
Finite Element Method Based Modeling of a Flexible Wing Structure

Filip Svoboda
Czech Technical University in Praque,

Faculty of Electrical Engineering

Karlovo náměstı́ 13/E,
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Abstract—The finite element based structural model of a flexi-
ble wing is presented. The structural model will be a part of a
servoelastic wing used for flutter analysis and designing flutter
suppression control systems. It also allows modal analysis of a
wing with given parameters. A finite element model consists of
Euler-Bernoulli beams joined together. This approach is able
to reach high accuracy and various properties of a particular
wing element can be modeled.

1. Introduction

As part of an active flutter suppression research project,
we develop a structural model for dynamics analysis and
control designs for a flexible wing. Aeroelastic flutter [15]
is a phenomenon which causes dynamic instability of a
flexible structure like a wing in airflow. Unstable oscillations
occur with an interaction of aerodynamics and structural
dynamics. The range of an aircraft operating conditions is
determined to prevent flutter. The first way to expand the
flutter boundary is a change in a mechanical design of an
aircraft which can lead to additional mass and deterioration
of efficiency. Active flutter suppression is a solution to
ensure sufficient operating range of an aircraft in a more
efficient manner.

This paper focuses on the structural model of a servoe-
lastic wing model depicted in Figure 1. It consists of struc-
tural dynamics, aerodynamics and dynamics of an actuator
(flap). Dynamics interconnection is introduced in [11] or [8].
Aerodynamic block calculating lift distribution on the oscil-
lating surface usually uses Doublet Lattice Method (DLM)
in the subsonic flow described by Rodden in [10]. The above
mentioned methods are also used in the NASTRAN software
documented in [7].

The assembled model shall be used in the future for
designing active flutter dampers. Many principles have been
presented in the literature. For example pole/zero loci design
[16], linear quadratic Gaussian control, nonlinear control
[17], adaptive control [18], linear parameter-varying control
[19], [20], or H∞ synthesis. One of the applications of a
robust control for small flexible aircraft is reported in [13].

The finite element method approach (FEM), which will
be used extensively in this paper, is a numerical technique

Figure 1. Aeroservoelastic wing schema.

for finding approximate solutions of problems discribed
by partial differential equations [1], [3], or [12]. One of
the examples can be a flexible structure. The structure is
spatially descretized into finite elements; in this way the
PDE formulation is transformed into large sets of ODEs.
High fidelity of FEM models for flutter control applications
can be achieved as shown in [2] where the simulations and
measured flight data are compared. Note also that model
parameters can be obtained from ground vibration tests [9]
and [6].

The paper is organized as follows. The principles of
FEM and their application in a wing flexible structure is
introduced in Section 2. It also deals with State–Space
representation suitable for further analysis and modeling.
Section 3 focuses on modal analysis. Natural frequencies
and mode shapes are calculated and visualized. Time domain
simulations are shown in Section 4. Finally, the concluding
remarks and further research proposals are presented in
Section 5.

The presented manuscript presents the part of authors
ongoing research on active flutter suppression solutions for
small sports aircraft. Related previous achieved results are
summarized in the recent MSc. diploma thesis [14] focusing
on 2D aeroelastic airfoil model and its analysis, controller
design and experiments in wind tunnel. A paper on fixed–
order H∞ control for the same setup design has been
submitted recently to IFAC 2017 World Congress [21].
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Figure 2. Euler–Bernoulli beam.

2. FEM based model

The goal of this section is to describe principles of a
FEM modeling of a flexible wing. The structural model
is based on Euler–Bernoulli beam theory which consid-
ers small displacements and linear elastic material, there-
fore, the Hooks law is valid. The beam with applied
forces V and torques M is in Figure 2. Resulting equa-
tions (1), (2), (3), (4), are summarized below.

(V + dV )− V + fdx = 0 (1)

(M + dM)−M − V dx+ fdx
dx

2
= 0 (2)

dV

dx
= −f (3)

dM

dx
= V (4)

For deriving equations of motion, the kinematics must
be determined. Equations (5), (6) are considered for small
displacements, where θ is the radius of the deflection curve,
u is transverse displacement, E is Youngs modulus of
elasticity and I is the moment of area.

