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Abstract—The paper is concerned with the problem of dis-
tributed Kalman Filtering for discrete-time linear large-scale
systems with decentralized sensors. Using the standard approach
to the centralized Kalman filtering, the problem of distributed
filtering is introduced, given the incidence of additive recurrence
to realize such problem. The obtained solutions support the
residual signal generation using Kalman filter innovations in
the model-based fault detection design. The results, offering
structures for fault detection filter realization, are illustrated with
a numerical example to note the effectiveness of the approach.
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I. INTRODUCTION

The critical aspect for designing a fault-tolerant control
(FTC) system is the conception of diagnostics operations that
solve the fault detection and isolation (FDI) problems. These
procedures most commonly use residual signals, generated
by model-based fault detection filters (FDF), followed by
their evaluation within decision functions. The main objective
is to create residuals that are as a rule approximately zero
in the fault free case, sensitive to faults, as well as robust
to noises and disturbances. Occurred faults are detected by
setting a threshold on the residual signal which is, in general,
superposed minimally on measurement noise. Research in FDI
has attracted many researches, and is now the subject of wide
range of publications (see, e.g., [2], [4], [6], [8] and the
reference therein).

The full decoupling of faults and noises cannot be realized
completely, and so residual fault sensitivity to noises has
to be minimized. One of the most commonly way is to
apply Kalman as well as H∞ filtering. Kalman filtering is
an optimal state estimation process applied to a dynamic
system that involves random noises, giving a linear, unbiased,
and minimum error variance recursive algorithm to optimally
estimate the unknown state of a dynamic system from noisy
data taken from sensors at discrete real-time instants [5].
The state estimation obtained by the Kalman filter prediction-
correction equations can be solved near-optimal but faster
applying a distributed approach in that sense that the correction
error reach the optimal values is decaying exponentially with
time [10], [13]. Presented variant of this topic includes a
distributed method that yields the filtering equations for each
sensor [11]. Another applications can be find in [12], [14].

The outline of this paper is as follows. Section I. delineates
the problem introduction and, in the following, Section II.
draws the basic preliminaries. Dealing with the discrete-
time systems description, the equations describing Kalman
filters for correlated and uncorrelated measurement and system
noises are trace out in Section III. Following this, the delineate
mixed, as well as decentralized approaches in Kalman filter
design are derived in Section IV and Section V, respectively,
while the residual generation based on distributed Kalman
filtering is rough in Section VI. Section VII. gives a numerical
example, illustrating the properties of the proposed method,
and Section VIII. presents some concluding remarks.

Throughout the paper, the notations is narrowly standard in
such way that xT , XT denotes the transpose of the vector x
and matrix X , respectively, diag[ · ] denotes a block diagonal
matrix, for a square matrix X > 0 means that X is a
symmetric positive definite matrix, the symbol In indicates the
n-th order unit matrix, IR denotes the set of real numbers and
IRn, IRn×r refer to the set of all n-dimensional real vectors
and n× r real matrices, respectively.

II. BASIC PRELIMINARIES

In explaining how the Kalman filtering algorithm is given
and how well it performs, it is necessary to use some formulas
and inequalities from the matrix algebra. The basic ones are
presented in the following lemmas.

Lemma 1: [8] (Sherman – Morrison – Woodbury formula)
Given square invertible matrices A ∈ IRn×n, D ∈ IRm×m and
a matrix B ∈ IRn×m such that (A +BDBT ) is invertible,
then

(A+BDBT )−1 =

= A−1 −A−1B(D−1 +BTA−1B)−1BTA−1 (1)

Lemma 2: [5] (Schur complement) Given a partitioned
matrix of the form

M =

[
A B
C D

]
(2)

where A,B,C,D are of compatible dimensions, then
a) if A−1 exists, a Schur complement of the matrix M is

D −CA−1B,
b) if D−1 exists, a Schur complement of the matrix M is

A−BD−1C.
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III. DISCRETE-TIME KALMAN FILTERS

