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Abstract—The most widely used controllers in industry are
still the proportional, integral, and derivative (PID) and discrete-
time proportional, summation, and difference (PSD) controllers,
thanks to their simplicity and performance characteristics. How-
ever, with these conventional fixed gain controllers we could have
difficulties to handle nonlinear or time-variant characteristics.
The introduction of linear parameter-varying (LPV) systems led
to various gain-scheduled controller design techniques in both
state-space and frequency domain during the last 30 years. In
spite of all these, there is still a lack of general approaches for
advanced guaranteed cost PID/PSD controller design approaches
for LPV systems. In this paper a new advanced controller
design approach for discrete-time gain-scheduled guaranteed cost
PSD controller design with input saturation and anti-windup is
presented for uncertain LPV systems. In addition, the controller
design problem is formulated in such a way, which gives convex
dependency regarding the scheduled parameters. It results in
a less conservative controller design compared to approaches
using quadratic stability or the multiconvexity lemma and it’s
relaxations. Finally, a numerical example shows the benefits of
the proposed approach.

I. INTRODUCTION

It is well known that proportional, integral, and derivative

(PID) and discrete-time proportional, summation, and differ-

ence (PSD) controllers are extensively used in industry [1].

Furthermore, the robust PID/PSD controller design theory is

well established for linear systems [2], but almost all real

processes are more or less nonlinear. If the plant’s operating

region is small, one can use the robust control approaches to

design a linear robust PID/PSD controller where the nonlinear-

ities are treated as model uncertainties. However, for nonlinear

processes, where the operating region is large, the above

mentioned controller synthesis may be inapplicable or provide

unreasonable conservative designs with poor performance.

For this reason, the PID/PSD controller design for nonlinear

systems is nowadays a very active and important field of

research.

Gain-scheduling is one of the most commonly used con-

troller design approaches for nonlinear systems and has a

wide range of use in industrial applications. Particularly, the

introduction of the notion of linear parameter-varying (LPV)

systems has accelerated the development [3]. For a more
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comprehensive survey of the field, readers are also referred

to survey papers [4], [5] and [6].

Lyapunov theory and small-gain theorem are the two main

(not independent) research directions for testing and synthetiz-

ing performance and stability of LPV systems. Convexification

in the scheduling parameter dependency of the closed-loop

conditions allows to transform the controller design problem

to convex optimization problem subject to some finite number

linear/bilinear matrix inequalities (LMI/BMI). The approaches

based on the small-gain theorem and/or integral quadratic con-

straints are mainly equivalent with the quadratic stability, and

highly depend on the structure of the applied multipliers, there-

fore may be numerically expensive, respectively conservative

[7], [8], [9]. Nonetheless, these approaches have their own

benefits highlighted by a significant amount of publications.

Along this line, multi-convexification technique can balance

conservatism, e.g. as pointed out in [10] within affine quadratic

stability (AQS) framework. Furthermore, different relaxation

techniques have been deployed to reduce the conservativeness

caused by the multi-convexity requirement [11], [12], [13],

[14]. Multi-convexity has been differently solved, usually by

restricting the closed-loop LPV structure, system or controller

to avoid cross term effects of the scheduling parameters [15],

[16], [17], [18].

While relatively huge amount of literature is dealing with

control of LPV systems, only few papers are devoted to

PID/PSD controller design. Furthermore, most of them are

based on quadratic stability with an H∞ norm bound [19],

[20]. In order to overcome the gap a new approach is

introduced for discrete-time gain-scheduled guaranteed cost

PSD controller design for uncertain LPV systems with input

saturation and anti-windup.

