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Abstract—In the paper, a novel robust controller design 
method is developed for discrete-time parameter varying 
system using matrix inequalities. Auxiliary matrices are used 
to reduce conservatism of the proposed robust stability 
conditions. The resulting design method is illustrated on 
examples. 
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I.  INTRODUCTION 
Robust control provides an attractive controller design 

approach, applicable on real world systems control, since it 
is resistant to a wide range of uncertainties and 
imperfections. Various approaches and methods for robust 
control design have been developed in time and frequency 
domain. In state space, quadratic, or polynomially dependent 
Lyapunov function is often used to receive stabilizing 
control, e.g. [1], [2], [3], formulated as matrix inequalities. 
There is still an effort to simplify the respective robust 
stability conditions or to reduce their conservatism 
(difference between “sufficient” and “necessary and 
sufficient” conditions). One possible way to relax the 
conservatism is to include auxiliary matrices, which means 
lifting of problem into higher dimension space.  

In this paper we propose the discrete-time counterpart to 
the recently presented robust stability condition for uncertain 
continuous-time system, [3]. Important feature of the 
developed novel robust stability condition is the fact, that 
product of input matrix and control gain matrix is dilated 
owing to extra degree of freedom introduced by additional 
matrices, which opens the way to use the proposed approach 
to the gain scheduling control. The proposed robust 
controller design scheme is illustrated on two examples 
(nonlinear boiler-turbine system and magnetic levitation 
system).  

II. ROBUST CONTROL PROBLEM AND PRELIMINARIES 
Consider the discrete-time uncertain polytopic system  
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iA , iB and C are known constant matrices of the respective 
dimensions. Parameter )(k   varies in time, dependence 
on k is omitted for better readability. 

The static output feedback control is considered 

 )()( kFCxku   

where F  is a controller gain matrix conforming to the 
structure of B and C.  

 The respective uncertain closed-loop system is then  
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where 
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To assess the performance quality, a quadratic cost 
function known from LQ theory is used.  
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where mmnn RRRQ   , are symmetric positive definite 
matrices. 

The concept of guaranteed cost control is used in a 
standard way. Let there exist a feedback gain matrix 0F  and 
a constant J0  such that  
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holds for the closed loop system (4). Then the respective 
control (3) is called the guaranteed cost control and the 
value of  J0 is the guaranteed cost.  

The main aim is to develop a static output feedback 
(SOF) control algorithm that stabilizes the uncertain system 
(1), with guaranteed cost with respect to the cost function 
(6).  

The development of main result is based on Lyapunov 
stability approach, the following lemma known from LQ 
theory is recalled for a reader’s convenience. 

Lemma 1 

Consider the discrete time system (1) with control 
algorithm (3). Control algorithm (3) is the guaranteed cost 
control law for uncertain system (1) if and only if there exists 
a Lyapunov function 0)( kV such that the following 
condition holds 

 0)()(  kJkV  

We use Parameter dependent Lyapunov function (PDLF) 
in the form, [1] 
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We further assume that the change of PDLF matrix 
)(P within one sampling period is given by a limited 

parameter  change 
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From (10) and (9) we have an upper bound on matrix 
)(P change  
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In the following we use denotation   P  for 
 )1( kP   and  P  for  )(kP  . 

Robust stability is considered in the sense of the 
following definition. 

Definition 1  ([2]) 

System (4) is robustly stable in the convex uncertainty 
domain (2) with parameter-dependent Lyapunov function 
(9) if and only if there exists a matrix 0)()(  TPP   
such that 
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for all  such that  CA  is given by (5).         

III. ROBUST CONTROLLER DESIGN  
In this section, sufficient conditions for robust SOF 

controller design are derived in the form of matrix 
inequalities.  

The following developments provide a discrete-time 
counterpart of recently published result for continuous time 
systems, [3]. 

To achieve robust stability of the closed loop with 
guaranteed cost, we consider condition (8), which is 
rewritten for PDLF (9) and  )(kJ  from (6) as 
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Inequality (13) can be rewritten in a matrix form as 
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We use auxiliary matrices to include constraints (1) and (3) 
for )1( kx and )(ku as well as to lift the parameter space. 
For this reason we consider equalities 
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where  denotes a transpose term to the previous one. 

Rewrite now equalities (15) and (16) into a matrix form 
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and for (16) 
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  denotes the transpose term for a symmetric element.  

Summing (14) with (17) for 1W  and 2W , the final 
condition for stability with guaranteed cost is obtained as 
summarized in Theorem 1. 

Theorem 1  

Consider discrete-time system (1) with cost function (6). 
Output feedback control (3) stabilizes system (1) with 
guaranteed cost if there exist symmetric positive definite 
matrices nxn

i RP   and matrices mxpRF  , nxnRNN 21, , 
nxmRN 3 ,  mxnRNN 54 ,  and mxmRN 6 such that the 

following inequality holds for Ni ,...,2,1  
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Taking convex combination of (18) for Ni ,...,2,1 we 
arrive at 
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Considering the arguments above Theorem 1, it can be 
easily shown that (19) implies (13), therefore it is sufficient 
stability condition with guaranteed cost. This ends the proof. 

Condition (18) provides a stability condition in the form 
of Linear matrix inequality (LMI) for known control gain 
matrix F; for a robust controller design it is in the form of 
Bilinear matrix inequality (BMI).  

