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Abstract---In this contribution, an efficient Real-time Opti-
mization (RTO) scheme for the optimal operation of chemical
processes under uncertainty is proposed. This work builds on two
recently published iterative robust optimization methodologies:
Modifier Adaptation with Quadratic Approximation (MAWQA)
and Directional Modifier Adaptation (DMA) and proposes a
unified framework where the benefits of both methods are
combined. As a consequence, fast convergence to the true
plant optimum is achieved despite the presence of plant-model
mismatch. The methodology is illustrated by simulation studies
of a novel transition metal complex catalyzed process.

I. INTRODUCTION

Nowadays the process industry faces multiple challenge in-
cluding an increasing global competition, high quality standards
and tight environmental regulations. Model-based Real-time
Optimization (RTO) has emerged as an attractive approach to
improve the efficiency of plant operations [1]. The key idea
in RTO schemes is to make use of a stationary nonlinear,
usually first principles based mathematical model of the plant,
with the goal of operating the process as closely as possible
to its optimum. Despite the increasing acceptance of RTO
in refineries and petrochemical processes like Fluid Catalytic
Cracking or Steam Cracking, its application to other processes
is still limited. This can be partially explained by the fact
that under model inaccuracies (i.e. plant-model mismatch),
convergence to the true plant optimum cannot be ensured or it
might lead to constraint violations. On the other hand, the effort
needed to develop very accurate first principles plant models
is a bottleneck for the application of advanced model-based
solutions.

In the classical RTO scheme, the issue of plant-model
mismatch is usually addressed by online adaptation of some
model parameters. This however will only resolve the problem
if the model is structurally correct. A different approach to
address the issue of plant-model mismatch is the addition of
gradients and bias correction terms to the objective function
and to the constraints of the nominal optimization problem
in the so-called Modifier Adaptation scheme [2], [3], [4].
Under the assumption of model adequacy [5], it has been
shown that the algorithm generates a sequence of inputs
that converges to a stationary point of the plant. The main
challenge of this method is the accurate estimation of the

plant gradients. In the seminal work of [6], the approximation
of the derivatives by finite differences was proposed, which
limits the method to low-dimensional problems with negligible
noise levels. More sophisticated algorithms have been proposed
during the last years including dual Modifier Adaptation
(Dual-MA) [7], Nested Modifier Adaptation [8], and more
recently the use of ideas from the derivative free-optimization
(DFO) framework in the Modifier Adaptation with Quadratic
Approximation (MAWQA scheme) [9]. While the robustness
of these methods has been demonstrated under structural
mismatch and in the presence of noisy measurements, for
quite a few examples, in the case of several inputs that are
included in the optimization, the number of necessary plant
trials can be large. In [10] the concept of directional derivatives
within the context of Modifier Adaptation (Directional Modifier
Adaptation, DMA) was introduced with the aim of reducing
the number of perturbation directions by performning only
moves that yield significant information based on a parametric
sensitivity analysis. In the same work the method was combined
with Dual-MA and applied to a power kite.

In this work, a new RTO scheme is proposed for the optimal
operation of chemical processes under model uncertainty and
noisy measurements. The methodology combines the benefits of
MAWQA and DMA in a unified framework with an improved
robustness to measurement noise, while at the same time the
number of functions evaluations (plant perturbations) is reduced.
The paper is organized as follows. In section II the problem
is stated. The proposed scheme is presented in section III.
The case study is introduced in section IV, and the resulting
problem is stated in section V. Simulation results are presented
in section VI. Finally, some concluding remarks are given in
section VII.

