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Abstract — The paper deals with the frequency domain design 

of a robust PID controller for unstable SISO systems. The 

approach applied is based on performance specification in terms 

of phase and gain margins; to guarantee the desired performance 

a modification of the Neimark D-partition is used. In the case 

study a PID controller has been designed for the laboratory 

Magnetic Levitation System. 
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I.  INTRODUCTION  

In many real processes a controller has to cope with the 
effect of uncertainties that very often cause poor closed-loop 
performance or even instability. The reason for that are the 
perpetual changes of plant parameters (due to aging, influence 
of environment, working point changes etc.), as well as the 
unmodelled dynamics; the corresponding uncertainty 
description types are denoted parametric and dynamic 
uncertainty, respectively. A controller ensuring closed-loop 
stability under both of these uncertainty types is called robust 
controller. Many robust controller design methods are known 
from the literature [1 - 3] in both the frequency and time 
domains. 

From the point of view of control engineering, magnetic 
levitation (maglev) systems are challenging due to nonlinear 
plant dynamics, a very small degree of natural damping in the 
process, strict positioning specifications often required by the 
application, and unstable dynamics. 

Maglev technology has a wide range of applications, e.g. 
high-speed transportation systems [4], haptic interfaces [5], 
self-bearing blood pumps [6] for the use in artificial hearts, 
seismic attenuators for gravitational wave antennas [7], 
photolithography devices for semiconductor manufacturing [8] 
and microrobots [9]. 

Several methods for the gain and phase margin design 
technique for the first-order and second order plus time delay 
time plant models are proposed by [10 - 13].  

In this paper, a graphical PID design approach for the 
maglev system based on the D-partition method [14] is 

presented. Usually, controllers guaranteeing desired phase 
margin are designed using Bode diagrams [10, 11]. In [17], the 
robust PID design for guaranteed phase margin was developed 
for the maglev system from Humusoft [18]; in this paper this 
approach was extended to design PID guaranteeing the 
prescribed gain and/or phase margins using the D-partition 
method, and applied to the laboratory maglev system by 
INTECO [15]. The design is applied for the nominal model, 
robust stability is verified using the robust stability condition 
for inverse additive uncertainty.  

II. ROBUST PID CONTROLLER DESIGN  
FOR DESIRED PHASE / GAIN MARGIN  

Consider the closed-loop feedback system shown in Fig. 1, 
where GR(s) and GP(s) are transfer functions of the PID 
controller and the real plant, respectively; w, e, u and y are the 
reference, control error, manipulated variable and output of 
the plant, respectively. 

 

Fig. 1. Standard feedback system  
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Fig. 2. Uncertain system modeled using inverse additive uncertainty  

The uncertain plant will be modelled using unstructured 
uncertainty; as the plant is inherently unstable the inverse 
additive uncertainty is considered (Fig. 2).  
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where ( )sG0  is the nominal model; )(swia  is a weighting 

stable transfer function ( ( ) ( ),ωω iaia ljw ≥ ω∀ ) and 

)(sia∆ is a normalized uncertainty ( 1)( ≤∆ sia ). 

For this uncertainty type it is possible to calculate the 
weighting function )(ωial  as follows: 

 ))()((max)( 1
0

1 −− −= ωωσω jGjGl kM
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The M-delta structure based robust stability condition [13] 
will be used in the following form  
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Condition (3) will be verified graphically. 

The nominal model can be obtained e.g. from N 
identifications of the plant (in N working points) by taking 
mean values of the nominator and denominator coefficients, 
respectively: 
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Consider the PID controller transfer functions  
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The problem studied in this paper can be formulated as 
follows: For the uncertain system GP(s) described by (1) a 
robust PID controller GR(s) is to be designed using the 
Neimark D-partition such that closed-loop stability and 
performance specified in terms of phase margin and / or gain 
margin is guaranteed. If the PID controller designed for the 
nominal plant satisfies condition (3), then closed-loop and of 
the uncertain plant described using unstructured additive 
uncertainty is ensured. 