Remark 1 

It is important to note that in the developed condition 
(18), controller gain matrix F does not appear in product 
with parameter dependent matrix  B , which enables to 
use this condition directly for a gain  scheduling controller 
design with parameter dependent gain matrix  .F Details 
of robust controller design for a discrete time uncertain 
system with gain scheduling control are under research. 
Other possibility to use (18) is to consider parameter 
dependent output matrix C. 

In the next section, robust controller design using (18) is 
illustrated on two examples: one of them is unstable SISO 
system, the other is two input - two output system with 
additional disturbance input, decentralized control is 
designed.  

IV. EXAMPLES 
In this section, results for robust PID controller design 

are shown for: 

- magnetic levitation system [4], [8] – Example 1 

- nonlinear boiler-turbine system, [5], [6]  - Example 2 

Example 1   Magnetic levitation  

In this example we consider state space linearized model 
of magnetic levitation laboratory system, [8], where the aim 
is to control a ball position within the air space by voltage 
input controlling the corresponding current in a coil; details 
about model can be found in [4]. Note that the system is 
highly nonlinear and unstable.  

The state space model is obtained for sampling period 
T=0.001s and is augmented by additional 2 states and 2 
outputs to include PID controller dynamics (augmentation 
procedure can be found e.g. in [7]). 

We consider two working points respective to two ball 
positions 
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Solving (18) we obtain controller gain matrix 
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The corresponding PID controller transfer function is 
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The respective step responses for nonlinear simulation 
model are shown in Fig. 1. The obtained controller stabilizes 
the system in the considered region, with relatively quick 
response. 
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Fig. 1. Step responses for Maglev ball position – closed loop with the 
designed PID controller. 

Example 2  Boiler-turbine system, [5], [6] 

In this case, we consider nonlinear boiler-turbine system 
with two control inputs (feed water flow and fuel flow) and 
two controlled outputs (drum pressure and water level). The 
third input – load (changing steam demand) is considered as 
a disturbance. Decentralized control structure is considered, 
with 2 PI controllers, where drum pressure is controlled by 
fuel flow and water level by feed water flow. 

The state space model is augmented by additional 2 states 
and 2 outputs to include dynamics of 2 PI controllers for the 
corresponding subsystem loops. 

The augmented state space models for 3 working points 
discretized for sampling period T=1s  are given by (1) for 
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Solving (18) we obtain controller gain matrix for 

decentralized control 
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We compare this result with controllers presented in [5] 
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Fig. 2. Step response of water level: comparison of the designed controller 
(red line) and the one from literature (yellow line), disturbance (load 
change) appears in 4000s time. 
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Fig. 3. Step response of steam pressure: comparison of the designed 
controller (red line) and the one from literature (yellow line), 
disturbance (load change) appears in 4000s time. 

We can observe on output responses in Fig.2 and Fig.3 
that the proposed robust controller has slightly slower 
response than the reference one, however its robustness 
competes the other one when a disturbance appears. Note 
that in 2000s time, where steam pressure setpoint is changed, 
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the couplings between system variables cause the oscillations 
of water level.  

V. CONCLUSION 
The novel robust stability condition for a discrete time 

polytopic system with output feedback control was 
developed, which does not include a product of controller 
gain matrix and other unknown number, therefore it enables 
to consider parameter dependent controller gain matrix. 
Moreover, the developed condition includes extra degrees of 
freedom, thus can be assumed as less conservative. The 
result in the form of matrix inequality can be used for robust 
stability analysis (as LMI) or robust control design (as BMI). 
Two examples illustrate the applicability of the proposed 
condition for a robust controller design also for unstable and 
MIMO systems. 

ACKNOWLEDGMENT  

The work has been supported by the SRDA grant No APVV 
0772-12 and Slovak Scientific Grant Agency, grant No 
1/0733/16. 

REFERENCES 
[1] J. Daafouz, J. Bernussou, “Parameter dependent Lyapunov functions 

for discrete time systems with time varying parametric uncertainties”, 
Systems & Control Letters 43, 2001, pp. 355–359. 

[2] M.C. de Oliveira, J. Bernussou, J.C. Geromel, “A new discrete-time 
robust stability condition”, Systems & Control Letters 37, 1999, pp. 
261–265. 

[3] V. Veselý,“ A new method to robust controller design“, in 17th 
International Carpathian Control Conference (ICCC), May 29-June 1 
2016  

[4] P. Balko, D. Rosinová, "Modeling of magnetic levitation system", 
submitted to Process Control 2017 

[5] F. Morilla, "Benchmark for PID control based on the Boiler Control 
Problem".  In: Proceedings from  IFAC  Conference  on  Advances  in  
PID Control  PID'12,  Brescia,  March  2012,  Italy, available on: 
http://www.dia.uned.es/~fmorilla/benchmarkPID2012/ 

[6] P. Balko, D. Rosinová, “Robust decentralized control of nonlinear 
drum boiler” In IFAC-PapersOnLine: 8th IFAC Symposium on 
Robust Control Design ROCOND 2015. Bratislava, Slovakia. 8-11 
July 2015. Vol. 48, No. 14, 2015, p. 431-436. 

[7] V. Veselý, D. Rosinová, “Robust PID-PSD Controller Design: BMI 
Approach”,  Asian Journal of Control, Vol. 15, Iss. 2, 2013, p. 469-
478. 

[8] Magnetic Levitation System 2EM - User's Manual (Inteco Ltd, 
Krakow, Poland, 2008). 
 

 

65


