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ABSTRACT 

In this paper, the dynamics model of a hexacopter equipped 

with a robotic arm has been formulated using Newton-

Euler’s method and its stability was investigated. For 
disturbances emulation, a simplified pendulum method was 

used. This Hexacopter configuration was not covered in 

scientific papers before. The resulting model is a 

nonlinear, coupled, and underactuated dynamics model, 

which includes aerodynamic effects and disturbances 

because of equipping the hexacopter with a robotic arm. 

The purpose of the presented paper is to offer a 

comprehensive study of determining the inertia moments of 

the hexacopter using a simplified pendulum method, taking 

into consideration the effect of mass distribution and center 

of gravity changes, which are a result of the continuous 

movement of the manipulator during the hexacopter motion 

in the air. The experimental tests were made using solid 

works application and were evaluated using LabVIEW in 

order to get a complete view of the disturbances, which 

were inserted into the dynamics model. The overall aircraft 

model was driven by four classical PID controllers for the 

vehicle’s attitude and altitude of a desired trajectory in the 
space. These controllers were used to get a good 

understanding of how to evaluate and validate the model 

to make it an anti-disturbance model, in addition to their 

ease of design and fast response, but they require 

development in order to get optimal results. In future, a 

precise trajectory will be defined, and the controllers will 

be developed in order to get robust stability using 

nonlinear techniques and artificial intelligence. 
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1. INTRODUCTION 
 

This work focuses on modeling and simulation of a 

hexacopter type unmanned aerial vehicle (UAV). Choosing 

a hexacopter is challenging in the field of control because 

it is a highly nonlinear, multivariable and underactuated 

system. It has stationary flight and high maneuverability 

[1]. An underactuated system is a mechanical system in 

which the dimension of the configuration space exceeds 

that of the control input space, that is, with fewer control 

inputs than the degrees of freedom [2]. Modeling of such a 

system is not a trivial problem due to the coupled dynamics 

of the aerial vehicle [3]. The contribution of this paper lies 

in simplifying the dynamic modeling of the flying object 

equipped with a robotic arm. By deducing the equations of 

motion, with the inclusion of direct disturbances that 

represent the robotic arm movement, by the equations of 

force and moment, in comparison with other works of 

Lucia [3] and Hasan [4], which relied on a complex 

mechanism through the mathematical modeling of certain 

arms of fixed design, and adding it to the flying object 

equations. This is considered limited, complex, and does 

not cover the changes that may occur in the air, and weather 

conditions to which the aircraft is exposed in the air far 

from laboratory conditions. The adopted disturbances in 

this research are produced based on compound-pendulum 

method [5] [6] [7] [8] and studied to cover all the random 

changes that may face the aircraft, and which cannot be 

considered as constants. This method gives a complete and 

clear picture of the disturbances that are affecting the 

inertia moment, center of gravity and mass distribution in 

the coordinate frame of the aircraft during its movement in 

the air. The experimental tests of disturbances were taken 

using SolidWorks application and were checked by 

mathematical calculations. This method, which was not 

mentioned in literature before gives a complete handling of 

noise determination and formulates random disturbances’ 
functions [9] that were inserted into the dynamics model of 

the hexacopter. Inertial moments amounts were studied 

according to the overall aircraft model [10] [11] [12] [13], 

in addition to applying the theory of parallel axis of 

Huygens-Steiner [14], which is concerned with studying 

the new inertia moment of the studied part relative to new 

axis of study parallel to the axis of the part to be studied. 

The contribution of this research lies in deducing a precise 

and detailed mathematical model of a hexacopter type 

aircraft in comparison with other researches like Alvarez-

Munoz [15] that relied on assumptions and simplifications 

to make the modeling easier like mass distribution and 

other parameters in the body of the aircraft. The equations 

of motion of the whole system were designed using the 

Newton-Euler formulation for translational and rotational 

dynamics of a rigid body [16][17][18]. The disturbances 

are presented as an environment for outdoors simulation, 

which is omitted in most of the scientific literature 

[3][4][15].  
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2. THE HEXACOPTER REFERENCE FRAMES  
 

