
Virtual Laboratory based on Node.js technology

Erich Stark, Pavol Bistak, Stefan Kozak, Erik Kucera
Institute of Automotive Mechatronics

Slovak University of Technology
Bratislava, Slovakia

Email: erich.stark@stuba.sk

Abstract - The paper demonstrates remote control of test
experiment in the virtual laboratory. This is a common problem,
but another way can always be used to solve it. The paper
compares several existing virtual laboratories and their possible
issues at present. To develop such a new solution JavaScript
technology was used on both client and server side using Node.js
runtime.

Keywords – virtual laboratory; javascript; node.js; rest services;
angular framework; mongodb; matlab;

I. INTRODUCTION
Practical exercises in the laboratory are important part of

the process of training people with technical background in
general. Ancient Chinese philosopher Confucius once said:
“Tell me, and I will forget. Show me, and I may remember.
Involve me, and I will understand" [1]. We know from
experience that man can learn in the fastest way when he tries
things several times, and after that he understands how it
works. Unfortunately, you cannot always provide direct access
to real devices to perform the experiment for researchers or
students. There may be several issues: the higher price of
laboratory equipment, workplace safety (depending on the
experiment), or lack of qualified assistants.

In recent years, the development of virtual machines has
increased mainly due to the technological evolution of software
engineering. The progress of modern technology gives us the
better approach to solve new challenges, while creating
whether the virtual systems for online teaching, or specific
virtual laboratories where physical processes can be simulated.
In experiments conducted in a virtual environment, it is
possible to share resources of this environment for more
connected users who want to perform the same experiment,
which would not be possible in our computers. This makes
virtual laboratory a good complement to study whether
research, where you can try different variations of the
experiment without risk to health or destruction of the device.
Later, experiments can be tested on real devices, if necessary.

II. VIRTUAL LABORATORIES
At the time when the Internet was not yet widespread in

use, the experiments were done in real laboratories. It was
important to keep on with different safety regulations to the
possibility of personal injury or damage to equipment.

Distance and lack of financial resources makes real
experiments difficult to perform, especially in cases where it is

necessary to have some advanced and sophisticated tools.
Another encountered problem is the lack of good teachers.
Although at present time there are already online courses that
provide instructional videos, but it solves the problem only
partially. Thanks to internet experiments can be structured for
visualization and control remotely. Nowadays, a lot of
equipment already provides an interface to connect computer
and process data from it. Experimenting over the internet
allows the use of resources, knowledge, software and data
when physical experiments cannot [2].

In this paper, we discuss the creation of virtual laboratory
(VL). Before we describe the list of technologies to create VL,
we must explain what we consider under VL. Generally, we
can say that VL is a computer program, where students interact
with the experiment by the computer via the Internet as it is
depicted in the Fig. 1.

Fig. 1. The difference between a face-to-face and remotely controlled
experiments.

A typical example is the simulation experiment, where the
student interacts with the web/app interface. Another
possibility is a remote-controlled experiment where the student
interacts with the real device via the computer interface,
although he can be far away. This is the case when a virtual
laboratory turns into a remote laboratory.

When web exclude the second option, so we have the
following definition: "We call it a virtual laboratory where the
student interacts with the experiment, which is physically at
distant from him or her and not to demand any physical
reality".

2017 21st International Conference on Process Control (PC)
June 6–9, 2017, Štrbské Pleso, Slovakia

978-1-5386-4011-1/17/$31.00 c©2017 IEEE 386

After explaining what is VL look at the benefits they can
bring. They are described in the Tab. I below.

TABLE I. COMPARISON OF REAL, VIRTUAL AND REMOTE
LABORATORIES. [5]

Laboratory
Type

Advantages Disadvantages

Real Real data
Interaction with real experiment
Collaborative work
Interaction with supervisor

Time and place
restrictions
Requires scheduling
Expensive
Supervision required

Virtual Good for concept explanation
No time and place restrictions
Interactive medium
Low cost

Idealized data
Lack of collaboration
No interaction with real
equipment

Remote Interaction with real equipment
Calibration
Realistic data
No time and place restrictions
Medium cost

Only “virtual presence”
in the lab

People often think that the main benefit of a virtual
laboratory is to replace the real one. But it is not. You cannot
replace the experience of the real work with the VL. Although
VL is better than no experience. VL should not be seen as
providing the maximum possible interaction experience.

A. Existing solutions
There are currently many different virtual and remote

laboratories, which are used by foreign universities for teaching
or research. This paper briefly reviews often used laboratories
that are accessible over the Internet. A comparison of
functionality and the use of technology can be seen in the Tab.
II, where different virtual laboratories created in the world are
summarized.

