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Abstract—This paper presents modelling of ball and plate 

systems based on first principles by considering balance of forces 

and torques. A non-linear model is derived considering the 

dynamics of motors, gears, ball and plate. The non-linear model is 

linearized near the operating region to obtain a standard state 

space model. This linear model is used for discrete optimal control 

of the ball and plate system – the trajectory of the ball is controlled 

by control voltages to the motor.    

Keywords—Ball and plate system; first principle model; optimal 

control; LQ control   

I.  INTRODUCTION  

Laboratory experiments are an integral part of control 
education. There are lots of educational platforms available e.g. 
inverted pendulum, magnetic levitation, ball and beam system 
etc. Ball and plate system is an upgraded version of ball and 
beam system where the position of the ball can be manipulated 
in two directions [1]. The educational model ball and plate, 
consists of a plate, pivoted at its center, such that the slope of the 
plate can be manipulated in two perpendicular directions. The 
ball and plate is a non-linear, multi-variable and open-loop 
unstable system.  There are basically two control problems: 
point stabilization and trajectory tracking. In point stabilization, 
the aim is to carry the ball to a specific position and hold it there. 
In trajectory tracking control, the goal is to make the ball follows 
a predefined trajectory (linear, square, circle and Lissajous 
curve) [2-5]. 

The first step is finding out a mathematical model which 
describes the system. There are basically two modelling 
approaches for the ball and plate system in literature: the 
Lagrangian method and the Newton-Euler method. The 
derivation of dynamical equations of ball and plate system by 
Lagrangian method can be seen in [6]. The modelling based on 
Newton-Euler method is quite rare in the literature. Even though, 
Newton-Euler method is quite cumbersome, the variables and 
equations have physical meaning which is suitable for control 
educational purpose. The balance of forces and torques are 
considered in the Newton-Euler method to derive the 
mathematical model. 

In this paper, a non-linear mathematical model of ball and 
plate system is derived by considering the dynamics of the ball 
and plate system, DC motors and gear system, based on balance 
of forces and torques. The model is linearized around 
equilibrium points to arrive at a linear state space model. Infinite 

horizon optimal linear quadratic (LQ) control is applied to the 
trajectory tracking problem by penalizing the state and control 
effort. Simulation results of model verification and trajectory 
tracking control are also provided. 

II. MATHEMATICAL MODELLING 

Mathematical model of nonlinear dynamics takes account of 
the position of the ball on the plate depending on the voltage of 
the motors that control the tilt of the plate, in two perpendicular 
axes (see Fig. 1). A ball of mass mb, moment of inertia Jb and 
radius rb is located on a square surface (plane), tilting in the two 
perpendicular axes x and y. The origin of the axis is located at 
the intersection of coordinate axes. The moment of inertia of the 
plate is Jp (relative to each axis of rotation). On each axis, the 
torques Mx and My are operated. Moments are created by two DC 
geared motors via two cable systems with the same gear ratio of 
G, but with different moments of inertia JGx and JGy. 

The mathematical model is based on the balance of forces 

and torques acting on the ball, and the dynamic model of DC 

series motor. The real behaviour is taken into account by 

including an approximation of linear mechanical losses, 

depending on the speed of the rotational motion. In the case of 

moving balls, the mechanical losses are proportional to the 

square of opposition translational speed of movement. 

The model is built on the following assumptions: 

a) there is no loss of contact area with the ball 

b) the ball is hollow ball (ping-pong ball) 

c) an infinitely large area (not considering the rebound) 

d) connection of the motor to tilt the axis is perfectly rigid 
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Fig. 1. Ball and plate system 
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A. Balance of forces - ball 