The hexacopter structure and the engineering design are 

illustrated in figure 1 including the earth inertial frame (E-

frame) and the body-fixed frame (B-frame). The motion is 

planned by using geographical maps, with North, East, and 

Down (NED) coordinates [3][18]. This earth fixed frame is 

seen as an inertial frame in which the absolute linear 

position (x, y, z) of the hexacopter is defined. The mobile 

frame (XB, YB, ZB) is the body fixed frame that is centered 

in the hexacopter center of gravity (CG), and oriented as 

shown in figure 1. The angular position of the body frame 

with respect to the inertial one is defined by Euler angles: 

roll �, pitch � and yaw ߰. These together form the vector: � = [� � ߰]� where ϕ and θ ∈]- πଶ , πଶ [;  ɗ ∈]-π, π[. The 

inertial frame position of the vehicle is given by vector ξ =[x � �]T [19][17][20]. The transformation from the body 

frame to the inertial frame is realized by using the well-

known rotation matrix �௕௡ defined in [19][20], which is 

orthogonal and CbnT = Cbn-ଵ = Cnb. In addition, the 

transformation matrix for angular velocities from the body 

frame to the inertial one is ܵ as mentioned in [11]. where �̇ = ܵ .  Ω, �̇ = �௕௡ .  ܸ , the angular velocity Ω is defined 

by the vector Ω = �[ݎ ݍ ݌] , and the linear velocity is 

defined by the vector V = �[ݓ ݒ ݑ]  in the body frame. It is 

important to observe that S can be defined if and only if � ≠ �ଶ + ݇ :݇ߨ ∈ ܼ. This is the main effect of Euler’s 
formulation that leads to the gimbal lock, typical situation 

in which a degree of freedom is lost [22][23], which is not 

considered here. 

 

3. THE HEXACOPTER DYNAMICS 
 

The mathematical equations of the hexacopter dynamical 

behavior are derived by generalizing the quadcopter model 

presented in [21]. Newton-Euler equations that govern 

linear and angular motion are used, assuming that the 

hexacopter is a rigid body with a symmetrical structure. 

Therefore, the equations with respect to the body frame are: 

 

 
 

Figure 1. Hexacopter UAV structure and frames. 

ݑ̇ = ݑ���− + ݃. �݊�ݏ − ሺݓݍ − ሻݎݒ + ��భ� ݒ̇   = ݒ���− − ݃. .∅݊�ݏ �ݏ݋ܿ − ሺݑݎ − ሻݓ݌ + ��మ� ݓ̇   = ∑ | �ܶ|଺�=ଵ − ݓ��� − ݃. .∅ݏ݋ܿ �ݏ݋ܿ − ሺݒ݌ − ሻݑݍ + ��య�   ṗ = √యమJ౮lሺ|Tଷ|-|Tସ| + |T଺|-|Tହ|ሻ-krJ౮p-qrሺJ౰-J౯ሻJ౮ + MdభJ౮  q̇ = భమJ౯lሺ|Tଷ|-|Tସ| + |Tହ|-|T଺| +ʹ|Tଵ|-ʹ|Tଶ|ሻ-krJ౯q-prሺJ౮-J౰ሻJ౯ + MdమJ౯  ṙ = ρC్A౎యJ౰ ሺɘଵଶ + ɘସଶ + ɘ଺ଶ-ɘଶଶ-ɘଷଶ-ɘହଶሻ-krJ౰r-pqሺJ౯-J౮ሻJ౰ + MdయJ౰  

 

where m Є R is the hexacopter total mass, g is the gravity 

constant, ݈ is the distance from CG to the center motors, J 

Є ܴଷ is the diagonal inertia matrix, �௫ , �௬ and �௭ are inertial 

moments of the rigid body along axes. Fdiୱ୲ =[�ௗଵ �ௗଶ �ௗଷ]�, and �ௗ�௦௧ = [�ௗଵ �ௗଶ �ௗଷ]� are 

respectively the disturbance forces and moments along the 

axis. �ܶ  And ߱� (where � = ͳ…͸) are the thrust and 

angular moments of the motors as shown in figure 1, ݇௧ and  ݇௥ are respectively the constants of aerodynamic force and 

moment,  ��  is  the motor’s torque coefficient,  ߩ is the air 

density, A is the propelling disc area, and R is the disc 

radius [γ][16][17][β0]. The propeller’s thrust and torque, 

are [16]: ܶ = ܳ ଶ߱ଶ,  andܴ���ߩ =  ଷ߱ଶ , where CTܴ���ߩ

is the thrust coefficient [16]. The equations of motion that 

governs the hexacopter’s translational and rotational 

motion with respect to the Earth frame are: �̇ = �௕௡. ܸ, �̇ =ܵ. Ω. From the control problem, which govern the attitude 

and altitude in space, the artificial vector ܷ  can be found. This simplifies the control of �[�ݑ ௬ݑ ௥ݑ ௣ݑ]=

the system and instead of using real motors’ velocities, 

vector ߱ = [߱ଵ ߱ଶ ߱ଷ ߱ସ ߱ହ ߱଺]� is used [17]. Then the 

equations that connect the artificial and real input vectors 

as follows:  

