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Abstract—The paper is devoted to modeling and parameter 
identification for Magnetic Levitation System (MLS) from Inteco. 
MLS belongs to challenging modelling and control problems due 
to its unstability and nonlinearity. We concern several modeling 
details not sufficiently described in user manual, a correction of 
nonlinear model, and present the corresponding measurement 
results. The obtained nonlinear model parameters and 
corresponding linearized model fits the real data much better 
than parameters provided in the reference.  
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I.  INTRODUCTION 
Magnetic levitation belongs to well-known type of systems 

with variety of application field, [1]-[4]. Modeling the 
magnetic levitation system belongs to challenging tasks, since 
besides nonlinearities we have to cope with open-loop unstable 
system with fast dynamics and very small degree of natural 
damping. The basic control aim is to precisely position the 
levitating object, which requires adequately precise model. 
There exist many references devoted to modelling and control 
of various types of magnetic levitation laboratory plants, [5]-
[8], to list a few. The laboratory MLS provided by Inteco is 
analyzed e.g. in [9], [11], [12], however, to the authors best 
knowledge, several important modeling details have not been 
sufficiently reported.  

Basically, a mathematical model can be obtained from 
basic physical laws (first principles) or by data driven 
identification methods based on measurement of input and 
output data for adequately excited system, [10]. Frequently, 
both these approaches are combined, the structure is 
determined according to a theoretical (first principle based) 
model and parameter values are estimated from measured data 
using identification methods. 

In this paper, we present our results on modeling the 
laboratory magnetic levitation system [7] with 2 
electromagnets. The controlled output is a ball position 
between the electromagnets, where we consider only the upper 
one.   

We present a model based on first principles, with 
simplified nonlinearities, where the respective parameters are 
estimated from measured data and verified by simulations and 
the resulting model is compared with experimental results on 
real laboratory plant.  

  

 

Fig. 1. Magnetic Levitation System with 2 Electromagnets EM1 and EM2 
and a levitating sphere ball between them.  

II. MAGNETIC LEVITATION SYSTEMS: PHYSICAL MODEL 
Magnetic levitation can be briefly characterized as 

achieving the equilibrium of an object in the air-space without 
contact with solid substance, by using electromagnetic forces. 
In MLS, Fig. 1, a ferromagnetic object (a ball) is kept in the 
air-space between two electromagnets, where the upper one 
provides a vertical force overcoming the ball gravity and the 
lower one is used as additional, mainly for stabilization of a 
ball horizontal position.   

A. Development of a Magnetic levitation model 

The nonlinear physical model of the MLS can be described 
by state equations obtained from basic physical laws for a ball 
(sphere) motion in electromagnetic field, [9], [11].  

Description of a ball dynamics and of electromagnetic 
forces is based on Lagrange function - the difference between 
kinetic and potential energy, which can be written as 
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where x is a distance of the sphere from electromagnet, q is 
electric charge, m is a mass of the sphere, R is a resistance of 
the electromagnet coil, L(x) is a function describing the 
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dependence of inductance of the coil on distance x, qI   is a 
current in the coil, g is gravity constant, u is voltage.  

Variables )(),( tqtx must meet the Lagrange equations 
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The first equation from (3) corresponds to Newton’s second 
law, where an electromagnetic force is given by  
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Dependence of coil inductance on distance can be 
approximated by polynomial or exponential functions 
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Below, we will use the exponential alternative (5a), having 

 axeaL
dx

dL  1  

The second equation from (3) is simplified by the 
experimentally received approximation, [9] 
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where function )(xf has a structure similar to (6). Introducing 
state variables  

,sphere  theofposition   )()(1  txtx

,sphere  theof velocity )()( 12  txtx   
coil,upper in thecurrent  )()(3  tItx   

and combining (3) and (7), the resulting nonlinear 
mathematical model is obtained, see [5,9] 
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Applying the approximation (6) with slightly different 
denotation, finally we obtain 
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Correspondence of the second equalities from (8) and (9) is 
through approximation (6) with 
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The real laboratory model uses variables in the intervals 

1,,38.2,,,016.0,0 minmin321 uuixRxx  . 

