mk

[

(

dYk

dt

)2

+

(

dZk

dt

)2
]}

+
1

2
m0

(

dy0

dt

)2

.

(1)

Equations (1) lead for arbitrary n to

Vn =

n
∑

i=1

mig

(

i−1
∑

j=1

lj cos δj + aili cos δi

)

(2)

Tn =

n
∑

k=1

[

1

2

k−1
∑

i=1

mkl
2
i δ̇

2
i +

k−1
∑

j=1,j>i

k−1
∑

i=1

mklilj δ̇1δ̇j cos(δi − δj)+

k−1
∑

j=1

mkaklj lk δ̇j δ̇k cos(δj − δk) +

k−1
∑

j=1

mklj δ̇j ẏ0 cos δj +
1

2
mkẏ

2
0+

+
1

2
mka

2
kl

2
k δ̇

2
k +mkaklk δ̇kẏ0 cos δk +

1

2
Jk δ̇k

]

+
1

2
m0ẏ

2
0 . (3)

Proposition 1: For arbitrary n, the potential energy of the

n−link inverted pendulum on a cart can be expressed as

Vn =
n
∑

i=1

νig cos δi, (4)

where νi = miaili + li





n
∑

j=i+1

mj



 , i = 1, . . . , n. (5)

Proposition 2: For arbitrary n, the kinetic energy of the

n−link inverted pendulum on a cart can be expressed as

Tn =
1

2

n
∑

i=1

κiδ̇
2
i +

n
∑

j=2,j>i

n−1
∑

i=1

µij δ̇iδ̇j cos (δi − δj)+

+
n
∑

i=1

νiδ̇iẏ0 cos δi +
1

2
ẏ20

n
∑

i=0

mi, (6)

where κi = Ji +mia
2
i l

2
i + l2i

n
∑

k=i+1

mk, i = 1, . . . , n (7)

µij = li(mjaj lj + lj

n
∑

k=j+1

mk), 2 ≤ j ≤ n, 1 ≤ i ≤ n− 1, i < j.

Proof. The Propositions 1 and 2 can be simply proven by the

mathematical induction. �

Moreover, the Rayleigh’s dissipation function is given by

D =
1

2
b1δ̇

2
1 +

n
∑

k=2

1

2
bk

(

δ̇k − δ̇k−1

)2

+
1

2
b0ẏ

2
0 , (8)

where bi, for i = 0, . . . , n denotes the friction coefficient in

the i-th joint.
If we define qi = δi, i = 1, . . . , n, qn+1 = y0, q̇0 = 0, and

f denotes the external force on the cart, then for L = T − V
it follows

0 =
d

dt

∂L

∂q̇i
−

∂L

∂qi
+

∂D

∂q̇i
= κiq̈i +

n
∑

j=1,j 6=i

µij q̈j cos(qi − qj)+

+

n
∑

j=1,j 6=i

µij q̇
2
j sin(qi − qj) + νi cos qiq̈n+1 − νig sin q1+

+ bi(q̇i − q̇i−1)− bi+1(q̇i+1 − q̇i), (9)

f =
d

dt

∂L

∂q̇n+1

−

∂L

∂qn+1

+
∂D

∂q̇n+1

=

=

n
∑

i=1

νiq̈j cos(qi)−

n
∑

i=1

νiq̇
2
i sin qi+ q̈n+1

(

n
∑

i=0

mi

)

+b0q̈n+1.
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Because, with respect to y0, equation (9) depends only on its

second derivative ÿ0, we can consider that the cart acceleration

represents the input u of the nLIP, i.e. ÿ0 = u. The equation

for y0 can be completely omitted in this case. By reordering

the terms in (9) we obtain the matrix model

M(q)q̈ + C(q, q̇)q̇ +G(q)q = V (q)u, (10)

where q is the n-th vector of the joint angles and the matrices

M(q), C(q, q̇), G(q), V (q) are given by (11).

The dynamic model (10) is linear in the r-vector

θ̃ = [µ12, µ13, . . . , µ1n, µ23, . . . , µ2n, . . . , µn−1n,

κ1, . . . , κn, ν1, . . . , νn, b1, . . . , bn]
T , (12)

containing the parameters introduced in the Propositions 1, 2,

and in the equation (8). Thus, (10) can be expressed in the

form

Φ̃(q, q̇, q̈, u)θ̃ = 0, (13)

where Φ̃(q, q̇, q̈, u) =
[

Φ̃1 Φ̃2 Φ̃3 Φ̃4

]

is n×r matrix, depend-
ing on the joint angles q, velocities q̇, accelerations q̈ and the
acceleration u of the cart and

Φ̃1 =

















f1,2 f1,3 . . . f1,n 0 . . . . . . 0 . . . 0
f2,1 0 . . . 0 f2,3 f2,4 . . . f2,n . . . 0

0 f3,1 f3,2 0 . . . 0 . . .
...