{   
   ߱ଵ = �ݑ + ௣ݑ + ௬߱ଶݑ = �ݑ − ௣ݑ − ௬߱ଷݑ = �ݑ + Ͳ.ͷ ∗ ௣ݑ − Ͳ.ͺ͸͸ ∗ ௥ݑ − ௬߱ସݑ = �ݑ − Ͳ.ͷ ∗ ௣ݑ + Ͳ.ͺ͸͸ ∗ ௥ݑ + ௬߱ହݑ = �ݑ + Ͳ.ͷ ∗ ௣ݑ + Ͳ.ͺ͸͸ ∗ ௥ݑ − ௬߱଺ݑ = �ݑ − Ͳ.ͷ ∗ ௣ݑ − Ͳ.ͺ͸͸ ∗ ௥ݑ + ௬ݑ

 

 

4. STUDYING THE DISTURBANCES OF THE 

ARM MOVEMENT IN SPACE 
 

Figure 2 shows the complete hexacopter’s mathematical 

model with added disturbances that represent an attached 

robotic arm with a payload. The disturbances affecting the 

aircraft’s center of gravity change with time, due to the 

change in the robotic arm angles in all directions, making 

the motion equations variable with time, too. The arm 

movement with a payload is represented as a compound-

pendulum, adopting the mathematical procedure in 

[5][6][7][8]. The disturbances parameters in the motion 

equations are based on the pendulum model. A rectangular 

aircraft shape was chosen as in figure 3. The pendulum 

motion takes place according to the angles of motion (�ଵ, 

205



 

 

�ଶ, �ଷ) as illustrated in figure 3, and these angles ranges 

are (Ͳ < �ଵ < ͵͸Ͳ,−ͷ < �ଶ < −ͳ͹ͷ,−ͳͷͷ < �ଷ <ͳͷͷ). Assuming, the weight of the payload is fixed, leads 

to changes in the aircraft’s center of gravity, overall inertia 

moment, and in the thrust of aerial motors resulting from 

distance change between the aircraft’s center of gravity and 

each engine. The general form of disturbances can be 

expressed as follows [9]: 

 �ௗ�௦௧ = �݂ሺ�ଵ, �ଶ, �ଷሻ , �ௗ�௦௧ = ெ݂ሺ�ଵ, �ଶ, �ଷሻ. 

 
Figure 2. Block diagram of the hexacopter dynamics 

system. 

 

assuming that the pendulum motion occurs when the 

aircraft hovering position is fixed, therefore the 

aerodynamic effects resulting from airflow through the 

pendulum become neglected. The change in the overall 

center of gravity and the inertia moment will be studied 

mathematically and compared with the simulation 

measurements. Assuming the initial values of the 

pendulum angles are: (�ଵ = Ͳ°, �ଶ = −ͷ°, and �ଷ =−ͳͷͷ°), and according to the physical characteristics 

defined in figure 3, the pendulum’s characteristics are in 

table 1, where the aircraft’s overall center of gravity is 

defined by the XB, YB, ZB coordinates. In comparison 

with the aircraft’s overall center of gravity, each part of the 

pendulum has a local coordinate system that coincides with 

the local center of gravity of that part as shown in figure 4. 

 

Table 1. General Specifications of the overall aircraft 

model �௟= 

7.0Kg 

�௟ଶ= 

0.78Kg 

�௟ଵ= 

1.03Kg 

��= 

0.253Kg 

�௕= 

25.0Kg 

 

 
Figure 3. General model of the pendulum movement 

disturbances 

 
Figure 4. The workplace of the payload center of gravity. 

 

4.1 STUDYING THE CENTER OF GRAVITY 

CHANGE: 

 

Studying the pendulum’s motion workspace using 

computerized simulation, the payload’s center of gravity 
draws a half sphere-like shape as in figure 4. Due to these 

changes, the aircraft’s dynamics model center of gravity 
will change accordingly through the aircraft body axis XB, 

YB, ZB, as in figure 5. These changes are considered 

similar to half-sphere shape too. From the curves and table 

2, the maximum value reached by the model’s centers of 

gravity elements can be defined.  

 

Table 2. Maximum values reached by the elements  

of the disturbances in the center of gravity. ܼ஻ ஻ܻ ܺ஻  

0.3093 0.005475 0.2602 Max (m) 

-0.2683 -0.2359 -0.3173 Min (m) 

 

  
(a). disturbances along 

XB 

(b). disturbances along 

YB 

 
 

(c). disturbances along 

ZB 

(d). disturbances in 3-D 

 

Figure 5. The disturbances in the center of gravity. 