Remark 1:  It should be noted that the second equation in 
nonlinear model (9) differs from the one presented in MLS 
documentation, [5]: there is coefficient 2 in the denominator 
corresponding to the first equation from (3). This coefficient 
appears then also in the linearized model below (in elements 

1,2a  and 3,2a  in (13)). 

B. Validation of model coefficients 

This section presents validation of the key coefficients from 
nonlinear model (9) by measurements on laboratory plant. 
Since the plant itself is unstable, measurements are realized in 
closed-loop with stabilizing PD controller delivered by 
producer, [5].  
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Fig. 2. Validation of approximation coefficients, obtained from measured 
dependence of coil current I on ball position x. 

Coefficients 1emPF and 2emPF  for approximation of 
dxdL / corresponding to (6), can be obtained by measuring the 

dependence of coil current 3x on ball position 1x  in steady 
state. dxdL /  is then computed from the second equality from 
(8) 
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Measured data 1x , 3x and u are given in Tab.I. The 
corresponding Fig.2 shows comparison of approximation for 
coefficients 1emPF and 2emPF obtained from measured data, and 
the coefficients reported in Inteco manual. We can confirm 
near accordance of measured and reported approximation 
coefficients. 

TABLE I.  MEASURED x1, x3 AND u FOR dL/dx1 APPROXIMATION 

Position (x1) 
[mm] 

Current (x3) 
[A] 

Control output 
(u) [MU] 

-dL/dx1 [H/m] 

8.5 1.025 0.315 0.7096 
9 1.078 0.328 0.6416 
9.5 1.126 0.344 0.588 
10 1.189 0.352 0.5274 
10.5 1.237 0.362 0.4872 
11 1.285 0.378 0.4515 
11.5 1.35 0.392 0.4091 
12 1.408 0.413 0.3761 
12.5 1.475 0.423 0.3427 
13 1.543 0.432 0.3131 
13.5 1.617 0.446 0.2851 
14 1.679 0.462 0.2645 

 

All parameters of the above equations are given in Table II. 

TABLE II.  PARAMETERS OF THE EQUATIONS (1) 

 
Parameters  Values Units  
m 0.016,  0.023,  0.039 kg 
g 9.81 m/s2 
Fem1,Fem2 function of x1 and x3  N 
FemP1 0.017521 H 
FemP2 0.0058231 m 
fi(x1) function of x1 s-1 
fiP1 1.4142 10-4 ms 
fiP2 4.5626 10-3 m 
ci -0.4 A 
ki 4.4 A 
xd distance between electromagnets minus ball 

diameter (0.1- 0.033 / 0.04 / 0.054) 
m 

iMIN 0.03884 A 
uMIN 0.00498 MU 

control output [MU]
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Fig. 3. Dependence of current x3 on control output (provided in machine 
units) for all three balls 

Parameters ki and ci are given by approximation of real 
measured data, see Fig.3. We made more experiments for all 
three balls, the average parameter values are  

 4.04.4  ucukI ii  

The difference between real data and approximation is very 
small, thus we can consider the corresponding nonlinear model 
as appropriate for linearization around equilibrium points. In 
this case, the obtained parameters ki and ci  are significantly 
different from those reported in documentation, [5]. 

III. LINEARISATION OF MAGNETIC LEVITATION SYSTEM  
The linearized state space model for (1) can be obtained 

using Jacobian linearization around the determined working 
point as 
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where the elements of the A and B matrices are for the 

working point defined by [ ],, 302010 xxx , given as 



 

 10
3

10
3,3

2

10

2

130
3,2

2

10
2

2

1
2
30

1,2

1

1

exp

exp
2

xf
kb

xf
a

F

x

F

F

m

x
a

F

x

F

F

m

x
a

i

i

i

emPemP

emP

emPemP

emP

























 

Note that 01,3 a  since 03  xcuk ii  in any working 
point.  

To convert state space model to transfer function, we use 
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The input current respective to the position of the ball is 
depicted in Fig. 4 for all three balls. This dependence is used 
for determining the working point corresponding to the 
required ball position.  

In the following we present three linearized models, where 
parameters 030 ,, uxm vary for big, medium and small balls.  

