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Abstract—This  paper  deals  with  a  design  methodology  for  a

neural network with improved robust qualities in notion to

handling uncertain input data space variations. The proposed

network topology combines the simplicity of the radial basis

functions networks to interpret or classify data pairs and the

abilities of the intuitionistic fuzzy logic to deal with the vagueness

of the data space. A simplified gradient optimization procedure

as a learning approach for the designed hybrid neural network is

proposed. To investigate the effects of the generated structure

throughout varying network parameters, the modeling of a two

benchmark chaotic time series – Mackey-Glass and Rossler

under uncertain conditions is investigated. The obtained results

prove the flexibility of the approach and its potentials to cope

with data variations.
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I. INTRODUCTION

In recent years, the neural networks became popular tools
in many engineering tasks and economical aspects of our
everyday life. They imposed the “brain-style” computation
where data streams are being processed within a network of
simple connected modules. Each module consist a population
of interconnected computational units, called neurons. The
individual units perform in parallel, which make the whole
concept computationally simple and efficient. On the other
hand, the fundamental property of neural networks to learn
from “experience” and to discover data relationships and
patterns by simply adjusting the strengths of the
interconnections called “weights” enables their ability to
“program themselves” to perform very complex tasks [1].

Learning from data with uncertain or missing information is
an essential requirement for every learning system. When
dealing with real systems, features are missing due to
unrecorded information or due to occlusion in vision, and
measurements affected by noise.

When building regression models, the uncertainty is
expected as additive noise, attributed to the dependent variable.
This is the most typical case for real systems and assumptions
that input features might be uncertain or even missing
completely, may lead to model deterioration. In some
situations, the problem can be ignored, as we are satisfied with
the obtained results, but for real time on-line applications
connected to modeling and control of nonlinear systems it may
lead to a serious compromise of the whole strategy.

Usually, there are two main reasons why we might want to
deal with uncertain input data variations. By one hand, we
might be interested to study the underlying relationships as
they might have some physical meaning, and from another
when the system is non-stationary, the occurring uncertainties
might vary over the time [2].

The naive strategy of training networks for all possible
input combinations lead to complexity explosion and would
require sufficient data for all relevant cases. Therefore, flexible
mechanisms for handling of uncertain variations of non-
stationary data streams should be employed.

In 60’s Zadeh has introduced the fuzzy set theory as a
framework dealing with data vagueness and partial truth by
assigning a degree of membership for an element of a universe
of discourse [3]. Later on, due to continuous criticism that
type-1 fuzzy sets cannot deal with uncertainties, his theory has
been extended to type-2 fuzzy sets by the developments of
Karnik and Mendel [4-5]. In the beginning of 80’s Atanassov
proposed the theory of the intuitionistic fuzzy sets (IFS) by
adding a degree of non-membership to Zadeh’s concept. The
IFS framework shown a great potential to address more
accurately to uncertainty quantification and provides an
opportunity to precisely model problems based on existing
knowledge and observations [6]. Both of these frameworks,
lead to soft computing and approximate reasoning [7].
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Besides, the great potential of IFS, few applications exist,
as well as, proposed hybrid structures. The combination of
ideas from neural networks and IFS is studied in [8]. In [9] the
mathematical apparatus necessary to design an IFS Feed
Forward Neural Network is given, while an IFS Neural
Network with triangular membership functions is described in
[10]. An Adaptive Intuitionistic Fuzzy Inference System of
Takagi-Sugeno Type is discussed in [11]. Applications to
nonlinear modeling and predictive control on the basis of IFS
are presented in [12-13]. In [14], a max-min Intuitionistic fuzzy
Hopfield neural network (IFHNN) is proposed.

Radial Basis Function (RBF) neural networks have drawn
significant attention in the machine learning community due to
their strong performance and nice theoretical properties. They
represent a classical family of algorithms for supervised
learning mostly used for approximation of a target nonlinear
function or clustering of data points through explicit use of
kernel functions, such as Gaussian ones. The goal of a RBF
network  is  to  adjust  the  centers  and  the  weights  of  these
functions trough appropriate learning strategy. It is easy to see
that any input data points can be fitted exactly or classified by
allowing every data point to be a center and choosing
appropriate coefficients [15].

Unlike, the most neural network topologies the RFB
networks lack of a comprehensive mechanism to deal with
uncertain variation of the input date space. Usually, this may
lead to absorbson of misleading data patterns and deterioration
of the network performance that requires a suitable solution to
avoid this phenomenon. A possible simple approach is to adopt
ideas from the intuitionistic fuzzy logic as discussed in [8],
where an application to data clustering is presented.

This paper describes the development of a novel
intuitionistic fuzzy RBF network for modeling of complex
nonlinear dynamical processes under uncertain conditions. The
hidden network layer implements an IFS processing
mechanism in order to overcome the vagueness of the input
data space. A simple gradient descent approach to train the
synaptic links and the parameters of the basis functions is
implemented. The potentials of the proposed structure to model
nonlinear dynamical systems, as well as the impact on some
design parameters is studied by numerical experiments for
modeling of benchmark chaotic times series experiencing noisy
conditions.

