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Abstract—Airborne wind energy is an emerging technology
that is capable of harvesting wind energy by flying crosswind
flight patterns with a tethered aircraft. Several companies are
trying to scale-up their concept in order to be competitive in the
energy market. However, the scaling process requires numerous
iterations and trade-offs among the different components in
terms of requirements that have to satisfy both technological and
economical viability. In this paper, we show how to deal with
this task by means of an optimal control approach combined
with statistical analysis based on the established methods for
conventional Wind Energy Conversion Systems. This approach
is applied to a rigid wing pumping mode AWE System built by
Ampyx Power B.V..

I. INTRODUCTION

Airborne wind energy (AWE) is a novel technology

emerging in the field of renewable energy systems. Using

tethered aircraft for wind power generation, initially motivated

by Loyd [1], represents a new concept for producing green

energy via systems with high power-to-mass ratio, high ca-

pacity factors and with significant low installation costs with

respect to the current established renewable technologies [2],

[3]. Among the various possibilities for harvesting wind energy

with a tethered wing [4], Ampyx Power B.V. [5] has been

studying the promising approach of deploying a rigid wing in

pumping cycles [6]. In a pumping mode AWE system (AWES),

a production phase follows a retraction phase periodically.

During the production phase, the aircraft exerts a high tension

on the tether which is anchored to a ground station composed

of a winch and an electric generator. The mechanical power

is fed to the electric grid after electrical conversion. Due to

finite tether length, a retraction phase is required where the

tether is wound up by changing the flight pattern. In this phase

less lifting force is generated so that significantly less energy

needs to be invested in comparison to what has been gained

during the production phase. An artist’s rendering of the two

main phases of a pumping mode AWES is shown in Fig. 1. In

general, AWES need to be scaled-up in order to be attractive

for investments as well as to be competitive with respect to

conventional wind turbines. Such process is not trivial and it

requires numerous assessments in terms of system feasibility,

certification and economic viability due to the numerous vari-

ables that need to be taken into account simultaneously. In this

Fig. 1. Example of a pumping cycle with a production and retraction phase

paper, we propose an approach based on optimality principles

that addresses systematically the viability assessment of a

rigid wing pumping mode AWES for scaling-up purposes.

The assessments rely on the proven concepts designed by

Ampyx Power B.V. where the physical characteristics of the

system can be found in [7]. In Section II, the mathematical

model of the rigid wing pumping mode AWES is presented.

In Section III the performance assessment is formulated as an

Optimal Control Problem (OCP). In Section IV, a statistical

analysis is computed by means of power curve, Annual Energy

Production and capacity factor.

II. MATHEMATICAL MODEL

1) Wind Shear Modeling: For conventional and AWE sys-

tems, it is usually assumed that the wind speed w increases

with height h above the ground. One common model of the

wind speed is expressed via a logarithmic function equal to

w(h) = whref

ln( h
hr
)

ln(href

hr
)
, h > href (1)

where href is the height above the ground where the wind

meter, which provides the wind speed measurement whref
,

is located. The surface roughness is denoted as hr which

accounts for the effects of obstacles protruding from the earth’s

surface. In this paper we assume that the AWE system is

installed on an open field with some windbreaks more than

1 km away i.e. hr = 0.1 [m] and href = 10 [m] (more details

in [8]).
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A. Airborne Component Modeling

Let us consider a right-handed Cartesian coordinate system,

where the vector ~p = [px, py, pz]
⊤ represents the aircraft

position w.r.t. the ground station located at the origin. The

airborne component and the ground station are linked together

via a tether of length l, hence both components are constrained

to move along a manifold described as

c(t) :
1

2
(~p⊤ ~p− l2) = 0 (2)

According to [9], one can model a rigid wing pumping mode

AWES via a set of differential F and algebraic G equations

by
d

dt
x = F(x, z,u)

0 = G(x, z,u)
(3)

where x ∈ Rnx , z ∈ Rnz are respectively differential and

algebraic states and u ∈ Rnu the control inputs. Since (2)

represents a so called holonomic constraint i.e., a purely

position-dependent constraint, one has to differentiate it twice

in order to avoid rank deficiency in (3) i.e.

