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Faculty of Electrical Engineering, Department of Control Engineering

Czech Technical University in Prague, Czech Republic
Email: stefan.knotek@fel.cvut.cz

Abstract—This paper addresses distributed consensus prob-
lem for multi-agent systems with general linear time-invariant
dynamics and undirected connected communication graphs. A
distributed adaptive consensus protocol is found to solve prob-
lems of existing adaptive consensus protocols related to different,
generally large and possibly unbounded coupling gains. This
protocol guarantees ultimate boundedness under all conditions,
however for an asymptotic stability, a proper estimation of
reference values for coupling gains is required. Here, we propose
an algorithm for the estimation of the coupling gain reference.
The algorithm is based on a distributed estimation of the
Laplacian eigenvalues. In comparison to the previously proposed
algorithm based on the interval halving method, this algorithm
offers robustness to change of the network topology. In addition,
it decouples the estimation from the consensus protocol, hence it
does not influence stability properties of the adaptive consensus
protocol.
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decentralized estimation, multi-agent systems.

I. INTRODUCTION

In last two decades, a great effort has been made in
distributed control and estimation in formations of mobile
robots, satellites and vehicles. The inspiration came from the
natural behaviour of swarms, flocks and schools. Connecting
the graph theory, describing the topological structure of a
network, and control theory, the basic consensus protocols
for formation control in networked multi-agent systems are
introduced in [1], [2], [3] and [4].

Previously developed theoretical results in control of single-
agent system motivated the designs of recent distributed con-
trollers and observers. For example the passivity-based design
of cooperative controllers for cooperation and synchronization
of multi-agent systems is described in [5]. A unified viewpoint
on design of consensus regulator on directed graph topologies
using the synchronizing region is introduced in [6]. The design
of cooperative regulators and observers using state or output-
feedback in continous and discrete-time is considered in [7],
[8] and [9].

The static consensus protocols presented in [6], [7] and [8]
use a feedback coupling gain that satisfies a bound calculated
from the smallest non-zero real part of Laplacian eigenvalues.
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The graph structure has to be known to calculate this bound.
Therefore centralized information is required by each agent.

Distributed adaptive consensus protocols propose a solution
to this problem on undirected connected graphs [10] as well
as on directed graphs having a spanning tree with leader
as a root node [11]. These protocols do not rely on any
centralized information, therefore they can be implemented by
each agent separately without using any global information.
The protocols guarantee cooperative stability, however the
benefits from adaptability suffer from possibly large control
effort and lack of robustness to noise.

To avoid these drawback, a novel distributed adaptive con-
sensus protocol is developed. First, it was designed to solve
the cooperative regulator problem on undirected connected
communication graphs [12]. This work was later extended to
directed graphs having a spanning tree [13]. The protocol is
fully distributed, therefore it does not require any centralized
information. The unavailability of centralized information is
compensated by its estimation. The protocol runs an algorithm
for estimation of reference values for coupling gains. If the
reference values are estimated properly, the network of agents
is asymptotically stable. On the other hand the solution of the
network dynamics is ultimately bounded.

In this paper, we introduce an algorithm for proper esti-
mation of coupling gains’ references. The algorithm is based
on distributed estimation of Laplacian eigenvalues presented
in [14] and [15]. Each agent implements this algorithm and
estimates the smallest non-zero eigenvalue of the Laplacian
matrix. This values is then used to calculate the coupling
gain required for the asymptotic stability of the network. The
algorithm offers better robustness to change of the network
topology than the previously introduced estimation algorithm
based on the interval halving method. Moreover, it decouples
the estimation of coupling gains’ references from the adaptive
consensus protocol, thereby maintains the stability property of
the adaptive consensus protocol.

This paper is organized as follows. Section II introduces
the basic notation and graph preliminaries used throughout
the paper. Section III introduces the problems addressed by
the adaptive consensus protocol with the novel estimation
algorithm. The adaptive consensus protocol is presented in
Section IV. Section V introduces the novel algorithm estimat-
ing the eigenvalues of Laplacian matrix. Numerical simulation
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are given in Section. VI. Section VII concludes the paper.

