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Abstract—The paper deals with predictive control of non-

holonomic mobile robot. The basic nonlinear kinematic equation 

is linearized into two different linear time varying models based 

on frame of reference – world coordinates and local coordinate of 

mobile robot. The non-linear model predictive control is applied 

to the trajectory tracking problem of a non-holonomic mobile 

robot with these models. The control law is derived from a cost 

function which penalizes the state tracking error, control effort 

and terminal state deviation error. Various simulation 

experiments are conducted and a comparative analysis has been 

made with respect to state-of-the-art approaches. 

Keywords—Trajectory tracking; Optimization; Mobile robot; 

Predictive control 

I.  INTRODUCTION  

The past few decades have witnessed an increased research 
effort in the area of motion control of autonomous vehicles. In 
the age of self-driving cars, the importance of the study of 
motion control of autonomous systems is ever increasing. 
Robust motion control algorithms are fundamental to the 
autonomous operation of mobile robot. Motion control refers to 
“how to control the robot to make some particular motion – 
either time bound or not”. There are basically three types of 
motion control problems: trajectory tracking, path following and 
point stabilization. Point stabilization (parking) refers to the 
stabilization of the robot into a predefined position and 
orientation. Path following refers to move a robot in a path in a 
time independent manner. The trajectory tracking problem is 
similar to path following problem, but in predefined time. A 
typical motion control problem is trajectory-tracking, which is 
concerned with the design of control laws that force a vehicle to 
reach and follow, a time parameterized reference (i.e., a 
geometric path with an associated timing law).  

The trajectory tracking problem focuses on stabilizing the 
robot in a time parameterized reference position and orientation. 
In doing so non-holonomic constraints must be respected. This 
means it is not possible to achieve all the velocities at a given 
moment. According to Brockett’s condition [1], non-holonomic 
systems cannot be stabilized around equilibrium with smooth 
time-invariant feedback. However, it has been proven that, the 
asymptotic stabilization can be obtained using time-varying, 
discontinuous or hybrid control laws, for e.g. [2-4]. An extensive 
survey on non-holonomic control problems can be found in [5].  

The model predictive control (MPC) (also known as 
receding horizon control (RHC)) has been an important research 
area for decades. MPC is also seems to be very promising in the 
field of mobile robotic trajectory tracking, because the reference 
trajectory is known beforehand. It is an online optimization tool, 
which will generate optimal control actions required at every 
time instant, by minimizing an objective function based on 
predictions [6], and also by respecting constraints. With the 
increase in computational power, the MPC is not only limited to 
slow dynamics processes, but also there are new applications for 
faster systems. Most of the MPC technologies are based on 
linear dynamic models and therefore referred to as a linear 
model predictive controller (LMPC). However, many processes 
are sufficiently nonlinear which hinder the successful 
application of LMPC. This has led to the development of 
nonlinear model predictive controllers (NMPC) in which 
nonlinear models are used for prediction and optimization. One 
of the problems associated with NMPC is that, the nonlinear 
program has to be solved online at every sampling time to 
generate control action, which is a computationally heavy task. 
There are various NMPC formulations in the literature, refer [7] 
and the references within. In case of trajectory tracking of 
mobile robots, MPC techniques produce promising results as 
shown by [8-11]. A survey of motion control problems of 
wheeled mobile robots (WMRs) using MPC can be found in 
[12]. 

In this paper, two linear time varying models are derived 
from the non-linear kinematic model based on the reference 
coordinate frame. A successive linear model is derived, 
considering the world coordinates, by successively linearizing 
around the reference points. An error based linear model is 
derived, considering the local coordinate of mobile robot, by 
coordinate transformation. Two trajectory tracking NMPCs are 
designed with these models, by minimizing a criteria consisting 
of state deviation error and control effort. Various simulation 
experiments are carried out and a comparison has been made 
with respect to state-of-the-art approaches like the Kanayama 
controller [13] and Samson controller [14]. The paper is 
organized as follows: section II introduces the kinematic 
modelling and linearization. Design of NMPC is described in 
section III and state tracking controllers in section IV. In section 
V, simulation results of trajectory tracking control and 
comparison of controllers are provided.  
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II. KINEMATIC MODEL OF NON-HOLONOMIC MOBILE ROBOT 