To explain the basic properties, the discrete-time linear
MIMO systems with the system and output noises are conside-
red, described in the state-space form by the set of equations

q(i+ 1) = Fq(i) +Gu(i) + v(i) (3)

y(i) = Cq(i) + o(i) (4)

where q(i) ∈ IRn, u(i) ∈ IR r, y(i) ∈ IRm are vectors of the
system state, inputs and outputs variables, respectively, v(i) ∈
IRn, o(i) ∈ IRm are vectors of the system and measurement
noise and matrices F ∈ IRn×n, G ∈ IRn×r, C ∈ IRm×n are
real matrices. It supposed that the noises satisfy the properties

E

{[
v(i)
o(i)

]}
=

[
0
0

]
(5)

E

{[
v(i)
o(i)

][
vT (k) oT (k)

]}
=

[
Q S

ST R

]
δik (6)

where E{·} is the mean value operator and

δik =

{
1 i = k ,
0 i 6= k ,

(7)

is the Kronecker delta-function.
The system and measurement noises are uncorrelated with

the system initial state q(0), where it can be considered

E {q(0)} = q0 (8)

E
{
(q(0)− q0)(q(0)− q0)

T
}
= Q• (9)

The covariance matrices Q,Q• ∈ IRn×n, R ∈ IRm×m are
symmetric positive definite matrices while, in general,

Q− SR−1ST > 0 (10)

In the following, the notation qe(i|i−1) denotes the predicted
estimation of the system state vector q(i) at the time instant
i in the dependency on all noisy output measurement vector
sequence {y(j), j = 0, 1, . . . , i−1} up to time instant i−1
and qe(i|i) means the corrected estimation of the system state
vector q(i) at the time instant i in the dependency on all noisy
output measurement vector sequence {y(j), j = 0, 1, . . . , i}
up to time instant i.

Lemma 3: If the Kalman filter, associated with the system
(3), (4), is defined by the set of equations [5]

qe(i|i−1) = Fqe(i−1|i−1) +Gu(i−1)+

+JS(y(i−1)− ye(i−1|i−1))
(11)

qe(i|i) = qe(i|i−1) + JF (i)(y(i)− ye(i|i−1)) (12)

ye(i|i−1) = Cqe(i|i−1), ye(i|i) = Cqe(i|i) (13)

then it yields, with qe(0|0) = q0, P (0|0) = Q•,

JS = SR−1 (14)

JF (i) = P (i|i−1)CT (R+CP (i|i−1)CT )−1 (15)

P (i|i−1) =(F−JSC)P (i−1|i−1)(F−JSC)T+Q−JSS
T (16)

P (i|i) = (I − JF (i)C)P (i|i− 1) (17)

Proof: (for more details see [5]) The requirements is an
unbiased filter with the estimates of minimum error variances.

Analyzing the prediction error e(i|i−1) at the sequence
index i then

e(i|i− 1) = q(i)− qe(i|i−1) =

= Fq(i−1) +Gu(i−1) + v(i−1)−
−Fqe(i−1|i−1)−Gu(i−1)−

−JS(Cq(i−1) + o(i−1)−Cqe(i−1|i−1)) =

= (F − JSC)e(i−1|i−1) + v(i−1)− JSo(i−1)

(18)

where
e(i−1|i−1) = q(i−1)− qe(i−1|i−1) (19)

Since it yields

E{e(i|i−1)} = (F − JSC)E{e(i−1|i−1)}+
+E{v(i−1)} − JSE{o(i−1)} =

= (F − JSC)E{e(i−1|i−1)}
(20)

it is evident that (20) can be satisfied only if E{e(i|i−1)} =
E{e(i−1|i−1)} = 0. With this condition the covariance matrix
of the prediction error satisfied the relation

P (i|i−1) = E{e(i|i−1)eT (i|i−1)} =

E{((F−JSC)e(i−1|i−1)+v(i−1)−JSo(i−1))eT(i|i−1)}=
= (F − JSC)P (i−1|i−1)(F − JSC)T+