...
. . .

. . . . . . fn−1,n

0 fn,1 0 fn,2 . . . fn,n−1

















,

Φ̃2 = diag (g1, . . . , gn) , Φ̃3 = diag (h1, . . . , hn) ,

Φ̃4 =

















k1 −k1,2 0 . . . 0
0 k1,2 −k2,3
... 0 k2,3

. . .

...
. . .

. . . −kn−1n

0 0 kn−1n

















,

fi,j , f(qi, qj) = cos(qi − qj)q̈j + sin(qi − qj)q̇
2
j , for i, j =

1, . . . , n, i 6= j, gi = q̈i, hi = u cos qi − g sin qi, for i =
1, . . . , n, k1 = q̇1 and ki,j = q̇j − q̇i, for i = 1, . . . , n − 1,

j = i+ 1.

Now, we divide each equation of the system (13) by µn−1n.

So, we obtain the new system of equations in the form

Φ(q, q̇, q̈, u)θ = Ψ(q, q̇, q̈, u), (14)

The equation (14) represents the regression model, where

Φ(q, q̇, q̈, u) is n × (r − 1) matrix, θ is (r − 1)- vector of

parameters, and Φ̃(q, q̇, q̈, u) is n-vector, and all these symbols

are given by (15), the dimension (r−1) of the vector θ is equal

to 3n + n(n−1)
2 − 1. Tab. II presents the explicit form of the

standard dynamic parameters.

III. ESTIMATION OF THE PENDULUM PARAMETERS

Pendulum identification deals with the problem of estimat-

ing the model parameters θ from the data measured during

a pendulum excitation experiment. The data are sequences

of joint angles and cart positions from which a sequence of

joint velocities and accelerations are calculated by a numerical

differentiation.

A. Numerical differentiation

The classical approach of computing derivative numerically

relies on central differences derived from polynomial inter-

polations. Since such interpolation lacks for high-frequencies

suppression, they work well only for noiseless functions

whose values can be computed precisely. In the case of noisy

function/data central differences give inadequate results. To

resolve this problem Lanczos differentiators (Savitzky-Golay

filters) use smoothing least-squares polynomial approximation

to remove noise from the data. Such methods are much more

robust to noise, however due to least-squares nature Lanczos

differentiators cannot guarantee complete noise suppression at

high frequencies. For these reasons the method of noise-robust

numerical differentiation [7] based on Padé like approximation

in the frequency domain is applied here. The method requires

fulfillment of the following requirements: exactness on poly-

nomials, preciseness on low frequencies and noise suppression

at high frequencies. The first derivative noise - robust filter can

be written in general form as

f ′(x0) ≈
1

h

M
∑

k=1

ck(fk − f−k), (16)

where M = (N−1)/2, N is an odd integer denoting the filter

length, fk, k = −M, . . . ,M are function values sampled at

N equidistant points around x0 with some step h, and ck,

k = 1, . . . ,M , denote the filter coefficients. The frequency

response of the filter (16) for h = 1 can be expressed in the

form

H(ω) = 2j
M
∑

k=1

ck sin(kω).

The filter coefficients ck, k = 1, . . . ,M , are determined in

such way that H(ω) will be as close as possible to the

frequency response of an ideal differentiator Hd(ω) = jω in

low frequency region and smoothly tend to zero towards the

highest frequency ω = π. These requirements can be expressed

well by the following linear equations

∂iH(ω)

∂ωi

∣

∣

∣

∣

ω=0

=
∂iHd(ω)

∂ωi

∣

∣

∣

∣

ω=0

, i = 0, . . . ,m0,

∂lH(ω)

∂ωl

∣

∣

∣

∣

ω=π

= 0, l = 0, . . . ,m, (17)

where the integers m0 and m are selected in such way
that (17) has a unique solution for unknown coefficients
ck, k = 1, . . . ,M . If we select m0 = 2 and m = (N − 3)/2,
then the solution of (17) is given by

ck =
1

22m+1

[(

2m
m− k + 1

)

−

(

2m
m− k − 1

)]

, k = 1, . . . ,M.