TABLE II. COMPARISON OF VIRTUAL LABORATORIES CREATED
OUTSIDE OF FEI STU [3].

Name of
VL

Client technology Server technology Simulation
software

Weblab-
DEUSTO

AJAX, Flash, Java
applets, LabVIEW,
Remote panel

Web services,
Python, LabVIEW,
Java, .NET, C, C++

Xilinx-
VHDL,
LabVIEW

NCSLab AJAX, Flash PHP Matlab,
Simulink

ACT HTML, Java applets PHP Matlab,
Simulink

LabShare
Sahara

AJAX, Java applets Web services, Java Java

iLab HTML, Active X,
Java applets

Webservices, .NET LabVIEW

RECOLAB HTML PHP Matlab,
Simulink

SLD AJAX, HTML Webservices, PHP Matlab,
Simulink

There are also some from our Faculty of Electrical Engineering
and Information technology in the Tab. III.

TABLE III. COMPARISON OF VIRTUAL LABORATORIES CREATED AT FEI
STU [4].

Year Author Simulation
software

Data
flow

Client Server
technology

2011 R. Farkaš Matlab,
Simulink,
Real device

JMI
Sockets

Java Java

2012 T. Borka Matlab,
Simulink,
Real device

WCF .NET
WPF

.NET

2014 M. Kundrát Matlab,
Simulink

JMI
SOAP

HTML
JS

Tomcat
Java
JSF
EJB3
MySQ
L

2014 T. Červený Matlab,
Simulink

JMI
HTTP

HTML
JS

Jetty,
Java

2015 Š. Varga Matlab,
Simulink

COM
HTTP

HTML
JS

.NET,
PHP

B. Disadvantaged of existing solutions
At the beginning of the design of a virtual laboratory it was

appropriate to examine the possibilities of existing solutions. It
is important to avoid various design issues. Alternatively,
technologies that have been used are already outdated.
Nowadays, the development of new technologies is incredibly
fast. Such an analysis of existing solutions we have done in the
previous section. Our aim was to create a cross-platform
solution using one programming language on client and server
side, which cannot be done with WCF or COM technology as
in the previous solutions. JMI is only suitable for solutions
where Java platform is used. The server cannot be used also
with LabVIEW technology or .NET (multi-platform version -
.NET core is already under development). Client solutions such
as Flash, ActiveX and Java applets are no longer supported in
browsers, so their use is not appropriate.

C. Components of virtual laboratory
There are plenty of existing laboratories, but usually it is

not possible to guarantee compatibility between them, because
there is not a solid standard. Anyway, it is always possible to
identify the basic components that virtual laboratories can use.
Some of them can be even used more times.

Components:

• The experiment itself.

• The device with possibility to control and acquiring
data.

• Laboratory server, which provides control, monitoring
and data processing of the experiment.

• Server providing connection between remote users and
laboratory server, usually via the internet.

• Web camera connected to a server, which can be used
for remote user as a visual and audible feedback on the
actual status of the experiment.

• Tools enabling multi-user audio, video and chat
communication.

387

• Client software controlling and representing data of the
experiment [6].

It is important to realize which of these components could
be used, because for creation of a virtual laboratory it isn’t
necessary to have them all. Alternatively, others that are
perfectly suited for a role can be used also. Sometimes it is
used e.g. database server if experiments will be stored and
processed later. It is also important to realize what type of VL
we want to create. Certainly, differences will be in the design
of single-user as opposed to multi-user VL, even with multiple
experiments simultaneously. It should bear in mind as properly
solve the scalability, potential safety issues, multi-user access
and other possible issues.

III. ARCHITECTURE PROPOSAL
As the main component Node.js was selected. It is the

server which handles communication between components of
VL. The parts of architecture will be explained based on Fig. 2.
The data are fetched periodically from Simulink into Matlab
workspace. In the beginning, it was not sure whether it would
be possible to achieve to run multiplatform soft real-time
Simulink based simulations. Because only Windows based
solution was found directly from MathWorks. For our solution
Real-Time Pacer [7] was used that allows us to run simulations
in soft real-time even under macOS or Linux. It is used to slow
down the simulation to the soft real-time.

To communicate with RESTful web service Matlab R2015a
uses the built-in rarely used function webread and webwrite
[8]. Firstly, simulation must be run through web browser, after
that data will be transferred over socket.io library channel.
These data will be shown in the graph of web browser and it is
possible to save them to MongoDB database for later
processing (Fig. 2).

Fig. 2. Design of communication between components.