ċ(t) : ~v⊤~p− ll̇ = 0 (4a)

c̈(t) : ~̇v⊤~p+ ~v⊤~v − l̇2 − ll̈ = 0 (4b)

where ~v is the translational velocity of the aircraft. Succes-

sively, a DAE index-1 formulation can be achieved after an

index reduction procedure so that classical integration methods

work efficiently [10]. The aircraft model expressed in the semi-

explicit formulation is stated as follows:

d

dt
x =























~v

m−1
[

~Fa(~v, ~ωb, R, l, ~δ) + ~Fg + ~Ft

]

R · Ω

J−1
[

~Ma(~v, ~ωb, R, l, ~δ)− ( ~ωb × J · ~ωb)
]

~lt
~̇δ























(5a)

0 = ~̇v⊤~p+ ~v⊤~v − l̇2 − ll̈ (5b)

Equation (5a) embeds the translational and rotational ac-

celeration of the aircraft with mass m and inertia J , derived

from Newton’s second law. The gravity and tether forces are

defined as ~Fg = [0, 0,mg]⊤ and ~Ft = λ~p where λ denotes the

tether tension while ~Fa and ~Ma stand for aerodynamic forces

and moments. R ·Ω represents the time evolution of the Direct

Cosine Matrix (DCM) used to describe the orientation of the

aircraft where R is the transformation matrix from the inertial

frame to the body frame and Ω is the skew symmetric matrix

of the rotational velocity ωb = [p, q, r]⊤. R = [êx, êy, êz]
is composed of the unit vectors êx,y,z that point along the

longitudinal, transversal, and vertical axes of the wing. The

vector ~lt = [l̇, l̈,
...
l ]⊤ gathers the tether components which are

the tether speed l̇, acceleration l̈ and jerk
...
l . In the same way,

the vector ~̇δ collects the rates of control surface deflection

of aileron δa, elevator δe, and rudder δr. Finally, the set

Fig. 2. Coordinate system and vector conventions for the rigid-wing AWES
in pumping mode. For the earth fixed coordinate frame and the aircraft’s body
frame the north-east-down convention is used.

of algebraic equations G(.) is given simply by (4b). Fig. 2

shows the sketch of a setting in which the rigid wing AWES

operates indicating the most important coordinates. Finally,

differential/algebraic states and control inputs are summarized

as

x =
[

~p,~v,R, ~ωb, l, l̇, l̈, δa, δe, δr

]⊤

∈ ℜ24

z = λ ∈ ℜ1

u =
[

δ̇a, δ̇e, δ̇r,
...
l
]⊤

∈ ℜ4

(6)

B. Aerodynamic Forces and Moments

In this section, we describe a mathematical model related

to the aerodynamic forces ~Fa and moments ~Ma. Assuming

that the wind direction is pointing in north direction as shown

in Fig. 2 i.e. ~vw = [w(h), 0, 0]⊤, let us define the relative

velocity of the aircraft w.r.t. the wind expressed in the inertial

frame

~vr = ~v − ~vw (7)

then the relative velocity expressed in body frame is given by

~vb = R · ~vr = [u, v, w]T (8)

By means of (8), it is possible to define the true airspeed Va,

angle of attack α and angle of side-slip β as follows

Va = ‖~vb‖ , α = arctan
(w

u

)

, β = arcsin

(

v

Va

)

(9)

Then, the aerodynamic properties can be expressed in a

compact notation by

~Fa =
ρS V 2

a

2
(CLv̂CL

− CD v̂CD
− CY v̂CY

) (10a)

~Ma =
ρSV 2

a

2
[Cl, Cm, Cn]

T
(10b)
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where ρ is the air density, S the wing area, CL, CD, CY

the force coefficients of lift, drag and side forces where their

directions are given by the unit vectors v̂CL
,v̂CD

,v̂CY
defined

below

v̂CL
= (êy × v̂r), v̂CD

= v̂r, v̂CY
= (êy × v̂r)× v̂r (11)

with v̂r = ~vr/||~vr||. The moment coefficients Cl, Cm, Cn are

related to the roll, pitch and yaw motion; in the aerospace

field, force and moment coefficients are called aerodynamic

coefficients and they are usually expressed as a combination

of ~ωb, ~δ, α, β. As far as it regards our model, the aerodynamic

coefficients are defined as follows

CL = Σ3
i=0CLi

αi (12a)

CD = Σ4
i=0CDi

αi + CDt
(12b)

CY = CYβ
β (12c)

Cl = Clββ + Clδa
δa + Clδr

δr + Clp p̂+ Clr r̂ (12d)

Cm = Cmα
α+ Cmδe

δe + Cmq
q̂ + Cm0

(12e)