For nominal model the characteristic equation is  

 0)()(1 0 =+ sGsGR  (7) 

A small modification of (7) yields  
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Using substitution ωjs =  it is possible to obtain real and 
imaginary parts of (8): 
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By changing ω  frequency-by-frequency within the 
interval ),0( ∞∈ω  from the real part of (9) it is possible to 
calculate a frequency dependent vector of complex numbers 
which plotted in the complex plane gives the D-curve for the 
parameter k ; similarly, from the imaginary part of (9) it is 
possible to obtain ik  or dk  , however not both at once. In one 

step it is possible to plot D-curve for the parameters k  and ik  

(PI controller) or k  and dk  (PD controller).  

Using a small modification of the characteristic equation 
we obtain 

 0)()(1 0 =+ − PMj
R eGMsGsG  (10) 

Thu, it is possible to move and rotate the Nyquist plot of a 
system, where GM  is the gain margin and PM  the phase 
margin (angle of desired rotation in radians). Then the D-
curves calculated with (10) are  
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Controller parameters can directly be chosen from the D-
curves. The designed controller will ensure gain margin and 
phase margin. To meet design specification in terms of the 
gain margin GM  we set 0=PM , and vice-versa for design 
specification in terms of the phase margin PM we set 

dB0=GM . In general, large values of GM and PM 
correspond to sluggish closed-loop responses while their 
smaller values result in less sluggish, more oscillatory 
responses. When GM  and PM are large the system will be 
more robust. 

The PID controller design consists of two steps: in the first 
step, a PD controller is designed, and in the second step a PI 
controller design is applied for the plant with the PD 
controller. Then, the PID controller is calculated as follows 
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In this way it is possible to design a PID controller for the 
unstable plant if it is stabilizable by a PD controller. Hence, in 
the first step, a PD controller is used for stabilization and a PI 
controller guarantees the desired phase margin and eliminates 
steady state offset. 

III. MAGNETIC LEVITATION SYSTEM 

Levitation [15] is a stable equilibrium of an object without 
contact and can be achieved using electric or magnetic forces. 
In a magnetic levitation, or maglev system a ferromagnetic 
object is suspended in air using electromagnetic forces. These 
forces cancel the effect of gravity, effectively levitating the 
object and achieving stable equilibrium.  

The basic control task is to control position of the ball 
freely levitating in the magnetic field of the coil. The magnetic 
levitation system with 2 electromagnets is shown in Fig. 3. 

 

 

Fig. 3. The magnetic levitation system from INTECO, Ltd. 

 

We used only one electromagnet (the upper one). Using 
linearization of the nonlinear model [16] three working points 
for the medium ball have been chosen within the working 
range of the plant; they are defined by the vertical position of 
the ball ][mmx  and corresponding input voltage 10u [MU]: 

WP1: ][8 mmx =  ][2658,010 MUu =  

WP2: ][10 mmx =  ][2986,010 MUu =  

WP3: ][12 mmx =  ][3375,010 MUu =  

Corresponding transfer functions are as follows: 
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Each transfer function has one unstable real root: 
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IV. ROBUST PID CONTROLLER DESIGN FOR THE MAGNETIC 

LEVITATION SYSTEM 

The robust PID controller design procedure was applied 
for the nominal model obtained according to (5) 
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The 1k  – dk  D-curves for the specified [ ]dBGM 5=  and 
o45=PM  have been calculated and are depicted in Fig. 4. 
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Fig. 4. D-curves for the parameters k1 and kd  

276



In the first step we just wanted to stabilize the system, 
hence it was not necessary to choose parameters from the blue 
or green lines. The system is stable if controller parameters are 
chosen from the stable area (magenta). The magenta line 
represents the stability boundary. Following PD controller 
parameters were chosen: 

401 =k  and 11=dk . 

Corresponding closed loop poles are 

-152,8 ± 530,63i   and    -1,96 

In the second step, a PI controller is designed for the closed-
loop system consisting of the plant and the designed PD 
controller. D-curves for 2k  and ik  have been calculated and 
are depicted in Fig. 5. 

Controller parameters guaranteeing desired phase margin 
°= 45PM  and desired gain margin [ ]dBGM 5=  were chosen 

from the blue line in Fig. 5. Parameters of the designed PI 
controller have been read from the intersection of the curves 
of desired GM and PM, respectively: 412,02 =k  and 

526,1=ik . The final controller calculated according (12) is: 

 s
s

sGR 532,4
04,61

27,33)( ++=  (17) 

Using the second point of intersection of the desired GM 
and PM curves in Fig. 5 yields  controller parameters 

0803,02 =k  and 986,2=ik ; closed-loop simulation results 
under the controller calculated according to (12) show very 
fast dynamics (settling time 0.48s), however when the 
controller is implemented the real closed-loop plant is 
unstable. 