The mathematical notation of the paper is as follows. Given

a symmetric matrix P = PT ∈ R
n×n, the inequality P > 0

(P ≥ 0) denotes the positive definiteness (semi definiteness)

of the matrix. Matrices, if not explicitly stated, are assumed

to have compatible dimensions. I denotes the identity matrix

of corresponding dimensions. Notation for interval of numbers

between a and b including endpoints a and b is 〈a, b〉 = {x ∈
R|a ≤ x ≤ b}. A◦B denotes the Hadamard (or Schur) product

between matrices A ∈ R
n×m and B ∈ R

n×m. A ◦ b denotes

product defined in Definition 2 in Appendix between the matrix

A ∈ R
n×m and vector b ∈ R

n.
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II. PRELIMINARIES AND PROBLEM FORMULATION

The following class of discrete-time linear parameter vary-

ing systems is considered throughout the paper:

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k),

y(k) = Cx(k),
(1)

where x(k) ∈ R
n, u(k) ∈ R

m and y(k) ∈ R
l are the state,

control input and the measured output vectors, respectively.

The matrix functions A(θ(k)) ∈ R
n×n and B(θ(k)) ∈ R

n×m

are assumed to depend on the scheduling variable θ(k) ∈
〈θ, θ〉 ∈ Ω as (3) with S(θ(k)) = {A(θ(k)), B(θ(k))}. In

addition A0, B0, Ai, Bi, i = 1, 2, . . . , p and C are constant

matrices with appropriate dimensions.

The scheduling variable used in this paper is extended and

distributed to:

θ(k) = [α1, . . . , αNα
, β1, . . . , βNβ

], (2)

where, it is assumed that the scheduling parameters αi(k)
i = 1, 2, . . . , Nα are constant or time-varying and can be

measured or estimated and therefore used in the controller,

and the scheduling parameters βj(k), j = 1, 2, . . . , Nβ are

constant or time-varying but unknown (uncertain) parameters.

S(θ(k)) = S0 +

Nα
∑

i=1

Siαi(k) +

Nβ
∑

j=1

S(Nα+j)βj(k)

= S0 +

p
∑

i=1

Siθi(k).

(3)

Furthermore, it is assumed that the maximal rate of change of

scheduled parameters ∆θi(k) ≤ ρθi are known and predefined.

The output feedback gain-scheduled PSD control law is

defined in this paper as:

u(k) = Gf (z) ◦

(

KP (θ(k))ep(k) + EEFM (k)

+KD(θ(k))
ed(k)− ed(k − 1)

Ts

)

◦ λ(k),

(4)

where EEFM (k) denotes the discretized integral term using

the Euler’s forward method:

EEFM (k) = Ts

k−1
∑

i=0

(

(

KS(θ(i))e(i)
)

◦ σ(i)
)

, (5)

furthermore, ep(k) = y(k) − cp ◦ w(k) is the control error

vector for the proportional part, e(k) = y(k) − w(k) is the

control error vector for the summation part, ed(k) = y(k) −
cd ◦ w(k) is the control error vector for the difference part,

w(k) ∈ R
l is the reference signal vector, cp, cd ∈ R

l are the

set-point weighting vectors, λ(k) ∈ R
m is a vector of known

time-varying parameters λi ∈ 〈λi, 1〉 ∈ Φ (which serves to

ensure the hard input constraints |u| ≤ umax), σ(k) ∈ R
m is

a vector of switching parameters σi ∈ 〈0, 1〉 for anti-windup,

Ts is the sample time, and matrices KP (θ(k)), KS(θ(k)),
KD(θ(k)) ∈ R

m×l are controller gain matrices in the form

(3) with S(θ(k)) = {KP (θ(k)), KS(θ(k)), KD(θ(k))}.

Note 1. Notice that the controller gain matrices (KPi , KSi ,

KDi ) which are related to β(k) are equal to zero. Furthermore,

for centralized controller design the gain matrices (KP (θ(k)),
KS(θ(k)), KD(θ(k))) are full matrices. For decentralized

control the structure of these matrices can be predefined. In

the case when m = l a fully decentralized control can be

obtained by structuring the gain matrices to diagonal form.

The saturation vector variable λ(k) = [λ1(k), . . . , λm(k)]T ,

λi ∈ 〈λi, 1〉 is guaranteeing the hard input constraints |ui| ≤
uimax , i = 1, . . . ,m if it is calculated as:

λi(k) =

{

1 → if |uis(k)| <= uimax
uimax

|uis (k)|
→ if |uis(k)| > uimax

,

i = 1, . . . ,m

(6)

where

us(k) = Gf (z) ◦

(

KP (θ(k))ep(k) + EEFM (k)

+KD(θ(k))
ed(k)− ed(k − 1)

Ts

)

.