Cn = Cnβ
β + Cnδa

δa + Cnδr
δr + Cnp

p̂+ Cnr
r̂ (12f)

where p̂, q̂, r̂ are the normalized body rates and they are equal

to

p̂ =
b p

2Va
, q̂ =

c̄ q

2Va
, r̂ =

b r

2Va
(13)

with b the wing span and c̄ the aerodynamic chord. Finally, the

coefficients C∗∗
in (12) are known as aerodynamic derivatives

which are retrieved from Computational fluid dynamics (CFD)

[11] or lifting line methods [12] and verified by an extensive

flight test campaign [13]. Usually, aerodynamic coefficients

are stored as look-up tables. In order to ensure smoothness

of the parameters in an OCP framework, we compute the

polynomial coefficients for CL and CD in (12a-12b) by data

fitting of the look-up tables in the region of the flight envelope

as shown in Fig. 3. Finally, one has to point out that in

(12b) the coefficient CDt
represents the normalized tether

drag contribution, determined analytically via a finite element

approach as shown in the next section.

C. Tether Drag Modeling

One of the main differences between a conventional and a

tethered aircraft is the presence of the tether which induces

additional drag, moments (if the tether is not placed in the

center of gravity of the aircraft) and weight. As a consequence,

tether drag modeling is crucial for computing accurate perfor-

mance assessments. For this purpose, let us consider the reel-

out phase i.e. when the aircraft pulls the tether; in general the

side-slip angle β causes additional drag, hence for an optimal

flight one aims to keep β ≈ 0. When β is small, the drag acts

mainly in the longitudinal plane of the aircraft which means

that we can use a 2D representation as in Fig. 4. Furthermore,

let us assume that the cable airspeed velocity Vt is a linear

function of both l and aircraft velocity Va , and its direction

is always orthogonal to the cable, i.e.

Vt ≈
s

l
Va cos(γ + ψ) s ∈ [0 , l] (14)

where s is a spatial coordinate along the cable of length l, γ
the flight path angle, ψ = arccos(h

l
) the zenith angle, Φ the

elevation angle. The drag force for an elemental portion ds of

the cable is

Ds =
1

2
ρV 2

t CDN
d ds (15)

where CDN
= 1.2 is the drag coefficient and d is the tether

diameter. The moment provided by the tether drag around the

ground station is

MDs
= Ds s =

(

1

2
ρV 2

t CDN
d ds

)

s (16)

Thus, the total moment due to drag is given by the integral

along the tether which is

MDt
=

∫ l

0

(

1

2
ρ
(s

l
Va cos(γ + ψ)

)2

CDN
d s

)

ds =

=
1

8
ρV 2

a cos2(γ + ψ)CDN
d l2

(17)

with corresponding drag force on the aircraft

Dt =
1

8
ρV 2

a cos2(γ + ψ)CDN
d l (18)

In the aerospace field, the convention is to normalize forces by

dividing by dynamic pressure times the wing surface area, i.e.
1
2 ρV

2
a S. Hence, the tether drag coefficient normalized w.r.t.

the aircraft in (12b) is

CDt
=
CDN

d

4S
cos2(γ + ψ) l (19)

Finally, note that (19) represents the tether drag approximation

used in [7], [14] with additional informations regarding the

zenith and flight path angle.
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Fig. 3. Polynomial interpolation of CL and CD within the flight envelope

454



Fig. 4. Schematic model that is being used for calculating the tether drag.
The total drag Dt results from integrating the drag components Ds along the
tether coordinate s.

D. Ground Station Modeling

The ground station is basically composed of a winch

mechanism connected to an electric motor (see Fig. 5). The

mechanical power generated by the tether tension λ is equal

to

Pm = τd · ωd (20)

where τd = λ · rd, ωd = l̇ · rd are the torque and the angular

velocity around the winch with rd the drum radius, while the

electrical power Pe can be coupled to Pm by means of the

motor efficiency η as follows

Pe = η (τd, ωd) · Pm, 0 < η(.) < 1 (21)

In general, the motor efficiency η(.) is mainly a function of τd,

ωd as well as the operation mode (reel-in phase ⇔ motor mode

| reel-out phase ⇔ generator mode). Efficiency characteristics

can be retrieved both from data-sheets and via extensive tests

bench. According to [15], Pe can be expressed with reasonable

degree of accuracy as a linear combination of τd and ωd as

Pe = p0 + pω2
ω2
drum + pτ2 τ

2
drum + pτω ωdrumτdrum (22)

where the coefficients p0, pω2
, pτ2 , pτω are determined by

data fitting. However, in this paper we assume a constant

efficiency η = 94% coming from a data-sheet, since test

bench measurements were not available. One has to make two

remarks:

• we are implicitly neglecting the ground station dynamics,

in other words the transient responses are assumed much

faster then the dynamics of the airborne component.