II. INTUITIONISTIC FUZZY RADIAL BASIS FUNCTION NETWORK

A. Intuitionistic Fuzzy Logic

Intuitionistic Fuzzy Set (IFS) A over a finite universal set E
is defined as an object with the following properties [6]:
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where ȝA: X → [0,1] and ȞA: X → [0,1] are such that
0≤ ȝA+ȞA ≤1 and ȝA(x) represents the degree of membership of
x∈A, while ȞA(x) represents the degree of non-membership of
x∈A. Therefore, for each intuitionistic fuzzy set in X,  we call
πA(x)=1-ȝA-ȞA the degree on non-determinancy (uncertainty) or

hesitation of x∈A. This parameter expresses a hesitation
degree of weather x belongs to A or not and it is obviously 0≤
πA ≤1 for each x∈X.

B. Intuitionistic Fuzzy RBF Network

The topology of the proposed Intuitionistic Fuzzy RBF
network (IFRBFN) is shown on Fig.1. The IFRBFN is a simple
network with one hidden layer, which realize multiple input
single output (MISO) structure with RBF neurons. The first
layer is the input layer. The nodes in this layer only accept the
input variables, where xi is an input value, i=1:p is the number
of the inputs of the network and then transmit them to the next
layer directly. The second layer is a hidden layer, which consist
a number of neurons with associated activation function - ȝA

and retraction function- ȞA. Both functions, in terms of
Gaussian representation can be expressed as:
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Fig. 1. Topology of the proposed Intuitionistic Fuzzy RBF Network.

where, cj and σj are the center and the standard deviation of the
Gaussian basis function, j=1:m where m is the number of used
basis functions in the layer, k is a parameter that must be
designed. If k=0, obviously ȝA+ȞA=1 and the hesitation degree
πA also is zero. The schematic representation of an IFS basis
function is given on Fig. 2.

The neurons of the third layer perform summation of the
outputs from the second layer, along the activation and
retraction functions, taking into account the values of the
corresponding the synaptic weights and the defined hesitation
degrees.

In the fourth layer, the output of the network is defined as a
sum of its all topological parameters:
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Fig. 2. Representation of an IFS basis function.

where wo is a constant weighting of the neuron’s net input in
order to increase the  initial dissimilarity between the neurons
and wµj and wνj are the synaptic links between the second and
the third layers.

C. Learning Algorithm of the proposed Intuitionistic NEO-
Fuzzy Network

For the proposed IFRBFN structure a simple gradient
algorithm, minimizing an error cost term between the real and
the modeled system is adopted as a learning approach.
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 During the learning procedure, two groups of parameters
are being trained; the vectors of the synaptic weights after the
second layer and the centers and the deviations of the
activation functions. For calculation of the first group of
parameters, the following chain rule notation is employed:
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where β is an adjustable parameter wµj or wνj.Thus, the updating
rules for a corresponding synaptic link can be stated as:
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where η is the learning rate.

The calculation of the second group of parameters by using
the following chain rule notation is performed as:
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where α is a center – c or deviation – σ of a corresponding
activation function. Thus, the final recurrent equation are
defined as:
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III. NUMERICAL EXPERIMENTS

A. Chaotic time series

Chaos is a dynamical phenomenon, which may be defined
using different time series representations. Usually, the chaotic
time series are inherently nonlinear and sensitive to initial
conditions. On the other hand, they are very often used as
practical technique for studying characteristics of complicated
dynamics and evaluation of the accuracy of different types of
nonlinear models as neural networks.

To investigate the modeling potentials of the proposed
IFRBFN structure, two benchmark chaotic time series -
Mackey-Glass and Rossler are employed. The Mackey-Glass
time series can be described by the following time-delay
differential equation:
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where a=0.2; b=0.1; C=10; initial conditions x0=0.1 and s=
17s.

 Another test of the proposed IFRBFN model with Rossler
chaotic time series is made. These series are described by the
following three coupled first-order differential equations:
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where a=0.2; b=0.4; c=5.7; initial conditions x0=0.1; y0=0.1;
z0=0.1.

B. Modeling of Chaotic Times Series

The proposed network is tested in modeling the above-
mentioned chaotic times series where a 15% additive noise on
the  nominal  value  of  the  signal  is  assumed,  in  order  to  assess
the potentials of the IFS fuzzy logic. The proposed experiments
are made for two values of k=1 and k=2.  Due  to  the  lack  of
extensive research in the IFS domain, there is no specific recipe
how to select k.  Obviously, the larger values of k will lead to a
wider zone of the hesitation degree, thus the selection of k will

Fig. 3. Modelling of a MG time series under 15% input nominal noise, k=1

and without training of the basis functions.