II. PROBLEM STATEMENT

RTO can be stated as a static optimization problem:

min
u

Jp(u)

s.t. Cp(u) ≤ 0

u ≤ u ≤ u,

(1)

where the vector of manipulated variables u ∈ Rn is bounded
by u and u, Jp(u) : Rn → R is a scalar objective function
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TABLE I
ALGORITHM MODIFIER ADAPTATION

Algorithm Modifier-Adaptation
Step 1: Given the initial point u0, set k = 0
Step 2: Calculate the modifiers according to (4)
Step 3: Compute the next input by solving (3)
Step 4: Set k ← k + 1, return to Step 2

of the plant, and Cp(u) : Rn → Rr is a vector of plant
constraints. In practice, the true process mapping is not known,
and only approximations of the objective function (Jm) and
of the constraints (Cm) are available. Then, the nominal
optimization problem can be stated as:

min
u

Jm(u)

s.t. Cm(u) ≤ 0

u ≤ u ≤ u.

(2)

The goal is to determine the vector of inputs u∗ which
satisfies the optimality conditions of (1) by using measurements
of the values of the cost function and of the constraints that
are observed at the real plant together with the nominal model
in (2).

III. METHOD PROPOSED

A. Modifier Adaptation

The idea behind Modifier Adaptation (MA) is to add bias
and gradient correction terms to (2), resulting in an iterative
optimization procedure:

uk+1 = argmin
u

Jm(u) + ε
(k)
J + λ

(k)
J

(
u− u(k)

)

s.t. Cm(u) + ε
(k)
C + λ

(k)
C

(
u− u(k)

)
≤ 0

u ≤ u ≤ u.

(3)

The superscript k denotes the iteration number. The bias is
corrected by the zeroth-order modifiers ε while the gradient
correction is done by the first-order modifiers λ:

ε
(k)
J = J (k)

p − J (k)
m

λ
(k)
J =

(
∇J (k)

p −∇J (k)
m

)T

ε
(k)
C = C(k)

p −C(k)
m

λ
(k)
C =

(
∇C(k)

p −∇C(k)
m

)T
.

(4)

The modifier adaptation scheme can be summarized in the
algorithm presented in Table I [11]:

Proposition: Assume a perfect estimation of the plant
gradients; also assume that the iterative scheme (3) converges
to the point u∞. If this point is a KKT point of the modified
problem (3), then u∞ is also a KKT of the plant (1).Proof:
the proof is straightforward, as follows that the substitution
of u∞ in the first-order optimality conditions of the modified
problem (3) implies the first-order optimality conditions of the
plant. It is important to note that the algorithm can converge
to any stationary point (including a saddle point) of the plant.

For further details of the convergence properties of MA, the
reader is referred to [5].

B. Modifier Adaptation with Quadratic Approximation
(MAWQA)

The most challenging aspect of MA is the accurate estimation
of the plant gradients. The seminal work of [6] suggested
introducing perturbations around the current operating point
with the aim of approximating the derivatives by finite
differences. However, firstly this leads to additional set point
changes which may not be welcomed by the plant operators
and secondly, the choice of the size of the perturbation is
difficult in the presence of measurement noise [3]. A recently
proposed approach [9] makes use of quadratic approximation
as it is used in the derivative-free optimization framework; the
basic idea is the estimation of the process gradients by fitting
a quadratic model to the data that was obtained at previously
visited operating points. The quadratic approximation of the
objective function is defined as:

Jφ(u,π) =

nu∑

i=1

nu∑

j=1

ai,juiuj +

nu∑

i=1

biui + c, (5)

with the parameter set π = {a1,1, · · · , anu,nu , b1, · · · , bnu , c}
obtained from solving the least-squares problem

min
π

nr∑

i=1

(
Jp

(
u(ri)

)
− Jφ

(
u(ri),π

))2

, (6)

where u(ri) is an element of the regression set U (k) composed
of past set-points selected to guarantee well-poisedness of
the problem. A minimum of (n + 1)(n + 2)/2 points must
be collected before Jφ can be computed. The values of the
constraint functions are approximated in a similar fashion.
Instead of introducing additional perturbations to the process,
MAWQA computes the plant derivatives from the derivatives
of the quadratic model. The new set-point obtained from the
solution of (3) is additionally restricted by an elliptical trust
region which is defined by the covariance of the regression
set. The algorithm is presented in detail in [9].

