
Input shaping solutions for drones with suspended

load: first results

Petr Homolka∗,Martin Hromčı́k†,Tomáš Vyhlı́dal∗‡
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Abstract—In this paper our first achievements are reported on
application of input command shapers for control of quadcopters
with suspended load. Simulation results are presented for a free
2DoF quadcopter. The flight control system, consisting of two PID
controllers and of a static nonlinearity mapping the propellers
thrusts to particular degrees of freedom, is augmented by input
shapers in the feedforward path. Properties of the resulting
control law are presented and further research proposals are
elaborated.

I. INTRODUCTION

Signal shaping is a well known technique for compensat-

ing the undesirable oscillatory modes of various mechanical

systems. Starting from the Smith’s posicast [1], the topic has

received a considerable attention in the control theory and

directly led to many engineering applications. Various types

of shapers have been proposed and investigated by Singer,

Seering, Singhose, et al., [2], [3]. Next to the zero-vibration

(ZV) shaper of an analogous structure as the posicast, they

developed more robust zero-vibration-derivative (ZVD) shaper

and extra insensitive (EI) shaper [4]. These were followed by

multi-modes shapers tuned to two or more selected flexible

modes, [5], [6], [7], [8], [9]. In discrete time-domain, the signal

shaping was first addressed in [10], the papers [8], [11] fol-

lowed soon. Robustness analysis of signal shaping techniques

was performed first in [12], related substantial more recent

reports are [3], [13], [14] and [15]. On the application side,

the shapers are particularly involved in controlling flexible

devices, e.g. flexible manipulators and cranes [16], industrial

robots [17], [18] etc.

Structurally different input shapers have been introduced by

the authors’ team [19], [20], where instead of a lumped delay,

a distributed delay is considered in the shaper structure. Next

to the smoothening effect at the signal accommodation part

brought by the delay distribution, the retarded characteristics

of the shaper spectrum can be considered as an implementation

benefit, particularly, if the shaper is implemented within a

closed loop system [21].

In this paper we focus on application of the classical

ZV shaper and its recently proposed distributed alternative

(the DZV shaper) within a control system of a drone with

suspended swinging load. Simulation results are presented for

the simple case of a feedforward shaper interconnection, which

leads to suppression of ”operator-induced-oscillations” of the

swinging payload. Application of inverse feedback shapers,

which can in addition address oscillations due to atmospheric

disturbances like gusts or turbulences, is a subject of further

research and it is not described in this report. This work

is related to the results achieved recently by research group

of prof. Singhose (GATECH), focused on an application of

input shapers for oscillatory suppression modes of payload

on autonomous and radio controlled helicopters [22], [23].

Even though the similarity between helicopter and quadcopter

dynamical properties is obvious, the transformation of the

results still provides a number of challenging tasks.

The paper is organized as follows. The preliminaries on

input shaping are presented in Section II. Section III is devoted

to the simulation model of our setup. The flight control system

is described in section IV. Shapers used for our demonstrations

are developed in Section V. Simulation results are discussed

in Section VI. Further research directions and concluding

remarks are given in Section VII.

II. PRELIMINARIES ON INPUT SHAPING

A general form of a zero vibration shaper is as follows

u(t) = Aw(t) + (1−A)

∫ ϑ

0

w(t− η)dh(η), (1)

where w and u are the shaper input and output, respectively.

The parameters are the gain A ∈ [0, 1] and the time delay

with a shape determined by h(η), which is a non-decreasing

function over the interval η ∈ [0, ϑ] with the boundary values

h(0) = 0 and h(ϑ) = 1.

The transfer function of the shaper is given by

S(s) = A+ (1−A)G(s) (2)
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where G(s) = L{g(η)}, with g(η) = dh(η)
dη

being the impulse

response of the delay. The zeros of (1) are determined as the

roots of the equation S(s) = 0.

In majority of applications, the input shaper is linked with

a system in a serial connection in order to shape its input so

that the system’s oscillatory modes are not induced. In spectral

domain synthesis of the shaper, its dominant couple of zeros is

placed at the position of the system pole r1,2 = −β±jΩ, β =
ωζ,Ω = ω

√

1− ζ2, where ζ, ω are the damping and natural

frequency of the mode to be compensated.

A. Classical ZV shaper with a lumped delay

The most common zero vibration shaper [2], [3], denoted

as ZV, involves a lumped delay with

h(η) =

{

0, η < ϑ
1, η ≥ ϑ

, (3)

with the impulse response g(η) = δ(η − ϑ), where δ(η −
ϑ) denotes the time shifted Dirac impulse. The delay transfer

function is given by

G(s) = e−sϑ. (4)

The shaper synthesis is done by placing the dominant zero

s1,2 of the shaper at the position of r1,2 = −β±jΩ providing

the parameters [12]

A =
e

β
Ω
π

1 + e
β
Ω
π
,=

e
ζ√

1−ζ2
π

1 + e
ζ√

1−ζ2
π

(5)

ϑ =
π

Ω
=

π

ω
√

1− ζ2
. (6)

B. DZV Shaper with a distributed delay

In [24], [19], as an alternative to the ZV shaper, the DZV

shaper with equally distributed delay was introduced with

h(η) =







0, η ∈ τ
1
ϑ
(η − τ), η ∈ [τ, ϑ]
1, η > ϑ

, (7)

and the transfer function

G(s) =
1

(ϑ− τ)s
(e−sτ − e−sϑ). (8)

Again, the synthesis is done by placing the zero s1,2 of the

shaper at the position of r1,2 = −β ± jΩ, see [20] for the

fully analytic parametrization procedure.