(18)

In the pendulum identification, the velocities are computed

by the filter (16), where N = 51 and h = 0.001[s]. The

corresponding frequency response of the applied filter is shown

in Fig. 2. The second derivative noise-robust filter is given by

the formula

f ′′(x0) ≈
1

2N−3h2

(

s0f0 +
M
∑

k=1

sk(fk + f−k)

)

, (19)
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M(q) =





























κ1 µ12 cos(q1 − q2) µ13 cos(q1 − q3) . . . . . . µ1n cos(q1 − qn) 0
µ12 cos(q1 − q2) κ2 µ23 cos(q2 − q3) . . . . . . µ2n cos(q2 − qn) 0

µ13 cos(q1 − q3) µ23 cos(q2 − q3) κ3

. . .
. . . µ3n cos(q3 − qn) 0

.

.

.
. . .

. . .
. . .

. . .
.
.
.

.

.

.

.

.

.
. . .

. . .
. . . κn−1 µn−1n cos(qn−1 − qn) 0

µ1n cos(q1 − qn) . . . . . . . . . µn−1n cos(qn−1 − qn) κn 0
0 . . . . . . . . . . . . 0 1





























C(q, q̇)=

































b1 + b2 -b2 + µ12q̇2 sin(q1-q2) µ13q̇3 sin(q1-q3) . . . µ1nq̇n sin(q1-qn) 0

-b2-µ12q̇1 sin(q1-q2) b2 + b3 -b3 + µ23q̇3 sin(q2-q3) . . . µ2nq̇n sin(q2-qn)
.
.
.

-µ13q̇1 sin(q1-q3) -b3-µ13q̇1 sin(q1-q3)
. . .

. . . q̇n
.
.
.

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.
.
.
.

.

.

.
. . .

. . . bn-1 + bn -bn + µn-1nq̇n sin(qn-1-qn)0
-µ1nq̇1 sin(q1-qn) . . . . . . -bn-µn-1nq̇n-1 sin(qn-1-qn) bn 0

0 . . . . . . . . . 0 0

































G(q) = diag

(

−ν1g sin q1

q1
,
−ν2g sin q2

q2
, . . . ,

−νng sin qn

qn
, 0

)

, V =
[

−ν1 cos q1 −ν2 cos q2 . . . −νn cos qn 1
]T

. (11)

Φ(q, q̇, q̈, u)=

























f1,2 f1,3 . . . . . . f1,n 0 . . . . . . . . . 0 . . . 0 0 g1 0 . . . 0 h1 0 . . . 0 k1 -k12 0 . . . 0
f2,1 0 . . . . . . 0 f2,3 f2,4 . . . . . . f2,n . . . 0 0 0 g2 0 h2 0 k12 -k23

0 f3,1 f3,2 0 . . . 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
. . .

. . . . . . fn−2,n−1 fn−2,n

. . .
. . .

.

.

.
. . .

. . .

0 fn−1,1 0 fn−1,2 . . . fn−1,n−2 0
.
.
.

.

.

. -kn-1n

0 fn,1 0 fn,2 . . . 0 fn,n−2 0 gn 0 hn 0 kn-1n

























,

θ =
[

µ12

µn−1n

µ13

µn−1n

. . . µ1n

µn−1n

µ23

µn−1n

. . . µ2n

µn−1n

. . .
µn−2n−1

µn−1n

µn−2n

µn−1n

κ1

µn−1n

. . . κn

µn−1n

ν1
µn−1n

. . . νn
µn−1n

b1
µn−1n

. . . bn
µn−1n

]T

Ψ(q, q̇, q̈, u) =
[

0 0 0 . . . 0 −fn−1,n −fn,n−1

]T
. (15)

Table I
EXPLICIT FORMULAS OF THE STANDARD DYNAMIC PARAMETERS FOR SIMPLE, 2−LINK, 3−LINK, AND 4−LINK PENDULUM.

n Standard dynamic parameters
(

µ12

µn−1n

, . . . , µn−2n

µn−1n

, κ1

µn−1n

, . . . , κn

µn−1n

, ν1

µn−1n

, . . . , νn

µn−1n

, b1
µn−1n

, . . . , bn
µn−1n

)