 

4.2 STUDYING THE INERTIA MOMENT:  

 

The inertia mass moment of complex shaped bodies is 

calculated using experimental methods. The mathematical 

study was simplified by dividing the overall aircraft model 
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into several parts that were studied separately. The goal is 

to determine the amount of inertia moment of the overall 

aircraft model according to the basic coordinate system 

XB, YB, ZB [10]: � = �஻௢ௗ௬ + �௅�௡௞ଵ + �௅�௡௞ଶ + ��௢�௡௧ + �௅௢௔ௗ  

where J is the inertia moment matrix of the overall aircraft 

dynamics model and JBody, JJoint, JLink1, JLink2, JLoad are the 

inertia moment matrices of the aircraft body, the joints, the 

1st and 2nd links, and the load. The inertia for each part is 

studied using the theory of parallel axis of Huygens-Steiner 

[14], as in: �଴∗ = �଴ +�. ݀ଶ , where J0 is the new inertia 

moment of the studied part relative to new axes parallel to 

the output coordinates system by the angles α, ȕ, Ȗ, as 
shown in figure 6. While Jxx, Jyy, Jzz, Jxy, Jxz, Jyz are the 

studied part’s local inertia moment matrix elements. The 

Curves in figures 7 to 12 illustrate the disturbances in the 

inertia moments of the aircraft’s overall dynamics model 

relative to the pendulum’s angles change range. From the 

curves and table 3, the maximum values of the inertia 

moments’ matrix elements are defined. Table 4 shows the 

errors between the simulation results and the theoretical 

calculations of specific values of the pendulum’s angles. 

These results are shown in figure 13 and emulated based 

on the change of the inertia moments and the center of 

gravity. The hexacopter parameters correlation was 

analyzed in figure 14. From figure 2 it is noticeable that 

this affects indirectly the translational and rotational 

aircraft motion. The curves in figure 14, show that 

controlling the pitch angle led to an indirect effect on the 

other angles and on the angle change rate, that means, the 

controllers should be faster than the rate of angle change in 

order to avoid vibrations. The oscillations, resulted from 

the attached robotic arm, and appeared in all attitude’s 
variables and angles’ rates, spread into other variables 

because of the coupling characteristic. The nonlinearity 

gives smooth shape to the curves, affecting the accuracy of 

control. The scenario here is a hovering flight at an altitude 

of 10 meters. A real dynamics model was developed 

addressing the nonlinear, time-variant and underactuated 

problems.  

 
Figure 6. Angles of difference between the local axis of 

the studied body and the new axis. 

 

5. PROPORTION, INTEGRAL, AND 

DERIVATIVE CONTROLLER DESIGN 

 

Four linear and classical PID controllers were chosen to 

control attitude and altitude of the aircraft at desired 

trajectory in space, because of their ease of design and fast 

response, and their parameters were tuned using Ziegler-

Nichols algorithm [24] to get the best performance. The 

controllers’ speed here is considered suitable as it enables 

tracking the vibrations and changes for avoiding the 

vibrations in the output. A mathematical model of PID is 

described as following equation [24]: ݑሺݐሻ =  ݇஼[݁ሺݐሻ + భ�� ∫ ݁ሺݐሻ . ݀ሺݐሻ + ௗܶ ���݁ሺݐሻ]  
Parameter ݇௖ is the proportional gain, �ܶ  is the integral 

time, and ௗܶ is the derivative time. These parameters are 

defined, to get the best performance by decreasing 

vibrations, steady-state errors, and response time. Figure 

15 shows the PID connection diagram, and the PID 

parameters are in table 5.  

  
Figure 7. �௫௫ changes Figure 8. �௬௬ changes. 

  
Figure 9. �௭௭ changes. Figure 10. �௫௬ changes. 

  
Figure 11. �௫௭ changes. Figure 12. �௬௭ changes. 

 

Table 3. Maximum values reached by the elements  

of the inertia moments matrix of the overall model �௬௭ �௫௭ �௫௬ �௭௭ �௬௬ �௫௫  

7.44 7.179 5.872 47.31 43.06 25.21 Max  

-7.02 -7.45 -6.24 34.65 28.42 10.67 Min  

 

To control the hexacopter an application was conducted by 

LabVIEW using Runge-Kutta 2 method with a fixed step 

of 0.05 sec. The curves in figures 16 to 20 show the control 

signals and the responses with the existence of 

disturbances. These controllers avoid the occurrence of 

vibrations in the output. An analytic study of the 

controller’s stability based on studying the unity response 
with several different levels of altitude and attitude is 

shown in table 6, Tuning has been achieved after many 

experimental trials. The scenario is a hovering flight at an 

altitude of multi-levels. The system’s parameters used in 

the simulation, are listed in table 7. 