Let the pose of the robot in the Cartesian coordinate with an 

angle � measured clockwise from x-axis, be 

� =  .[�ݕݔ]
The basic kinematic equations of non-holonomic robot are 

given by,  

 

ݔ̇ = cos ݒ ݕ̇,� = sin ݒ �,�̇ = ߱,            (1) 

where ݒ and ߱ are the tangential velocity and angular velocity 

respectively. This can be represented in matrix format, 

�̇ = [̇�ݕ̇ݔ̇] = [cos � Ͳsin � ͲͲ ͳ] ݒ߱] ]. 
Trajectory of a mobile robot refers to the locus of all the points 
,ݔ)  in the Cartesian coordinate. In a trajectory tracking (ݕ
approach to mobile robot motion control problem, the reference 
trajectory must be known beforehand. A feasible trajectory 
considering the velocity and acceleration limits, non-holonomic 
and holonomic constraints, and an obstacle free trajectory 
should be generated (by trajectory planner module). The 
reference trajectory Cartesian coordinates (ݔ  ,), orientation �ݕ 
and velocities (ݒ  ߱) fulfil the same kinematic equations (1) as, 

 �̇� = [�̇ݕ̇ݔ̇] = [cos � Ͳsin � ͲͲ ͳ]  (2)  .[߱ݒ]

In a trajectory tracking control of mobile robot, the aim is to 

minimize the difference between the reference trajectory state 

vector and the current state vector of mobile robot. 

�� − � = [�ݕݔ] −  .[�ݕݔ]
The reference tangential velocity is calculated by, 

ሻݐሺݒ  = ሻଶݐሺݔ̇√ +  ሻଶ.  (3)ݐሺݕ̇

The reference orientation at every time instant is, 

 �ሺݐሻ = ,ሻݐሺݕሺ̇ʹ݊ܽݐܿݎܽ  ሻሻ.  (4)ݐሺݔ̇

By taking derivative of orientation, the reference angular 

velocity is obtained as, 

 ߱ሺݐሻ = �̇ሺݐሻ. (5) 

The aim of the trajectory tracking controller is to minimize the 

distance between real and reference robot motion (tracking 

deviation). There are two major approaches on how to express 

the tracking deviation, which are further linearized to get an 

approximate linear model. The starting point of both the models 

is the basic kinematic equations, but the main difference lies in 

the choice of the co-ordinate frame of mobile robot and 

reference trajectory. 

A. Successive linear model (M1) 

A linear model can be derived from the non-linear model, 
(1), by successively linearizing around the trajectory of the 
reference robot. A reference robot can be considered as a robot 
with reference (desired) parameters of the robot to follow a 
reference trajectory. The kinematic equations (1) can be 
represented as a simple model, 

 �̇ = ݂ሺ�, �ሻ,  (6) 

where state variables � = ,ݔ] ,ݕ �]T and control inputs � ,ݒ]= ߱]T
. Let the reference robot be following a reference 

trajectory (ݔ  ) with an orientation of �. The kinematicݕ 

equations are the same as that of real mobile robot. 

 �̇ = ݂ሺ� , �ሻ (7) 

The reference parameters are [ݔ ݕ   � ݒ ߱]. The tangential 

velocity, orientation and angular velocity of the reference robot 

can be calculated from (3-5). Applying the Taylor series 

approximation to (6), around the time varying reference points 

(� , �), we can derive, �̇ = ݂ሺ� , �ሻ + ߲݂ሺ�, �ሻ߲� |
x =��
u =ur

ሺ� − �ሻ + ߲݂ሺ�, �ሻ߲� |
x =��
u =ur

ሺ� − �ሻ 
 �̇ = ݂ሺ� , �ሻ + ௌሺ�̃ , �ሻ. ሺ� − �ሻ + ௌሺ�̃ , �ሻሺ� − �ሻ   (8) 