+Q+ JSRJT
S − JSS

T − SJT
S

(21)
where the correction error covariance matrix is

P (i−1|i−1) = E{e(i−1|i−1)eT (i−1|i−1)} (22)

Evidently, the minimal covariance matrix of the prediction
error is obtained if

(JSR− S)JT
S = 0 (23)

and, consequently, (21) implies (16) and (23) gives (14).
Analogously, the correction error e(i|i) at the sequence

index i is given as

e(i|i) = q(i)−qe(i|i) =
= e(i|i−1)−JF (i)(Cq(i) + o(i)−Cqe(i|i−1)) =

= (I − JF (i)C)e(i|i−1)− JF (i)o(i)

(24)

and, considering the above results, it yields

E{e(i|i)} = (I − JF (i)C)E{e(i|i−1)} = 0 (25)

while the correction error covariance matrix is propagated as

P (i|i) = E{e(i|i)eT (i|i)}=
=E{((I−JF (i)C)e(i|i−1)− JF (i)o(i))e

T(i|i)}=
=(I−JF (i)C)P (i|i−1)(I−JF (i)C)T+JF (i)RJT

F(i)

(26)

Writing (26) as

P (i|i) = (I − JF (i)C)P (i|i− 1)+

+(JF (i)(R+CP (i|i−1)CT )−P (i|i−1)CT )JT
F (i)

(27)

it is evident that with (15) then (27) implies (17). This
concludes the proof.
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Corollary 1: If the system and measurement noises are
uncorrelated (S = 0), the equations (11)–(17) are reduced
to the set of recursive equtions

qe(i|i−1) = Fqe(i−1|i−1) +Gu(i−1) (28)

qe(i|i) = qe(i|i−1) + J(i)(y(i)− ye(i|i−1)) (29)

ye(i|i−1) = Cqe(i|i−1), ye(i|i) = Cqe(i|i) (30)

J(i) = P (i|i−1)CT (R+CP (i|i−1)CT )−1 (31)

P (i|i−1) = FP (i−1|i−1)F T +Q (32)

P (i|i) = (I − J(i)C)P (i|i−1) (33)

where index F is omitted because there is only one filter gain
matrix.

The discrete-time Kalman filter equations can be alge-
braically manipulated into a variety of forms [1], [9]. If the
system and measurement noises are uncorrelated then for the
updating the Kalman filter gain and the error covariances can
be used the following lemma.

Lemma 4: If the system and measurement noises are un-
correlated then it yields for the Kalman filter gain and error
covariance matrices

J(i) = P (i|i)CTR−1 (34)

P−1(i|i) = P−1(i|i−1) +CTR−1C (35)

Proof: (compare, e.g., [3]) Considering that there is known
qe(i|i − 1) and qe(i|i) is the best estimate of q(i) that
minimizes the cost criterion

T (i)=(q(i)−qe(i|i−1))TP−1(i|i−1)(q(i)−qe(i|i−1))+

+(y(i)−Cq(i))TR−1(y(i)−Cq(i))
(36)

Then, evaluating (36) it ields with the optimal setting of a state
vector estimate q(i) = q(i|i) the minimum expected cost is
given by

dT (i)
dq(i)T

= P−1(i|i−1)(q(i|i)−qe(i|i−1))−
−CTR−1(y(i)−Cq(i|i)) = 0

(37)

which implies

(P−1(i|i−1) +CTR−1C)qe(i|i) =
= P−1(i|i−1)qe(i|i−1) +CTR−1y(i) =

=(P−1(i|i−1)+CTR−1C))qe(i|i−1)+

+CTR−1(y(i)−Cqe(i|i−1))

(38)