C. Directional Modifier Adaptation (DMA)

In order to reduce the number of functions evaluations under
parametric uncertainties, the use of directional derivatives has
recently been proposed [10]. The basic idea is to perturb the
process only in the directions according to the largest variation
of the gradient of the Lagrangian L with respect to a set of
uncertain model parameters θ in the model. The first step in
the algorithm involves the computation of the influence of
the normalized parameter variations on the gradient of the
Lagrangian, represented by the matrix M:

M =
∂2L

∂u∂θ
(u∗, ν∗, θ0)

× diag(θmax1 − θmin1 , ...θmaxnθ
− θminnθ

).
(7)

M is computed at the nominal (model) optimal operating
point u∗, with multipliers ν∗ and the nominal parameter
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values θ0. In order to normalize the sensitivities, it is assumed
that the minimum and maximum parameter values (θmaxi ,
θmini ) are known. The SVD generates the matrices U,Σ
and V, according to M = UΣVT . The matrix M can be
approximated by a lower rank matrix M̃ as stated in the
Eckart-Young-Mirsky theorem:

M̃ = UΣ̃VT , (8)

where Σ̃ is a diagonal matrix that contains only the nr < n
largest singular values, while the other singular values are
set to zero. The quality of the approximation given by (8)
depends on the condition number of Σ, i.e. given a singular
value σj << σ1, then neglecting the vector corresponding
to σj will have a low impact in terms of optimality loss.
As a result, a low-rank approximation of U given by Ur is
obtained where the columns of Ur corresponds to the preferred
directions. Then the computation of the directional derivatives
is straightforward. This is illustrated for the case of the plant
objective function:

∇UrJ
(k)
p =

∂Jp(u
(k) + Urr)

∂r
, (9)

where r is the vector of dimension nr. Based on the directional
derivatives, the plant gradients can be estimated as:

∇J (k)
p = ∇J (k)

m

(
In −UrU

+
r

)
+∇UrJ

(k)
p U+

r , (10)

where U+
r is the pseudo inverse of Ur. Equation (10) ensures

that the model derivatives are used in those directions of U
that were neglected in Ur, while the directional derivatives
are projected in those directions that are within the column
space of Ur.

D. Combining MAWQA and DMA

In order to combine the advantages of both methods for mul-
tivariable stationary optimization problems under uncertainty,
the following procedure is proposed:

Step 1: Off-line computations of sensitivities. Given the
nominal optimal point u0, and the nominal parameters and
bounds, the sensitivity analysis represented by (7) is performed
and the matrix Ur is obtained from (8). Set k = 0

Step 2: Perturbation of the process in the sensitive
directions. The directional derivatives are computed according
to (9) and the estimated plant gradients are obtained from (10).

Step 3: Compute a new operating point The optimization
problem (3) is solved and the new operating point uk+1 is
obtained. If convergence criteria are satisfied, the algorithm
finishes, otherwise set k ← k + 1 and repeat steps (2)-(3)
until a minimal number of (n+ 1)(n+ 2)/2 points have been
collected (minimum required for MAWQA)

Step 4: Modifier Adaptation with Quadratic Approxi-
mation. The algorithm switches to MAWQA. i.e. the plant
gradients are calculated from the regressed quadratic model
(Equations (5)-(6)) [9]. Solve (3) with the calculated gradients
until the convergence criterion has been satisfied.

Fig. 1. Thermomorphic Solvent System (TMS)