Subtracting (7) from (8) gives, 

 ∆�̇ = ௌሺ�̃ , �ሻ. ∆� + ௌሺ�̃ , �ሻ∆�  (9) ∆� is the error vector of state variables and ∆� is the error vector 

of control variables with respect to the reference robot. The 

approximation of ∆�̇ in (9), by the forward differences gives the 

following discrete-time linear time-variant state-space model: 

 ∆�ሺ� + ͳሻ = ௌሺ�ሻ∆�ሺ�ሻ +  ௌሺ�ሻ∆�ሺ�ሻ (10)

where,  ௌ = [ͳ Ͳ ݒ− sin �ሺ�ሻ ௦ܶͲ ͳ ݒ cos �ሺ�ሻ ௦ܶͲ Ͳ ͳ ] , ௌ = [cos �ሺ�ሻ ௦ܶ Ͳsin �ሺ�ሻ ௦ܶ ͲͲ ௦ܶ]   ∆� = ሺ�ሻݔ] − ሺ�ሻݕሺ�ሻݔ − ሺ�ሻ�ሺ�ሻݕ − �ሺ�ሻ] , ∆� = [ ሺ�ሻݒ − ሺ�ሻ߱ሺ�ሻݒ − ߱ሺ�ሻ] 
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Fig. 1. General block diagram of trajectory tracking kinematic controller with successive linear model 
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where ௦ܶ is the sampling period and ∆� is the deviation state 

vector which represents the error with respect to the reference 

robot, and ∆� is associated with the control input. The reference 

values, ݎݒ, , ݎ�  ,are the reference tangential velocity ݎ߱

orientation angle and angular velocity, respectively. A general 

closed loop control scheme with a feedforward feedback 

controller is shown in Fig. 1. 

B. Error based linear model (M2) 

Another way of modeling is to consider the difference in the 

local coordinate system of the mobile robot, see Fig. 3. These 

differences in the local coordinate system is called the “tracking 
error” given as, 

 � = [݁ଵ݁ଶ݁ଷ] = [ cos � sin � Ͳ−sin � cos � ͲͲ Ͳ ͳ] ݔ] − ݕݔ − �ݕ − �]  = ሺ��ࢀ − �ሻ. (11) 

where, ࢀ� is the coordinate transformation matrix. 
Differentiating (11) by considering (1) and (2), 

 �̇ = [݁̇ଵ݁̇ଶ݁̇ଷ] = [     ݁ଶ߱ − ݒ + ݒ cos ݁ଷ−݁ଵ߱ + ݒ sin ݁ଷ߱ − ߱ ]. (12) 

In order to get a linear model, (12) is linearized around 

equilibrium point (� = ሻ, with [ݒ ߱] = ݒ]  ߱] as the operating 

points, by the approximating sin � ≈ � (at small angles – � is the 

error variable and the aim is to minimize the errors). 

 [݁̇ଵ݁̇ଶ݁̇ଷ] = [ Ͳ ߱ Ͳ−߱ Ͳ Ͳݒ Ͳ Ͳ ] [݁ଵ݁ଶ݁ଷ] + [ͳ ͲͲ ͲͲ ͳ] ݒ] cos ݁ଷ − ߱ݒ − ߱ ] (13) 

The continuous time state-space model after linearization and 

approximation is given by,  

[݁̇ଵ݁̇ଶ݁̇ଷ] = [ Ͳ ߱ Ͳ−߱ Ͳ Ͳݒ Ͳ Ͳ �̃          ⏟[
[݁ଵ݁ଶ݁ଷ] + [ͳ ͲͲ ͲͲ ͳ]⏟    ̃�

 (14)  .[ଶݑଵݑ]

Separating control inputs as feedforward and feedback inputs, 

 � = [ଶݑଵݑ] = ݒ] cos ݁ଷ߱ ]⏟      ��� − �⏟[ݒ߱] . (15) 

Discretizing (14) with a sample time of  ௦ܶ, and the discrete time 

LTV state space model is given by, 

  �ሺ� + ͳሻ = ሺ�ሻ�ሺ�ሻ� +  ሺ�ሻ�ሺ�ሻ,  (16)�

where, � and � are discretized version of matrices �̃ and ̃�. 