Since the ball is placed on a surface rotating in two axes, we 

need to consider, in addition to the inertia of the translational 

movement, the influence of the apparent forces (Euler, 

centrifugal and Coriolis). These forces are caused by the 

rotational movement i.e. all the forces in curvilinear motion 

consisting of the movement of translation and rotation. A 

general representation of the resultant forces acting upon the 

curvilinear motion on the mass point in vector form (⃗ݒ is the 

translational velocity vector and �⃗⃗⃗  is the angular velocity 

vector) is then described [7], ⃗ܨ௘௫௧ = � ௗ௩⃗⃗ௗ௧ ⏟ூ௡௘௥�௧௔ ௙௢௥௖௘ ி⃗ೌ ೎೎
 + � ௗ�⃗⃗⃗⃗ௗ௧ ா௨௟௘௥ ௙௢௥௖௘  ி⃗�ೠ೗    ⏟ݎ× + ʹ��⃗⃗⃗× ௗ௥ௗ௧⏟      �௢௥�௢௟�௦ ௙௢௥௖௘  ி⃗�೚ೝ  +                                                                                      + ��⃗⃗⃗×ሺ�⃗⃗⃗×ݎሻ⏟        .�௘௡௧௥�௙௨௚௔௟ ௙௢௥௖௘  ி⃗೎೐೙ (1) 

All the apparent forces acting in a plane are perpendicular 

to the axis of rotation. Fig. 2 shows a situation where all the 

forces are acting in the plane of motion. The mass point is at a 

perpendicular distance r from the rotational axis, and the vector 

(line connecting the point and the axis of rotation) forms an 

angle  from the selected x axis. The Euler force FEul (also 

apparent inertia force) acts only when there is a change in the 

speed of rotation  and its direction is perpendicular to the 

vector. Centrifugal force Fcen acts at non-zero rotation speed 

and its direction is in the direction of the vector. Coriolis force 

FCor acts when the velocity of motion is not perpendicular to the 

vector (i.e. there is a change in the size of the vector). Its 

direction is perpendicular to the direction of translational speed. 

In the arrangement (rotational axis in the coordinate axes),  

the forces are decomposed in the directions of axes x and y 

directions. The translational velocity vx, vy and rotation speed 

 and  are either parallel or perpendicular to each other. 

Decomposition of the axes describes the movement in one 

direction only i.e. the apparent Euler and Coriolis force is 

applied only in the balance of moments. The situation of 

moving in the x-axis is shown in Fig. 3. Since it is not a fixed 

point we need to consider more ball spin (moment of inertia) 

with speeds of rotation x and y loss due to rolling resistance 

and environment resistance. Rolling resistance is proportional 

to the rotational speed of the ball and resistance is proportional 

to the square of environment translational velocity. The overall 

balance of forces can be expressed as, 

௔௖௖ܨ + ௥௢௧ܨ + ௟௢௦ܨ + ா௨௟ܨ + ௢௥�ܨ + ௖௘௡ܨ = ,ߙ௚௥௔ሺܨ .�.��]     ሻߚ  [ଶ−ݏ
Translational force ܨ௔௖௖ = �௕ ௗమ௫ௗ௧మ 
Rotational force               ܨ௥௢௧ = ௃್௥್ ௗ�ೣௗ௧ = ௃್௥್మ  ௗమ௫ௗ௧మ 
Rolling resistance           ܨ௟௢௦ = �௕�௫ = ௞್௥್ ௗ௫ௗ௧ 
Environmental resistance ܨ௟௢௦ = ܿ௫భమߩ௔�௥ܵ௕ ௗ௫ௗ௧ |ௗ௫ௗ௧| = �௖ ௗ௫ௗ௧ |ௗ௫ௗ௧| 
Centrifugal force             ܨ௖௘௡ = �௕�ఉଶݔ = �௕ݔ ቀௗఉௗ௧ቁଶ 
External force (gravity)   ܨ௚௥௔,௫ = −�௕�. sinሺߚሻ  

where, �௕ Mass of the ball ݎ௕ Radius of the ball 

Sb Total area  ܵ௕ = ௕ଶ ∆ Thickness of the ball �௕ Torque of ball �௕ݎߨ = మ5�௕ሺʹݎ௕ − ∆ሻ∆ �௫ , �௬ Angular velocity x-axis  
ௗ௫ௗ௧ =  ௕�௫ �௕ Coefficient approximation rolling lossesݎ

cx=0.5  Coefficient of aerodynamic resistance ball 

air=1.2  Density of dry air at 20 ° C and a pressure of 

101.4 kPa 

kc= cxairrb
2/2 Coefficient of resistance of the environment �=9.81 Gravitational constant 

By considering balance of forces on x axis we get, 

  
�௕ ௗమ௫ௗ௧మ + ௃್௥್మ  ௗమ௫ௗ௧మ + ௞್௥್ ௗ௫ௗ௧ + �௖ ௗ௫ௗ௧ |ௗ௫ௗ௧| + �௕ݔ ቀௗఉௗ௧ቁଶ =                                                               = −�௕�. sinሺߚሻ   