IV. CASE STUDY: OPTIMAL OPERATION OF A TRANSITION
METAL COMPLEX CATALYZED PROCESS

A. Process Description

Transition metal complex catalysis (also known as
organometallic catalysis) has become one of the most active
research fields in industrial chemistry. The attainable high
selectivity and activity at mild reaction conditions make them
suitable in pharmaceutical and fine chemistry synthesis. This is
illustrated by the fact that during the last 15 years, three Nobel
prizes in chemistry (2001, 2005, 2010) have been awarded
to researchers who have worked on this field. Furthermore,
it has been suggested that organometallic catalysis is one
of the fundamentals blocks in green chemistry, due to the
minimization of by-products thanks to the high selectivity
of the catalyst complex and its potential application on the
processing of renewable raw material. Despite the aforemen-
tioned promising results, commercial applications of transition
metal complex catalysis are still limited in comparison to their
heterogeneous counterparts. The high price of the metals and
ligands necessitates an efficient catalyst recovery concept. For
processes with mass transfer limitations due to low solubility
of at least one of the reactants or of the catalyst in the reaction
mixture, the idea of exploiting the temperature dependence
of the miscibility gap of a multicomponent solvent has been
proposed [12].

The principle of a thermomorphic solvent system (TMS) is
illustrated in figure 1. The feed (S3) is mixed with a carefully
selected mixture of polar (S1) and nonpolar solvent (S2).
At elevated temperature (T1) in the reactor the mixture is
homogeneous and therefore mass transfer limitations between
the two liquid phases are overcome; at a lower temperature (T2),
phase separation takes place and the phase that contains the
catalyst is recovered and recycled to the reactor. The product
phase is sent to further processing stages for solvent separation
and product purification. The process can be continuously
operated as is shown in figure 2.

In this work, the model reaction of the hydroformylation
of 1-dodecene to the linear aldehyde tridecanal using a
Rhodium-Biphephos complex in a TMS system consisting
of dymethlyformamide (DMF) and decane is studied. The
process concept has been demostrated in the collaborative
Research Center/Transregio 63 in a miniplant at TU Dortmund
[13], [14]. Besides the main reaction, undesired isomerization
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Fig. 2. Continuously operated TMS plant
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Fig. 3. Reaction network for the hydroformylation of 1-dodecene

and hydrogenation take place; as it is shown in the reaction
network (Figure 3). Therefore, the reaction conditions must be
carefully chosen in order to maximize the selectivity towards
the desirable product (the linear aldehyde). This process has
benn used as a case study for the design of chemical processes
under uncertainty [15]

B. Model Description

In this section a brief description of the process model
is provided, for further details we refer the reader to [16].
According to the material balance, the concentrations of the
different liquid components Ci (i = n-dodecene, n-tridecanal,
dodecane, etc), are given by (11):

V̇inCi,in − V̇outCi,out − CcatVR
Nreac∑

j=1

νi,jrj = 0, (11)

where Ccat is the concentration of active catalyst in the reactor
with volume VR and V̇in, V̇out are volumetric flows at the
inlet and the outlet of the reactor, νi,j are the coefficients in
the stoichiometric matrix and rj is the reaction rate for the j
reaction. The kinetic model is described in detail in [17].

The two-film theory is used for the description of the mass
transfer between the gas and liquid phases. The equilibrium at
the interface G-L is described by means of Henry equations,
where the relations between the liquid concentrations and the
partial pressure Pi are assumed as linear. The dependency of
the Henry coefficient Hi on the reaction temperature TR is
given by an Arrhenius expression, with activation energy Ei.

Pi = Ceqi Hi

Hi = Hi,0 exp

(−Ei
RTR

)
.

(12)

The bulk concentration of the gas components in the liquid
phase depends on the mass transfer coefficient (keff ) and
equilibrium concentration at the interface (Ceqi ):

−keff (Ci − Ceqi )− VoutCi,out − CcatVR
Nreac∑

j=1

νi,jrj = 0.