A general closed loop control scheme with feedforward 

feedback controller is shown in the Fig. 2.  

III. TRAJECTORY TRACKING BY NMPC 

In this section, the NMPC problem is formulated as a 

discrete-time optimal control problem with a finite horizon 

constrained by considering input constraints. At every time 

instant, the MPC algorithm uses the LTV/non-linear model to 

predict the evolution of the system for a finite time horizon and 

generates the optimal control action by optimizing a cost 

function. Only the first control action of this sequence is applied 

to the system. The optimization problem is solved again at the 

next sampling time using the updated process measurements, 

and a shifted horizon.  

The linear models, successive linear and error based model, 

are LTV models (MIMO system with 2 inputs and 3 outputs). 

Since state variables correspond to system outputs, the linear 

discrete time state space model, consists of only the state 

equation represented as,  

 �̅�+ଵ = �̅�� + �̅�� , (17) 

where, the state variables, �̅� and matrices  ,�� are same as 
that in (10) for successive linear model and (16) for error based 
model.  

A. Prediction model 

The future state variables are recursively calculated from the 

linear model. Let ܰ be the prediction horizon. The predicted 

state variables for the finite horizon N at time instant ݐ� = � ௦ܶ, 

  �̅� = �̅�௫௫,�ࡿ +  ௫��̅�,  (18),�ࡿ
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T
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T
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Fig. 2. General block diagram of trajectory tracking kinematic controller with error based linear model 
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�̅� = [ [ଵ−�+�̅�ڭ�̅� ; �̅� = [�̅�+ଵڭ�̅�+�] 
Decomposing (18) into free �̅�,  and forced responses �̅�,, 

 �̅�, = �̅�௫௫,�ࡿ +  ௫��̅�,,  (19),�ࡿ

 �̅�, =  ௫�∆��.  (20),�ࡿ

Let �̅ be the free response control action (last control action) 
and the optimized control action deviation, ∆��, given as,  ∆�� = �̅� − �̅�,, 

�̅�, = [ �̅,�ڭ�̅,�+�−ଵ], 
and the time varying prediction matrices are, 

௫௫,�ࡿ  = [  
  [�ଵ+�…ଵ−�+� �+�ڭ�ଵ+�ଶ+��ଵ+��  

  , 

�௫,�ࡿ  =
[  
   
�   ڮ  �+ଵ� ଵ+� ڮ  �+ଶ�+ଵ� ଵ+�ଶ+� ڮ  ڭ ڭ ⋱ ڭ ∏ڭ ଵ−�+��
�=�+ଵ � ∏ ଶ−�+��

�=�+ଶ ଵ+� ڮ ଵ−�+��+�   [ࡺ+�
   
 . 

B. Cost function 

The MPC allows a lot of flexibility in the choice of cost 

function. A general cost function consists of three parts: costs 

to control error during the horizon, costs to penalize the control 

signal during horizon and the terminal cost to ensure stability 

of the control at the terminal state. In the case of the trajectory 

tracking problem, a separate terminal cost in the criteria 

formulation is omitted, as the output of system directly 

corresponds to the state variables. 