(ͳ + ௃್௠್௥್మ) ௗమ௫ௗ௧మ + ௗ௫ௗ௧ ቀ ௞್௠್௥್ + ௞೎ೣ௠್ |ௗ௫ௗ௧|ቁ + ݔ ቀௗఉௗ௧ቁଶ = −�. sinሺߚሻ  (2) 

Similarly, by considering balance of forces on y axis we get, �௕ ௗమ௬ௗ௧మ + ௃್௥್మ  ௗమ௬ௗ௧మ + ௞್௥್ ௗ௬ௗ௧ + �௖ݎ௕ଶ ௗ௬ௗ௧ |ௗ௬ௗ௧| + �௕ݕ ቀௗఈௗ௧ቁଶ =                                                                                = −�௕�. sinሺߙሻ  (ͳ + ௃್௠್௥್మ) ௗమ௬ௗ௧మ + ௗ௬ௗ௧ ቀ ௞್௠್௥್ + ௞೎ೣ௠್ |ௗ௬ௗ௧|ቁ + ݕ ቀௗఈௗ௧ቁଶ = −�. sinሺߙሻ (3) 

B. Balance of moments -  plate with ball 

Overall the balance of moments can be expressed as,  ܯ௔௖௖,௣ ௔௖௖,௕ܯ+ ௢௥,௕�ܯ+ ௟௢௦ܯ+ = ௠௢௧ܯ .௚௥௔     [��.�ଶܯ− ଶ] α−ݏ

r

v

ω = dα/dt

Facc = m.dv/dt

Fcen = m.ω´(ω´r)

FEul = m.r´dω/dt

FCor = 2m.ω´dr/dt

Fext

F

dr/dt

 
Fig. 2. Forces acting on ball and plate 
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Fig. 3. Ball and plate – movement in the x-axis (x-z plane) and rotation 

(torque) acting in y-axis   
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Torque of plate        ܯ௔௖௖,௣ = (�௣ + �ீ௫) ௗమఈௗ௧మ  

Torque of ball               ܯ௔௖௖,௕ = .ݕ ா௨௟ܨ = �௕ݕଶ ௗమఈௗ௧మ  

Coriolis moment           ܯ�௢௥,௕ = .ݕ ௢௥�ܨ = ʹ�௕ݕ ௗ௬ௗ௧ ௗఈௗ௧  
Torque losses                ܯ௟௢௦ = �௣௫ ௗఈௗ௧  
Gravitational moment   ܯ௚௥௔ = −�௕ݕ. � cosሺߙሻ 
where, 

 �௣  Plate moment of inertia (MI) �௣ = భభమ�௣ܽଶ 
 �௣  Mass of the plate 

 ܽ  Pivot length, passes through the center axis of 

 �ீ௫, �ீ௬ Pivot length, passes through the center axis  

  �௣௫ , �௣௬  Coefficient of approximation of rotational 

losses 

,ݔ       Current position of the ball  ݕ

௫ீܯ  ,  ௬  Actual moments of the drivesீܯ

,ߙ     Current the angle of the platform according to  ߚ

the respective axes 

By considering balance of forces on x axis we get, 

  
(�௣ + �ீ௫) ௗమఈௗ௧మ +�௕ݕଶ ௗమఈௗ௧మ + ʹ�௕ݕ ௗ௬ௗ௧ ௗఈௗ௧ + �௣௫ ௗఈௗ௧ =                                                        = ௫ீܯ −�௕ݕ. � cosሺߙሻ  

  ቀ௃೛+௃�ೣ௠್ + ଶቁݕ ௗమఈௗ௧మ + ቀʹݕ ௗ௬ௗ௧ + ௞೛ೣ௠್ቁ ௗఈௗ௧ = ெ�ೣ௠್ − �.ݕ cosሺߙሻ  (4) 

Similarly, by considering balance of torques on y axis we get, 

 
(�௣ + �ீ௬) ௗమఉௗ௧మ +�௕ݔଶ ௗమఉௗ௧మ + ʹ�௕ݔ ௗ௫ௗ௧ ௗఉௗ௧ + �௣௬ ௗఉௗ௧ =                                                     = ௬ீܯ −�௕ݔ. � cosሺߚሻ   

 ቀ௃೛+௃�೤௠್ + ଶቁݔ ௗమఉௗ௧మ + ቀʹݔ ௗ௫ௗ௧ + ௞೛೤௠್ቁ ௗఉௗ௧ = ெ�೤௠್ − .ݔ � cosሺߚሻ  (5) 

C. Gear system 

The gear box reduces the angular velocities of motors to 

output angular velocities with respect to the gear ratio. 