Fig. 4. Estimated Error terms when modelling of a MG time series under

15% input nominal noise, k=1 and without training of the basis

functions.

depend mostly on the expected noisiness of the input data
space. The input links wo are initialized with random
coefficients and they act as input gains to an RBF neuron net
input. This type of links do not undergo training. To investigate

TABLE I. ESTIMATED ERROR TERMS

Time

step

k=1 k=2 k=2 with RBF

training

RMSE RRSE RMSE RRSE RMSE RRSE

50 0.1070 5.2679 0.0993 4.9867 0.0955 4.8630

100 0.1053 5.9578 0.0978 5.6481 0.0940 5.2791

150 0.1035 5.1576 0.0962 4.8872 0.0926 4.6676

200 0.1021 5.6825 0.0949 5.3293 0.0916 5.0694

250 0.1005 6.0691 0.0935 5.1500 0.0905 5.0355

300 0.0993 7.5308 0.0923 6.2820 0.0896 6.1140

350 0.0979 6.3840 0.0914 6.3427 0.0889 5.8307

400 0.0970 7.7507 0.0903 6.9564 0.0879 6.8825

450 0.0957 6.2675 0.0894 6.0712 0.0870 5.6727

500 0.0948 7.9566 0.0885 6.4570 0.0862 6.1795

Fig. 5. Modelling of a MG time series under 15% input nominal noise, k=2

and without training of the basis functions.

Fig. 6. Estimated Error terms when modelling of a MG time series under

15% input nominal noise, k=2 and without training of the basis functions.

413



the potentials of the proposed neural networks, three different
types of experiments under equal initial conditions are
performed. Each network structure is trained for three epochs.

At first, a comparison on the influence of the parameter k is
presented on Fig. 3 and Fig. 5, where the modelled signals and
the respective shapes of the activation and retraction functions
are depicted. It should be mentioned that, when k=1 this is a
particular case of an RBF neural network, since the parameter
π=0 for each neuron and the activation and retraction functions
overlap. On Fig. 4 and Fig. 6 the variations of the MSE (Means
Squared Error),  the  RMSE  (Root Mean Squared Error), the
RSE  (Relative Squared Error) and the RRSE (Root Relative
Squared Error) are investigated. In Table I are presented the
obtained error terms in different sample time intervals. The
right side of the table shows an additional comparison between
networks with/without training of the basis functions.

The obtained results show the positive effect of the
proposed IFS solution, which lead to increased absorption of
the noise in the case when a value of k=2 is selected and the
basis functions undergo training. The investigated MSE and
RMSE error terms have a smooth nature leading to its decrease
to values closer to zero. On the other hand, the observed
relative error terms show the average of the actual signal
variations, which are smaller when the parameter k is increased
and the basis functions are being trained.

Fig. 7. Comparison between the proposed IFRBFN network and the classical

RBF network for the same number of training cycles.

On Fig. 7 a comparison between the proposed IFRBFN
network with training of the basis functions and a classical
RBF neural network with Gaussian basis functions is shown.
Both networks have equal number of neurons in the hidden
basis layer and equal number of the training epochs. As can be
seen from the proposed network based on Intutitionistic Fuzzy
approach, it provides better generalization properties for
signals with additive noise, covering more data points of the
actual signal.

On Fig. 8 are shown the obtained results when modeling
the Rossler chaotic time series in the adopted case of k=2 with

training of the activation and retraction functions. As can be
observed, the proposed modelling structure performs well
again with minimal modeling error. Different error terms are
studied on Fig. 9, where the respective transient responses are
depicted. The terms show the smooth nature of decrease of

Fig. 8. Modelling of a Rossler time series under 15% input nominal noise,

k=2 and with training of the basis functions.

Fig. 9. Modelling of a Rossler time series unider 15% input nominal noise,

k=2 and with training of the basis functions.

the MSE and RMSE, no matter the fact that the amplitude of
the signal change sharply. Due to that phenomenon, the relative
errors have large peak values, but they preserve their slight
variations on the average.
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CONCLUSIONS

It was presented in this paper a design methodology for an
Intuitionistic Fuzzy Radial Basis Functions Network for
modeling of nonlinear dynamical systems with uncertain input
variations. The proposed approach combines the simplicity of
the classical RBF networks to interpret nonlinear systems and
the flexible mechanism of the Intuitionistic Fuzzy logic to deal
with uncertainties. The network parameters are easily trained
by employing a simple gradient learning procedure to adjust
the network parameters: the synaptic links and the parameters
of the basis functions.

The conducted experiments show the efficiency of the
proposed approach over the classical RBF networks, since the
error terms in modeling are reduced. Increasing of the design
parameter k lead to wider hesitation bound, but it should be
carefully selected depending on the expected uncertain
conditions. The training of the parameters of the basis
functions lead to additional reduction of the modeling errors.
To address the problem of the computational burden in
network topologies with a great number of basis neurons, the
training of their parameters can be neglected.

A foreseen future extension of the approach is to extend the
ideas for the purpose of modeling of nonlinear industrial
processes under uncertain conditions, as well as exploiting the
predictive features of the model within novel Model Predictive
Control schemes, based on IFS.
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