207



 

 

Table 4. Errors between the calculated results based on 

SolidWorks program and the theoretical calculations 

Moments of inertia kg.mmଶ 

No.1 No.2 No.3 �ଵ°=0 �ଵ°=72 �ଵ°=216 �ଶ°=-5 �ଶ°=-158 �ଶ°=-107 �ଷ°=-31 �ଷ°=46.5 �ଷ°=-62 

Error % Error % Error % �௫௫ 0.0000 0.2125 0.2131 �௬௬ 0.0026 0.1854 0.2225 �௭௭ 0.0017 0.2692 0.0955 �௬௭ 0.2319 1.6490 0.5049 �௫௬ 1.9312 2.0046 3.1939 �௫௭ 1.4129 0.3839 3.6553 
 

 
(a) 

 
(b) 

Figure 13. Force and momentum disturbances resulted 

from the robotic arm. 
 

6. CONCLUSIONS 
 

A real and complex dynamic model was considered, which 

addresses the nonlinearity, time-variance, coupling, 

underactuation, and disturbances. This paper gives a 

complete discussion of the determination of the moments 

of inertia by simplified pendulum method, in addition to 

taking into consideration the effects of mass distributions 

and center of gravity change. These disturbances were 

inserted into the equations of motions, which also simulate 

a robotic arm motion while the aircraft model is flying in 

the sky. An application was conducted using SolidWorks 

and LabVIEW. The controllers’ parameters were tuned 

using Ziegler-Nichols algorithm to get the best 

performance and avoid output vibrations. These controllers 

are suitable but not ideal and require improvement in order 

to get optimal results. Future work focuses on developing 

a precise trajectory control by using robust techniques 

including nonlinear techniques and artificial intelligence to 

stabilize the whole system and lead the hexacopter to the 

desired trajectory of Cartesian position, attitude, and 

airspeed. 
 

Acknowledgement: The contribution is sponsored by VEGA MŠ SR No 
1/0367/15 prepared project “Research and development of a new 
autonomous system for checking a trajectory of a robot”. 

  

  

  
Figure 14. Stability study of the hexacopter variables due to 

change of input up with the existence of disturbances. 
 

Table 5. PID controller parameters obtained by the 

Ziegler-Nichols Method. 
Parameter ࢛ࢀ 0.006 0.00103- 0.001 24.19 �� ࢛࢟ ࢛࢘ ࢖࢛ ࢀ� Ͳ.Ͳͺʹͻͻ 6.1 6.3 ʹͲ 0.4 0.04073 0.1 0.01328 �ࢀ 

 

Table 6. Stability Response of PID Controllers 
Steady-State Error Response Time (S)  PID Controller 

-0.0911 (m) 22.5 Altitude 

0.01955 (deg) 8.15 Pitch 

0.0941 (deg) 5.72 Roll 

0.00173 (deg) 5.58 Yaw 

 

Table 7. Parameters used in the simulation 
m=4 kg g=9.806 m/s2 l=0.5 m �௫, �௬=3.8e-4 kg.m.s2/rad R =0.15 m ݇௧=4.8e-3 kg.s/m �௭=7.1e-4 kg.m.s2/rad A =0.071 m2 ݇௥=6.4e-5 kg.m.s/rad ��=0.01458 ��=1.037e-3 ρ=1.293 kg/m3 

 

 

  
Figure 16. Stability response of altitude and control signal. 

 ௣ݑ
PID 

controllers 
 ௥ݑ

Physical parameters 

Initial positions 

Dynamical 

model of 

UAV 

Hexacopter 

߱ଵ. . ߱଺ Altitude 

Setpoint ݑ௬ 

Angular 

Artificial 

Vector S
tates ܼ, ∅, �, ߰ 

Attitude 
Setpoint 

Inertial matrix 

 �ݑ

Figure 15. The block diagram of a PID controller 

connected to the hexacopter model 
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Figure 17. Stability response of pitch angle and control signal. 

  
Figure 18. Stability response of roll angle and control signal. 

 
Figure 19. Stability response of Yaw angle and control signal. 

  
Figure 20. Stability response of X and Y coordinate systems. 
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