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Abstract—Systematic analysis of lateral dynamics of a ground
vehicle (e.g. passenger car) is presented in this paper. The results
are based on the simplest possible single-track model. Effects
of variations in the physical parameters - mass, the moment
of inertia, tire priorities, vehicle geometry - on the response
times, damping ratios, natural frequencies and other dynamical
characteristics are presented and confronted with intuitive and
”common sense” expectations and with real-life experience of
race car drivers and constructors. We believe that such a report
is quite unique and useful by itself: we are not aware of
any similar existing report which would provide this systems-
and-controls viewpoint on the vehicle dynamics phenomena. In
addition, future plans are to apply modern systematic model-
based control design approaches to come up with active dynamics
modifications solutions - using for instance torque vectoring -
surpassing current approaches based mainly on mechanical re-
designs and, to some extent, simplest possible local feedback
controllers.

I. INTRODUCTION

From a historical point of view lot of knowledge of the

dynamic behavior of the vehicle is known for mechanical

engineers. However, this phenomenon was not covered from

the control engineer point of view. Frequency characteristics

are well known for mechanical engineers, but for example

roots of the characteristic polynomial of the state space vehicle

model and their location depending on the vehicle parameters

were not well described.

Latest technological improvement of vehicles with electric

drivetrain brings new opportunities for the vehicle control

and stabilization. Understanding how the parameters affect the

vehicle handling from the systems-and-controls viewpoint can

lead to an improved control system of the vehicle. This work

can also bring interesting information for newly interested in

the vehicle dynamics systems.

This paper is organized as follows. Selection of existing tire

models is introduced and described first in section II. Then the

nonlinear single track vehicle model is derived in section III

and the model is linearized afterward. Section IV is focused

on linear analysis and dynamic properties of the developed

linear vehicle model. Finally, in section V conclusion and

future development and research plans are provided.

II. TIRE MODELS

Mathematical description of the interaction between the

vehicle tires and the road surface is the biggest challenge

of models and simulations describing vehicle behavior. Such

models can evaluate longitudinal and lateral tire forces using

vehicle states as input. Advanced tire characteristics and

behavior can be found in [1] or [4].

The forces transferred by the tire in longitudinal and lateral

direction are commonly expressed by slip curve. The example

of slip curve is presented in Fig. 1. Only lateral tire forces

are considered in this paper, therefore only sideslip angle to

lateral force slip characteristic is considered from now on.
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Fig. 1. Typical slip curve for lateral motion.

The initial slope at zero sideslip angle of the characteristics

is called nominal cornering stiffness Cα0.

The sideslip angle of the tire is defined as

α = arctan

(

vy
vx

)

, (1)

where α is the sideslip angle, vx and vy are the velocities

of the tire center in x and y direction of the tire coordination

system.

For small sideslip angle α the lateral tire characteristics is

linear and side force Fy is equal to sideslip angle multiplied

by the nominal cornering stiffness. This characteristic is used

in the linear tire model described later on. However, as the

sideslip angle grows, the tire starts to be overloaded to the

point where the slip curve reaches the maximum of the friction

coefficient µmax. With further increase of the slip angle, the

tire is not able to transfer bigger forces Fy .

The lateral slip curve depends not only on tire characteristics

but also on different conditions such as inflation of the tire,

surface conditions (eg. dry/wet tarmac, snow, ice), the tire and

the road temperatures. It also differs with varying normal load

Fz . As the normal force grows, the maximal transferred side

force Fy . It is assumed that normal forces depend only on

the weight distribution of the car and that these forces are

constant during the vehicle movement. In other words, neither
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longitudinal nor lateral load transfer is considered within this

paper. The aerodynamic downforce of the vehicle is also

neglected for the same purposes.

A. Pacejka ’Magic’ formula

The widely used empirical formula of Hans Bastiaan Pace-

jka [3] was simplified into 4 main parameters (B,C,D and E)

based on empirical measurements of the tire behavior. Longi-

tudinal and lateral tire forces are computed independently for

simpler implementation and representation of the formula.

The general simplified form of Pacejka’s ’Magic’ formula

is:

Fy(α) = D·sin (C · arctan (Bα− E(Bα− arctan (Bα) ))),
(2)

where parameters B,C,D and E give the shape of the tire

characteristics, Fy is lateral tire force and α is sideslip angle

of the tire.