Similarly, the torques of motors are increased to output torques.   ߙ = ଵீ �௫ ߚ                   = ଵீ �௬             
௫ீܯ  = ௬ீܯ          ௫ܯ.ܩ =  ௫  (6)ܯ.ܩ

where,  

G  Gear transmission ratio of the drive  �௫, �௬  Angle of rotation of the rotor 

,ߙ   Angle of rotation of the plate with respect to  ߚ
  the relevant axis 

D. Balance of energy and moment – motor 

An equivalent circuit of an ideal DC series motor, is shown 

in Fig. 4. It consists of resistance ܴ, inductance ܮ and magnetic 

field ܯ. Each motor is independently controlled by its own 

supply voltage ܷ௫ , ܷ௬ taken from a common voltage source ܷ଴ 
through control signal ݑ௫,  ௬. The rotor generated backݑ

electromotive force (EMF) is in reverse polarity and is 

proportional to the rotor angular velocity. The torque of the 

motor is proportional to the current �. 
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U0
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Fig. 4. Equivalent circuit of DC motor 

By considering the balance of voltages (Kirchhoff’s law) of 

the motor connected to x axis, ܴ. �௫ + ܮ ௗ�ೣௗ௧ + �௨ ௗ�ೣௗ௧ + ܴ௭(�௫ + �௬) = ௫ݑ . ܷ଴  

ܮ  ௗ�ೣௗ௧ + �௨. ܩ ௗఈௗ௧ + ሺܴ௭ + ܴሻ�௫ + ܴ௭�௬ = ௫ݑ . ܷ଴  (7) 

Similarly, by considering balance of voltages on motor 

connected to y axis, ܴ. �௬ + ܮ ௗ�೤ௗ௧ + �௨ ௗ�೤ௗ௧ + ܴ௭(�௫ + �௬) = ௬ݑ . ܷ଴  

ܮ  ௗ�೤ௗ௧ + �௨. ܩ ௗఉௗ௧ + ሺܴ௭ + ܴሻ�௬ + ܴ௭�௫ = .௬ݑ ܷ଴  (8) 

where,  ܴ Resistance of motor winding  ܴ௭  Internal source resistance ܮ Inductance of motor winding  

 = ͳ Magnetic flux constant �௨ Speed constant (voltage) of the motor �௫, �௬ Current of the motor 

By considering the balance of moments - moment of inertia ܯ௦, rotational resistance proportional to rotational speed 

(mechanical losses) ܯ௢ and load torque ܯ௫ caused by magnetic 

field which is proportional to current. 

  �௠ ௗమ�ೣௗ௧మ + �௢ ௗ�ೣௗ௧ ௫ܯ+ = �௠. �௫  

Substituting (6) to the above equation gives, 

  
ெ�ೣ௠್ = ீ.௞೘௠್ �௫ − ௃೘ீమ௠್ ௗమఈௗ௧మ − ௞೚ீమ௠್ ௗఈௗ௧  (9) 

Similarly, considering balance of torques on motor connected 

to y axis, 

  �௠ ௗమ�೤ௗ௧మ + �௢ ௗ�೤ௗ௧ ௬ܯ+ = �௠. �௬  

Substituting (6) gives to the above equation gives, 

  
ெ�೤௠್ = ீ.௞೘௠್ �௬ − ௃೘ீమ௠್ ௗమఉௗ௧మ − ௞೚ீమ௠್ ௗఉௗ௧  (10) 

where,   �௠ Moment of inertia of rotating parts of the 

               motor �௠ Torque constant of motor �௢  Coefficient of rotational loss of motor ܯ௫, ,௬ Current load torque of motors  �௫ܯ �௬ Current angle of rotors 