II. PRELIMINARIES

Through this paper the following notations and definitions
are used. Rm×n denotes the set of m×n real matrices. Denote
1N as a column vector with N entries, all equal to one. A
matrix M = diag(v) for v ∈ Rn denotes Rn×n diagonal
matrix with elements of v on the diagonal. Ordering eigenval-
ues of a matrix M in ascending order, its i-th eigenvalue is
denoted by λi(M) and the smallest and the largest eigenvalues
are denoted by λmin(M) and λmax(M), respectively. Positive
(semi)-definite symmetric matrix is denoted by M � (�)0.
The sum over all agents is denoted by

∑
i for i = 1, . . . , N

when it is not stated directly.
An undirected graph is given by G = (V, E), where
V = {v1, . . . , vN} is a non-empty finite set of vertices and
E ⊂ V × V is a set of edges. An edge is a pair of nodes
(vi, vj), vi 6= vj , representing that agents i and j can exchange
information between them. In sequel, the graph G is assumed
to be undirected, connected and simple.

The adjacency matrix E = [eij ] ∈ RN×N associated with
the graph G is defined by eij = eji > 0 if (vi, vj) ∈ E ,
otherwise eij = eji = 0. Define the vector of node degrees as
d = E1N , and the degree matrix as D = diag(d). Then the
graph Laplacian is defined by L = D − E.

III. PROBLEM STATEMENT AND MOTIVATION

Consider a group of N identical agents. Each agent is
described by a general LTI dynamics

ẋi = Axi +Bui, i = 1, . . . , N, (1)

where xi ∈ Rn is the agents state, ui ∈ Rm is the agents input,
and A ∈ Rn×n and B ∈ Rn×m are constant matrices. The
matrix A does not need to be stable but the pair of matrices
(A,B) is assumed stabilizable. The communication topology
of the network of agents is given by an undirected graph G,
that is assumed connected.

Our goal is to synchronize the states of agents in the sense
of limt→∞ ||xj − xi|| = 0,∀i, j without requiring any cen-
tralized information. There has been developed many adaptive
consensus protocols that can reach this goal. However, all these
adaptive consensus protocols suffer from several drawbacks:

• different final coupling gain values,
• high final coupling gain values,
• lack of robustness to noise.

Our recent work [12], [13] present a novel adaptive con-
sensus protocol that avoids these drawback and solves the
cooperative regulator problem on undirected conected com-
munication graphs [12], later extended to directed strongly
connected communication graphs [13].

In this paper, we are going to extend the results on undi-
rected connected graphs [12] by proposing a new method for
estimation of coupling gain values.

IV. DISTRIBUTED ADAPTIVE CONSENSUS PROTOCOL

Let each agent implements an adaptive control law [12],
[13] given by a control input and a coupling gain dynamics

ui = ciK
∑

j eij(xj − xi), i = 1, . . . , N, (2)

ċi =
∑

j eij(xj−xi)T Γ(xj−xi)+
∑

j eij(cj−ci)−`(ci−κi),
(3)

where ` > 0 is a constant, ci > 0 is the coupling gain
associated with the i-th agent and κi ≥ 0 is a coupling gain
reference estimated by the i-th agent.

The gain matrices K and Γ are designed by LQR method.
Let Q = QT ∈ Rn×n and R = RT ∈ Rm×m be positive
definite symmetric matrices, then

K = R−1BTP, (4)

Γ = ΓT = PBK = PBR−1BTP, (5)

where matrix P � 0 is the unique solution of the algebraic
Riccati equation

ATP + PA− PBR−1BTP = −Q. (6)

The task of the coupling gain dynamics (3) is to adapt the
coupling gains ci. It consists of three main terms. The first
term on the right hand side pushes the coupling gains to higher
values until the states of agents get synchronized. The second
term on the right hand side synchronizes the coupling gains.
The third term on the right hand side pushes the coupling gain
ci to its reference κi. The value of the reference κi is estimated
by an estimation algorithm. The strength of the third term is
determined by the positive constant `.

The estimation algorithm determines the stability of the
network of agents implementing the adaptive control law
(2, 3). Each agent runs this algorithm to estimate its own
coupling gain reference κi. Since the coupling gain ci is
pushed to its reference κi by the coupling gain dynamics
(3), each agent estimates its own coupling gain. For small
values of κi below some bound κi < β the network dynamics
is ultimately bounded and the agent’s trajectories oscillate.
For large values of κi bigger than this bound κi ≥ β, the
network dynamics is asymptotically stable and the agents
reach consensus. Note that the ultimate boundedness is the
worst case scenario that guaranties stability albeit bounded.
This property provides sufficient time for the estimation of
κi.