The same formula (with different empirical parameters) can

be used for estimating the longitudinal tire force Fx if the

sideslip angle is replaced with the slip of the tire λ and also

for the aligning moment of the tire.

B. Linear tire model

Linear model is the simplest model of the tire. It is defined

as

Fx(λ) = Cλ0λ, Fy(α) = Cα0α, (3)

where Fx is longitudinal tire force, Fy is lateral tire force, λ
is tire slip, α is sideslip of the tire, Cλ0 is tire slip coefficient

and Cα0 is tire sideslip coefficient.

This model is accurate only when sideslip angle not far

from 0. The model does not include the non-linear behavior

of the tire. However, this model can be used for vehicle

model linearization. This linearized model is later used in used

section IV.

III. SINGLE TRACK MODEL

Simple kinematic vehicle model is required for simpler

control of the vehicle dynamics during steady state cornering.

Only a planar motion of the vehicle is considered in vehicle

single track model described within this paper. The vehicle

center of gravity is projected into the plane of the surface in

order to neglect the load transfer during the vehicle motion.

Thus only one rotatory and one translatory degree of freedom

is required to sufficiently estimate the vehicle state.

The vehicle coordinate system has to be defined first. The

x axis of the vehicle points from the center of gravity towards

the front of the vehicle and the y axis towards the right side

of the vehicle from the driver’s perspective. Finally, the z axis

points towards the ground to follow commonly used a right-

handed coordinate system.

The single track vehicle model describing planar vehicle

motion is introduced in figure 2. The vehicle is moving with

velocity v. The angle between the x axis of the vehicle and

Fig. 2. Single track kinematic model of the vehicle.

the velocity vector is called vehicle sideslip angle β and is

defined as

β = arctan

(

vy
vx

)

, (4)

where vx and vy are the vehicle velocities in x and y direction

of the vehicle coordinate frame respectively.

The differential equations of the vehicle model shown in

figure 2 can be directly derived by creating equilibrium of

all forces in the x (5) and y (6) vehicle direction and of all

moments about the z axis (7) of the vehicle. It is assumed,

that modeled vehicle is usual passenger car with front wheel

steering only. As mentioned before, the aerodynamic forces

are neglected.

−mv̇ cos(β) +mv(β̇ + ψ̇) sin(β)− Fy,F sin(δ)+

+ Fx,F cos(δ) + Fx,R = 0 (5)

−mv̇ sin(β)−mv(β̇ + ψ̇) cos(β) + Fy,F cos(δ)+

+ Fx,F sin(δ) + Fy,R = 0 (6)

−Izψ̈ + Fy,F lf cos(δ)− Fy,Rlr + Fx,F lf sin(δ) = 0 (7)

In differential equations of motion above m is the mass of

the vehicle, v is the velocity of the vehicle, ψ̇ is the yaw rate

of the vehicle,Iz is moment of inertia about the z-axis, lf and

lr are the distances of the center of the front and rear tire from

the vehicle gravity center respectively, β is the sideslip angle

of the vehicle, δ is the wheel steering angle, Fx,F and Fx,R

are longitudinal forces of front and rear tire respectively, Fy,F

and Fy,R are lateral forces of front and rear tire respectively.

The change of the sideslip angle β̇ is very small compared to

the yaw rate ψ̇, thus it can be neglected.

The tire forces Fy,F and Fy,R are defined within equations

of selected tire model. The tire position and steering angle

has significant impact on sideslip angles of tires, which are

defined as

αF = δ − arctan

(

v sin(β) + lf ψ̇

v cos(β)

)

, (8)
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αR = − arctan

(

v sin(β)− lrψ̇

v cos(β)

)

, (9)

where δ is front steering angle, v is vehicle velocity, ψ̇ is

the yaw rate, β is sideslip of the entire vehicle, lf and lr are

the distances of the centre of the front and rear tire from the

vehicle gravity centre respectively and αF and αR are sideslip

angles of front and rear tire respectively.

The relations 8 and 9 can be rewritten for small steering

angles as

αF = δ − β −
lf ψ̇

vx
, (10)

αR = −β +
lrψ̇

vx
, (11)

where δ is front steering angle, v is vehicle velocity, ψ̇ is the

yaw rate, β is sideslip of the entire vehicle and αF and αR

are sideslip angles of front and rear tire respectively.