θ = −
du

dx
(5)

M = EI
dθ

dx
(6)

By substitutions in equations (3), (4), (5) and (6) equa-
tions (7) and (8) can be written. The Euler–Bernoulli beam
equation (9) is derived from them.

d2M

dx2
= −f (7)

EI
d2u

dx2
= −M (8)

EI
d4u

dx4
= −f (9)

For solving Euler–Bernoulli beam equation, the bound-
ary conditions (10) must be added. Solution can be found by
Galerkins method. It means every function can be written
as a linear combination of basis functions. Rather then basis
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Figure 3. Shape functions for a beam element.

functions, the shape functions ψj(x) are used. Solution is

described in approximation (11), where α =







vi−1

θi−1

vi
θi






.

Shape functions ψ =
[

ψ1 ψ2 ψ3 ψ4

]

are cubic Hermite
polynomials (Lovest order polynomials that satisfy continu-
ity requirements). Shapes of functions (12) are shown in
Figure 3.

u(x = 0) = v1

u(x = L) = v2

du

dx
|x=0 = θ1

du

dx
|x=L = θ2

(10)

uh(x) =
4
∑

j=1

αjψj(x) (11)

ψ1(x) =
1

L3
(2x3 − 3x2L+ L3)

ψ2(x) =
1

L3
(x3L− 2x2L2 + xL3)

ψ3(x) =
1

L3
(−2x3 + 3x2L)

ψ4(x) =
1

L3
(x3L− x2L2)

(12)

After substitution to equation 9 and integration (13), the
equation can be rewritten to (14), where ke is the element
stiffness matrix and fe is a load. Similarly, element mass
matrix me can be derived.

(

∫ xi

xi−1

EIBTB

)

αdx =

∫ xi

xi−1

fNT dx (13)

keα = fe (14)

For our flexible wing structural model, the torsional
degree of freedom is added to Euler–Bernoulli beam. The
beam element with nodes i− 1 and i with three degrees of
freedom (DoF) is shown in Figure 4. Appropriate element
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Figure 4. The beam element with three degrees of freedom.

mass and stiffness matrix are presented in (15) and (16),
where ml is mass per unit length, jl is inertia per unit length,
G is modulus of rigidity, Iz is moment of area and L is a
length of a beam. Columns in the matrixes corresponds to

vector xe =
[

vi−1 θi−1 φi−1 vi θi φi
]T

.

ke =

















12EIz
L3

6EIz
L3 0 −12EIz

L3
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L2 0
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L2
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L

0
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(15)

me =




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











156mlL
420

22mlL
2

420
0 54mlL

420

−13mlL
2

420
0

22mlL
2

420

4mlL
3

420
0 13mlL

2

420

3mlL
3

420
0

0 0 jlL
3

0 0 jlL
6

54mlL
420

13mlL
2

420
0 156mlL

420

−22mlL
2

420
0

−13mlL
2

420

−3mlL
3

420
0 −22mlL

2

420

4mlL
3

420
0

0 0 jlL
6

0 0 jlL
3



















(16)
The beam element represents the element of a wing.

Different properties in each wing section can be mod-
eled by different properties of a beam. Finally, the whole
wing is a connection of that beams. The acquired sys-
tem is described by equation (17). The matrix Mw and
Kw are wing mass and stiffness matrices composed from
element matrices. Their size is [3n × 3n], the number
of DoF times number of nodes respectively. Figure 5
shows the principle of Mw and Kw calculation. Vector

X =
[

v1 θ1 φ1 v2 θ2 φ2 ... vn θnφn
]T

con-
tains displacement variables of each node. Nodes forces and
torques represents vector Fw.

MwẌ + CwẊ +KwX = Fw (17)

This structural wing model consider one end clamped
wing that means a rigid connection between the first node
and stationary fuselage. The connection is simulated by
setting high coefficients the mass and stiffness matrix in
positions corresponding to node 1 (v1, θ1, φ1).

Damping matrix Cw from equation (17) can be ob-
tained in different ways. Rayleigh damping can be con-
sidered for example. It assumes that the damping matrix
is a linear combination of the mass and stiffness matrices
Cw = a0Mw + a1Kw.

Figure 5. Principle of Mw and Kw structure for two elements.

Figure 6. Wing elements.

2.1. State–Space model

Structural dynamics is just one part of an aeroservoelas-
tic model (Figure 1) containing aerodynamics and dynamics
of an actuator. For further work with the model, it is useful
to transform equation (17) to state–spece model. Forces and
torques will be as inputs to the system(Fw) and the accel-

erations Ẍ will be an output. After substitution X1 = X ,

X2 = Ẋ , it is possible to rewrite equation (17) to state–
space representation (18).

