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Abstract—In this paper a robust predictive neuro-fuzzy 

control method for a nonlinear plant is addressed, proposed and 

tested. A neuro-fuzzy model is used to identify the process and 

then provides predictions about the process behavior, based on 

control actions applied to the system. The paper consists of 

theoretical and practical section, offers an internal model control 

and a neuro-fuzzy internal model control designs and their 

successful application. The structure of both of algorithms is 

described in detail. The proposed control algorithms are applied 

to control of a thermo-optical plant. 
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I. INTRODUCTION 

In practice, proportional-integral-derivative (PID) 
algorithms are applied to control of a huge amount of industrial 
facilities. The conventional PID technique is both reliable and 
simple, it has been used to hundreds of thousands of control 
loops in various industrial facilities all over the world in the 
last 70 years. In spite of many advantages of using PID 
controllers, not all industrial processes can be controlled with 
conventional algorithms. Highly nonlinear processes or 
multivariable systems require more advanced control 
algorithms based on soft and robust strategies. Currently, 
majority of vendors have incorporated new advanced structures 
based on soft techniques into their control systems. This allows 
users to apply fuzzy logic, neural network algorithms and 
genetic algorithms to existing control loops and control 
structures. The main aim is to achieve better control loop 
performance compared to conventional PID algorithms. 

Application of neuro-fuzzy approaches in model based 
predictive control is an effective tool for control of systems 
with complex dynamics as well as unstable inverse systems, 
time-varying time delay, occasional open-loop instability, plant 
model miss-matches and different uncertainties especially of 
complex nonlinear systems [2], [13]. 

The Internal Model Control (IMC) structure was firstly 
presented by Garcia and Morari [14]. Some of the mentioned 
problems can be solved by implementation of soft computing 
methods comprising the advantages of high approximation 
qualities of fuzzy logic and, moreover, learning capabilities of 
neural networks. The scientific research in model predictive 
control schemes applications with the help of artificial 
intelligence shows very efficient results in the last decade. 
Application of adaptive fuzzy IMC is described in [3]. Neural 
network based control structure is given in [4] and [9]. Design 

of predictive controller based on fuzzy logic and neural 
network is presented in [8], [11] and [12]. 

The paper is organized as follows. First, design of IMC and 
neuro-fuzzy IMC (NFIMC) is briefly introduced in Section 2. 
Neuro-Fuzzy model is described in Section 3. Then, case study 
and simulation results are discussed in Section 4. Summary and 
conclusions are given in Section 5. 

II. CONTROL STRUCTURE 

A. Internal Model Control Structure 

In process control, IMC has obtained huge success due to 
the good disturbance elimination facilities and IMC structure 
robustness capabilities [5]. IMC techniques belong to a family 
of very simple, robust and easy-to-implement methods, suitable 
for many industrial applications. The IMC is very often used in 
control strategies for linear systems with the possibility of use 
for nonlinear systems as well. Structure of IMC is shown in 
Fig. 1. This structure provides the feedback error to yield the 
effect of disturbance. It can be shown, that a perfect match 
between forward and inverse models is enough to achieve 
acceptable control, while influence of disturbances is also 
reduced. 

According to Fig. 1, the following relationship between the 
conventional feedback control GR(s) and internal model 
(predictive) controller GRIMC(s) can be seen 
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Fig. 1. Block Scheme of Internal Model Control. 

Output variable is 
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From the derived relations, the following characteristics of 
the IMC control structures can be established: 

 if the model is perfect and G(s)=Ĝ(s) then from (3) and 
(4) it is simple to find U(s)=GRIMC(s)W(s) and 
Y(s)=Ĝ(s)GRIMC(s)W(s), 

 stability condition of closed-loop systems: controller 
output will be bounded, if GRIMC(s) is stable. The output 
will be stable if plant and GRIMC(s) is also stable, 

 the IMC structure provides perfect control for all time 
responses and all disturbances. 

In implementation of IMC scheme, the following practical 
issues are assumed: 

 the process model may be separable into invertible Ĝ- 

and noninvertible part Ĝ+
 (unstable poles, time delays, 

etc.) with the steady state gain Ĝ(s)= Ĝ+Ĝ-
 

 the IMC controller is expressed as follows 
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GY/W(s) is transfer function of closed-loop 
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where the parameters  and the order n are chosen to ensure 

that the GRIMC(s) is proper. Parameter  determines dynamical 
properties of closed-loop system. 