• the data-sheet does not provide information regarding the

efficiency in the case of low ωd and high τd where an

efficiency significantly lower than the assumed values in

this work is expected.

III. FORMULATION OF AN OPTIMAL CONTROL PROBLEM

FOR PERFORMANCE ASSESSMENT

In general, design of AWES aims at maximizing the average

power output along the trajectory, which usually has either a

circular or a lemniscate shape. Here we propose a formulation

of an OCP for maximizing the power output of a rigid wing

AWES in pumping mode

minimize
x(.),z(.),u(.),T

1

T

∫ T

0

(

−Pe(t) + ‖u(t)‖2Σ−1
u

+ σ−1
β β(t)2

)

dt

(23a)

subject to ẋ(t) = F(x(t), z(t),u(t)), t ∈ [0, T ] (23b)

0 = G(x(t), z(t),u(t)), t ∈ [0, T ] (23c)

~∆m 6 ~∆(t) 6 ~∆M , t ∈ [0, T ] (23d)

~Am 6 ~A(t) 6 ~AM , t ∈ [0, T ] (23e)

~Vm 6 ~V (t) 6 ~VM , t ∈ [0, T ] (23f)

~Gm 6 ~G(t) 6 ~GM , t ∈ [0, T ] (23g)

λm 6 λ(t) 6 λM , t ∈ [0, T ] (23h)

hm 6 h(t) 6 hM , t ∈ [0, T ] (23i)

Tm 6 T 6 TM , t ∈ [0, T ] (23j)

c(t) = ċ(t) = Ξ0(t) = 0, t = 0 (23k)

r (x(0),x(T )) = 0 (23l)

The cost function (23a) takes into account electrical power

Pe along the pattern of time length T ; control inputs u are

penalized via the regulation term Σ−1
u in order discourage

aggressive maneuvers while the square of the side-slip beta

β is penalized by σ−1
β in order to avoid additional drag and

allow the assumption of decoupled lateral and longitudinal

dynamics for feedback control purposes [16]. The constraints

are mainly related to the physical limitations of the overall

system. Moreover periodicity and consistency conditions have

Fig. 5. The ground station converts the mechanical energy from tether tension
into electrical power and feeds it to the grid.
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to be properly imposed in order to obtain a well-posed OCP.

The constraints in (23) are briefly described below:

• The OCP is subject to the model dynamics defined in

section II-A in (23b-23c);

• Deflection as well as rate control surfaces ~∆ = [~̇δ, ~δ] are

subject to limitations both in angles and speeds, related

to the installed servo motors (23d);

• The aerodynamic states ~A = [Va, α, β] need to be

bounded within the flight envelope in order to avoid stall

phenomena as well as undesirable lateral forces caused

mainly by the fuselage (23e) [16];

• The bounds of translational and angular velocity ~V =
[~v, ~ωb] are defined in function of structural analysis re-

lated to the airborne component (23f);

• The vector ~G = [l, l̇, l̈, τ, ωw] collects all the constraints

related to the intrinsic characteristics of the ground station

(23g);

• Tether tension λ need to be bounded for model consis-

tency, to avoid sag effects, to reduce mechanical stress

on the airborne component, and to mitigate risk of tether

damage (23h);

• The altitude h has a lower bound for both safety and

certification requirements (23i);

• The pattern time T is chosen by the OCP and bounded

according to practical experience (23j);

• Consistency conditions related to the algebraic equation

shown in (2) need to be enforced, while Ξ0 = R⊤R −
I preserves the orthonormality of R; however only the

main diagonal and the three lower components of Ξ0 are

enforced in order to avoid LICQ deficiency (23k).

• The periodicity condition is formally enforced by x̃0 −
x̃F = 0, however, because of the non-minimal coordi-

nates, this condition would produce an over-constrained

problem. Thus, the periodicity condition is in our case

r (x(0),x(T )) =



































py0
− pyT

pz0 − pzT
vy0

− vyT

vz0 − vzT
~ωb0 − ~ωbT

l0 − lT
l̇0 − l̇T
l̈0 − l̈T
~δ0 − ~δT

R⊤

0 RT − I



































(24)

where in R⊤

0 RT − I only the three upper off-diagonal

components are constrained. As in (23k), the subscripts

0 and T refer to the initial and final time.