Bode plots showing that the desired gain and phase 
margins were achieved are depicted in Fig. 6.  

Closed-loop poles under the designed PID controller are: 
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Fig. 5. D-curve in the k2 – ki plane 

-152,14 ± 317,36i   and   -1,64 ± 3,33i 

Verification of the condition (3) in Fig. 7 shows that 
closed-loop robust stability has been achieved. 

If the closed-loop under the designed controller does not 
meet the robust stability condition it is necessary to increase 
the desired gain and phase margins and repeat the controller 
design. 
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Fig. 6. Bode plots of the magnetic levitation plant under the designed PID 
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Fig. 7. Verification of the robust stability condition 

Controller parameters calculated for various selected gain and 
phase margins are shown in the below Table I and Table II. 

To guarantee performance specified in terms of GM, we 
can choose any point on the GM D-curve, and similarly for 
a specified PM, any point on the PM D-curve can be chosen.  

The results of experiments on the real plant with the robust 
controller designed for GM=5 [dB] and various PM are in Fig. 
8, 9 and 10. Experimental results with the robust controller 
designed for PM=40 [°] and various GM are depicted in Fig.  
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TABLE I.  PARAMETER VALUES FOR VARIOUS GAIN MARGIN (GM) AND 
PHASE MARGIN (PM) 

 Desired 

GM 

[dB] 

Desired 

PM  

[°] 

k1 kd k2 ki 

1 5 45 40 11 0,412 1,526 
2 5 40 50 20 0,3029 0,9001 
3 5 35 20 10 0,8234 1,661 
4 5 30 20 20 0,5775 1,074 
5 10 40 100 20 0,2896 1,534 
6 8 40 25 6 0,9869 3,731 
7 - 40 25 6 0,9679 5,653 
8 5 - 20 5 0,8044 3,45 

TABLE II.  PID CONTROLLERS DESIGNED  FOR VARIOUS DESIRED GAIN 
MARGINS (GM) AND PHASE MARGINS (PM) 

 GR(s) 
1 

s
s

532,4
04,61

27,33 ++  

2 

s
s

058,6
01,45

15,33 ++  

3 
s

s
234,8

22,33
08,33 ++  

4 
s

s
55,11

48,21
03,33 ++  

5 

s
s

792,5
4,153

64,59 ++  

6 

s
s

921,5
27,93

06,47 ++  

7 

s
s

807,5
3,141

12,58 ++  

8 

s
s

022,4
69

34,33 ++  

 

11, 12 and 13 show. Step responses were performed in the 
three working points. 

Based on performance assessment in terms of maximum 
overshoot and settling time we can conclude that for 
a constant GM, the settling time decreases with increasing PM 
and for a constant PM, the settling time decreases with 
increasing GM; the trade-off between the settling time and the 
overshoot is evident. From closed-loop simulation, 
GM = 9,8 [dB] is obtained for 7th controller, and PM = 47,1 [°] 
for 8th controller. 

V. CONCLUSION 

In this paper a modification of the standard Neimark D-
partition method was applied to design robust PID controllers 
for the unstable Magnetic Levitation Model. This controller 
design approach guarantees not only closed-loop stability but 
also performance in terms of gain and / or phase margins. The 
proposed frequency domain design method is graphical, 
interactive and insightful, and is applicable for both stable and 
unstable systems. 
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Fig. 8. Step responses for GM = 5 [dB] in the 1st working point 
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Fig. 9. Step responses for GM = 5 [dB] in the 2nd working point 
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Fig. 10. Step responses for GM = 5 [dB] in the 3rd working point 

278



0 1 2 3 4 5 6 7 8 9 10 11
7.5

8

8.5

9

Time [s]

P
o
s
it
io

n
 [

m
m

]

Working point 1

 

 

PM=40,GM=10

PM=40,GM=8

PM=40,GM=5

PM=40,GM= -

w

 

Fig. 11. Step responses for PM = 40 [°]in the 1st working point 
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Fig. 12. Step responses for PM = 40 [°] in the 2nd working point 
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Fig. 13. Step responses for PM = 40 [°] in the 3rd working point 
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