Assuming small steering angle δ and sideslip angles β the

vehicle differential equations of motion 5, 6 and 7 can be then

linearized as

−mv̇ + Fx,F + Fx,R = 0, (12)

−mv(β̇ + ψ̇) + Fy,F + Fy,R = 0, (13)

−Izψ̈ + Fy,F lf − Fy,Rlr = 0, (14)

where m is the vehicle mass, Iz is moment of inertia about

the z-axis, v is vehicle velocity, δ is steering angle, β is

sideslip angle, ψ is vehicle yaw rate, Fx,F and Fy,F are

longitudinal and lateral forces of the front tire respectively

and Fx,R and Fy,R are longitudinal and lateral forces of the

rear tire respectively.

The sideslip angles of the front and rear tire are defined

in equations 10 and 11 respectively. The lateral tire forces

Fy,F and Fy,R can be estimated using selected tire model -

for simplification the linear model is chosen.
It is assumed that acceleration of the vehicle v̇ is equal to

zero during the steady state cornering maneuver. The vehicle
differential equations are after substitution of side forces
Fy,F and Fy,R (see eq. 3) and using equations 10 and 11
transformed into following state space model

[

β̇

ψ̈

]

= A

[

β

ψ̇

]

+

[

Cα0,F

mv
Cα0,F lf

Iz

]

δ (15)

A =





−

Cα0,F+Cα0,R

mv
−

(

1 +
Cα0,F lf−Cα0,Rlr

mv2

)

−

Cα0,F lf−Cα0,Rlr

Iz
−

Cα0,F l2f+Cα0,Rl2r

Iz



 (16)

where the vehicle state is represented by vehicle sideslip angle

β and vehicle yaw rate ψ̇.

IV. LINEAR ANALYSIS

In the previous section, the linear steady-state cornering

model of the vehicle motion through the corner was derived.

This simple model can be used designing the control systems

for the vehicle which improves the vehicle stability or han-

dling.

TABLE I
DEFAULT PARAMETRIZATION OF THE VEHICLE MODEL

Weight m 1500 kg

Vehicle speed v 15.5 m/s

Moment of inertia Iz 2000 kg ·m2

Vehicle length 3 m

Distance of front wheel and CG lf 1.3 m

Distance of rear wheel and CG lr 1.7 m

Nominal cornering stiffness of front tire Cα0,F 100000 N/rad

Nominal cornering stiffness of rear tire Cα0,R 120000 N/rad

Obtained linear model (eq. 15) is a simple second order

linear state space model with one input (the steering angle of

the front wheel δ) and two states (vehicle sideslip angle β
and yaw rate φ̇). However, each of the physical parameters

influences the static and dynamic characteristics of this model

in a different way. It is, therefore, important for us as control

designers to understand what are the impacts of variations

in mass and geometric parameters of the vehicle to time

constants, natural frequencies and damping ratios of the lateral

model modes. This is the goal of this section, and one of the

main contributions of the whole paper.

The parametrization of the vehicle model was selected

to match a usual passenger car. One selected parameter is

varied in each subsection. This simulation does not correspond

with the reality, for example, if the weight of the vehicle

is increased or the center of gravity is shifted forward it

influences directly the cornering stiffness coefficient of the

tire (via different normal load on each tire) and moment of

inertia of entire vehicle.

The influence on the location of roots of the characteristic

polynomial is shown and well described in each subsection.

The time response of vehicle yaw rate to step change of the

direction of the front wheels together with the Bode plot

is shown. Each figure contains an arrow which shows the

direction of change as the value of selected parameter increase.

A. Vehicle velocity

During the vehicle cornering, one of the main parameters

which have a big influence on vehicle handling is the speed.

The vehicle velocity v appears only in denominators of com-

ponents of the system matrix A (eq. 16). Thus as the velocity

increases, the poles of the system should be closer to zero.

The tendency mentioned before is shown in figure 3. As

the vehicle velocity v increases, the poles of the system move

towards zero (indicated by black arrow). It is possible to see,

that at some point the poles become complex.

This behavior has another effect on vehicle handling which

can be seen in time response of the system (fig. 5). As the

vehicle velocity increases, the vehicle yaw rate φ̇ (steady state)

also increases until a critical point. With further increase of the

velocity, the yaw rate (steady state) decreases which results in

an increase of radius of the corner.
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Fig. 3. Poles of linear vehicle model with increasing velocity.
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Fig. 5. Step response of linear vehicle model with increasing velocity.