 

�(ܰ, �̅, �̅�,) = �̅�ࡽ்�̅� + ��∆��∆ࡾ்��∆ = �̅� − �̅�,        ��,� < �� < �௫,�                     (21) 

where the weighting matrix ࡽ is positive semi definite (ࡽ ≽ ) 

and matrix ࡾ is positive definite ሺࡾ ≻ ሻ.  

w=[xr,yr,tr]

Xfr(tk+N+1)Predictor

eq(19-20)

Optimization solver

eq(21)

J(N,xtk,uN,tk)
u(tk)

x(tk)

∆u(tK)

Mobile Robot

eq(1)

x(0)=x0

Sk,xu

ΣΣ
Trajectory Planner

eq(3-5)

ΣΣ

ur(tk)

wr(tk)

vr(tk:tk+N),θr(tk:tk+N)

(Q,QN,R) (umax,umin)

ur(tk:tk+N)

_

+

+

+

_

_x(tk)
_

u(tk)

 
Fig. 4. Control scheme of trajectory tracking NMPC1 with LTV model 
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Fig. 5. Control scheme of trajectory tracking NMPC2 with LTV model 
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ࡽ = ݀�ܽ݃ሺࡽ�ሻ ࡾ = ݀�ܽ݃ሺࡾ�ሻ  } ∀ � = ͳ ݐ ܰ 

The criteria consist of a cost for control effort, and a cost for state 

variable deviation. The aim of a trajectory tracking controller is 

to generate optimum control actions which bring the deviation 

state variables to zero over a finite time horizon. The last three 

diagonal elements ࡽ� in the matrix ࡽ, can be seen as terminal 

state cost, and can be tuned to achieve terminal state stability.  

Rewriting the criteria (21), in terms of free and forced 

response and by substituting (19-20), 

 � = ��∆ࡹ்��∆ + ∆��்�+�்∆�� +  (22) ࢉ

where, � = �̅�௫௫,�ࡿሺࡽ்�௫.�ࡿ + ࡹ௫��̅�,ሻ,�ࡿ = �௫,�ࡿࡽ்�௫,�ࡿ +                ࡾ

In case of unconstraint control the analytical solution is, 

 ∆� =  �.  (23)−ࡹ−

In case of constraint control, the optimal control action is the 

solution of the quadratic programing problem, obtained by 

minimizing the criteria. 

  min∆� � = �∆ܯ்�∆ + �்∆� such that �∆� ≤  .  (24)࢈

Fig. 4 and 5 show the control scheme of NMPC based on 

successive linear (NMPC1) and error based models respectively 

(NMPC2).  

C. Constraints on manipulaed variable 

Considering the manipulated variable constraints of a 

successive linear model for a finite horizon N, 

 

�� ≤ �� ≤ �௫ ,�� ≤ ∆�� + �̅�, + ��,  ≤ �௫ ,�� − �̅�, − ��, ≤ ∆�� ≤ �௫ − �̅�, − ��,  (25) 

where � is the last control action, �̅ = �̅ሺ� − ͳሻ and ��, is a 

vector of reference variables for the horizon. Deriving 

inequality constraints for a horizon ܰ,  

[  
   � ڮ ڭ ⋱ �ڭ ڮ �−� ڮ ڭ ⋱ �−ڭ ڮ −�]  

   
⏟        ��

∆� ≤
[  
   
�௫ − �̅ − ��,ڭ�௫ − �̅ − ��+�,−�� + �̅ + ��,ڭ−�� + �̅ + ��+�,]  

   ,
⏟                0

 

and for error based model, 

 

�� ≤ �� ≤ �௫ �� ≤ � − ሺ∆�� + �̅�,ሻ  ≤ �௫�� + �̅�, − ��, ≤ −∆�� ≤ �௫ + �̅�, − ��, (26) 

[  
   −� ڮ ڭ ⋱ �−ڭ ڮ −�� ڮ ڭ ⋱ �ڭ ڮ � ]  

   
⏟        ��

∆� ≤
[  
   
�௫ + � − ��,ڭ�௫ + � − ��+�,−�� − � + ��,ڭ−�� − � + ��+�,]  

   
⏟                0

 

IV. STATE TRACKING CONTROLLER 

A. Linear state tracking control design (Kanayama controller) 

The proposed predictive controller is compared to the state 

of the art state tracking controller whose design can be found in 

[13-14]. The state tracking controller can be designed with a 

linear feedback gain as, 

 �̅� = −�௦ሺ�ሻ�ሺ�ሻ  (27) 

where �௦ is the feedback gain matrix in the form of, 

 �௦ሺ�ሻ = [−�ଵሺ�ሻ Ͳ ͲͲ ሻ�ଶሺ�ሻݒሺ ݊݃�ݏ− −�ଷሺ�ሻ].  (28) 