(7)

It is assumed that the maximal rate of change of these

saturation parameters are known and predefined ∆λi ≤ ρλi
.

An upper bound can be calculated as ρλi = 1− λi.

Note 2. Notice that the lower bound of this parameter λi, is

need to set by the designer before the controller design. If

the system is stable, this parameter can be chosen as λi ≥ 0.

For unstable systems this lower bound should be grater then

zero λi > 0. To obtain the less conservative controller design,

we suggest to design and tune first a controller without the

input saturation and then determine the lower bound on this

parameter as λi =
uimax

uismax

, then redesign the controller with

the input saturation using the obtained λi.

The vector of switching parameters σ(k) = [σ1(k),. . .,
σm(k)]T , σi ∈ 〈0, 1〉 for integral (sum) windup is calculated

as follows:

σi(k) =

{

1→ if λ(k) = 1
0→ if λ(k) < 1

, i = 1, . . . ,m. (8)

The filter Gf (z) = [Gf1(z), . . . , Gfm(z)]T serves as a filter

for the derivative part. In this paper a first order filter is used

with the transfer function:

Gfi(z) =
bi

z − ai
, i = 1, . . . ,m, (9)

where ai =
1

e
(Ts/Tfi

) and bi = 1− ai obtained from discretiz-

ing a first order filter using the zero-order hold discretization

method with sampling time Ts, and with filter coefficient Tfi .

III. ROBUST DISCRETE-TIME GS-PSD CONTROLLER

DESIGN

This section first describes the closed-loop system for

controller design then presents the stability and performance

conditions for the obtained closed-loop system. Finally, as

the main result, a theorem is given for the advanced robust

discrete-time PSD controller design for uncertain LPV systems
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with input saturation and anti-windup, which guarantees the

closed-loop stability and the guaranteed cost.

A. Closed-loop system for controller design

It is assumed that the reference signal w(k) is bounded,

and that within the reference trajectory the reference target is

reachable within the input constraints |u(k)| ≤ umax. Based

on the previous assumption the control law for w(k) = 0 can

be rewritten as follows:

u(k) = Gf (z) ◦

(

KP (θ(k))y(k) + EEFM (k)

+KD(θ(k))
y(k)− y(k − 1)

Ts

)

◦ λ(k),

(10)

where in the term EEFM (k) (5), e(i) = y(i).
One can formulate the PSD controller design problem in dif-

ferent ways. In the paper [21] the authors formulated the PSD

controller design as a time-delay control problem, because of

the y(k− 1) term in the derivative part. In the paper [22] and

in our previous papers [23], [24] two new state variables were

used z1(k) =
∑k−2

i=0 y(i) and z2(k) =
∑k−1

i=0 y(i) to describe

the closed-loop system. However, these state variables in our

case can’t be used due to the switching parameter σ(k) inside

the summation term. Because of that a new state variables are

introduced:

z1(k) = Ts

k−1
∑

i=0

(

σ(i) ◦ y(i)
)

, (11)

z2(k) = y(k − 1). (12)

Substituting expressions (11) and (12) to the control law (10),

one can obtain:

u(k) = Gf (z) ◦

(

(

KP (θ(k)) +
1

Ts

KD(θ(k))
)

y(k)

+KS(θ(k))z1(k)−
1

Ts

KD(θ(k))z2(k)

)

◦ λ(k).

(13)

The control algorithm (13) can be transformed to the

following state space form:

xc(k + 1) = Acxc(k) +Bc(θ(k))ỹ(k),

u(k) = Cc(λ(k))xc(k),
(14)

where ỹ(k) = [y(k), z1(k), z2(k)]
T , xc(k) = [xP (k), xS(k),

xD(k)]T are the extended measured output and the controller

state vectors, respectively. In addition,

Bc(θ(k)) =





KP (θ(k))◦bf , 0, 0
0, KS(θ(k))◦bf , 0

KD(θ(k))
Ts

◦bf , 0, −KD(θ(k))
Ts

◦bf



 ,

Ac =





Af , 0, 0
0, Af , 0
0, 0, Af



 , Af =







a1, . . . , 0
...,

. . . ,
...

