2017 21st International Conference on Process Control (PC)

June 6-9, 2017, Strbské Pleso, Slovakia

Modelling of Ball and Plate System Based on First
Principle Model and Optimal Control

FrantiSek Dusek, Daniel Honc, Rahul Sharma K.
Department of Process Control, Faculty of Electrical Engineering and Informatics
University of Pardubice
nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
frantisek.dusek@upce.cz, daniel.honc@upce.cz, rahul.sharma@student.upce.cz

Abstract—This paper presents modelling of ball and plate
systems based on first principles by considering balance of forces
and torques. A non-linear model is derived considering the
dynamics of motors, gears, ball and plate. The non-linear model is
linearized near the operating region to obtain a standard state
space model. This linear model is used for discrete optimal control
of the ball and plate system — the trajectory of the ball is controlled
by control voltages to the motor.
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I. INTRODUCTION

Laboratory experiments are an integral part of control
education. There are lots of educational platforms available e.g.
inverted pendulum, magnetic levitation, ball and beam system
etc. Ball and plate system is an upgraded version of ball and
beam system where the position of the ball can be manipulated
in two directions [1]. The educational model ball and plate,
consists of a plate, pivoted at its center, such that the slope of the
plate can be manipulated in two perpendicular directions. The
ball and plate is a non-linear, multi-variable and open-loop
unstable system. There are basically two control problems:
point stabilization and trajectory tracking. In point stabilization,
the aim is to carry the ball to a specific position and hold it there.
In trajectory tracking control, the goal is to make the ball follows
a predefined trajectory (linear, square, circle and Lissajous
curve) [2-5].

The first step is finding out a mathematical model which
describes the system. There are basically two modelling
approaches for the ball and plate system in literature: the
Lagrangian method and the Newton-Euler method. The
derivation of dynamical equations of ball and plate system by
Lagrangian method can be seen in [6]. The modelling based on
Newton-Euler method is quite rare in the literature. Even though,
Newton-Euler method is quite cumbersome, the variables and
equations have physical meaning which is suitable for control
educational purpose. The balance of forces and torques are
considered in the Newton-Euler method to derive the
mathematical model.

In this paper, a non-linear mathematical model of ball and
plate system is derived by considering the dynamics of the ball
and plate system, DC motors and gear system, based on balance
of forces and torques. The model is linearized around
equilibrium points to arrive at a linear state space model. Infinite
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Fig. 1. Ball and plate system

horizon optimal linear quadratic (LQ) control is applied to the
trajectory tracking problem by penalizing the state and control
effort. Simulation results of model verification and trajectory
tracking control are also provided.

II. MATHEMATICAL MODELLING

Mathematical model of nonlinear dynamics takes account of
the position of the ball on the plate depending on the voltage of
the motors that control the tilt of the plate, in two perpendicular
axes (see Fig. 1). A ball of mass m;, moment of inertia J, and
radius 7} is located on a square surface (plane), tilting in the two
perpendicular axes x and y. The origin of the axis is located at
the intersection of coordinate axes. The moment of inertia of the
plate is J, (relative to each axis of rotation). On each axis, the
torques M, and M, are operated. Moments are created by two DC
geared motors via two cable systems with the same gear ratio of
G, but with different moments of inertia Jg, and Jg,.

The mathematical model is based on the balance of forces
and torques acting on the ball, and the dynamic model of DC
series motor. The real behaviour is taken into account by
including an approximation of linear mechanical losses,
depending on the speed of the rotational motion. In the case of
moving balls, the mechanical losses are proportional to the
square of opposition translational speed of movement.

The model is built on the following assumptions:

a) there is no loss of contact area with the ball

b) the ball is hollow ball (ping-pong ball)

¢) an infinitely large area (not considering the rebound)
d) connection of the motor to tilt the axis is perfectly rigid