1 J1+m1a
2

1
l2
1

m1a1l1

b1
m1a1l1

2 (m1a1
2+m2)l12+J1

m2a2l2l1

a2
2l2

2m2+J2

m2a2l2l1

m1a1+m2

m2a2l2

1
l1

b1
m2a2l2l1

b2
m2a2l2l1

3

l1(m2a2+m3)
a3l3m3

l1
l2

(m1a1
2+m2+m3)l12+J1

a3l3m3l2

(m2a2
2+m3)l22+J2

a3l3m3l2

a3
2l3

2m3+J3

a3l3m3l2

l1(m1a1+m2+m3)
a3l3m3l2

a2m2+m3

a3l3m3

1
l2

b1
a3l3m3l2

b2
a3l3m3l2

b3
a3l3m3l2

4

l1l2(a2m2+m3+m4)
m4a4l4l3

l1(a3m3+m4)
m4a4l4

l2(a3m3+m4)
m4a4l4

l1
l3

l2
l3

(m1a1
2+m2+m3+m4)l12+J1

m4a4l4l3

(a2
2m2+m3+m4)l22+J2

m4a4l4l3

(a3
2m3+m4)l32+J3

m4a4l4l3

a4
2l4

2m4+J4

m4a4l4l3

l1(m1a1+m2+m3+m4)
m4a4l4l3

l2(a2m2+m3+m4)
m4a4l4l3

a3m3+m4

m4a4l4

l1
l3

b1
m4a4l4l3

b2
m4a4l4l3

b3
m4a4l4l3

b4
m4a4l4l3

where N ≥ 5 is an odd integer denoting the filter length,

and M = (N − 1)/2. The coefficients sk, k = 0, . . . ,M , are

calculated for any N by simple recursive Algorithm 1.

In the pendulum identification, the accelerations are com-

puted by the filter (19), where N = 101 and h = 0.001[s].

The corresponding frequency response of the applied filter is

shown in Fig. 3.

B. Least square estimation

From a time equidistant sampling of dynamical model (15)

along a trajectory (q, q̇, q̈, u), we obtain the overdetermined
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Algorithm 1: Calculation of sk , k = M, . . . , 0

if k > M then return 0;

if k = M then return 1;

return [(2N − 10)sk+1 − (N + 2k + 3)sk+2]/(N − 2k − 1);
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Figure 2. Frequency response of the first derivative noise-robust filter with
setting N = 51, h = 0.001[s].

system of linear equations

Y = Wθ + ρ, (20)

where Y is pn-vector, p denotes the number of sampling

points, W is pn × (r − 1) regression matrix, θ is (r − 1)-
vector of unknown parameters and ρ is a vector of errors.

The ordinary least squares (OLS) solution of (20) minimizes

the 2-norm ‖ρ‖2 of the vector of errors ρ. The unicity of

the estimation θ̂ depends on the rank of the matrix W . The

numerical rank deficiency of W can come from two origins:

- structural rank deficiency which stands for any samples of

(q, q̇, q̈, u) in W , - data rank deficiency due to a bad choice

of noisy samples of (q, q̇, q̈, u) in W . This is the problem of

the optimal excitation of the pendulum by the cart motion.

The regression matrix W and vector Y are perturbed by

noise (from measurement and numerical differentiation) and

by error modeling. Recall the effect of perturbation on the

OLS solution of (20). Let θ̂ + δθ̂ be the OLS solution of the

perturbed system

Y + δY = (W + δW )θ + ρ (21)

It can be shown that

‖δθ̂‖

‖θ̂‖
≤ Cond(W )

‖δY ‖

‖Y ‖
, with δW = 0,

‖δθ̂‖

‖θ̂ + δθ̂‖
≤ Cond(W )

‖δW‖

‖W‖
, with δY = 0.

From it follows that the condition number Cond(W ) is

a quantity that measures the sensitivity of the solution θ̂ to

errors in W and Y . Moreover, if it is considered that W
is deterministic, and ρ is a zero mean additive independent

Gaussian noise, with standard deviation σρ such that

Cρ = E(ρρT ) = σ2
ρI, (22)

0 500 1000 1500 2000 2500 3000 3500

[rad]

0

0.5

1

1.5

2

2.5

3

3.5

|H
2
(

)|
,

2

104

|H
2
( )|

2

0 10 20 30 40 50 60

[rad]

0

500

1000

1500

2000

2500

3000

3500

|H
2
(

)|
,

2

|H
2
( )|

2

Figure 3. Frequency response of the second derivative noise-robust filter with
setting N = 101, h = 0.001[s].

where E is the expectation operator and I is the pn × pn
identity matrix. Then an unbiased estimation of σρ can be

σ2
ρ =

‖Y −Wθ̂‖2

(pn− (r − 1))
. (23)

Further, the covariance matrix of the estimation error is given

by

Cρ = E[(θ − θ̂)(θ − θ̂)T ] = σ2
ρ(W

TW )−1. (24)

Thus, the standard deviation σ
θ̂i

and its relative value

σ
θ̂ir

[%], i = 1, . . . , r − 1 can be calculated by

σ
θ̂i

=
√

C
θ̂i
(i, i), σ

θ̂ir
= 100

σ
θ̂i

|θ̂i|
.

