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Abstract— The paper deals with a practical implementation 

of a digital observer-based reference tracking state controller for 

a laboratory plant. The state controller is designed to track 

reference commands that can be described by linear differential 

equations with constant coefficients; this type of controller is 

known as Command Generator Tracker (CGT) [1]. The resulting 

dynamic compensator is implemented to control speed of a 

laboratory plant using FPGA. 

Keywords— optimal tracking, command generator tracker, 

motion control, FPGA 

I. INTRODUCTION  

Optimal control of linear systems with respect to quadratic 
performance index (LQ problem) is one of the key problems 
of the modern control theory, and is widely used mainly in 
motion systems control. In its basic version, a state-feedback 
LQ regulator (LQR) guarantees that states of a controllable 
dynamic system are driven to zero from arbitrary initial 
conditions. In case of other versions (LQ output regulator, LQ 
tracking), each of the specific problems can be reformulated as 
LQR design and solved using the standard design procedure. 
Asymptotic stability and required performance of transients 
are achieved by a proper choice of weighting matrices of the 
quadratic performance index. An important prerequisite for 
using LQR is availability of all plant states for feedback; 
otherwise, an observer has to be applied to provide state 
estimates that are used or implementation of the LQ controller 
instead of real states. The observer can be designed as a 
deterministic (Luenberger observer) or a stochastic one 
(Kalman filter). In practice, the stochastic observer is the most 
frequently used version estimating the state variables from 
available measurements of the plant output corrupted by 
process and measurement noises specified by their statistical 
properties. A combination of an observer and a state controller 
is called a dynamic compensator. 

Tracking a reference input signal by a plant output is one 
of the most important control tasks called tracking or servo 
design problem. In case of setpoint tracking the regulator can 
be converted into a tracker by adding additional feedforward 
terms; in case of tracking a non-constant reference, the 
feedforward terms generally contain also its derivatives. A 
powerful tracker design technique that automatically yields the 
precompensator required to guarantee proper tracking for a 
large class of command inputs is the command generator 
tracker (CGT) based on incorporating the model of the 

reference dynamics into the control system [1]; according to 
[2], this tracking design methodology is denoted “error space 
approach”.  

The paper deals with the design of a digital observer-based 
command generator tracker (DCGT) for a motion control 
application. Based on measured output (motor speed), states of 
the plant are estimated using a deterministic observer; the 
optimal tracker is designed independently. The resulting 
dynamic observer is implemented on FPGA. 

The Field Programmable Gate Arrays (FPGA) are 
configurable circuits of very large-scale integration (VLSI) 
able to integrate various logical and control functions. 
Compared with microprocessor based (software) solutions, the 
FPGA based hardware realizations of control algorithms are 
by several orders faster and able to control plants with fast 
dynamics; also they are more compact, cost-effective and thus 
cheaper.  

II. COMMAND GENERATOR TRACKER (CGT) DESIGN 

CGT design [1,2,3] is a powerful methodology resulting 
from the internal model principle; according to it, for proper 
asymptotic tracking the plant model has to include non-
asymptotically stable modes of the reference signal. If it is not 
the case, the plant model has to be augmented so as to include 
modes of the reference signal that are not at the same time 
modes of the plant. A properly designed CGT guarantees a 
zero steady-state tracking error for a broad class of command 
inputs describable by linear differential equations with 
constant coefficients (3) which encompasses  polynomial 
signals (step, ramp, …), and harmonic signals.  

Consider the linear state-space model. 

)t(Cx)t(y

)t(Bu)t(Ax)t(x

=

+=&
 (1) 

An optimal tracker is a state controller which guarantees that 
the performance output (generally not equal to the measured 
output y(t)) 

Hxz =  (2) 

tracks the reference input describable by a d-th order linear 

differential equation with constant coefficients 
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Characteristic polynomial corresponding to (3) can be defined 
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which can be expressed in the controllability canonical form 

called command generator system; for example if d=3, the 

state-space model of the command generator system is 
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Define the tracking error as follows  

Hxrzre −=−=  (6) 

and let us express (3) using (4) as 

0r)s( =∆  (7) 

Using (7), (6) can be expressed as 

ξ−=∆−∆=∆ HHx)s(r)s(e)s(  (8) 

A modified state vector can be defined using (7) 
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Now, (8) can be expressed in the observability canonical form 
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where 
]e...ee[
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. Applying the error dynamics (9) to (1) 

we obtain the dynamics of 
ξ
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where µ is the modified control input 
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Joining (10) and (11) we obtain the augmented state model 

µ







+








ξ

ε















−=








ξ

ε

B

0

A0

H

0
F

dt

d

 (13) 

In this way the original tracking problem has been converted 

to the regulator with the tracking error (6) is regulated to zero. 