E. Combined model 

The dynamical equations of ball and plate, gears and DC 

motors, by substituting (9-10) to (4-5), are given by,  
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(ͳ + ௃್௠್௥್మ) ௗమ௫ௗ௧మ + ௗ௫ௗ௧ ቀ ௞್௠್௥್ + ௞೎ೣ௠್ |ௗ௫ௗ௧|ቁ + ݔ ቀௗఉௗ௧ቁଶ = −�. sinሺߚሻ(ͳ + ௃್௠್௥್మ) ௗమ௬ௗ௧మ + ௗ௬ௗ௧ ቀ ௞್௠್௥್ + ௞೎ೣ௠್ |ௗ௬ௗ௧|ቁ + ݕ ቀௗఈௗ௧ቁଶ = −�. sinሺߙሻ (11) 

 

ቀ௃೛+௃�ೣ+௃೘ீమ௠್ + ଶቁݕ ௗమఈௗ௧మ + ቀʹݕ ௗ௬ௗ௧ + ௞೛ೣ௠್ + ௞೚ீమ௠್ ቁ ௗఈௗ௧ == ீ.௞೘௠್ �௫ − .ݕ � cosሺߙሻቀ௃೛+௃�೤+௃೘ீమ௠್ + ଶቁݔ ௗమఉௗ௧మ + ቀʹݔ ௗ௫ௗ௧ + ௞೛೤௠್ + ௞೚ீమ௠್ ቁ ௗఉௗ௧ == ீ.௞೘௠್ �௬ − .ݔ � cosሺߚሻ
 (12) 

 
ܮ ௗ�ೣௗ௧ + �௨. ܩ ௗఈௗ௧ + ሺܴ௭ + ܴሻ�௫ + ܴ௭�௬ = ௫ݑ . ܷ଴ܮ ௗ�೤ௗ௧ + �௨. ܩ ௗఉௗ௧ + ሺܴ௭ + ܴሻ�௬ + ܴ௭�௫ = .௬ݑ ܷ଴ (13) 

By substituting the following parameters,  ܽଵ = ͳ + ௃್௠್௥್మ ܽଶ = ௞್௠್௥್ ܽଷ = ௞೎ೣ௠್ܾଵ௫ = ௃೛+௃�ೣ+௃೘ீమ௠್ ܾଶ௫ = ௞೛ೣ௠್ + ௞೚ீమ௠್ ܾଷ = ீ.௞೘௠್ܾଵ௬ = ௃೛+௃�೤+௃೘ீమ௠್ ܾଶ௬ = ௞೛೤௠್ + ௞೚ீమ௠್ ݀଴ = ௎బ௅݀ଵ = �೥௅ ݀ଶ = �+�೥௅ ݀ଷ = ௞ೠ௅ . ܩ
  

The dynamics governing the ball and plate system becomes,   

 ܽଵ  ௗమ௫ௗ௧మ + ௗ௫ௗ௧ ቀܽଶ + ܽଷ |ௗ௫ௗ௧|ቁ + ݔ ቀௗఉௗ௧ቁଶ = −�. sinሺߚሻ  (14) 

 ܽଵ  ௗమ௬ௗ௧మ + ௗ௬ௗ௧ ቀܽଶ + ܽଷ |ௗ௬ௗ௧|ቁ + ݕ ቀௗఈௗ௧ቁଶ = −�. sinሺߙሻ (15) 

 ሺܾଵ௫ + ଶሻݕ ௗమఈௗ௧మ + ቀʹݕ ௗ௬ௗ௧ + ܾଶ௫ቁ ௗఈௗ௧ = ܾଷ�௫ − .ݕ � cosሺߙሻ (16) 

 (ܾଵ௬ + (ଶݔ ௗమఉௗ௧మ + ቀʹݔ ௗ௫ௗ௧ + ܾଶ௬ቁ ௗఉௗ௧ = ܾଷ�௬ − .ݔ � cosሺߚሻ (17) 

  
ௗ�ೣௗ௧ + ݀ଷ ௗఈௗ௧ + ݀ଶ�௫ + ݀ଵ�௬ = ݀଴ݑ௫ (18) 

 
ௗ�೤ௗ௧ + ݀ଷ ௗఉௗ௧ + ݀ଶ�௬ + ݀ଵ�௫ = ݀଴ݑ௬  (19) 

