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Abstract — This paper presents a possible way to control the a 

very fast nonlinear systems. The system of the magnetic levitation 

was chosen as an exemplar process. This is an example of the 

process with a sampling period in order of milliseconds. We 

chose a predictive control method to control this system. The 

state-space CARIMA mathematical model is used for prediction 

of the output values. This paper describes the magnetic levitation 

model, its linearization, prediction of the output values and a 

calculation of the control signal by using a predictor-corrector 

method which turned out to be the best solution out of the 

selected ones. The results compare several optimization methods 

to achieve the fastest calculation of the control signal. All of the 

simulation was done in Matlab.  

Keywords— predictive control, state-space, magletic levitation, 

predictor-corrector 

I.  INTRODUCTION 

The real world contains many types of processes. Many of 
them are nonlinear and their mathematical models are very 
complex. These processes are also differed in the required 
sampling period. This paper focuses on the very fast processes 
with a sampling period in the order of milliseconds. It is very 
difficult to control these processes due to their complexity. The 
basic control methods may not handle with this situation with 
required precision so we need a more advanced method. The 
predictive control is a great example of the modern control 
method that can be used to solve the complex control 
problems. 

This method is based on the mathematical model of the 
controlled process which is used to the prediction of the output 
values on the chosen time horizon. This time horizon should be 
long enough to cover the step response of the controlled 
system. The model of the magnetic levitation is described by 
the state-space CARIMA mathematical model for the single-
input single-output (SISO) system [1]. 

The goal of the predictive control method is to calculate the 
control signal which guarantee the required output signal in the 
near future time horizon. This is achieved by minimization of 
the cost function that usually has a quadratic form and it 
minimize the differences between the reference value and the 
output value and the control signal increments. We can also 
take into account the constraints of the process variables in the 
cost function minimization process. Several method such as 
quadratic programming method, fast-gradient method, 
predictor-corrector method etc. can be used to minimize the 
cost function [2]. 

However, the chosen CARIMA mathematical model used 
to the prediction of the output values is linear whereas the 

model of the magnetic levitation is nonlinear. This means that 
we have to linearize the nonlinear mathematical model. The 
final linear model is made by combination of several linearized 
models about different operation points. 

This paper is divided into the following sections. The 
model of the magnetic levitation is described in the section II. 
The predictive control and the calculation of the control signal 
are described in the sections III. and IV. The section V. shows 
the results of the research and section VI. contains the 
conclusion. 

II. THE MODEL OF THE MAGNETIC LEVITATION 

The mathematical of the magnetic levitation describes the 

behavior of the magnetic levitation system CE 152 which is a 

laboratory-scale model designed by TQ Education and 

Training Ltd for studying system dynamics and experimenting 

with control algorithms. It demonstrates control problems 

associated with nonlinear unstable systems. The system 

consists of a coil levitating a steel ball in the magnetic field 

with the position sensed by an inductive linear sensor 

connected to an A/D converter [3]. 

 

Fig. 1. The CE 152 magnetic levitation apparatus 

The coil is driven by a power amplifier connected to a D/A 

converter. A basic control task is to control the position of the 

ball freely levitating in the magnetic field of the coil. From the 

control theory point of view, the magnetic levitation system is 

a nonlinear unstable system with one input and one output. 

A. Mathematical model 

The mathematical model of the magnetic levitation system 

can be described by a second-order nonlinear differential 

equation 
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where y is the controlled output variable which is ball position 

and u is the control input signal. The other symbols are 

defined in Table 1 [3]. 

TABLE I.  PARAMETERS OF THE MODEL 

Symbol Meaning Value 

kAD A/D converter gain 0.2 MU/V 

kDA D/A converter gain 20 V/MU 

kfv damping constant 0.02 Ns/m 

kx position sensor gain 821 V/M 

ki power amplifier gain 0.3 A/V 

kc coil constant 6 2 21.768 10 Nm /A−×  

mk ball mass 38.27 10 kg−×
 

x0 coil offset 37.6 10 m−×  

g gravity constant 29.81m/s  

y0 position sensor offset 0.0183 V 

y ball position MU 

u input signal MU 

 

The differential equation (1) can be expressed in the state-

space representation  
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where x1 represents the ball position y and x2 represents its 

speed. This nonlinear state-space model was linearized about 

the selected operating points since the chosen predictive 

control method works with linear models. The new linear 

model than represents deviations of the process variables from 

their steady-states (y
s
, u

s
) chosen as the operating points. The 

linear state-space model is described by following equations 

[3,5]. 
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However, this is still a continuous-time model and it needs 

to be transferred into a discrete-time  form suitable for the 

chosen predictive control method. It can be done by 

transferring the state-space model into the input-output model 

 
( ) ( ) ( ) ( )A y B us t s t=

 (5) 

and then into its discrete representation 

 ( ) ( ) ( ) ( )1 1A y B uk kz z
− −= ∆ɶ

 (6) 

where the polynom ( )1A z
−ɶ  is 

 ( ) ( ) ( )1 1 1
1A Az z z

− − −= −ɶ
 (7) 

and Δ is symbol for backward difference ( )11 z−− . Then the 

( )u k∆  is 

 ( ) ( ) ( )1u k u k u k∆ = − −  (8) 