The main benefit of the DZV shaper is the retarded character

of its spectrum, compared to the neutral character of the

spectrum of ZV shaper. This can be utilized particularly in

the inverse implementation of the shaper within the closed

loop [25], [21] where the high frequency zeros of the shaper

are projected to the closed loop poles. Thus, the neutrality of

ZV shaper with infinitely many zeros located very close to the

stability boundary is a considerable stability risk, which is not

the case if DZV shaper is applied. Other benefits of the DZV

shaper are the smother transient at the accommodation stage

of the signal and the better robustness at the higher frequency

range. On the other hand, the response time of DZV shaper is

considerably longer than the response time of ZV shaper.

III. MODEL OF THE QUADCOPTER

In this work, a two dimensional model of a quadcopter with

suspended load at the center of gravity is considered as shown

in figure 1. The mass of the copter frame is denoted as M and

the mass of the payload suspended on a rope of a length r is

given as m.

Φ

α

l

r

F1

F2

x

y
Fig. 1. Basic schema of copter with payload

Based on the physical analysis, the quadcopter model has

been derived in the following form

(M +m) ẍ−mRφ̇2 sinφ+mRφ̈ cosφ = Fx (9)

(M +m) ÿ +Mg +mg cosφ−mRφ̇2 cosφ = Fy (10)

mR2φ̈+mRg sinφ+mRẍ cosφ−mRÿ sinφ = 0, (11)

where x and y denote the position of the quadcopter, φ is the

angle of the suspended load. The quadcopter pitch angle α is

given by

α̈ =
l

2I
(F1 − F2) (12)

with the action forces F1 and F2. The forces are transformed

to

Fx = (F1 + F2) sinα (13)

Fy = (F1 + F2) cosα (14)

used in (9)-(10), where F1 and F2 are forces given by

propellers, I is the moment of inertia of the whole frame and

l is the length between propellers axes.

Equations (9)-(11) have been linearized and transformed to

state space model

ẋ = Ax + Bu (15)

y = Cx (16)

A =

















0 1 0 0 0 0
0 0 0 0 mg

M+m
0

0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 0 − g

r
− mg

r(M+m) 0

















(17)
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B =

















0 0
mr + 1

M+m
0

0 0
0 1

M+m

0 0
− m

M+m
− 1

r(M+m) 0

















(18)

C =





0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



 , (19)

where x = [x, ẋ, y, ẏ, φ, φ̇]T , u = [Fx, Fy]
T and y =

[ẋ, ẏ, φ̇]T .

Due to structural properties and functioning of the control

system, the second part of the model (12)-(14) cannot be

linearized.

Simulation results of this model implemented in Matlab-

Simulink are shown in figures 2 and 3. The following

parameters are considered: M = 0.4kg,m = 0.1kg, I =
3−3kgm, r = 1.5m, l = 0.4m

As can be seen from the responses to the step-wise changes

of the input forces, the dynamical properties are oscillatory. It

is mainly done by the coupling between the quadcopter and

the suspended load.

Fig. 2. Linearized model validation Fx

Fig. 3. Linearized model validation Fy

IV. FLIGHT CONTROL SYSTEM

The primary objective is to control the velocities in x-y axis.

This is done by two PI controllers determining the desired

forces in x and y directions

Fx(s) =
rx0s+ rxi

s
ex(s), (20)

Fy (s) =
ry0s+ ryi

s
ey(s) +

g

M +m
, (21)

where the control errors are given by ex = ẋset − ẋ and ey =
ẏset− ẏ with the velocity set-points ẋset and ẏset. Parameters

of the controllers are rx0, rxi, ry0, ryi.
In order to transform the above desired forces to the actual

forces of the propellers, the following nonlinear transformation

is used

F1 (t) =
F

2
+ ∆F, (22)

F2 (t) =
F

2
−∆F, (23)

F (t) =
√

F 2
x + F 2

y , (24)

where ∆F is the output of the PD controller of the pitch angle

∆F (t) = rα0 (αset − α)− rαdα̇, (25)

with the parameters rα0 and rαd and the setpoint αset =
atanFx

Fy
.

The whole control system scheme including the model is

shown in figure 4. The detailed control scheme is then given

in subsequent figure 5.

Let us note that this simple structure control system has been

selected due to the planned implementation at the physical

model of the quad-copter. Due to this fact, the number of

tunable parameters is relatively small, which does not allow

full assignment of the rather complex dynamical properties of

the copter-payload system. Therefore, the input shaper will be

applied to pre-compensate the oscillatory mode.