Since the OCP (23) is non-convex due to the nonlinear

dynamic constraints, the Non Linear Program (NLP) solver

must be initialized with an educated initial guess. Such an

initial guess can be computed via an homotopy process, as

shown in [17] and in [18] for the specific case. The solution to

the OCP (23) provides several insights regarding the plant, e.g.

the existence of a feasible trajectory given by a set of physical

Fig. 6. Typical optimized pattern for the 2nd generation of Prototype designed
by Ampyx Power B.V. During the production phase (blue arrows), the aircraft
flies with a high airspeed and high angle of attack; such combination provides
a lift force which is used for drive the generator located in the ground by
pulling the tether. The retraction phase (orange arrows) is performed with
the maximum reel-in speed available in order to minimize the reel-in time.
During the retraction phase, the angle of attack is low so that the lift force
is minimized. Along this pattern, the average power PAVG is roughly 9KW

(green line).

parameters and constraints as well as his optimal behavior

(Fig. 6), in other words it provides performance assessments

for a certain system configuration. Fig. 7 shows a typical power

optimal trajectory overlapped with the test centre located in

Kraggenburg (NL) used by Ampyx Power B.V.. The OCP was

implemented via the Flight Optimization Toolbox designed for

AWES and freely available in [19]. The toolbox is based on

CasADi [20] and IPOPT as NLP solver [21], implemented in a

Matlab Environment. The toolbox supports Direct Collocation

Techniques with RADAU collocation points. A toolbox with

similar features and based on CasADi but in Python is the

RAWESOME Airborne Wind Energy Simulation, Optimization

and Modeling Environment [22].
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Fig. 7. Typical optimized-power trajectory related to the 2
nd generation of

Prototype designed by Ampyx Power B.V.

IV. STATISTICAL ANALYSIS

In order to assess the viability of a given rigid wing pumping

mode AWES, one can perform an analysis via a statistical

approach employed for wind turbines. It is usual for Wind

Energy Conversion Systems to define the power curve i.e.

the net power produced along a range of wind speeds of

interest. The power curve can be determined using (23) where

the measured wind speed whref
, shown in (1), is used as a

parameter. In our case, the net electrical power output refers

to the average power that the system can generate over the

whole pumping cycle, under optimal conditions. Once the

power curve is known, one can compute the performance of

the system at a given location in terms of Annual Energy

Production (EAEP ) by means of wind distributions. Usually,

wind distributions are approximated by Weibull or Rayleigh

distributions, where the parameters can be tuned based on

either previous measurements related to a specific location or

using the international standard IEC 61400-1. In this paper we

take into account the wind distribution wind class-1A and 2A

[23]. The results of the statistical analysis are shown in Fig. 8.

Finally, if one assumes that the energy has a time-independent

tariff, it is possible to describe the performance of a system

by the so called capacity factor cf equal to

cf =
EAEP

8760h · Pmax
(25)

which is defined as the number of hours h per year (8760 for

a non-leap year) multiplied by the maximum power output, in

our case Pmax ≈ 11 [KW].

Fig. 8. From the top: power curve related to the Pumping mode AWES;
Weibull probability density function for both wind class 1A and 2A; Annual
Energy Production (AEP)

The results in Table I show that small rigid wing pumping

model AWES can provide energy for approximatively 15

households under the assumption that the global average elec-

tricity consumption for households is roughly 3.500 kWh/year

[25]. Note that the plant that was taken into account is used

as case-study for testing and verification purposes only. Once

these informations are available for a given pumping mode

AWES, one can perform further analysis related to Operating

and Maintenance costs (O&M) as well as market factors and
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TABLE I
STATISTICAL ANALYSIS RESULTS

wind class 1A 2A

cf 64 % 53 %
EAEP 58 MWh 49 MWh

Powered-Households 16 14

economic viability indicators (for more details the reader is

referred to [24]).

V. CONCLUSION

In this paper, the annual energy production and the capacity

factor of a rigid wing pumping mode AWE system have been

determined. In order to perform this analysis, we described

the mathematical model of the ground station, the tether and

the airborne component. Assessing the performance of the

plant involves numerous parameters that need to be taken into

account simultaneously. For this reason, an optimal control

approach has been chosen. We solved a sequences of optimal

control problems for a range of wind speeds. The results have

shown that a small scale AWE system with a wing area of

5.5m2 can produce about 50 MWh per year which corresponds

to the power of 15 households. With the proposed optimal

control approach, many decisional tasks e.g. the scaling up of

AWE systems can be facilitated.
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