A. Balance of forces - ball

Since the ball is placed on a surface rotating in two axes, we
need to consider, in addition to the inertia of the translational
movement, the influence of the apparent forces (Euler,
centrifugal and Coriolis). These forces are caused by the
rotational movement i.e. all the forces in curvilinear motion
consisting of the movement of translation and rotation. A
general representation of the resultant forces acting upon the
curvilinear motion on the mass point in vector form (¥ is the
translational velocity vector and @ is the angular velocity
vector) is then described [7],
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All the apparent forces acting in a plane are perpendicular
to the axis of rotation. Fig. 2 shows a situation where all the
forces are acting in the plane of motion. The mass point is at a
perpendicular distance » from the rotational axis, and the vector
(line connecting the point and the axis of rotation) forms an
angle o from the selected x axis. The Euler force Fru (also
apparent inertia force) acts only when there is a change in the
speed of rotation ® and its direction is perpendicular to the
vector. Centrifugal force F., acts at non-zero rotation speed
and its direction is in the direction of the vector. Coriolis force
Fcor acts when the velocity of motion is not perpendicular to the
vector (i.e. there is a change in the size of the vector). Its
direction is perpendicular to the direction of translational speed.

In the arrangement (rotational axis in the coordinate axes),
the forces are decomposed in the directions of axes x and y
directions. The translational velocity v, v, and rotation speed
e and ap are either parallel or perpendicular to each other.
Decomposition of the axes describes the movement in one
direction only i.e. the apparent Euler and Coriolis force is
applied only in the balance of moments. The situation of
moving in the x-axis is shown in Fig. 3. Since it is not a fixed
point we need to consider more ball spin (moment of inertia)
with speeds of rotation @ and @, loss due to rolling resistance
and environment resistance. Rolling resistance is proportional
to the rotational speed of the ball and resistance is proportional
to the square of environment translational velocity. The overall
balance of forces can be expressed as,
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Fig. 2. Forces acting on ball and plate
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Fig. 3. Ball and plate — movement in the x-axis (x-z plane) and rotation
(torque) acting in y-axis
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External force (gravity) Fyq, = —myg.sin(f)
where,
my Mass of the ball
T Radius of the ball
Sh Total area S, = nr?
A Thickness of the ball
I» Torque of ball  J, = 2m,,(2r, — A)A
Wy, Wy Angular velocity x-axis % = T Wy
ky Coefficient approximation rolling losses
=0.5 Coefficient of aerodynamic resistance ball
Pair=1.2 Density of dry air at 20 ° C and a pressure of

101.4 kPa
k= cxpairnrv’/2 Coefficient of resistance of the environment
g=9.81 Gravitational constant

By considering balance of forces on x axis we get,
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Similarly, by considering balance of forces on y axis we get,
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B. Balance of moments - plate with ball
Overall the balance of moments can be expressed as,

Macc,p + Macep + Mcorp + Mips = - Mgra [kg-mz- s72]

mot
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Torque of plate Macep = (Up +]Gx) T
2
Torque of ball Mace, = V. Fgup = mpy? ZTZ
Coriolis moment Mcorp = ¥-Feor = 2m by%%
d
Torque losses Mips = kpy d—‘:
Gravitational moment Mg, = —myy. g cos(a)
where,
Ip Plate moment of inertia (MI) J,, = 2m,a®
m, Mass of the plate
a Pivot length, passes through the center axis of
Jox:Jey Pivot length, passes through the center axis
kpxr kpy Coefficient of approximation of rotational
losses
X,y Current position of the ball
Mgy, Mgy Actual moments of the drives

a, B Current the angle of the platform according to
the respective axes

By considering balance of forces on x axis we get,

dy da da
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Similarly, by considering balance of torques on y axis we get,
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C. Gear system

The gear box reduces the angular velocities of motors to
output angular velocities with respect to the gear ratio.
Similarly, the torques of motors are increased to output torques.

a = l(px B = l(Py
G G
Mgy =G.My, Mg, =G.M, (6)
where,
G Gear transmission ratio of the drive

¢x ¢y Angle of rotation of the rotor
a, B Angle of rotation of the plate with respect to
the relevant axis

D. Balance of energy and moment — motor

An equivalent circuit of an ideal DC series motor, is shown
in Fig. 4. It consists of resistance R, inductance L and magnetic
field M. Each motor is independently controlled by its own
supply voltage Uy, U, taken from a common voltage source U,
through control signal u,,u,. The rotor generated back
electromotive force (EMF) is in reverse polarity and is
proportional to the rotor angular velocity. The torque of the
motor is proportional to the current i.
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Fig. 4. Equivalent circuit of DC motor