A. Reference simulation model
For a development purpose we used the simulation of

dynamic system called projectile motion implemented in
Simulink that runs through the web interface. This simulation
needs to be run with two files. Purpose of the first is the
initialization of variables needed to calculate the coordinates of
the point. This experiment has three parameters. The first and
second parameter are initial values for simulation. The last
parameter userFromWeb is not necessary for simulation itself,
but it is important to identify user who runs the simulation.
This makes it possible to assign the simulation results in later
processing from the database.

B. Experiment handler
The second Matlab file is a handler code sending the data to

Node.js. Because of its length of implementation, it is not
possible to display whole source code, so we describe only the
key part.

During initialization the URL path is set for Express.js
REST API where Matlab will send the data.

The model is preloaded using the Matlab function
load_system('projectile_motion'). This function searches in the
current folder for projectile_motion.mdl file and sets it as the
top-level model. After this initial settings, simulation must be
run using the command set_param(model,
'SimulationCommand', 'Start').

In the next block of the Matlab code it is running an infinite
while loop that makes possible to collect data from the
simulation to the state until it is complete. Inside of the while
loop the function set_param(model, 'SimulationCommand',
'WriteDataLogs') is called, which is looking for the current top-
level simulation. In the soft realtime the calculated data are
written to the Matlab workspace. Without that function data
would be written only after the simulation ends.

Meanwhile, it is necessary to prepare required format of
data for the web service. Thus, before sending them to the
REST API it is suitable to wrap data to the JSON structure. We
used the Matlab library JSONlab v1.2 [9].

A sequence of these two commands is required to create the
desired JSON format and send it to Express.js API. Create
JSON with the commonad json = savejson('result',
struct('user', userFromWeb, 'status', 'Running', 'data',
struct('time', timeFinal, 'you', vyFinal, 'y', yFinal, 'x' xfine)))
and transfer it to the service with response = webwrite (URL,
JSON, options).

The command get_param(model, 'SimulationStatus') is
used to check current status of the simulation. If the simulation
is still running the status is "running". As soon as the status is
"stopped", the loop needs to be stopped using the break
keyword and we know that all data is transferred to Node.js.

C. Communication between components
One of the aspects among the individual components of the

laboratory is communication. Although in each component
communication works differently, it is still based on the HTTP
protocol.

388

The sequence diagram on the Fig. 3 shows that communication
starts from the web browser. The user inserts the parameters of
simulation, which are sent to StarkLab via the REST web
service. This service starts Matlab on the current operating
system with the necessary files and simulation parameters.
Meanwhile, the user waits until Matlab starts in the
background. Simulation is immediately initialized and starts
sending data to StarkLab, which sends them directly to the web
client from where the simulation has been originated. All the
received data will be reflected to the chart, animation and table
in the web browser. This sequence is repeated until the
condition contains SimulationStatus == "running". After
stopping the simulation, the client sends a request to save data
through StarkLab directly into the document database
MongoDB.

Fig. 3. Communication between components.

D. Run Matlab from command line
At the beginning, it was not clear how to run the

simulation. It was necessary to determine whether Node.js
allows to carry out the commands of the operating system,
respectively run programs. The simulation was working in such
a way that the Matlab was opened manually and we put there
all the necessary initialization files, then the simulation itself.
But this solution is not sufficient in terms of automation and
autonomy.

It has been found that Node.js can launch any software that
can run through the terminal. To simplify this workflow the
shell.js [10] library was used which provides such an option.

The sample of code on Fig. 4 shows how Matlab is started
via Node.js route http://localhost/matlab/run. This route is

called immediately after form was sent with initial parameters
of the experiment from the web browser.

Fig. 4. Start Matlab in command line using shell.js library.

IV. REMOTE CONTROL OF EXPERIMENT

A. Web client created with Angular framework
Client application was created with the JavaScript

framework Angular [11] (version 1.5.5). The role of the web
client was to verify the functionality of the server that sends
simulated data. The functionality has been verified, and screens
will be described specifically.

Fig. 5 shows login page for web client application. It is
authenticated against LDAP server of Slovak University of
Technology.

389

Fig. 5. Login to web application.

The details of the login process via LDAP is not interesting
for this part of the paper. After successful login, the dedicated
page for the tested experiment is showed. Our experiment was
projectile motion. It takes two parameters to run simulation. On
Fig. 6 it can be seen the form that takes two parameters to run
simulation. The page is redirected to http://localhost/matlab
route, where user is waiting to see the data from Node.js REST
API.

It redirects to the dashboard page and user has to wait until
the start of Matlab simulation. When it starts, user will see new
data coming to graph, animation and table in his web browser.
This part could be accelerated by powerful server running with
the Matlab.