Ẋ1 = X2

Ẋ2 = −M−1

w KwX1 −M−1

w CwX2 +M−1

w Fw

y = −M−1

w KwX1 −M−1

w CwX2 +M−1

w Fw

(18)

TABLE 1. FE WING PARAMETERS

Symbol Description Value Units

Le length of the element 0.356 m

we width of the element 0.26 m

he height of the element 0.0065 m

mpl mass per unit length 0.94 kg/m
jpl inertia per unit length 0.005 kgm

E Young’s modulus 2.34 · 1010 Pa

G modulus of rigidity 4.05 · 106 Pa

a1 mass damping coefficient 0.0001 −

a2 stiffness damping coefficient 0.0001 −

3. Modal analysis

Modal analysis is closely related to flexible structure
modeling. Parameters are usually obtained from static and
dynamic tests. Dynamic measurements can be available
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in the form of ground vibration tests. This tests, which
are required by flutter specifications, measures modes and
frequencies of an aircraft. An example of a ground vibration
test can be found in [4] and [5].

The model described in equation (17) contains modal
damping matrix Cw making dynamics more realistic. How-
ever modal analysis can be done with method considering
undamped and unforced system (19). Next, assume that
this dynamic system makes harmonic motion of circular
frequency ω. It can be done using function (20) and cor-
responding acceleration (21). Then equation (22) can be
stated. Term (Kw − ω2Mw) = D(ω) is called the dynamic
stiffness matrix used for solving free vibrations eigenprob-
lem (23). Characteristic equation q(ω2) has roots equal
to undamped natural circular frequencies. Undamped free–
vibrations natural modes are eigenvectors of D(ω).

MwẌ +KwX = 0 (19)

X(t) = X cos(ωt− ϕ) (20)

Ẍ(t) = −ω2X cos(ωt− ϕ) (21)

MwẌ +KwX = (Kw − ω2Mw)X = 0 (22)

q(ω2) = det(D(ω)) = 0 (23)

Finally, if a modal damping ζ is known from ground
vibration test, It can be used for derivation of a modal
damping matrix Cw as in equation (24).

Cw = 2ζ ′diag(ω)Mw (24)

The equation (22) can be rewritten to the canonical form
of the generalized algebraic eigenproblem (25), where λ is
a diagonal matrix with eigenvalues on the main diagonal
and V is a matrix with right eigenvectors. Therefore the
square roots of eigenvalues are natural frequencies ωi and
eigenvectors represents the mode shapes.

KwV =MwV λ (25)

With considering parameters from table 1, natural fre-
quencies, and modal shapes are computed and stated in
table 2 and figures 7, 8, 9 and 10. Same ωi are apparent
from Bode plots in Figure 11.

4. Simulations

This section presents time behavior of a finite element
based structural model of a flexible wing. The wing made
up five elements with same parameters from Table 1. Chirp
signal was used as a source of torque and force in the
simulations. Figure 12 is a time response to chirp signal
with initial frequency 0 Hz and target frequency 25 Hz.
This signal was a source of force to node 5. The peaks
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in the figure correspond to first and second bending mode.
For visualization of a first torsion mode frequency (Fig-
ure 13), chirp signal with initial frequency 10 Hz and target
frequency 30 Hz was used as a source of torque to node
5. Mode shapes are reflected in phase shifts of each node
acceleration. An example is Figure 14, with an acceleration
of nodes with third bending mode excitation.

5. Conclusion

The paper describes the principle of a FEM based flex-
ible wing structure modeling. Euler–Bernoulli beam theory
was used for wing discretization and equations of motion
have been derived. These equations were analyzed and nat-
ural frequencies and modal shapes were found. Magnitude
Bode plots show natural frequencies as a frequency peaks
in a graph. Time simulations also demonstrate system sen-

TABLE 2. NATURAL FREQUENCY

ωi Description Value (rad/s) Frequency (Hz)

ω1 1st Bending 21.14 3.36
ω2 1st Torsion 94.82 15.09
ω3 2st Bending 132.63 21.11
ω4 2st Torsion 299.12 47.61
ω5 3st Bending 373.35 59.42
ω6 3st Torsion 543.37 86.48
ω7 4st Bending 733.13 116.68
ω8 4st Torsion 785.76 125.06
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Figure 13. Time response to chirp (10–30 Hz).
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sitivity to forces and torques at modal frequencies. Flexible
wing structure model has a practical use in flutter analysis
and synthesis of a flutter suppression systems.

Acknowledgment

This research was supported by the Czech Science Foun-
dation (GACR) under contract No. 16-21961S.