By considering the balance of voltages (Kirchhoff’s law) of
the motor connected to x axis,

dlx

+ ky D725 4 R, iy + 1) = uy. U
+ Ky cDG—+(R + R)ix + Ryl = u,. Ug @)

R.i, +L
dlx

Similarly, by considering balance of voltages on motor
connected to y axis,

Roiy+ L= ‘y+k D+ Ry (i + iy) = 1. U
di ap
d—ty+ ky®.G -+ (RZ + R)iy + Ryiy = u,. Uy ®)

where,

Resistance of motor winding
. Internal source resistance
Inductance of motor winding
Magnetic flux constant
" Speed constant (voltage) of the motor
Current of the motor

~
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By considering the balance of moments - moment of inertia
Mg, rotational resistance proportional to rotational speed
(mechanical losses) M, and load torque M, caused by magnetic
field which is proportional to current.

d(ﬂx d(Px
Jm e + M, =k, @i,

Substituting (6) to the above equation gives,

Mgy _ Gkp®
mp - mp

., JmG?d?a  koG%da

Lx my dt? (9)
Similarly, considering balance of torques on motor connected
to y axis,

d(p do ,
dt2y+k0d_ty+M —ka.ly

Jm
Substituting (6) gives to the above equation gives,

Mg Gkm® . mG? d? koG? d
= Ty (10
where,
Im Moment of inertia of rotating parts of the
motor
km Torque constant of motor
k, Coefficient of rotational loss of motor

M,, M,,
Px, Py
E. Combined model

The dynamical equations of ball and plate, gears and DC
motors, by substituting (9-10) to (4-5), are given by,

Current load torque of motors
Current angle of rotors
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‘”‘_"’ — x. g cos(B) The non-linear dynamic equations (14-19) can be linearized
dlx ax? ) ) around operating points (xy,y,) by assuming the following
+ky, @ G (Rz + R)iy + Ryl = u,. Uy (13) approximation:
dl.
2 k. G + (R + R)iy + Ryly = uy. Up 1. At small angles of plate inclination: sin 8 ~ 6, cos 6 ~
By substltuting the followmg parameters, 2. At small rate of change and at initial conditions: v, = a =
Wy =ly=v,=F=wy,=1,=0
kp kex - . .
a =1+ e Q2 = as = The linearized model can be represented in standard state
 JptoxtmG e | koGP Gk space model in the form of,
b =T b=ty BT ‘
G S ’ & = Ax+Bu
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The dynamics governing the ball and plate system becomes

- 70 0 0 0 do 0 0 0 0 01
d?x | dx dp . B =
a S5+ % (a, + 05| )+x(dt) =—g.sin(g) (14) 00 0 0 00 0 0 0 do
4 4o 2 C=[1000000000
a0 242 (g, + a; |2]) +y (&) = —g.sin(@)  (15) 0000010000
dt dt dt
TABLE L PARAMETERS OF BALL AND PLATE SYSTEM
Symbol Unit Value Description
g m.s” 9.81 Gravitational constant
my, kg 0.01 Mass of the ball (ping pong)
rp m 0.02 Radius of the ball
4 m 0.001 Thickness of the ball
= b kg.m? Jp = 2my,(2r, — A)A MI of hollow ball
2 ky kg.m.s! 0.01 Coefficient of friction (ball) F = kyw,
Cx — 0.5 Coefficient of aerodynamic resistance ball
Pair kg.m? 1.2 Air density
ke kg.m! k, = %Cx Dair T Approximation of resistance of environment
m, kg 0.4 Mass of plate
a m 0.5 Length of the pivot
g J, kg.m? Jp = &m,a? MI of the plate
- - kg.m?.s! 0.1 Approx of loss (platform x-axis) M = k,, ‘Z—‘: (estimate)
Ky kg.m?s’ 0.1 Approx of loss (platform y-axis) M = ky,, % (estimate)
o Jox kg.m? Jo/3 MI of drive (x axis) (estimate)
E Joy kg.m? Jo/3 MI of drive (y axis) (estimate)
= G --- 10 Gear ratio
Uy \Y 12 Nominal voltage of motor = Source voltage
»n R. Q 0.05 Internal source resistance
I kg.m’ 45e-7 MI of rotor
L H 1.2e-3 Inductance of motor
@y rad.s’! 4550*1t/30 Motor ideal speed
iy A 0.15 No load current of motor
. M, kg. m%s? 0.13 Moment of motor at still
g I A 2.5 Current of motor at still
= R Q R= % Winding resistance
kon kg. m2s2 A’ k@ = % Torque constant of motor M = k,, @i
k V.s.rad”! k@ = %ﬁ:l“) Rate constant of motor U = k,#%2 = k, P
sWo
ko kg. m%s™.rad! ko = %;—0 Approximation of loss (motor) M = k% = k,
Q
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The model parameters used in the simulation is listed in
Table 1. The linearized model, (20) is discretized with a
sampling time of T; = 0.1s and compared with the continuous
time dynamic model (15-19) by applying a series of step control
voltages. Fig. 5 shows the control voltages and ball positions in
x and y axes of linear and non-linear model. Plate angles and
motor currents are shown in Fig. 6. Since the system is open loop
unstable and has integrating character, the quality of
linearization has to be finally checked by closed loop
experiments.
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Fig. 5. Non-linear vs Linear model: outputs and inputs in open loop
verification
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Fig. 6. Plate angles and motor currents in open loop verification
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IV. OPTIMAL CONTROL OF BALL AND PLATE SYSTEM
Discretizing the state space model (20) with a sampling time
T, we get,
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)
With the linear state space model, an optimal LQ controller can
be designed for the ball and plate system. The aim of the