The controller gains �ଵ, �ଶ and �ଷ, are determined by comparison 

(pole placement method) with a desired closed loop 

characteristic polynomial in the form of, 

 ሺ� + ʹ�ܽሻሺ�ଶ + ʹ�ܽ� + ܽଶሻ  
which has constant eigenvalues (one negative real at  −ʹ�ܽ and 

a complex pair with natural frequency ܽ > Ͳ and damping co-

efficient � > Ͳ). The controller gains can be then chosen as, �ଵሺ�ሻ = �ଷሺ�ሻ = ʹ�ܽ, �ଶሺ�ሻ = ܽଶ − ߱ሺ�ሻଶݒሺ�ሻ  

The gain �ଶ will go to infinity as ݒሺ�ሻ → Ͳ. In order to avoid 

this, a gain scheduling can be designed by letting ܽ = ܽሺ�ሻ =√߱ሺ�ሻଶ + ሺ�ሻଶ, substituting, �ଵሺ�ሻݒܾ = �ଷሺ�ሻ = ʹ�√߱ሺ�ሻଶ + ሺ�ሻଶ ; �ଶሺ�ሻݒܾ =  ,|ሺ�ሻݒ|ܾ
where the factor ܾ > Ͳ can be seen as additional degree of 

freedom. 

Even the controller gains are chosen in such a way that the 

closed loop poles are at the left half of the s-plane, while the 

controller is still non-linear and time varying. Therefore, 

asymptotic stability of tracking error is not guaranteed. The 

control scheme is same as that in Fig. 2. 

B. Nonlinear state tracking control design (Samson controller) 

Considering the nonlinear feedback control law [15] as, 

 �௦ሺ�ሻ = [−�ଵሺ�ሻ Ͳ ͲͲ −�̅ଶݒሺ�ሻ sin ሺ3ሻ3 −�ଷሺ�ሻ]. (29) 

The controller gains �ଵ, �̅ଶ and �ଷ are determined by the same 

method as in the linear control design. �ଵሺ�ሻ = �ଷሺ�ሻ = ʹ�√߱ሺ�ሻଶ + ሺ�ሻଶ  ;  �̅ଶݒܾ = ܾ. 
The main difference between a linear and nonlinear state 

tracking controller is that, global asymptotic stability can be 

proved in the case of a nonlinear controller by Lyapunov 

analysis. See [15] for the proof. 

V. SIMULATION RESULTS 

The inputs are time parameterized reference points which 

are interpolated to generate smooth trajectory points by spline 
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interpolation (MATLAB function interp1). The trajectory 

planner generates the reference parameters – orientation, 

tangential and angular velocities. Simulation experiments, with 

a continuous time model (1) for real robot, were performed with 

a sampling time of 100ms. Total simulation time was 30s. Four 

different controllers were simulated – NMPC with successive 

linear model (NMPC1), NMCP with error tracking model 

(NMPC2), Kanayama feedback controller (KC) and Samson 

feedback controller (SC). 

Trajectory tracking NMPC1 of mobile robot was simulated: 

by using the model in the form of (10), predicting the future 

states with LTV model (19-20), optimizing the cost function in 

the form of (21), and defining the constraints in the form of (25). 