0, . . . , am






, bf =







b1
...

bm






,

Cc(λ(k)) =
[

I, I, I
]

◦λ(k),

furthermore, ai, bi, i = 1, . . . ,m are the filter coefficients

from (9). Substituting the control law (14) to the system (1),

the following closed-loop system is obtained:

x̃(k + 1) = Acl(θ(k), σ(k), λ(k))x̃(k), (15)

where x̃(k) = [x(k), z1(k), z2(k), xP (k), xS(k), xD(k)]T

and

Acl(θ(k), σ(k), λ(k)) =
[

Acl11(θ(k), σ(k)), Acl12(θ(k), λ(k))
Acl21(θ(k)), Acl22

]

,

Acl11(θ(k), σ(k)) =




A(θ(k)), 0, 0
TsC ◦σ(k), I, 0

C, 0, 0



 , Acl22 =





Af , 0, 0
0, Af , 0
0, 0, Af



 ,

Acl12(θ(k), λ(k)) =




B(θ(k))(I◦λ(k)), B(θ(k))(I◦λ(k)), B(θ(k))(I◦λ(k))
0, 0, 0
0, 0, 0



 ,

Acl21(θ(k)) =




(KP (θ(k)) ◦ bf )C, 0, 0
0, KS(θ(k)) ◦ bf , 0

(KD(θ(k)) 1
Ts

◦ bf )C, 0, −KD(θ(k)) 1
Ts

◦ bf



 .

B. Stability conditions

A reasonable compromise between the solvability and the

conservativeness is to chose the candidate for Lyapunov func-

tion in the following form:

V (θ(k), λ(k)) = x̃T (k)P (θ(k), λ(k))x̃(k), (16)

where

P (θ(k), λ(k)) = P0 +

p
∑

i=1

Piθi(k) +

m
∑

j=1

Pp+jλj(k). (17)

The first difference of the Lyapunov function (16) is given as

follows:

∆V (.) = x̃T (k + 1)P (θ(k + 1), λ(k + 1)) x̃(k + 1)

− x̃T (k)P (θ(k), λ(k)) x̃(k),
(18)

where, on substituting θ(k + 1) = θ(k) +∆θ(k), λ(k + 1) =
λ(k) + ∆λ(k) to P (θ(k + 1), λ(k + 1)), and assuming that

∆θi(k) ≤ ρθi , i = 1, . . . , p and ∆λj ≤ ρλj
, j = 1, . . . ,m

one obtains:

P (θ(k + 1), λ(k + 1)) ≤ Pρ(θ(k), λ(k)), (19)

P (θ(k + 1), λ(k + 1)) = P0 +

p
∑

i=1

Piθi(k) +

p
∑

i=1

Pi∆θi(k)

+
m
∑

j=1

Pp+jλj(k) +
m
∑

j=1

Pp+j∆λj(k),
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Pρ(θ(k), λ(k)) = P0 +

p
∑

i=1

Piθi(k) +
m
∑

j=1

Pp+jλj(k)

+

p
∑

i=1

Piρθi +
m
∑

j=1

Pp+jρλj
.

Based on Definition 2.1 (Affine Quadratic Stability) from [25]

and on previous derivation the following definition can be

formulated:

Definition 1. The closed-loop system (15) for all θ(k) ∈ Ω
and λ(k) ∈ Φ for given ρθi , i = 1, . . . , p and ρλj

, j =
1, . . . ,m is affinely quadratically stable if p+m+1 symmetric

matrices P0, P1, . . . , Pp+m exist such that P (θ(k), λ(k)) (17),

Pρ(θ(k), λ(k)) (19) are positive definite and for the first

difference of the Lyapunov function (18) along the trajectory

of closed-loop system (15) it holds:

∆V (θ(k), λ(k)) ≤ 0. (20)

C. Performance quality

To assess the performance quality in LQR fashion, the

following parameter-varying quadratic cost function has been

chosen:

Jd =
∞
∑

k=0

J(k),

J(k) = x̃(k)TQ(θ(k))x̃(k) + u(k)TRu(k),

(21)

where Q(θ(k)) = Q0 +
∑p

i=1 Qiθi(k) ≥ 0, R > 0, Q0, Qi ∈
R

(n+2l+3m)×(n+2l+3m), R ∈ R
m×m are symmetric positive

definite (semidefinite) and definite matrices, respectively.