III. STATE-SPACE PREDICTIVE CONTROL 

The chosen predictive control method uses the state-space 

CARIMA model for prediction of the output values. This 

model is described by equation [4,8-10] 
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where the vector of state variables has form 
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The matrices Aɶ , B  and C  from the model (9) can be 

expressed as 
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The values 
i

a− ɶ  for 1, , 1i na= +…  and 
j

b  for 1, ,j nb= …  

consist of the coefficients of the polynoms ( )1A z
−ɶ  and 

( )1B z
−  from the equation (6). 

The prediction of the output values is obtained recursively 

using the CARIMA model represented by equation (9). This 

means that for the prediction of the next output value we 

obtain the equation 

 ( ) ( )1 1y k k+ = +Cx  (12) 

where x(k+1) is the first equation of the CARIMA model (9). 

 The final matrix form of this prediction is  

 ɵ
f f

= + ∆y Fx H u  (13) 

where ɵy  is the vector of the predicted output values and 
f

∆u  

is the vector of the future control increments 
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where N is the chosen time horizon for prediction [7,11]. 

The aim of the predictive control is minimize the 

difference between the future reference values and the 

predicted output values and also minimize the control signal 

demand. The quadratic cost function is used to this 

optimization problem.  
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where w is a vector of the future reference values, ɵy  is the 

vector of the predicted outputs values, λQ  and δQ  are the 

diagonal weighting matrices. The weighting coefficients of 

these matrices have to be positive numbers. The vector 
f

∆u  is 

unknown vector of the future control increments[7,11,12]. 

Because of the chosen optimization method, this cost 

function needs to be modified into the following form [11,13] 
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IV. PREDICTOR-CORRECTOR METHOD 

The predictor-corrector method is one of the primal-dual 

interior-point methods using to solve the inequality 

constrained convex quadratic problems 
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which is exactly the problem that the predictive control solves 

[15,16]. The equation (18) represents the general formulation 

of the constrained quadratic problem. The aim is to find the 

unknown vector x with respect to the chosen constrains 

representing the future values of the control signal increments 

according to the equation (16). 

This is the iterative method and we have to set the starting 

points of the unknown vector x0, the vector of the Lagrange 

multipliers λ0 and the slackvector s0 where , 0
T= − ≥s A x b s . 

These starting points serves to calculate the initial residual 

vectors rd, rs and rsλ  
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where S0 and Λ0 are the diagonal matrices containing the 

elements of the s0 and λ0. The e is vector of ones [15,16]. 

There is also need to calculate the initial complementarity 

measure µ  which is need for centering parameter σ 

 0 0

T

m
µ =

s λ
 (20) 

where m is the number of the inequality constraints. 

The whole algorithm can be divided into two parts. The 

first is the calculation of the predictor step and the second is 

the calculation of the corrector step. The predictor step is 

calculated by applying the Newton's method around the 

current point on the equations (19).  
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The affine scaling direction ( ), ,aff aff aff∆ ∆ ∆x λ s  is obtained 

by solving these equations.  Then the scaling parameter αaff
 for 

the predictor step is chosen. This parameter have to satisfy the 

conditions in the equations  
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The final scaling parameter is chosen in the following way: 
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Now the complementarity measure µ
aff

 of the predictor 

step and the centering parameter σ can be calculated. 
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Now we can move to the calculation of the corrector step. 

This is done by adjusting the right hand side of the equation 

(21) by computed affine scaling direction and the centering 

parameter. The resulting equation system is shown as equation 

[15,16] 
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Solving this system gives us the final scaling direction 

( ), ,∆ ∆ ∆x λ s . The step length is chosen in the same way it was 

in the predictor step calculation in the equations (23). 
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Now we can update the unknown vector x, the vector of 

the Lagrange multipliers λ and the slackvector s. 

 

1

1

1

k k

k k

k k

α

α

α

+

+

+

= + ∆

= + ∆

= + ∆

x x x

λ λ λ
s s s

 (28) 

The final step of this algorithm is updating the residuals 

vectors rd, rs and rsλ and the complementarity measure µ 

[15,16]. 
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V. RESULTS 

This section shows the simulation results of the magnetic 

levitation control process. The parameters of the system are 

show in the Table I. and the mathematical model of the 

simulated system is shown in the equation (1). This nonlinear 

model was linearized about five operating points (y
s
, u

s
) = [(0, 

0.2721), (0.25, 0.2177), (0.5, 0.1634), (0.75, 0.1090), (1, 

0.0547)]. The final linear model that was used for the output 

values prediction is calculated as the linear combination of 

two out of these five models depending of the current output 

value. 

 

Fig. 2. Final linear modelselection 

The vertical axis of the figure 2 represents the weight of 

the model and the horizontal axis represents the output value. 