(13)
It is assumed that the LLE between the phases is reached in

the decanter. Based on experimental values, simple expressions
of the equilibrium constants Ki as functions of the decanter
temperature for the different liquid components i were obtained:

Ki = exp

(
Ai,0 +

Ai,1
Tdecanter

+Ai,2Tdecanter

)
, (14)

where Ai,0, Ai,1 and Ai,2 are parameters obtained by regression
of experimental data. The split factor ζi and the molar flows of
the components in the product (ni,product) and of the catalyst
(ni,catalyst) as a function of the inlet flow to the decanter
(ni,decanter) can be defined according to:

ζi =
Ki

1 +Ki
(15a)

ni,product = ζini,decanter (15b)
ni,catalyst = (1− ζi)ni,decanter. (15c)

C. Catalytic Mechanism

As was stated in equation (11) the reaction rate is propor-
tional to the concentration of the active catalyst Ccat. Different
catalyst species exist simultaneously in the reaction medium,
including Rh-di-carbonyl and Rh-dimer. This phenomenon has
been approximately quantified by [18] according to equation
(16). The active catalyst concentration Ccat is expressed as
a function of the Rh-precursor concentration CRh,precursor,
the CO and the H2 concentrations in the liquid phase. The
constants K1 and K2 account for unknown reactions and the
uncertainties in the catalyst pre-equilibrium.

Ccat =
CRh,precursor

1 +K1CCO +K2
CCO
CH2

(16)

V. RTO PROBLEM FORMULATION

The RTO problem is formulated as the minimization of the
operating costs per unit of tridecanal produced subject to the
model equations and the process constraints, as expressed by:

min
u

Pr1−dodecene · F1−dodecene + PrRh · FRh
Ftridecanal

(17a)

s.t. G(u) ≤ 0, (17b)

where Fi is the molar flow of the corresponding component
([kmol/h]) and Pri its price in e/kmol. As degrees of freedom
u the reactor temperature TR, the decanter temperature Tdec,
the molar fraction of carbon monoxide yCO, the catalyst dosing
rate Catdos and the total reactor pressure Ptot are considered.
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TABLE II
MODEL VS PLANT PARAMETERS

Parameter Plant Model I Model II
HCO [(MPa·m3)/kmol] 910 1183 1820
HH2

[(MPa·m3)/kmol] 35500 46150 71000
K2 [-] 1.01 0.7 2.0

TABLE III
MODEL AND PLANT OPTIMUM

Optimum
Process variable Bounds Plant Model I Model II
Reactor Temp. [◦C] [85-115] 85.9 85.0 88.94
Reactor Pressure [MPa] [1.0-3.0] 3.0 3.0 3.0
CO Fraction [-] [0.1-0.9] 0.56 0.55 0.49
Catalyst Dosing [ppm] [0.1-5.0] 0.47 0.54 0.77
Decanter Temp. [◦C] [5-25] 5.0 5.0 5.0
cost [e/kmol] 742.24 788.27 937.98

A. Nominal vs. (Simulated) Plant Optimum

The model and the simulated plant (henceforth it will be
called plant) are described by the set of equations (11)−(17).
The gas concentration in the liquid phase (i.e. the Henry
coefficient, equation (12) ) and the active catalyst concentration
(i.e. the value of the equilibrium constant K2 in equation (16))
were identified as the variables with the largest uncertainty
and two different scenarios were considered. The first scenario
assumes +/− 30% in parametric mismatch (Model I) while
the second one considers +/− 200% (Model II). The values
of the uncertain parameters for the simulated plant and for the
models are presented in Table II, and the comparison between
the optimal values for the plant and the models is shown in
Table III.

VI. RESULTS

A. Performance under noise free measurements

The results obtained by applying Directional Modifier
Adaptation (DMA) in the case of the first scenario using
Model I are depicted in figure 4. The trajectories of the
scaled inputs are displayed for 70 function evaluations. As
can be observed, after less than 20 function evaluations the
total pressure, the molar fraction of carbon monoxide, and the
catalyst dosing are within 5% of their final value. A slower
convergence is observed for the reactor temperature and the
decanter temperature. After 50 function evaluations all the
inputs converge to a neighborhood of their optimal values.
The trajectory of the objective function is also displayed in
figure 4. It can be observed that a significant reduction of the
cost function is achieved after 15 iterations.