The relative standard deviation can be used as a criterion

to measure the quality of the identification value for each

parameter. For example, if relative standard deviation of a

parameter is greater than ten times the minimum relative

standard deviation value, this parameter can be considered as

poorly identified.

If the Lagrange equation (9) of joint i, i = 1, . . . , n is

weighted with the inverse of standard deviation of the error

calculated using the equations of joint i, then this weighting

operation normalizes the errors and the weighted least squares

(WLS) estimation of θ is obtained.

IV. EXPERIMENTAL RESULTS ON THE TRIPLE INVERTED

PENDULUM ON A CART

We have tested the presented identification method on the

real triple inverted pendulum. The experimental data was

obtained from the free motion of the triple pendulum with

the fixed cart. The experimentally measured angles of each

pendulum joints was processed by (16) and (19) the position,

velocity, acceleration data were used to create the regression

model (20). The standard dynamic parameters was determined

by the OLS and WLS method. According to Tab. II, the set

of the standard dynamic parameters for the case n = 3,

provides two exceptional parameters: l1
l2

and 1
l2

, which can

be obtained directly by measuring the lengths of the links.

These parameters can be therefore used for checking of two
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identified values. The results are shown in the Tab. II and III.

The free motion of the identified model and the real system

with the fixed cart for the same initial conditions are compared

in the Fig. 4 and Fig. 5.

Table II
STANDARD DYNAMIC PARAMETERS CALCULATED BY OLS AND WLS -

CALCULATION OF THE WHOLE VECTOR θ.

St. dyn. parameter OLS σOLS

θ̂ir
WLS σWLS

θ̂i

θ1 = µ12

µ23
5.4009 0.0807 5.4765 0.0777

θ2 = µ13

µ23
0.7530 0.1172 0.7760 0.0642

θ3 = κ1

µ23
7.5698 0.0886 7.6796 0.0882

θ4 = κ2

µ23
6.3272 0.0671 6.3900 0.0682

θ5 = κ3

µ23
0.6088 0.3377 0.6049 0.0772

θ6 = ν1
µ23

31.2593 0.1221 31.7122 0.1347

θ7 = ν2
µ23

21.8344 0.1109 22.0310 0.1230

θ8 = ν3
µ23

3.1453 0.5291 3.1193 0.1206

θ9 = b1
µ23

0.0540 50.4794 0.0580 56.9667

θ10 = b2
µ23

0.0685 17.8808 0.0603 23.5155

θ11 = b3
µ23

0.0329 17.9165 0.0569 3.1533

Table III
STANDARD DYNAMIC PARAMETERS CALCULATED BY OLS AND WLS -

CALCULATION WITHOUT FRICTION PARAMETERS AND WITH KNOWN

LENGTHS OF LINKS l1 = 0.25m, l2 = 0.32m.

St. dyn. parameter OLS σOLS

θ̂ir
WLS σWLS

θ̂i

θ1 = µ12

µ23
5.4890 0.0619 5.4924 0.0744

θ2 = κ1

µ23
7.6981 0.0702 7.7026 0.0858

θ3 = κ2

µ23
6.4006 0.0562 6.4034 0.0665

θ5 = κ3

µ23
0.6048 0.2596 0.6048 0.0561

θ6 = ν1
µ23

31.7838 0.1089 31.8026 0.1364

θ7 = ν2
µ23

22.0540 0.1058 22.0625 0.1227
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Figure 4. Comparison of the responses of the real system and identified model
for initial conditions δ10 = 2.6605 rad, δ20 = 1.8449 rad, δ30 = 0.6459 rad.

V. CONCLUSION

The presented work deals with the problem of identifica-

tion of the nLIP based on input/output behavior. Firstly, the

mathematical model of the nLIP is formulated in the form of

the nonlinear ordinary equations, where the cart acceleration

is considered as the input and the angles of revolute joints

as outputs of the system. Then, this model is reformulated
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Figure 5. Comparison of the responses of the real system and identified model
for initial conditions δ10 = 2.5218 rad, δ20 = 2.3321 rad, δ30 = 2.0890 rad.

to the form which is linear with respect to some parameters

- called standard dynamic parameters. Further, the explicit

formulas for the standard dynamic parameters and explicit

formula for the total number of them are provided for the

general case. By a time equidistant sampling of the dynamical

model with the standard dynamic parameters along some

suitable trajectory, we obtain the overdetermined system of

linear equations from which these parameters can be estimated

by the ordinary or weighted least squares methods. Thus, the

identification procedure provides the complete identification of

all parameters needed to model the nLIP only on the measured

signals. To the best of authors’ knowledge, this is the first

contribution so far providing the theoretical results for general

case and experimental validation of the method for a real triple

inverted pendulum.
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