Optimized control actions for horizon N were calculated and the 

first control action was applied to the system. Only NMPC with 

LTV model was considered, as the results obtained with non-

linear model, (1), were same. NMPC2 uses error based model, 

(16), prediction model (19-20) and constraint definition as in 

(26). The control actions for state feedback tracking controllers 

KC and SC were calculated by (28) and (29) respectively. The 

input constraints were considered as, 

 −ͳ ݉/ݏ ≤ ݒ ≤ ͳ ݉/ݏ    ;   −ͳ ݏ/݀ܽݎ ≤ ߱ ≤ ͳ (30)  .ݏ/݀ܽݎ 

Twelve different simulation experiments (S1-S12) had been 

performed with different controllers, initial conditions, tuning 

parameters and constraint condition. Different initial condition 

refers to the pose of robot, which is different from the reference 

pose.  Fig. 6 and 7 shows the trajectory tracking responses with 

unconstraint NMPC1 (S1) and constraint NMPC2 (S5) 

respectively. Table 1 shows the simulation results of trajectory 

tracking with different controllers. The results are comparable 

with the sum of squared error (SSE): ܵܵ�௫௬ = ݔ| − |ݔ + ݕ| − ; |ݕ  ܵܵ�� = |� − �|. 
Three sets of experiments were conducted – unconstraint 

control, constraint control and different initial conditions. In all 

the cases NMPC1 showed more SSEs when compared to other 

controllers. The SSE of unconstraint control responses 

 
Fig. 7. Trajectory tracking with constraint NMPC2 – reference trajectory, 

reference inputs, tracked trajectory, control actions 

 
Fig. 6. Trajectory tracking with unconstraint NMPC1 – reference 

trajectory, reference inputs, tracked trajectory, control actions 

TABLE I.  COMPARISON OF TRAJECTORY TRACKING CONTROLLERS 
 

Simulation 

Experiment 
Controller Tuning parameters 

Constraints 

umax= -umin 

Initial 

Condition 

Control Quality 

[SSExy SSEθ] 

  N R Q QN  

S1 

NMPC1 5 
10-1*I 

I 

0 -NA- 
Same 

[0.0059   2.6030] 

S2 I [1  1] [0.2668   2.8050] 

S3 10-2*I 103*I -NA- [0.1 -0.1 0] [1.9297  6.8506] 

S4 

NMPC2 5 10-1*I I I 

-NA- 
Same 

[0.0192  0.0004] 

S5 [1  1] [0.0345  2.3777] 

S6 -NA- [0.1 -0.1 0] [0.1736  57.371] 

  b �  

S7 

KC 

100 

0.7 

-NA- 
Same 

[0.0013 0.0067] 

S8 
50 

[1  1] [0.0101 1.4151] 

S9 -NA- [0.1 -0.1 0] [0.2837 67.778] 

S10 

SC 

100 

0.7 

-NA- 
Same 

[0.0013 0.0067] 

S11 
50 

[1  1] [0.0101 1.4157] 

S12 -NA- [0.1 -0.1 0] [0.3188 74.659] 
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trajectories were almost same, even though NMPC1 is 

outperformed by all the other controllers. The controllers were 

able to generate target velocities with respect to the reference 

velocities. In case of constraint control, state tracking 

controllers were able to track the robot closer to the reference 

trajectory. The constraints in the form of (30) were considered. 

When the initial conditions were different NMPC2 performed 

better than all the other controllers.  

Fig. 8 shows the initial tracking of the mobile robot in the 

case where the robot’s initial pose is different from the 

reference trajectory – since for this example, the robot is 

orientated in the opposite direction. NMPC2 converges faster to 

the reference trajectory compared to all other controllers, 

followed by state tracking controllers. It is also interesting to 

note that the NMPC1 initially drives in the opposite direction to 

the reference orientation and eventually converges with high 

initial tracking errors.   

VI. CONCLUSION 

The basic non-linear kinematic equations of non-holonomic 
robot is linearized based on two reference coordinate systems. A 
non-linear MPC is designed with criteria penalizing state 
tracking errors and control effort. The performance (based on 
state tracking errors) of trajectory tracking NMPCs were 
compared with two state-of-the-art approaches. The NMPC 
based on a local coordinate system showed better results when 
the initial conditions were different. With same initial conditions 
and with/without input constraints, all the controllers - other than 
NMPC based on world coordinates – exhibited similar 
performances.   
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Fig. 8. Comparison of trajectory tracking controllers with 

different initial conditions 
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