D. Controller design

The following lemma, is needed for the main result:

Lemma 1. Consider the closed-loop system (15) with a con-

trol algorithm (14). Control algorithm (14) will be a stabilizing

and guaranteed cost algorithm if there exist a positive scalar

ǫ such that for the first difference of the positive definite

Lyapunov function (16) the following condition holds:

max
u

{∆V (k) + J(k)} ≤ −ǫx(k)Tx(k), ǫ → ∞. (22)

Proof. Assume that the first difference of the Lyapunov func-

tion is ∆V (k) = V (k + 1) − V (k) and that the Lyapunov

function (16) is positive definite. For ǫ → 0 the Bellman-

Lyapunov inequality (22) can be rewritten to:

∆V (k) + J(k) ≤ 0 → ∆V (k) ≤ −J(k), (23)

from this follows that if the Lyapunov function (16) is positive

definite, then the first difference of the Lyapunov function will

be negative definite, so the system will be stable. Furthermore,

summing both side from 0 to ∞:

∞
∑

i=0

J(i) = Jd ≤ V (0)− V (∞) ≤ V (0), (24)

one can obtain the upper bound on the cost function (21) (i.e.

the guaranteed cost).

The main result for advanced robust discrete-time guaran-

teed cost PSD controller design for uncertain LPV systems

with input saturation and anti-windup is given in the next

theorem:

Theorem 1. The closed-loop system (15) for all θ(k) ∈ Ω and

λ(k) ∈ Φ, for given maximal rates of change of scheduled

parameters ρθi , i = 1, . . . , p, maximal rates of change of

saturation parameters ρλj
, j = 1, . . . ,m, lower bounds on

saturation parameters λi, i = 1, . . . ,m, and for given weight-

ing matrices R, Qi, i = 0, 2, . . . , p, is affinely quadratically

stable with hard input constraints |u(k)| ≤ umax, with anti-

windup and guaranteed cost, if p+m+1 symmetric matrices

P0, P1, . . . , Pp+m, and p + 1 controller gain matrices KPi
,

KSi
, KDi

i = 0, 1, . . . , p exists such that P (θ(k), λ(k)) (17),

Pρ(θ(k), λ(k)) (19) are positive definite, and the following

inequalities hold:
[

−P i +Qi + F
T

i RF i, A
T

cli

Acli , Xρ

]

≤ 0

Xρ = X−1
i

(

P ρi
−Xi

)

X−1
i −X−1

i ,

i = 1, 2, . . . , 2m+p,

(25)

where in each iteration holds Xi|j = P ρi
|j−1 (j – actual

iteration step).

Proof. For the ease of notation we drop the dependency on

time (k) during the proof. Substituting the control law (14) to

the quadratic cost function (21) one can obtain:

J(.) = x̃T
(

Q(θ) + FT (λ)RF (λ)
)

x̃, (26)

where F (λ(k)) =
[

0, 0, 0, I ◦λ(k), I ◦λ(k), I ◦λ(k)
]T

.