III. LINEAR STATE SPACE MODEL 

The non-linear dynamic equations (14-19) can be linearized 

around operating points (ݔ଴,  ଴ሻ by assuming the followingݕ

approximation: 

1. At small angles of plate inclination: sin � ≈ �, cos � ≈ ͳ 

2. At small rate of change and at initial conditions: ݒ௫ = ߙ =�௫ = �௫ = ௬ݒ = ߚ = �௬ = �௬ = Ͳ    
 The linearized model can be represented in standard state 

space model in the form of, 

 

ௗ̅ܠௗ௧ = ܠ̅ۯ̅ + ܡ�۰̅ = ܠ۱̅̅       (20) 

where, ̅ܠ = ݔ  ] ௫ݒ ߙ �௫  �௫ ݕ ௬ݒ ߚ �௬ �௬ ]்  ۰̅ = [ Ͳ   Ͳ  Ͳ  Ͳ  ݀଴  Ͳ  Ͳ  Ͳ  Ͳ   Ͳ   Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ݀଴  ]் ۱̅ = [  ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ   Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ   ] 
TABLE I.  PARAMETERS OF BALL AND PLATE SYSTEM 

 Symbol Unit Value Description 

 g m.s-2 9.81 Gravitational constant 

b
a

ll
 

mb kg 0.01 Mass of the ball (ping pong) 

rb m 0.02 Radius of the ball 

Δ m 0.001 Thickness of the ball 

Jb kg.m2 �௕ = మ5�௕ሺʹݎ௕ − ∆ሻ∆  MI of hollow ball 

kb kg.m.s-1 0.01 Coefficient of friction (ball)  ܨ = �௕�௫  

cx --- 0.5 Coefficient of aerodynamic resistance ball 

air kg.m-3 1.2 Air density 

kc kg.m-1 �௫ = ଵଶܿ௫ߩ௔�௥ݎߨ௕ଶ Approximation of resistance of environment 

P
la

te
 

mp kg 0.4 Mass of plate 

a m 0. 5 Length of the pivot 

Jp kg.m2 �௣ = భభమ�௣ܽଶ  MI of the plate 

kpx kg.m2.s-1 0.1 Approx of loss (platform x-axis)  ܯ = �௣௫ ௗఈௗ௧  (estimate) 

kpy kg.m2.s-1 0.1 Approx of loss (platform y-axis)  ܯ = �௣௬ ௗఉௗ௧  (estimate) 

D
r
iv

e 

JGx kg.m2 Jp/3 MI of drive (x axis) (estimate) 

JGy kg.m2 Jp/3 MI of drive (y axis) (estimate) 

G --- 10 Gear ratio 

S
r
c U0 V 12 Nominal voltage of motor = Source voltage 

Rz  0.05 Internal source resistance 

M
o

to
r 

Jm kg.m2 45e-7 MI of rotor 

L H 1.2e-3 Inductance of motor 

0 rad.s-1 4550*/30 Motor ideal speed 

i0 A 0.15 No load current of motor 

Ms kg. m2.s-2 0.13 Moment of motor at still 

is A 2.5 Current of motor at still 

R  ܴ = ௎బ�ೞ   Winding resistance 

km kg. m2.s-2.A-1 �௠∅ = ெೞ�ೞ   Torque constant of motor  ܯ = �௠∅� 
ku V.s.rad-1 �௨∅ = ௎బሺ�ೞ−�బሻ�ೞ�బ   Rate constant of motor ܷ = �௨∅೏�೏೟ = �௨∅� 

ko kg. m2.s-1.rad-1 �଴ = ெೞ�ೞ �బ�బ  Approximation of loss (motor)  ܯ = �௢೏�೏೟ = �௢� 
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ۯ̅ =
[  
   
   
   
 Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ −௔మ௔భ Ͳ Ͳ Ͳ Ͳ Ͳ − ௚௔భ Ͳ ͲͲ Ͳ Ͳ ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ −௕మೣ௕భೣ+௬బమ  ௕య௕భೣ+௬బమ  −௚(௕భೣ−௬బమ)(௕భೣ+௬బమ)మ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ −݀ଷ −݀ଶ Ͳ Ͳ Ͳ Ͳ −݀ଵͲ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ Ͳ ͲͲ Ͳ − ௚௔భ Ͳ Ͳ Ͳ − ௔మ௔భ Ͳ Ͳ ͲͲ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ ͳ Ͳ−௚(௕భ೤−௫బమ)(௕భ೤+௫బమ)మ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ −௕మ೤௕భ೤+௫బమ ௕య௕భ೤+௫బమͲ Ͳ Ͳ Ͳ −݀ଵ Ͳ Ͳ Ͳ −݀ଷ −݀ଶ ]  