controller is generating optimal control voltages by minimizing
the following criteria,

Joo = 221 [XT(k + D)Q.x(k + i) + u"(k + DHR.ulk + )]

e2y)

The cost function consists of penalization (weighting matrix Q)
of state variables and control effort (weighting matrix R). If the
state variables are able to be estimated, the optimal control
actions can be calculated by,

u(k) = —K[x(k) — xy (k)] (22)

Where x,, is the desired state variable for reference point at time
t = t; and K is feedback gain matrix obtained by the following
equation,
K = (BTPB + R)"'BTPA
The matrix P is the solution of discrete Riccati equation which
is given by,
P = ATPA + Q — ATPB(B"PB + R)"'BTPA
In MATLAB, the feedback gain can be obtained by,
[K,~,~,]1=dlgr (A,B,Q,R)
Simulation experiments were conducted on two different
trajectories: square shaped and Lissajous curve shaped
trajectory. The model parameters used in the simulation are as

listed in Table I, with a sampling period of T; = 0.1s. The
weighting matrices are chosen as follows,

Q=eye(10)/10 R=eye(2)/10

Q(1,1)=100  Q(6,6)=100
Q(2,2)=100 Q(7,7)=10
Trajectory Velocities
0.2
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0.1 Reference é
E o
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> 100 -
02 _ a I}
]
o 50
02 -01 0 01 02 o
()]
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0 5 10 15 2
u u
x y i Motor currents
= 5 - i i
s ! x
< 05
0 V_#—l\#» 0 \ e — ——

0 5 10 15 20 0 5 10 15 2(
Time [s] Time [s]

Fig. 7. Square trajectory: control voltages, velocities, plate slopes and
currents
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Fig. 8. Lissajous curve trajectory: control voltages, velocities, plate slopes
and currents

Fig. 7 shows the simulation results of LQ control trajectory
tracking, with a trajectory in the shape of square. Control
voltages, ball velocities, plate slopes and motor currents are also
shown. The initial location of the ball was at origin and was
different from initial reference point. The controller was able to
track the ball to the reference trajectory points. Fig. 8 shows the
simulation results of the Lissajous curve shaped trajectory. The
simulation experiments with both the trajectories show the
quality of linearized model, which is derived from the non-linear
model, is good for control purposes.

V. CONCLUSION

The mathematical model of ball and plate system is derived
by Newton-Euler method — considering balance of forces and
torques of ball and plate, motors and gears. The non-linear

model is linearized around operating points following some
approximation. Simulation of open loop model verification is
performed. The linearized model is used to discrete optimal LQ
control of the trajectory tracking problem of ball and plate
system. The simulation result proves the quality of linearization
of non-linear model.
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