B. Neuro-Fuzzy Internal Model Control Structure 

IMC structure with detail [10] of the implementation is 
shown in Fig. 2. 

 

Fig. 2. Internal Model Control structure with detail of the implementation of 

inverse and direct models – w(k+1) is reference input signal, e(k+1) is error 

between the output and the estimate, u(k) is input signal to the plant, y(k+1) is 

plant output, ŷ(k+1) is the estimate of the output. 

In order to increase the robustness and disturbance rejection 
performance of the modified IMC scheme, an adaptation 
mechanism is introduced on the neuro-fuzzy model. 

This approach includes following parts: 

 a direct model to predict the effect of the control action 
on the system, 

 a controller based on the inverse of the process model. 

In this case, the direct and inverse models are neuro-fuzzy 
models. 

III. NEURO-FUZZY MODEL 

Takagi-Sugeno (T-S) type of fuzzy model is often used for 
modeling of a majority of highly nonlinear systems. Direct and 
inverse models can be expressed by T-S type model with n 
rules. The i-th rule of the T-S model for m-inputs (in) is 
described as follows 
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where outi is the output of the i-th rule (i=1,2,…, n), A1i and 

Ami are the fuzzy sets, and p0i is the parameters vector. 

The output is expressed as weighted average of the 
individual rules’ consequents 
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∏ is fuzzy operator, generally been applied as the min or the 
product operator and n is number of rules. 

Since the controller can be designed as an open-loop 
controller, the ideal choice for the controller is the inverse of 
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the process model. The IMC design procedure is very simple 
and reliable. The direct model has two inputs y(k-1), u(k) and 
output is y(k) and the inverse model has three inputs u(k-1), 
w(k+1), y(k-1) and output is u(k) as is depicted in Fig. 2.  

The direct model of the controlled process is Takagi-
Sugeno (T-S) fuzzy model, membership functions are built on 
the triangular distribution curve. The fuzzy model has been 
designed based on input-output measurement data. Still, 
compared to other nonlinear techniques, fuzzy models provide 
more transparent representation of the identified model. 

Parameters of the fuzzy model are adapted by means of a 
neural network. The neuro-fuzzy model, which is obtained, has 
a very high accuracy. Main goal of this approach is to 
implement the predictive model-based control theory, 
advanced of neuro-fuzzy modeling technique to obtain a model 
with high accuracy and apply the possibilities of the inverse 
model-based fuzzy control. 

First, the process outputs are swapped with inputs and the 
same neuro-fuzzy algorithm is used to create the inverse 
model. In the internal model-based scheme the quality of the 
designed neuro-fuzzy logic controller depends on the accuracy 
of the inverted neuro-fuzzy model presented by checking error. 
The inverse model of the controlled process is Takagi-Sugeno 
fuzzy model, which is designed by using of fuzzy clustering 
algorithm. 

IV. CASE STUDY AND SIMULATION RESULTS 

A. Thermo-Optical Plant 

Thermo-optical plant is a simple laboratory physical model 
of thermo-dynamical and optical systems called DIGICON 
USB thermo-optical plant (Fig. 3). Its thermal channel contains 
one heater represented by an electric bulb and one cooler 
represented by a small fan [6]. The output of this channel is 
represented by temperature inside the tube.  Measurement of 
the output value is represented by a thermal sensor. The second 
dynamics is formed by the optical channel. Within this channel 
it is possible to generate light by LED and measure the 
intensity of this light by photo resistor. The optical channel is 
even more comfortable for conducting experiments, because 
the time constants are much smaller compared to the thermal 
channel. The base of the model covers also electronic part. 
This part includes one connector for input (voltage) and two 
other connectors for data communication. One of these 
connectors is used for communication with the data acquisition 
card AD512 and another one is the USB port that can be 
connected directly to the computer (instead of using an 
expensive data acquisition card). The front panel of the base 
includes five information LEDs. The body of the electronic 
part is equipped with integrated circuits for communication and 
signal conversion [7].  

From the input-output characteristic depicted in Fig. 4, the 
working points WP1=(3.21, 20.8) and WP2=(3.75, 24.2) have 
been chosen. The following experiment has been performed – 
step (in time 30 sec.) from WP1 to WP2. The step response has 
been recorded. Then times t0.33 and t0.7 as well as hs(∞) 
according to Fig. 5 have been measured. Transfer function (11) 
has been calculated.  