   
   
   
 
  

The model parameters used in the simulation is listed in 
Table 1. The linearized model, (20) is discretized with a 
sampling time of ௦ܶ = Ͳ.ͳݏ and compared with the continuous 
time dynamic model (15-19) by applying a series of step control 
voltages. Fig. 5 shows the control voltages and ball positions in 
x and y axes of linear and non-linear model. Plate angles and 
motor currents are shown in Fig. 6. Since the system is open loop 
unstable and has integrating character, the quality of 
linearization has to be finally checked by closed loop 
experiments.  

 
Fig. 5. Non-linear vs Linear model: outputs and inputs in open loop 

verification  

 

 
Fig. 6. Plate angles and motor currents in open loop verification 

IV. OPTIMAL CONTROL OF BALL AND PLATE SYSTEM 

Discretizing the state space model (20) with a sampling time ௦ܶ we get, 

 
ሺkܠ + ͳሻ = ሺkሻܠۯ + ۰�ሺkሻ�ሺ�ሻ =  ሺ�ሻ            (21)ܠ۱

With the linear state space model, an optimal LQ controller can 
be designed for the ball and plate system. The aim of the 
controller is generating optimal control voltages by minimizing 
the following criteria,  

 �∞ = ∑ �ሺ்ܠ] + �ሻۿ. �ሺܠ + �ሻ + �்ሺ� + �ሻ�. �ሺ� + �ሻ]∞�=ଵ   

The cost function consists of penalization (weighting matrix ۿ) 
of state variables and control effort (weighting matrix �). If the 
state variables are able to be estimated, the optimal control 
actions can be calculated by,   

 �ሺ�ሻ = ሺ�ሻܠ]�− −  ሺ�ሻ]  (22)ܟܠ

Where ܟܠ is the desired state variable for reference point at time ݐ =  ௞ and � is feedback gain matrix obtained by the followingݐ
equation, � = ሺ۰�۰۾ + �ሻ−�۰�ۯ۾  

The matrix ۾ is the solution of discrete Riccati equation which 
is given by,  ۾ = ۯ۾�ۯ + ۿ − ۰۾�۰ሺ۰۾�ۯ + �ሻ−�۰�ۯ۾  

In MATLAB, the feedback gain can be obtained by, 

[K,~,~,]=dlqr(A,B,Q,R) 

Simulation experiments were conducted on two different 
trajectories: square shaped and Lissajous curve shaped 
trajectory. The model parameters used in the simulation are as 
listed in Table I, with a sampling period of  ௦ܶ = Ͳ.ͳݏ. The 
weighting matrices are chosen as follows, 

Q=eye(10)/10  R=eye(2)/10 

             Q(1,1)=100       Q(6,6)=100 
                     Q(2,2)=100       Q(7,7)=10 

 
Fig. 7. Square trajectory: control voltages, velocities, plate slopes and 

currents 
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Fig. 7 shows the simulation results of LQ control trajectory 
tracking, with a trajectory in the shape of square. Control 
voltages, ball velocities, plate slopes and motor currents are also 
shown. The initial location of the ball was at origin and was 
different from initial reference point. The controller was able to 
track the ball to the reference trajectory points. Fig. 8 shows the 
simulation results of the Lissajous curve shaped trajectory. The 
simulation experiments with both the trajectories show the 
quality of linearized model, which is derived from the non-linear 
model, is good for control purposes.  

V. CONCLUSION 

The mathematical model of ball and plate system is derived 
by Newton-Euler method – considering balance of forces and 
torques of ball and plate, motors and gears. The non-linear 

model is linearized around operating points following some 
approximation. Simulation of open loop model verification is 
performed.  The linearized model is used to discrete optimal LQ 
control of the trajectory tracking problem of ball and plate 
system. The simulation result proves the quality of linearization 
of non-linear model. 
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