Determination of the working point 

The working point is determined by a required ball 
position 10x . Thus the working point is set by the next steps. 

i) choose the ball size m and its position 10x ; 
ii) set the value of 30x corresponding to the determined 10x  

(see Fig.4.), alternatively – calculate 30x from the second 
equation from (9) in steady state for 101 xx  ; 

iii) calculate u0 for the determined 10x  and 30x  from (11): 
4.04.4 0030  ucukx ii . 

 

 

Fig. 4.  Dependence of coil current on ball position  

Big ball linearized model 

We consider the working point ][01.010 mx  , 
][19.130 Ax   and ][363.010 MUu  , the state space model is  
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Medium ball linearized model 

We consider the working point ][01.010 mx  , 
][914.030 Ax   and ][300.010 MUu  , the state space model is 
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and the respective transfer function is 
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Small ball linearized model 

We consider the working point ][01.010 mx  , 
][762.030 Ax   and ][265.010 MUu   
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and the respective transfer function is 
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Note that only gain varies with the ball change.  

Comparison between real and linearised system 

In this section, step responses around working points for all 
three balls are shown for: 

1) real laboratory MLS;   

2) nonlinear model (9) with parameter values given in 
Tab.II, denoted as nonlin. model 1; 

3) nonlinear model with parameters from [5], denoted as 
nonlin. model 2;   

4) linearized models (16), (17) and (18) for big, medium 
and small ball respectively.  

The MLS system is unstable. Therefore the comparison is 
realized in closed loop with stabilizing controller. In our case, 
we use a PID controller corresponding to (20) with parameters 

P=125;  I=377 830;  D=5.65. 

(Note that sampling time for MLS is 1ms.) 

 The results are illustrated in the next pictures. Comparison 
shows that the developed nonlin. model 1 as well as the 
corresponding linearized model better fits the real MLS 
response  than nonlin. model 2 reported in [5]. (Reason can be 
in slightly different parameters of the individual MLSs.)  
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Fig. 5. Comparison of the output responses of the developed model, 
linearized one, nonlinear model from [5] and real measured data for 
small ball 
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Fig. 6. Comparison of the output responses of the developed model, 
linearized one, nonlinear model from [5] and real measured data for 
medium ball 
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Fig. 7. Comparison of the output responses of the developed model, 
linearized one, nonlinear model from [5] and real measured data for big 
ball 

It is important to note that though thesystem is highly 
nonlinear, the linearized model works well around the working 
point. 

IV. STABILITY CONDITIONS FOR A CLOSED LOOP WITH PID 
CONTROLLER  

In this section, necessary stability conditions are developed 
for the closed loop comprising linearized MLS model with PID 
controller, which indicates the required controller structure and 
parameters. 

Due to negative gain of the MLS transfer function (16), 
(17), (18), positive feedback is considered to obtain control 
error. The PID controller design is then based on closed loop  
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where  sG  correspond to MLS transfer function (15), its 
parameters are determined by working point and respective ball 
(see (16), (17), (18));  sGPID  is transfer function of PID 
controller in the form 
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Closed-loop characteristic polynomial for (19) with  sG  
and  sGPID  given by (15) and (20) is 
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Recall the parameter signs (compare (15) with e.g. (16)) 

0;0;0;0 33,33,21,2  baaa , therefore  

0;0 3,233,31,2  abaa  

Applying Routh stability criterion on (21) we receive 
closed loop stability conditions  
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Stability analysis shows that minimal stabilizing structure 
comprises proportional P and derivative D term. To avoid 
steady-state error, integral term is required as well.  

Controller design procedure is not included in this paper, 
one possible control design procedure is described in [14].  

V. CONCLUSION 
We have presented several details on modelling Magnetic 

levitation system delivered by Inteco, not reported in the 
system documentation, and corrected a mistake in theoretical 
model. The experiments to verify values of model parameters 

are described in details; the respective results show the major 
difference in linear approximation of dependence of coil 
current on input voltage in comparison with [5]. Modifying the 
model parameter values according to measured data provides 
nonlinear and respective linearized model with step response 
very close to the real experiments.  
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