References

[1] G.P.Nikishkov, Introduction to the Finite Element Method, University
of Aizu, Japan: Aizu-Wakamatsu, 2004.

[2] E. L. Burnett and Ch. Atkinson and J. Beranek and B. Sibbitt and
B. Holm-Hansen and L. Nicolai, NDOF Simulation Model for Flight

Control Development with Flight Test Correlation,AIAA Modeling and
Simulation Technologies Conference, Ontario Canada: Toronto, August
2010.

[3] S. Dietz and O. Wallrapp and S. Wiedemann, NODAL VS. MODAL

REPRESENTATION IN FLEXIBLE MULTIBODY SYSTEM DYNAM-

ICS,Multibody Dynamics, Portugal: Lisabon, July 2003.

[4] P. Rossouw, The flutter analysis of the JS1 glider, North–West Uni-
versity, Potchefstroom, November 2007.

[5] M. Konvalinka, FEM Modal and Flutter Analysis of the G304S Glider,
Department of Aerospace Engineering, Faculty of Mechanical Engi-
neering, CTU, Czech Republic: Prague 2010.

[6] W. P. Rodden, A Method for Deriving Structural Influence Coefficients

from Ground Vibration Tests , AIAA Journal VOL. 5, NO. 5, pp. 991–
1000, May 1967.

[7] W. P. Rodden and E. H. Johnson, MSC/NASTRAN Aeroelastic Analysis:

User’s Guide, Version 68, MacNealSchwendler Corporation, 1994.

226



[8] A. Kotikalpudi and H. Pfifer and G. J. Balas Unsteady Aerodynamics

Modeling for a Flexible Unmanned Air Vehicle, AIAA Atmospheric
Flight Mechanics Conference, AIAA AVIATION Forum, (AIAA 2015-
2854).

[9] A.Gupta and C.P. Moreno and H. Pfifer and B. Taylor and G. J. Balas
Updating a finite element based structural model of a small flexible

aircraft, AIAA Modeling and Simulation Technologies Conference,
AIAA SciTech Forum, (AIAA 2015-0903).

[10] E. Albano and W. P. Rodden, A doublet-lattice method for calculating

lift distributions on oscillating surfaces in subsonic flows, AIAA
Journal, Vol. 7, No. 2 (1969), pp. 279-285.

[11] B. P. Danowsky and T. Lieu and A. Coderre-Chabot, Control Oriented

Aeroservoelastic Modeling of a Small Flexible Aircraft using Com-

putational Fluid Dynamics and Computational Structural Dynamics

- Invited, AIAA Atmospheric Flight Mechanics Conference, AIAA
SciTech Forum, (AIAA 2016-1749).

[12] W. Su and C. E. S. Cesnik ynamic Response of Highly Flexible Flying

Wings, AIAA Journal, Vol. 49, No. 2 (2011), pp. 324-339.

[13] J. Theis and H. Pfifer and P. J. Seiler, Robust Control Design

for Active Flutter Suppression, AIAA Atmospheric Flight Mechanics
Conference, AIAA SciTech Forum, (AIAA 2016-1751).

[14] F. Svoboda, Damping system of aeroelasticity phenomena, Master’s
thesis (2016), Czech technical university in Praque.

[15] R. L. Bispinghoff, H. Ashley, R. L. Halfman, Aeroelasticity, Dover
publications, INC., 1996.

[16] M. R. Waszak, Modeling Technology Active the Benchmark Design

Active Model Applications Control for Control, NASA Center for
AeroSpace Information, June 1998.

[17] S. Afkhami and H. Alighanbari, Nonlinear control design of an airfoil

with active flutter suppression in the presence of disturbance, IET
Control Theory, Vol. 1, pp. 1638–1649.

[18] W. L. Keum and N. S. Sahjendra, Adaptive Control of Multi-Input

Aeroelastic System with Constrained Inputs, Journal of Guidance,
Control, and Dynamics, Vol. 38, pp. 2337–2350.

[19] J. M. Barker and G. J. Balas, Comparing Linear Parameter-Varying

Gain-Scheduled Control Techniques for Active Flutter Suppression,
Journal of Guidance, Control, and Dynamics, Vol. 23, pp. 948–955.

[20] J. S. Vipperman and J. M. Barker and R. L. Clark and G. J. Balas,
Comparison oc my and H2 Synthesis Controllers on an Experimental

Typical Section, Journal of Guidance, Control, and Dynamics, Vol. 22,
pp. 278–285.
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