Furthermore, substituting the system equation from (1) to

the first difference of the Lyapunov function (18), one can

obtain:

∆V (.) = x̃T
(

AT
cl

(

θ, σ, λ
)

Pρ

(

θ, λ
)

AT
cl

(

θ, σ, λ
)

− P
(

θ, λ
)

)

x̃.
(27)

Now, substituting the first difference of the Lyapunov func-

tion (27) and the quadratic cost function (26) to the Bellman-

Lyapunov inequality (22), after some manipulation one can

obtain:

AT
cl(θ, σ,λ)Pρ(θ, λ)Acl(θ, σ, λ)

− P (θ, λ) +Q(θ) + FT (λ)RF (λ) ≤ 0.
(28)

Using the Schur complement, we can rewrite the previous

inequality (28) as follows:

M(θ, σ, λ) =

[

M11(θ, λ), MT
21(θ, σ, λ)

M21(θ, σ, λ), M22(θ, λ)

]

≤ 0, (29)

where

M11(θ, λ) = −P (θ, λ) +Q(θ) + F (λ)TRF (λ),

M22(θ, λ) = −P−1
ρ (θ, λ),M21(θ, σ, λ) = Acl(θ, σ, λ).

The inequality (29) is convex regarding the scheduling variable

θ(k), because M11 and M21 are affine regarding to this
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parameter, and M22 is an iverse of an affine function of this

parameter, and regarding [26] (Section 2.3.2) an inverse of an

affine function remains convex.

Furthermore, the inequality (29) is convex regarding the

saturation parameter λ(k), too. It follows from that the term

M21 is affine regarding this parameter, M22 is convex (the

proof is same as for θ(k)), and finally M11 is convex,

because P (θ(k), λ(k)) is affine regarding λ(k) and the term

F (λ(k))TRF (λ(k)) is a quadratic function of this parameter,

and the second derivative regarding λ(k) is also positive

definite due to the quadratic form and that the matrix R is

positive definite → and the sum of two convex functions

remains convex [26].

Finally, the inequality (29) is convex regarding the switching

parameter σ(k), since its appears only affinely in the term

Acl(θ(k), σ(k), λ(k)).
Now that we know that the inequality (29) is convex

regarding the scheduling variable θ(k), the saturation variable

λ(k), and the switching variable σ(k), we can conclude that

the inequality (29) will be negative definite for ∀θ(k) ∈ Ω,

λ(k) ∈ Φ, and σk ∈ Φσ , if it takes negative values at the

corners of θ(k), λ(k), and σ(k). In addition, the switching

parameter σ(k) is connected to the saturation parameter so

the number of vertices can be reduced. That is, the inequality

(29) splits to 2m+p inequalities → (25). The overlines in the

inequality (25) indicates the given item at the vertices of θ(k),
λ(k) and σ(k).

Finally, the inversion of −P ρi
in the inequality (29) can be

linearized as follows (to obtain LMI design procedure):

lin(−P ρi
) ≤ X−1

i

(

P ρi
−Xi

)

X−1
i −X−1

i , (30)

where in each iteration holds Xi|j = P ρi
|j−1 (j – actual

iteration step).

Note 3. For the first iteration Xi|1 is a freely chosen positive

definite matrix, or it can be calculated from Lyapunov function

obtained by a standard LQR design for the nominal system or

in the given vertex.

Note 4. The proposed theorem can be used also for:

• quadratic stability with respect to scheduled parameters.

For this case ∆θi → ∞ and the matrices in (16) Pi = 0,

i = 1, 2, . . . , p.

• quadratic stability with respect to saturation parameters.

For this case ∆λi → ∞ and the matrices in (16) Pj = 0,

j = p+ 1, p+ 2, . . . , p+m.

• quadratic stability with respect to both scheduled and

saturation parameters. For this case ∆θi → ∞ and

∆λi → ∞, and the matrices in (16) Pi = 0, i =
1, 2, . . . , p+m.

IV. EXAMPLE

In order to show the viability of the previous proposed

method, the following simple nonlinear system has been

chosen (inspired from [27]):

ẋ = −x|x|γ + u,

y = x, −0.5 ≤ u ≤ 0.5,
(31)

where γ ∈ 〈0.9, 1.1〉 is unknown (uncertain) parameter. The

system (31) can be transformed into the following form:

ẋ = −a(θ)x+ bu,

y = cx, −0.5 ≤ u ≤ 0.5,
(32)

where a(θ) = a0 + a1θ1 + a2θ2, b = 1, c = 1, and θ2 = β ∈
〈−1, 1〉 is unknown (uncertain) variable, furthermore,

θ1 = α =
|y| − a0

a1
∈ 〈−1, 1〉.