The results show a comparison between three methods of 

the cost function minimization: Matlab function quadprog, 

simple fast gradient method and the presented predictor-

corrector method. These methods were also compared by their 

computation time which were measured using Matlab tic(), 

toc() functions. The simulations were done with the sampling 

period T0 = 5ms, prediction horizon N = 20 steps and the 

weighting coefficients λ = 1 and δ = 1. The figures 3 and 4 

show the output and input signals for simulations with a step 

change of the reference signal. 

 

Fig. 3. System output signals 

 

Fig. 4. System input signals 
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The simulations were also compared by two quadratic 

criterions for analysis of the control quality. The first criterion, 

described by equation 

 2

1

1
( )

N

u

k

S u k
N =

= ∆∑  (31) 

 compares the control increments made in every step and the 

second criterion, described by equation 

 ( )
2
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1
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N

e

k

S w k y k
N =

 = − ∑  (32) 

 compares a difference between the reference value and the 

output value. 

The Table II. shows results of these criterions of the 

individual simulations as well as a mean computation time of 

the one control step. 

TABLE II.  SIMULATION RESULTS 

 
Fast 

gradient 
Quadprog 

Predictor 

corrector 

Se [-] 6.51 . 10-4 8.35 . 10-4 8.96 . 10-4 

Su [-] 1.19 . 10-4 1.97 . 10-4 2.25 . 10-4 

Computation time 

[ms] 
9.505 12.737 0.687 

 

The figures 5 and 6 show the output and input signals for 

simulations with a linear change of the reference signal. 

 

Fig. 5. System output signals 

 

Fig. 6. System input signals 

 

TABLE III.  SIMULATION RESULTS 

 
Fast 

gradient 
Quadprog 

Predictor 

corrector 

Se [-] 10.3 . 10-5 9.52 . 10-5 9.59 . 10-5 

Su [-] 8.54 . 10-5 8.54 . 10-5 8.61 . 10-5 

Computation time 

[ms] 
9.004 12.667 1.384 

 

The figures 7 and 8 show the output and input signals for 

simulations with a sinus change of the reference signal. 

 

Fig. 7. System output signals 

 

Fig. 8. System input signals 

TABLE IV.  SIMULATION RESULTS 

 
Fast 

gradient 
Quadprog 

Predictor 

corrector 

Se [-] 1.31 . 10-4 1.03 . 10-4 1.03 . 10-4 

Su [-] 8.57 . 10-5 8.56 . 10-5 8.57 . 10-5 

Computation time 

[ms] 
8.729 12.374 1.610 

 

The figures 3 up to 8 show the simulation of the output and 

input signals of the magnetic levitation model control. The 

control of this model is realized by the predictive control 

method which is based on the cost function minimization. This 

is an optimization problem and several method can be used to 

calculate the input signal. This section compares three 

optimization methods and tries to determine the suitable 

method for control of the chosen model. This model is 

relatively fast and the sampling period was chosen as 
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0
5msT = . The tables of the simulation results compare the 

quadratic criterions of the control quality and the computation 

time of the chosen minimization method. The values of the 

quadratic criterions Su and Se for all of the methods in all of 

the presented simulations indicate that these methods should 

be applicable and able to follow the reference signal. 

However, the last and the most important examined parameter, 

the computation time, points out that it is not true. The fast 

gradient method and the quadprog function have the 

computation time of all of the simulations much higher than 

the sampling period 
0

5msT = . That means, these methods are 

not useable for the real application of the magnetic levitation 

control. Only the presented predictor-corrector method has the 

computation time lower that the sampling period and so can be 

used for the real application. 

VI. CONCLUSION 

In this paper, the predictive controller based on the state-

space CARIMA model was presented. The designed controller 

was used to simulation of the magnetic levitation model 

control. This model represents a nonlinear single input single 

output system with a short sampling period. These systems are 

very difficult to control due to their complexity and the speed 

of the output value. The mathematical model of the real 

magnetic levitation model CE 152 designed by TQ Education 

and Training Ltd was used as an exemplar system. The aim of 

this paper was to present a predictive controller capable of 

control of such system. Since the presented predictive control 

method works only with a linear models, the chosen nonlinear 

model linearization process is described. The final linear 

model is obtained by linear combination of two out of the five 

linear models depending on the current output value. The 

calculation of the input signal is done by the minimization of 

the cost function that minimize the differences between the 

output and the reference signals and the control signal 

increments. This minimization can be achieved by using 

different methods with different computation demands. One of 

these methods, the predictor-corrector method, is presented in 

this paper. The results section shows the differences between 

three minimization methods used to calculation of the control 

signal. While the presented figures of the simulation may 

indicate that all of the optimization methods reached almost 

the same level of the reference signal following, the 

computation time of these methods is very different. The mean 

computation time of the fast gradient method and the 

quadprog function exceeds the sampling period 
0

5msT =

almost two times in the case of the fast gradient method and 

more than two times in the case of the quadprog Matlab 

function. Only the presented predictor-corrector method mean 

computation time is sufficient for the sampling period 

0
5msT = . 
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