With increasing κi increases also ci and thereby the control
effort. Hence, the aim of the estimation algorithm is to estimate
proper κi, that is sufficiently high to reach asymptotic stability
of the network but at the same time as low as possible to
minimize the control effort.

In the next section we present an estimation algorithm for
estimation of κi. We discuss its benefits and drawback, and
provide a comparison with the previously proposed algorithm.
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V. EIGENVALUE ESTIMATION ALGORITHM

The main contribution of this paper is an estimation algo-
rithm for estimation of the coupling gain reference κi. The
algorithm is based on the estimation of Laplacian eigenvalues
proposed in [14], [15]. Each agent estimates the Laplacian
eigenvalues by performing an algorithm with the following
updating rule

ṗi(t) = −∑j eij(t) (qi(t)− qj(t)) ,
q̇i(t) =

∑
j eij(t) (pi(t)− pj(t)) ,

(7)

where pi, qi ∈ R are artificial states of i-th agent.
The network implementing the updating rule can be de-

scribed by a time-varying autonomous linear system
[
ṗ(t)
q̇(t)

]
= A(t)

[
p(t)
q(t)

]
, (8)

where

A(t) =

[
0N −L(t)
L(t) 0N

]
, (9)

and 0N ∈ RN×N is a matrix of zeros.
Since A is a skew symmetric matrix, all its eigenvalues are

on the imaginary axis. Moreover, the eigenvalues of A can be
derived from the eigenvalues of the Laplacian matrix L.

Lemma 1 ([14], Thm. 1): Consider an undirected graph G
given by a Laplacian matrix L. Let A be given as in (9).
Then for every eigenvalue of the Laplacian matrix L there is
a complex pair of eigenvalues of matrix A

λi(A), λ̄i(A) = ±jλi(L). (10)

From Lemma 1 follows, that each state pi and qi follow an
oscillating trajectory, that is a linear combinations of sinusoid
oscillating at frequencies given by the Laplacian eigenvalues.
Note, that by change of the network topology the trajectories
remain continuous only the phase and the module of the signal
change. Using a Fast Fourier Transformation (FFT), each agent
can independently estimate the eigenvalues of the Laplacian
matrix. The smallest non-zero estimated eigenvalues is then
used to calculate the new κi. The formula for calculation of κi
was adopted from the stability condition of a static consensus
protocol.

Consider a control law with the control input (2) and one
static common coupling gain c, i.e. the coupling gain dynamic
(3) is neglected and the coupling gains ci are replaced by
only one static coupling gain c. A static consensus protocol
presented in [7] and [8] is obtained. Following from [7, Thm.
1], a static consensus protocol is globally asymptotically stable
if

c ≥ 1

2λmin>0(L)
, (11)

where λmin>0(L) is the smallest non-zero eigenvalue of the
Laplacian matrix L.

One could expect, that having one coupling gain separately
for each agents does not change the conclusion on stability.
If each ci satisfy (11), then the network of agents should

be asymptotically stable. The estimation algorithm uses this
conclusion to determine the new value of κi as

κi =
1

2λmin>0(L)
. (12)

If the agents correctly estimate the smallest non-zero eigen-
value of the Laplacian matrix the network of agents should
be globally asymptotically stable. Note, that this eigenvalue
might be unobservable for some agents or some agents might
catch some other bigger eigenvalue instead of the smallest non-
zero one. It this case the adaptive control protocol (2, 3) still
guarantees ultimate boundedness of the solution. The network
of agents will be stable but the agents’ trajectories might
oscillate.

To estimate κi, each agent performs the estimation algo-
rithm consisting of following steps:

1) At the beginning t = 0, generate the initial conditions
pi, qi ∈ {−1, 1}.

2) Perform the state updating rule (7).
3) In a time window 4t, estimate the frequencies of

sinusoids of its artificial state pi or qi. The values of
the estimated frequencies correspond to the eigenvalues
of the Laplacian matrix.

4) Use the smallest non-zero estimated eigenvalue to cal-
culate the new κi from (12).

Previously proposed estimation algorithm based on the
interval halving method represents a low-pass filter that can
handle only fast disturbances in the network. Change of the
network topology, like for instance adding an agent, generates
an abrupt changes in the local neighbourhood errors, what
results in increase of the values of κi and thereby also ci.
This estimation algorithm is therefore not robust to change of
the network topology.