Fig. 6. Parameters of simulation – initial velocity and angle in degrees.

Visualization of the received data is done by Chart.js
library on Fig. 7. Our implementation of chart was created
using Angular directive with name <ui-graph></ui-graph>.
Because of this approach to use Angular components, it can be
used multiple times with the same codebase.

At the beginning, it is necessary to get an element from
DOM (Document Object Model) tree. Next step is to obtain
canvas context and create object with initial data.

The plotted data at the bottom of the picture is identical
with the data in the graph. The difference is in the way of
implementation as animation. This animation was created using
HTML Canvas technology.

Fig. 7. Graph and Animation of projectile motion in [x, y] position.

The last section, where the data can be seen is a table where
data were added over time as well as chart and animation
before. In this table Angular databinding [11] is used to set
received object as one row with their properties. As simulation
runs, the Angular adds new rows to table dynamically.

Fig. 8. Table data – time, x, y, vy values of projectile motion experiment.

This system is not only about the real-time rendering of
data, but also for later viewing and processing of them. On the
site of simulations, we can see all the entries for the currently
logged in user – Fig. 9. The list is obtained from MongoDB
using Angular $http.get(url, callback) function from web client
to our Node.js server, which can have access to database.

390

When the one of the results is opened, the output looks the
same as in Fig. 7, but it is possible to set data sampling and
time of simulation. The second option is about time rendering.
There are two options: to see data output immediately or soft
real-time as it was firstly run.

Fig. 9. Table of saved simulation for currently logged user.

V. CONCLUSION
After the experience with this kind of development, we

assess that the creation of virtual laboratory platform on
Node.js development was easier thanks to the use of JavaScript
on the server and client side. We thought that due to the single
thread loop of Node.js would handle more clients and
simulations than similar solution on a different platform. The
problem was not in many of registered users, but only when we
run multiple simulations in Matlab. In our test computer -
MacBook Pro there was already a problem with two parallel
simulations. It can be improved using powerful server for
Matlab calculations.

The work is not over yet and StarkLab can be extended
with another interesting functionality such as the creation of
unified protocol for data interchange. Suitable would be also
interfaces for other calculation and simulation software. Matlab
deployment on a separate server with an available domain

would help to availability. Another interesting functionality
would be uploading simulation and calculation scripts through
a web interface.

The current solution is not possible to deploy into
production without certain modifications and integrations, but
it might serve as a solid basis for adding new features. There
are many ways to improve this solution.

All code is open source available at
https://github.com/erichstark/.

ACKNOWLEDGEMENT
This work has been supported by the Cultural and

Educational Grant Agency of the Ministry of Education,
Science, Research and Sport of the Slovak Republic, KEGA
030STU-4/2017, and by the Scientific Grant Agency of the
Ministry of Education, Science, Research and Sport of the
Slovak Republic under the grant VEGA 1/0937/14 and VEGA
1/0819/17.

REFERENCES
[1] Renee R. Wright, “Using 3 Dimensional Simulation in Nursing

Education” in Sigma Theta Tau International, the Honor Society of
Nursing, Las Vegas, Nevada, USA, page. 1, November 2015.

[2] Vlab team, “The Philosophy of virtual laboratories”, [online].
[accessed on 2016-03-13]. <http://vlab.co.in>

[3] SANTANA I.; FERRE M.; IZAGUIRRE E.; ARACIL R.;
HERNÁNDEZ L., “Remote Laboratories for Education and Research
Purposes in Automatic Control Systems”, IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, VOL. 9, NO. 1., page. 3.

[4] E. Stark, “Virtual laboratory using JavaScript on the server side (in
slovak)”, Master’s thesis, Slovak University of Technology in
Bratislava, 2016.

[5] Z. Nedic; J. Machotka; A. Nafalski, “Remote laboratories versus virtual
and real laboratories”, Frontiers in Education, FIE 33rd Annual, 2003.

[6] L. Gomes; S. Bogosyan, “Current trends in Remote Laboratories”, IEEE
Transactions on Industrial Electronics (Volume: 56, Issue: 12),
December 2009.

[7] G. Vallabha, “Real-time Pacer for Simulink”, Published in Matlab
Central repository, latest version on September 2016.

[8] MathWorks team, “Web Access”, Published in Matlab Documentation
[online].

[9] Q. Fang, “JSONlab: a toolbox to encode/decode JSON files”, Published
in Matlab Central repository, version 1.2.

[10] Contributors, “shell.js”, Published in github.com repository.
[11] M. Hevery and team, “Angular framework”, [online]. [accessed on

2016-03-13]. <http://angularjs.org>

391