V. COMPENSATION OF OSCILLATORY MODE BY INPUT

SHAPERS

The subsequent step in the control system design is ap-

plication and parametrization of the input shapers to pre-

compensate the oscillatory mode of the system that can be

nicely seen in the responses shown in Fig. 2, 3 for the

system alone and in figure 6 for the controled system. Two

input shaper cases are considered here i) classical ZV shaper

SZV (s) = A1 + (1 − A1)e
−sτ1 with a lumped delay, and ii)

DZV shaper SDZV (s) = A2 + (1 − A2)
1−e−sT

sT
e−sτ2 with a

distributed delay.

The shapers has been applied in a feedforward manner

to filter the reference signal ẋset and tuned as described in

Section II. First, the shapers were tuned to compensate the

undamped oscillatory mode of the payload itlesf, which is

determined as Ω =
√

g/r = 2.56s−1. The shaper parameters

were obtained as A1 = 0.5, τ1 = 1.2285 for ZV and

A2 = 0.4738, τ2 = 0.9213, T = 0.6142 for the DZV.

Note however that if the mass of the payload is substantial

compared to the mass of the drone, mechanical coupling of

those two dynamics will occur and will alter the frequency and

damping of the target mode. As a result, performance of the

shaper can be expected to deteriorate. This will be considered

as the second case in the simulation study presented below.

For this case, the linearized closed loop spectrum have been

determined and the mode responsible for the oscillations have
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Fig. 4. System overview

Fig. 5. Flight control lan structure
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Fig. 6. Set-point response of the feedback system without a shaper with
payload weight m = 0.1kg
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Fig. 7. Set-point response of the feedback system with a ZV shaper tuned
for the nominal frequency of oscillations, with payload weight m = 0.001kg
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Fig. 8. Set-point response of the feedback system with a DZV shaper tuned
for the nominal frequency of oscillations, with payload weight m = 0.001kg
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ẏ
[m

∗
s−

2
]

-0.5

0

0.5

P
h

i 
[ 

ra
d

*s
-2

 ]

X speed

Y speed

Phi speed

Fig. 9. Set-point response of the feedback system with a ZV shaper tuned
for the nominal frequency of oscillations, with payload weight m = 0.1kg

been identified as s1,2 = −0.036± 2.54j (Ω = 2.54s−1, ζ =
0.0143). The shaper parameters for this case were obtained

as A1 = 0.5112, τ1 = 1.237 for ZV and A2 = 0.485, τ2 =
0.9265, T = 0.6185 for the DZV.

VI. SIMULATION RESULTS

First we consider the shapers tuned to the nominal frequency

of the payload, i.e. considering the uncoupled case, and a

lightweight payload of m = 0.001kg. Simulation results are

presented in Figure 7 for ZV shaper and in Figure 8 for DZV

shaper. Notice that the attenuation of the payload oscillations

is close to the ideal case for both the shaper cases. It is due

to the fact that the light weight load does not influence the

dynamics of the copter, and thus the oscillatory mode is close

to the one of the uncoupled case.

However, when the payload mass is increased to 0.1kg,

substantial coupling occurs due to mechanics as explained

in the section above, and also due to actions of the flight

control system which now reacts to the payload motion - since

this motion affects substantially also the motion of the drone

itself to which the flight controller is attached, unlike in the
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Fig. 10. Set-point response of the feedback system with a DZV shaper tuned
for the nominal frequency of oscillations, with payload weight m = 0.1kg
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Fig. 11. Set-point response of the feedback system with a ZV shaper tuned
to the oscillatory mode of the coupled dynamics, with payload weight m =

0.1kg

lightweight-payload case. Resulting responses are in Figure 9

for ZV and Figure 10 DZV. Compared to the previous case,

significant performance loss can be observed.

Finally, we present simulation results for the case when

the shapers were tuned to the complete loop consisting of

the complex multibody system (drone+payload) and the flight

controller attached. The resulting responses with ideal com-

pensation for this coupled case are presented in Figure 11 for

ZV and Figure 12 for DZV shapers.

VII. FURTHER RESEARCH AND CONCLUSIONS

Our first achievements on application of input command

shapers for control of quadcopters with suspended load are

reported in this paper. Simulation results are presented for a

free 2DoF quadrocopter. The flight control system, consisting

of two PI controllers and of a static nonlinearity mapping

the propellers thrusts to particular degrees of freedom, is

augmented by the ZV and DZV shaper respectively in the

feedforward path. Properties of the resulting control law are

presented.
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Fig. 12. Set-point response of the feedback system with a DZV shaper tuned
to the oscillatory mode of the coupled dynamics, with payload weight m =

0.1kg

For future research, the following open problems are to be

resolved:

• 3D version: a full three-dimensinal simulation model

shall be developed.

• Inverse feedback shapers: solutions discussed in [21]

shall be applied for our problem. Such a way, the effect

of atmospheric disturbances can be handled effectively.

Needless to say, turbulences and gusts will be a sub-

stantial source of vibrations in any practical applications

(unlike the classical case studies with portal cranes or

space manipulators) [26], .

• Experimental validation: at present, a simplified labo-

ratory setup exists with a two-degree-of-freedom drone

attached to a rail. See [21], [27]. We plan to build a full

6DoF platform for further experiments.
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