Figure 5 compares the trajectory of the objective function for
different RTO schemes for the mismatch scenario with Model
I. All algorithms are able to generate a sequence of inputs
that converge to a neighborhood of the plant optimum. The
smallest optimality lost is reached by DMA, while MAWQA
converges faster to a neighborhood of the optimum. In this
case the performance of the proposed scheme is between DMA
and MAWQA.

0 10 20 30 40 50 60 70

0

0.5

1

in
p
u
ts

 

 P
tot,opt

P
tot

y
CO,opt

y
CO

T
dec,opt

T
dec

T
R,opt

T
R

Cat
dos,opt

Cat
dos

0 10 20 30 40 50 60 70
700

800

900

1000

number of function evaluations

C
o
s
t

 (
E

u
ro

/k
m

o
l)

 

 

cost function opt
cost function
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Fig. 5. Trajectory of the cost function for 30 % parametric mismatch.

A different result is observed for a larger parametric
mismatch. Figure 6 displays the trajectory of the objective
function when the Model II is used. In this case the largest
optimality lost after 70 iterations is observed for DMA, which
can be explained by the fact that the linear approximation of
the sensitivities in DMA introduces a significant approximation
error. The MAWQA scheme presents a slower convergence but
a higher accuracy. The combination of both algorithms in the
proposed scheme incorporates the advantages of both methods.
A faster convergence compared to MAWQA is achieved and
the final value of the objective function is closer to the actual
optimum in comparison to the one obtained by DMA.

B. Performance under noisy measurements

Finally, the performance of the proposed method is evaluated
for the case of noisy measurements. It is assumed that the
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Fig. 6. Trajectory of the cost function for 200 % parametric mismatch.
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TABLE IV
COMPARISON BETWEEN RTO SCHEMES UNDER NOISE. MODEL I

N (0, 5) N (0, 10)
ME STD ME STD

DMA 20.47 7.52 28.33 13.11
MAWQA 38.75 22.47 50.96 13.48
Proposed Method 16.08 4.12 17.31 8.15

TABLE V
COMPARISON BETWEEN RTO SCHEMES UNDER NOISE. MODEL II

N (0, 5) N (0, 10)
ME STD ME STD

DMA 43.71 8.43 46.81 17.60
MAWQA 27.63 7.37 44.27 13.89
Proposed Method 29.11 5.10 44.28 10.59

measured plant objective function Jp,meas is corrupted by
additive Gaussian noise µ with mean µ = 0 and variance σ2.

J (k)
p,meas = J (k)

p + ν(k) (18a)

p(ν) ∼ N (0, σ2). (18b)

Ns = 10 independent runs were performed with the stopping
criterion of k = 70 functions evaluations. Two performance
indicators are used. The mean error (ME) and the standard
deviation (STD), calculated as :

ME =

Ns∑

j=1

∣∣∣Jk=70
p (j)− J∗p

∣∣∣
Ns

,STD =

Ns∑

j=1

(
Jk=70
p (j)− J∗p

)2

Ns

(19)
where j is the number of the independent run and Jk=70

p is
the final value of the objective function and J∗p is the plant
optimum.

The results of the proposed method and its comparison
with DMA and MAWQA are presented in table IV for 30%
parametric mismatch (Model I). Two different noise levels are
considered with σ1 = 5 and σ2 = 10. For both noise levels, the
proposed methodology shows the best performance in terms
of mean error and standard deviation.

If a larger parametric mismatch is considered (Model II),
the performance of the proposed scheme in terms of the mean
error is similar to the one yielded by the MAWQA method
(see table V ). However, the proposed method produces the
smallest value of the standard deviation.

VII. CONCLUSIONS

In this work, a modifier adaptation scheme based on
directional derivatives and quadratic approximation is proposed.
The aim was to achieve a relatively fast convergence to the
true plant optimum, despite the fact that only an inaccurate
model is available. The performance of the algorithm has been
illustrated by simulations for a novel chemical process and
promising results were obtained. Future work involves the
study of strategies for the online updating of the sensitivity
matrix, as well as further studies to ensure convergence when
structural plant-model mismatch is considered.
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