Standard poleplacement [2] or LQR design can be used to 

obtain the resulting feedback 
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From (14) the control input for the original system is obtained 
by a simple manipulation as follows 

ε−=+∆ eK)Kxu)(s(
 (15) 

The corresponding CGT transfer function contains the internal 
model of the reference input generator [1]. 
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III. DIGITAL COMMAND GENERATOR TRACKER (DCGT) 

DESIGN 

The digital CGT (DCGT) is a design procedure is similar to 
the continuous-time one. The augmented model is build from 
the digitized command generator and digitized plant model.  

Consider a discrete-time state-space model of the plant to 
be controlled 
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where (Ad, Bd, C) is the discrete-time counterpart of the 
continuous-time state space model (A,B,C) obtained according 
to the following formulas (using the sampling period T): 
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The output matrices C and H do not change with digitization. 

The digital command generator matrix Fd (a digital 
counterpart of (6)) results from digitization of (5) using the 

relation 
Ts

i
iez =

where si, i=1,…,d are roots of the 
characteristic polynomial (5): 
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Similarly as in the continuous-time version, following 
relations hold [3] 
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where kk x)z(∆=ξ
 

To derive dynamics of the modified discrete-time model, 

)z(∆ is applied to the state equation 
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where kk u)z(∆=µ  

The resulting augmented discrete-time system is  
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When the state of the augmented system converges to zero, a 
zero steady-state tracking error is guaranteed (asymptotic 
tracking). If LQR approach is used to design DCGT, the 
discrete-time output equation has the form  










ξ

ε








=υ

k

k

k
C0

0I

 (25) 

and the discrete-time performance index for the augmented 
plant becomes 
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where the digitized weighting matrices are obtained  
RTR,QTQ dd ==

[1].  

Applying the standard LQ procedure to the augmented plant 
considering (24) and (25), the state feedback output regulator 
is designed. The control law is obtained in the form 
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The compensator transfer function for implementation 
according to Fig. 1 is as follows: 
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Fig. 1. Implementation of the DCGT (for d=3) 

DIGITAL OUTPUT INJECTION OBSERVER DESIGN 

The observer is a dynamic system described by 
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where kx̂  is the estimate of  kx . Dynamics of the estimation 

error kkk x̂xx~ −=  is given by 

kd0kdd1k x~Ax~)CLA(x~ =−=+   (30) 

It is required that the estimation error (30) vanishes with time, 
hence the matrix A0d has to be asymptotically stable; in the 
discrete-time case this means that its eigenvalues have to be 
located within the unit circle. If the plant is observable, Ld can 
always be selected so that all observer poles are at z=0. This is 
called deadbeat observer and guarantees that the estimation 
error decays exactly after n sample periods. 

Next, the digital observer-based command generator tracker 

will be designed for a laboratory plant and implemented using 

FPGA. 

IV. DESIGN OF DYNAMIC COMPENSATOR  FOR THE 

LABORATORY PLANT 

5.1 Description and modeling of the  plant 

The SISO laboratory plant consists of a cascade connection 

of two DC motors modules (Fig. 5, green box). Each DC 

motor module has input range 0 – 10 V, and includes 

electronic components for the motor drive and for transfer data 

from the optical incremental encoder in the range 0 – 10 V.  

The cascade is realized by subtracting the output of the second 

module (multiplied by an unknown gain lower than 1) from 

the input of the first module.  

Measured I/O identification data are depicted in Fig. 2.  
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Fig. 2. Measured I/O identification data of the plant 
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Mathematical model which fits the best the measured data 

has been chosen in form of a 2
nd

 order transfer function with 

complex poles and a time delay 
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The discrete-time transfer function was obtained using 
sampling time T=D=0.375s. 
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The respective state-space model to be used for the DCGT 
design is 
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5.2 Observer-based DCGT design  

For the SISO laboratory plant, a digital command 

generator tracker will be designed to track the step reference 

input. Characteristic polynomials of a step signal for 

continuous- and discrete-time cases are respectively 
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Next, the augmented system is built according to (24): 
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The weighting matrices in the quadratic performance index 
(26) so as to guarantee a proper tracking and not to exceed 
feasible ranges of variables in the future implementation. 
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Using (33), the resulting Kalman gain matrix was calculated 

for the augmented LQ problem: 

 

[ ]1.6831-    0.2522-   0.2919-  5.1097]KKKK[K 321e ==    

The digital output injection observer was designed using the 

poleplacement method; as the deadbeat observer was not 

feasible for implementation with the below described FPGA 

setup, the following desired poles of the observer matrix were 

chosen p=[0.1 0.2 0.3] yielding the output injection matrix 
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Simulation model of the observer-based step reference tracker 

is in Fig. 3. 
 