The coefficients a0 and a1 were calculated so as to maintain

the scheduling parameter θ1 in the range 〈−1, 1〉:

a0 = min(|y|)+max(|y|)
2 ; a1 = min(|y|)−max(|y|)

2 .

From the model (31) follows that max (|y|) = 0.7071 and

min (|y|) = 0 and it follows that a0 = 0.3535 and a1 =
−0.3535. The parameter a2 = 0.1 (computed from γ).

The obtained LPV system (32) was transformed to discrete-

time with sample time Ts = 0.1 using the Euler’s forward

method [28] to obtain the model for controller design in the

form (1).

Using Theorem 1 with weighting matrices Q = qiI , q0 =
1 × 106, q1 = q2 = 0, R = rI , r = 1 × 10−4, sampling

time Ts = 0.1 s, filter time constant Tf = 1× 10−3, maximal

values of rate of change of scheduled parameters ρ1 = 0.2815,

ρ2 = 0, with λ ∈ 〈0.5, 1〉 and ρλ = 0.5, we obtained a robust

discrete-time gain-scheduled PSD controller with hard input

constraints and anti-windup in the form (4), where

KP (θ(k)) = −0.5041− 0.0090 θ1(k),

KS(θ(k)) = −0.5875− 0.0408 θ1(k),

KD(θ(k)) = −0.0210− 3.1398× 10−4 θ1(k).

(33)

Numerical solution has been carried out by SDPT3 4.0 [29]

solver under MATLAB 2014b using YALMIP R20150918

[30]. The simulations were done via SIMULINK.

Simulation results for γ = 1 (Fig. 1) confirm that the

Theorem 1 holds and the closed-loop system is stable with

hard input constraints and anti-windup. In the simulations

w(t), y(t), u(t), θ(t) and λ(t) are the reference signal,

measured output, controller output, scheduled parameter and

the saturation parameter, respectively. The red color denotes

the closed-loop system with the proposed algorithm with

input constraints and anti-windup. The green color denotes the

constrained closed-loop system without anti-windup. Finally,

the black dotted lines denote the closed-loop system without

input constraints and anti-windup.

V. CONCLUSION

A novel methodology is presented in the paper for robust

discrete-time gain-scheduled guaranteed cost PSD controller

design with hard input constraints and anti-windup for un-

certain LPV systems. The proposed approach ensures the

robust affine quadratic stability, guaranteed cost and hard input

constraints for all scheduled parameters and their prescribed

maximal rate of change. The controller design problem with
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Fig. 1. Simulation results with the proposed approach with and without input
constraints and anti-windup.

stability and performance conditions, is translated to an opti-

mization problem subject to linear matrix inequality (LMI)

constraints. This optimization problem is directly convex

regarding the scheduled variable and the variable for hard

input constraints. Therefore, the proposed controller design

approach is less conservative compared with the approaches

presented in the literatures or in our previous publications,

where convexification had to be used. Numerical example

shows the effectiveness of the introduced approach.

APPENDIX

Definition 2. For a matrix A ∈ R
n×m and a vector b ∈ R

n,

A ◦ b is a matrix, of the same dimension as A, with elements

given by:

(A◦b)i,j = (A)i,j(b)i (34)

For example for matrix A and vector b:

A =

[

A11, A12

A21, A22

]

, b =

[

b1
b2

]

, (35)

the expression A◦b is equal to:

A◦b =

[

A11b1, A12b1
A21b2, A22b2

]

. (36)
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[23] A. Ilka, V. Veselý, and T. McKelvey, “Robust Gain-Scheduled PSD

Controller Design from Educational Perspective,” in Preprints of the

11th IFAC Symposium on Advances in Control Education, Bratislava,
Slovakia, June 1-3 2016, pp. 354–359.

[24] A. Ilka, I. Ottinger, T. Ludwig, M. Tárnı́k, V. Veselý, E. Miklovicová,
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