 

Fig. 3. Thermo-optical plant 

 

 

 

 

 

 

 

 

 

Fig. 4. Input-Output characteristic of the thermo-optical plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Aperiodic step response. 
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The coefficient of transfer function K is given by (10) - if 
the input step isn’t unit step, K is calculated from Δy and Δu, 
where Δy and Δu are the values of steady state output variable 
and input variable [15], respectively 
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Transfer function is calculated from the process step 
response (t0.33=0.24 sec and t0.7=0.32 sec): 
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The measured plant step response and its approximation 
(12) are shown in Fig. 6. 
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Fig. 6. The measured plant step response and its approximation (9). 
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Fig. 7. The comparison of time responses of outputs from direct neuro-fuzzy 

model and nonlinear plant. 

Direct and inverse neuro-fuzzy models have been designed 
for the Neuro-Fuzzy IMC structure shown in Fig. 2. Direct T-S 
fuzzy model has been designed based on step change between 
operating points WP1 and WP2. The direct model has five 
triangular membership functions for both inputs y(k-1), u(k) 
and output y(k) membership functions are constant. Then an 
inverse neuro-fuzzy model making use of subtractive clustering 
method was designed with parameters: range of influence is 
0.5, squash factor is 1.25, accept ratio is 0.5 and reject ratio is 
0.15. The inverse model has three inputs u(k-1), w(k+1), y(k-1) 
and output is u(k). Rules of both neuro-fuzzy models were 
generated automatically in anfiseditor [16]. The direct model 
has 25 rules and the inverse model has 2 rules. 

Time responses of output from direct neuro-fuzzy model 
and nonlinear plant is shown in Fig. 7. 

B. Control of Plant 

In implementation of IMC scheme (Fig. 1), the process 
model (9) may be separated into invertible Ĝ- 

and noninvertible 
part Ĝ+

 (unstable poles, time delays, etc.) with the steady state 
gain Ĝ(s)= Ĝ+Ĝ- 
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from (6), where =0.3 and n=1. Time constant of the closed-

loop system  has been chosen on base of knowing the time 
constant of the system being controlled (12). Transfer function 
of IMC controller is 
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Fig. 8. Time responses of the controlled and reference variables of the 

process under IMC. 
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Fig. 9. Time response of the manipulated variable under IMC. 

Time responses of the controlled and reference variables 
under IMC as depicted on Fig. 1 are shown on Fig. 8. Time 
responses of manipulated variable are shown on Fig. 9. 

Time responses of both the controlled and reference 
variables under NFIMC structure from Fig. 2 are shown on 
Fig. 10. Time responses of manipulated variable under NFIMC 
are shown on Fig. 11. 

The stability and convergence of the proposed methods is 
guaranteed via Lyapunov synthesis [1]. 

Control performance of NFIMC was compared with 
conventional PID controller. Method of direct synthesis [17] 
has been chosen for controller tuning. Parameters of PI 
controller are P=0.02 and I=0.2. Comparison of NFIMC with 
PI controller is shown on Fig. 12. 
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Fig. 10. Time responses of the controlled and reference variables of the 

process under NFIMC. 
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Fig. 11. Time responses of the manipulated variable of the process under 

NFIMC. 
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Fig. 12. Time responses of the controlled and reference variables under 

NFIMC and PI control. 
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V. CONCLUSIONS 

In this paper IMC and NFIMC for control of nonlinear 
process are designed. The proposed IMC structure is simple 
and convenient to design.  

The control performance of such a controller depends on 
accuracy of the process model.  

The NFIMC method consists of a direct model and an 
inverse neuro-fuzzy model of the laboratory process using an 
adaptive neuro-fuzzy inference system. These models are used 
directly in the IMC structure. FNIMC is very effective method, 
which is based on neuro-fuzzy model and existence of inverse 
neuro-fuzzy model. The performance of FNIMC depends on 
the accuracy of neuro-fuzzy model. These proposed control 
algorithms are applied to control of thermo-optical plant to 
show the effectiveness of the proposed algorithms. 

Our future aim of research will be design of control 
algorithm with considering input and output constraints. 
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