B. Position of the centre of gravity

Another interesting parameter influencing the vehicle han-

dling is the location of the center of gravity. In figures 6, 7

and 8 change of location of the centre of gravity is shown

as increase of the distance between front wheel and centre

of gravity lf . The length of the vehicle remains the same,

thus the distance between rear wheel and center of gravity lr
decreases. The vehicle velocity was set to v = 50km/h.

The common knowledge says that moving the center of

gravity towards the front wheel forces the vehicle to have a

quicker response and less rear wheel grip. Moving the center of

gravity towards the rear axle does the opposite - less steering

and more rear wheel grip.

This phenomenon can be seen in time response of the

vehicle system in figure 11. The rising time decreases up to

the moment, where the center of gravity is closer to the front

wheel (lf = 1.25m). Then the rising time grows again.

The location and movement of poles are also different when
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Fig. 6. Poles of linear vehicle model with increasing CG from front to rear
wheel.
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rear wheel.
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Fig. 8. Step response of linear vehicle model with moving CG from front to
rear wheel.

the vehicle is moving with bigger velocity. If the center of

gravity is close to the rear wheel the vehicle can become

unstable in terms of the location of the poles. This behavior

is shown in figures 9, 10 and 11.

C. Moment of inertia

The moment of inertia is varied in this subsection. This

effect can be achieved by moving the vehicle engine and

transmission from the center of the vehicle to the front and

back. The vehicle center of gravity should remain in the same

location.

The common practice of the sports vehicle design is to

keep the moment of inertia of the entire vehicle as small as
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wheel - higher velocity.
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Fig. 11. Step response of linear vehicle model with moving CG from front
to rear wheel - higher velocity.
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Fig. 12. Poles of linear vehicle model with different moment of inertia of
the vehicle.
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Fig. 13. Bode plot of linear vehicle model with different moment of inertia
of the vehicle.
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Fig. 14. Step response of linear vehicle model with different moment of
inertia of the vehicle.

possible. The time response of the system (fig. 18) confirms

this phenomenon. As the moment of inertia increases, the time

response of the system output is slower.

D. Weight

Adding the weight usually change the moment of inertia

of the vehicle. However, we assume in this subsection adding

weight only to the vehicle center of gravity, thus the moment

of inertia is not modified. This modification can be achieved

by adding or removing some weight of the motor of a mid-

engine vehicle since the motor is usually placed near the center

of gravity of the mid-engine vehicle.
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Fig. 15. Poles of linear vehicle model with increasing weight.

Additional vehicle weight added into the vehicle center of

gravity results in the smaller yaw rate and less dumped yaw
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Fig. 17. Step response of linear vehicle model with increasing weight.

rate response of the vehicle. This phenomenon corresponds

with common sense - as the vehicle gains weight it becomes

less steerable. If we remove some weight, we can achieve

bigger yaw rate and quicker vehicle response for the same

steering angle.

E. Surface conditions

The change of the surface conditions has a big influence

on lateral vehicle behavior. The difference in tire friction

coefficient is studied in this subsection. Other parameters

should remain the same.
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As the friction coefficient grows, the tires have more grip

and are able to transfer bigger lateral forces and the vehicle has

bigger yaw rate. Since the vehicle speed is set to the constant

value, this increment of yaw rate leads to a reduce of the

cornering radius.
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Fig. 19. Bode plot of linear vehicle model with increasing tire friction
coefficient.
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Fig. 20. Step response of linear vehicle model with increasing tire friction
coefficient.

V. CONCLUSION

The main focus of this paper was to show some interesting

behavior of the single track vehicle model from the system-

and-control point of view. In section III the single track

model of the vehicle was developed and linearized into steady-

state cornering model. In section IV all main parameters

of this linear steady-state cornering model were varied. The

impact on the time response of vehicle yaw rate and roots of

characteristic polynomial was analyzed and described.

This work can provide useful information to all people inter-

ested in vehicle dynamics, mainly the students of undergrad-

uate control engineer courses. This work is also the starting

project of the new group of vehicle dynamics and control at the

Faculty of Electrical engineering, Czech technical university

in Prague.

The paper will be further extended by analysis of variations

of mutually dependent parameters of the linear vehicle model.

Finally based on all results of linear analysis fully functional
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torque vectoring control system for the vehicle with electric

drivetrain should be developed.
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