Moreover, the interconnection of the estimation algorithm
and the adaptive consensus protocol creates an additional
artificial feedback in network dynamics. This interconnection
appears to be stable, however to prove analytical stability is
not an easy task. The approach we propose in this paper
decouples the control and estimation dynamics. Hence the
adaptive consensus protocol and the Laplacian eigenvalue
estimator can be designed separately and their interconnection
does not create any artificial feedback in the network.

VI. SIMULATION RESULTS

The adaptive control protocol (2, 3) has been simulated on
a graph G consisting of agents described by linear double
integrator dynamics

ẋi =

[
0 1
0 0

]
xi +

[
0
1

]
ui, xi =

[
xi1
xi2

]
, ∀i. (13)

For comparison, both estimation algorithm are implemented
to estimate κi. The interval-halving estimation algorithm uses
the time window 4t1 = 5s and the sampling frequency fs1 =
10Hz. The eigenvalue estimation algorithm uses the sampling
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frequency fs2 = 1Hz. The positive constant ` was set to 1 in
both cases. Initial conditions of the agents are

xi1(0) ∈ 〈−10, 10〉, xi2(0) = 0, ci(0) = 0, ∀i. (14)

The simulations of the control protocol (2, 3) with the
previously proposed interval-halving estimation algorithm and
with the current eigenvalue estimation algorithm are situated
on the top and bottom of the figures, respectively.

Each simulation of an algorithm consists of two charts
located in one row of a figure. To visualize the evolution of
agents’ states and show the cooperative stability of a network
of agents, the chart on the left shows the agents’ position
errors with respect to some average value δi = xi−x∗, where
x∗ = 1/N

∑
i xi is an average of agents’ states. The chart on

the right shows the evolution of coupling gains.
The simulations on the circular graph consisting of 50

agents are shown in Figure 1. The proposed protocol imple-
mented with the interval-halving estimation algorithm reaches
lower coupling gains with preserving stability. The distributed
eigenvalue estimation algorithm estimates the eigenvalues in
the first 100 seconds. During this period κi = 0, ∀i. The small-
est estimated non-zero eigenvalues is then used for calculation
of κi. After 100 second the consensus is reached. The higher
oscillating coupling gains come from the poor accuracy in the
eigenvalue estimation. To increase accuracy longer estimation
time period is required.

Assuming small noise acting on states, the responses of 10
agents in circular topology are shown in Figure 2. The dis-
tributed eigenvalue-estimation approach uses estimation period
of 20 seconds. From the figure it follows that the proposed
protocol implemented with both approaches is robust to noise
acting on states.

Figure 3 shows the response to the change in the network
topology. At the time instance of 30 seconds the graph topol-
ogy was switched from the circular graph of 4 synchronized
agents to the path graph and 5-th agent was connected to the
end of the path. The distance of 5-th agent from the rest of
the network was chosen to be 10. The graphs can be seen
in Figure 4. The protocol implemented with interval-halving
estimation algorithm detected slight increase of the coupling
gains. This happened because of an abrupt change in the
network triggered by insertion of an agent. The eigenvalue
estimation algorithm adapted to the change in the network
by estimated the new smallest non-zero Laplacian eigenvalue.
Therefore, it was found robust to change in the network
topology.

VII. CONCLUSION

In this paper we extend the results on distributed adaptive
consensus protocol [12] by proposing a novel algorithm for
estimation of the reference value κi for the coupling gain
ci. The coupling gains’ references are then used by the
adaptive consensus protocol to reach asymptotic stability of
the network.

The estimation algorithm is based on the distributed esti-
mation of Laplacian eigenvalues presented in [14], [15]. It

Fig. 1: Simulation of 50 agents on a circular topology.

Fig. 2: Simulation of 10 agents on a circular topology assum-
ing noise in state measurements.

Fig. 3: Simulation of 5 agents by change in a graph topology.
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Fig. 4: Two graphs used to simulate a change in the network
topology. At the time instance of 30 seconds, the network
topology was switched from the left graph to the right graph.
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contains a local updating rule to generate a signal oscillating
at frequencies corresponding to eigenvalues of the Laplacian
matrix. The FFT is then applied at this oscillating signal to
obtain the estimates of Laplacian eigenvalues. The smallest
non-zero estimated eigenvalue is then used to calculate the
coupling gain reference κi.

An advantage of this estimation algorithm is, that it can
adjust the coupling gains to the network topology. This allows
the adaptive consensus protocol to be used on switching
networks. Additionally, the algorithm decouples the estimation
of the coupling gains’ references from the control law, thus
it does not influence the conclusions on the stability of the
adaptive consensus protocol.
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