The designed PI controller is denoted as LQPI in the 
sequel. Closed-loop time responses of the step reference 
tracking using DCGT are in Fig. 4. 
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Fig. 3. Observer-based step reference tracking using the DCGT 
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Fig. 4. Step reference tracking using DCGT – simulation results (upper plot:  

plant and observer outputs, lower plot: control input) 

5.3 Hardware implementation on FPGA 

Implementation of the dynamic compensator is based on the 
Artix 7 FPGA included in Digilent Nexis 4 development board 
[4]. 
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Fig. 5. Block scheme of the control loop 

Communication between digital and analog environment is 
provided by A/D and D/A converters. Both converters have 
12-bit width, range 0 – 3.3 V and operate up to a maximum 
frequency 1MSPS [5]. For spreading and shrinking signals 
between 3.3V and 10 V range we used a circuit with 
operational amplifier and voltage resistor divider.  

The control algorithm is designed in the VHDL (VHSIC 
Hardware Description Language). It is composed of five main 
components (Fig. 6).  
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Fig. 6. Block scheme of the control algorithm 

Clock divider provides the sample rate for the observer and 
the LQPI controller. Other clocks are directly connected to the 
100MHz system clock.  

The DAC and ADC interfaces transmit or receive data 
from converters. The ADC interface also recalculates 12bit 
logic vectors to a fixed-point data type. On the other hand, 
before conversion the DAC interface recalculates fixed-point 
data type back to the 12bit logic vector.  

Widths of the input and output signals were determined; 
the 12-bit unsigned was chosen and for the input signals w, y 
and output signals u, because in real hardware application the 
12bit A/D and D/A convertors are used.  

X(2) = xb+a-1 … xb+1 xb . xb-1 … x2 x1 x0 

Integer part Fractional part 

 

 

Fig. 7. Fixed point number representation 

For implementation of real numbers, the fixed point 
arithmetic has been used [6]. If a12-bit unsigned fixed point is 
used, the first two (MSB) bits are reserved for the integer part, 
and the last ten bits for the fractional part. Such representation 
is written as X(2,10). Representation X(a,b) has a bits in 
integer part (in case of signed fixed point with sign bit) and b 
bits in fractional part (Fig. 7). 

In the control loop design, the fixed-point arithmetic range 
rules have to be respected. The data widths in the fixed-point 
arithmetic were designed so that there is no possibility of 
overflow. For example, result of the summation of two N-bit 
vectors has a N+1-bit range. Result of the summation of 
vectors with different ranges has range 

)).bbmax(,1)a,a(max(X)b,a(X)b,a(X 21212211 ++=+
  

Range of product of two unsigned fixed points is 

)bb,aa(U)b,a(U)b,a(U 21212211 ++=×  (36) 

and the range of a product of two signed fixed points is 

)bb,1aa(S)b,a(S)b,a(A 21212211 +++=×  (37) 

Design of LQPI controller block is shown in Fig. 6, 
implementation of the LQPI block is depicted in Fig. 8. 
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Fig. 8. Structure of LQPI controller 

In each sampling period, the control output yk from the motor 
system and the set point wk are loaded. The control error ek is 
computed in the block SUB1 where the signal yk is subtracted 
from wk. REG1, REG2 and ADD block work as an integrator. 
The signal ek is held in the registry REG1 for one sampling 
period. Register REG1 output signal is thus ek-1. At the same 
time, signal iek−1 is recorded at REG2 by latching output of the 
integrator iek. Then, the integrator output is multiplied by a 
constant –Ke. The second branch of the control algorithm can 
be expressed as 

k33k22k11k xKxKxKKx ++=  

After the last subtraction in SUB2, the output vector 
attains the S(11,20) width due to the fixed-point range rules. A 
saturation block is used to ensure that the control output 
ranges from 0 to 3.3 V in to 12-bits U(2,10) representation. 
Saturation is the value and bit range limitation logic that keeps 
the output in the defined limits. Maximum limit for the output 
signal is 11.0100110011(2) = 3.2998046875(10) and 
minimum value is 00.0000000000(2) = 0(10). Implementation 
of the observer is designed similarly. 

View on the experimental setup is shown in Fig. 9, time 
responses from experiments are depicted in Fig. 10. 
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V. CONCLUSION 

The DCGT design procedure is simple and direct to apply. 
The resulting compensator includes both feedback and 
feedforward terms so that both the closed-loop poles and zeros 
may be affected by varying the state feedback gain matrix K. 
The method is applicable if the original plant is reachable and 

the loop transfer function 
d

1

d B)AzI(H)z(H
−−=  from u to z 

has no zeros identical with the roots of 0)z( =∆ . A simple 

structure of the control law is advantageous for 
implementation on FPGA. The presented FPGA 
implementation of the DCGT was realized with a sampling 
period properly chosen with respect to the plant dynamics; 
application for plants with fast dynamics is straightforward. 
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Fig. 9. Step reference tracking using observer-based DCGT implemented on 

FPGA – experimental results (upper plot: plant and observer outputs, 

lower plot: control input) 

 

Fig. 10. Hardware realization of the LQPI controller 
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