Therefore, at the i-th stage, using the above the equations (38)
gives

qe(i|i) = qe(i|i−1)+

+(P−1(i|i−1)+CTR−1C)−1CTR−1(y(i)−Cqe(i|i−1))=

= qe(i|i−1) + P (i|i)CTR−1(y(i)−Cqe(i|i−1))
(39)

Then, pre-multiplying the left side by P (i|i) and post-
multiplying the right side by P (i|i−1) it follows from (35)
that

P (i|i−1) = P (i|i) + P (i|i)CTR−1CP (i|i−1) (40)

which can be proved recursively as follows

P (i|i) = (In − P (i|i)CTR−1C)P (i|i−1) (41)

Comparing (39) with the covariance matrix of the filtering
error given by (29) it is evident that

J(i) = P (i|i)CTR−1 (42)

and (42) implies (34).
On the other side, substituting (31) into (33) it can write

P (i|i) = P (i|i−1)−
−P (i|i−1)CT (R+CP (i|i−1)CT )−1CP (i|i−1)

(43)

and using the Sherman-Morrison-Woodbury formula (1) it
yields

P−1(i|i) = P−1(i|i−1)−
−CT (−R−CP (i|i−1)CT+CP (i|i−1)CT )−1C

(44)

and so, evidently, (44) implies (35).
Moreover, since CTR−1C is at least a positive semi-definite

matrix, it is evident from (40) that P (i|i) is never larger than
P (i|i−1). This concludes the proof.

IV. MIXED APPROACH

Considering that the system is square in the sense that rj =
mj , j = 1, 2 . . . w, the number of output and inputs blocks is
w and m = r =

∑w
j=1 mj =

∑w
j=1 rj , as well as

y(i) =




y1(i)
y2(i)

...
yw(i)


, o(i) =




o1(i)
o2(i)

...
ow(i)


, C =




C1

C2

...
Cw


 (45)

R(i)=E{o(i)oT(i)}=diag
[
R1(i) R2(i) · · · Rw(i)

]
(46)

then (28)-(32), (45), (46) imply

qe(i|i−1) = Fqe(i−1|i−1) +
w∑

j=1

Gjuj(i−1) (47)

qe(i|i) = qe(i|i−1)+

+P (i|i)
w∑

j=1

CT
j R

−1
j (i)(yj(i)−Cjqe(i|i−1)) =

= qe(i|i−1) +
w∑

j=1

Jcj(i)(yj(i)−Cjqe(i|i−1))

(48)

yej(i|i−1)=Cjqe(i|i−1), yej(i|i)=Cjqe(i|i) (49)

Jcj(i) = P (i|i)CT
jR

−1
j (50)

and (35), (32) give

P−1(i|i) = P−1(i|i−1) +

w∑

j=1

CT
jR

−1
j Cj (51)

P (i|i−1) = FP (i−1|i−1)F T +Q (52)

It is evident from this formulation that the relation of (48)
computes data obtained at all the sensor nodes.
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Corollary 2: (data structure separability) Considering that
the filtered state vector can be prescribed as

qe(i|i) = qed(i|i) + qec(i|i) (53)

that is, there are the components of the filtered system state
which are dependent on the control signal as well as ones
which are independent on the control signals. Then, substitu-
ting (53) in (47), it is

qe(i|i−1) =
w∑

j=1

Gjuj(i−1)+

+F (qed(i−1|i−1)+qec(i−1|i−1))
(54)

and it can be set

qec(i|i−1) = Fqec(i−1|i−1)+

w∑

j=1

Gjuj(i−1) (55)

qed(i|i−1) = Fqed(i−1|i−1) (56)

Since the correction stage does not depend on the control
inputs, using (55), (56) the relation (48) could be rewritten
as

qed(i|i) = qed(i|i−1)+

+P (i|i)
w∑

j=1

CT
j R

−1
j (i)(zj(i)−Cjqed(i|i−1)) (57)

qec(i|i) = qec(i|i−1) (58)

where
zj(i) = yj(i)−Cjqec(i|i−1) (59)

zdj(i|i−1) = Cjqed(i|i−1) (60)

while the sequence of the filter gain matrices, as well as
recurrences of the covariance matrices are given by (50)–(52).

V. PARTLY DECENTRALIZED APPROACH

Theorem 1: Let the output mode based state estimates
qedj(i|i), j = 1, 2, . . . , w are computed using full decentra-
lized formulas of the form

qedj(i|i) = qedj(i|i−1) + Jj(i)(zj(i)− zdj(i|i−1)) (61)

where are applied (55), (56) and (59), (60) and where

qedj(i|i−1) = Fqedj(i−1|i−1) (62)

zdj(i|i−1) = Cjqedj(i|i−1) (63)

Jj(i) = Pj(i|i)CT
jR

−1
j (64)

P−1
j (i|i) = P−1

j (i|i−1) +CT
jR

−1
j Cj (65)

then the filtered system state at the time instant i is approxi-
mately covered by the equations

qed(i|i) =
w∑

j=1

P (i|i)P−1
j (i|i)qedj(i|i)−

−
w∑

j=1

P (i|i)P−1
j (i|i−1)qedj(i|i−1))+

+P (i|i)P−1(i|i−1)Fqed(i−1|i−1)

(66)

qec(i|i) = qec(i|i−1) (67)

Proof: Substituting (64), the local-mode filter equation (61)
takes the form

qedj(i|i) =
= qedj(i|i−1) + Pj(i|i)CT

jR
−1
j (zj(i)− zdj(i|i−1))

(68)

and it yields

P−1
j (i)(qedj(i|i)− qedj(i|i−1)) =

= CT
jR

−1
j (zj(i)− zdj(i|i−1))

(69)

CT
jR

−1
j zj(i) = CT

jR
−1
j Cjqedj(i|i−1)+

+P−1
j (i|i)(qedj(i|i)− qedj(i|i−1))

(70)

respectively. Inserting (65) then (70) gives

CT
jR

−1
j zj(i)=P−1

j (i|i)(qedj(i|i)− qedj(i|i−1))+

+P−1
j (i|i)qedj(i|i−1)− P−1

j (i|i−1)qedj(i|i−1) =

= P−1
j (i|i)qedj(i|i)− P−1

j (i|i−1)qedj(i|i−1)

(71)

Combining (56) and (57) results in

qed(i|i) = Fqed(i−1|i−1)+

+P (i|i)
w∑

j=1

CT
jR

−1
j (i)(zj(i)−CjFqed(i−1|i−1)) (72)

which can be written as

qed(i|i) =
w∑

j=1

P (i|i)CT
j R

−1
j (i)zj(i)+

+(In −
w∑

j=1

P (i|i)CT
j R

−1
j (i)Cj)Fqed(i−1|i−1))

(73)

Since, pre-multiplying the left side of (51) by P (i|i), leads to

In −
w∑

j=1

P (i|i)CT
jR

−1
j Cj = P (i|i)P−1(i|i−1) (74)

then, considering (74), the relation (73) takes the following
form

qed(i|i) =
w∑

j=1

P (i|i)CT
j R

−1
j (i)zj(i)+

+P (i|i)P−1(i|i−1)Fqed(i−1|i−1))
(75)

Thus, the substitution of (71) into (75) implies (66). This
concludes the proof.

Remark 1: It is evident that (66) is not a fully decentralized
approach and an interleaving has to be used to modify (66).
An approximation, used in decentralized LQG control, is as
following [7], [11]

qed(i−1|i−1)) =
w∑

j=1

h(i−1|i−1))+

+
w∑

j=1

P−1
j (i|i−1)F−1qedj(i|i−1))

(76)

where (66) is rewritten into two sequences

qed(i|i) =
w∑

j=1

(P (i|i)P−1
j (i|i)qedj(i|i) + hj(i|i)) (77)

hj(i|i) = P (i|i)P−1(i|i−1)Fhj(i−1|i−1)+

+P (i|i)P−1(i|i−1)FP−1
j (i|i−1)F−1qedj(i|i−1))−

−P (i|i)P−1
j (i|i−1)qedj(i|i−1))

(78)

However, this does not define a recursion for P−1
j (i|i−1).
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Fig. 1: Faulty system output responses - SAF1

VI. RESIDUAL FILTERS

Considering the distributed Kalman filtering principle ap-
plied to discrete-time linear systems the residual filter structure
is appointed by the following theorem.

Theorem 2: Let the state estimates qedj(i|i), j = 1, 2, . . . , w
are computed using formulas of the form (61)-(64), (67),
conditioned by (55), (56) and (59), (60). Then with

P−1
j (i|i) = P−1(i|i−1) +CT

jR
−1
j Cj (79)

qed(i|i) =
w∑

j=1

P (i|i)P−1
j (i|i)qedj(i|i)+

+P (i|i)P−1(i|i−1)F (qed(i−1|i−1)−
w∑

j=1

qedj(i−1|i−1))

(80)
the residual filter takes the structure

rj(i) = zj(i), j = 1, 2, . . . w (81)

Proof: Setting that P−1
j (i|i−1) = P−1(i|i−1) and considering

(62) then (65) gives (79) and (66) implies (80). This concludes
proof.

To propose the inverse logic (the residual outputs are
approximately equal zero if a single actuator fault occurs),
then the residuals are evaluated using the formulas (81).

VII. ILLUSTRATIVE EXAMPLE

The example is a simple demonstration of the Kalman
filtering technique for the residual filter construction. The con-
sidered system can be put in the discrete-time state equation
form (3)-(6) with the sampling period ts = 0.8s, where S = 0,

R = diag [ 0.003 0.04 ], Q = 0.002 I4

F =




0.7650 0.6267 0.6058 0.0510
0.1048 0.1083 0.0813 0.0098
0.1484 0.1419 0.1171 0.0150
0.1709 0.2286 0.1603 0.1998




G =




0.0241 0.0139
0.0151 0.0013
0.0109 0.0056
0.0142 0.0032


 , C =

[
0.0001 0 1 0
0.0000 0 0 1

]
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Fig. 2: Residual filter responses - SAF1

Since the system is stable, the feed-forward control, for
simplicity, is used in simulations in such a way that

u(i) = Ww , w =

[
0.6
0.8

]

W = (C(I4−F )−1G)−1 =

[
−117.3841 79.3124
280.8078 −187.1829

]

and the initial conditions are

qT (0) =
[
0.006 0 0 0

]
, qe(0|0) = 0

P (0|0) =




0.0028 0.0001 0.0043 0.0002
0.0001 0.0202 0.0000 0.0003
0.0043 0.0000 0.0189 0.0000
0.0002 0.0003 0.0000 0.0140




In simulations there were considered single actuator faults,
modeled by the associated zero column in the matrix G and
starting at any time instant in a system steady state. Thus, Fig.
1 presents the system outputs and Fig. 2 gives the fault residual
filter responses (as the output of (81)), reflecting single fault of
the first actuator (SAF1) starting at the time instant t = 20 s.
Fig. 3 and Fig. 4 present the responses in analogous situations
concerning the single second actuator fault, all starting at the
time instant t = 20 s. Evidently, this residual filter structure
works in an inverse logic.

VIII. CONCLUDING REMARKS

Realization structures for distributed Kalman filtering, and
their applications in fault detection residuals filters structure
destined for noisy discrete-time systems, is derived in the
paper. The main idea goes with introducing distributed sensor
measurement noise corrector stage of a Kalman filter, applied
in such a way to be locally uncorrelated with other sensor
measurement. The problem accomplishes the manipulation in
the manner giving guaranty of asymptotic stability of a local
fault residual detection filter. Presented illustrative example
confirms the effectiveness of the proposed filtration method.
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Fig. 3: Faulty system output responses - SAF2
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